
A PRE-SEARCH ASSISTED ILP APPROACH TO ANALOG INTEGRATED

CIRCUIT ROUTING

A Thesis

by

CHIA-YU WU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jiang Hu
Committee Members, Peng Li

Anxiao Jiang
Head of Department, Miroslav M. Begovic

August 2015

Major Subject: Computer Engineering

Copyright 2015 Chia-Yu Wu

ABSTRACT

The routing of analog integrated circuits (IC) has long been a challenge due to

numerous constraints (such as symmetry and topology-matching) that matter for

overall circuit performance. Existing automatic analog IC routing algorithms can

be broadly categorized into two approaches: sequential approach that heuristically

routes one net after another and constructive ILP (Integer Linear Programming).

The former approach is usually fast but may miss opportunities of finding good

solutions. The constructive ILP provides optimal solutions but can be very time

consuming. We propose a simple yet efficient method that combines the advantages

of both existing approaches. First, sequential routing is performed to obtain a set

of candidate routing paths for each net. Then, an ILP is applied to commit each

net to only one of its candidate routes. Experiments on two op-amp designs show

that the post-layout performance (such as gain and phase margin) from our method

is close to that of manual design. Our method also outperforms a previous work of

automated analog IC routing.

ii

DEDICATION

To my family

iii

ACKNOWLEDGEMENTS

I would like to thank all those who encouraged me and helped me during my study

and research at Texas A&M University. Firstly, I would like to give my heartfelt

gratitude to my advisor, Dr. Jiang Hu, who gave me constant guidance as well

as warm encouragement throughout this research project. He was always patient,

kind and helpful whenever I had questions on my academic life. I could not have

completed this thesis and know this wondrous physical design without his guidance

and generous support. I also would like to thank Dr. Peng Li and Dr. Anxiao

Jiang for being my committee members, and for their suggestions on this research.

Especially, I would like to thank my family for their ceaseless support, encouragement

and endless love. Without which I would never able to complete my master degree so

smoothly. Last but not least, thanks to all my friends and colleagues who accompany

with me these years, and also the department faculty and staff for giving me a warm

and kind environment during my life at Texas A&M University.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vi

LIST OF TABLES . vii

1. INTRODUCTION . 1

1.1 Physical Layout Design in Analog Circuit 1
1.2 Previous Works . 1
1.3 Our Contributions . 3
1.4 Overview . 4

2. PRELIMINARIES . 5

2.1 Problem Formulation . 5
2.2 Assumptions . 5
2.3 Routing Constraints . 7
2.4 Fast Lookup Table Based Technique (FLUTE) 9
2.5 Bend-aware A* Search Algorithm . 9

3. THE NEW ANALOG IC ROUTING APPROACH 12

3.1 Candidate Routes Generation . 12
3.2 Candidate Refinement and Annotation 15
3.3 Integer Linear Programming (ILP) Formulation 19

4. EXPERIMENTAL RESULTS . 22

5. CONCLUSION . 28

REFERENCES . 29

v

LIST OF FIGURES

FIGURE Page

1.1 (a) Weakness of sequentail routing. (b) Simultaneous routing can
eliminate the weakness. 3

2.1 (a) Assumption 1: wire cannot overlap with active area indicated by
dashed red rectangles. (b) An exception to Assumption 1. 6

2.2 Examples of guard rings around the devices. 6

2.3 Examples of analog circuit routing constraints: (a) symmetry con-
straint; (b) topology-matching constraint; (c) bend-matching con-
straint; (d) orientation-matching constraint; (e) wirelength-matching
constraint; (f) width constraint. 8

3.1 Overview of the new routing approach. 13

3.2 Steiner nodes need to be moved out of active area to follow Assumption
1: (a) against the symmetry axis; (b) along the symmetry axis. . . . 15

3.3 Mirroring to obtain symmetric route: (a) successful mirroring; (b)
failed mirroring. 17

3.4 Mirroring and shifting to obtain topology-matched route. 18

3.5 Grouping candidate routes with orientation-matching constraint. . . . 19

4.1 Comparison of DC gain and unity gain bandwidth for OP2. 24

4.2 Comparison of phase margin for OP2. 25

4.3 Layout of OP2. 27

vi

LIST OF TABLES

TABLE Page

3.1 Commands for the constraints. 17

4.1 Statistics of testcase OP1 and OP2 22

4.2 Comparison of DC gain, unity gain bandwidth, and phase margin
between [6] and our approach for OP1. 23

4.3 Comparison of DC gain, unity gain bandwidth, and phase margin
between [6] and our approach for OP2. 23

4.4 Comparison of runtime between [6] and our approach. 24

4.5 Runtime analysis of the number of candidate routes for OP2. 25

4.6 Number of variables and constraints impact of the number of candi-
date routes for OP2. 26

vii

1. INTRODUCTION

1.1 Physical Layout Design in Analog Circuit

Nowadays, analog integrated circuits (IC) design is still mostly a manual process,

