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ABSTRACT 

 

Fishery observer data collected in the Gulf of Mexico deepwater reef fish fishery 

from July 2006 through December 2013 were examined for community structure using 

hierarchical cluster analyses to quantify species relationships and reveal stratifications in 

the fishery.  The correlation measure of dissimilarity with average agglomerative linkage 

was the most efficient method using randomly fake species as a comparison tool 

between dissimilarity and linkage choices.  This approach in combination with a 

multiscale bootstrapping revealed distinct stratifications and probabilities indicating the 

strength of species relationships in the fishery.  For deepwater species managed under 

the individual fishing quota (IFQ) system, cluster analyses findings detected patterns in 

species co-occurrence on fishing sets that may be of interest to managers.  Additionally, 

delta-lognormal boosted regression tree and zero-inflated negative binomial predictive 

models were compared for standardizing spatial abundance for the fishery.  Delta-

lognormal boosted regression tree models were superior in representing fine-scale 

variations, however, zero-inflated negative binomial models were more representative in 

abundance observed on a larger spatial scale.  An examination of the deepwater IFQ-

managed species also found evidence for size selection of discards and differences in 

retention rates for some species managed under the same allocation category. 
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NOMENCLATURE 

 

AU Approximately Unbiased 

AUC Area Under the Curve for the Receiver Operating Characteristic 

CPUE Catch Per Unit Effort 

Delta-BRT Delta-lognormal Boosted Regression Tree 

GMFMC Gulf of Mexico Fishery Management Council 

HCA Hierarchical Cluster Analysis 

IFQ Individual Fishing Quota 

NMFS National Marine Fisheries Service 

NOAA National Oceanographic and Atmospheric Administration 

SEFSC                        Southeast Fisheries Science Center 

SERO Southeast Regional Office 

ZINB                           Zero-Inflated Negative Binomial 
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1. INTRODUCTION 

 

The incidental captures of undersized or non-target species (bycatch) are of great 

concern to fishery managers due to the overexploitation of stocks not only in the Gulf of 

Mexico (Gulf), but worldwide (Sissenwine et al. 2014).  In November 1984, the Gulf of 

Mexico Fishery Management Council (GMFMC) implemented the Reef Fish Fishery 

Management Plan to rebuild declining stocks of reef fish (GMFMC 1984).  Since that 

time, the GMFMC has used size limits, area closures, and quota systems to regulate the 

fisheries; however, this management has been met with conflicting opinions on their 

effectiveness (Coleman et al. 2000; Nieland et al. 2007; Cowan et al. 2011).  Some of 

the various management options have resulted in the at-sea discarding of fish that may 

have been caught at depths that correlate with immediate mortality (Render and Wilson 

1994; Bartholomew and Bohnsack 2005; Rudershausen et al. 2007; Stephen and Harris 

2010).  The Gulf reef fishery is a multi-species fishery primarily targeting groupers 

(Epinephelus sp. and Mycteroperca sp.) and snappers (Lutjanus sp.) using two primary 

gear types, bottom longline and vertical line.  Based on Gulf observer program coverage 

from 2006 through 2009, Scott-Denton et al. (2011) identified 183 taxa captured with 

bottom longline and 178 taxa with vertical line gear.  While species diversity was high, 

only 17 species accounted for 90% of the number of captures recorded.   

Modeling fishery observer data on a large spatial scale for the Gulf deepwater reef 

fish fishery provides an opportunity to examine the current quota management system 

that has undergone many changes in the past decade.  The most recent change has been a 
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shift from a "derby" style fleet-wide quota system to an individual fishing quota (IFQ) 

allocation for each permit holder based on historical landings for a number of species.  

IFQ management aimed to reduce the overcapacity in the commercial fishery and 

eliminate problems affiliated with derby fishing.  Derby fishing or the "race to fish" is 

when fishermen try to catch fish as fast as possible once a fishing season is open with a 

fleet-wide quota.  Branch (2009) examined how individual transferrable quotas affected 

various fisheries worldwide for a number of factors including high-grading for single 

species and discards for multi-species fisheries finding both often declined, but may 

increase without effective enforcement or if the catches are not counted against the 

quota.  High-grading refers to differing retention rates by fishers for a species usually 

influenced by price differences based on fish size, e.g., increased discards of less 

valuable fish sizes.  High-grading can also occur due to price differentials between 

species in multi-species IFQ allocation categories and be observed in changes of 

retention rates, e.g., retaining more valuable species and discarding less valuable ones.  

