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ABSTRACT

As a fundamental capability for mobile robots, navigation involves multiple tasks in-

cluding localization, mapping, motion planning, and obstacle avoidance. In unknown

environments, a robot has to construct a map of the environment while simultaneously

keeping track of its own location within the map. This is known as simultaneous local-

ization and mapping (SLAM). For urban and indoor environments, SLAM is especially

important since GPS signals are often unavailable. Visual SLAM uses cameras as the

primary sensor and is a highly attractive but challenging research topic. The major chal-

lenge lies in the robustness to lighting variation and uneven feature distribution. Another

challenge is to build semantic maps composed of high-level landmarks. To meet these

challenges, we investigate feature fusion approaches for visual SLAM. The basic ratio-

nale is that since urban and indoor environments contain various feature types such points

and lines, in combination these features should improve the robustness, and meanwhile,

high-level landmarks can be defined as or derived from these combinations.

We design a novel data structure, multilayer feature graph (MFG), to organize five

types of features and their inner geometric relationships. Building upon a two view-based

MFG prototype, we extend the application of MFG to image sequence-based mapping

by using EKF. We model and analyze how errors are generated and propagated through

the construction of a two view-based MFG. This enables us to treat each MFG as an

observation in the EKF update step. We apply the MFG-EKF method to a building exterior

mapping task and demonstrate its efficacy.

Two view based MFG requires sufficient baseline to be successfully constructed, which

is not always feasible. Therefore, we further devise a multiple view based algorithm to
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construct MFG as a global map. Our proposed algorithm takes a video stream as input,

initializes and iteratively updates MFG based on extracted key frames; it also refines robot

localization and MFG landmarks using local bundle adjustment. We show the advantage of

our method by comparing it with state-of-the-art methods on multiple indoor and outdoor

datasets.

To avoid the scale ambiguity in monocular vision, we investigate the application of

RGB-D for SLAM. We propose an algorithm by fusing point and line features. We extract

3D points and lines from RGB-D data, analyze their measurement uncertainties, and com-

pute camera motion using maximum likelihood estimation. We validate our method using

both uncertainty analysis and physical experiments, where it outperforms the counterparts

under both constant and varying lighting conditions.

Besides visual SLAM, we also study specular object avoidance, which is a great chal-

lenge for range sensors. We propose a vision-based algorithm to detect planar mirrors.

We derive geometric constraints for corresponding real-virtual features across images and

employ RANSAC to develop a robust detection algorithm. Our algorithm achieves a de-

tection accuracy of 91.0%.
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1. INTRODUCTION

Robots are changing our life. Nowadays robots are not only operating in factories or

outer space, but also participating in people’s daily activities. For example, by Feb. 2014

over 10 million Roomba robotic vacuums have been sold worldwide, cleaning rooms for

people. Self-driving cars, which would greatly reduce traffic accidents and congestions,

are getting closer and closer to real life, thanks to the continuous efforts of big companies

like Google. Four U.S. states have passed laws permitting autonomous cars, including

Nevada, Florida, California, and Michigan.

For any mobile robots, navigation is a fundamental capability. Robot navigation is a

combination of multiple tasks including localization, mapping, motion planning, obstacle

avoidance, etc. Localization and mapping answers two basic questions for a robot: “where

am I” and “what is the world like”, respectively. Motion planning finds a path for a robot

to move from its initial configuration to goal configuration. Obstacle avoidance keeps a

robot from collision with objects.

Robot Navigation has been a popular research field in the past decades [1, 2]. For

navigation, robots use sensors to perceive the world, including range sensors and passive

sensors. Ultrasonic range sensors are inexpensive at the cost of low angular resolution.

Laser range finders are expensive and not eye safe, despite high angular resolution. A

common problem of range sensors is that they do not capture much information other than

range, such as material and texture. On the other hand, cameras are not only inexpensive,

but also able to capture rich texture and color information about the world. Meanwhile,

cameras are becoming unprecedentedly available to everyone with the spread of mobile

devices like cellphone and tablets. All these facts motivate us to study camera-based nav-

igation, i.e., visual navigation.
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In early robotics works, localization is conducted with respect to a map of known envi-

ronment. As robotic sensors are inherently noisy, probabilistic approaches (e.g., Kalman

filter) are widely adopted to solve the localization problem. However, when a robot ex-

plores a previously-unknown environment with no map available, the chicken and egg

problem arises: localization requires a known map, but mapping relies on accurate lo-

cation information. This leads to the simultaneous localization and mapping (SLAM)

problem, i.e., a robot constructs a map of an unknown environment while simultaneously

keeping track of its own location within the map. For navigation in urban and indoor en-

vironments, SLAM is especially important since GPS signals are often blocked/reflected

by tall buildings.

SLAM has attracted extensive interest and research since early 1990’s. People have

applied different kinds of sensors and proposed various techniques for SLAM. At present,

laser-based SLAM algorithms can produce highly accurate results and are relatively ma-

ture. On the contrary, visual SLAM (i.e. vision-based SLAM) is still facing a lot of

challenges, despite its fast progress in the past decade.

The major challenge for visual SLAM lies in the robustness to lighting variation and

feature distribution. The core element of visual SLAM algorithms is to estimate the rel-

ative motion between two images based on commonly observed scene/objects. To do so,

one needs to find out the correspondence between images, which can be either pixel-wise

or between visual features such as interest points and edges. Unfortunately, the correspon-

dence quality can be easily challenged by lighting variations and uneven feature distribu-

tions, which directly degrades visual SLAM performance. For example, pixel-wise match-

ing algorithms usually assume photo-consistency, which becomes invalid under lighting

change. Moreover, most visual SLAM algorithms are built upon a single type of visual

feature for simplicity. However, when that type of feature is unevenly distributed or even

absent in the scene, the estimation becomes subject to degenerated situations or failure.
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Another limitation of current visual SLAM algorithms is that the resulted map is usu-

ally composed of simple landmarks, which are constructed from low-level visual features.

The most popular type of visual feature is points (also known as interest points or key

points). While various point detection algorithms exist including SIFT, SURF and FAST,

the generated map just consists of sparse point landmarks, without much semantic mean-

ing. This hinders higher-level navigation tasks such as approaching an office door. It

is thus desirable to build a map of higher-level landmarks such as planes or even objects.

High-level landmarks can not only make a map more semantic but also enable more robust

feature matching or place recognition.

To meet these challenges, we investigate feature fusion approaches in this dissertation.

The basic rationale is that in urban and indoor environments there exist various feature

types such points and lines, which have different properties; in combination, these features

should improve the robustness of visual SLAM, and furthermore, high-level landmarks can

be defined as or derived from their combinations, making maps more semantic.

We have designed a novel data structure, multilayer feature graph (MFG), which not

only incorporates five types of features ranging from points to planes, but also models

the geometric relationships between these feature types. We have prototyped MFG using

a two view-based construction algorithm [3] to demonstrate its potential for facilitating

visual navigation.

In this dissertation, we first extend the application of MFG to image sequence-based

robotic mapping by using EKF. To be specific, we build a sequence of two view based

MFGs from each pair of adjacent frames and analyze how errors are generated and propa-

gated in the construction process of each MFG. We derive closed form solutions for error

distributions, and the error analysis enables us to treat each MFG as an observation for

the EKF at each iteration. Based on projective geometry of pinhole camera, we derive the

observation models that complete the EKF framework. We have implemented the MFG-
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EKF method and applied it to an automatic building exterior mapping task [4]. We have

tested the algorithm using image data from outdoor man-made environments. Experiment

results show that building facades are successfully constructed with mean relative error of

plane depth less than 4.66%.

However, two view based MFG requires sufficient baseline to be successfully con-

structed. This is not always feasible in real applications. This motivates us to devise a

multiple view based algorithm to construct a single MFG which serves as a global map.

As a result, our proposed heterogeneous landmark-based visual navigation algorithm takes

a video stream as input, initializes and iteratively updates MFG based on extracted key

frames; it also refines robot localization and MFG landmarks using local bundle adjust-

ment [5, 6]. We present pseudo code for the algorithm and analyze its complexity. We

evaluate our method and compare it with state-of-the-art methods using multiple indoor

and outdoor datasets. In particular, on the KITTI dataset our method reduces the trans-

lational error by 52.5% under urban sequences where rectilinear structures dominate the

scene.

Monocular visual SLAM inevitably suffers scale drift due to depth ambiguity. This

can be easily avoided by using an RGB-D camera, which provides pixel-wise depth mea-

surements for color images. While most RGB-D SLAM algorithms use feature points, we

investigate how to extract 3D lines from RGB-D data. More importantly, we propose an

RGB-D odometry algorithm robust to lighting variation and uneven feature distribution by

fusing point and line features. We extract 3D points and lines from RGB-D data, analyze

their measurement uncertainties, and compute camera motion using maximum likelihood

estimation. We prove that fusing points and lines produces smaller motion estimate un-

certainty than using either feature type alone. In experiments our method outperforms the

competing algorithms under both constant and varying lighting conditions.

Besides localization and mapping, we also investigate obstacle avoidance. In urban
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and indoor environments, specular objects like mirrors challenge almost every type of

robot sensors including laser range finds and sonar arrays. This is because light and sound

signals simply bounce off the surfaces and do not return to receivers. We propose a method

for this planar mirror detection problem using two views from an on-board camera [7]. We

derive geometric constraints for corresponding real-virtual features across two views. We

address an issue that popular feature detectors, such as scale-invariant feature transform

(SIFT), are not reflection invariant by combining a secondary reflection with an affine

scale-invariant feature transform (ASIFT). We employ a RANSAC framework to develop

a robust mirror detection algorithm. The algorithm is tested under both in-lab and field

settings, and it achieves an overall detection accuracy rate of 91.0%.

The rest of this dissertation is organized as follows. Section 2 reviews literature related

to this dissertation. In Section 3, we present the MFG-based EKF framework and its

application to building exterior mapping. Section 4 presents the heterogeneous landmark-

based visual SLAM algorithm using multiple view based MFG. Section 5 presents our

robust RGB-D odometry algorithm fusing point and line features. In Section 6, we report

the planar mirror detection algorithm for obstacle avoidance. Section 7 concludes the

dissertation and discusses future work directions.
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2. LITERATURE REVIEW

Robot navigation is a combination of tasks including localization, mapping, motion

planning, and obstacle avoidance. The works in this dissertation mainly relate to localiza-

tion, mapping and obstacle avoidance.

Robotic localization is the problem of estimating robot poses (position and orientation)

with respect to a given map. Because robotic sensors are inevitably subject to measure-

ment noise, probabilistic approaches are widely adopted for localization, such as EKF [8],

probability grids [9], and particle filter [10]. When navigating in unknown environments,

localization and mapping have to be conducted in the same time, which is known as the

simultaneous localization and mapping (SLAM) problem. A solution to the SLAM prob-

lem is considered as the key for mobile robots to be truly autonomous. Early works [11]

show that a consistent solution of SLAM requires a joint estimate of the robot poses and

every landmark. Later on people further realize that SLAM is actually a convergent prob-

lem [12]. Representative approaches to the SLAM problem include EKF-based , particle

filter-based (e.g. FastSLAM [13]), and information filter-based [14] methods.

Visual SLAM. Various types of sensors have been applied to SLAM, including ultra-

sonic sensors, Lidar, cameras. The works in this dissertation utilize cameras primarily,

and thus belong to the visual SLAM category. Visual SLAM is also commonly referred

to as structure from motion (SFM) or visual odometry in computer vision domain. In this

dissertation, we consider these terms to be interchangeable. There exist two prevalent cat-

egories of approaches for visual SLAM, one based on sequential filtering (e.g. [15]) with

its root in the traditional SLAM research, the other based on bundle adjustment (BA) [16]

which is a standard optimization technique in computer vision. BA essentially estimates
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all camera poses and landmark parameters in a big nonlinear optimization problem, which

is usually computationally expensive. Local bundle adjustment is a technique proposed to

allow online processing by limiting the camera poses and landmarks to be within a window

of latest frames.

The basic element of a typical visual SLAM system is pairwise motion estimation, i.e.

recovering the relative 3D rigid transformation between two camera frames. This can be

solved by using either pixel-to-pixel registration (i.e. dense methods) or sparse feature

matches. Compared with dense methods, sparse features are less sensitive to perspective

and/or illumination changes. Various interest point feature detection and/or description

algorithms have been adopted in visual SLAM such as SIFT [17] and speeded-up robust

feature (SURF) [18]. Other feature types are also studied for visual SLAM, such as line

segments [19–22], straight lines [23], vanishing points [24], and planes [25–28]. However,

points are still the most commonly used feature due to its simplicity; moreover, most visual

SLAM works are built on a single feature type. As a result, existing methods are not

very robust to large lighting variations and uneven feature distributions. The works in this

dissertation focus on exploiting the combinational power of different feature types in order

to achieve better accuracy and robustness. We propose a novel data structure to organize

different types of visual features, based on which we respectively develop EKF-based and

LBA-based visual SLAM algorithms and evaluate them using real-world data.

RGB-D odometry. A regular RGB camera only measures angular information of

objects, with the depth information missing. This produces a scale ambiguity in monocular

visual SLAM, and further results in the notorious scale drift problem [29]. The recent

emergence of RGB-D cameras (e.g. Microsoft Kinect) solves the scale ambiguity/drift

issue to a great extent. This is because RGB-D cameras provide pixel-wise depth data

for every color image. To perform SLAM using RGB-D data, point cloud registration

methods (e.g. ICP [30]) can be applied [31], but they are easily hindered by degenerated
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cases. Traditional visual SLAM algorithms are also applicable to RGB-D SLAM with

slight modifications [32, 33], which are still sensitive to lighting variations and uneven

feature distribution. Our work investigates how to fuse point and line features in RGB-

D SLAM to improve the system robustness. We prove that this feature fusion approach

produces smaller estimation uncertainty than using either feature alone.

Obstacle avoidance. Besides localization and mapping, obstacle avoidance is another

important research problem in navigation. To cope with this problem, range data from

ultrasonic [34] or laser [35] range finders are commonly used to detect obstacles. In

general range sensors are able to reliably detect normal obstacles like chairs and boxes,

except for specular surfaces (e.g. mirrors). This is because sound or light does not return

to the receivers after specular reflections most of the time. Our work detects planar mirrors

using a vision-based algorithm. Our algorithm not only detects the existence of planar

mirrors, but also estimates their poses relative to the camera.
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3. AUTOMATIC BUILDING EXTERIOR MAPPING USING MULTILAYER

FEATURE GRAPH AND EXTENDED KALMAN FILTER*

We are developing visual algorithms to assist building exterior survey using a mobile

robot, which can greatly assist building energy retrofitting. The task requires a robot to

map building facades with its on-board camera while the robot travels. Existing naviga-

tion methods often utilize low level landmarks, such as feature points and point clouds,

and cannot directly provide information for build facades, which can be viewed as high

level landmarks. Actually, the high level landmarks, such as primary planes and salient

lines, have distinctive advantages over low level features. Bearing clear geometric mean-

ing, high level landmarks are less sensitive to different lighting conditions and varying

shadows where low level features are often challenged. High level landmarks are ubiq-

uitous in modern urban areas where rectilinear objects dominate camera field of view.

Humans are used to navigating in unknown environments by effectively using high level

landmarks as reference. However, robots still have difficulty to utilize advantages of high

level landmarks due to challenges in feature recognition and correspondence.

In 2012, we [3] proposed a two-view MFG (multilayer feature graph) as a scene un-

derstanding and knowledge representation method for robot navigation. An MFG is con-

structed from overlapping and dislocated two views and contains five different features

ranging from raw key points to planes and vanishing points in 3D. Here we build our high

level landmark-based maps (see Fig. 3.1) by employing MFG as observations in an EKF

framework. We analyze how errors are generated and propagated in the MFG construc-

tion process, which characterizes observation errors in the EKF. We derive closed form

*Reprinted with permission from “Automatic building exterior mapping using multilayer feature
graphs” by Y. Lu, D. Song, Y. Xu, A. G. A. Perera, and S. Oh, 2013. IEEE International Conference
on Automation Science and Engineering (CASE), pp. 162-167, Copyright c© 2013 IEEE.
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Figure 3.1: A sample output of high level landmarks and the robot trajectory after the
mapping process in 3D view. The system is able to recognize primary planes from building
facades and their corresponding co-planar lines as high level landmarks. The numbered
corresponding building facades are also color coded in the top right and bottom left images.

solutions for error distributions. Based on projective geometry, we derive the observation

models to complete the EKF framework. We have implemented and tested our MFG-EKF

method at three different sites. Experimental results show that high level landmarks are

successfully constructed in modern urban environments with mean relative plane depth

errors less than 4.66%.

3.1 Related Work

Robotic mapping with high level landmarks relates to a broad body of research in

SLAM and visual odometry including different sensor configurations and different land-

mark selections.

Depending on costs, payload limitation, and navigation environments, the most com-
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mon sensors for robot navigation include sonar arrays [1], laser range finders [36, 37],

depth cameras [32], regular cameras [38, 39] , or their combinations [40, 41]. Mapping

tasks are often conducted under the SLAM framework [42]. As a partially observable

Markovian decision process, SLAM infers system states based on the sensory input using

different filters and loop closure techniques. The system states usually include both land-

marks and robot states whereas landmarks are the representation of the physical world.

For example, landmarks are point clouds if a laser ranger finder or a depth camera is the

primary sensor. In vision-based SLAM, SIFT feature points or its variants [15] and line

features [19, 23] are often employed as landmarks.

Our work belongs to the vision-based SLAM category where one or more cameras

are the primary navigation sensor. Recently, many researchers realize landmark selections

can make a difference in SLAM and visual odometry performance. Lower level land-

marks [15], such as Harris corners and SIFT points, are relatively easy to use due to their

geometric simplicity, which share many geometric properties with traditional point clouds

used for laser range finders. However, point features are merely mathematical singulari-

ties in color, texture, and geometric space. They can be easily influenced by lighting and

shadow conditions. Realizing the limitation, recent efforts focus on developing high level

landmarks such as lines/edges/line segments [20, 22]. Zhang et al. [43] use vertical lines

and floor lines in a monocular SLAM and build a 3D line-based map in an indoor corridor

environment.

More recent sophisticated methods combine multiple features such as points, lines,

and planes. Gee et al. [25] incorporate 3D planes and lines into visual SLAM framework.

Martinez et al. [26] propose a monocular SLAM algorithm that unifies the estimation of

point and planar features. These works have demonstrated the robustness of high level

landmarks and inspired this work. Observe that the existing works only treat different

landmarks as isolated geometric objects, without exploring the inner relationship between
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them. The treatment simplifies the SLAM problem formulation but cannot fully utilize the

power of high level landmarks.

3.2 Problem Definition

Consider a robot equipped with a single camera navigates in an unknown environment.

The robot attempts to estimate high level landmarks such as building facades or salient

edges from input image frames. The basic assumptions are,

a.1 The robot operates in a largely static modern urban environment with rectilinear

structures, which is the prerequisite for MFG.

a.2 The onboard camera is pre-calibrated and has a known intrinsic matrix K.

a.3 The initial step of robot movement is known for reference. Otherwise, estimates

would be up to scale. The assumption can be relaxed if a stereo camera is available.