which is typically very time consuming. A key reason is that it involves a large

amount of constraints, which are hard to capture, and makes automated design

tools very difficult to be competitive. Routing of analog IC is no exception. Unlike

digital IC routing, where the constraints are mostly restricted to spacing and capac-

ity, analog routing additionally entails constraints of symmetry, topology-matching,

wirelength-matching, etc. These constraints are vital for obtaining a desired ana-

log circuit performance, such as gain, phase margin and linearity. Simultaneously

satisfying these constraints has been a challenge for automated software tools.

1.2 Previous Works

People have been trying hard to develop analog IC routing algorithms. Most of

the previous works can be viewed from two perspectives:

(i) What constraints do they follow?

(ii) What routing methodology do they use?

To answer the first question, satisfying matching constraints is a very important

to achieve the best analog IC performance. Most of the previous works focus on

symmetry constraints [1, 2], exact-matching [3], wirelength-matching constraints

[1, 4], and topology-matching constraints [1, 3]. Symmetry constraints and topology-

matching constrains are two most major constraints to reduce the parasitic effects.

However, it is not easy to satisfy these constraints due to the resource-consuming

1

process. For the less restricted nets, wirelength-matching will achieve a reasonably

good performance. More detail about matching constraints will be elaborated in

Section 2.3

From the viewpoint of routing methodology, most of previous work [5, 6] is based

on sequential routing. That is, the signal nets are routed one after another [5]. Each

two-pin net is usually routed with maze routing algorithm [5]. By properly defining

edge cost in the routing graph, the sequential maze routing can satisfy parasitic and

performance sensitivity constraints. For two nets with symmetry constraints, one

is routed and the other is obtained by mirroring the first net routing. In order to

avoid spatial contention with other nets, nets with symmetry constraints are routed

with higher priority. Multi-pin nets can be routed with rectilinear Steiner trees.

Sometimes, the Steiner trees are further decomposed into two-pin nets. A survey of

analog routing works is provided in [5].

In sequential routing, the decision for routing a net is based on the space occu-

pation of previously routed nets and pays no attention to nets to be routed later.

Among multiple equally good routes for a net itself, the router may inadvertently

choose one that hinders the subsequent routing. Figure 1.1 show an example that

sequential routing cannot find a feasible solution. In [7], this weakness is mitigated

by rip-up and reroute. However, the rerouting of a net is based on the routing of the

other nets, which might be poor in the first place. Another work in [8] improved the

weakness of sequential routing by generating candidate routes firstly and then se-

lect from candidate routes to construct a feasible solution. However, the mechanism

for selecting the candidate routes is a greedy heuristic, which may result in inferior

solutions. A more radical solution is ILP (Integer Linear Programming) [1], which

is able to eliminate the weakness of sequential routing. In the ILP approach [1],

which we term as constructive ILP, the 0-1 decision variables tell if to assign an edge

2

in the routing graph to a net. Besides typical layout constraints, the constructive

ILP entails additional constraints to ensure that the edges assigned to a net form

a legitimate route. The constructive ILP is generally very time consuming and has

poor scalability.

Figure 1.1: (a) Weakness of sequentail routing. (b) Simultaneous routing can elimi-
nate the weakness.

1.3 Our Contributions

In this paper, we introduce a simple yet efficient approach that attempts to

achieve the high routing quality of the constructive ILP and the runtime of sequential

routing. The main idea is to first generate multiple candidate routes for each net

independently considering various constraints. In the second phase, we use ILP,

which we call pre-search assisted ILP, to choose only one route among the candidate

routes for each net such that spatial contentions and crosstalk issues are solved.

Compared to the constructive ILP, the pre-search assisted ILP avoids the constraints

for legitimate paths and has much less decision variables as the solution space has

3

already been narrowed down. Overall, our approach is faster than the constructive

ILP and often finds better solutions than sequential routing. A similar idea was

explored in [8]. However, its selection procedure is a greedy heuristic, which may

result in inferior solutions. The contributions of our work include:

• We propose a new ILP-based analog routing algorithm which simultaneously

considers constraints of symmetry, topology-matching, bend-matching, orientation-

matching, wirelength-matching and wire parasitic. To the best of our knowl-

edge, this is the first work that handles all of these constraints at the same

time.