Fishery managers could make better-informed decisions when determining IFQ 

allocation categories if species relationships could be quantified in the assemblages and 

any stratification in the fishery could be realized. 

Numerous studies have examined fish species assemblages with fishery independent 

and dependent data (Rogers and Pikitch 1992; Williams and Ralston 2002; Farmer et al. 

2010; Cope and Haltuch 2012).  Heery and Cope (2014) used observer data to identify 

groundfish assemblages from trawls off Oregon and Washington, but encountered 

difficulties in identifying uncommon bycatch species on a large spatial scale.  Shertzer 
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and Williams (2008) identified reef fish assemblages off the southeastern United States 

by analyzing logbook data using hierarchical cluster analysis aggregated by year, month, 

area, and depth.  They found little support for using indicator species as a management 

tool but supported stratifying species into distinct management units as an achievable 

goal.  One limitation of the approach used by Shertzer and Williams (2008) was that it 

relied on logbook data, which aggregates only the retained species from the entire 

fishing trip, not for each specific fishing location.  During fishing trips, a vessel may fish 

in a number of geographical areas across various habitats.  Thus, the spatial resolution 

may not be fine enough for an accurate representation of species co-occurrence in terms 

of environmental factors.  More importantly, the methods in Shertzer and Williams 

(2008) do not account for species that are discarded during the trip unless they are self-

reported by vessel captains.  Unlike logbook data, fishery observer data from the Gulf 

deepwater reef fish fishery include bycatch and site specific information.  Analyses of 

the observer data provides relevant insights that are of special interest due to the high 

discard mortality associated with the depths fished.  

Furthermore, fishery observer data could assist management goals for this fishery by 

building predictive models of abundance on different spatial scales through 

incorporating environmental variables shown to influence marine communities.  Catch 

per unit effort (CPUE) is a widely used proxy of abundance derived from both fishery-

dependent and fishery-independent sources.  The interpretation of CPUE from fishery-

dependent, e.g., fishery observer data, is often disputed when viewed as a linear time-

series index of abundance due to confounding factors such as spatial variation in effort, 
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gear selectivity, and seasonal variations.  However, using fishery observer data for 

quantifying spatial distributions of CPUE provides a fine-scale management tool by 

identifying spatial patterns and providing confidence in the relationships observed.  

Using commercial fishing landings data from northwest Mexico, Erisman et al. (2011) 

identified patterns in the species composition for different regions by applying 

multivariate analyses and explained how the results could be incorporated into a more 

localized ecosystem-based management approach.  For this thesis CPUE predictions 

derived from delta-lognormal boosted regression tree (delta-BRT) and zero-inflated 

negative binomial (ZINB) models will be compared.  These approaches have been 

shown to equal or outperform the traditional techniques of generalized additive and 

linear models in predictive capabilities (Abeare 2009; Froeschke and Drymon 2013; 

Mateo and Hanselman 2014; Walsh and Brodziak 2014).   

The objectives of this research were: (1) to examine the deepwater IFQ-managed 

species for size selection of discards and differences in retention rates for multi-species 

allocations under the current management system:  (2) to compare modeling approaches 

for identifying relationships in species assemblages on a large spatial scale: and  (3) to 

predict spatial abundance for the IFQ-managed species by area, depth, and gear type.  

Since the management in this fishery has shifted to IFQ allocations, realizing 

interspecific relationships in species assemblages and predicting spatial abundance may 

provide an option to explore distinct management units in the future.  A comparison of 

methods for modeling observer data on a large scale will be of interest to researchers 

desiring holistic perspectives on a fishery.  
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2. RESEARCH METHODS 

 

2.1 Observer Data 

In 2005, the GMFMC dictated mandatory fisheries observer coverage (GMFMC 

2005).  In July 2006, the National Marine Fisheries Service (NMFS) Southeast Fisheries 

Science Center (SEFSC) initiated a mandatory observer program to characterize the 

commercial reef fish fishery in the Gulf.  Prior to that, the only observer coverage was a 

voluntary NMFS observer program conducted from 1993 through 1995.  The mandatory 

program incorporates a randomized selection process to select federally permitted 

commercial reef fish vessels for coverage stratified by season, gear, and region (Scott-

Denton et al. 2011).  Only fishery observer data collected on vessels from 2006 through 

2013 using bottom longline and vertical line gear from depths ≥ 100 m were included in 

the analyses to limit the spatial scale of the study.  While onboard the fishing vessels, 

observers collected detailed information such as location, depth, gear, and capture 

information for each set (NMFS 2015).  Scott-Denton et al. (2011) and Scott-Denton and 

Williams (2013) provide detailed descriptions of the protocol for the reef fish observer 

program's data collection methodology.   

