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ABSTRACT 

 

Clathrate hydrates are solid crystals that consist of three-dimensional 

networks of hydrogen-bonded water molecules forming well-defined cages within 

which small “guest“ molecules are needed in order to stabilize the structures. More 

than 130 different molecules can form hydrates when mixed with water at 

relatively low temperatures and high pressures, including methane, ethane, 

propane, iso-butane, carbon dioxide, nitrogen and hydrogen. The accurate 

prediction of thermodynamic properties of clathrate hydrates has gained much 

attention due to the relevance of clathrate hydrates to many industrial 

applications. For example, hydrates play a major role in the problem of flow 

assurance in the oil and gas industry. They are also being considered for use in 

gas transport and separation applications. In addition, the existence of methane 

hydrates in large quantities in nature makes them a potential energy source. 

In this work, Molecular Dynamics (MD) simulations have been used in order 

to determine the Hydrate – Liquid water – Guest coexistence line for methane and 

carbon dioxide hydrates. The direct phase coexistence method was used where 

slabs of the three constituent phases were separately equilibrated and then 

brought in contact at the conditions under investigation. In order to account for the 

stochastic nature of the hydrate growth and dissociation processes, many long, 

independent simulations at different conditions of temperature and pressure were 

conducted while avoiding bubble formation phenomena. This allowed for 
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performing a statistical averaging of the results to identify the three-phase 

coexistence temperature at different pressures. Also, the erroneous use of 

dispersion tail corrections was investigated.  

For methane hydrates, where the Lorentz-Berthelot combining rules for the 

two force fields used gave accurate predictions for the solubility of methane in the 

aqueous phase, this approach yielded predictions that are in good agreement with 

experimental data. A correction to the Lorentz-Berthelot cross-interaction energy 

parameter was applied in the case of carbon dioxide hydrates to obtain accurate 

predictions of the solubility of carbon dioxide in the aqueous phase, which in turn 

resulted in equally accurate and consistent predictions of the three-phase 

coexistence temperature. Therefore, it was shown that both the water-water and 

water-guest interactions play an important role in the application of this 

methodology to the study of clathrate hydrate systems. For systems where the 

water-guest interactions can accurately predict guest solubility in water, the 

predictions of the three-phase coexistence are as accurate as the water force field 

used to predict the melting of ice. 

It was also shown that the methodology cannot be directly applied to low 

pressures for carbon dioxide hydrates, where a liquid-like layer of carbon dioxide 

is adsorbed at the water surface. Several possible causes for this deficiency are 

suggested, including the possible effect of box anisotropy and box size 

fluctuations at low pressures. 
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1. INTRODUCTION 

 

Clathrate hydrates are self-assembling, ice-like, crystalline structures that 

were discovered in 1810 by Sir Humphry Davy, who observed that a crystalline 

solid was formed upon cooling of an aqueous solution of chlorine.1,2 They consist 

of three-dimensional networks of hydrogen-bonded water molecules encaging low 

molecular weight “guest” molecules in well-defined polyhedral cavities (or cages). 

The enclathration of the guest molecules enables hydrate formation since they 

stabilize the crystal structure. More than 130 guest molecules are known to be 

hydrate formers including methane, ethane, propane, iso-butane, carbon dioxide, 

hydrogen sulfide, oxygen, nitrogen, argon and hydrogen.2 Hydrates are formed 

under conditions of relatively high pressure and low temperature, in the presence 

of both water and the guest molecules.  

In the early 20th century, the formation of clathrate hydrates was identified 

as the cause for pipeline and equipment blockages in the gas industry where the 

conditions of pressure and temperature are suitable for hydrate nucleation and 

growth.3 Such blockages pose safety threats and cause large financial losses.4–6 

On the other hand, the fact that the volumetric density of most gases in the hydrate 

form corresponds to that of a condensed state makes their use for gas storage 

and transport applications a promising prospect.7–12 In addition, the differences in 

thermodynamic and structural stability of hydrates of different guest molecules 

can be exploited in industrial gas separation for energy13,14 or environmentally15–
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17 related processes.18 Furthermore, hydrate growth results in ion exclusion from 

the crystal structure, a process that can be used for water purification and 

desalination.19,20  

The vast potential applicability of clathrate hydrates has prompted the need 

for accurate property calculation and prediction, which can be seen by the 

continuous increase in the number of studies conducted on clathrate hydrates per 

year.21 Experimental measurements, modeling at the macroscopic scale using 

equations of state, and atomistic simulations including both Molecular Dynamics 

(MD) and Monte Carlo (MC) simulations are different approaches that have been 

used to provide predictions of hydrate properties. While experimental 

measurement is the most accurate approach, the financial cost and time 

associated with measurements of all the possible combinations of guest mixtures 

that may form hydrates would render the approach impractical.  

Therefore, it is necessary to develop theoretical methods that enable 

efficient prediction of equilibrium and transport properties of hydrate systems. The 

van der Waals–Platteeuw statistical theory22 and its variations23–28 are useful 

continuum-scale models that have been used for the modelling of hydrate 

systems. In addition, the use of molecular simulation techniques can provide 

further insight into the effect of events at the molecular level on the hydrate 

nucleation, growth, and dissociation processes. They can also be used for the 

calculation of important thermodynamic and transport properties. If proven 

accurate, molecular simulation techniques can later be used in the design of new 
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hydrate-related processes, together with the traditional experimental and 

continuum-scale modelling approaches. This multi-scale approach serves to 

maximize our understanding of any process. 

Due to the relevance of methane and carbon dioxide hydrates to many 

industrial processes, the accurate estimation of the properties of these hydrates 

is the topic of many studies, including this work. An outline of the potential 

applications of these two gas hydrates is provided in the following two sections. 

1.1 Applications of Methane Hydrates 

The methane hydrate is the most extensively studied clathrate hydrate due 

to its relevance to some of the most important industrially-relevant problems. The 

oil and gas industry is greatly interested in methane hydrates from the flow 

assurance point of view, since the formation of the methane hydrate solid in 

natural gas pipelines can cause blockages that result in large financial losses and 

pose significant safety threats.  

On the other hand, methane hydrates exist in large quantities in nature, 

mainly under the oceanic floor and at the permafrost regions.29 In fact, it has been 

estimated that approximately 1016 kg of methane gas is stored in naturally 

occurring methane hydrates in oceanic sediments and in continental regions 

around the globe.30–33 If this estimate is correct, the amount of methane carbon 

stored in hydrates is roughly twice the amount of carbon present in all known fossil 

fuel deposits combined, which makes natural methane hydrates an attractive 

potential energy source. It is important to note that methane, which constitutes the 
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largest fraction of natural gas, is a less carbon-intensive fuel than coal or oil, 

producing only half as much carbon dioxide as coal per unit of combustion 

products.34–38  

However, the change in global climate that has been brought about with 

the onset of global warming can cause the decomposition of natural methane 

hydrates, releasing large volumes of methane into the atmosphere. This would 

enhance the global warming effect since methane is 21 times more potent than 

carbon dioxide as a greenhouse gas.5,39,40 In addition, the occurrence of 

uncontrolled dissociation of natural methane hydrates can cause geologic 

hazards such as the collapse of oceanic slopes.41,42 

1.2 Applications of Carbon Dioxide Hydrates 

Carbon dioxide hydrates are of great interest for many industrially-relevant 

applications. With the ever-increasing need for developing appropriate methods 

for carbon capture and sequestration (CCS),43 the hydrate science and 

technology could offer alternative, viable solutions to both aspects of the capture 

and storage problem. In particular, the capture of carbon dioxide from flue gases 

using hydrates has attracted significant attention during the recent years.15–17 

In section 1.1, the large potential of naturally occurring methane hydrates 

to act as an energy source was mentioned. However, the difficulty in recovering 

methane hydrate to use as a fuel arises from the fact that it is in the solid form, 

which makes it not amenable to conventional oil and gas recovery techniques. 

This has prompted suggestions of utilizing carbon dioxide gas in the recovery of 
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methane gas from natural methane hydrates. The high concentration of carbon 

dioxide per unit mass of water, as well as the high thermodynamic stability of 

carbon dioxide hydrates,44 enables the substitution of methane stored in methane 

hydrate sediments by carbon dioxide molecules. This is a favorable process as it 

provides a means for both retrieving the hydrocarbon and utilizing it in the energy 

industry, while simultaneously sequestering carbon dioxide gas in the form of 

carbon dioxide hydrates.45–48 This idea has been extensively studied using 

experimental techniques,49–54 as well as modeling both at the continuum 

scale22,55,56 and the microscopic scale using MD57–63 and Density Functional 

Theory (DFT)64 simulation techniques. In addition, carbon dioxide hydrates could 

find applications in other fields such as for use in fire extinguishers,65 in the food 

industry,66,67 and for biotechnology applications.68 

1.3 Objectives of Current Study 

The main goal of this work is to use the direct phase coexistence 

methodology69 for the prediction of the three-phase coexistence line in pure gas 

hydrate systems using MD simulations. The proposed methodology is tested on 

two guests; namely, methane and carbon dioxide. The two guests are chosen due 

to the availability of experimental data which would enable validation of the 

accuracy of the results, as well as the fact that many of the proposed applications 

for gas hydrates involve systems that contain these two guests.  
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2. FUNDAMENTALS OF MD SIMULATIONS 

 

2.1 History and Overview of MD Simulations 

Computer simulation techniques are an important development that 

occurred as early as 1953,70 and allowed scientists to obtain accurate results for 

complicated statistical mechanics problems involving many-particle systems. In a 

molecular simulation, microscopic properties of a system (such as the atomic 

mass of its constituent molecules or the molecular geometries) are directly 

translated to macroscopic properties of the system (such as pressure, 

temperature, or total energy). The simulations can therefore be considered a 

bridge between experimental results and theoretical predictions, and are often 

used to provide inputs to macroscopic scale theoretical models. However, it is 

important to note that the accuracy of the results obtained using molecular 

simulation techniques is largely dependent on our imperfect knowledge of the 

molecular properties of the system. It is therefore essential to prove the validity of 

the models used by comparison of the results of molecular simulations with 

experimental data.71 

The MD simulation technique in particular involves the solution of the 

classical equations of motion for a set of molecules. The inception of this 

technique dates back to 1957 in the pioneering work of Alder and Wainwright, who 

calculated the equilibrium properties of a system consisting of 32 hard spheres in 

a rectangular box.72 With the ever-increasing computational power that has been 
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achieved since, many developments were made that increased the accuracy and 

speed of the techniques, allowing for the simulation of larger, more complex 

systems such as the simulation of many-particle systems that interact via the 

Lennard-Jones potential in the 1960’s.73–75 Today, with the advent of High 

Performance Computing Clusters (HPCC), it has become possible to perform MD 

simulations on multiphase systems that consist of thousands of molecules, which 

allows the computation of many properties including thermodynamic properties 

(such as solubility, density, coexistence temperatures, interfacial tension and 

enthalpy), transport properties (such as diffusion coefficient and viscosity), and 

kinetic rates (such as the rate of solid formation or dissociation). The simulations 

are typically over length scales of several nanometers and time scales of 

nanoseconds to a few microseconds. 

The MD simulation technique involves the calculation of the trajectory in 

space and time of a system consisting of a defined number of particles. This is 

done through the integration with respect to time t of Eqn. (1), which is Newton’s 

second law: 

 

2

2

i
i i i im m

t


 



r
F a   (1) 

where 𝐅𝑖 is the force exerted on a particle i, 𝐫𝑖 is the particle’s position vector, 𝑚𝑖 

is the particle’s mass, and 𝐚𝑖 is the acceleration vector of the particle. The force 

on each particle is defined as the first derivative of the potential energy, 𝑉(𝑟), with 

respect to the particle’s position, as shown in Eqn. (2):76 
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By defining the initial velocities and positions of the particles, the equations 

can be integrated to provide the time evolution of the system. In order to 

accomplish this, the potential energy of each particle as a function of the position 

of all the other particles in the system must be known. This function is specific for 

every type of molecule in the simulation and is known as the force field. It provides 

a means for calculating both the intermolecular (non-bonded) and intramolecular 

(bonded) interactions between particles. 

The overall algorithm used in a MD simulation is provided in Fig. 1.77 First, 

appropriate force fields are selected for the constituent molecules of the system 

under consideration. The system is setup with particular considerations that 

increase the accuracy and efficiency of the simulations. This is described in 

section 2.2. Then, the total potential energy of the system is calculated using the 

methods provided in section 2.3. The equations of motion are integrated over a 

defined time step to find the new position of each particle in the system. The most 

common integration algorithm used, and the one implemented in this work, is the 

“Leap-Frog” algorithm. This algorithm is described in section 2.4. The integration 

is repeated until the total, pre-defined simulation time is reached.  
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FIG. 1. MD simulation algorithm.77 

Finally, the recorded trajectory is studied both qualitatively by observation 

of the system evolution, and quantitatively by calculating the properties of interest 

to the problem under consideration. The method used for the calculation of these 

properties depends on the molecular ensemble implemented in the simulation, 

which is the set of fixed macroscopic parameters that define the phase space 

through which the system evolves. For example, in the canonical ensemble (NVT), 

the total number of molecules N, the total volume V, and the temperature T of the 
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system are kept constant throughout the simulation. In this work, the isobaric-

isothermal (NPT) ensemble was used. A description of this ensemble and the 

methods used to fix the pressure and temperature throughout the simulation is 

provided in section 2.5. 

2.2 System Setup 

2.2.1 Initial Particle Positions and Velocities 

The purpose of the simulation is to replicate the properties of the real 

system as closely as possible. For this reason, the initial system must be 

constructed in a manner that mimics the real system being simulated as closely 

as possible. First, all the particles of the system must be placed at specific 

positions in a box of known dimensions. In assigning these positions, the known 

properties of the system must be carefully incorporated. For example, if the 

system being studied is pure water at 298 K and 1 bar, the box should be 

constructed such that the density of the system is around 1000 kg/m3. 

Each particle is also assigned an initial velocity. The average velocity, 〈𝑣2〉, 

is directly related to the average kinetic energy of the system, 〈𝐸𝑘〉, according to 

Eqn. (3): 

 2

k

1 3kT
E m v

2 2
    (3) 

where 𝑚 is the mass of each particle, 𝑇 is the system temperature, and 𝑘 is 

Boltzmann’s constant. 
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If a generating temperature is specified, the above equation can be solved 

for a system of particles of known mass to find the average velocity. Each particle 

can then be given a random initial velocity from a Gaussian distribution, which is 

shown in Eqn. (4): 
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i
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m
v e

2 kT






 
  

 
  (4) 

where 𝜌(𝑣𝑖𝛼) is the probability density for the velocity 𝑣𝑖𝛼 of particle 𝑖 in the 

direction 𝛼.78,79 

Random number generators are used in order to assign velocities to each 

particle in the system such that the velocity distribution obeys the function above. 

This is particularly useful, since a different random number would result in a 

different initial velocity assigned to each particle while maintaining the same initial 

positions, potential energy, and average kinetic energy. Each simulation would 

then proceed by a different trajectory through the phase space. Hence, it is 

possible to run multiple, independent simulations at the same conditions and 

obtain an estimate of the error in the measurement of any property of interest.71 

A further requirement in the initialization of the velocity of each particle is 

that the total momentum of the system is zero, as shown in Eqn. (5): 

 
N

i i

i 1

m 0


 P v   (5) 

where 𝑷 is the (3 × 1) vector of the resultant momentum in each direction, and 𝒗𝑖 

is the 3𝑁 velocity vector for all particles. In order to accomplish this, the initially 
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assigned velocities are scaled such that the condition of zero momentum is 

satisfied. 

2.2.2 Energy Minimization  

In addition to creating a box with realistic properties, it is important that 

none of the molecules placed inside the lattice are overlapping. As will be 

discussed in section 2.3, the intermolecular potential energy between any two 

atoms tends to infinity if the two atoms are overlapping. The presence of such 

high potential energy will result in excessively large forces causing the MD 

simulation to fail. In order to avoid this, an energy minimization algorithm is 

needed, which removes any particle overlaps before starting the simulation. 

The purpose of the energy minimization algorithm is not to find the particle 

coordinates that correspond to the one global minimum in the potential energy 

hypersurface, since the potential energy function is a very complex landscape with 

many dimensions making it extremely difficult to locate this. However, starting 

from an initial configuration, it is possible to locate the nearest local potential 

energy minimum. Many energy minimization algorithms exist that accomplish this. 

The algorithm used in this work is the so-called “steepest descent” algorithm. 

While this is not the most efficient algorithm that exists for performing the search, 

it is commonly used due to its robustness and ease of implementation.  