• The pre-search has a large flexibility to incorporate designer’s intentions as it

can be performed on different routing grids and can even be obtained manually.

This is another advantage of our approach over the constructive ILP.

Our method is tested on two op-amp designs. The post-layout performance (such

as gain and phase margin) is near to manual layout designs, while our approach takes

only a couple of minutes compared to hours that a manual design may take. We also

compared with a previous work [6]. In one case, both [6] and our approach result

in similar solution. In the other case, our method finds a solution close to manual

design while [6] fails to find a feasible solution.

1.4 Overview

The remainder of this thesis is organized as follows. Chapter 2 is to introduce the

background knowledge, assumptions, and problem formulation. Chapter 3 introduces

our Pre-search Assisted ILP Approach to Analog Integrated Circuit Routing and the

detailed implementation. Chapter 4 shows our experimental results. Chapter 5

concludes this thesis.

4

2. PRELIMINARIES

2.1 Problem Formulation

The analog IC routing problem can be defined as:

Given an analog circuit design composed by a set of placed device modules M =

{M1,M2, ...}, a set of nets N = {N1, N2, ...}, a routing grid G = (V,E) where V is

a set of nodes and E is a set of routing edges, connect all pins of each net through a

wiring tree on G such that a linear combination of total wirelength and total number

of wiring bends is minimized subject to a set of constraints, which are elaborated in

the next section.

2.2 Assumptions

In this work, we follow the usual assumptions of analog IC layouts.

• Assumption 1: In order to reduce crosstalk between different signal wires

and transistors, we follow the convention [6] that wires are not allowed to go

above the active area of transistors. In other words, the active area of devices

should be considered as routing blockages. This is illustrated in Figure 2.1(a).

• Assumption 2: This is the exception to Assumption 1. If a connection in a

net is between the source and drain of the same active area, the connection can

be implemented by wires routed above the active area. Since the connection

is usually the shortest possible, we assume it is done as such without further

being considered in the routing algorithm. This is illustrated in Figure 2.1(b).

• Assumption 3: Designers usually put guard rings around devices to shield

noises. Guard rings provide well voltage by connecting with VSS and VDD

signals, which are assumed to be routed on metal 1. (See Figure 2.2)

5

Figure 2.1: (a) Assumption 1: wire cannot overlap with active area indicated by
dashed red rectangles. (b) An exception to Assumption 1.

Figure 2.2: Examples of guard rings around the devices.

• Assumption 4: If a device has multiple fingers in layout, there must be two

access pins for its poly. In other words, the multi-finger poly has two pins for

its signal net. This is to improve signal conductivity for transistors.

6

2.3 Routing Constraints

Layout is the blueprint of planar geometric shapes that are used to create photo-

lithography masks for an IC in a specific fabrication technology. Therefore, analog

IC routing constraints can be described by geometric forms, for example, length,

width, distance, spacing between wires, etc.

The most fundamental constraints are due to layout design rules, which are to

ensure manufacturability. These rules are required for digital circuits as well and

are incorporated in the routing grid G = (V,E). In the routing algorithm, the

constraints are then simplified to routing capacity constraints. That is, at most one

wire segment can be routed on each edge e ∈ E.

Another set of constraints arises from parasitic-dependent performance require-

ment in analog circuits. Although the performance of digital circuits also depends

on layout parasitic, the performance-parasitic dependence in analog circuit is usu-

ally more complicated. To facilitate analog circuit performance, one often needs to

restrict wire resistance/capacitance, the number of vias and coupling capacitance

between adjacent wires.

Some constraints are specific to analog circuits, for instance, symmetry con-

straints. Some analog circuit components, such as differential pairs, are composed of

two structurally symmetric parts. The layout for the two parts needs to be symmetric

as well. When variations (like process and thermal variations) are significant, they

tend to manifest in the same way in two symmetric parts and cancel out each other in

the overall effect. Given one route of a signal, its symmetrical route can be obtained

by flipping the given route around the layout symmetry axis. Topology-matching

constraints are very similar to symmetry constraints. To obtain a topology-matching

route for a given route, one needs to perform shifting operations in addition to flip-

7

ping. Other constraints include bend-matching, orientation-matching, wirelength-

matching. All of these analog-specific constraints are illustrated in Figure 2.3.

Figure 2.3: Examples of analog circuit routing constraints: (a) symmetry constraint;
(b) topology-matching constraint; (c) bend-matching constraint; (d) orientation-
matching constraint; (e) wirelength-matching constraint; (f) width constraint.

In addition, there are reliability constraints. For example, wire width has a min-

imum bound to reduce the risk of electromigration [9].