In our approach, adjacent raw image frame pairs are first employed to construct MFG [3]

sequence. Let Ik be the k-th (k ∈ N) image frame and Mk (k ≥ 1) be the MFG con-

structed from frames Ik and Ik−1. Fig. 3.2 illustrates that MFG is a data structure composed

of five layers of feature nodes: key points, line segments, ideal lines, primary planes and

vanishing points; edges between nodes of different layers represent geometric relation-

ships including adjacency, collinearity, coplanarity, and parallelism.

The resulting MFG sequence, {Mk, k ≥ 1}, is considered as the input to the problem.

Denote {Ck} the camera coordinate system (CCS) associated with Ik. MFGs assist us in

identifying high level landmarks such as 3D planes and their associated coplanar lines in

physical space. However, the planes and lines fromMk are represented w.r.t. {Ck}, which

cannot be directly used as global landmarks. Define the world coordinate system (WCS),

{W}, to coincide with {C0}. Now we are ready to define our problem.
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Figure 3.2: (a) A illustration of the multilayer feature graph. (b) MFG structure.

Definition 1. Given MFG sequence {Mk : k ≥ 1, k ∈ N}, map high level landmarks

including 3D planes and coplanar lines in {W}, and assess the uncertainty of the mapping

process by deriving error covariance matrices for each landmark.

To solve the landmark mapping problem, we employ an EKF-based approach. In this

approach, MFGMk can be considered as a generalized observation at time k. Therefore,

we need to understand how errors are distributed in the construction process ofMk, which

can serve as the observation error in the EKF. With the observation error derived, the

landmark errors can be estimated by combining process errors using the EKF. Therefore,

the problem is solved in two steps with the first step being the uncertainty analysis of

MFG.

3.3 Observation Error: Uncertainty in MFG

Our previous work [3], has shown how to construct MFG using a feature fusion method.

However, the uncertainty of each feature layer is yet to be analyzed. Here we detail the

uncertainty for each layer of MFG in a bottom-up manner.
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3.3.1 Error Modeling of Raw Features

The MFG construction algorithm takes two images I and I ′ as input and outputs a

feature graph of five layers, as illustrated in Fig. 3.2(b). In MFGs, key points and line seg-

ments are raw features directly detected from images using SIFT [17] and LSD [44], while

ideal lines, primary planes and vanishing points represent high level features constructed

from raw features. MFGs also include feature correspondences between two views.

Note that I and I ′ actually represent Ik and Ik−1 in the continuous image sequence,

respectively. Here we drop k and k − 1 from notations for simplicity. Furthermore, we

attach a superscript ′ to variables associated with I ′. As a convention, we use a∼ on top of

a homogeneous vector to denote its inhomogeneous counterpart throughout this section.

For each key point pi in I , we model its measurement error as an independent and

identically distributed (i.i.d.) zero-mean isotropic Gaussian noise with variance σ2 in each

axis

Cov(p̃i) = σ2I2, ∀i (3.1)

where I2 is a 2× 2 identity matrix.

For each line segment si in I , denote its two endpoints by ei1 and ei2. Define ui‖ and

ui⊥ to be two unit vectors parallel and perpendicular to the line segment, respectively (see

Fig. 3.3). We model the error of ei1 (the same for ei2) as an independent 2D Gaussian with

its covariance matrix to be diagonal in the coordinate system defined by ui‖ and ui⊥ as

below

Σi‖⊥ =

σ2
i‖ 0

0 σ2
i⊥

 , (3.2)

where σi⊥ and σi‖ are the standard deviations of ei1 in directions of ui⊥ and ui‖, respec-

tively. σi⊥ is usually much smaller than σi‖. We have observed that σi⊥ usually is inversely

correlated to the line segment length. Furthermore, σi⊥ also has a lower bound of σp due
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Figure 3.3: Uncertainty of line segment endpoints.

to pixelization error. Thus, we model the endpoint error as follows,

σi‖ = σ‖, σi⊥ =
σi‖
‖si‖

+ σp, ∀i, (3.3)

where σ‖ and σp are constant and independent of i, and ‖si‖ denotes the length of si. The

parameters for the models can be determined using Monte Carlo simulation. Projecting

(3.2) back to the image coordinate system (ICS), we have

Cov(ẽi1) = R(φi)Σi‖⊥R(φi)
T (3.4)

where φi is the angle between ui‖ ( Fig. 3.3) and u-axis, and R(φi)=

cosφi − sinφi

sinφi cosφi

 .
Note that the error model in (3.2-3.4) for line segments may differ for different line detec-

tors. However, the rest of our analysis still applies.

With error distributions of raw features obtained, we are ready to analyze high level

features such as ideal lines and primary planes.
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3.3.2 Error Analysis of Ideal Lines

In the MFG construction process, an ideal line li is obtained by fitting a straight line

through endpoints of a set of mi collinear line segments {sj : 1 ≤ j ≤ mi}. The i-th

ideal line in I can be parameterized in terms of angle θi and intercept ρi with the following

homogeneous format in ICS,

li = [cos θi, sin θi, ρi]
T (3.5)

such that u cos θi+v sin θi+ρi = 0 holds for any point (u, v) on li. Since the fitting process

employs maximum likelihood estimation (MLE) to obtain optimal solution [θ∗i , ρ
∗
i ]

T, we

have the following lemma.

Lemma 1. Given collinear line segments set {sj} with their endpoint covariance matrices

in (3.4), if MLE is employed to estimate [θ∗i , ρ
∗
i ]

T, the resulting li can be approximated by

a Gaussian with a mean vector of [cos θ∗i , sin θ
∗
i , ρ
∗
i ]

T and a covariance matrix of,

Cov(li) = J Cov(θ∗i , ρ
∗
i ) J

T, (3.6)

where J =

− sin θ∗i cos θ∗i 0

0 0 1


T

and Cov(θ∗i , ρ
∗
i ) is given by (3.9).

Proof. Let us formulate this MLE problem first. This MLE problem simultaneously seeks

for line parameters [θi, ρi]
T and the corrected line segment endpoints, denoted by ejτ ,

τ = 1, 2. To ensure eT
jτ li = 0, we use the parametrization

ẽjτ (tjτ ) =

−ρi cos θi

−ρi sin θi

+ tjτ

 sin θi

− cos θi

 (3.7)
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where tjτ ∈ R is the only free parameter for ẽjτ that we need to estimate.

Define a parameter vector that is to be estimated as ΘL = [ΘT
L1,Θ

T
L2]T with ΘL1 =

[θi, ρi]
T and ΘL2 = [t11, t12, · · · , tmi1, tmi2]T. Define a measurement vector that incorpo-

rates measurement data as ΩL = [ẽT
11, ẽ

T
12, · · · , ẽT

mi1
, ẽT

mi2
]T. Define a measurement func-

tion fL(·) that maps from parameter space to measurement space, which is straightforward

to be obtained from (3.7).

The MLE problem now becomes

arg min
ΘL

(ΩL − fL(ΘL))TΣ−1
ΩL

(ΩL − f(ΘL)), (3.8)

where

ΣΩL =


Cov(ẽ11) 0

. . .

0 Cov(ẽmi2)


2mi×2mi

.

The above optimization problem can be solved by the Levenberg-Marquardt algorithm

(LMA). Denote the optimal estimate by [Θ∗TL1,Θ
∗T
L2]T. The covariance of [θ∗i , ρ

∗
i ]

T can be

computed following the method in Chapter 5 of [45] as below

Cov(Θ∗L1) = (U −WV −1WT)†, (3.9)

where U = ATΣ−1
ΩL
A, V = BTΣ−1

ΩL
B, W = ATΣ−1

ΩL
B,

A = ∂fL/∂Θ∗L1, B = ∂fL/∂Θ∗L2,

and ()† indicates the pseudo-inverse operation.

Due to the fact that endpoints of line segments are conformal to independent Gaussian

distributions, the property of MLE ensures that [θ∗i , ρ
∗
i ]

T is asymptotically normal (Thm.
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3.1 in pp. 2143 of [46]). Hence we can use a 2D Gaussian to approximate its distribution.

Furthermore, through error forward propagation approximation, we arrive at (3.6). Lem. 1

is proved.

3.3.3 Error Analysis of Primary Planes

In an MFG based on two views, a primary plane πi is a 3D plane represented by a

4D homogeneous vector in the CCS associated with I . Furthermore, if πi does not pass

through the camera center (which is often the case in practice), we can have

πi = [π̃T
i , 1]T, (3.10)

where π̃i is a 3× 1 vector for the inhomogeneous representation of πi.

Based on the coplanarity relationship in an MFG, each plane πi can be associated with

pi coplanar point correspondences {pij ↔ p′ij : j = 1, · · · , pi}, and qi coplanar line

correspondences {liκ ↔ l′iκ : κ = 1, · · · , qi}. These feature correspondences satisfy a

homography induced by πi

p′ij = Hipij , liκ = HT
i l′iκ, (3.11)

where

Hi = K(R− tπ̃T
i )K−1, (3.12)

and R and t are the rotation matrix and translation vector between two views, respectively.

Eqs. (3.11 and 3.12) suggest a method of computing π̃i based on R and t. However, if

R and t are simply derived from epipolar geometry without considering the planar struc-

ture information, the solution is not optimal, and neither is π̃i. Inspired by the method

from [47], we estimate all π̃i’s, R and t simultaneously by employing all geometric fea-
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tures (i.e., key points and ideal lines) and constraints (i.e., epipolar constraint and homog-

raphy) under an MLE framework. Define ΘP1 = [π̃T
1 , · · · , π̃T

i , · · · ]T. Supposing Θ∗P1 is

the MLE output of ΘP1, we have the following lemma.

Lemma 2. Given that key point errors follow i.i.d. isotropic Gaussian distributions with

covariance matrices in (3.1) and line segment endpoints follow independent Gaussian

distributions with covariance matrices in (3.4), if MLE is employed to estimate all π̃i’s

for primary planes, then the distribution of each π̃i can be approximated by a Gaussian

distribution with the following mean and covariance matrix,

π̃∗i = Ti Θ∗P1 (3.13)

Cov(π̃∗i ) = Ti Cov(Θ∗P1) TT
i (3.14)

where Ti = [03,3i−3 : I3 : 03,3(p−i)+6], Cov(Θ∗P1) is derived in a way similar to that in

(3.9), 0a,b is an a× b zero matrix, and I3 is a 3× 3 identity matrix.

Proof. Similar to the proof of Lem. 1, let us formulate the MLE problem first. This MLE

problem estimates planes (π̃i’s), relative pose (R and t) as well as corrected feature corre-

spondences simultaneously. Define a measurement vector

ΩP = [· · · , p̃T
ij, p̃

′T
ij , · · · , θiκ, ρiκ, θ′iκ, ρ′iκ, · · · , p̃T

r , p̃
′T
r , · · · ]T

where [θi, ρi] are the parameters of li, and {p̃r ↔ p̃′r : r ≥ 1} denote the point correspon-

dences that are not associated with any plane,

and a parameter vector ΘP = [ΘT
P1,Θ

T
P2]T with

ΘP2 = [α, β, γ, tT, · · · , p̃T
ij, · · · , θ′iκ, ρ′iκ, · · · , P̃T

r , · · · ]T,
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where α, β and γ are the Euler angles of R, P̃r is the 3D point corresponding to pr.

Now, we define the measurement function for each type of feature correspondence

accordingly as below.

• for point correspondences on plane πi:

p̃ij = p̃ij, p̃′ij =
(Hipij)1:2

(Hipij)3

,

where Hi is defined in (3.12).

• for line matches on plane πi: First, let us define a function

g(l) = [θ, ρ]T (3.15)

that maps a line vector l = [cos θ, sin θ, ρ]T to its parameters. Now the measurement

function for line correspondences is

θ′iκ
ρ′iκ

 =

θ′iκ
ρ′iκ

 ,
θiκ
ρiκ

 = g
( HT

i l′iκ
‖(HT

i l′iκ)1:2‖

)
.

• for point correspondences not on any plane:

p̃r =
(PPr)1:2

(PPr)3

, p̃′r =
(P′Pr)1:2

(P′Pr)3

,

where P = K[ I3 | 0 ], P′ = K[ R | t ].

The MLE problem is formulated the same as (3.8) except that ΣΩP is obtained from

(3.1) and (3.9). Let the optimal estimate be Θ∗P = [Θ∗TP1,Θ
∗T
P2]T. Cov(Θ∗P1) can be com-

puted in the similar way as in (3.9). Since the rest of the proof is similar to that in the

proof of Lem. 1, we skip the details here. Hence Lem. 2 is proved.
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3.4 EKF based Mapping with MFG

Two-view based MFGs only provide local information of high level features. In order

to build a global map in {W}, EKF is employed to estimate the posterior of landmarks as

well as a robot trajectory.

3.4.1 System State Representation

In the EKF framework, we maintain and keep updating a system state yk, which is

composed of the robot state xk and 3D landmarks.

The robot state is defined as

xk = [rTk ,q
T
k ,ν

T
k ,ω

T
k ]T, (3.16)

where rk is a 3D location in {W}, qk is an orientation quaternion w.r.t. {W}, νk is a

velocity vector in {W}, and ωk is an angular velocity vector in {Ck}.

In yk, we use π̃Wi to represent the i-th 3D plane landmark in {W}. To represent a

3D line, general methods like Plücker coordinates would need as many as 6 parameters.

However, a 3D vector is sufficient in this work since our method is only interested in

coplanar lines associated with landmark planes. Supposing a landmark line resides on

plane π̃Wi , then there exists an one-to-one mapping between this line and its projection on

image plane I0, which is actually a 2D homography induced by π̃Wi . Let us denote lkj the

projection of the j-th landmark line on Ik. Then, we can use l0j to fully represent the j-th

landmark line in yk since we already have π̃Wi in yk.

As a result, the complete system state can be written as

yk =
[
xT
k , · · · , (π̃Wi )T, · · · , (l0j)T, · · ·

]T
. (3.17)
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3.4.2 EKF Formulation

In an EKF framework, a process model and an observation model need to be specified

for the prediction and update steps, respectively.

3.4.2.1 Process Modeling

We follow the conventional assumptions of “constant velocity, constant angular veloc-

ity” in [15] for camera motion to formulate the process model as follows,

xk+1 =



rk+1

qk+1

νk+1

ωk+1


=



rk + νk∆t

qk × q(ωk∆t)

νk

ωk


,

where q(ωk∆t) denotes the quaternion defined by the angle-axis rotation vector ωk∆t,

and ∆t is the time interval between two steps. Note this is just a partial model for the

system state in (3.17) while the rest of states of yk are landmark states. Since landmarks

are assumed to be static, their corresponding states remain unchanged in the prediction

step.

3.4.2.2 Observation Modeling

An observation function maps the system state to landmark observations. For a plane

landmark π̃Wi , the observation produced byMk is its representation π̃ki in {Ck}. Define a

matrix W
k T that transforms a 3D point (of homogeneous format) from {Ck} to {W} as

W
k T =

R(qk) rk

0 1


4×4

, (3.18)
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where R(qk) represents the rotation matrix defined by qk. For a primary plane landmark

πki , we know that πki = W
k T

TπWi . This implies the observation to be

π̃ki =

(
W
k T

TπWi
)

1:3(
W
k T

TπWi
)

4

(3.19)

where (V )a denotes the a-th element of vector V , and (V )a:b denotes the sub vector of V

indexed from a to b.

For a line landmark l0j , its observation fromMk is lkj . Supposing l0j lies on plane π̃Wi ,

lkj can be computed from l0j via a homography [45]

lkj =
(Hk

i )
−Tl0j∥∥((Hk

i )
−Tl0j

)
1:2

∥∥ (3.20)

where Hk
i = K

[
R−1(qk) +R−1(qk)rk

(
π̃Wi
)T]

K−1 and ‖ · ‖ is L2 norm.

Eqs. (3.19 and 3.20) fully determine the observation function. It is worth noting that

the covariance matrices of observation noise have been presented in Lems. 1 and 2. EKF

also provides covariance of landmarks in its covariance update and prediction steps. Since

this is a standard EKF procedure, we skip details here.

3.4.3 Landmark Initialization and Management

Since two views are needed to establish an MFG, the system should start at k = 1

when M1 is constructed and landmark planes and lines are added to y1. Starting from

y1, the system enters the prediction and update loops. As the robot travels farther, new

landmarks may be discovered and added to the system state. Because the MFG output is

the landmark representation in the current CCS, it needs to be transformed to {W} before

augmenting the system state. This coordinate transformation is represented by W
k T or the

inverse of Hk
i as shown in (3.18-3.20).
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3.5 Experiments

We have implemented the proposed method using Matlab on a Desktop PC. The cam-

era used in the experiment is a pre-calibrated Nikon D5100 camera equipped with a 18

mm lens, which ensures a horizontal field of view of 60◦. Images are down-sampled to a

resolution of 800× 530 pixels. We have conducted two experiments: uncertainty test and

field mapping test.

3.5.1 Uncertainty Test

The purpose of this experiment is to verify how the estimation uncertainty of landmarks

changes as more images entering our system. A sequence of 14 images has been taken

while the camera was carried by a person walking towards a building. The starting point is

around 40 meters away from the building. Images have been captured every 1 ∼ 2 meters

approximately with the first step length known to be 1.5 meters.

The upper image in Fig. 3.4(a) shows a sample of the image sequence and the lower

line drawing in Fig. 3.4(a) shows the 3D landmarks constructed from the image sequence.

Each plane and its coplanar line segments are coded in the same color. Fig. 3.4(b) demon-

strates that the standard deviation of the depth of each landmark plane (using the same

color coding as that in the lower line drawing in Fig. 3.4(a) decreases as the frame number

increases.

3.5.2 Field Mapping Test

Table 3.1: FIELD MAPPING TEST RESULTS.

site dist. (m) #frame #plane #line εd (%) εa (◦) εL (pixel)
mean std. dev. mean std. dev. mean std. dev.

1 216 55 8 197 3.48 2.91 1.77 2.34 0.52 0.26
2 156 40 6 231 4.66 3.27 0.83 3.75 0.39 0.22
3 180 36 7 225 4.09 3.96 1.65 3.09 0.47 0.31
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Figure 3.4: (a) A sample view (upper) and constructed 3D landmarks (lower). (b) Standard
deviations of plane depth vs #frames.

In the second experiment, we have tested our method in the field including three sites

on Texas A&M University campus as shown in Fig. 3.5. At each site, the camera follows

a pre-defined route. Images are taken every 4 meters approximately while the first step has

been known to be exact 4.0 meters as a reference. The distance traveled and the numbers

of frames collected at each site are shown in columns 2 and 3 of Tab. 3.1. As shown in

the table, our method was able to successfully recognize high level landmarks including

site 1 site 2 site 3

Figure 3.5: Experiment sites.

25



primary planes (col. 3) and their coplanar line segments (col. 4). Fig. 3.1 actually shows a

3D visualization of the map of high level landmarks constructed from data of site 1, where

coplanar lines are color coded according to underlying planes.