Only data that conformed to confidentiality rules specified by the Magnuson-Stevens 

Fishery Conservation and Management Act were included in the analyses (NMFS 2007).  

The bottom longline fishing sets consisted of a mainline with variable length with baited 

hooks attached (gangions).  For the vertical line fishery, a set was a specific fishing 

location, e.g., anchored, attached to an oil rig, motor fishing, or drifting.  Any movement 
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to a new location by the vessel resulted in a new set, which represented a finer spatial 

scale than the bottom longline fishery.  Additionally, sets for vertical line gear can be 

broken up by time, e.g., a vessel stops fishing for a significant amount of time and 

resumes fishing at a later time at the same location.  Fishing sets from vessels trolling 

were excluded from the analyses because these sets typically cover a large area and are 

not targeting bottom fish.  Finally, fishing sets with no catch were removed from the 

analyses.  All analyses in this study were performed using R statistical software (version 

3.1.1; R Core Team 2014).    

 

2.2 Species Managed Under the IFQ System 

We first compared pre- and post-IFQ retention rates for the seven species managed 

under the current deepwater grouper and tilefish IFQ quota management systems.  The 

deepwater grouper IFQ allocation is not for a single species, but instead comprises four 

different grouper species: snowy grouper (Epinephelus niveatus), speckled hind 

(Epinephelus drummondhayi), warsaw grouper (Epinephelus nigritus), and yellowedge 

grouper (Epinephelus flavolimbatus).  The tilefish IFQ allocation comprises three 

different species: blueline tilefish (Caulolatilus microps), goldface tilefish (Caulolatilus 

chrysops), and golden tilefish (Lopholatilus chamaeleonticeps).  Specifically, abundance 

data before and after the grouper-tilefish IFQ start date of January 1, 2010 were 

examined for changes in retention rates, i.e. number of fish retained out of the total 

number captured.  Differences in retention rates between the time periods were 

examined with Fisher's exact test.  To detect if high-grading by size selection of discards 
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for a species was occurring under the IFQ management program, the fork lengths of the 

discards were compared to those of the retained fish using a one-tailed Kolmogorov-

Smirnov test.  For significant differences, the length measurements of the discarded and 

retained fish were plotted to determine the relative distribution of each.  Prior to the 

implementation of the IFQ system, an open season was used to manage the tilefish and 

deepwater grouper quotas until they were filled.  Both seasons opened on January 1 for a 

given year; however, the closures did not always coincide (SERO 2015).  We compared 

the retention rates with observer data to detect differences in discard rates between the 

staggered seasons.    

 

2.3 Cluster Analysis 

The hierarchical cluster analyses (HCA) were conducted for both gear types 

combined and subsets for each gear type, bottom longline and vertical line, to investigate 

patterns in species relationships.  Only species groupings with observations ≥ 50 were 

used in the cluster analyses as rare species may distort patterns in the species 

assemblages (Koch 1987).  The reef fish capture data were tabulated into counts of 

species groupings, e.g. abundance, for individual fishing sets.  Count data were 

converted to a presence-absence matrix for each fishing site prior to the examination of 

species associations.  The species managed under the IFQ management system were also 

separated by disposition into two groups of retained and discarded, e.g., retained and 

discarded blueline tilefish, to analyze patterns in retention rates for each fishing set.  