Altogether, analog IC routing constraints are much more complicated than those

in digital circuits, especially the symmetry and topology-matching constraints. To

help the description of our algorithm techniques, we categorize the constraints into

two types:

• Single-net constraints: These are the constraints that can be specified for

each net individually, such as wire length, wire width and the number of bends.

• Multi-net constraints: These are the constraints that involve interactions

among multiple nets, such as symmetry, topology-matching and coupling ca-

pacitance constraints.

These two types of constraints will be enforced in different stages of our algorithm.

8

2.4 Fast Lookup Table Based Technique (FLUTE)

In our work, we adopt FLUTE [10] algorithm to generate the Rectilinear Steiner

Minimal Tree for the high-degree-nets. The FLUTE is based on pre-computed lookup

table to generate minimum spanning tree very fast and very accurate. For low-degree

nets less than 9 nets, the set of all degree-n nets can be partitioned into n! groups

according to the relative positions of their pins. For the nets with higher than 9

degree, FLUTE broke the nets into several sub-nets with degree ranging from 2 to

9 to avoid huge CPU time and memory requirement. FLUTE helps separate the

multi-pin nets into sets of two-pin nets for every nets with the Steiner points.

2.5 Bend-aware A* Search Algorithm

In analog circuits, designers try to reduce number of bend and number of bends

(or vias) as much as possible for better performance. We propose a Bend-aware A*

search algorithm and it properly perform this convention as well. It is modified based

on a well-known variant of Dijkstra’s shortest path algorithm called A* search. The

pseudo code for the Bend-aware A* search is provided in Algorithm 1.

The notations in Algorithms 1:

• Sopen : the set of nodes to be determined

• Sclosed : the set of nodes to be determined

• vc : current determined node

• costcurrent(v) : current cost of the node v

• Neighbors(v) : neighbors of the node v

• came from(v) : came from of the node v

9

Algorithm 1 Algorithm of A* search

Input: Routing grid G = (V,E)
Source node vs
Target node vt

Output: A minimum αw(p) + βb(p) routes p
1: for each vi ∈ G do
2: came from(vi)← 0
3: costcurrent(vi)← 0
4: end for
5: Sclosed ← ∅
6: Sopen ← {vs}
7: while Sopen 6= ∅ do
8: vc ← the highest priority node in Sopen

9: if vc = vt then
10: construct path p
11: return p
12: end if
13: Sopen ← Sopen − {vc}
14: Sclosed ← Sclosed ∪ {vc}
15: for each vi ∈ Neighbors(vc) do
16: costnew(vi)← costcurrent(vc) + fcost(vc, vi)
17: if vi /∈ Sclosed then
18: continue
19: end if
20: if vi /∈ Sopen or costnew < costcurrent(vi) then
21: costcurrent(vi)← costnew(vi)
22: priority(vi)← costcurrent + fremain cost(vc, vt)
23: Sopen ← Sopen ∪ {vi}
24: came from(vi)← vc
25: end if
26: end for
27: end while

10

• priority(v) : priority of the node v

The difference between A* search algorithm and the Bend-aware A* search algo-

rithm is the method to determine the cost value of the nodes. The basic A* search

algorithm just uses the actual edge cost from the start and it is not enough to gen-

erate path with minimum number of bends. We addressed the direction of node into

the cost function with two customized constants α and β. While updating the cost

of the neighbors for current determined node(step 16), the direction that current

determined node vc came from has been stored in came from(vc) already at the

previous iteration. The cost function is trade-off the turning to edge cost. Thus,

the priority in Sopen is based on the actual edge cost from the source, the estimated

edge cost to the target, and the weighted number of bends. The path bend-aware

A* found will be the minimum αw(p) + βb(p) route.

11

3. THE NEW ANALOG IC ROUTING APPROACH

Our main idea is to generate a set of candidate routes for each net and then

perform ILP (Integer Linear Programming) to commit each net to only one of its

candidate routes. Sequential routing is fast but poor at handling interactions among

multiple nets. In contrast, ILP is good at handling interactions among nets but is

slow. Our approach attempts to combine the advantages of both techniques. The

candidate routes generation is focused on constructing high quality routes for in-

dividual nets and considering single-net constraints. Unlike the ILP in [1], which

takes care of the complete routing procedure, our ILP emphasizes only on the in-

teractions among nets and multi-net constraints such that its computing load is

remarkably reduced. A similar approach has been applied in networks-on-chip rout-

ing [11]. However, our situation is more complicated than that in [11]. Between the

candidate routes generation and ILP route selection, we need to have another stage

of candidate refinement and annotation. This is to process the candidate routes for

generating appropriate constraints for the ILP. For example, it can pair up routes

that satisfy bend-matching constraint. An overview of our approach is provided in

Figure 3.1. The details of each stage are elaborated in subsequent sections.