We employ three error metrics to assess landmark mapping accuracy. εd and εa are

defined for evaluating planes, and εL is defined for assessing lines. Suppose plane π̃Wi is

introduced to the map since the ki-th frame Iki . Let di denote the true plane depth of π̃Wi

in {Cki} obtained using a BOSCH GLR225 laser distance measurer with a range up to 70

m and measurement accuracy of ±1.5 mm. Define d̂i as the estimated value of di from

EKF output. Then a relative metric for plane depth error is defined as

εd =
1

N

N∑
i=1

‖di − d̂i‖
di

, (3.21)

where N is the number of landmark planes. Similarly, define εa to be the angular error

metric for plane normal. It is worth noting that there exists global drifting error between

{Cki} and {W}, which will be addressed in future loop closure stage. Here we focus on

εd and εa after the plane landmark appears in the camera field of view.

To evaluate a line landmark’s estimation accuracy, we consider a re-projection error

in ICS. Suppose l0j is added to the map since the kj-th frame. Let l̂kj be the re-projection

of l0j in Ikj , and e
(j)
h be the h-th observed endpoint of line segment in Ikj associated with

l̂kj . Then the error metric for lines is defined based on the distance between observed line

segment endpoints and re-projected line in local frame:

εL =
1

M

M∑
j=1

1

Nj

Nj∑
h=1

d⊥(e
(j)
h , l̂kj ), (3.22)

where d⊥(·) represents the distance from a point to a line, M is the number of line land-

marks and Nj is the number of line segment endpoints associated with l̂kj .
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Tab. 3.1 shows the mapping results based on the three metrics. It is clear that our

method successfully maps the high level landmarks. However, since loop closure has

not been performed, the estimated camera trajectory inevitably suffers from drifting error,

which will be addressed in the future work.

3.6 Conclusions

We developed a method to allow a mobile robot to perform mapping of building fa-

cades by enabling high level landmark mapping. The method incorporated a multiple layer

feature graph into an EKF framework. We analyzed how errors are generated and propa-

gated in the MFG construction process, which are used as observation error models in the

EKF. We derived closed form solutions for error distribution to quantify the observation

errors. Based on projective geometry, we derived observation models to complete the EKF

framework. We implemented and tested the system at three different sites. Experiment re-

sults have shown that high level landmarks are successfully constructed in a modern urban

environment with mean relative plane depth error less than 4.66%.
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4. VISUAL NAVIGATION USING HETEROGENEOUS LANDMARKS AND

UNSUPERVISED GEOMETRIC CONSTRAINTS*

While the MFG-EKF method in Section 3 is able to map the building facades from

image sequences, the camera trajectory estimation is subject to obvious drifting as the

travel distance increases. One reason is that the linearization step in EKF leads to incon-

sistencies due to the high nonlinearity in projective camera models. Recent studies [4]

show that bundle adjustment-based SLAM approaches can produce better accuracy than

EKF-based methods. Another limitation of the MFG-EKF method is its dependence on

two view-based MFG. However, two view-based MFG needs a sufficient baseline, which

is not always feasible. This motivates us to design a multiple view based MFG algorithm

for visual SLAM using bundle adjustment.

In this section, we continue utilizing heterogeneous visual features and their inner

geometric constraints to assist robot navigation, which is managed by a multiple view

based MFG. Our method extends the local bundle adjustment-based SLAM framework by

explicitly exploiting heterogeneous features and their geometric relationships in an unsu-

pervised manner. The proposed heterogeneous landmark-based visual navigation (HLVN)

algorithm takes a video stream as input, initializes and iteratively updates MFG based on

extracted key frames, and refines robot localization and MFG landmarks. We present the

algorithm pseudo code and analyze its complexity. We evaluate our method and compare

it with state-of-the-art methods using multiple indoor and outdoor datasets. In particular,

on the KITTI dataset our method reduces the translational error by 52.5% under urban

sequences where rectilinear structures dominate the scene.

*Reprinted with permission from “Visual navigation using heterogeneous landmarks and unsupervised
geometric constraints” by Y. Lu and D. Song, 2015. IEEE Transcations on Robotics, vol. 31, no. 3, pp.
736-749, Copyright c© 2015 IEEE.
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(a)

Figure 4.1: Sample result of our algorithm, and a Google EarthTMview of the same site
from a similar perspective. Coplanar landmarks (points and lines) are coded in the same
color, while general landmarks are in gray color. The dotted line is the estimated camera
trajectory.

4.1 Related Work

Visual navigation using heterogeneous landmarks mainly relates to two research fields:

3D reconstruction and SLAM.

In computer vision and graphics, 3D reconstruction has been a very popular topic for

research as well as commercial applications. Besides regular cameras, sensors used for

3D reconstruction also include laser range finder [48] and more often, aerial cameras [49].

Google Earth and Microsoft Virtual Earth are successful showcases for 3D reconstruc-

tion of city models [50]. Following the taxonomy of Seitz et al. [51], 3D reconstruction

algorithms are categorized into the following classes: voxel approaches [52], level-set

techniques [53], line segment matching [54], polygon mesh methods [55], and algorithms

that compute and merge depth maps [56]. Unlike those methods, our work does not pur-

sue a full scale reconstruction. This is because 3D reconstruction usually needs repetitive
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scene scanning, which is often not the main task for robots.

In robotics research, the most common external sensors for robot navigation include

sonar arrays, laser range finders, GPS, cameras and their combinations. SLAM is the

typical framework employed in robot navigation [42, 57]. In SLAM, the physical world is

represented as a collection of landmarks. For example, point clouds serve as landmarks

when a laser range finder is the primary sensor [58]. In particular, our work belongs to the

visual SLAM category, where cameras provide the main sensory input [59–62].

There are two prevalent methodologies in visual SLAM: the bundle adjustment (BA)

approaches (e.g., [59]) rooted in the structure from motion area in computer vision, and

the filtering methods (e.g. [15]) originated from the traditional SLAM field of robotics

research. Strasdat et al. have analyzed the advantages of each method in [63]. For both

methods, various camera configurations/modalities have been studied, including a monoc-

ular camera [64], a stereo camera [39, 65, 66], an omnidirectional camera [67], a camera

with range sensors [68, 69], and an RGB-D camera [32, 70].

Besides methodology and sensor configuration, another critical issue in visual SLAM

is scene representation. For example, point clouds and sparse feature points [71] are often

employed as landmarks in a map. Recently, many researchers have realized that landmark

selection is an important factor in visual odometry and SLAM [72]. Lower level landmarks

such as corners [73] and SIFT points [17] are relatively easy to use due to their geometric

simplicity. However, point features are merely mathematical singularities in color, texture

and/or geometric spaces. They are difficult to interpret and use for scene understand-

ing or human-robot interaction. They are also easily influenced by lighting and shadow

conditions. To overcome these shortcomings, higher level landmarks have received more

and more attention for visual SLAM, such as line segments [19–22], straight lines [23],

vanishing points [24], and planes [25–28].

These works have demonstrated the advantages of higher level landmarks in robust-
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ness and accuracy, but they either treat these landmarks as isolated objects, or partially

explore the inner relations between them. This treatment simplifies the SLAM problem

formulation but cannot fully utilize the power of heterogeneous landmarks. Very recently,

Tretyak et al. present an optimization framework for geometric parsing of image by jointly

using edges, line segments, lines, and vanishing points [74]. However, this method has not

been applied to navigation yet.

4.2 Problem Formulation

4.2.1 Assumptions and Notations

Consider a mobile robot navigating in a previously unknown environment with a monoc-

ular camera. We make two assumptions here:

a.1 The robot operates in a largely static man-made environment with rectilinear struc-

tures consisting of parallel lines which are not necessarily in orthogonal directions.

a.2 The camera is pre-calibrated with its radial distortion removed.

Let us define the following notations,

V Input camera video,

Ik k-th key frame extracted from V , Ik ∈ V , k ∈ N,

{Ck} 3D camera coordinate system for Ik, a right-handed coordinate system with its ori-

gin at the camera optical center, its Z-axis coinciding with the optical axis and point-

ing to the forward direction of the camera, and its X-axis and Y -axis parallel to the

horizontal and vertical directions of the CCD sensor plane, respectively,

{Ik} 2D image coordinate system for Ik, with its origin on the image plane and its u-axis

and v-axis parallel to the X-axis and Y -axis of {Ck}, respectively,
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{W} 3D world coordinate system,

K Camera calibration matrix,

Rk Camera rotation matrix at Ik with respect to {W},

tk Camera translation vector at Ik with respect to {W},

Pk Camera projection matrix, Pk = K [Rk | tk],

Rk1
k2

Relative rotation matrix between Ik1 and Ik2 defined as Rk1
k2

= Rk2R
−1
k1

tk1k2 Relative translation between Ik1 and Ik2 defined as tk1k2 = tk2 − Rk1
k2

tk1 ,

Xi:j Collection defined as Xi:j = {Xk|i ≤ k ≤ j},

mk A 2D MFG (defined later) constructed for Ik,

Mk 3D MFG (defined later) constructed based on I0:k,

En n-dimensional Euclidean space,

Pn n-dimensional projective space, and

X A homogeneous vector, X = [X̃T, 1]T, where X̃ denotes the inhomogeneous counter-

part of X. X ∈ Pn ⇒ X̃ ∈ En.

We abuse “=” to denote real equality and up-to-scale equality for inhomogeneous and

homogeneous vectors, respectively.

4.2.2 Multilayer Feature Graph

As illustrated in Fig. 4.2, we redesign multilayer feature graph for organizing hetero-

geneous features and their inner geometric relations. MFG includes the following type of

nodes.
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Ideal Line

Primary Plane

Parallelism

Coplanarity

Collinearity

Adjacency

Figure 4.2: The whole graph represents a 3D MFG, and the shaded regions jointly rep-
resent a 2D MFG. Geometric relationships between nodes are represented by edges of
different line types.

1. Key points represent point features. We refer to point features detected from images

as 2D key points, which only reside in image space. Thus the set of 2D key points

detected in Ik is denoted by {pi,k ∈ P2, i = 1, 2, · · · }. We refer to spatial points as

3D key points, and represent them with respect to {W} by {Pj ∈ P3, j = 1, 2, · · · }.

The observation of Pj in Ik, if existing, is denoted by pj(k). Therefore, if pi,k is

the observation of Pj in Ik, then we have pj(k) = pi,k by definition. Note that the

subscript convention used in naming pi,k and pj(k) also applies to other types of

features in this section.

2. Line segments represent finite linear objects. We denote a 2D line segment in Ik by

si,k = [dT
i1,k,d

T
i2,k]

T, where di1,k and di2,k are the endpoints. We represent a 3D line

segment in {W} by Si = [DT
i1,D

T
i2]T.
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3. Ideal lines (defined later in Definition 3) represent infinite lines. A 2D ideal line

in Ik is represented by li,k ∈ P2. We represent a 3D ideal line by Li = [QT
i ,J

T
i ]T,

where Qi ∈ P3 is a finite 3D point located on Li, and Ji ∈ P3 is an infinite 3D point

defining the direction of Li. The observation of Li in Ik is denoted by li(k).

4. Vanishing points represent particular directions of parallel 3D lines. We denote a

2D vanishing point in Ik by vi,k, and a 3D vanishing point in {W} by Vi. Vi ∈ P3

is an infinite 3D point, and its observation in Ik is denoted by vi(k).

5. Primary planes represent dominant planar surfaces (e.g. building facades) and only

exist in 3D space. We denote a primary plane by Πi = [nT
i , di]

T, where ni ∈ E3 and

di ∈ R, such that XTΠi = 0 for any point X on the plane.

MFG exists in both {Ik} and {W}. In {Ik}, we name it as a 2D MFG, which consists

of 2D key points, 2D line segments, 2D ideal lines, and 2D vanishing points as its nodes.

The geometric relationships between 2D features, including adjacency, collinearity, and

parallelism, are represented by the edges of 2D MFG. A 2D MFG effectively summarizes

the feature information of a frame. Thus we construct a 2D MFG for each key frame Ik

and denote it by mk. In Fig. 4.2, the shaded regions jointly represent the structure of a

2D MFG. The top shaded region consists of raw features that are directly extracted from

images, while the lower shaded region includes features that need to be abstracted from

raw features.

In {W}, we define a 3D MFG, which contains 3D key points, 3D line segments,

3D ideal lines, 3D vanishing points, and primary planes as its nodes. The edges of

3D MFG represent geometric relationships including collinearity, parallelism, and copla-

narity. There is only one 3D MFG in {W} and we useMk to denote the 3D MFG con-

structed/updated based upon I0:k.
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4.2.3 Problem Definition

Our ultimate goal is to construct a 3D MFG from an input video. To achieve this goal,

we utilize an iterative method to solve the following problem.

Definition 2. Given video V , MFGMk−1, and historical camera poses {R0:k−1, t0:k−1}

for k ≥ 1, select key frame Ik, estimate camera pose {Rk, tk}, refine {R0:k, t0:k}, and

update the nodes and edges ofMk−1 to obtainMk.

4.3 System Design and Multilayer Feature Graph

Fig. 4.3 shows our system architecture, where the main blocks are shaded by different

colors. The system takes a video as input and proceeds iteratively. During each iteration,

the system selects a key frame Ik, extracts a 2D MFG mk, and finds 2D feature correspon-

dences between mk and mk−1, which are used to estimate camera pose and establish 3D

features for Mk. The last step of each iteration performs LBA to jointly refine camera

poses and 3D MFG features.

To start, we select the first video frame as key frame I0. We let M0 = ∅ and {W}

coincide with {C0}.

4.3.1 Key Frame Selection

Given a video, it is necessary to select a set of key frames for motion estimation and

3D reconstruction. The basic principle is to find a good balance between two needs: 1)

wide baseline to avoid ill-posed epipolar geometry problems and 2) sufficient overlap of

scene between key frames. Based on existing methods (e.g. [64]), we use the following

criteria for key frame selection when k ≥ 1. Given Ik−1 and Mk−1, a video frame I is

chosen as key frame Ik if it satisfies:

1. the number of 2D point matches between Ik−1 and I is not less than a threshold N2,
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2. for k ≥ 2, the number of 3D key points (fromMk−1) observable in I is not less than

a threshold N3,

3. for k ≥ 2, the rotation angle between Ik−1 and I is not larger than a threshold τR,

and

4. there are as many video frames as possible between Ik−1 and I .

4.3.2 2D MFG Construction and Matching

From Ik we construct a 2D MFG mk, and match mk with mk−1 for k ≥ 1 to establish

2D-2D matching for heterogeneous features. We discuss the extraction and matching for

each type of features separately.

4.3.2.1 Key Points

We detect 2D key points from Ik using the corner detector proposed in [73], though

alternatives such as SIFT are also applicable. We track 2D feature points across frames

using the iterative Lucas-Kanade method with pyramids [75]. Thus, putative key point

correspondences between Ik and Ik−1 (for k ≥ 1) are readily obtained from the tracking

result (see Box 2.5 in Fig. 4.3). To remove false matching, the putative matches are fed

into a five-point algorithm-based RANSAC [76] to estimate the essential matrix E. We

also compute the relative camera rotation Rk−1
k by decomposing E. Note that although the

relative motion estimation (in Box 3.1) belongs to the “camera pose estimation” block in

Fig. 4.3, it is indeed conducted as soon as putative key point correspondences are available.

4.3.2.2 Line Segments

We detect 2D line segments from Ik using LSD [44] (see Box 2.2 in Fig. 4.3). Line

segments provide more information in addition to key points, but line segment matching

is hard due to the lack of distinctive descriptors and the instability of endpoint detection.

However, we use line segments to find vanishing points.
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4.3.2.3 Vanishing Points

We detect vanishing points from 2D line segments using RANSAC (see Box 2.3 in

Fig. 4.3). In a 2D MFG, each vanishing point has a set of child line segments, which are

actually parallel to each other in 3D space.

To find correspondences between two vanishing point sets, {vi,k−1|i = 1, · · · } and

{vj,k|j = 1, · · · }, we compute

θij = cos−1(|(K−1vi,k−1)TRk−1
k K−1vj,k|),∀i, j, (4.1)

which represents the angle between the two vanishing point directions in 3D.

Let θ∗·j = minι(θιj), and θ∗i· = minι(θiι). We claim vi,k−1 ↔ vj,k as a correspondence

if it holds that

θij = θ∗·j = θ∗i· ≤ τθ, (4.2)

where τθ is a user-specified upper bound. Fig. 4.4 shows an example of vanishing point

matching result.

I I'
Figure 4.4: An example of vanishing point matching. The line segments and ideal lines
associated with the same vanishing points are drawn in the same color.
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4.3.2.4 Ideal Lines

As illustrated in Fig. 4.5(a), line segments tend to be short and fragmented. However,

there are usually many small groups of collinear line segments which come from the same

3D linear structure. If we fuse the information of collinear line segments to form a single

line, the accuracy and robustness should be improved. Therefore, we introduce ideal lines.

Definition 3 (Ideal Line). An ideal line is defined as a real or virtual line passing through

a set of collinear line segments.

We detect 2D ideal lines from line segments using sequential RANSAC (see Box 2.4

in Fig. 4.3). To reduce the problem size, we group line segments by vanishing point and

detect ideal lines group by group. After a set of collinear line segments {si} is found, we

compute the ideal line as

l∗ = argmin
l

∑
i

2∑
j=1

d⊥(dij, l)
2, (4.3)

where d⊥(·, ·) denotes the perpendicular distance from a point to a line in 2D. This method

Ideal line
Line segments

Gaussian 
noise

(a)

Key point

Neighbor 

region

Bisector 

l

b

Ad

Bd

(b)

Figure 4.5: (a) An example of an ideal line. (b) An example of the adjacency between key
points and ideal lines.
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is effectively the maximum likelihood estimation (MLE) when each line segment endpoint

is subject to an isotropic Gaussian noise as illustrated in Fig. 4.5(a). In MFG, a line

segment must have only one ideal line as its parent node, and an ideal line may have

multiple line segment nodes as its children.

We consider two ideal lines from different images to be matched if they correspond to

the same 3D line. Since vanishing point matching is done, we narrow down the ideal line

matching problem by only considering lines connected to the same vanishing point. We

present a two-stage approach to ideal line matching here (see Box 2.7 in Fig. 4.3).

Stage 1: Point Correspondence-based Line Matching

In Stage 1, we adopt a point correspondence-based line matching (PCLM) method

proposed by [77]. To apply this method, we first introduce the neighbor region of an

ideal line. For an ideal line l, let dA and dB be the two farthest line segment endpoints

associated with l, and d′A and d′B be the projections of dA and dB onto l, respectively. Let

b be the perpendicular bisector of line segment d′Ad′B, as illustrated in Fig. 4.5(b). We

define the neighbor region of l to be

λ(l) :=

{
x ∈ P2 : d⊥(x,b) ≤ ‖d

′
Ad′B‖
2

, d⊥(x, l) ≤ σb
2

}
, (4.4)

where ‖d′Ad′B‖ is the length of line segment d′Ad′B, and σb = min{100, (image width)/12}.

In Fig. 4.5(b), λ(l) is the rectangular area enclosed by dotted lines. If a key point p ∈ λ(l),

then we say p is adjacent to l and they are connected in 2D MFG.