Since HCA requires no a priori assumptions, it is critical to validate the final results 
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using additional approaches (Borcard et al. 2011).  For this study, both the correlation (1 

- cor(X)[j,k]) and Bray-Curtis dissimilarity measures were compared for each grouping 

of the analysis.  For each measure of dissimilarity, the distance was calculated with both 

the average agglomerative linkage and Ward's linkage to compare the results between 

the two for consistent groupings.  The HCA was done using the package ‘pvclust’ in R 

with 1,000 multiscale bootstraps to create probabilities between the relationships in the 

species groupings (Suzuki and Shimodaira 2011).  The approximately unbiased (AU) 

probability was used because it provided a more accurate approximation of the strength 

of the relationships in the dendrogram (Liu et al. 2012).  Since the fishing sets should not 

be considered independent observations, the AU probabilities were used to evaluate the 

strength of the relationships between the species in each of the clusters rather than 

statistical significance.  

Cope and Haltuch (2012) used a technique of incorporating fake species into the 

analyses with a 0.5 probability of occurrence to identify the significance of the clusters 

formed by HCA.  The idea behind this method of validating clusters was that random 

groupings of species would be less equivalent than the fake species.  The Bray-Curtis 

measure and average agglomerative linkage were the only methods used by these 

authors to detect patterns in species assemblages.  However, the use of fake species with 

presence or absence data and the Bray-Curtis measure is unnecessary as the measure is 

of compositional dissimilarity between counts of species at each sampling location (Bray 

and Curtis 1957).  When count data are transformed to presence or absence information, 

the exact probability of co-occurrence can be determined by examining the dissimilarity 
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in the resulting dendrogram.  For instance, the fake species in the dendrograms will 

always result in a dissimilarity of 0.5 with a 0.5 probability of occurrence using presence 

or absence data with the average agglomerative linkage method.  To overcome this in 

our study, the optimal method for dissimilarity measure and linkage were chosen when 

the fake species had the highest dissimilarity in the resulting dendrograms.  We 

compared clusters formed by each method using the dendrograms of significant clusters 

species grouping with an AU probability ≥ 95.  For the best combination of methods, the 

probability of occurrence of fake species was increased in the presence-absence matrix 

until they significantly clustered with real species to further evaluate the strength of the 

species relationships in the results.   

 

2.4 CPUE Prediction Models 

Only fishing sets that captured at least one IFQ-managed species were used in the 

analyses to examine spatial variations in abundance.  Initial examination indicated the 

catch data for the IFQ-managed species was zero-inflated and possessed long tails, as a 

small number of fishing sets had larger than expected catch.  To account for this, two 

different predictive approaches were used to model abundance and compared on 

different spatial scales.  The first predictive model used a delta-lognormal approach (Lo 

et al. 1992) with boosted regression trees (delta-BRT) to standardize CPUE with a 

binomial model fit for the probability of occurrence and a log-normal model fit to the 

catch positive fishing sets for each species.  Each sub-model was combined to form the 

full delta-BRT model of CPUE for each IFQ-managed deepwater species.  The delta-



 

 10 

BRT of abundance for each species was calculated as the product of probability of 

occurrence times the unlogged CPUE value from catch positive model (Froeschke and 

Drymon 2013).  Boosted regression trees are a powerful method for cross-validating 

predictor variables compared with traditional tree regression by applying a model 

averaging technique where the influence of predictor variables is determined using 

stochastic gradients (De'ath 2007; Elith et al. 2008).  

The predictor variables included in each delta-BRT sub-model were latitude, 

longitude, depth, and gear type.  For each sub-model, the relative importance for each 

predictor variable was reported as their contribution scaled to 100.  The Area Under the 

Curve (AUC) value for the Receiver Operating Characteristic was used to select the best 

binomial sub-models and the lowest predicted deviance was used for evaluating the 

lognormal catch positive models.  The AUC value is a measure of overall model 

accuracy with 0.5 considered random and 1.0 a perfect fit interpreted as the predicted 

values of presence versus absence for each site (Phillips et al. 2006).  The tuning 

parameters of the learning rate (0.05-0.001), bag fraction (0.5-0.75), and tree complexity 

(3-7) were adjusted in the model fitting process.  To prevent overfitting, the data were 

divided into 10 subsets and cross-validation was used to determine the optimal number 

of trees for minimizing the holdout deviance with the gbm.step function in the ‘dismo’ 

and ‘gbm’ packages of R with a Gaussian distribution for the catch positive models 

(Hijmans et al. 2013; Ridgeway 2013).  For model validation, the residuals for both sub-

models were plotted using a histogram to detect model fit and a QQ-plot was used to 

examine normality of the theoretical quantiles for the lognormal sub-models.   
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The second predictive modeling approach used a zero-inflated negative binomial 

(ZINB) with the same initial variables as the delta-BRT models of latitude, longitude, 

depth, and gear type.  The initial analyses encountered problems with convergence when 

the interactions between the variable were included.  Therefore, the decision was made 

to not include any interactions in the model fitting process.  Model selection for each 

species removed insignificant variables with backwards regression for each sub-model 

using the likelihood ratio test to drop insignificant variables (Zuur et al. 2009).  The 

significance for each variable remaining in the final models was reported using the χ2 

test on the difference of log likelihoods when the variable was not included in the model.  