In the steepest descent method, the particles in the system are moved in 

an iterative manner such that the new positions exhibit a lower energy than the 

previous step, until a controlling criterion is met. The first step is to compute the 
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force acting on each particle in the initial configuration as the negative derivative 

with respect to position of the potential energy, as described by Eqn. (2). Also, a 

maximum displacement for each particle, ℎ0 is defined by the user, and is needed 

in order to ensure that the particles are not displaced by very large distances, 

distorting the initial, user-defined configuration. The new positions of the particles 

are then calculated using Eqn. (6):  

 
 max

n
n 1 n n

n

h  
F

r r
F

  (6) 

where 𝒓𝑛 is the 3𝑁 vector of the three coordinates of each of the 𝑁 particles in the 

system at step 𝑛, 𝑭𝑛 is the 3𝑁 vector of the forces acting on each particle, and 

max(|𝑭𝑛|) is the largest of the absolute values of the force components. 

When the positions are updated, the new potential energy is calculated. If 

the potential energy for the new position vector is less than the previous step, the 

new positions are accepted. Also, a larger step size can be used to increase the 

efficiency of the descent in the potential energy. If the new potential energy is 

greater than the previous step, the new positions are rejected, and the step size 

is decreased. These criteria are presented in Eqn. (7): 
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n 1 n n 1 n 1 n
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r r

r
  (7) 

 The algorithm is terminated either after a certain number of pre-defined steps is 

completed, or when max(|𝑭𝑛|) is smaller than a specified tolerance. 
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2.2.3 Periodic Boundary Conditions 

While the interest from most molecular simulations is to estimate bulk 

properties, the use of several thousand molecules in a box would mean that most 

molecules are at the box surface. The forces experienced by a molecule near a 

wall are significantly different from those experienced by a molecule within the 

bulk. Ideally, one would like to simulate a very large number of molecules such 

that a sufficient volume is a large distance away from the walls and can be used 

to represent the bulk. However, due to the limited storage and computational 

power of even the best computer systems, this is not possible. For this reason, 

the concept of periodic boundary conditions has been developed to overcome the 

problem of surface effects.79 

A schematic representation of periodic boundary conditions is provided in 

Fig. 2.71 When periodic boundary conditions are applied, the original box prepared 

is considered one cell that lies within a periodic lattice which consists of an infinite 

number of replicas of the same box. If a particle 𝑖 leaves the box at position 

(𝐿
2⁄ , 𝑦1, 𝑧1), where 𝐿 is the length of the box in the x-dimension and the box 

Center is placed at the origin (0,0,0), it re-enters the box at position (−𝐿
2⁄ , 𝑦1, 𝑧1). 

In this way, any particle found within the box can be considered part of a bulk 

system, and properties measured from simulation are directly comparable to 

experimental bulk property measurements. 
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FIG. 2. A schematic representation of periodic boundary conditions.71 

However, since the heart of a MD simulation is the calculation of the 

potential energy, and therefore the force exerted on each particle, the problem 

arises for an infinite, periodic system that there is an infinite number of interactions 

to calculate for each particle. Since this is not possible, the non-bonded 

interactions calculated using the methods presented in section 2.3.2 are truncated 

after a certain cutoff distance, 𝑟𝐶. This is appropriate since the short-range 

interactions are much stronger than the long-range interactions. Methods exist for 

the calculation of the errors that arise from truncating the potential energy at a 

short distance, and making corrections accordingly. These will be discussed in 

the next section.  

The choice of 𝑟𝐶 is critical in the accuracy of the potential energy 

calculation. A very small value of 𝑟𝐶 would minimize the number of interactions 
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accounted for, reducing the accuracy of the calculation. However, using a large 

value of 𝑟𝐶 (greater than 𝐿/2, where 𝐿 is the shortest box dimension) would 

increase the cost of the calculation, and will give the possibility for explicitly 

calculating the interaction between two molecules 𝑖 and 𝑗 twice; once between the 

two molecules in the same box, and once between molecule 𝑖 from one box and 

the nearest periodic image of molecule 𝑗. If the interaction between any two 

molecules should be explicitly accounted for only once for computational 

efficiency, 𝑟𝐶 should be chosen such that it does not exceed 𝐿/2.  

The algorithms used for the identification of the pairs can then identify the 

minimum distance between any central molecule and any of the other molecules. 

This is known as the “minimum image convention”, and is illustrated by the dotted 

box in Fig. 2. It is used for predominantly short-range interactions, such as 

dispersion forces. This method is not appropriate for long-range interactions 

where explicitly accounting for pairs that are far apart is essential for accuracy of 

the calculations. This is the case for electrostatic (or coulombic) interactions, and 

efficient methods exist for specifically accounting for interactions of this nature, as 

discussed in section 2.3.2. 

2.3 The Potential Energy Function 

The force field chosen to describe a molecule provides a method for the 

calculation of the intramolecular (bonded) interactions and the intermolecular 

(non-bonded) interactions. Intramolecular parameters include the molecular 

geometry and the contributions to the potential energy of the molecule that come 



17 
 

from the interactions between the atoms that make up the molecule. This includes 

bond length and bond angle fluctuations, and torsional vibrations. Intermolecular 

interactions are those between atoms in the same molecule that are several atoms 

apart, and between atoms in different molecules.  These include dispersion (van 

der Waals) and electrostatic (Coulombic) interactions. The total potential energy 

of the system is calculated as a sum of all the intramolecular and intermolecular 

potential energy contributions from all the particles in the system, as shown in 

Eqn. (8): 
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where 𝑉𝑏 is the total bonded interaction potential energy and 𝑉𝑛𝑏 is the total non-

bonded interaction potential energy. 

The methods by which the potential energy contributions in Eqn. (8) are 

calculated are explained in the following sections. 

2.3.1 Bonded Parameters 

The first and major intramolecular parameter that must be explicitly 

described by the force field is the molecular geometry. This is extremely crucial, 

and always has a very significant effect on the outcomes of the simulation. 

Molecular geometries are often simplifications of the physical reality, wherein the 

molecule is treated as a rigid or semi-rigid unit, with fixed bond lengths, bond 
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angles, and torsional angles. This assumption is made possible by the fact that 

bond vibrations are of very high frequency, making them very difficult to account 

for in classical simulations, and low amplitude, making them relatively unimportant 

for many liquid properties. Thus, molecules are commonly represented as a 

collection of several sites, each with mass, charge, or both. In order to develop 

the models, a general molecular geometry is first predicted in a manner that 

resembles the known molecular geometry. The distance and angles between the 

sites, as well as the appropriate charge on each site are then found by trial-and-

error, such that the final model accurately predicts some experimental properties 

of interest (such as fluid density or saturation conditions). As such, models that 

are often built for the replication of certain experimental data in a certain range of 

pressure and temperature may not always accurately predict other experimental 

data that were not accounted for in the fitting. For this reason, for most common 

molecules many different models have been proposed, each developed to predict 

certain target properties very accurately.79 

In some cases, the modeling of the bonded vibrations is necessary to 

achieve accuracy in the calculation of particular properties. For MD simulations, it 

is often sufficient to approximate the bond and angle vibrations as harmonic 

oscillations about an equilibrium bond length or bond angle, respectively. Hooke’s 

law is often used for this purpose, as shown in Eqn. (9) for bond length vibrations, 

and Eqn. (10) for bond angle vibrations:  
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where 𝑘𝑖𝑗
𝑏  and 𝑘𝑖𝑗𝑘

𝜃  are Hooke’s constants for the bond and angle vibrations, 

respectively, 𝑟𝑖𝑗
0 and 𝜃𝑖𝑗𝑘

0  are the equilibrium bond length and angle, respectively, 

and 𝑟𝑖𝑗 and 𝑟𝑖𝑗𝑘 are the instantaneous bond length and angle respectively. Hooke’s 

constants and the equilibrium bond length and angle are adjustable parameters 

that are fitted to maximize the accuracy of the model in predicting certain 

spectroscopic data. 

2.3.2 Non-Bonded Parameters 

For a system of 𝑁 particles, the true, total non-bonded interaction potential 

energy is the sum of the contributions from all the possible particle pairs (𝑣2), 

triplets (𝑣3), and higher order multiplets, plus the potential energy associated with 

any external forces (such as a gravitational field) acting on each particle within the 

system (𝑣1), as shown in Eqn. (11).79 

   1 2 3,..., ( ) ( , ) ( , , ) ...nb i N i i j i j k

i i j i i j i k j

V v v v
  

     r r r r r r r r   (11) 

Several simplifications are often made in computer simulations in order to 

increase the calculation speed and efficiency. First, it is important to note that two-

body interactions have the most significant contribution towards the total potential 

energy. While triplets and higher order multiplets can also have a significant 
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contribution to the total potential energy, especially for dense systems, the 

identification of all high-order multiplets within any system, and the evaluation of 

the many-body potential energy functions is very computationally expensive. For 

this reason, “effective” two-body potentials are usually used with fitted parameters 

that incorporate the effects from three-body and higher order interactions. Since 

the contribution from the different multiplets is often a function of density but the 

parameters for the effective two-body potential models are not, the models may 

not be very accurate in predicting all the properties at all conditions.  

This results in many models for each component, each performing very 

well for certain properties. For an appreciation of the variety of models available 

for different molecules, the reader should refer to section 3.2.1, where some of 

the available models for water, methane, and carbon dioxide are outlined. 

In the next two sections, the specific treatment of dispersion and 

electrostatic interactions is described.  

2.3.2.1 Dispersion Interactions 

Several known potential energy functions can be used for the calculation 

of intermolecular dispersion interaction potential energies, such as the Lennard-

Jones or Kihara potentials. The most commonly used is the Lennard-Jones (12,6) 

pair potential, given by Equation (12):  
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The function relates the potential energy between two particles i and j to their 

separation distance 𝑟𝑖𝑗 using two parameters: an energy parameter 𝜀𝑖𝑗 that gives 

the minimum energy corresponding to equilibrium separation, and a size 

parameter 𝜎𝑖𝑗 that is equal to the distance between the particles where the 

potential energy is zero. The function is plotted in Fig. 3.76 

 

FIG. 3. Lennard-Jones (12-6) potential.76 The red, dashed line illustrates the 

concept of truncation beyond a cutoff length, 𝑟𝑐,𝐿𝐽. 

As was mentioned in section 2.2.3, due to the use of periodic boundary 

conditions to model an artificially infinite system, the potential energy must be 

truncated at a certain, user-defined cutoff length 𝑟𝑐,𝐿𝐽. The value of 𝑟𝑐,𝐿𝐽 is typically 

chosen to be at least 2.5𝜎𝑖𝑗,79 which is the separation distance beyond which the 
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attractive potential typically drops to around 
1

60
𝜀𝑖𝑗 (see red line in Fig. 3). While 

this may seem very small, assuming that the potential energy is zero beyond this 

point can sometimes lead to a systematic error in the calculation of the total 

dispersion potential. In addition, this assumption results in a discontinuity in the 

potential energy that may cause issues when calculating the first derivative of the 

potential energy for computation of the forces. For this reason, it is often 

necessary to estimate the magnitude of error in the dispersion tail. The error can 

be accounted for by estimating and adding the tail correction to the truncated 

potential, as shown in Eqn. (13):  

      dispersion dispersion g d
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V V r 4 r V r r r
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     (13) 

In this equation, 𝑉𝑖𝑗,dispersion
𝐶 (𝑟𝑖𝑗) is the function used for the calculation of the 

dispersion potential [such as Eqn. (12)] where the maximum distance between 

two particles is 𝑟𝑐,𝐿𝐽, 𝜌 is the average number density, 𝑉𝑖𝑗,dispersion(𝑟𝑖𝑗) is the 

potential energy function, and 𝑔(𝑟) is the radial distribution function. The full 

derivation of Eqn. (13) is provided in references 71 and 79.  

For homogeneous systems, it can be assumed that 𝑔(𝑟) is 1 beyond the 

cutoff distance, which significantly simplifies the calculation of the integral in Eqn. 

(13). Making this assumption and correcting for the long range dispersions using 

Eqn. (13) is therefore the most frequently used approach in MD simulations. 
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2.3.2.2 Electrostatic Interactions 

The total electrostatic intermolecular interaction potential energy is a 

function of the separation distance between every particle pair, and the charges, 

q, of each of the two particles. This is given in Equation (14):76  
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where e is the electronic charge and 𝜀0 is the dielectric permittivity of a vacuum. 

Evaluation of the function within the sum in Eqn. (14) would give the 

specific interaction between two charged particles 𝑖 and 𝑗, and is positive if both 

particles have the same sign (repulsion), and negative if the two particles have 

different signs (attraction). 

While the decay of dispersion forces is proportional to 1/𝑟6 [Eqn. (12)], 

decay of the electrostatic interactions is proportional to 1/𝑟, making these 

interactions much stronger at longer distances than the dispersion interactions. 

For this reason, using a mean-field approach to account for the long-range 

electrostatic interactions such as that used for dispersion interactions [Eqn. (13)] 

will not yield an accurate solution. Therefore, in systems where charged particles 

exist, accounting explicitly for particle pairs that are far apart is necessary to 

achieve accuracy. 

The most commonly used method to account for the long-range 

electrostatic interactions is known as the Ewald summation.80 A detailed 

description of the Ewald summation method can be found in references 71 and 
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79. As an overview, the method separates the electrostatic potential into two parts: 

a short-range part and a long-range part. The short-range part consists of all the 

particle pairs that have a separation distance below the user-defined cutoff for the 

electrostatic potential, 𝑟𝑐,electrostatic. In the short-range, the summation is 

performed in a similar manner as that used for calculation of short-range 

dispersion forces, wherein the particle pairs are identified and the electrostatic 

interaction potential between any two particles is calculated using Eqn. (14). At 

further separation distances, the charges are mathematically treated by 

performing a Fourier transformation that represents all the charges that exist in 𝒏 

images of the unit cell as a Gaussian charge distribution, where 𝒏 is defined by 

the user and is usually between 5 and 7 images in each direction.  

The final equation for calculating the total electrostatic potential energy for 

a cubic unit cell is provided in Eqn. (15), where 𝑉 is the unit cell volume, 𝜌(𝐤) is 

the charge distribution defined by Eqn. (16) as a function of the Fourier 

transformed position 𝐤, and 𝛼 is the width of the Gaussian distribution.  
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The first summation in the right-hand-side of Eqn. (15) is the total long-range 

electrostatic interactions including the interaction of any particle 𝑖 with itself, the 

second term is the subtraction of the self-interaction contribution, and the third 

term is the total short-range interaction potential energy obtained by generalizing 

Eqn. (14). 

2.4 Leap-Frog Integration 

Once the intermolecular potential energy has been evaluated for a given 

configuration, the MD simulation proceeds by integration of Newton’s equations 

of motion [Eqns. (1) and (2)] to find the new positions of all particles at time 𝑡 + ∆𝑡, 

where ∆𝑡 is a user-defined time step. The chosen algorithm for performing the 

numerical integration should ideally preserve energy over short and long times, 

and should be efficient such that the simulation speed is not hindered. In addition, 

the use of large time steps greatly improves the simulation speed, so the chosen 

algorithm should allow for the use of large time steps without loss of accuracy. 

Among the most commonly used algorithms for the integration are the 

Verlet81 and Leap-Frog82 algorithms. Both these algorithms yield identical 

trajectories but different velocities at each time step. The Leap-Frog algorithm is 

the default integrator in the MD simulation package Gromacs,83–85 and is the 

algorithm used in this work. In order to derive the position, 𝒓(𝑡 + ∆𝑡), for all 

particles at time 𝑡 + ∆𝑡, a Taylor series expansion (TSE) of the coordinates at the 

updated time step is performed around time 𝑡, as shown in Eqn. (17):  
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where 𝒗(𝑡) is the velocity vector for all particles at time 𝑡, 𝐅(𝑡) is the force on all 

particles at time 𝑡, 𝑚 is the mass of each particle, and 𝐫′(𝑡), 𝐫′′(𝑡), and 𝐫′′′(𝑡) are 

the first, second, and third derivatives of the position with respect to time, 

respectively. Similarly, a TSE of the coordinates at the previous time step 𝑡 − ∆𝑡 

yields Eqn. (18): 
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By summing Eqns. (17) and (18), and solving for 𝐫(𝑡 + ∆𝑡), we obtain the estimate 

for the new position given by Eqn. (19). This estimate has an error of order ∆𝑡4. 
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In the Leap-Frog algorithm, the velocity at half a time step before a time 𝑡 is 

approximated as the derivative of the straight line connecting the positions at time 

𝑡 − ∆𝑡 and 𝑡, as shown in Eqn. (20). The same approach is used to approximate 

the velocity half a time step after a time 𝑡, as shown in Eqn. (21). 
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By solving Eqn. (21) for 𝒓(𝑡 + ∆𝑡), and equating this to the right-hand of Eqn. (19) 

we obtain an expression for updating the velocity at time 𝑡 + ∆𝑡/2, as shown in 

Eqn. (22). 

           
t

t tt t t
2 2 m

F
v v   (22) 

It can be seen from Eqns. (19) and (22) that the position vector at time 𝑡 −

∆𝑡 and the velocity vector at time 𝑡 − ∆𝑡/2 are needed in order to continue the 

simulation. At the beginning of the simulation, only an estimate for the position the 

previous time is needed, and is obtained simply by subtracting the product of the 

initial velocity (obtained using the method described in section 2.2.1) and the time 

step from the initial position, as shown in Eqn. (23).71 

         t 0 0 tr r v   (23)  

2.5 MD Simulations in the NPT Ensemble 

In the preceding discussion, the algorithms discussed do not cause any 

modifications to the box volume, and maintain a constant average kinetic energy 

since the system is closed and no energy exchange between the box contents 

and any outside body occurs. Essentially, simulations performed using only the 

algorithms previously described proceed in the microcanonical ensemble 

[constant number of molecules, volume, and energy (NVE)]. However, in 

macroscopic laboratory experiments, the controlled variables are often the 

pressure and temperature, which makes it advantageous to be able to conduct 

MD simulations in the NPT ensemble. Control of the temperature and pressure of 
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the simulated system in a MD simulation can be achieved by making use of 

artificial thermostats and barostats.  