The intuition of the PCLM method is that for an ideal line match li,k−1 ↔ lj,k, point

correspondences in their neighbor regions must satisfy

lTi,k−1pa,k−1

lTi,k−1pb,k−1

=
lTj,kpc,k

lTj,kpd,k
(4.5)
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where pa,k−1 ↔ pc,k and pb,k−1 ↔ pd,k are two pairs of point correspondences satisfying

pa,k−1,pb,k−1 ∈ λ(li,k−1), and pc,k,pd,k ∈ λ(lj,k).

The PCLM method provides very accurate matching result, but tends to fail when the

neighbor regions are textureless. To handle this issue, in Stage 2 we use an F-guided line

matching (FGLM) method [78], which utilizes the fundamental matrix F. To be specific,

we take the line matches found by PCLM out of the candidate sets, and apply FGLM to

the remaining ideal lines. The fundamental matrix is computed as F = K−TEK−1.

Stage 2: F-Guided Line Matching

Since the FGLM method essentially works with line segments, we treat an ideal line

as an augmented line segment. To be specific, we only use the part of ideal line inside the

neighbor region (for example, d′Ad′B in Fig. 4.5(b)) since this is the part that bears most

appearance information.

For a point x on the augmented line segment of li,k−1, we find its correspondence

x′ = lj,k × (Fx), assuming li,k−1 and lj,k correspond to each other. The basic idea of

FGLM is to compute the matching score of a pair of line segments as the average of the

individual correlation scores for the points (pixels) of the lines. Although FGLM does

not produce very accurate results, but it is complementary to the PCLM method. As

an example, Fig. 4.6(a) and 4.6(b) show the matching result of the PCLM method, and

Fig. 4.6(c) and 4.6(d) show the result of the FGLM method. It is obvious that the two-

stage matching approach is able to find more ideal line correspondences.

4.3.3 Camera Pose Estimation

With 2D feature correspondences obtained, estimating the 6 degrees of freedom (DoF)

camera pose Rk and tk for Ik is a key step for constructing and updating 3D MFG. Existing

methods (e.g. [59]) usually solve this problem using 3-point algorithm based on the 3D-

2D correspondences {Pi ↔ pi(k)} between known 3D points and their observations in
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(a) (b)

(c) (d)

Figure 4.6: An example of our two-stage approach to ideal line matching. (a) and (b): Ideal
line matches found in Stage 1 by the PCLM method, each pair of line match is plotted in
the same color, and small circles represent point correspondences used by PCLM; (c) and
(d): Additional matches found by the FGLM method in Stage 2. (Best viewed in color)

Ik. This method omits those 2D-2D correspondences between Ik−1 and Ik whose 3D

positions are unknown yet. This omission will lead to large estimation error when observed

3D points are few. Various approaches exist to handle this issue, e.g. using Kalman

filtering [79] or three-view constraints [80]. A good fit for our system is a method proposed

by Tardif et al. [67] that decouples the estimation of Rk from tk in two steps. We adopt

this method with the modification as follows.

Step 1: Compute essential matrix E as described in Section 4.3.2.1. Decompose
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E to recover the relative camera rotation Rk−1
k and translation tk−1

k , with ‖tk−1
k ‖

unknown.

Step 2: Compute the translation distance ‖tk−1
k ‖ using 3D-2D correspondences

through a RANSAC process where only one correspondence is needed for a minimal

solution. This completes the 6 DoF estimation.

In the Step 2 of [67], Tardif et al. estimate the full 3 DoFs of tk−1
k using two 3D-2D

correspondences for a minimal solution. This difference can be justified by the differ-

ent cameras used - an omnidirectional camera in [67] with 360◦ horizontal field of view

(HFOV) vs. a regular camera we use with 40◦−80◦ HFOV. Narrower HFOV results in

fewer observable 3D landmarks in view and thus fewer 3D-2D correspondences, espe-

cially in a turning situation. Therefore, we choose to reduce the problem dimension in

Step 2 to fit our needs.

It is worth noting that when k = 1, we do not need Step 2, but set ‖tk−1
k ‖ = 1. This

fixes the scale of the following estimations.

4.3.4 3D MFG Update

We initializeMk by lettingMk = Mk−1 and then perform 3D MFG update forMk

using 2D information just obtained. This is a process of associating 2D features in mk with

3D landmarks inMk and introducing new 3D landmarks intoMk. We present details for

each type of landmarks as follows.

4.3.4.1 Key Point Update

Key point update involves associating image observations to existing 3D key points,

and establishing new 3D key points using new 2D key point correspondences (see Boxes

4.1-4.6 in Fig. 4.3).

A 2D point correspondence must have sufficient parallax to be used for computing a
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3D point. Here we define the parallax of a 2D key point correspondence pi,k1 ↔ pj,k2 as

ρ(pi,k1 ,pj,k2) :=〈K−1Hrpi,k1 ,K
−1pj,k2〉 (4.6)

with Hr =KRk1
k2

K−1 (4.7)

where Hr represents a rotational homography [45], 〈·, ·〉 indicates the angle between two

vectors, and Rk1
k2

has been computed in Section 4.3.3.

For a 2D key point correspondence pi,k−1 ↔ pj,k,

• if it is a re-observation of key point Pι, we make the association by letting pι(k) =

pj,k.

• if it is a newly discovered point, compute its parallax ρ(pi,k−1,pj,k) using (4.6). If

ρ(pi,k−1,pj,k) > τρ where τρ is a parallax threshold, we triangulate it and add the

3D point toMk as a new key point. Otherwise, we set up a new 2D key point track

Qq = {pi,k−1,pj,k} to keep track of it for potential triangulation in the future. A 2D

key point track is a collection of 2D key points corresponding to a 3D point whose

position is not computed yet due to insufficient parallax.

• if it is an observation of an existing 2D key point trackQq, we append it to the track

Qq = Qq ∪ {pj,k}, and check whether Qq can be converted to a 3D key point. To

do this, we compute the parallax between pj,k and each of the rest points in Qq. If

anyone is larger than τ , we compute a 3D point from all points in Qq and add it to

Mk; Qq is then deleted.

4.3.4.2 Vanishing Point Update

Vanishing point update is straightforward (see Boxes 5.1-5.2 in Fig. 4.3). Given a 2D

vanishing point vi,k, if it is a re-observation of existing Vj , let vj(k) = vi,k. Otherwise,
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establish a new vanishing point node Vj = [vT
i,kRk, 0]T. It is trivial but important to update

the edges between ideal lines and vanishing points whenever a new ideal line or vanishing

point node is added.

4.3.4.3 Ideal Line Update

Before presenting the ideal line update algorithm, we need to define the parallax for

ideal lines. Generally speaking, parallax has not been clearly defined for lines. Here we

propose a heuristic parallax measurement for ideal lines by leveraging their line segment

endpoints. For a 2D ideal line correspondence li,k1 ↔ lj,k2 , define

%(li,k1 , lj,k2) :=
1

n

n∑
ι=1

ρ(dι,k1 ,d
+
ι,k2

) (4.8)

where {dι,k1|ι = 1, · · · , n} denotes the endpoints of line segments that support li,k1 , and

d+
ι,k2

is the perpendicular foot of d′ι,k2 := Hrdι,k1 on lj,k2 in Ik2 , as illustrated in Fig. 4.7.

Hr

Camera center

),(
21 ,



k,k  dd

1,kιd 1,kil

2,kjl

1kI 2kI

2,kιd



2,kιd

2,kil

Figure 4.7: Illustration of parallax computation for 2D ideal lines. Hr is a rotational ho-
mography defined in (4.7). Bold lines are supporting line segments of the underlying (thin)
ideal line. ρ(dι,k1 ,d

+
ι,k2

) is the parallax between points dι,k1 and d+
ι,k2

.
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The rationale is that we want to reward line correspondences which have larger distance

in their perpendicular direction. If l′i,k2 := H−Tr li,k1 overlap with lj,k2 , their parallax should

be zero.

With the parallax defined, the ideal line update is performed in a similar fashion to the

key point case (i.e. Boxes 4.1-4.6 in Fig. 4.3), and thus skipped here.

Remark 1. 3D Line segments are also updated in this process. Since a line segment

always has an ideal line parent, when a 2D ideal line is converted to 3D, its associated

line segments are also converted to 3D. Their 3D positions are computed based on the 3D

ideal line parameters.

4.3.4.4 Primary Plane Update

Detecting primary planes is of great importance for robot navigation. Here we detect

primary planes by finding coplanar 3D key points and ideal lines using RANSAC. To be

specific, let C be a collection of 3D key points and ideal lines which are not yet associated

with any primary plane. We briefly describe two key steps of RANSAC below.

1. Compute a plane candidate Γ from a minimal solution set, which could include

either 3 key points, or 2 parallel ideal lines, or 1 key point plus 1 ideal line.

2. ∀c ∈ C, compute a consensus score f(c,Γ) as follows.

f(c,Γ) =


δ⊥(c,Γ) if c is a key point

1
n

∑n
i=1 δ⊥(Di,Γ) if c is an ideal line

(4.9)

where δ⊥(·, ·) denotes the perpendicular distance from a point to a plane in 3D, and

{Di|i = 1, · · · , n} is the set of 3D endpoints associated with ideal line c. Therefore,

if c is an ideal line, f(c,Γ) is the average of the distances from its associated line

segment endpoints to Γ.
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If the size of the largest consensus set is greater than a threshold Ncp, we add the corre-

sponding plane candidate toMk as a primary plane, and establish edges between it and

the key points and ideal lines in the consensus set. To control the problem size, we do

not include all 3D key points or ideal lines in C. Instead, we only take into account those

recently established landmarks. Here we enforce |C| ≤450.

Moreover, when new 3D key points or ideal lines are established, we check if they

belong to existing primary planes using the metric defined by (4.9) and add edges accord-

ingly. An ideal line may have two parent primary planes if it is a boundary line.

4.4 LBA and Pruning

4.4.1 LBA with Geometric Constraints

After the 3D MFG is updated, we further refine the estimated camera poses and 3D

landmarks jointly using LBA (see Box 7 in Fig. 4.3). Inspired by [67], we use w latest key

frames to bundle adjust m latest camera poses and MFG nodes established since Ik−m+1,

with w ≥ m usually. To account for the various feature types and geometric constraints in

MFG, we define cost functions accordingly.

4.4.1.1 Key Points

Denote the reprojection of key point Pi in Ik by p̂i(k) := PkPi. Recall that the obser-

vation of Pi in Ik is pi(k). Usually p̂i(k) 6= pi(k) due to image noise. Here we assume pi(k)

is subject to a zero-mean Gaussian noise N (0,Λp).

Define the cost function for Pi in Ik to be

Cp(Pi, k) = (˜̂pi(k) − p̃i(k))
TΛ−1

p (˜̂pi(k) − p̃i(k)). (4.10)
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4.4.1.2 Ideal Lines & Collinearity

Denote the reprojection of ideal line Li in Ik by l̂i(k) := (PkQi) × (PkJi). Since

the observation of Li in Ik, i.e. li(k), is estimated from its supporting line segments

{sι,k|ι = 1, · · · }, we directly treat these line segments as its observations for cost function

definition. The measurement noise of 2D line segments can be modeled in various ways.

Here we adopt a simple but well-accepted modeling [81], which assumes each line seg-

ment endpoint is subject to a zero-mean Gaussian noise N (0, σ2
dI2), where σd is a scalar,

and I2 is a 2×2 identity matrix.

Define the cost function for Li in Ik as

Cl(Li, k) =
∑
ι

2∑
j=1

(
d⊥(d̃ιj,k, l̂i(k))

σd

)2

. (4.11)

This cost function effectively captures the collinearity constraint between ideal lines and

line segments.

4.4.1.3 Vanishing Points & Parallelism

Let the reprojection of vanishing point Vi in Ik be v̂i(k) := PkVi. The observation

of Vi in Ik is vi(k) which is the intersection of 2D line segments from the same parallel

group. Since vi(k) is estimated from line segments, its estimation covariance Λvi(k) is easily

derived as well [81]. Define the cost function for Vi in Ik by

Cv(Vi, k) = (v̂i(k) − vi(k))
TΛ−1

vi(k)
(v̂i(k) − vi(k)). (4.12)

In particular, for all ideal lines {Lj} connected to Vi in MFG, we enforce Lj =

[QT
j ,V

T
i ]T such that these lines are strictly parallel. Recall that Qj is a finite point on

Lj . This parameterization and cost function (4.12) together account for the parallelism
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relationship in MFG.

4.4.1.4 Primary Planes & Coplanarity

Primary plane Πi has neither reprojection nor direct observation in image space. There-

fore, we define its cost function by leveraging 3D key points and ideal lines, respectively.

For key point Pj and primary plane Πi, define

Cπ(Pj,Πi) =


[δ⊥(Pj,Πi)]

2 if Pj ∈ Πi

0 otherwise
(4.13)

where Pj ∈ Πi indicates that Pj is connected with Πi in MFG.

For ideal line Lj and primary plane Πi, define

Cπ(Lj,Πi) =


1
n

∑n
ι=1[δ⊥(Dι,Πi)]

2 if Lj ∈ Πi

0 otherwise
(4.14)

where {Dι|ι = 1, · · · , n} denote the endpoints of all the line segments that support Lj .

Eqs. (4.13) and (4.14) represent the coplanarity constraint in MFG.

4.4.1.5 Overall Metric

Denote the last m camera poses by Skc = {Ri, ti|i = k−m+1, · · · , k}, and the last m

key frames by Ik = {Ii|i = k −m + 1, · · · , k}. The key points to be refined in LBA are

those that are observed in at least one frame of Ik, and we denote them by Skp . Similarly

we define Skl and Skv for ideal lines and vanishing points, respectively. The primary planes

to be refined are those that have edges connected to key points from Skp or ideal lines from

Skl , and we denote them by Skπ .

The cost function of LBA is defined as a weighted sum of the costs of MFG fea-
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tures/constraints,

CLBA(Mk) =

k∑
κ=k−w+1

ηp ∑
P∈Skp

Kδp
(
Cp(P, κ)

)
+ ηl

∑
L∈Skl

Kδl
(
Cl(L, κ)

)
+ ηv

∑
V∈Skv

Kδv
(
Cv(V, κ)

)
(4.15)

+ ηπ
∑

Π∈Skπ

 ∑
P∈Skp

Kδπ
(
Cπ(P,Π)

)
+
∑

L∈Skl

Kδπ
(
Cπ(L,Π)

)
where ηp, ηl, ηv and ηπ are the weights for key points, ideal lines, vanishing points and

primary planes, respectively, and Kδ(·) is a robust kernel function with parameter δ. Cur-

rently the weights are chosen empirically, and the kernel function is the Huber loss defined

as

Kδ(e2) =


e2 for |e| < δ,

2δe− δ2 otherwise.
(4.16)

The LBA problem at time k is

min
Skc ,Skp ,Skl ,Skv ,Skπ

CLBA(Mk). (4.17)

This problem is solved using the Levenberg-Marquardt (LM) algorithm [45], and the solu-

tion is used to refine camera poses Skc andMk nodes including key points Skp , ideal lines

Skl , vanishing points Skv and primary planes Skπ .

4.4.2 MFG Pruning

False data association inevitably results in erroneous estimation in the 3D MFG. We

thus constantly prune the MFG after performing LBA. We start with key point pruning.

Recall that pi(k) represents the observation of Pi in Ik. Here we define a set Sob(Pi) =

{pi(κ), κ ≥ 0} to contain all the detected observations for Pi. The key point pruning pro-

cedure is summarized in Algorithm 8. The basic idea is that a key point outlier resulted
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from false matching must have observations inconsistent with its reprojections. After re-

moving inconsistent observations, if a key point has very few surviving observations, then

we consider it as mis-estimated.

The ideal line pruning procedure is similar to Algorithm 8 except that eiκ = Cl(Li, κ).

Ideal line mis-estimation results not only from false line matching between images but also

from wrong association with vanishing points. In the latter case, the true direction of a 3D

line is not parallel to the assigned vanishing point. Since we enforce the estimated line

direction to be parallel to the vanishing point (see Section 4.4.1.3), the line reprojections

must have discrepancies with observations. This allows the pruning algorithm to detect

this kind of mis-estimation.

At current stage, we do not prune vanishing points and primary planes because 1) they

are rarely mis-estimated, and 2) the Huber loss functions in (4.15) allow the LBA to be

robust to such mis-estimations.

Algorithm 4.1: Key Point Pruning
Input : V ,Mk, R0:k, t0:k

Output:Mk

1 for Pi ∈ Skp do
2 for pi(κ) ∈ Sob(Pi) do
3 Compute eiκ = Cp(Pi, κ) using (4.10);
4 if eiκ > ε then
5 Remove pi(κ) from Sob(Pi);

6 if |Sob(Pi)| < Nob then
7 Remove Pi and the associated edges fromMk;

8 returnMk
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4.5 Algorithms

The HLVN algorithm is summarized in Algorithm 18 to facilitate our analysis. Let the

image resolution of Ik be r pixels. Then detecting 2D key points and line segments can be

done in O(r) time [44, 73]. Suppose on average we detect np 2D key points, ns 2D line

segments, nl 2D ideal lines, and nv 2D vanishing points in each image. Obviously, r > np,

r > ns ≥ nl > nv. Usually, nv is very small and can be considered as constant. Primary

plane update takes O(1) time because |C| is bounded by constant (see Section 4.3.4.4).

MFG pruning takes O(nT (|Skp | + |Skl |)) time, where nT denotes the average number of

observations for a 3D key point (or ideal line). In general visual navigation, we can bound

nT by a large constant. Thus, MFG pruning has a time complexity O(w(np+ns)) because

|Skp | < wnp and |Skl | < wns.

The most computationally-expensive step is LBA, which refines a parameter vector of

dimension

dp = 3|Skp |+ 6|Skl |+ 3|Skv |+ 4|Skπ |+ 7|Skc |.

This is because we use a 3-vector for a 3D key point, a 6-vector for a 3D ideal line, a 3-

vector for a vanishing point, a 4-vector for a primary plane and a 7-vector (unit quaternion

for rotation) for a camera pose. Since |Skv | < wnv, |Skπ | < |Skp | and |Skc | < w, we have

dp = O(w(np+ns)). Similarly, the observation vector’s dimension is do = O(w(np+ns)).

In each iteration of LM, the computational complexity is O(w3(np + ns)
3) for a dense

matrix solver. According to [82], the total iterations needed by LM is upper-bounded by

O(1/ε2), with a stopping criterion ‖∇CLBA‖ ≤ ε.

Theorem 1. The computational complexity of the HLVN algorithm is O(r + w3(np +

ns)
3/ε2).
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Algorithm 4.2: HLVN Algorithm
Input : V ,Mk−1, R0:k−1, t0:k−1

Output:Mk, R0:k, t0:k

1 Select key frame Ik; O(r + n2
p)

2 Detect 2D key points from Ik; O(r)
3 Detect 2D line segments from Ik; O(r)
4 Detect 2D ideal lines for Ik; O(n2

s)
5 Detect vanishing points for Ik; O(n2

s)
6 Match key points between Ik−1 and Ik; O(n2

p)

7 Compute epipolar geometry; O(np)
8 Match vanishing points between Ik−1 and Ik; O(1)
9 Match ideal lines between Ik−1 and Ik; O(n2

s)
10 Estimate camera pose Rk, tk; O(n2

p)

11 Mk =Mk−1; O(1)
12 Update 3D key points; O(np)
13 Update 3D ideal lines; O(ns)
14 Update 3D vanishing points; O(1)
15 Update 3D primary planes; O(1)
16 Perform LBA onMk; O(w3(np + ns)

3/ε2)
17 PruneMk; O(w(np + ns))
18 returnMk, R0:k, t0:k

4.6 Experiments

We have implemented our algorithm using C++ [83]. We first validate the proposed

two stage line matching (TSLM) approach on real image data. Then we evaluate the visual

odometry performance of HLVN under both indoor and outdoor scenarios and compare it

with state-of-the-art algorithms.