Overall model significance was tested using the χ2 test on the difference in log-

likelihoods between the null and final models.  Models diagnostics included plotting the 

Pearson residuals versus the fitted values and comparing the residuals for each 

explanatory variable to detect poor fits.   

The final models for each IFQ-managed deepwater species were used to predict 

indices of abundance as CPUE per fishing set by area and depth of capture.  The areas in 

the Gulf were generated using NMFS statistical zones (Patella 1975) to represent the 

following regions: 1-3 Florida Keys, 4-7 West Florida, 8-9 Northwest Florida, 10-12 

Alabama/Mississippi, 13-17 Louisiana, and 18-21 Texas (Figure 1).  Since no statistical 

method is available to directly compare the performance of each respective predictive 

model type, the raw mean CPUE was examined against the predicted mean CPUE from 

the delta-BRT and ZINB models as a comparison tool for model accuracy on different 

spatial scales.  For each area, 95% bootstrapped confidence intervals (n=1,000) were 
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generated for the observed and predicted mean CPUE from each model to compare the 

results on a large spatial scale (Efron and Tibshirani 1986).  To examine predictive 

model performance on finer spatial scales, observed and predicted CPUE loess 

regression lines were compared for depth ranges observed for each Gulf region.  The 

patterns observed for the IFQ-managed species in the cluster analyses were expected to 

be evident in differing spatial abundance for the observed and predicted observations.   

 

Figure 1.  Aggregation of statistical zones used by the NMFS fishery observer 
program in the Gulf of Mexico. 
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3. RESEARCH RESULTS 

 

From 2006 through 2013, in depths ≥ 100 meters, observers recorded a total of 

117,702 captures of finfish.  Of these captures, 99,510 fish were recorded from vessels 

using bottom longline gear, and 18,192 from vertical line gear.  A total of 200 unique 

species groupings were recorded for both gear types combined, of which 173 groupings 

occurred with vessels using bottom longline gear and 106 groupings for vertical line 

gear.  For both gear types, 64 species groupings were included in the analyses when 

captures with n < 50 observations were removed (Table 1).  Yellowedge grouper (n = 

26,047), golden tilefish (n = 22,841) , and blueline tilefish (n = 10,545) were the three 

most abundant species observed and were primarily captured using bottom longline gear.  

Vermilion snapper (Rhomboplites aurorubens) was the most common species recorded 

for vertical line gear with 7,150 captures.  A total of 3,194 fishing sets with captures 

recorded were observed for both gear types, of which 1,978 were bottom longline sets, 

and 1,216 were vertical line sets.  A small number of species groupings dominated the 

catch with the 10 most abundant species accounting for > 78% of the number of captures 

observed, and the 3 most abundant comprising > 50% (Table 1). 
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Table 1.  The number of captures observed at depth (≥ 100 m) with observations (n 
> 50 ) and percentage by gear type bottom longline (BLL) and vertical line (VL) 
recorded by the observer program from 2006 through 2013 in the Gulf reef fish 
fishery. 

Common Name Scientific Name # of 
Captures  

% 
BLL 

%   
VL 

Yellowedge Grouper  Epinephelus flavolimbatus 26,047 98.9% 1.1% 
Golden Tilefish Lopholatilus 

chamaeleonticeps 
22,841 99.6% 0.4% 

Blueline Tilefish Caulolatilus microps 10,545 97.9% 2.1% 
Vermillion Snapper Rhomboplites aurorubens  7,200 0.7% 99.3% 
King Snake Eel Ophichthus rex  6,193 99.8% 0.2% 
Snowy Grouper Epinephelus niveatus 4,840 88.3% 11.7% 
Cuban Dogfish Squalus cubensis 4,286 99.8% 0.2% 
Red Porgy Pagrus pagrus 4,029 21.2% 78.8% 
Smooth Dogfish Mustelus canis 3,989 99.0% 1.0% 
Red Snapper Lutjanus campechanus 2,467 46.1% 53.9% 
Atlantic Sharpnose 
Shark 