Before describing the methods used to control the temperature and 

pressure of any simulated system, these state variables must first be defined in 

the context of the known parameters within the simulation box. Eqn. (3) (section 

2.2.1) provides the direct relationship between the kinetic energy of the system 

and the temperature of the system. This equation is used to define the 

temperature of the simulation. Thus, the temperature is a direct result of the 

average velocity, and increasing or decreasing the velocity of the particles will 

directly result in an increase or decrease in the temperature, respectively. The 

difference between the various existing algorithms for thermostats is the method 

by which the velocity is modified in order to achieve the desired temperature.  

In a simulation, the pressure 𝑃 is defined according to the Virial theorem 

using Eqn. (24).71  

  k

2
P E

3V
    (24) 

where 𝐸𝑘 is the total kinetic energy, 𝑉 is the box volume, and Ξ is the inner Virial 

term for pairwise additive interactions, defined in Eqn. (25).  
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The first term of Eqn. (24) is a result of the kinetic energy, while the second 

term is a result of the potential energy that arises from particle interactions. As 

can be seen from Eqn. (24), an increase or decrease in the box volume results in 



29 
 

a decrease or increase in the pressure, respectively. Therefore, control of the 

pressure in a simulation can be achieved by modifying the volume of the box. As 

was the case for the thermostat, the difference between the various existing 

barostats is the method by which the volume is modified to achieve the desired 

pressure. 

In this work, the so-called Berendsen coupling scheme has been 

implemented to achieve pressure and temperature control.86 The methodology for 

controlling the temperature involves coupling the system to a bath at the set-point 

temperature, 𝑇𝑀𝐷, which “mathematically” exchanges energy with the contents of 

the simulation box in order to adjust the velocity of the particles to achieve the 

required temperature set-point. The temperature is modified according to Eqn. 

(26): 
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where 𝑇(𝑡) is the instantaneous temperature at time 𝑡, and 𝜏𝑇 is the thermostat 

time-constant that describes how strongly the system is coupled with the 

temperature bath. Larger values of 𝜏 means the system is not very strongly 

coupled with the temperature bath such that the change in the velocity of all 

particles is not very violent. From the Berendsen thermostat the rate of change of 

the velocity of each particle, 
𝑑𝒗(𝑡)

𝑑𝑡
 is described by Eqn. (27). 
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Similar to the Berendsen temperature coupling scheme, pressure control 

is achieved in the Berendsen barostat by coupling the system to a “pressure bath”. 

The coordinates and box dimensions are scaled at every time step to achieve the 

desired pressure, 𝑃𝑀𝐷, according to Eqn. (28):86  
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where 𝑃(𝑡) is the instantaneous pressure at time 𝑡, and 𝜏𝑃 is the barostat time-

constant that has the same role in the barostat as 𝜏𝑇 has in the thermostat. For 

isotropic pressure coupling, where changes in the box dimensions are made 

equivalently in all directions, the scaling factor, 𝜂(𝑡), is given by Eqn. (29):  
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where 𝛾 is the isothermal compressibility of the system. In this form, the volume 

is scaled by 𝜂 and the coordinates of each particle and cell dimensions are scaled 

by 𝜂1/3. Anisotropic pressure coupling can also be achieved where each direction 

is set to have a different compressibility, and a separate pressure bath is coupled 

to each of the three dimensions. This type of pressure coupling can result in 

simulation artifacts, but can be more appropriate for non-homogeneous or non-

isotropic systems. 
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3. CLATHRATE HYDRATES LITERATURE REVIEW 

 

In this section, an outline of the structures of clathrate hydrates and their 

three-phase equilibrium is first provided in section 3.1, with particular attention to 

methane and carbon dioxide hydrates. Second, a review of the MD simulation 

work that has been conducted on methane and carbon dioxide hydrates is 

presented in section 3.2. This involves a discussion of the models available for 

describing water, methane and carbon dioxide in molecular simulations in section 

3.2.1, followed by a description of the procedures used by various authors to 

predict the three-phase coexistence of methane and carbon dioxide hydrates in 

section 3.2.2. 

3.1 Hydrate Crystal Structures and Phase Equilibrium 

The three-dimensional, hydrogen-bonded network of water molecules in a 

hydrate crystal is similar to that found in ice, with the main difference being the 

presence of a guest molecule in the cages of hydrates to stabilize the structure. 

The specific hydrate structure that forms is determined by the size of the guest 

molecule, as well as its interactions with water. The three most common hydrate 

crystal structures are cubic structure I (sI), cubic structure II (sII), and a hexagonal 

structure H (sH), which are illustrated in Fig. 4.87 The structures differ in the 

number and size of the cavities that make a single unit cell of the crystal. 



32 
 

 

FIG. 4. The three common hydrate unit crystal structures.42 
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Each unit cell of a sI crystal consists of 2 small pentagonal dodecahedron 

cavities (512) and 6 large tetrakaidecahedron cavities (51262), giving a total of 8 

cavities (by convention, the notation xy indicates a cage in which there are y units 

of x-sided polygons). This structure generally forms for guest molecules having 

diameters between 0.42 and 0.6 nm, such as methane, ethane, or carbon dioxide. 

Each unit cell of a sII crystal consists of 16 small 512 cavities and 8 large 

hexakaidecahedron (51264) cavities. This structure forms for small guest 

molecules with diameter less than 0.42 nm, such as nitrogen or hydrogen, as well 

as larger guest molecules with diameters between 0.6 and 0.7 nm, such as 

propane or iso-butane. Each unit cell of a sH crystal consists of 3 small 512 

cavities, 2 medium irregular dodecahedron cavities (435663), and 1 large 

icosahedron (51268) cavity. This structure forms for large guest molecules with 

diameters greater than 0.7 nm, such as iso-pentane or neohexane.2 

In most cases, each cavity within a unit cell contains a single guest 

molecule. However, recent studies have indicated that three-dimensional hydrate 

structures can exist with metastable empty cages.88–90 For this reason, a further 

characterization criterion used in the study of clathrate hydrates is the cage 

occupancy, which is defined as the fraction of cages that are occupied by a guest 

molecule. On the other hand, multiple cage occupancy for small guest molecules 

such as argon and hydrogen has recently been reported using both experimental 

and molecular simulation techniques.7,10,91 Also, formed hydrates of particular 

guests may undergo structural transitions at different conditions of pressure and 
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temperature. For example, methane hydrates undergo a sI-to-sII structural 

transition at 1000 bar, followed by a sII-to-sH transition at 6000 bar.92 A detailed 

discussion of all the experimental studies that are related to structural transitions 

is presented in the review by Loveday and Nelmes.93 A powerful predictive theory 

or technique must therefore be able to capture such anomalies in the general 

trends. 

For a pure hydrate of any guest at a specified pressure, a single three-

phase coexistence temperature (T3) exists at which the hydrate phase (H) can 

coexist with a liquid water phase (Lw) and a vapor or liquid guest phase (GV or 

GL). This is a direct result of Gibbs phase rule which dictates that a system 

consisting of two components in three phases would only have one degree of 

freedom.76 Therefore, the accurate prediction of T3 is of great importance since it 

is the temperature boundary below which hydrate growth can proceed. 

While this work focusses mainly on predicting an equilibrium property of 

clathrate hydrates, the MD simulation technique used is inherently dynamic. For 

this reason, a brief discussion of the kinetic processes that hydrates can undergo 

is provided here. Hydrates can undergo three kinetic processes: nucleation, 

growth, and dissociation. Hydrate nucleation is a process that occurs for systems 

that involve water and an appropriate guest molecule at conditions at or below T3 

at a given pressure. It is a microscopic phenomenon that involves tens of 

thousands of molecules, and includes the dispersion of clusters of water and guest 

molecules into the appropriate geometry for continued hydrate growth. The initially 
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formed geometry from which hydrate growth can occur is known as the hydrate 

nucleus. The hydrate nucleation process is a stochastic process that can take very 

long times, so is difficult to observe using experimental techniques. Hydrate 

growth is the process by which more cages are developed on top of the hydrate 

nucleus, allowing the hydrate crystal to propagate in size. This process has a 

higher kinetic rate than hydrate nucleation, making it more suitable for 

experimental measurements, as well as molecular simulation studies. Finally, 

hydrate dissociation is the process that occurs at temperatures well above T3 for 

the mixture, and involves the destabilization of the hydrate cages, causing the 

release of the enclathrated guest molecules.  

3.1.1 Methane Hydrates Phase Equilibria 

Methane has a critical temperature and pressure of 190.6 K and 46.0 bar, 

respectively. Therefore, methane is supercritical at most conditions that are 

relevant to hydrate applications. Two three-phase equilibrium regions exist for 

methane hydrates. At temperatures below the melting of ice, the three-phase 

equilibrium (I-H-VCH4) that exists involves a solid ice phase (I) in equilibrium with 

a H phase and a supercritical methane phase (VCH4). At the melting temperature 

of ice, a quaternary point exists (I-Lw-H-V) that marks the phase transition of ice 

to liquid water on the hydrate three-phase equilibrium line. Above this 

temperature, the H-Lw-VCH4 equilibrium exists. The experimental three-phase 

equilibrium line is shown in Fig. 5, with the I-Lw-H-VCH4 point marked at the melting 



36 
 

temperature of ice. The data in the figure is obtained from the text by Sloan and 

Koh.2 

  

FIG. 5. Methane hydrate experimental three-phase diagram, showing the  
H-Lw-VCH4 equilibrium points (x), I-H-VCH4 equilibrium (+), and the I-Lw-H-VCH4 

quaternary point (■).2  

3.1.2 Carbon Dioxide Hydrates Phase Equilibria 

Unlike methane, the vapor-liquid transition (VLE) of carbon dioxide lies well 

within the hydrate formation range which results in the presence of two additional, 

relevant three-phase equilibria. Similar to methane, at low pressures and 

temperatures below the melting temperature of ice, the I and H phases coexist 

with the vapor carbon dioxide phase (VCO2). At pressures below the saturation line 

of carbon dioxide and temperatures above the melting of ice, the H-Lw-VCO2 

equilibrium line exists. Starting on this line and increasing the pressure 
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isothermally to the saturation pressure of carbon dioxide will result in a different 

three-phase equilibrium that does not exist in methane hydrates; namely, the H-

VCO2-liquid CO2 (LCO2) equilibrium line. At the intersection between the H-Lw-VCO2 

line and the H-LCO2-VCO2, a quaternary point (H-Lw-LCO2-VCO2) exists which involves 

the coexistence between a H phase, a Lw phase, and the VLE between VCO2 and 

LCO2. At pressures above this intersection, a single three-phase equilibrium line 

exists (H-Lw-LCO2) that involves a H phase in equilibrium with Lw and LCO2 phases. 

The experimental carbon dioxide hydrate phase diagram is presented in Fig. 6, 

showing the four three-phase equilibrium lines, the quaternary point, and the pure 

carbon dioxide saturation line. 

 

FIG. 6. Carbon dioxide hydrate experimental three-phase diagram, showing the 
H-Lw-V equilibrium points(x), I-H-VCO2 equilibrium (+),the I-Lw-H- VCO2 quaternary 

point (■), the H- VCO2-LCO2 equilibrium (○), and the H-Lw-LCO2  

(△) equilibrium.2 The pure carbon dioxide saturation line is also shown.94 
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3.2 MD Simulations of Clathrate Hydrates 

As was outlined in section 2, the ability of a simulation to accurately predict 

the properties of the system being studied is largely dependent on the force fields 

used to describe the constituent molecules. For the case of hydrates, a careful 

choice must be made for the model used to describe both water and the guest. It 

is therefore worthwhile to provide a brief outline of the available models for water 

and the two guest molecules used in this study; namely, methane and carbon 

dioxide. This is provided in section 3.2.1. A general overview of the studies 

involving molecular dynamics simulations of clathrate hydrates is then provided in 

section 3.2.2, with particular attention to the studies providing three-phase 

coexistence temperature predictions for methane (section 3.2.2.1) and carbon 

dioxide (section 3.2.2.2) hydrates, which is relevant to this work. 

3.2.1 Water, Methane, and Carbon Dioxide Force Fields 

3.2.1.1 Water Force Fields 

Water is the most extensively studied molecule due to its relevance to a 

tremendous number of diverse fields. Yet, of the thousands of models available 

for water, not a single developed model can replicate all the compound’s 

properties accurately. Water is a particularly challenging molecule to model due 

the complexity of its interactions, primarily due to its large dipole moment and 

ability to form hydrogen bonds. Most model parameters are derived in an empirical 

manner, wherein the geometry of the atoms and the charges, as well as the 

mathematical framework governing the intramolecular (e.g. rigid vs. flexible) and 
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intermolecular (e.g. Lennard-Jones potential vs. Buckingham potential) are first 

hypothesized, followed by a parametrization procedure that provides values that 

replicate certain experimental properties. Common properties used for the fitting 

of the model parameters include the dipole moment or the dimer interaction 

energy if the model is intended for simulations of water in the vapor phase, or heat 

of vaporization and density if the model is intended for simulations of water in the 

liquid phase. Additionally, some models are fitted to give accurate phase 

equilibrium predictions. An alternative methodology used for developing models 

is through the use of ab initio calculations to calculate dimers, trimers or higher 

order clusters.95 

A comprehensive review of the different models available for water has 

been reported by Guillot.95 Three general types of models exist for water:  

1) Rigid models, where the molecule is described as several fixed sites 

[e.g. Bernal-Fowler,96 Simple-Point-Charge (SPC)97 and its extended 

form (SPC/E),98 TIP3P and TIP4P99]. 

2) Flexible models, which allow intramolecular vibrations [e.g. Matsuoka-

Clementi-Yoshimine (MCY),100 and SPC/Flexible (SPC/F)101].  

3) Polarizable models, which include an explicit polarization term such as 

a charge distribution, in order to include complex effects like the dipole 

induced dipole mechanism in the simulations (e.g. SPCP,102 and 

PTIP4P103).  
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Within each of these types, many models exist that offer different levels of 

accuracy for different properties. The most common type used is the rigid class 

due to the calculations for this class being the cheapest. The choice of model must 

therefore be made very carefully, with specific attention to the accuracy of the 

model in predicting the properties of interest in the study being conducted. 

3.2.1.2 Methane Force Fields 

Systems involving methane have been readily investigated using molecular 

simulation techniques. Methane is a simpler molecule to model than water since 

it does not undergo complex reactions, and interacts primarily through dispersion 

interactions. This results in only a few models that are commonly used to describe 

methane, and achieve very accurate predictions. Two types of models for the 

methane molecule exist:  

1) All-Atom models, in which all the hydrogen atoms are explicitly 

represented [e.g. Optimized Potentials for Liquid Simulations–All Atom 

(OPLS-AA)104]. 

2) United-Atom models, where the entire molecule is described as a 

single, spherical Lennard-Jones interaction site [e.g. OPLS–United 

Atom (OPLS-UA),105 and Transferrable Potentials for Phase Equilibria 

(TraPPE)106]. 

Despite the non-spherical geometry of the methane molecule, the description of 

the molecule using the United-Atom representation provides a reasonable 
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description of the properties of methane, making it the favored representation 

used for methane simulations. 

3.2.1.3 Carbon Dioxide Force Fields 

The molecular simulation of carbon dioxide gained tremendous interest 

with the realization of global warming, and the need for predictions of the behavior 

of carbon dioxide in various mixtures. The main models that are used describe 

carbon dioxide as a three-site rigid linear model, where the partial charges are 

fixed on the axis of symmetry of the molecules. A positive partial charge is placed 

on the carbon site, and negative partial charges are placed on the oxygen sites 

[e.g. TraPPE,107 Elementary Physical Model 2 (EPM2), Murthy-Singer-McDonald 

(MSM),108–110 and Zhang and Duan (ZD)111]. The intermolecular interactions 

between the molecules are generally treated using the Lennard-Jones functional 

form, with the exception of the notable Exponential-6 (Exp-6) model112 which 

describes both the repulsion and dispersion forces using an exponential functional 

form.  