4.6.1 Line Matching Test

Ideal lines play a pivotal role in MFG. A good matching algorithm for ideal lines

should find as many matches as possible while maintaining high accuracy. Here we vali-

date our TSLM approach by comparing it with PCLM, the state-of-the-art in line matching.

We have collected 20 pairs of images covering a variety of man-made scenes (available
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Figure 4.8: Sample images used for line matching test.

on line [83]). Due to the wide baselines in the image data, SIFT matches are utilized

as point correspondences for both line matching methods. Table 4.1 shows the number

of total matches (TM) and the true positive rate (TPR) obtained by TSLM and PCLM,

respectively. On average, TSLM is able to find 62.5% more line matches than PCLM

while achieving a TPR of 92.3%. The significant increase in line match number can greatly

benefit the MFG construction process. The slight decrease in TPR is not a big problem

because false matches are handled by other procedures such as MFG pruning.

4.6.2 Visual Odometry Test

We now focus on the visual odometry performance of our HLVN algorithm. For com-

parison, we have chosen the following two state-of-the-art algorithms in feature-based

monocular visual odometry/SLAM.

• PTAM: Parallel Tracking and Mapping [71], one of the most successful BA based

visual SLAM algorithms, and

• 1-Point-EKF: 1-Point RANSAC-based EKF-SLAM [60], a representative sequen-

tial filtering based visual odometry method.
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Table 4.1: IDEAL LINE MATCHING RESULTS

No. PCLM TSLM
#TM TPR #TM TPR

1 48 97.9% 93 97.8%
2 84 96.4% 125 88.8 %
3 54 92.6% 73 94.5%
4 51 86.2% 62 87.1%
5 83 90.4% 125 89.6%
6 58 96.5% 87 94.3%
7 62 93.5% 82 90.2%
8 74 89.2% 110 90.9 %
9 50 94.0% 84 96.4%

10 62 98.3% 86 97.7%
11 29 96.5% 51 94.1%
12 55 98.1% 76 97.4%
13 42 95.2% 87 96.6%
14 79 97.4% 104 95.2%
15 22 86.3% 80 76.3%
16 35 97.1% 74 87.8%
17 29 100% 56 91.1%
18 13 84.6% 28 82.1%
19 25 100% 68 97.1%
20 6 100% 19 89.5%

Avg. 48 93.7% 78 92.3%

Both algorithms above provide open-source code, allowing more fair comparisons. Al-

though system parameter settings largely depend on real applications, we list the relevant

parameter values used in our experiments in Table 4.2.

4.6.2.1 Evaluation Metric

To evaluate the localization accuracy, we adopt the widely used absolute trajectory

error (ATE) [60] as explained below.

Since the ground truth and the estimation of camera poses are usually represented in

different coordinate systems, we need to align them before computing ATE. Let gW
′

k be
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Table 4.2: PARAMETER SETTINGS

Parameter Value Description
N2 50 2D point match number
N3 7 3D key point number
τR 15◦ rotation angle
τθ 10◦ vanishing point angle
τρ 0.9◦ parallax threshold
Ncp 100 coplanar feature number
w 10 LBA window size
m 8 LBA pose number
ηp 1 key point weight
ηl 1 ideal line weight
ηv 15 vanishing point weight
ηπ 100 primary plane weight
δp 1 Huber kernel size
δl 3 Huber kernel size
δv 1 Huber kernel size
δπ 1 Huber kernel size
ε 4 reprojection error
Nob 2 observation number

the ground truth of camera position at time k in a coordinate system {W ′} and rWk the

estimated one in {W}. We need to find a similarity transformation that maps rWk to {W ′}:

rW
′

k := sRW ′

W rWk + tW
′

W , (4.18)

where the transformation is defined by rotation matrix RW ′
W , translation vector tW

′
W and

scaling factor s. The similarity transformation is obtained by minimizing
∑

k ‖rW
′

k −

gW
′

k ‖2. The ATE εk at time k is then defined as: εk = ‖rW ′k − gW
′

k ‖. We compute the root-

mean-square-error (RMSE) of ATE’s over all the time indexes, as well as the standard

deviation (SD), maximum (Max), and the ratio between RMSE and the trajectory length
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for comparison purpose.

4.6.2.2 Datasets

We evaluate the aforementioned three methods on two indoor and one outdoor se-

quence, as described below.

• Bicocca sequence: a subsequence of over 4,500 images from the Bicocca-2009-02-

25b session of the Rawseeds datasets [84]. The images are recorded in a library

using a camera with 79◦ HFOV at a resolution of 320×240. The trajectory has an

approximate length of 77 m, with ground truth provided.

• HRBB4 sequence: a sequence of 12,000 images collected in an office corridor envi-

ronment by ourselves (available on line [83]). The images are recorded using a cam-

era (with 65◦ HFOV) mounted on a PackBot (see Fig. 4.9(a)). In our experiment, we

reduce the image resolution from 1920×1080 to 640×360 for faster computation.

The robot trajectory has an approximate length of 70 m as illustrated in Fig. 4.9(b).

The ground truth of camera poses is obtained by using artificial landmarks - markers

posted along the lower parts of walls. The 3D positions of the 4 outmost corners of

each marker are manually measured, and their projections in images are manually

selected. Based on these 3D-2D point correspondences, the camera pose of each

frame is recovered using a PnP (perspective-n-point) solver (e.g. [85]). According

to our test, this method achieves an accuracy of ±1 cm in camera position, owing to

the following facts.

– The marker locations are designed such that the camera clearly sees at least 3

or 4 markers most of the time.

– The marker corners’ 3D positions are carefully measured using a BOSCH

GLR225 laser distance measurer with a range up to 70 m and measurement
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Figure 4.9: HRBB4 sequence. (a) Camera and robot. (b) Trajectory estimates aligned with
the ground truth using similarity transforms as described in (4.18).

accuracy of ±1.5 mm.

– High resolution images (i.e. 1920×1080) are used to suppress image noise

when finding the projections of marker corners.

Due to their minimal sizes in images, these markers do not bring much influence to

the approaches in our test.

• Malaga6 sequence: a sequence of over 4,600 urban images from the 6th section of

the Málaga Stereo and Laser Urban Data Set [86]. Although the original dataset

provides stereo images, we only use the left channel at a resolution of 800×600.

The trajectory length is over 1,200 m with GPS data available.

4.6.2.3 ATE

We have fine-tuned parameters for PTAM and 1-Point-EKF with best efforts. The

results below represent their best performance in our test.

58



Table 4.3: ABSOLUTE TRAJECTORY ERRORS

(a) BICOCCA

Method RMSE (m) SD (m) Max (m) RMSE
/

trajectory
1-Point-EKF 2.23 1.10 5.20 2.90%

PTAM 0.93 0.35 1.97 1.21%
HLVN 0.88 0.28 1.86 1.14%

(b) HRBB4

Method RMSE (m) SD (m) Max (m) RMSE
/

trajectory
1-Point-EKF 1.99 1.17 6.94 2.84%

PTAM 1.61 0.87 4.65 2.30%
HLVN 0.85 0.41 2.45 1.21%

(c) MALAGA6

Method RMSE (m) SD (m) Max (m) RMSE
/

trajectory
1-Point-EKF 77.16 44.68 175.98 6.43%

PTAM — — — —
HLVN 14.10 6.23 45.03 1.18%

Table 4.3(a) shows the ATE’s on Bicocca for each method. Both PTAM and HLVN

outperform 1-Point-EKF, which manifests the superiority of BA approaches over filtering.

On the other hand, the difference between PTAM and HLVN is almost negligible. This is

because Bicocca is recorded in an environment with rich texture (on average, 478 corner

points detected per image), and the camera HFOV is relatively wide. This favors key

point-based approaches like PTAM, whereas not allowing HLVN to demonstrate much

advantage.

In contrast HRBB4 is a much more challenging dataset. Despite its larger image reso-

lution than Bicocca, HRBB4 only detects 355 corner points per image on average due to

the textureless scene. The robot also makes sharp turns (i.e., small translation along with

large rotation) in HRBB4, which easily leads to large scale drift. The narrower HFOV

in HRBB4 further increases the difficulty. Nonetheless, Table 4.3(b) shows that HLVN
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outperforms both competing approaches with an RMSE of 0.85 m, 1.21% of the overall

trajectory length. Specifically, the RMSE of HLVN is 47.2% less than that of PTAM.

As shown in Fig. 4.9(b), HLVN suffers less scale drift at sharp turns than PTAM and

1-Point-EKF by leveraging more types of features.

Designed for small-scale indoor use, PTAM is not quite applicable to Malaga6. In fact,

we are not even able to have PTAM completely process Malaga6 because of tracking fail-

ure. In Table 4.3(c), HLVN outperforms 1-Point-EKF again by exploiting heterogeneous

features and LBA. This demonstrates the benefit of HLVN for visual navigation in urban

environments.

4.6.2.4 Feature Contributions

Fig. 4.10 illustrates the values of each component in (4.15) over key frames of the

Bicocca and HRBB4 sequences, respectively. We see how much each type of feature

contributes to the LBA problem dynamically. As a result of the rich texture in Bicocca,

the contribution of key points dominates all other costs throughout the sequence. On the

other hand, the contributions of key points and ideal lines are mostly comparable to each

other in HRBB4. This phenomenon shows that HLVN is adaptive in the sense that the

contribution of each type of feature varies as the scene structure changes.

For a further insight of feature contributions, we investigate the performance of our sys-

tem under different combinations of feature types using the following variants of HLVN:

• PT: using only key points,

• PT+LN: using key points and ideal lines,

• PT+VP: using key points and vanishing points,

• PT+PL: using key points and primary planes,

• PT+LN+VP: using key points, ideal lines and vanishing points,
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• PT+LN+PL: using key points, ideal lines and primary planes,

• PT+VP+PL: using key points, vanishing points and primary planes.

Table 4.4 shows the ATE’s resulted from these HLVN variants on the three datasets. We

find that the inclusion of more feature types helps reduce the ATE’s, though the improve-

ment may vary in different scenarios. For example, the error reduction brought by more

feature types is less significant on Bicocca than on HRBB4 or Malaga6; this conforms to

the observation in Fig. 4.10(a) that key points dominate the overall cost of LBA through-

out Bicocca. Unfortunately it is hard to judge the relative importance between individual

feature types in general since it is essentially a scene-dependent problem. Nonetheless,

the result implies that exploiting more features types and geometric constraints, when-

ever available, effectively reduces the overall estimation error. This justifies our choice of

fusing heterogeneous landmarks for visual navigation in man-made environments, despite

higher computational demands.

4.6.2.5 Time Consumption

The LBA of HLVN is implemented using g2o (general graph optimization) [87], which

allows to leverage sparse optimization solvers. Our current implementation of HLVN

Table 4.4: ATE’S (M) OF HLVN VARIANTS

Variant Bicocca HRBB4 Malaga6
PT 1.04 2.05 39.68
PT+LN 0.98 1.42 25.24
PT+VP 1.01 1.56 22.08
PT+PL 0.96 1.62 25.71
PT+LN+VP 0.95 1.33 17.85
PT+LN+PL 0.91 1.17 19.37
PT+VP+PL 0.92 1.26 19.52
HLVN 0.88 0.85 14.10

The ATE’s in the Malaga6 column are larger than other columns because Malaga6 is an
outdoor sequence with a longer trajectory.
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Figure 4.10: Contributions to LBA costs by different features. The costs are dimension-
less.

is single-threaded and not yet optimized. The computation time on a desktop with an

Intel Core i7-3770 CPU is reported in Table 4.5. Although relatively slow, HLVN can be
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accelerated for real time use in at least 3 ways, i.e., optimizing the implementation, using

graphics processing units or more powerful CPUs, and parallelizing the algorithm. We

expect that the algorithm can run in real time in the near future.

4.6.3 Test on KITTI Odometry Dataset

The KITTI odometry dataset [88] contains 22 image sequences, 11 of which (i.e. se-

quences 00-10) are provided with ground truth and thus used for our test. For general

autonomous driving testing, this dataset covers various scenarios including urban, coun-

tryside and highway roads. In our experiment, however, only sequences 00 and 07 are

of particular interest because they have rectilinear buildings dominating the scene, which

conforms to our assumption a.1. Due to the lack of feature heterogeneity on other se-

quences, our method is not expected to outperform other approaches. For comparison, we

choose the following point-based methods

• VISO2-M: the monocular visual odometry algorithm associated with the dataset [89],

and

• SCG: a state-of-the-art large-scale monocular system proposed by Song, Chandraker

and Guest [90], referred to as SCG here. SCG is a top-ranked monocular algorithm

on the KITTI odometry benchmark.

Table 4.5: RUN TIME OF HLVN

Sequence Duration Run time np ns #Key frame
Bicocca 153 s 290 s 478 192 218
HRBB4 400 s 210 s 355 250 170
Malaga6 231 s 600 s 518 413 267

As defined in Section 4.5, np and ns are the average numbers
of 2D key points and line segments detected from each image,
respectively. Duration means video length, and run time means
computation time.
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The evaluation metric provided by the dataset (see [88] for detail) requires estimated

trajectories to be in real-world scale. Therefore, we have augmented our system with a

ground plane detection component to remove scale ambiguity by assuming a fixed camera

height. Similar to [89, 90], in each iteration our algorithm finds point correspondences

within a pre-defined image region between key frames, reconstructs 3D points by triangu-

lation, and detects ground plane from these points using RANSAC.

As highlighted in Table 4.6, on sequences 00 and 07 our method achieves clearly

smaller translational errors than SCG, and rotational errors of the same level. To be spe-

cific, our method reduces the respective translational errors on sequences 00 and 07 by

at least 52.5%. As expected, our method outperforms the counterparts on these two se-

quences by exploiting heterogeneous landmarks and their geometric relationships. Fig. 4.11

illustrates the estimated trajectories for sequences 00 and 07 by our method. Meanwhile,

on other sequences our method yields comparable translational errors with SCG, despite

slightly increased rotational errors. In fact, our translational errors on sequences 05 and

06 are also substantially lower than SCG thanks to the sporadic presence of rectilinear

structures in the imagery. Sequence 01 is not included in Table 4.6 because its fast speed

(up to 90 km/h) fails the ground plane detection for all three methods.

To summarize, our method significantly outperforms the counterpart in urban scenarios

(e.g. sequences 00 and 07) where rectilinear buildings dominate the scene. Importantly,

this is exactly the scenario where visual SLAM is of great importance due to the fact that

GPS signals are often blocked or reflected by tall buildings.

4.7 Conclusions

We presented a method utilizing heterogeneous visual features and their inner geomet-

ric constraints to assist robot navigation in man-made environments. This was managed

by a multilayer feature graph. Our method extended the LBA framework by explicitly
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Table 4.6: COMPARISON ON KITTI DATASET

Seq
VISO2-M SCG Ours

Rot Trans Rot Trans Rot Trans
(deg/m) (%) (deg/m) (%) (deg/m) (%)

00 0.0369 12.62 0.0142 7.14 0.0151 4.39
02 0.0194 3.71 0.0097 4.34 0.0122 5.60
03 0.0288 9.05 0.0093 2.90 0.0122 3.71
04 0.0163 7.58 0.0064 2.45 0.0088 2.74
05 0.0575 12.74 0.0107 8.13 0.0188 4.93
06 0.0275 3.71 0.0108 7.56 0.0181 4.09
07 0.1235 25.77 0.0234 9.92 0.0199 4.71
08 0.0369 16.88 0.0122 7.29 0.0171 6.69
09 0.0227 3.94 0.0096 5.14 0.0231 5.27
10 0.0596 29.36 0.0121 4.99 0.0119 4.43

Highlighted rows indicate urban sequences with rectilinear build-
ings dominating the scene, which allow our method to stand out
by design.
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Figure 4.11: Estimated trajectories by our method for sequences 00 and 07 in the KITTI
dataset.

exploiting heterogeneous features and their geometric relationships in an unsupervised

manner. The algorithm took a video stream as input, initialized and iteratively updated
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MFG based on extracted key frames, and refined robot localization and MFG landmarks.

We presented the algorithm pseudo code and analyzed its computation complexity. Phys-

ical experiments showed that our algorithm outperformed state-of-the-art approaches on

datasets where rectilinear structures dominate the scene.
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5. ROBUST RGB-D ODOMETRY USING POINT AND LINE FEATURES

For GPS-denied indoor environments, visual odometry is an attractive, low-cost al-

ternative to laser-based robot localization approaches. The recent emergence of RGB-D

cameras (e.g. Kinect) significantly enhances visual odometry performance by providing

pixel-wise depth measurements. Besides the relative short range and the limited accuracy

of existing RGB-D technologies, the main challenges come from large lighting condition

variations and uneven feature distributions. The former directly hinders direct approaches

(e.g. the dense method in [91]) which are based on the photo-consistency assumption.

The latter often corrupts feature tracking quality in feature-based approaches.

Color 
images

Depth 
images

P1) 2D point detection
L1) 2D line segment 

detection

P2) Back-project to 3D
L2) Sample & 

back-project to 3D

P3) Compute 3D 
point covariances

L3) Detect 3D lines & 
compute covariances

P4) Putative 
point matching

L4) Putative 
line matching

5) RANSAC-based
motion estimation

6) Motion estimation 
refinement

Figure 5.1: System diagram.
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Building on feature-based approaches and with the challenges in mind, we propose a

robust RGB-D odometry method by fusing point and line features (see Figure 5.1). Line

features are abundant indoors and less sensitive to lighting variation than points. On the

other hand, points provide less position ambiguity than that of lines if sufficient observa-

tions are available. Effectively combining those desirable properties would increase both

accuracy and robustness for an odometry method. We extract 3D points and lines from

RGB-D data and analyze their measurement uncertainties. We provide a framework that

seamlessly fuses points and lines by adopting a RANSAC-based motion estimation, fol-

lowed by an MLE-based motion refinement. Under Gaussian noise assumption, we prove

that fusing points and lines results in smaller uncertainty in motion estimation than using

either feature type alone.

Our method has been evaluated on real-world data in experiments. We compare its per-

formance with state-of-the-art methods including a keypoint-based approach and a dense

visual odometry algorithm. Our method outperforms the counterparts under both constant

and varying lighting conditions. Specifically, our method achieves an average translational

error that is 34.9% smaller than the counterparts, when tested using public datasets.

5.1 Related Work

This work belongs to visual odometry, which estimates camera trajectories (or poses)

from a sequence of images. Visual odometry is considered as a subproblem of visual

SLAM.