3.1 Candidate Routes Generation

For each net Ni ∈ N , we wish to find a set of candidate routes, which can be

selected by the ILP. This stage boils down to three sub-problems:

(i) How many candidate routes do we need?

(ii) What kind of candidate route do we prefer?

(iii) How to generate desired candidate routes?

12

Figure 3.1: Overview of the new routing approach.

The first sub-problem is a matter of trade-off between solution quality and run-

time. If we find all possible routes as candidates, our approach would lead to the

optimal solution. If the number of candidate routes is too small, e.g., only one can-

didate route per net in the extreme case, the ILP would mostly fail to find a feasible

solution. Evidently, runtime cost increases proportionally with the number of can-

didate routes to be generated. There are two ways to address the trade-off. The

first is to empirically find a number that is large enough to obtain good solutions yet

its resulting runtime is practical. The second is to start with a small number and

then incrementally add new candidates based on the feedback from ILP results (see

Figure 3.1).

The second sub-problem involves two parts: (a) a candidate route should fulfill

the objective function and single-net constraints; (b) the candidate routes for a net

13

should have a good chance for avoiding contention with other nets in the ILP. Part (a)

can be achieved by generating candidate routes with short wirlength, small number of

bends, limited parasitic, etc. In order to address (b), we take care that the candidate

routes are diversified.

Our approach has three key elements to solve the third sub-problem with consid-

eration of (a) and (b) in the second sub-problem.

1. We decompose each multi-pin netNi into a set of two-pin netsNi = {Ni,1, Ni,2, ...}

using FLUTE [10], which is a rectilinear Steiner minimum tree software, as

directly generating diversified multi-pin routes is difficult. Actually, such de-

composition is fairly common in many routing works.

2. For each two-pin net, we propose bend-aware A* search (mentioned in Sec-

tion 2.4) to generate routes with small wirelength and small number of bends.

3. In the routing grid G = (V,E), if an edge e ∈ E has already been used by a

candidate route for net Ni,j, we increment its edge cost with a small amount.

This edge cost increase discourages this edge to be used again in later candidate

routes generation for Ni,j. Consequently, later candidate routes tend to be new

routes and thereby candidate routes are diversified.

Our analog IC routing has additional complexities compared to usual routing

works. To follow the Assumption 1 in Section 2.2, we need to move Steiner nodes

out of active area after the net decomposition. There are multiple options for such

moving and therefore we keep multiple candidate Steiner nodes. This is illustrated

by an example in Figure 3.2.

Conventional two-pin net routing is often done by A* search for short wirelength

and avoiding congestion provided that routing edge cost is proportional to congestion.

14

Figure 3.2: Steiner nodes need to be moved out of active area to follow Assumption
1: (a) against the symmetry axis; (b) along the symmetry axis.

In analog IC routing, we also need to restrict the number of bends (or vias). Thus,

we modify the A* search by minimizing αw(p) + βb(p) mentioned in Section 2.4,

where w(p) and b(p) are the total edge cost and number of bends along path p on

the routing grid. Two constants α and β are determined for the trade-off of edge

cost and number of bends. In practice, we choose β > α to emphasize more on bend

minimization considering that the routing grid G is a fine-grained grid.

The pseudo code for the candidate generation is provided in Algorithm 2.

3.2 Candidate Refinement and Annotation

The candidate routes obtained as described in Section 3.1 are not immediately

ready for the ILP to use. The candidate routes may not include routes that satisfy

symmetry or topology-matching constraints for a pair of nets. Routes from different

nets need to be annotated if they satisfy wirelength-matching, orientation-matching,

or bend-matching constraints. Annotation is also needed to inform ILP if two routes

conflict with each other.

In our work, we not only implement five matching constraints, symmetry, topology-

15

Algorithm 2 Algorithm of candidate generation

Input: A set of two-pin nets N̂ = {N̂1, N̂2, ...}
Routing grid G = (V,E), parameter K