3.2.2 Three-Phase Coexistence from MD Simulations 

Studies involving the molecular simulation of clathrate hydrates have been 

reviewed by Sum et al.,91 Barnes and Sum,114 and recently by English and 

MacElroy.115  The first appearance in the literature of a study involving MD 

simulations on clathrate hydrates was reported by Tse et al. in 1983.116 Ever since, 

there have been many MD studies reported that cover many different topics with 

regards to clathrate hydrates, mainly for methane and carbon dioxide guests. 
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These include studies on nucleation,117–123 growth,124,125 dissociation,126–132 

inhibition,133–135 heat transfer effects,136–138 the effect of hydrate contact with solid 

surfaces,139–142 methane replacement by carbon dioxide,60,143,144 and the 

calculation of transport properties such as thermal conductivity,145–147 or 

thermodynamic properties such as three-phase equilibrium conditions.148–153  

In order to predict T3 using reasonable simulation lengths, it was found that 

starting from an initial system that consists of solid-fluid and fluid-fluid interfaces 

between the hydrate, water and guest is needed.128,154 A commonly employed 

approach for the prediction of T3 using MD simulations involves the setup of an 

initial multi-phase system consisting of slabs of all three phases in coexistence, 

then performing several simulations at the same pressure while varying the 

temperature. Each simulation will ultimately result in either the growth or the 

dissociation of the hydrate structure. The value of T3 is then located to be between 

the maximum temperature at which hydrate growth is observed and the minimum 

temperature at which the hydrate melts. This method is known as the direct-phase 

coexistence method, and was first reported by Ladd and Woodcock for the three-

phase coexistence of the Lennard-Jones system.69 The direct-phase coexistence 

method has been used by several authors to determine T3 of both methane and 

carbon dioxide hydrates.148,153,155,156 These will be reviewed in section 3.2.2. 

3.2.2.1 Methane Hydrate T3 from MD Simulations 

Fernandez et al. used the direct-phase coexistence method to predict the 

melting temperature of ice, Tm, at 1 bar using different force fields to model water, 
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and found that different force fields predict different deviations, ΔTm, from the 

experimental value of 273.2 K at 1 bar. The predicted values of Tm using the four-

point models they investigated and the deviation from the experimental melting 

temperature for each model are shown in Table I.154 

Table I. The melting temperature of ice, Tm, at 1 bar predicted using the four-point 
water models TIP4P99, TIP4P/ice157, TIP4P/2005158, and TIP4P-Ew159 as reported 
by Fernandez et al.154 and the deviation from the experimental value of each 
model, ΔTm. 

Model Tm [K] ΔTm [K] 

TIP4P 230.5(3) -42.7(3) 

TIP4P/ice 270.0(3) -3.2(3) 

TIP4P/2005 250.5(3) -22.7(3) 

TIP4P-Ew 244.0(3) -29.2(3) 

Conde and Vega148,155 studied the methane hydrate three-phase 

equilibrium with the direct-phase coexistence method. The authors showed that 

by varying the temperature for a given pressure, the three-phase coexistence 

temperature can be determined. Using a simple Lennard-Jones model for the 

methane molecule, they assessed the behavior of different water force fields and 

found that the determined coexistence temperature depends heavily on the 

predicted melting temperature of ice for each force field (Table I). In their 

simulations, they observed the formation of methane bubbles which was attributed 



44 
 

to system size effects. Although their results exhibited significant uncertainty, they 

showed that the TIP4P/Ice force field157 offers the best predictions. 

Tung et al.150 used the same methodology but with a different initial 

configuration and by using the TIP4P/Ew force field159 for water with the OPLS-

All Atom (OPLSAA)104 force field for methane, with geometric combining rules, 

and using in particular for the C–O interaction, the parameters proposed by Cao 

et al.160  

Jensen et al.149 calculated the three phase equilibrium conditions using the 

Monte Carlo simulation method in order to calculate the chemical potential of 

water and methane in the hydrate phase and in the liquid and gas phase, 

respectively. They used the TIP4P/Ice force field for water with the OPLS-United 

Atom (OPLS-UA)105 force field for methane. Their findings systematically over-

predict the equilibrium temperature for a given pressure and disagree with Conde 

and Vega.148  

Smirnov and Stegailov152 followed a different approach for the 

determination of the equilibrium conditions of the methane hydrate. They focused 

mainly on the cases where the hydrate dissociates, a process which is much faster 

than growth. They investigated the TIP4P/Ice,157 TIP4P/2005,158 and SPC/E98 

force fields for water in combination with the Lennard-Jones model for methane 

proposed by Guillot and Guissani.161 Their results using TIP4P/Ice agree with 

Jensen et al.,149 and while they disagree with Conde and Vega148 for the case of 

TIP4P/Ice, they agree for the case of TIP4P/2005. 
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3.2.2.2 Carbon Dioxide Hydrate T3 from MD Simulations 

Contrary to the case of methane hydrates,148,153 the prediction of carbon 

dioxide hydrate phase equilibria with MD has attracted limited attention. In 

particular, Sarupria and Debenedetti162 carried out an MD study of the dissociation 

rate of carbon dioxide hydrates as a function of hydrate occupancy, using the 

TIP4P/2005158 and TraPPE107 models for water and carbon dioxide, respectively. 

They used a system configuration of hydrate in contact with liquid water, without 

a carbon dioxide phase present, since they did not examine hydrate growth. They 

observed that the dissociation temperature is modestly dependent on the hydrate 

occupancy. Taking into consideration that ΔTm for the TIP4P/2005 force field is 

250.5 K,154 they reported for the case of 30.5 bar a temperature difference 

between the melting of hydrate and the melting of ice of 4–8 K which is close to 

the experimental value of 7.15 K.  

Tung et al.163 used a three-phase molecular system to study the growth of 

carbon dioxide hydrate and to calculate the melting temperatures at different 

pressures using MD. The authors used TIP4P/Ew159 and EPM2164 models for the 

water and carbon dioxide, respectively, with Lennard-Jones cross interaction 

parameters obtained from Sun and Duan.165 Their predictions agree with the 

experimental results up to 300 bar but as pressure is increased up to 1000 bar, 

the deviations become significant.  

Miguez et al.156 studied the H-Lw-LCO2 three-phase equilibria of carbon 

dioxide hydrate with MD from 20-5000 bar, and used the direct-phase coexistence 
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method for the determination of T3. First, they investigated the effect of cage 

occupancy on the prediction of T3 and observed no significant effect of cage 

occupancy on the prediction of T3 for occupancies above 75%, noting however 

that the presence of empty large cages can significantly affect the stability of the 

hydrate solid, while the presence of empty small cages has no effect. Second, 

they investigated the effect of the choice of water and carbon dioxide force fields 

on the prediction of T3. To test the effect of the water force field, they used the 

TIP4P/Ice157 and TIP4P/2005158 force fields for water with the TraPPE107 force 

field for carbon dioxide, and found that both water force fields give an accurate 

representation of the slope of the T3 line, but have systematic deviations of -15 K 

for TIP4P/ice and -37 K for TIP4P/2005 from the experimental measurements.  

To test the effect of the carbon dioxide force field, they found the 

coexistence line using TIP4P/ice water with three  different force fields for carbon 

dioxide: the MSM force field,108–110 the EPM2 force field,164 and the ZD force 

field.111 The authors found no significant difference in the coexistence lines 

predicted using the different carbon dioxide force fields. Finally, the authors 

hypothesized that a probable remedy for the deviation in the prediction of T3 from 

the experimental data could be the implementation of positive deviations from the 

Lorentz–Berthelot combining rule. They introduced a modification factor (𝜒) to the 

cross interaction energy parameter for both the oxygen in water – oxygen in 

carbon dioxide and the oxygen in water – carbon in carbon dioxide combining 

rules for the TIP4P/ice with TraPPE force field combination, and found that by 
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using a value of 1.13 for 𝜒, the predicted equilibrium line shifts and lands on top 

of the experimental coexistence line. 
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4. METHODOLOGY 

 

In this work, the direct-phase coexistence methodology69 was used for the 

prediction of T3 of methane and carbon dioxide hydrates for pressure ranges of 

40–600 bar for methane, and 20–1000 bar for carbon dioxide. In this method, a 

slab of each of the phases that take part in the equilibrium is separately prepared, 

and subsequently the slabs are placed in contact. The value of T3 can be 

determined for each pressure by performing a temperature scan using a series of 

MD simulations in the NPT ensemble, and observing whether the system evolves 

by growth or dissociation of the hydrate phase (see Fig. 7).   

 

FIG. 7. Snapshots of the HWCW system at 1000 bar, showing the initial 
configuration, and two final states above and below T3 that correspond to hydrate 
dissociation and growth, respectively. The water molecules are represented by 
the red and black lines. The carbon dioxide molecules are represented by the blue 
spheres (carbon) and pink cylinders (oxygen). 
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The coexistence temperature from a single temperature scan is identified 

as the average of the highest temperature at which hydrate growth occurs and the 

lowest temperature at which hydrate melting appears. Five independent 

temperature scans were carried out at each pressure, and the final coexistence 

temperature is determined as the average of the five T3 values obtained for each 

pressure. The reasoning behind this statistical treatment is presented in section 

5.1.2. This procedure was followed to first obtain the H-Lw-VCH4 coexistence line 

and allowed for insight into the appropriate simulation parameters needed to 

accurately predict hydrate phase equilibria. It was next applied to carbon dioxide 

hydrates, where both the H-Lw-VCO2 and H–Lw–LCO2 equilibria were predicted, and 

further insight into molecular level events were made, and are presented in section 

5.2.  

4.1 Initial Configuration Preparation 

The three-phase configuration that was prepared in this study consisted of 

a slab of solid hydrate, a slab of the guest in the appropriate phase (i.e. liquid or 

vapor) under the conditions being studied, and two slabs of water on either side 

of the guest, giving a total of four slabs. The slabs were connected such that the 

interface between any two slabs was perpendicular to the x-axis.  

The hydrate slab was prepared first. Both the methane and carbon dioxide 

hydrates form the sI hydrate structure for temperature and pressure conditions 

that are relevant to most industrial applications.166,167 The positions of the oxygen 

atoms in a unit cell of the sI hydrate were obtained from the XRD data reported 
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by McMullan and Jeffrey.168 The hydrogen atoms were then placed on each 

oxygen atom while respecting the geometry dictated by the chosen water force 

field. A single guest molecule was placed at the center of each cage in a random 

orientation, corresponding to the case of 100% cage occupancy. A 2x2x2 

supercell was subsequently created by duplicating the unit cell in the x, y, and z 

directions to give a hydrate slab that consists of 368 water molecules and 64 guest 

molecules (since a single unit cell of the hydrate sI crystal with 100% cage 

occupancy contains 46 water molecules and 8 guest molecules).  

The initial positions of the hydrogen atoms were found by minimizing the 

energy of the supercell using the steepest descent algorithm (section 2.2.2), while 

keeping the position of all the oxygen atoms fixed. This approach results in a 

structure that obeys the Bernal and Fowler rules,96 and is an alternative to the use 

of dipole moment minimization.162 A short NPT simulation was then performed to 

equilibrate the solid slab and find its dimensions. 

Two water slabs, each consisting of 368 molecules, and one guest slab 

was then prepared with the same y and z dimensions as those of the equilibrated 

hydrate slab. The guest slab contains enough guest molecules to have a 

comparable length in the x dimension as that of the water slabs, so that the 

formation of a guest bubble inside the water slab is avoided (see section 5.1.1). 

The appropriate number of guest molecules depends on the density of the guest 

at the conditions being tested, and ranges from 64 methane molecules for 

pressures below 100 bar, to 200 carbon dioxide molecules at all pressures. Table 
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II shows the number of guest molecules used at each pressure for both the 

methane and carbon dioxide hydrate equilibrium studies.  

Table II. Number of molecules in the guest slab for each studied pressure. 

Pressure [bar] Number of Guest Molecules 

CH4 guest 

40 64 

100 64 

400 128 

600 128 

CO2 guest 

20 200 

30 200 

200 200 

400 200 

1000 200 

The methane slabs consisted of gaseous methane for all the pressures 

tested. However, for carbon dioxide the guest slab was carefully prepared to 

match the experimental phase at the pressure being tested. The quaternary point 

(Q2) that marks the vapor-to-liquid transition of carbon dioxide on the three-phase 

coexistence line of carbon dioxide hydrates has been experimentally determined 

to be 45 bar,2 so a vapor or liquid carbon dioxide slab is prepared for investigations 

below or above this pressure, respectively. 
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For the case of carbon dioxide, it was found necessary to equilibrate the 

liquid water (W)–carbon dioxide (C)–liquid water (WCW) system prior to 

connecting this three-slab system to the hydrate slab, an issue which is addressed 

in detail in section 5.2.1. The three, individually equilibrated slabs were connected 

and a 20–50 ns NPT simulation was carried out while fixing the y and z dimensions 

of the system. Finally, the equilibrated WCW system was placed in contact with 

the equilibrated hydrate slab, forming the initial configuration which has the 

arrangement: solid hydrate (H)–WCW (HWCW). In methane hydrates, this extra 

equilibration step was not necessary, so the individually equilibrated slabs were 

directly placed in contact with the hydrate slab, giving the arrangement: WHW-

methane (M) (WHWM).  

It should be noted that due to the periodic boundary conditions, both the 

HWCW and the WHWM arrangements are equivalent. In Fig. 7, indicative 

snapshots of the system are shown for the case of liquid carbon dioxide guest at 

1000 bar showing the initial configuration, and the final states of simulations above 

and below the predicted T3, where hydrate dissociation and hydrate growth 

occurred, respectively. 

4.2 Force Field Description 

The water molecules were modelled using the well-known TIP4P99 

molecular geometry. The TIP4P/ice157 force field was used for both the methane 

and carbon dioxide hydrate studies, while the TIP4P/2005158 force field was also 

used in the carbon dioxide hydrate studies to make generalizations as to the effect 
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of the water force field. Both water force fields are rigid, non-polarizable models 

where a Lennard-Jones interaction site is placed at the position of the oxygen 

atom, while positive charges are positioned on the hydrogen atoms. The negative 

charge is placed on a virtual site M which lies along the bisector of the H–O–H 

angle. 

The two force fields differ in the values of the Lennard-Jones parameters, 

the position of M, and the magnitude of the charges. The TIP4P/ice model was 

developed in order to reproduce the melting temperature of ice (Ih), with only a  

-3.2 K deviation in the melting temperature prediction from the experimental value, 

making this model a reasonable choice for the study of the phase equilibrium of 

the ice-like hydrate structures.  

While the TIP4P/2005 model predicts a deviation of -22.7 K, it offers the 

advantage of having the same geometry as the TIP4P/ice force field, and is still 

more accurate than all the other tested rigid water models for predicting the 

melting of ice (see Table I). The parameters of both the water force fields are 

provided in Table III. 

Methane was modelled using the OPLS-UA105 force field parameters, 

which represents the methane molecule as a single, neutral Lennard-Jones 

sphere. This representation is commonly used for methane, and has been shown 

to accurately describe the properties of methane over a wide range of conditions. 

In fact, several other parametrizations have been performed for describing the 

methane molecule using the same united atom geometry, including the TraPPE106 
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model which provides identical values for the Lennard-Jones parameters as the 

OPLS-UA model, and the parameters proposed by Guillot and Guissani161 who 

gave the same value of 𝜎 but a slightly lower value of 147.5 K for 𝜀/𝑘𝐵 compared 

to 148 K in the OPLS-UA force field. Parameters for the OPLS-UA model for 

methane are presented in Table III. 

Carbon dioxide was modelled using the TraPPE105 force field, which 

represents the molecule as a linear chain of three partially charged Lennard-

Jones sites. The model is rigid and non-polarizable. This molecular geometry is 

also popular for representing carbon dioxide, and parameters for this structure 

have been proposed by several authors including the MSM force field,108–110 the 

EPM2 force field,164 and the ZD force field,111 all of which provide very similar 

Lennard-Jones parameters, carbon and oxygen charges, and geometric 

parameters. The parameters of the TraPPE carbon dioxide force field are provided 

in Table III. 
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Table III. Potential parameters of the TIP4P/Ice (water)157, TIP4P/2005 (water)158, 
TraPPE (carbon dioxide)107, and OPLS-UA (methane)105 models. The distance, in 
Å, between atoms A and B is denoted dAB. The angle, in degrees, formed at a 

central atom B separating two A atoms is denoted ∠A–B–A. The charge is 
denoted q. The Lennard-Jones parameters are denoted σ (size parameter) and 
ε/kB (energy parameter, with kB the Boltzmann constant). 