Many visual odometry works have been developed using regular passive RGB cam-

eras as the primary sensor, in monocular [60], stereo [92], or multi-camera settings. To

improve accuracy, researchers study visual odometry from different perspectives. For ex-

ample, Strasdat et al. [93] analyze two prevalent approaches to visual SLAM and find

that bundle adjustment (e.g. [71]) produces more accurate results than sequential filtering
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(e.g. [94]). Due to depth ambiguity, monocular visual odometry inevitably suffers from

scale drift, which can be easily avoided by using an RGB-D camera [95]. Besides accu-

racy, robustness is another critical issue but lags behind in visual odometry development.

Lighting variation and uneven feature distribution are two main challenges for robustness.

Lighting variations caused by either natural or artificial lighting challenges both direct

visual odometry and feature-based methods [96]. Although direct approaches can achieve

superior accuracy by doing pixel-wise registration [28, 91, 97–99], their fundamental as-

sumption on photo-consistency makes them sensitive to lighting condition changes. In

the feature-based category, data-driven approaches are proposed to learn lighting-invariant

descriptors [62] and matching functions [100] for robust matching of feature points. How-

ever, point features are also prone to illumination variations at the detection stage. On the

other hand, the detection of edge and line features is less sensitive to lighting changes by

nature. Edges [20], line segments [19,21] and lines [23] have been applied to visual odom-

etry/SLAM, though their accuracy is usually not comparable with that of point features. In

addition to regular approaches, RGB-D odometry can also utilize point could registration

methods, which originate from Lidar-based SLAM. This kind of method [31] is invariant

to lighting changes, but the problem is that it easily fails in degenerated cases, e.g. when a

plane dominates the scene.

Meanwhile, uneven feature distribution hinders all feature-based visual odometry al-

gorithms. In RGB-D odometry, points are the most popular type of visual feature. For

example, in Henry et al.’s RGB-D mapping system [32], keypoints are extracted from

RGB images and back-projected into 3D using depth data. Endres et al. [33] present

an open-source RGB-D SLAM system based on point features. These approaches can

be drastically affected if the distribution of point features is largely uneven, e.g. when

textureless surfaces dominate the scene. To overcome this shortcoming, other types of

features are investigated in RGB-D odometry. Points and planes are jointly utilized in
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Taguchi et al.’s work [101], which uses any combination of three primitives of points and

planes as a minimal set for initial pose estimation in RANSAC. Planes are adopted as the

primary feature in [102] for visual odometry, and points are utilized only when the num-

ber of planes is insufficient. In [103] planes are employed as the only feature for SLAM.

However, the applications of these methods are limited to plane-dominant environments.

A 3D edge-based approach is proposed by Choi et al. [104], which treats 3D edges as an

intelligently-downsampled version of point clouds and applies ICP for registration. How-

ever, this method does not take measurement uncertainties of 3D edges into account. Here

we choose line features in combination with point features to improve the robustness of

RGB-D odometry. We analyze measurement uncertainties of 3D features to maximize the

accuracy.

5.2 Problem Description and System Overview

We assume the RGB-D camera to

a.1 be pre-calibrated, with lens distortion removed, and

a.2 have its depth image pixel-wisely synchronized with the corresponding color im-

age.

Define an RGB-D frame at time k to be Fk := {Ik, Dk}, where Ik and Dk denote the

color and depth images, respectively. The local coordinate system of Fk is the same as the

RGB camera coordinate system (right-handed, Z-axis passing the camera center pointing

forward, and X-axis pointing rightward). We define our problem as follows.

Problem 1. Given an RGB-D sequence {Fk}, k ≥ 1, estimate the camera pose of each

frame with respect to a world coordinate system.

To solve Problem 1, we estimate camera motion using adjacent RGB-D pairs, namely,

F and F ′. We compute a 3D rigid transformation between F and F ′.

Our system (see Figure 5.1) mainly consists of feature detection and motion estimation.
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In the feature detection stage, for each RGB-D frame we detect point and line features from

the color image, back-project them to 3D, and analyze their uncertainties in parallel. In

the motion estimation stage, we find feature matching between two RGB-D frames and

estimate the relative motion using points and lines in a joint manner.

5.3 Feature Detection & Uncertainty Analysis

Errors inevitably enter the system at the feature detection stage. Eventually, the errors

propagate to motion estimation results. For a deep understanding of the system accuracy,

we begin with uncertainty analysis for each feature type.

5.3.1 Point Detection & Uncertainty Analysis

Detection. Given an RGB-D frame F , we first detect a set of 2D points from color im-

age I using interest point detection algorithms such as SURF [18] (see Box P1, Figure 5.1).

Then we find the depth values, if available, for these 2D points from D. Supposing a 2D

point p = [u, v]T in I has depth d, its 3D position w.r.t. F is computed as follows (see

Box P2, Figure 5.1)

P :=


x

y

z

 =


(u− cu)d/fc

(v − cv)d/fc

d

 , (5.1)

where [cu, cv]
T and fc are the principal point and focal length of the RGB camera, respec-

tively.

Uncertainty. As a function of
[
pT, d

]T, P has a measurement uncertainty depending

on the error distribution of
[
pT, d

]T. The noise distribution of p is modeled as a zero-

mean Gaussian with covariance σ2
p I2, where I2 is a 2×2 identity matrix. The measurement

error of d is determined by many factors such as the imaging sensor, depth interpolation

algorithm, and depth resolution. Taking the Kinect for example, it is commonly agreed that

the depth noise is a quadratic function of the depth itself [105]. Specifically, the standard
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deviation (SD) σd of d is modeled as

σd = c1d
2 + c2d+ c3, (5.2)

where c1, c2 and c3 are constant coefficients. We set c1 = 2.73×10−3, c2 = 7.4×10−4, and

c3 = −5.8×10−4 in our experiments and the unit of d is meter [105].

Assuming the measurement noise of p is independent of that of d, we have

cov


p

d


 =

σ2
pI2 02×1

01×2 σ2
d

 , (5.3)

where cov(·) indicates the covariance matrix of a random variable, and 0m×n means a zero

matrix of size m× n. Under first-order approximation, we have (see Box P3, Figure 5.1)

cov(P) = JP cov


p

d


 JT

P , (5.4)

where JP = ∂P
∂(p,d)

=


d/fc 0 (uj − cu)/fc

0 d/fc (vj − cv)/fc

0 0 1

 .
5.3.2 Line Detection & Uncertainty Analysis

In this section, we introduce a 3D line detection method by considering cues from

both color and depth data. To handle RGB-D data noise, we also present how to optimally

estimate the detected 3D lines and analyze the uncertainties of the estimates. Our method

starts from 2D line detection.
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5.3.2.1 Line Detection in 2D and 3D

Under the pinhole camera model, lines remain straight when projected from 3D to

images. Therefore, to detect 3D lines we first detect their projections in the color image

I (see Box L1, Figure 5.1). As long as a 3D line is visible in I , it appears as a 2D line

segment. Here we employ the line segment detector LSD [44] to extract a set of 2D line

segments S2D = {si|i = 1, 2, · · · } from I . Each line segment is represented by two

endpoints si =
[
aT
i ,b

T
i

]T.

A naive way to obtain the 3D position of a 2D image line segment is to back-project

its two endpoints to 3D using the depth map. However, this method does not work well in

practice for two reasons: 1) Depth corruption: depth information is not always available,

especially on object boundaries when the depth is discontinuous, and 2) Perspective am-

biguity because a line segment in S2D does not necessarily correspond to a line segment

in 3D as a result of the perspective projection. This ambiguity cannot be resolved by only

checking the 3D positions of the two endpoints of the 2D line segment. This suggests

that we should inspect more depth information of a 2D line segment to avoid the afore-

mentioned issues. As a line segment consists of infinite number of points, we propose a

sampling based method for 3D line detection.

Sampling. Given a 2D line segment s, we sample ns points evenly spaced on s as

illustrated in Figure 5.2. In all experiments, we set ns = min(100,
⌊
‖s‖
⌋
), where ‖s‖

denotes the length of s (in pixels) and b·c is the floor function. We discard the sample

points whose depths are unavailable, back-project the remaining points to 3D (see Box

L2, Figure 5.1) using (5.1), and compute their 3D uncertainties using (5.4).

The 3D sample points obtained above are not necessarily from a 3D line, and even if

they are, they may contain outliers due to large depth errors. As illustrated in Figure 5.2,

we apply RANSAC to detect the existence of 3D line segments and filter out outliers
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Figure 5.2: Sampling-based 3D line segment estimation. From a 2D line segment, ns
evenly-spaced points are sampled. The sample points are back-projected to 3D using
depth information. Then a 3D line segment is fitted to these 3D points using RANSAC
and Mahalanobis distance-based optimization.

(see Box L3, Figure 5.1). For brevity, we skip every detail of RANSAC but the error

metric used for identifying inlier/outlier. Given a 3D line and a 3D point observation

(subject to measurement noise), we utilize the Mahalanobis distance between them to

evaluate whether the point is an observation of a point on the line. Mahalanobis distance is

widely used in computer vision because it produces the optimal estimate under Gaussian

assumptions [45]. For completeness, we briefly describe how to compute the Mahalanobis

distance.

Mahalanobis distance. Let P be a 3D point measurement with covariance Σp and L

be an infinite 3D line. The Mahalanobis distance from P to L is defined as

dMAH(P,L) = min
Q∈L

√
(P−Q)TΣ−1

p (P−Q), (5.5)

where Q ∈ L indicates an arbitrary point lying on line L. To derive dMAH(P,L), let A

and B be two reference points on L. Write Q = A + λ(B−A), λ ∈ R. The minimiza-
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tion problem in (5.5) is then equivalent to minimizing the following univariate quadratic

function.

min
λ

λ2(B−A)TΣ−1
p (B−A) + 2λ(B−A)TΣ−1

p (A−P)

+(A−P)TΣ−1
p (A−P)

The optimal value of λ yields the optimal Q for (5.5) Q∗=A− (B−A)TΣ−1
p (A−P)

(B−A)TΣ−1
p (B−A)

(B−A).

Let

δ(P,L) = P−Q∗, (5.6)

and then we have,

dMAH(P,L) =
√
δ(P,L)TΣ−1

p δ(P,L). (5.7)

5.3.2.2 Line Uncertainty under MLE

Suppose the size of the largest consensus set returned by the aforementioned RANSAC

process is ncon. Recall that ns points are originally sampled from the 2D line segment

s. If ncon/ns is below a threshold τ (0.6 in all experiments), it implies that we do not

have sufficient depth information to retrieve the 3D position of the line segment s. If

ncon/ns ≥ τ , we proceed to apply MLE to obtain the 3D line segment.

Let the largest consensus set be {Gi|i = 1, · · · , ncon} with G1 and Gcon being the two

extremities. We parametrize the 3D line segment L =
[
AT,BT

]T to be estimated by two

3D points associated with G1 and Gcon. Define a measurement error function

w(L) =



G1 −A

δ (G2,L)

...

δ
(
Gncon−1 ,L

)
Gncon −B


, (5.8)
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where δ(·, ·) is defined in (5.6). The MLE of L is obtained as follows,

L∗ = min
L
w(L)TΣ−1

w w(L), (5.9)

where Σw = diag
(
cov(G1), · · · , cov (Gncon)

)
is a blockwise diagonal matrix. This prob-

lem is then solved using the Levenberg-Marquardt (LM) algorithm. From back-propagation

of covariance [45], we obtain the covariance of the MLE (see Box L3, Figure 5.1)

cov(L∗) =
(
JT
wΣ−1

w Jw
)−1

, (5.10)

where Jw = ∂w
∂L

∣∣
L=L∗

.

5.4 Motion Estimation & Uncertainty Analysis

With point and line features detected and the understanding of their error covariance,

we are ready to perform overall camera motion estimation for the adjacent frame pair and

analyze the uncertainty of the estimation.

5.4.1 Putative Feature Matching and RANSAC-based Motion Estimation

Once 3D points and lines are detected from F and F ′, we need to find feature cor-

respondences between frames. As both 3D points and lines have associated 2D points

and lines, we do feature matching using 2D features (see Boxes P4 and L4, Figure 5.1).

We compute the SURF descriptors [18] for points and the MSLD descriptors [106] for

lines, respectively. We adopt nearest-neighbour method in descriptor space for the puta-

tive matching.

As putative matching inevitably contains false matching, we use RANSAC to filter out

outliers and estimate the 3D rigid transformation (see Box 5, Figure 5.1). Up to this point,

points and lines have been processed in parallel. However, in each iteration of RANSAC, a
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minimal set of data is randomly sampled for a motion estimate; a seamless fusion of points

and lines should allow mixed features in a minimal set. For this purpose, we consider the

four possible types of minimal sets as follows,

• 3 point matches. This can be trivially solved using methods like [107, 108].

• 3 line matches. In fact the 3D rigid transformation can be recovered by only 2 line

matches using an SVD-based method [109]. Considering that this method is very

sensitive to noise, we sample 3 line matches.

• 1 point + 2 line matches. In each frame, we orthogonally project the point onto the

2 lines, respectively, which converts this case to a case of “3 point” matches.

• 2 point + 1 line matches. We choose one point and orthogonally project it onto the

line in each frame, converting this case to a case of “3 point” matches.

5.4.2 MLE of Motion and Uncertainty Analysis

The RANSAC process results in a largest consensus set of feature matches consisting

of both point matches and line matches. We refine the motion estimate with the whole

consensus set of point and line matches using MLE (see Box 6, Figure 5.1). We prove that

the MLE of 3D rigid transformation obtained using both types of feature correspondences

has smaller uncertainty than that obtained using either type of feature correspondence

alone. We start by deriving the uncertainties for the MLE of motion obtained using points

and lines separately before fusing them.

5.4.2.1 Point-based Motion Estimation

Let the set of 3D point correspondences betweenF andF ′ be {Pi ↔ P′i, i = 1, · · · , n},

where n ≥ 3. Denote the covariance of Pi and P′i by Σi and Σ′i, respectively. The rigid
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body transformation T is parametrized by a six-vector ξ. T can also represented by rota-

tion matrix R and translation vector t,

T(X) := RX + t, (5.11)

where X is a 3D point.

To achieve an MLE of motion, the underlying 3D point landmarks must be esti-

mated simultaneously. Let Xi be the 3D point with respect to F that underlies the mea-

surements Pi and P′i. The parameter vector to be estimated is thus defined as p =[
ξT,XT

1 , · · · ,XT
n

]T.

Define a measurement error function

h(p) =

 hp

h′p

 , (5.12)

where hp =


X1 −P1

...

Xn −Pn

 and h′p =


T(X1)−P′1

...

T(Xn)−P′n

 .
The MLE of motion solves the following problem

min
p
h(p)TΣ−1

h h(p), (5.13)

where Σh = diag
(
Σ1, · · · ,Σn,Σ

′
1 · · · ,Σ′n

)
. Lemma ?? provides the estimation uncer-

tainty of motion.

Lemma 3. Under Gaussian noise assumption, the point feature-based MLE of rigid trans-
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formation ξ obtained by (5.13) has covariance

CP =
(
HA
h −HB

h H
D
h

−1
HB
h

T
)−1

, (5.14)

where

HA
h =

∑n
i=1

(
∂T(Xi)
∂ξ

)T
Σ′−1
i

∂T(Xi)
∂ξ

,

HB
h =


(
∂T(X1)
∂X1

)T
Σ′−1

1
∂T(X1)
∂ξ

...(
∂T(Xn)
∂Xn

)T
Σ′−1
n

∂T(Xn)
∂ξ


T

, and

HD
h = diag

(
Σ−1

1 +
(
∂T(X1)
∂X1

)T
Σ′−1

1
∂T(X1)
∂X1

,

· · · , Σ−1
n +

(
∂T(Xn)
∂Xn

)T
Σ′−1
n

∂T(Xn)
∂Xn

)
.

Proof. By back-propagation of covariance, the MLE of p has covariance [45]

cov (p) =
(
JT
h Σ−1

h Jh
)−1

, (5.15)
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with

Jh =
∂h

∂p
=


JAh JBh

JCh JDh



=



0 I3 0 0

... 0
. . . 0

0 0 0 I3

∂T(X1)
∂ξ

∂T(X1)
∂X1

0 0

... 0
. . . 0

∂T(Xn)
∂ξ 0 0 ∂T(Xn)

∂Xn


6n×3n+6

where I3 is a 3× 3 identity matrix, and 0 indicates a zero matrix of a context-determined

size hereafter.

With Σ−1
h = diag

(
Σ−1

1 , · · · ,Σ−1
n ,Σ′−1

1 · · · ,Σ′−1
n

)
, we derive

JT
h Σ−1

h Jh =

 HA
h HB

h

HB
h

T
HD
h

 .
Performing blockwise matrix inversion on JT

h Σ−1
h Jh yields (5.14).

5.4.2.2 Line-based Motion Estimation

Let the set of 3D line correspondences between F and F ′ be {Li ↔ L′i, i = 1, · · · ,m},

where m ≥ 3. Recall that Li =
[
AT
i ,B

T
i

]T, L′i =
[
A′Ti ,B

′T
i

]T. For simplicity, we denote

Λi = cov(L), Λ′i = cov(L′i) (see (5.10)).

For MLE of motion, the underlying 3D line landmarks must be estimated simulta-

neously. Let Yi =
[
αT
i ,β

T
i

]T be the 3D line with respect to F that underlies the mea-
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surements Li and L′i. The parameter vector to be estimated is thus defined as q =

[ξT,YT
1 , · · · ,YT

m]T.

Recall δ(Ai,Y) is a 3-vector function. Define

η(Li,Yi) =
[
δ(Ai,Yi)

T, δ(Bi,Yi)
T
]T
. (5.16)

Define a measurement error function

g(q) =

gl

g′l

 , (5.17)

where gl =


η(L1,Y1)

...

η(Lm,Ym)

 , g′l =


η (L′1,T(Y1))

...

η (L′m,T(Ym))

 , and T(Yi) :=
[
T(αi)

T,T(βi)
T
]T
.

The MLE solves the following problem

min
q
g(q)TΣ−1

g g(q), (5.18)

where Σg = diag (Λ1, · · · ,Λm,Λ
′
1, · · · ,Λ′m) .

Lemma 4. Under Gaussian noise assumption, the line feature-based MLE of rigid trans-

formation ξ obtained by (5.18) has covariance

CL =
(
HA
g −HB

g H
D
g

−1
HB
g

T
)−1

, (5.19)
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where

HA
g =

∑
i

(
∂η(L′i,T(Yi))

∂ξ

)T
Λ′−1
i

∂η(L′i,T(Yi))

∂ξ
,

HB
g =


(
∂η(L′1,T(Y1))

∂Y1

)T
Λ′−1

1
∂η(L′1,T(Y1))

∂ξ

...(
∂η(L′m,T(Ym))

∂Ym

)T
Λ′−1
m

∂η(L′m,T(Ym))
∂ξ


T

,

HD
g = diag(C1, · · · ,Cm), and for i = 1, · · · ,m

Ci =
(
∂η(Li,Yi)

∂Yi

)T
Λ−1
i

∂η(Li,Yi)
∂Yi

+
(
∂η(L′i,T(Yi))

∂Yi

)T
Λ′−1
i

∂η(L′i,T(Yi))

Yi
.