Output: A set of candidate routes Pi for each N̂i ∈ N̂
1: for each N̂i ∈ N̂ do
2: Pi ← ∅
3: weight(e)← length of e, ∀e ∈ E
4: j ← 1
5: while j ≤ K do
6: pi,j ← bend-aware A* search for N̂i on G
7: Pi ← Pi ∪ {pi,j}
8: for each edge e ∈ pi,j do
9: increase weight(e) by δ
10: end for
11: j ← j + 1
12: end while
13: end for

matching, wirelength-matching, orientation-matching, and bend-matching, but also

implement wire width constraints and a special case to neglect conflict in two nets

called omission. For the constraints input file, we can specified the matched con-

straints or the width constraints by using command shown in Table 3.1. The Con-

straints 1-5 are the multi-net constraints we mentioned in Section 2.3 and the com-

mands are very intuitive to designate two nets should be symmetry or matching

by the constraints type. The Constraint 6 is a single-net constraint to assign the

width for any particular net. For every net without specifying the width, the default

value is 1. It is the minimum wire width for the circuit and it is also the unit of

grid. Therefore, the value argument specifies how many times wider than minimum

width. The last one, Constraint 7, is omit constraint and it is designed for neglecting

routing space conflict in two nets. Sometimes a net might be symmetry matched to

the other net in local but it is not symmetry in globle. It is helpful to have the

16

omission constraints to handle the situation like that.

Table 3.1: Commands for the constraints.
Type of Constraints Command

1 Symmetry sym net1 net2

2 Toplogy-matching topology net1 net2

3 Bend-matching bend net1 net2

4 Orientation-matching ori net1 net2

5 Wirelength-matching51 length net1 net2

6 Width width net value

7 Omission omit net1 net2

Figure 3.3: Mirroring to obtain symmetric route: (a) successful mirroring; (b) failed
mirroring.

Consider a pair of nets Ni and Nj with a symmetry constraint. For each candidate

17

route pi,a of net Ni, we mirror it to obtain a symmetric route pj,a. If the new route pj,a

is legitimate, e.g., no overlap with active area, it is added into the set of candidate

routes for net Nj. We annotate pi,a and pj,a as a pair of potential feasible routes

for net Ni and Nj. Examples of this procedure are shown in Figure 3.3. Of course,

we can also get such pairs by mirroring routes originally obtained from net Nj. If

a candidate route pi,a cannot find its symmetric counterpart for net Nj, then pi,a

is removed from the set of candidate routes for Ni. Refining candidate routes for

satisfying topology-matching constraints is very similar except that the new route is

obtained by shifting besides mirroring. One example of obtaining route for topology-

matching is provided in Figure 3.4.

Figure 3.4: Mirroring and shifting to obtain topology-matched route.

To satisfy the other analog specific constraints, we group candidate routes sat-

isfying one such constraint together. For example, consider nets Ni and Nj with

a bend-matching constraint. We group candidate routes P k
i = {pi,k1, pi,k2, ...} and

P k
j = {pj,k1, pj,k2, ...} with same number of bends k together and add an annotation

to them. Then in the ILP step, we would know that one candidate route from P k
i and

18

another candidate route from P k
j can form a pair of routes for Ni and Nj satisfying

the bend-matching constraint. Figure 3.5 shows one example of candidate routes

satisfying the orientation-matching constraint.

Figure 3.5: Grouping candidate routes with orientation-matching constraint.

The last step before ILP is annotating conflicting pairs of candidate routes. A pair

of candidate routes conflict with each other if simultaneous selection of them results

in either routing capacity violation or crosstalk (coupling capacitance) violation. The

annotations would inform the ILP not to simultaneously select conflicting candidate

routes.

3.3 Integer Linear Programming (ILP) Formulation

We use a decision variable xi,j ∈ {0, 1} to tell if to select the candidate route pi,j

for two-pin net Ni. Each candidate route pi,j is characterized by its wirelength li,j

and number of bends bi,j. Then, the objective of the ILP is described by

min
∑
∀i,∀j

(α · li,j · xi,j + β · bi,j · xi,j) (3.1)

19

where α and β are constant weighting factors.

One fundamental constraint is that only one candidate route is selected for each

net. This constraint is represented as

∑
∀j
xi,j = 1, ∀Ni ∈ N̂ (3.2)

For each pair of nets Ni and Nj with a symmetry or a topology-matching con-

straint, if candidate routes pi,a and pj,b satisfy the constraint, then we require

xi,a = xj,b (3.3)

which means either both candidate routes are selected or none of them is selected.

The other analog specific constraints, including bend, orientation and wirelength-

matching, are formulated according to the grouping described in Section 3.2. We

show the ILP formulation for them using a bend-matching constraint as an example.

If two nets Ni and Nj has a bend-matching constraint, the annotations described

in Section 3.2 can identify two groups of candidate routes P k
i = {pi,k1 , pi,k2 , ...} and

P k
j = {pj,k1 , pj,k2 , ...} with the same number of bends k = 0, 1, 2.... Then, we require

xi,k1 + xi,k2 + ... = xj,k1 + xj,k2 + ..., k = 0, 1, 2, ... (3.4)

According to Equation (3.2), at most one variable at the left-hand side (or right-

hand side) above can take value of 1. The above equation ensures that there are

only two possible outcomes. One is that one candidate route is selected from P k
i

while another candidate route is simultaneously selected from P k
j . The other is that

none candidate route is selected from either P k
i or P k

j .