Force Field Atom 𝜎 (Å) 𝜀/𝑘𝐵 (K) q (e) Geometry 

TIP4P/Ice H2O  

 O 3.1668 106.1 0.0 dOH (Å) 0.9572 

 H 0.0 0.0 0.5897 ∠H–O–H 104.5° 

 M 0.0 0.0 -1.1794 dOM (Å) 0.1577 

TIP4P/2005 H2O  

 O 3.1589 93.2 0.0 dOH (Å) 0.9572 

 H 0.0 0.0 0.5564 ∠H–O–H 104.52° 

 M 0.0 0.0 -1.1128 dOM (Å) 0.1546 

TraPPE CO2  

 C 2.800 27.0 0.700 dCO (Å) 1.16 

 O 3.050 79.0 -0.350 ∠O–C–O 180° 

OPLS-UA CH4  

 CH4 3.73 147.5 0.0  

In the methane hydrate studies, calculating the cross-interaction Lennard-

Jones parameters (interactions between the unlike molecules) was done using 

the Lorentz-Berthelot (LB) combining rules, given by Eqn. (30) and (31):79  

 
i j

ij
2
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2

ij i j     (31) 
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where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are the distance and energy parameters, respectively, for the 

interaction between atoms i and j which belong to two different molecules. 

For carbon dioxide, two sets of runs were conducted. In the first, all the 

cross-interaction parameters were calculated using the Lorentz–Berthelot (LB) 

combining rules. In the second, all the cross-interaction parameters were 

calculated using the LB combining rules with the exception of the cross-interaction 

energy parameter between the oxygen in water and the oxygen in carbon dioxide 

(𝜀𝑂(𝐶𝑂2)−𝑂(𝐻2𝑂)). An empirical modification factor (𝜒) was used to correct the LB 

cross-interaction energy parameter according to Eqn. (32):  

  
2 2 2 2O( CO ) O( H O ) O( CO ) O( H O )       (32) 

where 𝜀𝑂(𝐶𝑂2) and 𝜀𝑂(𝐻2𝑂) are the Lennard-Jones energy parameters for oxygen in 

carbon dioxide and water, respectively. 

4.3 Simulation Details 

All simulations were run using the GROMACS MD simulation package 

(version 4.6.5).83–85 Periodic boundary conditions were applied in all directions. 

The Berendsen temperature and pressure coupling schemes86 were applied with 

time constants of 1 ps for methane hydrates and 0.5 ps for carbon dioxide 

hydrates. Anisotropic pressure coupling was used with equal compressibility in all 

directions such that each dimension can fluctuate independently, in order to avoid 

inducing stresses to the hydrate crystal.  

It should be noted that the correct interfacial tension between the slabs can 

be more accurately obtained by performing a semi-isotropic pressure coupling 

wherein the dimensions parallel to the interface (y and z dimensions) are fixed, 
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and only the dimension perpendicular to the interface (x dimension) is allowed to 

fluctuate. However, upon testing the influence of such semi-isotropic pressure 

coupling on the predictions of T3, and comparing the results with those obtained 

using the anisotropic coupling, it was found that no significant difference in the 

predictions is observed.  

In order to conduct five independent temperature scans at each pressure, 

different random seeds were used for the initial velocity of the molecules at each 

temperature. The integration was carried out using the leap-frog algorithm using 

a time step of 2 fs. The simulation time was chosen to be sufficiently long to allow 

for clear conclusions about the final state of the system (growth or dissociation), 

and depended on the system being simulated, as well as the pressure and 

temperature conditions.  

The required simulation time for methane hydrates was in the range of 

1000-4000 ns, due to the very low solubility of methane in the aqueous phase. 

For carbon dioxide, the simulation time was in the range of 300–1000 ns for the 

high-pressure runs where carbon dioxide is in the liquid phase, and 500–2000 ns 

for the low-pressure runs where carbon dioxide is in the vapor phase. Dispersion 

corrections were not applied in this study due to the nature of the system being 

anisotropic and inhomogeneous (see section 5.1.4). A cut-off distance of 11 Å 

was used for both the Lennard-Jones interaction potential and the short-range 

part of the Coulombic interactions. The long-range Coulombic interactions  were 

treated with the Particle-Mesh-Ewald (PME) method.169 
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5. RESULTS AND DISCUSSION* 

 

The value of T3 for methane and carbon dioxide hydrates at any pressure 

is obtained by performing many simulations at different temperatures for the same 

pressure. Two methods are used in order to determine the final state of the system 

(hydrate melting or growth):  

1) Visual inspection of the trajectory (Fig. 7) 

2) Plot of total potential energy as a function of simulation time 

The results of the studies on methane and carbon dioxide hydrates are presented 

in this section in chronological order. First, methane hydrate coexistence was 

studied, and the results of this work are presented in section 5.1.153 The results 

from this work provided insight into the stochasticity of the hydrate growth and 

dissociation processes, the necessity of long simulations, the potential for 

supersaturated conditions to appear and the effect of such conditions on the 

accuracy of the coexistence temperature predictions. Accounting for this 

information, the coexistence conditions of methane hydrates was predicted with 

high accuracy. 

Next, the information gained from the study of methane hydrate 

coexistence was used for studying carbon dioxide hydrates, and the results of this 

                                            
*Parts of this chapter are reproduced with permission from “Prediction of the phase equilibria of 
methane hydrates using the direct phase coexistence methodology” by Michalis VK, Costandy J, 
Tsimpanogiannis I, Stubos AK, Economou IG, 2015. The Journal of Chemical Physics, 142, 
044501, http://dx.doi.org/10.1063/1.4905572. Copyright 2015, AIP Publishing LLC. 

http://dx.doi.org/10.1063/1.4905572


59 
 

study are presented in section 5.2. New information was gained from this work 

regarding the relative effect of the water-water interactions compared to the guest-

water interactions on the predictions of T3, the effect of guest solubility in the 

aqueous phase, and the limitations of this approach for the study of T3. 

It should be noted here that snapshots from the simulations of both the 

methane and carbon dioxide hydrates are presented in this work. For ease of 

reading, all snapshots of the methane hydrate system are presented with a black 

background, while snapshots from the carbon dioxide hydrate study are given a 

white background. 

5.1 Application of the Direct Phase Coexistence Method to Methane 

Hydrates 

5.1.1 Hydrate Growth Characteristics 

In Fig. 8, three different snapshots are presented that depict the initial (0 

ns), an intermediate (600 ns), and the final state (1500 ns) of a typical methane 

hydrate run at 294 K and 600 bar. Fig. 9 presents the time evolution of the potential 

energy for the case of 294 K and 600 bar for five independent runs for a simulation 

time of 1500 ns each. This temperature corresponds to hydrate growth conditions 

and is 7.7 K below the experimental equilibrium value.170
 Growth is indeed 

observed in all the five cases which is also clear from the decrease of the potential 

energy up to the equilibrium value that corresponds to the transition of the whole 

system to the hydrate phase. 



60 
 

 

FIG. 8. Three snapshots of a typical trajectory of the WHWM system at 294 K and 
600 bar (run no. 4 of Fig. 9): (a) initial configuration at t = 0 ns,(b) intermediate 
step at t = 600 ns, and (c) final state at t = 1500 ns. The red and white lines 
represent the water molecules and the blue spheres represent the methane 
molecules.153 

The decrease of the potential energy in this case can be separated in two 

distinct stages which are characterized by different growth rates. The first one, 

starting from the beginning of the simulation until the onset of the second stage is 

the “normal” growth stage, where the methane molecules of the gas phase 
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initially dissolve, subsequently slowly diffuse through the liquid water slabs, and 

eventually reach the water–hydrate interface, where hydrate growth takes place. 

The beginning of the second stage is characterized by a sudden decrease of the 

potential energy (as is clearly indicated in the inset of Fig. 9 for the case of run no. 

2) and it ends with the full conversion of the system to the hydrate phase. After 

this point, the potential energy of the system remains practically constant. This 

accelerated growth rate is due to the formation of a methane bubble which leads 

to locally supersaturated conditions. 

 

FIG. 9. Potential energy vs time for five independent NPT simulation runs of 1500 
ns at 294 K and 600 bar. The inset figure focuses on the second stage of hydrate 
growth for the case of run no. 2.153 
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When enough methane and water molecules are removed from the gas 

and liquid phase, respectively, by being incorporated in the hydrate phase, then 

two separate possible phenomena may occur: (1) either the width of the water 

phase is diminished allowing the presence of the methane molecules in the vicinity 

of the hydrate–water interface or (2) the width of the methane slab becomes small 

enough and comparable to the width of the fluctuations of the water–methane 

interface, thus allowing the methane slab to enter the liquid phase in the form of 

a bubble. This bubble can be either spherical or cylindrical depending on its 

position with respect to the periodic boundaries. An illustrative example of a 

formed methane bubble is given in Fig. 10.  

Similar behavior has been observed in a number of studies.117,148
 It should 

be noted that under the conditions of the particular example, the methane is in the 

supercritical state [Pc = 45.992 bar, Tc = 190.564 K (Ref. 94)] and the term “gas” 

is used to distinguish it from the liquid water slab. 
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FIG. 10. Snapshots of a trajectory of the WHWM system at 290 K and 400 bar 
where (a) a thin methane slab is shown at t = 972.6 ns, and (b) 0.7 ns later a 
methane bubble has been formed. The red and white lines represent the water 
molecules and the blue spheres represent the methane molecules.153 

When supersaturated conditions are present, the hydrate growth rate is 

significantly higher than in the case of the first stage where the methane 

concentration in the water is close to or at the solubility limit. In any case, in all of 

our simulations, due to the choice of the initial configuration, the “normal” 

growth stage was always present and it offered enough indication for the 

existence of hydrate growth, without the need of supersaturated conditions.  
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5.1.2 Stochastic Nature of Hydrate Growth and Dissociation 

It is apparent from Fig. 9 that the “normal” growth rates of the five 

different runs are not equal, as indicated by the different slopes of the potential 

energy, a fact that must be attributed to the stochastic nature of the hydrate 

growth. Apart from the short-term potential energy fluctuations, there are 

fluctuations that expand over hundreds of nanoseconds. This case corresponds 

to alternating phenomena of hydrate growth and dissociation, although in the long 

term the system can be on average moving to one of the two final states. A direct 

consequence of this fact is that for the calculation of growth rates through MD 

simulations, averages should be used over an adequate number of runs. 

Additionally, the “induction” time for the bubble formation is not equal between 

different runs. 

The effect of stochasticity that is inherent to the direct-phase coexistence 

methodology is more pronounced near the three-phase equilibrium conditions. 

Indicative results for the case of 100 bar and 283 K are presented in Fig. 11. For 

the given pressure of 100 bar, the experimental three-phase coexistence 

temperature is T3,experimental = 286.2 K. The temperature of 283 K is very close to 

expected equilibrium temperature and in line with the work of Conde and Vega.148 

These authors showed by comparing different water models that the deviation of 

the predicted T3 by each model from the experimental values is correlated with 

the deviation of the predicted melting temperature of ice by each model from the 

respective experimental value (ΔTm).  
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In particular, in the case of TIP4P/Ice, the predicted melting temperature of 

ice is 270(3) K (see Table I)154 and thus T3,expected = T3,experimental − 3.15 K. The 

potential energy graphs in Fig. 11 correspond to different runs at the same 

pressure and temperature and show that the system for the given conditions near 

the equilibrium can either dissociate or form hydrate. Slightly different initial 

velocities in combination with the fluctuations imposed by the temperature and 

pressure coupling can lead to different final states (i.e., growth, dissociation). This 

behavior is persistent within a few Kelvin around the equilibrium temperature and 

it was found in all of our simulations. Additionally, it can be observed that the 

hydrate dissociation rate is different between the different runs in an analogous 

manner with that of hydrate growth that was discussed previously.  

It should be noted that Espinosa et al.,171 who studied the direct 

coexistence of a solid phase with a liquid-like phase of a pseudo hard-sphere fluid, 

observed a similar stochastic behavior close to coexistence conditions and 

additionally showed that the range of this behavior depends on the system size. 

Nevertheless, a very large system for the case studied in this work is 

computationally intractable. 
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FIG. 11. Time evolution of the potential energy of five different runs at 283 K and 
100 bar near equilibrium conditions.153 

This stochastic behavior poses a severe problem in the determination of 

the coexistence temperature if only one run is used. Figs. 12(a) and 12(b) present 

two variations of temperature scans for the determination of T3 at 100 bar. For the 

first case, shown in Fig. 12(a), given the information provided by the potential 

energy curves, the calculated T3 is 280 K. For the second scenario, presented in 

Fig. 5b, a different set of runs has been used, resulting in a calculated T3 value of 

286 K. This discrepancy originates from the use of a limited (in this case just one) 

number of runs for each temperature and the stochastic nature of this kind of 

simulations. 
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(a) 

 

(b) 

 

FIG. 12. Time evolution of the potential energy of two variations of temperature 
scans at 100 bar. Although the pressure and temperatures are the same for both 
figures (a) and (b), different independent runs have been selected in each 
scenario. In the case of figure (a) the calculated T3 is 280 K while in the case of 
figure (b) it is 286 K.153 
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An additional implication which is caused by the stochasticity of the hydrate 

growth and dissociation processes is that the simulation time that is needed in 

order to draw a clear conclusion on the final state of the system varies significantly 

between different runs. This can be problematic particularly for temperatures near 

the equilibrium value. In Fig. 13 five different runs are presented for the case of 

296 K and 400 bar. Under these conditions all the runs lead to dissociation but 

the necessary simulation time ranges between 600–2500 ns. For example it would 

be misleading to end the simulation of run no. 5 at a time in the range of 1100 to 

1200 ns as this would draw the erroneous conclusion of hydrate growth. 

 

FIG. 13. Time evolution of the potential energy of five independent runs at 296 K 
and 400 bar. The dashed line denotes the value of the potential energy at three-
phase equilibrium state.153 
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5.1.3 Calculation of T3 of Methane Hydrates 

Indicative temperature scans, as in the case of 100 bar, shown in Fig. 12, 

are presented for the remaining of the pressures examined in this work in Figs. 

14(a), 14(b), and 14(c) for 40, 400 and 600 bar, respectively. Although, as already 

discussed, single run temperature scans cannot be used safely for the 

determination of T3, a comparison between the different pressures reveals various 

trends. First, the higher the pressure, the less the required simulation time in order 

to draw a conclusion about the final state of the system, although for temperatures 

very close to T3 this may not hold. Second, the hydrate growth rate increases by 

decreasing the temperature and this holds for all the pressures examined. An 

opposite conclusion can be drawn if a comparison is made between a limited 

number of runs; then due to stochasticity one could find a scenario where the 

higher temperatures correspond to higher rates. On average, nevertheless, the 

rate is increased by decreasing the temperature. Finally, in a similar manner, 

dissociation rate increases as temperature increases. 
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(a) 

 
(b) 

 
(c) 

 
 

FIG. 14. Indicative temperature scans of time evolution of the potential energy for 
different pressure values of (a) 40, (b) 400 and (c) 600 bar.153 
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Based on the aforementioned observations and in order to determine T3 of 

the methane hydrate system, we performed for each pressure a temperature scan 

of five different temperature values. For each temperature we performed five runs, 

resulting in 25 simulations per pressure. We examined four different pressure 

values, namely 40, 100, 400, and 600 bar, which cover a broad range of the three-

phase coexistence curve of the methane hydrate. Each temperature scan was 

centered on the expected three-phase coexistence temperature with a step of 2 

K. In line with the work of Conde and Vega,148 we assumed that the expected T3 

is equal to the experimental value corrected by ΔTm for the TIP4P/Ice water model. 