Proof. By back-propagation of covariance, the MLE of q has covariance [45]

cov(q) =
(
JT
g Σ−1

g Jg
)−1

, (5.20)

where

Jg =
∂g

∂q
=


JAg JBg

JCg JDg


12m×6+6m

=



0 ∂η(L1,Y1)
∂Y1

0 0

0 0
. . . 0

0 0 0 ∂η(Lm,Ym)
∂Ym

∂η(L′
1,T(Y1))
∂ξ

∂η(L′
1,T(Y1))
∂Y1

0 0

... 0
. . . 0

∂η(L′
n,T(Yn))
∂ξ 0 0

∂η(L′
m,T(Ym))
∂Ym


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With Σ−1
g = diag

(
Λ−1

1 , · · · ,Λ−1
m ,Λ′−1

1 · · · ,Λ′−1
m

)
, we derive

JgΣ
−1
g Jg =


HA
g HB

g

HB
g

T
HD
g

 .

Performing blockwise matrix inversion on JgΣ−1
g Jg yields (5.19).

5.4.2.3 Motion Estimation Using Points and Lines

Now we are ready to fuse points and lines for the MLE of motion. Given {Pi ↔

P′i, i = 1, · · · , n} and {Li ↔ L′i, i = 1, · · · ,m}, we formulate an MLE problem that

jointly estimates the rigid motion, point landmarks and line landmarks. The parameter

vector to be estimated is defined as

r =
[
ξT,XT

1 , · · · ,XT
n ,Y

T
1 , · · · ,YT

m

]T
.

Define a measurement error function

f(r) =

fp

fl

 , (5.21)

where fp =



X1 −P1

...

Xn −Pn

T(X1)−P′1
...

T(Xn)−P′n


and fl =



η(L1,Y1)

...

η(Lm,Ym)

η(L′1,T(Y1))

...

η(L′m,T(Ym))


. The MLE of r is obtained by
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solving the following problem

min
r
f(r)TΣ−1

f f(r), (5.22)

where Σf = diag(Σh,Σg).

Lemma 5. Under Gaussian noise assumption, the MLE of rigid transformation ξ based

on both point and line features obtained by (5.22) has covariance

CH =
(
HA
h +HA

g −HB
h H

D
h

−1
HB
h

T−HB
g H

D
g

−1
HB
g

T
)−1

. (5.23)

Proof. By back-propagation of covariance, the MLE of r has covariance [45]

cov(r) =
(
JT
f Σ−1

f Jf
)−1

(5.24)

where Jf = ∂f
∂r =



JAh JBh 0

JCh JDh 0

JAg 0 JBg

JCg 0 JDg


. With Σ−1

f = diag
(
Σ−1
h ,Σ−1

g

)
, we derive

JT
f Σ−1

f Jf =


HA
h +HA

g HB
h HB

g

HB
h

T
HD
h 0

HB
g

T
0 HD

g

 .

Performing blockwise matrix inversion on JT
f Σ−1

f Jf yields (5.23).

With Lemmas 3, 4 and 5 introduced, we are ready to present the following theorem

that justifies the benefit of fusing point and line features for RGB-D odometry.
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Theorem 2. Under Gaussian noise assumption, fusing points and lines produces smaller

uncertainty in the MLE of pairwise motion than using each feature alone. Specifically, for

the MLE covariances, CP , CL and CH , obtained from using points, lines, and points plus

lines respectively, we have

λi(CH) < λi(CP ), λi(CH) < λi(CL), 1 ≤ i ≤ 6 (5.25)

where λi(·) denotes the i-th largest eigenvalue.

Proof. Let us write M1 �M2 if matrices M1 and M2 are real symmetric and M1 −M2 is

positive definite.

By comparing (5.23) with (5.14) and (5.19), we find CH =
(
C−1
P + C−1

L

)−1
, which is

equivalent to

C−1
H = C−1

P + C−1
L . (5.26)

It holds that CP � 0, CL � 0 since they are both covariance matrices, which further

implies C−1
P � 0, C−1

L � 0.

As a result, we have

C−1
H − C

−1
P = C−1

L � 0 and C−1
H − C

−1
L = C−1

P � 0,

which means C−1
H � C−1

P and C−1
H � C−1

L . According to Theorem 7.7.3 in [110],

C−1
H � C−1

P ⇔ CH ≺ CP , and C−1
H � C−1

L ⇔ CH ≺ CL,

which further leads to (5.25) per Corollary 7.7.4 in [110].
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5.5 Experiments

We have implemented our method in C++ and named it Point and Line based Visual

Odometry (PLVO). We evaluate PLVO under both varying and constant lighting, and com-

pare it with the following state-of-the-art algorithms:

• Kpoint: a representative keypoint based visual SLAM algorithm [33], open source

software, referred to as Kpoint here.

• DVO: a recent dense visual SLAM method [91], open source software.

• Edge: the latest edge-based RGB-D method [104], referred to as Edge here. Edge is

only compared on public dataset because it is not open source.

We start with the evaluation under varying lighting.

5.5.1 Test Under Varying Lighting

To evaluate PLVO under real-world scenarios, we record RGB-D data at 30 FPS by

hand-holding a Kinect and walking in typical indoor environments, including corridors,

staircases and halls. The trajectory lengths, listed in Table 5.1, range from 41 m to 86 m,
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Figure 5.3: Example of image brightness change over time under constant/varying lighting
(from Corridor-C). Here image brightness means the average intensity of an image.
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which are sufficient for indoor testing. At each site, we record a pair of sequences under

constant and varying lighting, respectively. Lighting variations are generated by constantly

adjusting and/or swinging a hand-held dimmable LED light panel (Polaroid PL-LED350).

Figure 5.3 shows an example of the effect of varying lighting - while the image brightness

(i.e. the average intensity of an image) varies over time even under constant lighting, the

fluctuation of image brightness is significantly more intense under varying lighting. This

brings great challenge for feature tracking.

We enforce the starting and ending points of each sequence to be at the same position.

As a result, we define a trajectory endpoint drift (TED) to be the Euclidean distance be-

tween the two endpoints of an estimated trajectory, which serves as our evaluation metric.

For fair comparison, loop closure is disabled for Kpoint and DVO since it is beyond the

scope of this work. Table 5.1 shows the test results, where we use bold font to indicate

the best result in each row. As Kpoint allows using various point detectors, we report

the best result for each sequence obtained by respectively applying SIFT [17], SURF and

ORB [111]. From Table 5.1, we see that PLVO achieves the least TED on the majority of

sequences, under both constant and varying lighting conditions. This clearly demonstrates

the accuracy advantage of PLVO, as well as its robustness against lighting variations.

5.5.2 Test on TUM Dataset Under Constant Lighting

We also evaluate our method under constant lighting using the TUM FR1 dataset [112],

which is most frequently studied in the literature. The FR1 dataset consists of 9 sequences

with high-precision ground truth provided, mainly covering desktop and office scenarios.

The evaluation metric used here is the relative pose error (RPE) proposed in [112]. For

a given interval ∆, the RPE at time instant i is defined as

Ei :=
(
Q−1
i Qi+∆

)−1 (
P−1
i Pi+∆

)
, (5.27)
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Table 5.1: TED (IN METERS)

Site (travel distance) Lighting Kpoint DVO PLVO

Corridor-A (82 m) constant 4.36 7.10 7.50
varying 16.68 15.41 12.20

Corridor-B (77 m) constant 8.25 7.56 5.28
varying 12.75 12.96 5.15

Corridor-C (86 m) constant 6.53 6.12 5.70
varying 7.30 5.93 3.46

Staircase-A (52 m) constant 4.04 2.26 2.13
varying 4.47 3.17 2.41

Staircase-B (45 m) constant 5.77 1.72 4.50
varying 3.12 3.35 6.41

Staircase-C (41 m) constant 4.51 13.87 2.74
varying 8.79 16.00 1.86

Entry-Hall (54 m) constant 1.53 1.31 1.63
varying 3.78 6.59 3.70

Auditorium (53 m) constant 5.78 2.39 1.86
varying 6.74 10.66 4.44

Classroom (45 m) constant 2.47 3.48 1.93
varying 2.58 4.73 2.16

where Qi ∈ SE(3) and Pi ∈ SE(3) are the i-th ground truth and estimated poses, respec-

tively. Specifically, we compute the root mean squared error (RMSE) of the translational

RPE and that of the rotational RPE over the sequence.

Table 5.2 contains two comparison results. On the left part, we compare PLVO with

Kpoint and Edge, where the RPE is computed with ∆ = 1 frame in (5.27). The errors

of Kpoint are computed using their published resulting trajectories [113]. The errors of

Edge are directly excerpted from [104]. For each sequence, the first and second rows rep-

resent the translational and rotational errors, respectively. It shows that PLVO outperforms

its counterparts. We compute an average error over all sequences weighted by their frame

numbers. Our method achieves the smallest average errors. Specifically, the average trans-

lational and rotational errors of PLVO are 42.5% and 28.3% smaller than the second best

one (Edge), respectively.
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Table 5.2: RMSE OF RPE ON TUM FR1 SEQUENCES

Seq. Kpoint Edge PLVO PLVO DVO
(#Frame) error per frame error per sec

360 13.8 mm 11.2 mm 11.2 mm 84 mm 119 mm
(745) 0.63 deg 0.55 deg 0.45 deg

desk 11.7 mm 8.6 mm 10.8 mm 39 mm 30 mm
(575) 0.73 deg 0.70 deg 0.60 deg

desk2 17.6 mm 8.9 mm 11.5 mm 54 mm 55 mm
(614) 1.07 deg 0.7 deg 0.64 deg

floor 3.7 mm 15.7 mm 3.5 mm 24 mm 90 mm
(1214) 0.29 deg 0.47 deg 0.28 deg

plant 20.7 mm 6.9 mm 5.1 mm 24 mm 36 mm
(1112) 1.25 deg 0.49 deg 0.34 deg

room 13.7 mm 6.2 mm 5.3 mm 49 mm 48 mm
(1332) 0.63 deg 0.48 deg 0.36 deg

rpy 12.1 mm 7.2 mm 9.1 mm 52 mm 43 mm
(687) 0.91 deg 0.67 deg 0.63 deg

teddy 25.4 mm 36.5 mm 11.5 mm 50 mm 67 mm
(1395) 1.45 deg 0.92 deg 0.47 deg

xyz 5.8 mm 4.7 mm 5.3 mm 22 mm 24 mm
(788) 0.35 deg 0.41 deg 0.35 deg

weighted 14.4 mm 13.4 mm 7.7 mm 43 mm 58 mm
mean 0.83 deg 0.60 deg 0.43 deg

We compare PLVO with DVO separately in the right part of Table 5.2 because only

translational errors are reported in [91] with its unit being m/s, i.e. ∆ = 1 sec in (5.27).

PLVO produces an average translational error which is 34.9% smaller than DVO.

5.6 Conclusions

To improve visual odometry robustness, we proposed an RGB-D camera based method

by fusing point and line features. We proved that fusing these two types of features pro-

duced smaller uncertainty in the MLE of relative motion than using either feature type

alone. Our method was evaluated on real-world data in experiments. We compared its

performance with state-of-the-art methods Kpoint, Edge and DVO, under both constant
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and varying lighting. Our method exhibited both superior robustness to lighting change

and better accuracy in either settings.
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6. ROBUST RECOGNITION OF MIRRORED PLANES USING TWO VIEWS*

The previous sections have presented localization and mapping algorithms for mobile

robots in urban and/or indoor environments. Another critical capability needed for au-

tonomous navigation is obstacle avoidance. Unfortunately, in man-made environments

highly reflective surfaces, such as glassy building exterior and mirrored walls, challenge

almost every type of sensors including laser range finders, sonar arrays, and cameras. This

is because light and sound signals simply bounce off the surfaces which become invis-

ible to the sensors. Therefore, detecting these surfaces is necessary for robots to avoid

collisions in navigation.

In this section we report a method for this new planar mirror detection problem (PMDP)

using two views from an on-board camera. First, we derive geometric constraints for cor-

responding real-virtual features across two views. The constraints include 1) the mirror

normal as a function of vanishing points of lines connecting the real-virtual feature point

pairs and 2) the mirror depth in closed form format derived from a mirror plane-induced

homography. We also address the issue that popular feature detectors, such as SIFT, are

not reflection invariant by combining a secondary reflection with an affine scale-invariant

feature transform (ASIFT). Based on the results, we employ a RANSAC framework to de-

velop a robust mirror detection algorithm. We have implemented the algorithm and tested

it under both in-lab and field settings. The algorithm has achieved an overall accuracy rate

of 91.0%.

*Reprinted with permission from “Automatic recognition of spurious surface in building exterior sur-
vey” by Y. Lu, D. Song, H. Li, and J. Liu, 2013. IEEE International Conference on Automation Science and
Engineering (CASE), pp. 1059-1064, Copyright c© 2013 IEEE.
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6.1 Related Work

PMDP is not a simple plane reconstruction problem using 3D vision. It relates to

many areas including intelligence level tests in artificial intelligence community, planar

catadioptric stereo (PCS) systems, construction of specular surfaces, and reflection invari-

ant feature extractions.

In AI and animal behavior communities, researchers often assess intelligence levels

based on the subject’s ability of detecting a mirror or its own reflection [114, 115]. In the

well known mirror and mark test, a subject has a mark that cannot be directly seen but

is visible in the mirror. If the subject increases the exploration and self-direction actions

towards the mark, it means that the subject recognizes the mirror image as self. Existing

results show that chimpanzees [115], gorillas [116], dolphins [117], and magpies [118]

have evident self-recognition in front of mirrors except monkeys [119]. We do not have

mirror and mark tests for robots yet. It is clearly not a trivial problem. Initial related results

focus on robot self recognition [120, 121] using motion and appearance, which is not as

difficult as recognizing a mirror when a robot cannot see its own reflection. Such cases are

not unusual because the robot cannot see itself when approaching a mirror from side. Our

approach addresses this problem by exploring symmetricity in the scene.

Mirror detection is also related to PCS systems in computer vision. A PCS system

usually consists of a static camera and one or more planar mirrors with the aim of achieving

stereo or SFM [122–124]. Since detecting mirror pose is just a calibration problem in PCS

systems, in-lab settings and calibration patterns (e.g. checkerboard) can be used here.

However, this is not a viable approach when robots need to detect mirror surfaces in situ.

In a way, planar mirror detection can be viewed as a special case of specular surface

construction. Existing approaches rely on active sensing by changing lighting [125–127]

and polarity [128–131], or assuming curvature of the mirror [132]. These approaches have
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difficulty to be adapted for robots because natural lighting can easily overwhelm the setup.

To avoid the issue, we use features from images.

SIFT [17] is well known for its invariance to image scaling and translation, and partial

invariance to affine distortion. However, it is not reflection invariant and thus cannot be

applied to our problem. As extensions of SIFT, descriptors invariant to mirror reflection

have recently been designed by modifying the SIFT descriptor structure at the expense

of distinctiveness, such as MI-SIFT [133] and FIND [134]. They still cannot fit our need

because our feature correspondence involves not only a reflection difference but also a sig-

nificant projective distortion induced by perspective changes. On the other hand, descrip-

tors invariant to affine transforms can handle large perspective changes (e.g., [135, 136]).

Among these affine invariant descriptors, ASIFT [137] shows promising performance and

becomes our choice of feature transformation. Later we will show how to make ASIFT

reflection-invariant.

In a previous work [138], our group has investigated the problem of estimating the

orientation of a mirror plane using a single view. However, the depth information cannot

be extracted from a single view and it limits the detection ability.

6.2 Problem Definition

To define our problem and focus on the most relevant issues, we have the following

assumptions.

a.1 Each view captures a real scene and its mirror reflection, and the scene is feature-

rich.

a.2 The intrinsic camera matrix is known to be K.

a.3 The baseline distance |t| between two views is known. The distance is usually short

and can be measured by on-board sensors like IMU. If |t| is unknown, our method
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still applies but the depth result is measured in ratio instead of absolute value.

We also have the following conventions in notation. Let I and {I} be the image and

the image coordinate system (ICS) for the first view, respectively. I ′ and {I ′} are defined

similarly for the second view. The camera coordinate system (CCS) is right-handed, with

the origin C at the camera center, and Z-axis along the principal axis. With respect to the

CCS of the first view, we define,

• πm = (nT
m, dm)T as the mirror plane where nm is a 3 × 1 unit vector indicating the

normal of πm, and dm is the plane depth (i.e., the distance from C to πm),

• Xri as the i-th real 3D point and Xvi as its mirror reflection (a virtual point),

• xri and xvi as the projections of Xri and Xvi in {I}, respectively, and

• Xri ↔ Xvi as a 3D real-virtual (R-V) pair and xri ↔ xvi as a 2D R-V pair.

In the CCS of the second view, notations differ from their counterparts in the CCS of the

first view by adding a superscript ′, e.g. n′m, x′ri and x′vi. It is worth noting that there is a

new type of correspondence between the 2D R-V pairs in both views, which is denoted in

a quadruple format: Qi = {xri,xvi,x
′
ri,x

′
vi}.

Also, all the above notations about points are represented in homogeneous coordinates

while their inhomogeneous counterparts are denoted by adding a tilde on their top, e.g.,

x̃ri.

With assumptions and notations defined, our PMDP is,

Definition 4. Given two views I and I ′, the camera calibration matrix K and the camera

translation distance |t|, determine if there is a mirror. If so, estimate πm.
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6.3 Modeling

We begin with analyzing the geometric relationship between noise-free feature points.

The geometric relationship will be used in a RANSAC framework to filter noisy inputs

later. The noise-free feature inputs here are quadruples {Qi}. The geometric relationship

is constraints on quadruples induced by 3D reflection and the imaging process. As the

result, πm will be derived as a function of quadruples in two stages: orientation and depth.

First, we solve the mirror orientation using quadruples.

Lemma 6. Given two quadruples Qi and Qj , the mirror normal with respect to both CCSs

can be obtained as follows,

nm = K−1(xri × xvi)× (xrj × xvj),

n′m = K−1(x′ri × x′vi)× (x′rj × x′vj), (6.1)

where symbol ‘×’ represents the cross product.

Proof. Consider the geometry relationship in Fig. 6.1. As a convention, we define
←→
AB

as the line passing through points A and B. From the property of planar mirror reflection,

we have
←−−−→
XriXvi ⊥ πm,

←−−−→
XrjXvj ⊥ πm, and thus

←−−−→
XriXvi//

←−−−→
XrjXvj. After a projective

transformation, the projections of
←−−−→
XriXvi and

←−−−→
XrjXvj in {I} (or {I ′}) would intersect at

a vanishing point v (or v′) in the corresponding ICS,

(xri × xvi)× (xrj × xvj) = v

(x′ri × x′vi)× (x′rj × x′vj) = v′. (6.2)
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Figure 6.1: A perspective illustration of the geometry relationship between real-virtual
pairs across two views.

On the other hand, v can be viewed as the projection of nm in {I}

v = Knm, and similarly, v′ = Kn′m. (6.3)

Combining (6.2) and (6.3), we obtain (6.1).

The second step is to derive mirror depth dm. From epipolar geometry, we can ob-

tain the camera rotation matrix R and translation vector t by decomposing the essential

matrix [45]. A straightforward way of computing the equation of πm is by reconstructing

3D points via triangulation. However, we will show a homography based method which

avoids the triangulation process.