If two candidate routes pi,a and pj,b conflict with each other, they can never be

20

simultaneously selected. This constraint is

xi,a + xj,b ≤ 1, ∀ conflicting ni,a and nj,b (3.5)

21

4. EXPERIMENTAL RESULTS

We implemented our analog IC routing method and the algorithm of [6] in C++

programming language. For each net, 20 candidate routes are generated. Empirically,

we chooe α = 1 and β = 100 for the objective function defined in (3.1). All the

experiments were performed on 4x AMD Opteron 6176 12-core 2.3HGz 6MB L2/L3

Cache Linux workstation with 128GB memory. GUROBI6.0.0 [12] is the library used

to solve the ILP problem.

Two op-amps OP1 and OP2 are designed with IBM 0.18µm technology library

environment, and up to three metal layers were used to route the circuits. OP1 is a

single output amplifier and OP2 is a differential output amplifier. Statistics of the

two testcases are shown in Table 4.1. After automatically generating layout routing,

we used Calibre nmDRC to check the design rules and nmLVS to verify the layout

versus schematic.

Table 4.1: Statistics of testcase OP1 and OP2

Circuit

Number of components Specification

DC Unity Gain Phase

Transistor Capacitor Resistor Total Gain Bandwidth Margin

(dB) (MHz) (◦)

OP1 9 8 0 17 60.53 319.51 59.54

OP2 51 9 4 64 83.26 856.73 52.08

In the first part of the experiment, we compared our method with manual design

and the previous work [6]. The manual layouts were performed by an experienced

analog designer. We ran post-layout simulation to measure various performance

22

parameters. The performance comparisons in terms of gain, unity gain bandwidth

and phase margin are summarized in Table 4.2 and Table 4.3. For OP1, both our

approach and [6] produce the result that is nearly the same as manual design. For

OP2, our results are the same or slightly better than the manual design while the

method of [6] failed to generate a feasible routing solution.

Table 4.2: Comparison of DC gain, unity gain bandwidth, and phase margin between
[6] and our approach for OP1.

Parameters Schematic Manual [6] Oours

DC Gain (dB) 60.53 61.48 61.47 61.47

Unity Gain Bandwidth (MHz) 319.51 312.86 312.83 312.84

Phase Margin (◦) 59.54 55.45 53.65 53.65

Table 4.3: Comparison of DC gain, unity gain bandwidth, and phase margin between
[6] and our approach for OP2.

Parameters Schematic Manual [6] Oours

DC Gain (dB) 83.26 84.23 N/A 84.23

Unity Gain Bandwidth (MHz) 856.73 782.74 N/A 789.23

Phase Margin (◦) 52.08 52.76 N/A 53.52

Table 4.4 shows the time spent on generating results by these different methods.

Our approach is hundreds of times faster than the manual design. Overall, the

advantage of our approach over [2] and manual design is very clear.

To have a complete view of circuit OP2 performance, the frequency domain gain

and phase margin curves are shown in Figure 4.1 and Figure 4.2, respectively.

23

Table 4.4: Comparison of runtime between [6] and our approach.

Circuit
Runtime

Manual [6] Ours

OP1 1 hour <1 sec. <1 sec.

OP2 10 hours N/A 70.18 sec.

Figure 4.1: Comparison of DC gain and unity gain bandwidth for OP2.

Ideally, the parasitic from layout should not degrade performance of schematic

design where parasitic is neglected. In this regard, the performance from our method

is almost identical to the schematic design in most part (the part mattering in prac-

tice) of the spectrum. The picture of our OP2 layout is displayed in Figure 4.3.

In the second part of the experiment, we analyzed the runtime of our method and

the impact from the number of candidate routes for OP2. The results of this part

are shown in Table 4.5 and Table 4.6. One can see that the runtime is dominated

24

Figure 4.2: Comparison of phase margin for OP2.

Table 4.5: Runtime analysis of the number of candidate routes for OP2.