This prediction is 270(3) K,154 and therefore, we considered a correction value of 

3.15 K. 

An example of the averaging method for the determination of T3 for the 

case of 100 bar is presented in Table IV. The final state of each of the 25 runs is 

characterized as either resulting in hydrate growth (g) or hydrate dissociation (d) 

and the appropriate averages are calculated as the arithmetic mean of the closest 

temperature that corresponds to different final states. For this case of 100 bar, the 

calculated coexistence temperature is T3=282.8 K with a standard deviation of 3.2 

K. The experimental value of T3 for the given pressure is 286.2 K and so there is 

a difference of 3.4 K, which is very close to the difference between the 

experimental and the expected value. 
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Table IV. Statistical averaging of 25 simulation runs for the determination of the 
T3 at a pressure of 100 bar. The calculated temperature is T3 = 282.8 K with a 
standard deviation of 3.2 K. The final state of each realization is denoted as (g) 
for hydrate growth or (d) for hydrate dissociation.153 

T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

279 g g g g g 

281 g g g g d 

283 g g d d d 

285 g d d d d 

287 d d d d d 

T3 (K) 286 284 282 282 280 

 

The results for all the four different pressure values examined in this work 

are presented in tabulated form in Table V and plotted in Fig. 15 along with the 

experimental values,170 the expected values, the results by Conde and Vega,148 

and the results by Tung et al.,150 who also used the direct phase coexistence 

methodology. Additionally, the results by Jensen et al.149 [85] and Smirnov and 

Stegailov have been included.152  
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Table V. Experimental and calculated T3 along with standard deviations, and 
deviation of predictions from experimental values. Experimental values are taken 
from the polynomial fit reported by Moridis.153,170 

P [bar] T3,experimental [K] T3,this work [K] ΔT [K] 

40 277.4 273.0(2.4) -4.4 

100 286.2 282.8(3.2) -3.4 

400 297.2 293.4(0.9) -3.8 

600 300.7 297.0(0.0) -3.7 

 

 

FIG. 15. Experimental170 and calculated values from this work and from the 
literature for the three-phase coexistence temperature of the methane hydrate 
system (Conde and Vega,148 Tung et al.,150 Jensen et al.,149 and Smirnov and 
Stegailov152). All authors used TIP4P/Ice except Tung et al. who used TIP4P/Ew. 
The expected values presented in the figure are defined as T3,expected =T3,experimental 
– 3.15 K.153 
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The results of the present work are in excellent agreement with the 

expected values (T3,expected =T3,experimental – 3.15 K) in the examined range of 40 – 

600 bar. The obtained results exhibit the capability of the specific methodology to 

offer a consistent prediction of the three-phase coexistence conditions with 

increased accuracy. The predictions by Conde and Vega, although in qualitative 

agreement, are not quantitatively consistent with the slope of the experimental 

values. On the other hand, the deviation of the results of Tung et al. are 

consistently on average 5.8 K lower than the experimental values. The predicted 

melting temperature of ice using the TIP4P/Ew water model is  244(3) K150 which 

is approximately 29 K below the experimental value. This result is not in 

agreement with the conclusions of Conde and Vega148 that the shift in the 

predicted T3 follows the deviation of the predicted melting temperature of ice by 

the water model in use. A probable reason for this discrepancy could be the use 

by Tung et al. of modified cross-interactions parameters between the oxygen atom 

of water and the carbon atom of methane. The synergetic effect on the calculation 

of T3 between the predicted melting temperature of a water force field and the 

methane-water interaction has been also pointed out by Conde and Vega.155  

At this point, it is unclear whether such modifications of the cross-

interaction parameters lead to different and probably increased solubility of 

methane in water and if this aspect is more important than the effect of the water 

model of choice on the calculation of the coexistence temperature. This question 



75 
 

is addressed further in the work on carbon dioxide hydrates presented in section 

5.2.  

Jensen et al.,149 who used a different methodology that is based on 

thermodynamic integration and MC simulations with TIP4P/Ice for the calculation 

of chemical potentials, systematically over-predicted T3. On the other hand, the 

results of Smirnov and Stegailov152 that appear to be in agreement with Jensen et 

al. are based on MD calculations of direct phase coexistence of methane hydrate 

with liquid water and without any methane gas phase. 

 It is clear from visual inspection of the trajectories of numerous runs that 

below a critical number of methane molecules in the gas phase in contact with the 

liquid water, methane is forming a gaseous bubble (see Fig. 10). This bubble is 

moving inside the liquid water and as soon as it comes in contact with the hydrate 

slab the hydrate growth becomes extremely fast. Locally, at the hydrate–water 

interface, the presence of the methane bubble corresponds to supersaturated 

conditions well above the solubility limit.  

In order to directly test the effect of supersaturation, simulations have been 

carried out where the hydrate was placed in contact with liquid water artificially 

supersaturated with methane. A 2x2x2 hydrate slab was used with 368 water and 

64 methane molecules and a supersaturated liquid water slab with 368 water and 

32 methane molecules. In this case, it was observed that hydrate growth was 

occurring even for temperatures that were well above the experimental T3. For 

example, at 400 bar, it was found that dissociation occurred for temperatures 
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above 333 K, which is 36 K above the experimental value. This fact can provide 

a possible explanation for the over-prediction of T3 in Conde and Vega’s results 

at certain pressures.  For example, at 400 bar they presented hydrate growth at 

300 K [76] while in this work, where bubble formation was carefully avoided for as 

long as possible, only dissociation occurs at this temperature.  

Additionally, this phenomenon can provide a possible explanation to the 

over-prediction of T3 by Smirnov and Stegailov who did not use a methane 

gaseous phase in their methodology. In their case, it is possible that during the 

dissociation, the methane molecules from the hydrate locally increased the 

methane concentration in the liquid water over the solubility limit, contrary to the 

setup used in this work where the methane molecules that have been released 

from the dissociated hydrate cages diffuse through the liquid water and enter the 

gas phase. 

5.1.4 Effect of Dispersion Tail Corrections 

Although widely known, it is worthwhile mentioning that the direct contact 

of different phases via a finite interface renders the use of dispersion corrections 

inapplicable (see section 2.3.2.1 for details about dispersion corrections).79 The 

dispersion corrections are customarily used in MD simulations due to the 

unavoidable calculation of the attractive dispersion potential up to a cut-off value 

as the size of the simulation box is finite. The truncation of the potential is 

compensated by the use of dispersion corrections, also named tail corrections, 

and it is based on the assumption that the simulated system is isotropic and 
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homogeneous. This assumption means that the radial distribution function of the 

system for distances greater than the cut-off value is equal to one and thus an 

analytic expression for the corrections can be calculated.  

In the case of the direct-phase coexistence method, as described in this 

work, it is clear that dispersion corrections cannot be used as the system is 

anisotropic and inhomogeneous. In particular, the use of tail corrections in 

combination with pressure coupling produces misleading results which are 

manifested mainly in erroneous values of the gas phase density.  

In Fig. 16, the density profile is presented for a system of gaseous methane 

in equilibrium with liquid water at 100 bar and 280 K with and without dispersion 

corrections. The results presented here are for a methane – water – methane 

configuration with 64 – 368 – 64 molecules, respectively. The MD-calculated bulk 

density of the methane in the case where dispersion corrections are used is 

approximately 139 kg/m3, while in the case without dispersion corrections the 

calculated density is 78 kg/m3. The experimental density94 for these conditions of 

the pure methane is 85.5 kg/m3. Although the particular conditions of this example 

are within the hydrate growth regime, similar behavior is observed in a wide 

temperature and pressure range. Effectively, the dispersion corrections in 

combination with pressure coupling are causing compression of the gas phase, 

an effect which is more pronounced for lower values of pressure according to the 

observations made in this work. 
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FIG. 16. Density of methane in a methane–water–methane configuration at 280 K 
and 100 bar, with and without dispersion corrections. The dashed line depicts the 
experimental value of the pure methane reported by NIST.94,153 

 

Without the use of dispersion corrections, which is the case for all the 

simulations presented in this work for the determination of T3, there is a persistent 

error in the calculated densities of the order of approximately 5–10 % for the gas 

phase and 1 % for the liquid water phase. Nevertheless, it appears that the 

magnitude of these deviations does not affect the calculation of the three-phase 

hydrate equilibrium conditions. 

5.1.5 Calculation of Methane Solubility in the Aqueous Phase 

The solubility of methane in the aqueous phase along the H-Lw-VCH4 

equilibrium curve, as calculated by the current MD simulations, has also been 
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estimated for the cases of the four pressures that were considered in the current 

study. The calculated MD results are shown in Fig. 17 where the solubility of 

methane is plotted as a function of T3 as calculated in this work. Shown also are 

the solubility calculations by two different continuum-scale models2,172 as a 

function of the equilibrium temperature as calculated by those models. A detailed 

discussion on the performance of such thermodynamic models in predicting 

methane solubility in water has been reported recently by Tsimpanogiannis et 

al.173 One should recall that the T3 of the MD simulations consistently deviates by 

3.5 K form the experimental values for each given pressure. 

 

FIG. 17. Methane solubility in water as a function of the three-phase coexistence 
temperature. Circles denote MD calculations and lines denote continuum-scale 
models.2,153,172 
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We observe that good agreement between the MD simulations and the two 

thermodynamic models is obtained. Such behavior should be expected for the 

TIP4P/Ice water model based on the findings by Docherty et al.,174 and the 

discussion presented by Conde and Vega.148 In particular, Docherty et al. reported 

that in order to describe correctly the excess chemical potential of methane in 

water, a positive deviation from the energetic Lorentz–Berthelot combining rule 

needs to be introduced for the cross-interaction parameters of water and methane 

for the case of the TIP4P/2005158 model for water in combination with the 

Lennard–Jones parameters reported by Guillot and Guissani161 for methane. In 

that particular case, the deviation is 7 %. As discussed by Conde and Vega,148 

such an approach produces, essentially, the same cross-interaction energy 

parameter as in the case of TIP4P/Ice with the Guillot and Guissani methane 

model using standard Lorentz–Berthelot rules. Additional discussion related to 

methane dissolved in water can be found in the work of Reed and Westacott.175 

5.1.6 Summary of Findings of Methane Hydrate Study 

First, it was found that the inherent stochasticity of the direct-phase 

coexistence method can cause the prediction of erroneous results. This problem 

was rectified by performing a statistical analysis of multiple independent runs at 

each pressure and temperature. Second, it was shown that the occurrence of a 

supersaturated aqueous phase is likely if the number of gas molecules is small, 

and this leads to a large over-prediction of T3. It was therefore found necessary to 

include a sufficient number of gas molecules in the gas-rich phase in order to allow 
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for an accurate conclusion to be made about the final state of the system. Third, 

it was found that the use of the TIP4P/ice force field in combination with the OPLS-

UA model for methane provides an excellent prediction for the value of T3 with a 

consistent deviation of approximately -3.5 K from the experimental value of T3, in 

agreement with the deviation of the prediction of the TIP4P/ice force field for the 

melting of ice. Fourth, this force field combination also gives an accurate 

prediction of the solubility of methane in water. Finally, it was confirmed that a 

large error in the gas density is caused if dispersion tail corrections are used for 

this anisotropic and inhomogeneous system. 

5.2 Application of the Direct Phase Coexistence Method to Carbon 

Dioxide Hydrates 

5.2.1 Equilibration of the WCW Configuration 

As was mentioned in section 4.1, an additional step was found necessary 

in the preparation of the four-slab configuration for the carbon dioxide system; 

namely, the equilibration of the WCW configuration prior to its attachment to the 

hydrate slab for the determination of T3 using the direct-phase coexistence 

method. Contrary to the case of methane hydrates153 where each phase was 

individually equilibrated and then brought in contact with the other phases, for 

conditions below the quadruple point where the carbon dioxide is in the vapor 

phase it was found that the equilibration of the vapor carbon dioxide with the liquid 

water must be done in a separate stage as it requires careful handling. This is due 
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to the fact that the carbon dioxide molecules, under the conditions examined in 

this work, are strongly “adsorbed” on the water surface creating a liquid-like film.  

Since the y and z dimensions of the box are practically constant at the 

values dictated by the dimensions of the 2x2x2 hydrate supercell, and due to the 

low density of carbon dioxide in the vapor phase, the removal of carbon dioxide 

molecules from the bulk vapor, and into the adsorbed film at the interface, results 

in a severe reduction of the box size in the x dimension. The equilibration of this 

adsorption process requires a relatively long time, in the range of 20 – 50 ns, and 

thus it must be done separately for each pressure and temperature in order to 

avoid any complications during the simulations when the hydrate phase is also 

present.  

In order to illustrate this issue, a snapshot of the equilibrated liquid water – 

vapor carbon dioxide interface is presented in Fig. 18 for a typical simulation at 30 

bar and 274 K. The existence of an adsorbed carbon dioxide layer is apparent.  

Additionally, the inset figure shows the full WCW system before and after 

equilibration to illustrate the reduction of the simulation box size. The respective 

densities of carbon dioxide and water for the aforementioned case, in the 

equilibrated WCW configuration, are presented in FIG. 19. While the density of 

the bulk vapor carbon dioxide is very close to the experimental value of 76.7 

kg/m3,94 the carbon dioxide density at the interface is close to 600 kg/m3 which is 

about 8 times higher than the vapor density (and still approximately 2/3 of the 

liquid carbon dioxide density at the corresponding saturation conditions). 
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FIG. 18. Snapshot of the liquid water – vapor carbon dioxide interface after 
equilibration of the WCW system at 30 bar and 274 K, showing the film of carbon 
dioxide on the water surface. The water molecules are represented by the red and 
black lines, while the carbon dioxide molecules are represented by the blue 
spheres (carbon) and pink cylinders (oxygen). The inset figure shows the full 
system before and after equilibration. 

 

FIG. 19. Density of carbon dioxide (black squares) and water (red circles) along 
the direction normal to the interface (x axis) in the WCW system at 30 bar and 274 
K (vapor carbon dioxide). The dashed line represents the experimental value of 
the density of pure carbon dioxide 94. The solid lines are a guide to the eye only. 
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The existence of an adsorbed carbon dioxide layer is in agreement with the 

work of  Lehmkuhler et al.176 who studied the water – carbon dioxide interface by 

X-ray diffraction and reflectivity at hydrate-forming conditions. Reflectivity 

measurements at 273.3 K from low pressures up to the condensation pressure of 

35 bar indicated the adsorption of gas molecules on the water surface with a 

thickness varying from a few Å up to 40 Å at the condensation pressure of 34.99 

bar. Additionally, our observations are in agreement with the observations of 

Zhang and Singer177, who performed an extensive MD study on the water – vapor 

carbon dioxide interface and reported the development of a carbon dioxide film at 

the interface. Using the SPC98 and EPM2164 models for water and carbon dioxide 

respectively, they carried out NPT simulations at 300 K from the low density limit 

to near-critical pressures and they found a similar enhancement factor of the 

density at the interface with respect to the bulk density.  

The authors also concluded that although the water density profile hardly 

changes with pressure, the enhancement factor of the carbon dioxide density at 

the water interface is quite pronounced for the low pressures where carbon 

dioxide exists in the vapor phase. 

5.2.2 Calculation of T3 Using LB Combining Rules 

After the equilibration of the WCW slabs, contact with the equilibrated 

carbon dioxide hydrate slab allows for the determination of T3 by scanning the 

temperature at each target pressure and observing the evolution of the potential 

energy of the system. The combination of TIP4P/Ice with TraPPE forcefields for 



85 
 

water and carbon dioxide, respectively, was examined first using the LB 

combining rules, given by Eqns. (30) and (31).  

The coexistence temperature was calculated for 5 values of pressure; 

namely, 20, 30, 200, 400, and 1000 bar which cover both the vapor and liquid 

carbon dioxide regions. Indicative snapshots of the system at 1000 bar were 

presented in Fig. 7, showing the initial configuration, and the final states of 

simulations at 282 K and 277 K, where hydrate dissociation and hydrate growth 

occurred, respectively.  

An indicative evolution of the potential energy of this system for four 

different temperatures is presented in Fig. 20. As was the case for methane, the 

value of T3 was estimated as the average of the highest temperature at which 

hydrate growth occurs (280 K in Fig. 20), and the lowest temperature at which 

hydrate dissociation occurs (281 K in Fig. 20). For the temperature scan shown in 

the figure, T3 would be estimated as 280.5 K.  

By conducting five independent runs at each temperature and pressure 

condition investigated, in order to account for the stochastic behavior of the 

system, one can determine an average value of T3 for any given pressure. In 

addition, the potential bubble formation that was discussed for the case of 

methane hydrates was avoided in this study by using a large carbon dioxide slab 

that consists of 200 carbon dioxide molecules. 
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FIG. 20. Evolution of the potential energy with time of the HWCW system using 
the TIP4P/ice model for water and the LB combining rules at 1000 bar and four 
different temperatures. 

The calculated T3 values are presented in Table II. For the pressures 

examined, the use of TIP4P/Ice with the LB rules systematically underestimates 

T3 by 9–12 K. Although for the case of methane hydrates the predictions of T3 with 

TIP4P/Ice deviated from the experimental values only by the deviation of the 

predicted melting temperature of ice (3.15 K), the deviation in the case of carbon 

dioxide, described by the TraPPE force field, is much larger. These findings are 

in agreement with the work of Miguez et al.156 who found a deviation of 

approximately 15 K by using the same force field combination. 
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Table VI. Experimental2 and calculated three-phase coexistence temperatures 
(T3; statistical uncertainty in parenthesis) using the TIP4P/Ice and TIP4P/2005 
water forcefields for the cases where cross-interaction parameters are calculated 

using the LB combining rules (𝜒 = 1.00) and where the modification parameter 𝜒 
was applied with value optimized with respect to the carbon dioxide solubility in 
water. 