Our method involves the homography between the corresponding middle points of R-
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V pairs in two views. Let AB denote the line segment defined by points A and B in the

rest of this section. Denote the midpoint of XriXvi by Mi, and its projection in {I} by

mi (see Fig. 6.1 for examples). mi can be obtained using a cross ratio which is detailed in

the following lemma:

Lemma 7. Given quadruple Qi, the projection mi of the midpoint Mi of XriXvi is deter-

mined as follows,

m̃i = (1− a)x̃ri + ax̃vi, and a =
|xriv|

2|xriv| − |xrixvi|
, (6.4)

where | · | denotes the length of the line segment.

Proof. Consider the projection from
←−−−→
XriXvi to←−−→xrixvi. A basic invariant in this projection

is the cross ratio of the four collinear points Xri, Mi, Xvi, and V,

|xrimi||xviv|
|xrixvi||miv|

=
|XriMi||XviV|
|XriXvi||MiV|

=
1

2
. (6.5)

Representing mi as m̃i = (1 − a)x̃ri + ax̃vi, 0 ≤ a ≤ 1, in the inhomogeneous

coordinate, we have

|xrimi| = a|xrixvi|,

|miv| = |xriv| − a|xrixvi|. (6.6)

Substituting (6.6) into (6.5) gives the final result in (6.4).

We now can derive the mirror depth with mi.

Lemma 8. Given quadruple Qi and mirror normal nm, the mirror depth is

dm = ([m′i]×KRK−1mi)
†[m′i]×KtnT

mK−1mi (6.7)
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where (·)† denotes the pseudoinverse operation, and [m′i]× is a skew-symmetric matrix,


0 −m′i3 m′i2

m′i3 0 −m′i1

−m′i2 m′i1 0

 . (6.8)

Proof. Observe that Mi lies on the plane πm. Then mi and m′i must obey a homography

m′i = Hmi induced by πm, where H can be expressed as [45]

H = K(R− 1

dm
tnT

m)K−1 (6.9)

H has 1 degree of freedom (DOF) since only dm is unknown.

mi and m′i can be computed from Qi using (6.4). Since m′i = Hmi = K(R −
1
dm

tnT
m)K−1mi, we have

m′i ×K(R− 1

dm
tnT

m)K−1mi

=[m′i]×KRK−1mi − [m′i]×K
1

dm
tnT

mK−1mi = 0

Then we have

[m′i]×KRK−1midm = [m′i]×KtnT
mK−1mi

The above system of equations is over-determined since the rank of [m′i]× is 2. Thus, the

least-square solution of dm is given by (6.7), which is also an exact solution when the

system is noise-free.

98



6.4 Algorithm

Section 6.3 provides geometric relationship for noise-free quadruples. To complete

the algorithm, we need to select correct feature transformation and verify the geometric

relationship with respect to noisy features using the well-accepted RANSAC framework.

First, let us detail the feature detection method selection in quadruple extraction.

6.4.1 Quadruple Extraction

To form a quadruple, we need two kinds of point correspondences: cross-view corre-

spondence, e.g. xri ↔ x′ri, and R-V pair correspondence, e.g. xri ↔ xvi. The former can

be handled by standard feature extraction methods, such as SIFT, as long as the perspec-

tive change is not significant. However, the latter is nontrivial because xri ↔ xvi involves

an improper transformation in 3D (between Xri and Xvi).

Therefore, the key to this problem is how to find features and their correspondence

under the improper transformation. We need to convert the reflection to a rigid body trans-

formation such that existing feature extraction and matching algorithms can be employed.

The intuition of our approach comes from a special scenario when a secondary mirror πs is

placed in the same plane as πm but in the opposite orientation. Letting Xsi be the result of

Xri after a consecutive reflection about πm and πs, it is clear that Xsi is exactly the same

point as Xri, which makes matching their projections in image a trivial problem.

In fact, it is proved that two consecutive reflections lead to a rigid body transformation

regardless of the mirror configuration [123]. Therefore, the position of πs can be arbitrarily

chosen. The remaining problem is that introducing the secondary mirror in 3D is difficult

to implement because it requires the 3D positions of points to perform the secondary re-

flection, which is not viable. Fortunately, a special group of πs allows the 3D reflection to

be reduced to 2D image flipping about an arbitrary axis in the ICS, which is independent

of point positions.
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Lemma 9. If πs contains the camera principal axis, then for any Xsi, its projection xsi

can be obtained by flipping xvi about an axis in the ICS.

Proof. Denote πI as the image plane as illustrated in Fig. 6.2.

Since it contains the principal axis (i.e. the Z-axis), πs can be expressed as (nT
s , 0)T

where ns = (nx, ny, 0)T. Since Xvi and Xsi are symmetrical about πs, we have

Xsi = TXvi, (6.10)

rigid body motion

xsi

xri

Xvi

Xri

Xsi

xvi

Iπ

α

mπ

sπ

C

Figure 6.2: The configuration of πI , πs, and πm. πs is placed to contain the camera
principal axis.
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where

T =

I3 − 2nsn
T
s 0

0 1

 .
Moreover, we have the projection relationship

xvi = PXvi, xsi = PXsi, (6.11)

where P = [K|0] is the projection matrix.

Combining (6.10) and (6.11) gives

xsi = PTP†xvi (6.12)

=

I2 − 2ns1:2n
T
s1:2 0

0 1

xvi,

where P† is the pseudo-inverse of P and ns1:2 = (nx, ny)
T.

Eq. (6.12) implies that xvi and xsi are symmetrical about an axis with a normal ns1:2,

which is actually the intersection of πI and πs. This completes the proof.

Lemma 9 allows us to find the correspondence between xri ↔ xsi instead of that of

xri ↔ xvi. Furthermore, the axis of flipping can be arbitrarily chosen because there is

only a planar rotation difference between the resulting images with different flipping axes.

Although the image flipping process solves the improper transformation issue, it also

introduces a new challenge for feature matching. The problem is that the rotation angle θ

of the resulting rigid body motion (between Xri and Xsi) is as large as two times of the

angle α between the principal axis and πm [123] (see Fig. 6.2). Therefore, as the value
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of θ varies with α in different cases, it can easily lead to a significant perspective change

which often fails the standard SIFT algorithm.

To handle this problem, we employ an affine invariant feature extraction algorithm

ASIFT which has advantages over SIFT when dealing with large perspective changes.

Once a correspondence xri ↔ xsi is identified, the R-V pair xri ↔ xvi is readily estab-

lished based on the known mapping between xvi and xsi. Algorithm 6.1 summarizes how

quadruples are constructed.

Algorithm 6.1: ASIFT-based Quadruple Extraction
Input : Two images I and I ′

Output: A set of quadruples {Qk}
1 flip I left-right (or up-down) to get If ;
2 find matches {xri ↔ xsi} between I and If using ASIFT;
3 map xsi in If back to xvi in I to establish R-V correspondences {xri ↔ xvi};
4 apply steps 1-3 to I ′ to obtain {x′rj ↔ x′vj};
5 find cross-view matches {xrk ↔ x′rk} from between {xri ↔ xvi} and {x′rj ↔ x′vj}

using putative matching of ASIFT;
6 construct quadruples {Qk} from {xri ↔ xvi} and {x′rj ↔ x′vj} according to
{xrk ↔ x′rk};

7 return {Qk};

6.4.2 Maximum Likelihood Estimation

To apply RANSAC framework, we need to estimate nm, n′m and dm using the quadru-

ples {Qi} from the inlier set by minimizing a cost function. Assuming measurement

errors are Gaussian, then the estimation is MLE if reprojection error is employed as the

cost function. Let us derive this metric.

For Qi, let Xi = (x̃ri, ỹri, x̃vi, ỹvi, x̃
′
ri, ỹ

′
ri, x̃

′
vi, ỹ

′
vi)

T be a 8-vector formed by concate-

nating the inhomogeneous coordinates of xri,xvi,x
′
ri and x′vi. Given points Xi in the
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measurement space R8, the task of estimating nm, n′m and dm becomes finding a variety

that passes through the points Xi in R8 . Because of noise, it is impossible to fit a variety

exactly. In this case, let V be the variety corresponding to nm, n′m and dm, and let X̂i be

the closest point to Xi lying on V .

Given nm, n′m and dm, define

CV(X̂i) :=


(x̂ri × x̂vi)

TKnm

(x̂′ri × x̂′vi)
TKn′m

m̂′i × Hm̂i

 ,

where H, m̂i and m̂′i are intermediate variables computed using (6.9) and (6.4), respec-

tively, and x̂ri = (̂̃xri, ̂̃yri, 1)T, and similarly for x̂vi,x̂′ri and x̂′vi. Then the MLE method is

to find nm, n′m, dm and X̂i that minimize the error function

∑
i

‖Xi − X̂i‖2
Σi
, (6.13)

subject to CV(X̂i) = 0,∀i, where Σi is the covariance of Xi, and ‖ · ‖Σ represents the

Mahalanobis distance.

Although minimizing the reprojection error is MLE, it involves solving a high-dimensional

non-linear optimization problem, which is quite complex and time-consuming. To speed

up the algorithm, we derive Sampson error approximation. Instead of finding the closest

point X̂i on the variety V to the measurement Xi, the Sampson error function estimates

a first-order approximation to X̂i. For given nm, n′m and dm, any point Xi lying on V

will satisfy CV(Xi) = 0. Then the Sampson approximation to (6.13) is
∑

i ε
T
i (JiΣiJ

T
i )−1εi

where εi = CV(Xi) and Ji = ∂CV
∂Xi .
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Algorithm 6.2: Robust Mirror Estimation using RANSAC
Input : Two images I and I ′

Output: Mirror plane πm or no mirror

1 obtain a set S of quadruples using Algorithm 6.1;
2 N =∞;
3 for k ← 1 to N do
4 randomly sample 2 quadruples from S;
5 compute n

(k)
m , n′(k)

m and d(k)
m using (6.1) and (6.7);

6 Ik = ∅ ; // initialize inlier set
7 for Qi ∈ S do
8 Di =

√
εTi (JiΣiJT

i )−1εi;
9 if |Di| < τd then

10 Ik = Ik ∪Qi;

11 update N using (4.18) from [45] (Page 119);

12 k? = arg maxk |Ik|;
13 I ? = Ik?;
14 if |I ?| < τn then
15 return no mirror;

16 else
17 re-estimate nm, n′m and dm with I ? by minimizing Sampson error using the

Levenberg-Marquardt algorithm;
18 (guided matching): find correspondence inliers consistent with the optimal

estimation;
19 return πm;
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6.4.3 Applying RANSAC Framework

We are now ready to apply the RANSAC to the set S of quadruples to estimate πm.

The whole algorithm is summarized in Algorithm 6.2. There are two thresholds used:

inlier-outlier threshold τd and mirror detection threshold τn. Threshold τd in step 9 is

used to determine whether the quadruple belongs to the current inlier set. τd is chosen

based on 8 DOFs of the decision variables. With a preset probability threshold of 0.95,

τd =
√

15.51σ2 according to [45] where σ is the standard deviation of the measurement

error for feature points. The algorithm returns “no mirror” when the size of maximum

inlier set is smaller than τn (Step 15). τn will be determined experimentally through in-lab

tests in Section 6.5.1. In step 11, the maximum sample iteration N is chosen adaptively

(Page 119 of [45]). Steps 17 and 18 of Algorithm 6.2 can be iterated until the number of

correspondence inliers is stable.

6.5 Experiments

We have implemented the proposed algorithm using Matlab under a Windows 7 oper-

ating system. For the ASIFT algorithm, we use the open source implementation in [139].

Images are taken by a pre-calibrated Vivicam 7020 camera with a resolution of 640× 480

pixels. We first test the algorithms in our lab to determine the algorithm accuracy under the

controlled settings and to determine the proper threshold before the extensive field tests.

6.5.1 In-lab Tests

Fig. 6.3(a) illustrates the setup of in-lab tests. Define α as the angle between the camera

optical axis and the mirror plane πm. This is usually the robot approaching angle towards

the mirror plane. It is important to know how α affects the estimation accuracy of πm for

the collision avoidance purpose. Data are collected in 6 different α values ranging from

5◦ to 60◦. Scene structure is kept to be the same during the test (see Fig. 6.3(b)) with
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(a)
View 1 (α = 25.0°)

(b)

Figure 6.3: In-lab experiment setup. (a) Experiment configurations. (b) A sample view.

abundant features. The baseline distances between the first and second views are 25.4cm

while maintaining the same optical axis. Ground truth data are obtained using physical

measurements.

Fig. 6.4 illustrates that both angular errors of mirror plane normal and relative depth
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Figure 6.4: The accuracy of estimated mirror plane with respect to α values. (a) Angular
error of the mirror normal. (b) Relative depth error for the mirror plane. The vertical
bar and the middle cross represent the one standard deviation range and sample mean,
respectively.
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errors are reasonably small under different α values. Note that 100 trials have been carried

out for each α setting. The results are desirable because errors are not sensitive to α

values. Note that we have not performed experiments for cases with large angle values

(i.e. α > 60◦). At large angles, the camera/robot almost faces the mirror directly. Since

a regular camera has a horizontal field of view larger than 55◦, the robot can see itself

in the mirror. For such cases, the problem becomes trivial because it is reduced to self-

appearance-based mirror detection, which is less challenging.

The second experiment is to explore the relationship between the quadruple inlier num-

ber and the estimation accuracy and hence determine threshold τn in Algorithm 6.2. We

use the same data set from the first experiment. For every pair of images, the mirror pa-

rameters are computed each time as the number of quadruple inliers is changed through

incrementally adjusting the ASIFT feature detection threshold. Then we group the esti-

mation results according to their corresponding quadruple inlier numbers and compare the

estimation error across groups. The results are shown in Fig. 6.5. As expected, the stan-
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Figure 6.5: The mean and standard deviation plot of mirror plane parameters vs. number
of quadruple inliers. (a) Angular error of the mirror normal. (b) Relative depth error for
the mirror plane. The vertical bar represents one standard deviation range.
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dard deviation of estimation generally decreases as the quadruple inlier number increases.

When the quadruple inlier number drops below 6, the estimation accuracy becomes un-

trustable due to its large standard deviation. Hence we set τn = 6 for our field tests.

6.5.2 Field Tests

We have tested our algorithm in the field. A data set of 100 pairs of images are collected

from real world scenes with or without mirrored walls, such as gymnasiums, corridors,

campus, and shopping malls (see Fig.6.6). In the data set, 50% of the image pairs contain

mirrored walls such as wall mirrors, window glasses, and water surfaces.

1 2 3 4

5 6 7 8

9 10 11 12

Figure 6.6: Sample images from the data set.

Table 6.1: FIELD TEST RESULTS

Predicted
Positive Negative

Actual
Positive 45 5
Negative 4 46
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The detection result is presented in a confusion matrix in Table 6.1, where “Positive”

indicates the existence of mirrored walls. In the confusion matrix, true positive rate and

true negative rate are both high, indicating desirable recognition ability. The false positive

cases are typically caused by objects with strong symmetric appearances, e.g., sample

image 12 in Fig. 6.6. The false negative cases are mainly due to lack of features in the

scene. The overall detection accuracy is 91.0%.

6.6 Conclusions

We addressed PMDP using two views from an on-board camera. First, we derived

geometric constraints for corresponding real-virtual features across two views. Based on

the geometric constraints, we employed RANSAC framework and ASIFT to develop a

robust mirror detection algorithm. We implemented the algorithm and tested it under both

in-lab and field settings. The algorithm has achieved an overall accuracy of 91.0%.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

Navigation is a fundamental problem in mobile robotics as a combination of localiza-

tion, mapping, motion planning and obstacle avoidance. In particular, SLAM is the key

to truly autonomous navigation. Visual navigation is an attractive alternative to traditional

range sensor-based approaches because cameras are low-cost, lightweight and able to cap-

ture rich environmental information. In visual SLAM, the major challenges arise form

the robustness against lighting variations and uneven feature distribution. Meanwhile,

mapping with semantic landmarks is highly desirable but far from being solved. In this

dissertation, we have focused on visual SLAM in urban and indoor environments, where

we fuse multiple types of visual features to meet the challenges.

We proposed a new data structure MFG to organize heterogeneous landmarks, and an-

alyzed the error propagation in a two view-based MFG construction algorithm. In the first

work, our method constructed a sequence of two view-based MFGs from sequential input

images, and produced facade pose estimation using EKF. The method has the advantage

of being able to detect, track, and estimate 3D planes from sequential images in an on-line

manner. The limitation is that MFG construction requires sufficient baselines between two

views, which does not always hold.

In our second work, we devised a multiple view based MFG construction algorithm

to overcome the aforementioned limitation. The new algorithm took a video stream as

input, iteratively selected key frames and refined robot locations and 3D map using bun-

dle adjustment. This advantages include 1) it does not require large baseline, and 2) the

localization and mapping accuracy is improved due to the bundle adjustment framework.

On the KITTI dataset our method reduced the translational error by 52.5% under urban
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scenarios, compared to state-of-the-art algorithms.

In the third work, we proposed a new approach for RGB-D SLAM to improve its ro-

bustness to lighting variation. The method extracted 3D points and lines from each RGB-D

frame and analyzed their measurement uncertainties, which enabled maximum likelihood

estimation of relative camera motion between two frames. The advantages include 1) the

resulted motion has smaller estimation uncertainties and 2) the robustness against lighting

change is superior. We demonstrated the advantages through both uncertainty analysis and

physical experiments.

Besides visual SLAM, we also studied a special case of obstacle avoidance. Our

method took two images as input and decided whether planar mirrors exist in the scene by

checking geometric constraints between visual feature correspondences. The advantage

of this method is that it can detect specular objects which easily fail range sensors. The

limitation is that it produces false positive when symmetric objects exist.

To conclude, we have investigated feature fusion approaches to enhance visual SLAM

accuracy and robustness. We designed novel data structure and algorithms to fuse hetero-

geneous features, using both regular and RGB-D cameras. The superiority of our feature

fusion approaches was demonstrated on challenging urban and indoor datasets by compar-

ing with state-of-the-art methods.

7.2 Future Work

Our work is just an initial step towards heterogeneous and high-level landmark based

visual navigation. The following directions can be explored in the future.

• Appearance information. Image/video segmentation results contain rich scene struc-

ture information, which, if properly incorporated in MFG construction process,

would help feature matching and plane boundary detection.

• Acceleration. To make MFG based SLAM run in real time, the construction algo-
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rithm should be parallelized. For example, the extraction of different feature types

can be conducted in parallel.

• Sensor fusion. The current MFG is essentially a visual feature fusion framework.

In extreme scenarios where visual features are absent, sensor fusion is necessary for

robust navigation. For example, IMU can be used in combination with cameras.

• Place recognition. MFG can be applied to place recognition. This requires us to

develop a matching algorithm that can match the heterogeneous features in MFG

while taking their geometric constraints into account. The resulting matching should

be more robust to perspective and lighting changes.

• RGB-D SLAM. Our current RGB-D SLAM algorithm only computes pairwise mo-

tion. In future, pose graph optimization or local bundle adjustment techniques can

be added to our system for improving accuracy. Moreover, planes can also be fused

with points and lines to generate a richer map.
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