Maximum
Candidate Candidate

Objective
Generated

Routes Refinement ILP Solving Total

Function
Number

Generation and Annotation

Time(s) % Time(s) % Time(s) % Time(s)

5 14.17 98.99 0.13 0.93 0.01 0.08 14.32 N/A

10 29.99 98.79 0.33 1.07 0.04 0.14 30.36 4884

20 69.03 98.36 0.99 1.41 0.16 0.23 70.18 4871

50 233.86 95.32 5.69 2.32 5.78 2.35 245.33 4866

100 683.63 95.05 22.61 3.14 13.00 1.81 719.23 4856

by the candidate generation. This is because the routing graph G = (V,E) here is a

395x639 grid, which reaches the details of routing tracks and has about 0.25 millions

of nodes. The numbers of ILP variables and constraints are in the order of 1K and

25

Table 4.6: Number of variables and constraints impact of the number of candidate
routes for OP2.

Maximum
Number of ILP Number of ILP Objective

Generated
Variables Constraints Function

Number

5 226 698 N/A

10 398 2290 4884

20 780 9276 4871

50 2023 68417 4866

100 4019 296353 4856

10K, respectively. The GUROBI solver can solve ILP of such sizes very quickly.

The constructive ILP [1] has one variable for each pair of routing edge e ∈ E and

signal net. Thus, it would entail several millions of variables, which constitute a big

challenge to ILP solvers.

When the number of candidate routes per net is 5, the ILP cannot find a feasible

routing solution. As the number increases from 10 to 100, the value of the objective

function defined by (3.1) monotonically decreases, as indicated by the rightmost

column of Table 4.5. However, the pace of the decrease is slow. When the number of

candidate routes increases from 20 to 50, the objective function value decreases by

only 0.1%. Therefore, 20 candidate routes per net is a reasonable trade-off between

runtime and solution quality.

26

Figure 4.3: Layout of OP2.

27

5. CONCLUSION

In this paper, we present an efficient two-stage approach to analog IC routing.

The first stage is to generate a set of candidate routes for each net satisfying single-

net constraints. In the second stage, an ILP is focused on selecting candidate route

for each net such that the spatial contention and multi-net constraints are solved.

Such approach tends to produce high quality solutions with reasonable runtime.

Experimental results show that our routing results lead to performance close to

manual design but is orders of magnitude faster. It also outperforms a previous

work of automatic analog IC routing.

28

REFERENCES

[1] H.-C. Ou, H.-C. Chang-Chien, and Y.-W. Chang. Non-uniform multilevel analog

routing with matching constraints. In Design Automation Conference (DAC),

2012 49th ACM/EDAC/IEEE, pages 549–554, June 2012.

[2] U. Choudhury and A. Sangiovanni-Vincentelli. Constraint-based channel rout-

ing for analog and mixed analog/digital circuits. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 12(4):497–510, Apr

1993.

[3] M.M. Ozdal and R.F. Hentschke. Exact route matching algorithms for analog

and mixed signal integrated circuits. In Computer-Aided Design - Digest of

Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference

on, pages 231–238, Nov 2009.

[4] H. Yao, Y. Cai, and Q. Gao. Lemar: A novel length matching routing algorithm

for analog and mixed signal circuits. In Design Automation Conference (ASP-

DAC), 2012 17th Asia and South Pacific, pages 157–162, Jan 2012.

[5] H. E. Graeb, editor. Analog layout synthesis: a survey of topological approaches.

Springer Publishing Company, 2010.

[6] L. Xiao, E. F. Y. Young, X. He, and K. P. Pun. Practical placement and routing

techniques for analog circuit designs. In Computer-Aided Design (ICCAD), 2010

IEEE/ACM International Conference on, pages 675–679, Nov 2010.

[7] D. J. Garrod, R. A. Rutenbar, and L. R. Carley. Automatic layout of custom

analog cells in anagram. In Computer-Aided Design, 1988. ICCAD-88. Digest

29

of Technical Papers., IEEE International Conference on, pages 544–547, Nov

1988.

[8] K. Sajid, J. D. Carothers, J. J. Rodriguez, and W. T. Holman. Global routing

methodology for analog and mixed-signal layout. In ASIC/SOC Conference,

2001. Proceedings. 14th Annual IEEE International, pages 442–446, 2001.

[9] J. Lienig, G. Jerke, and T. Adler. Electromigration avoidance in analog circuits:

two methodologies for current-driven routing. In Design Automation Confer-

ence, 2002. Proceedings of ASP-DAC 2002. 7th Asia and South Pacific and the

15th International Conference on VLSI Design. Proceedings., pages 372–378,

2002.

[10] C. Chu and Y.-C. Wong. Flute: Fast lookup table based rectilinear steiner

minimal tree algorithm for vlsi design. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 27(1):70–83, Jan 2008.

[11] H. He, G. Yang, and J. Hu. Algorithms for power-efficient qos in application

specific nocs. In Proceedings of the 2014 International Symposium on Low Power

Electronics and Design, pages 165–170, 2014.

[12] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015.

30