Pressure 

[bar] 

T3 [K] 

Experimental TIP4P/ice TIP4P/2005 

χ = 1.00 χ = 1.08 χ = 1.00 χ = 1.115 

20 277.1 270.0 (0.0) 279.0 (0.0)   

30 280.2 270.0 (0.0) 277.1 (0.5)   

200 284.7 274.2 (1.6) 281.5 (0.9) 250.9 (1.8) 261.2 (1.3) 

400 286.2 276.0 (0.7) 283.5 (0.7) 252.5 (1.2) 262.5 (0.0) 

1000 289.7 280.1 (1.7) 287.3 (0.8) 256.1 (1.1) 265.6 (0.5) 

2000 293.0  289.9 (1.7)   

3000 293.9  290.9 (1.3)   

4000 293.6  289.7 (0.8)   

5000 292.1  288.7 (1.3)   

 

5.2.3 Optimizing the Cross-Interaction Parameters 

The large deviation in the prediction of T3 of 9 – 12 K that was reported in 

the previous section could be due to the simplicity of the two-body potentials used 

to describe the complex dipole-quadrapole interactions between water and carbon 

dioxide. It was hypothesized that the cause for this deviation in the measurement 

of T3 is the under-prediction of the solubility of the carbon dioxide guest in the 

aqueous phase. If this is true, the concentration of carbon dioxide at the hydrate-
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water interface would be lower than the experimental value, which would disable 

the growth of the hydrate solid and ultimately reduce the measurement of T3.  

In order to correct this large deviation in the predicted T3, the interactions 

between the water and carbon dioxide molecules were modified, with the target 

of minimizing the error in the prediction of carbon dioxide solubility in water. The 

cross-interaction Lennard-Jones energy parameter between the oxygen of water 

and the oxygen atoms of carbon dioxide was chosen for modification.  

This choice was based on the findings of Orozco et al.,178 who carried out 

an optimization of the intermolecular potential parameters in order to describe the 

phase behavior of the water–carbon dioxide system. Although the authors 

concluded that for the potentials they examined there is no combination of unlike 

interactions that can provide a satisfactory description of both phases, they noted 

that variations in the Lennard-Jones interactions between unlike molecules have 

an important effect on the solubility of carbon dioxide in the water-rich phase, and 

additionally that the stronger quantitative response comes from variations in the 

oxygen in water–oxygen in carbon dioxide unlike interactions. Furthermore, the 

authors found that the solubility of carbon dioxide in water is much more sensitive 

to changes in the Lennard-Jones energy parameter compared to changes in the 

size parameter. For this reason, of the two Lennard-Jones cross-interaction 

parameters, only the cross-interaction energy term was modified in this work. 

Thus, a modification factor 𝜒 was introduced as described by Eqn. (32), 

and the solubility of carbon dioxide in water was calculated for various values of 
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𝜒. For the solubility calculations, a large water slab consisting of 2000 water 

molecules was placed at the center of a box and was surrounded on either side 

by a slab of 125 carbon dioxide molecules, with the interfaces normal to the x 

direction, giving a carbon dioxide – water –carbon dioxide (CWC) slab 

arrangement. The size of water slab was chosen such that a bulk water phase 

with sufficient distance away from the interface was available, in order to make 

the solubility measurements.  

We selected to calculate the solubility dependence on 𝜒 at an experimental 

equilibrium point, namely at 400 bar and 286 K. It was assumed that a single value 

of 𝜒 was needed for the entire pressure range. The reason for making this 

assumption is that it is expected that the increase in affinity between the water 

and carbon dioxide that is needed to obtain the correct solubility should not be a 

function of pressure for the same phase equilibrium line.  

After an equilibration period of 5 ns, 100 ns-long NPT simulations were 

performed for each value of 𝜒. A snapshot of the configuration after the 100 ns 

NPT simulation of the LB case is shown in Fig. 21. The number density profile for 

water and carbon dioxide across the x axis was plotted every 2 ns, giving a total 

of 50 measurements of carbon dioxide solubility in water for each value of 𝜒 used, 

in order to reduce the statistical uncertainty. A representative density profile is 

shown in Fig. 22. The solubility for any snapshot was found using Eqn. (33): 
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  (33) 

where 𝜌𝐶𝑂2
 and 𝜌𝐻2𝑂 are the number densities of carbon dioxide and water, 

respectively, 𝑦 and 𝑧 are the lengths of the y and z dimensions of the box 

(approximately 2.4 nm for a 2x2x2 hydrate supercell), and the integration limits 

are two positions along the x dimension of the box that are within the water slab 

and far from the water–carbon dioxide interface. For example, in the 

representative density profile in Fig. 22, 𝑥1 = 3 nm, 𝑥2 = 10 nm, the numerator of 

Eqn. (33) is the area shaded in red, and the denominator of Eqn. (33) is the sum 

of the red and grey areas. 

 The results of this procedure are presented in Fig. 23. The classic LB 

combining rules correspond to a value of 𝜒 equal to one. The cross-interaction 

energy parameter of the oxygen atoms between the water and carbon dioxide 

molecules affects strongly the solubility of carbon dioxide in water, with a 

modification of 15% in 𝜒 corresponding to a change of approximately 80% in 

solubility. We found that for the TIP4P/Ice model, the deviation from the 

experimental value of solubility179 is minimized with 𝜒 = 1.08. 
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FIG. 21. Snapshot of the CWC configuration after 50 ns using the LB combining 
rules. Molecule representation is the same as Fig. 18.  

 

FIG. 22. Number density profile of carbon dioxide and water in the CWC system. 
The red area represents the number of carbon dioxide molecules in the volume 
between 3 and 10 nm of the x axis. The sum of the red and grey areas gives the 
number water molecules in the same region. 
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FIG. 23. Dependence of the carbon dioxide solubility (mole fraction) on the 
modification factor of the LB cross-interaction energy parameter for the case of 
TIP4P/ice (red up triangles) and TIP4P/2005 (blue down triangles) at 400 bar and 
286 K. The solid black line depicts the experimental  solubility.179 

5.2.4 Calculation of T3 Using Modified Parameters 

Given this result, we repeated the calculations of T3 of the carbon dioxide 

hydrate system for TIP4P/Ice using the modification parameter 𝜒 = 1.08. The 

results are given in Table VI and are additionally presented in FIG. 24. 

 The correction of the carbon dioxide solubility has a pronounced effect on 

the calculated T3 values, which shift towards the experimental ones. With the 

exception of the points at 20 bar (discussed in section 5.2.5), the deviations of the 
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calculated T3 after implementing the 𝜒 factor for the TIP4P/ice with TraPPE force 

field combination from the experimental values range from -3.2 K up to -2.2 K. 

This result is consistent with the finding of our earlier study for the methane 

hydrate system,153 that the deviation of the T3 is dictated by the deviation of the 

predicted melting temperature of ice of TIP4P/ice water force field. 

In order to clarify the relative importance of the water – water and water – 

guest interactions in the determination of T3, the procedure was repeated using 

the TIP4P/2005 water force field while keeping the TraPPE model for the carbon 

dioxide. TIP4P/2005 is a particularly popular water model since it provides a good 

description of many water properties.180 Nevertheless, contrary to TIP4P/ice, it 

predicts a melting temperature for ice with a value of 250.5(3) K, which is 22.65 K 

below the experimental value. In this sense, the TIP4P/2005 can provide a 

quantitate assessment of the importance of the water–water interaction in the 

calculation of T3. Thus, we calculated T3 using the TIP4P/2005 with the standard 

LB rules, we subsequently found an optimized value of the cross-interaction 

energy parameter between the oxygen of water and the oxygen atoms of carbon 

dioxide targeting the experimental solubility of carbon dioxide in water, and finally, 

we used this optimized modification parameter to recalculate T3. We restricted 

these simulations in the liquid carbon dioxide region since the expected values for 

the H-Lw-VCO2 equilibrium using the TIP4P/2005 force field are to the right of the 

saturation curve of carbon dioxide (see FIG. 24), so the phase of the carbon 

dioxide will be erroneously liquid. The dependence of carbon dioxide solubility in 
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water on the modification parameter is presented in Fig. 23 and the results of the 

T3 calculations are presented in Table VI and in FIG. 24. 

 

FIG. 24. Experimental and calculated values of T3 for carbon dioxide hydrates 
from this work (triangles), from Tung et al.163 (pink diamonds), and from Miguez 
et al.156 (green pentagons (TIP4P/ice) and orange circles (TIP4P/2005)). The red 
upside-up triangles represent results obtained using the TIP4P/ice force field, and 
the blue, upside-down triangles represent results obtained using the TIP4P/2005 
force field. Open points indicate the runs were conducted using the LB combining 
rules, while the filled points indicate that the appropriate modification factor for the 
force field was applied. The red and blue dashed lines represent the expected 
values of T3 for the TIP4P/ice (T3,expected = T3,experimental – 3.15 K) and TIP4P/2005 
(T3,expected = T3,experimental – 22.7 K) force fields, respectively. Experimental T3 line 
obtained by polynomial fit from data collection of Sloan and Koh.2 The pure CO2 
saturation points are shown using grey squares.94 
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The use of the TIP4P/2005 force field with the LB combining rules for the 

determination of T3 results in systematic deviations with an average value of -33.7 

K with respect to the experimental values. This larger deviation than in the case 

of TIP4P/Ice was expected since ΔTm of TIP4P/2005 (-22.65 K) is significantly 

larger than that of TIP4P/Ice (-3.15 K). It is interesting to note that the sum of the 

deviation in T3 of TIP4P/2005 is approximately equal to the sum of the deviation 

in T3 of TIP4P/Ice and the deviation in melting temperature of TIP4P/2005. 

As depicted in Fig. 23, the 𝜒 dependence of solubility for TIP4P/2005 is 

smaller, albeit of the same order of magnitude as in the case of TIP4P/Ice. The 

value of the modification parameter that minimizes the deviation of the predicted 

solubility from the experimental value is equal to 1.115. Using this value for the 

modification parameter for the TIP4P/2005 force field, T3 was recalculated and 

the average deviation from the experimental values was found equal to -23.8 K, 

and thus approximately equal to ΔTm of TIP4P/2005 (-22.65 K). This result 

strongly indicates that the accuracy of the prediction of T3 cannot be improved 

solely on the grounds of correctly accounting for the water–guest interactions 

which is performed by correcting the guest solubility in water. In addition, the 

accuracy is bounded by the limits of the water force field to correctly describe the 

water–water interactions as these are exhibited macroscopically through the 

prediction of melting temperature of ice.  

In FIG. 24, a comparison is also made between the results of the present 

study and the work of Tung et al.,163 and Miguez et al.156 The results of Tung et 
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al., who used the TIP4P/Ew and EPM2 models with the Lennard-Jones cross 

interaction parameters reported by Sun and Duan,165 although close to the 

experimental values at intermediate pressures, appear to inconsistently deviate 

for larger pressures.  

On the other hand, the results of Miguez et al. are in good agreement with 

the results of this work. The authors conducted a similar study and predicted first 

the values of T3 using the TIP4P/ice and TIP4P/2005 force fields for water with 

TraPPE CO2 using the LB combining rules, and found that the deviation in the 

predictions are close to the deviations predicted in this work. They then chose to 

introduce a modification parameter Λ with the major difference in its definition 

(compared to 𝜒 used in this work) of modifying both 𝜎 and 𝜀 cross-interactions 

between the oxygen in water and the oxygen atoms in carbon dioxide (Miguez et 

al. used the notation 𝜒 for the modification in their work, but the notation Λ has 

been used here in order to avoid confusion between the modification factors in 

their work and in this work, since the two factors are defined differently). They then 

varied Λ with the target being the correct prediction of T3 rather than the correct 

solubility as was done in this work. They found that a value of Λ = 1.13 results in 

good agreement with the experimental data at pressures up to 2000 bar, but has 

a higher deviation from the experimental data at higher pressures.  

Despite their work having a different approach in obtaining accurate 

predictions from ours, there are several key points that are in agreement with our 

work. First, the results of their work confirm the need for introducing a modification 
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factor to increase the affinity between carbon dioxide and water. Second, their 

results predict the same slope of the experimental line as was predicted in this 

work, for both the TIP4P/2005 and TIP4P/ice model, up to 2000 bar. However, 

the effect of having a higher solubility than the experimental solubility may pose 

an issue in the future when the prediction of mixed gas hydrates is needed. If a 

higher solubility of one guest than the experimental value exists in the aqueous 

phase, preferential enclathration of the incorrect guest may be erroneously 

predicted. For this reason, in this work the modification of the cross-interaction 

parameters to achieve the correct solubility was made the target, rather than the 

modification to obtain the correct value of T3. 

In addition, the results of this work are consistently 3 K below the 

experimental coexistence temperature for the entire pressure range tested using 

the modification. In contrast, the work of Miguez et al. yields a higher deviation at 

higher pressures. This fact suggests that the optimization based on the solubility 

is applicable to a wider range of pressures than the optimization based on T3. 

5.2.5 Inconsistency in Prediction of T3 at Low Pressure 

Unlike the H-Lw-LCO2 T3 predictions which consistently had approximately  

-10 and -3 K deviations from the experimental T3 values for the LB and the 

modified cross-interactions cases, respectively, the H-Lw-VCO2 equilibrium 

predictions had inconsistent deviations from the experimental values. At 20 bar, 

deviations of -7 and +2 K for the LB and the modified cross-interactions cases, 

respectively, were found, while at 30 bar, deviations of -10 and -3 K for the LB and 
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the modified cross-interactions cases, respectively, were found. While the exact 

reason for this inconsistency has not been determined in this work, this section 

outlines some possible reasons for these results. 

5.2.5.1 Computational Expense and Box Anisotropy of Low Pressure Simulations 

It is important to first clarify that performing simulations at low pressures, 

where carbon dioxide is in the vapor phase, has a much higher computational cost 

than the simulations at the higher pressures, where carbon dioxide is in the liquid 

phase. At low pressures, simulation times in the range of 600 – 2000 ns are 

required in order to accurately determine whether the system proceeds towards 

hydrate growth or dissociation, compared to a range of 300 – 1000 ns of 

simulation time needed for the high pressure runs.  

This difference in the kinetic rates of growth and dissociation can be 

attributed to the large difference in the carbon dioxide solubility in water between 

low and high pressures and consequently in the concentration of carbon dioxide 

at the hydrate–water interface. Moreover, the pressure dependence of vapor 

carbon dioxide solubility in water is much steeper than that of liquid carbon dioxide 

solubility. As a result, we observed that the simulation time needed for the entire 

high pressure range (200–1000 bar) was very similar, but the simulations at 20 

bar were significantly longer than those at 30 bar.  

Additionally, while the y and z box dimensions are dictated by the hydrate 

supercell and practically remain constant and close to 2.4 nm, the x dimension  

varied from a range of 22.5 – 52.5 nm for the low pressure runs to a range of 8.5 



99 
 

– 9.0 nm for the high pressure runs. The larger box sizes and higher size range 

for the low pressure runs were due to the much lower density of the vapor carbon 

dioxide compared to liquid carbon dioxide, as well as the much stronger 

dependence of density on pressure and temperature for the vapor phase. The 

larger systems at the low pressure had a significant, negative effect on the 

simulation speed. The high computational cost of these simulations was therefore 

a significant hindrance to making predictions at the low pressures. Also, the very 

high degree of anisotropy in the box dimensions at the low pressures, with an x 

dimension that is up to approximately 20 times the y and z dimensions, can 

possibly cause simulation artifacts that have not been identified in this work.  

5.2.5.2 Box Fluctuations at Low Pressures 

The low density of vapor carbon dioxide, as well as the adsorption of the 

vapor carbon dioxide at the water interface (see Fig. 18), causes continuous, 

relatively large fluctuations of the box length. To illustrate this, Fig. 25 shows the 

box size in the x dimension as a function of time for the WCW system at 20 bar 

and 279 K for a 200 ns simulation of the equilibrated system. Due to the dynamic 

nature of the MD simulation method, carbon dioxide molecules are continuously 

being exchanged between the bulk vapor and the adsorbed layer. At such low 

pressures as 20 and 30 bar where the vapor density is very low, the removal of 

only a few molecules from the vapor phase results in a relatively large decrease 

in the box length. For example, at 20 bar and 279 K, pure carbon dioxide has a 

density of 44.0 kg/m3.94 At this condition, the exchange of only 10 carbon dioxide 
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molecules from the bulk vapor into the adsorbed layer will cause a decrease of 

approximately 3 nm in the box length.  

 

FIG. 25. Box x dimension as a function of time for the WCW system at 20 bar and 
279 K. 

Such large fluctuations of the box length can be problematic when the 

pressure coupling is applied. This is because the volume rescaling of the barostat 

is intended to act in a smooth manner with only minor, periodic adjustments of the 

box length. However, when such large volume fluctuations are inherent in the 

system, the use of the barostat can artificially impose large forces on the 

molecules, which would ultimately result in incorrect predictions. One possible 
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method that may rectify this problem would be the use of a smaller value for 𝜏𝑃 

[see Eqn. (28)], such that the coupling is performed at shorter intervals so that 

significant box length changes are not developed. 

5.2.6 Summary of Findings of Carbon Dioxide Hydrate Study 

First, it was found that an additional equilibration step is necessary for the 

WCW system in order to allow for the adsorption of a vapor carbon dioxide layer 

at the water interface. For this reason, the initial configuration used was modified 

from the WHWM used for the methane hydrate system, to the equivalent HWCW 

configuration used for the carbon dioxide hydrate system. Second, the use of the 

LB combining rules for the calculation of the cross-interactions yielded a 

consistent deviation for the predictions of T3 between -9 and -12 K from the 

experimental values. In addition, the solubility of carbon dioxide in the aqueous 

phase using these combining rules was measured and found to be 

underestimated. Third, a modification factor 𝜒 was introduced in order to increase 

the affinity between carbon dioxide and water, and the value of 𝜒 was fit to obtain 

the experimental solubility at 400 bar and 286 K. Using a value of 𝜒 = 1.08 for the 

TIP4P/ice – TraPPE force field combination, the calculation of T3 was repeated 

and a consistent deviation of -3 K from the experimental T3 was found, consistent 

with the expected deviation dictated by ΔTm for the TIP4P/Ice water model.  

Fourth, in order to generalize these findings, the procedure was repeated 

for the TIP4P/2005 water force field using a fitted value for 𝜒 = 1.115, and a 

deviation of -23.8 K was found from the experimental T3 values. This is also 
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consistent with ΔTm for the TIP4P/2005 water model. It can therefore be 

concluded that the water-guest interactions must correctly provide the solubility of 

the guest molecule in the aqueous phase. Once the solubility is correct, the 

predictions of T3 are as accurate as the ability of the chosen water force field in 

predicting the melting of ice. 

Finally, the results for the low pressure region, where carbon dioxide exists 

in the vapor phase, are inconsistent with the findings from the rest of this work. 

This is probably due to simulation artifacts that arise at such low pressures, as a 

result of the nature of carbon dioxide at these conditions. This includes the low 

carbon dioxide density which causes a high level of anisotropy in the box 

dimensions, as well as the violent fluctuations of the box that may induce 

unnatural forces that alter the predictions of T3. 
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6. CONCLUSIONS AND FUTURE WORK 

 

The direct-phase coexistence methodology was implemented in this work 

for the determination of the three-phase coexistence conditions of both the 

methane and the carbon dioxide hydrates using MD simulations. Experimental 

data exists for a wide range of conditions for both these pure hydrate systems, so 

the goal was not to simply reproduce existing data, but rather to develop an 

understanding of the mechanisms and problems involved in the modeling of gas 

hydrate systems using MD simulations in general. This is the first step towards a 

trustworthy MD simulation scheme that can be used to generate data for a wide 

range of clathrate hydrates at conditions where experimental data is scarce. 

As such, several important insights have been discussed in this work. From 

the study of methane hydrates, the stochastic nature of the hydrate system 

became apparent. This necessitated the inclusion of a statistical analysis in the 

well-established direct-phase coexistence method. The statistical analysis 

involved performing multiple independent runs at every condition of temperature 

and pressure, in order to obtain consistent results for T3. In addition, it was shown 

that a time length of 1000 – 4000 ns was needed in order to reach accurate 

conclusions about the final state of the system (i.e., growth or dissociation). It was 

additionally observed that the supersaturated conditions that can occur during this 

kind of simulations can affect the calculated T3. For this reason in all the 

simulations for the determination of T3 in this study, the instantaneous 
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development of a methane bubble was avoided by using an adequate number of 

molecules in the guest slab. 

The aforementioned procedure resulted in the determination of T3 with a 

high level of accuracy. It was found that for the TIP4P/Ice water model that was 

used in the methane hydrate study in combination with the OPLS-UA force field 

for methane, the MD results follow the same trend as the experimental values and 

have excellent agreement with the expected T3 which is consistently 3.15 K below 

the experimental. This difference was expected in accordance with the work of 

Conde and Vega and is attributed to the difference in the prediction by the 

TIP4P/Ice water force field of the melting temperature of ice from the respective 

experimental value. 

Another problem that was explored in depth in this work is the effect of 

erroneously including dispersion tail corrections for such anisotropic and 

inhomogeneous systems in combination with the pressure coupling scheme. The 

work confirmed that including such corrections would result in a large error in the 

density of the guest slab, so dispersion tail corrections must be avoided for such 

systems.  

Finally, the accuracy of the predictions of the water – methane interactions 

was confirmed by calculating the solubility of methane in the liquid water along 

the three-phase coexistence line and good agreement was found with two 

different continuum scale models. 
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All the lessons learned from the methane hydrates study were then applied 

to the calculation of the carbon dioxide hydrate three-phase coexistence line. 

Extensive MD simulations were carried out using the TraPPE model for the 

description of carbon dioxide and both the TIP4P/Ice and TIP4P/2005 models for 

the description of water.  

By using the classic LB combining rules resulted, the calculation of T3 

yielded large deviations for both models. By correcting the solubility of carbon 

dioxide in water, through the modification of the cross-interaction Lennard-Jones 

energy parameter between the oxygen of water and the oxygen atoms of carbon 

dioxide, the calculated T3 values shifted considerably in the correct direction. The 

deviations of T3 for both cases were found to be equal to the respective deviation 

from the experimental values of the prediction of the melting temperature of ice 

for each water model, in agreement with the results obtained from the study of the 

methane hydrate.  

These results strongly indicate that both water–water and water–guest 

interactions hold a prominent role in the determination of T3 with the direct-phase 

coexistence methodology. This fact provides evidence to the statement that the 

value of T3 can be successfully predicted with the direct-phase coexistence 

method using a water force field that correctly predicts the melting temperature of 

ice, and in combination with a guest force field that correctly accounts for the guest 

solubility in the water phase. 
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Having successfully obtained results for the pure hydrate systems, there 

are several directions that can be followed in the future in order to further our 

understanding of all the problems associated with the direct-phase coexistence 

method. First, a thorough investigation into the causes of the inconsistency in the 

prediction of the three-phase equilibrium line at low pressures for the carbon 

dioxide hydrate should yield information about other artifacts that must be 

accounted for when simulating clathrate hydrates. Second, the investigation of the 

methane – carbon dioxide mixed hydrate would be a reasonable starting point for 

understanding the factors that influence simulations of mixed guests. Third, the 

power of MD in studying dynamic systems was not exploited in this work through 

the quantitative measurement of the kinetic rates involved in hydrate growth and 

dissociation. It would therefore be interesting to calculate these rates for the 

simulated systems, and compare the measured rates with reported experimental 

data. 
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APPENDIX A: METHANE HYDRATE TEMPERATURE SCANS 

In this section, the potential energy evolution for the multiple seeds at each 

pressure and temperature condition tested for the methane hydrate system is 

presented. Each of the following pages includes the potential energy evolution 

through time of all the independent runs conducted at each temperature for a 

given pressure. This is followed by a table showing the final state of each 

independent run, which is denoted as (g) for hydrate growth, (s) for a stable 

potential energy, or (d) for hydrate dissociation. The title of each plot has the 

following format: “WHWM, pressure (P = …), temperature (T = …)”. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

270 g g g g g 
272 g g g d d 
274 g d d d d 
276 g d d d d 
278 d d d d d 
T3 (K) 277 273 273 271 271 

FIG. 26. Runs conducted at 40 bar. The calculated temperature is T3 = 273.0 K 
with a standard deviation of 2.4 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

279 g g g g g 
281 g g g g d 
283 g g d d d 
285 g d d d d 
287 d d d d d 
T3 (K) 286 284 282 282 280 

FIG. 27. Runs conducted at 100 bar. The calculated temperature is T3 = 282.8 K 
with a standard deviation of 2.3 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

290 g g g g g 
292 g g g g g 

294 g d d d d 

296 d d d d d 
298 d d d d d 
T3 (K) 295 293 293 293 293 

FIG. 28. Runs conducted at 400 bar. The calculated temperature is T3 = 293.4 K 
with a standard deviation of 0.9 K. 



122 
 

  

  

  
T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

294 g g g g g 
296 g g g g g 

298 d d d d d 

300 d d d d d 
302 d d d d d 
T3 (K) 295 293 293 293 293 

FIG. 29. Runs conducted at 600 bar. The calculated temperature is T3 = 297.0 K 
with a standard deviation of 0.0 K. 
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APPENDIX B: CARBON DIOXIDE HYDRATE TEMPERATURE 

SCANS 

In this section, the potential energy evolution for the multiple seeds at each 

pressure and temperature condition tested for the carbon dioxide hydrate system 

is presented. Each of the following pages includes the potential energy evolution 

through time of all the independent runs conducted at each temperature for a 

given pressure, water force field, and set of combining rules. This is followed by a 

table showing the final state of each independent run, which is denoted as (g) for 

hydrate growth, (s) for a stable potential energy, or (d) for hydrate dissociation. 

The title of each plot has the following format: “HWCW, water force field 

(TIP4P/ice or TIP4P/2005), combining rules (classic LB or modified LB), pressure 

(P = …), temperature (T = …)”. 

The plots are organized in the order of the runs performed, as presented 

in section 5.2. First, the TIP4P/ice runs performed using the LB combining rules 

are presented. Second, the TIP4P/ice runs performed using the modification 

factor 𝜒 = 1.08 are presented. Third, the TIP4P/2005 runs performed using the LB 

combining rules are presented. Last, the TIP4P/2005 runs performed using the 

modification factor 𝜒 = 1.115 are presented.  
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

264 g g g g g 
266 g g g g g 
268 g g g g g 
270 s s s s s 
T3 (K) 270.0 270.0 270.0 270.0 270.0 

FIG. 30. Runs conducted at 20 bar using TIP4P/ice and LB combining rules. The 
calculated temperature is T3 = 270.0 K with a standard deviation of 0.0 K.  
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

267 g g g g g 
269 g g g g g 
271 d d d d d 
273 d d d d d 

T3 (K) 270.0 270.0 270.0 270.0 270.0 

FIG. 31. Runs conducted at 30 bar using TIP4P/ice and LB combining rules. The 
calculated temperature is T3 = 270.0 K with a standard deviation of 0.0 K.  
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

272 g g g g d 
273 g g g g g 
274 g g g g g 
275 g s d d d 
276 d d d d d 
277 d d d d d 
T3 (K) 275.5 275 274.5 274.5 271.5 

FIG. 32. Runs conducted at 200 bar using TIP4P/ice and LB combining rules. The 
calculated temperature is T3 = 276.1 K with a standard deviation of 0.5 K.  
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

274 g g g g g 
275 g g g g s 
276 g g g d d 
277 d d d d d 
T3 (K) 276.5 276.5 276.5 275.5 275 

FIG. 33. Runs conducted at 400 bar using TIP4P/ice and LB combining rules. The 
calculated temperature is T3 = 274.2 K with a standard deviation of 1.6 K.  
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

277 g g g g g 
278 g g g g d 
279 g g g g g 
280 g g g d d 
281 g g d d d 
282 d d d d d 
T3 (K) 281.5 281.5 280.5 279.5 277.5 

FIG. 34. Runs conducted at 1000 bar using TIP4P/ice and LB combining rules. 
The calculated temperature is T3 = 280.1 K with a standard deviation of 1.7 K.  
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

273 g g g g g 
275 g g g g g 
277 g g g g g 
279 s s s s s 
T3 (K) 279.0 279.0 279.0 279.0 279.0 

FIG. 35. Runs conducted at 20 bar using TIP4P/ice and χ = 1.08 modification. The 

calculated temperature is T3 = 279.0 K with a standard deviation of 0.0 K.  
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

272 g g g g g 
274 g g g g d 
276 g g g g g 
277 g g g d d 
278 d d d d d 
T3 (K) 277.5 277.5 277.5 276.5 276.5 

FIG. 36. Runs conducted at 30 bar using TIP4P/ice and χ = 1.08 modification. The 

calculated temperature is T3 = 277.1 K with a standard deviation of 0.5 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

272 g g g g d 
273 g g g g d 
274 g g g g g 
275 g s d d d 
276 d d d d d 
277 d d d d d 

T3 (K) 275.5 275 274.5 274.5 271.5 

FIG. 37. Runs conducted at 200 bar using TIP4P/ice and χ = 1.08 modification. 

The calculated temperature is T3 = 281.5 K with a standard deviation of 0.9 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

280 g g g g g 
282 g g g g g 
283 g g g g d 
284 g d d d d 
286 d d d d d 
T3 (K) 284.5 283.5 283.5 283.5 282.5 

FIG. 38. Runs conducted at 400 bar using TIP4P/ice and χ = 1.08 modification. 

The calculated temperature is T3 = 283.5 K with a standard deviation of 0.7 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

284 g g g g g 
285 g g g g g 
286 g g g g g 
287 g g g d d 
288 g d d d d 
289 d d d d d 
T3 (K) 288.5 287.5 287.5 286.5 286.5 

FIG. 39. Runs conducted at 1000 bar using TIP4P/ice and χ = 1.08 modification. 

The calculated temperature is T3 = 287.3 K with a standard deviation of 0.8 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

287 g g g g g 
288 g g g g d 
289 g g g g g 
290 g g d d d 
291 g g d d d 
292 d d d d d 
T3 (K) 291.5 291.5 289.5 289.5 287.5 

FIG. 40. Runs conducted at 2000 bar using TIP4P/ice and χ = 1.08 modification. 

The calculated temperature is T3 = 289.9 K with a standard deviation of 1.7 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

288 g g g g g 
289 g g g g g 
290 g g g d d 
291 g g g d d 
292 g d d d d 
293 d d d d d 
T3 (K) 292.5 291.5 291.5 289.5 289.5 

FIG. 41. Runs conducted at 3000 bar using TIP4P/ice and χ = 1.08 modification. 

The calculated temperature is T3 = 290.9 K with a standard deviation of 1.3 K. 



136 
 

  

  

  
T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

288 g g g g g 
289 g g g g d 
290 g g d d d 
291 d d d d d 
292 d d d d d 
T3 (K) 290.5 290.5 289.5 289.5 288.5 

FIG. 42. Runs conducted at 4000 bar using TIP4P/ice and χ = 1.08 modification. 

The calculated temperature is T3 = 289.7 K with a standard deviation of 0.8 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

286 g g g g g 
287 g g g g g 
288 g g g d d 
289 g g d d d 
290 g d d d d 
291 d d d d d 
T3 (K) 290.5 289.5 288.5 287.5 287.5 

FIG. 43. Runs conducted at 5000 bar using TIP4P/ice and χ = 1.08 modification. 

The calculated temperature is T3 = 288.7 K with a standard deviation of 1.3 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

248.5 g g g g d 
249.5 g g g g d 
250.5 g g g g g 
251.5 g s d d d 
252.5 g d d d d 
253.5 d d d d d 
T3 (K) 253 251.5 251 251 248 

FIG. 44. Runs conducted at 200 bar using TIP4P/2005 and LB combining rules. 
The calculated temperature is T3 = 250.9 K with a standard deviation of 1.8 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

251 g g g g g 
252 g g g d d 
253 g d d d d 
254 g s d d d 
255 d d d d d 
T3 (K) 254.5 252.5 252.5 251.5 251.5 

FIG. 45. Runs conducted at 400 bar using TIP4P/2005 and LB combining rules. 
The calculated temperature is T3 = 252.5 K with a standard deviation of 1.2 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

253 g g g g g 
254 g g g g g 
255 g g g g d 
256 g g g d d 
257 g d d d d 
258 d d d d d 
T3 (K) 257.5 256.5 256.5 255.5 254.5 

FIG. 46. Runs conducted at 1000 bar using TIP4P/2005 and LB combining rules. 
The calculated temperature is T3 = 256.1 K with a standard deviation of 1.1 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

259.5 g g g g d 
260.5 g g g g g 
261.5 g g g d d 
262.5 d d d d d 
263.5 d d d d d 
264.5 d d d d d 
T3 (K) 262 262 262 261 259 

FIG. 47. Runs conducted at 200 bar using TIP4P/2005 and χ = 1.115 modification. 

The calculated temperature is T3 = 261.2 K with a standard deviation of 1.3 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

261 g g g g g 
262 g g g g g 
263 d d d d d 
264 d d d d d 
265 d d d d d 
T3 (K) 262.5 262.5 262.5 262.5 262.5 

FIG. 48. Runs conducted at 400 bar using TIP4P/2005 and χ = 1.115 modification. 

The calculated temperature is T3 = 262.5 K with a standard deviation of 0.0 K. 
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T (K) Number 1 Number 2 Number 3 Number 4 Number 5 

264.5 g g g g g 
265.5 g g g d d 
266.5 d d d d d 
267.5 d d d d d 
T3 (K) 266 266 266 265 265 

FIG. 49. Runs conducted at 1000 bar using TIP4P/2005 and χ = 1.115 

modification. The calculated temperature is T3 = 265.6 K with a standard deviation 
of 0.5 K. 