Rhizoprionodon 
terraenovae  

1,899 99.1% 0.9% 

Scamp Grouper Mycteroperca phenax  1,761 60.0% 40.0% 
Greater Amberjack Seriola dumerili  1,652 65.0% 35.0% 
Southern Hake Urophycis floridana  1,291 99.6% 0.4% 
Spiny Dogfish (genus) Squalus sp. 1,158 99.5% 0.5% 
Spotted Hake Urophycis regia 1,135 99.6% 0.4% 
Gag Grouper Mycteroperca microlepis  1,110 31.1% 68.9% 
Speckled Hind Epinephelus 

drummondhayi  
1,074 72.3% 27.7% 

Blacktail Moray Gymnothorax kolpos  1,006 99.3% 0.7% 
Hake (genus) Urophycis sp.  992 99.4% 0.6% 
Grouped Sharks General sharks  944 90.5% 9.5% 
Chub Mackerel Scomber japonicus  914 0.1% 99.9% 
Spinycheek 
Scorpionfish 

Neomerinthe hemingwayi  779 98.3% 1.7% 

Silk Snapper Lutjanus vivanus  774 32.7% 67.3% 
Dogfish (genus) Mustelus sp.  560 99.3% 0.7% 
Pale Spotted Eel Ophichthus puncticeps  523 100.0% 0.0% 
Red Grouper Epinephelus morio 511 97.7% 2.3% 
Bearded Brotula Brotula barbata 484 98.6% 1.4% 
Almaco Jack Seriola rivoliana  411 41.4% 58.6% 
Blackedge Moray Gymnothorax 

nigromarginatus  
353 98.6% 1.4% 
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Table 1.  Continued 

Common Name Scientific Name # of 
Captures  

% 
BLL 

%   
VL 

Purplemouth Moray Gymnothorax vicinus  305 91.8% 8.2% 
Gulf Hake Urophycis cirrata 287 98.3% 1.7% 
Queen Snapper Etelis oculatus 260 69.6% 30.4% 
Blackfin Tuna Thunnus atlanticus  255 95.7% 4.3% 
Blackfin Snapper Lutjanus buccanella 236 19.1% 80.9% 
Warsaw Grouper Epinephelus nigritus  226 62.8% 37.2% 
Scalloped Hammerhead Sphyrna lewini  222 99.5% 0.5% 
Sandbar Shark Carcharhinus plumbeus  212 100.0% 0.0% 
Moray Eel (genus) Gymnothorax sp.  208 95.7% 4.3% 
Blacktip Shark Carcharhinus limbatus 203 94.6% 5.4% 
Silky Shark Carcharhinus falciformis  175 48.0% 52.0% 
Bigeye Sixgill Shark Hexanchus nakamurai 164 100.0% 0.0% 
Dolphin Fish Coryphaena hippurus  160 90.6% 9.4% 
Night Shark Carcharhinus signatus  159 100.0% 0.0% 
Wenchman Pristipomoides aquilonaris  140 55.0% 45.0% 
Little Tunny Euthynnus alletteratus  131 87.8% 12.2% 
Shortspine Dogfish Squalus mitsukurii 128 100.0% 0.0% 
Tiger Shark Galeocerdo cuvier  126 99.2% 0.8% 
Blackbelly Rosefish Helicolenus dactylopterus  110 76.4% 23.6% 
Sharpnose Sevengill 
Shark 

Heptranchias perlo  103 100.0% 0.0% 

Sixgill Shark (genus) Hexanchus sp. 101 99.0% 1.0% 
Snake Eel (family) Ophichthidae  99 100.0% 0.0% 
Spotted Moray Gymnothorax moringa 94 100.0% 0.0% 
Longtail Bass Hemanthias leptus  76 15.8% 84.2% 
Conger Eel Conger oceanicus  74 98.6% 1.4% 
Great Barracuda Sphyraena barracuda  69 76.8% 23.2% 
Dogfish Shark (order) Squaliformes 67 100.0% 0.0% 
Jack (genus) Seriola sp. 65 90.8% 9.2% 
Hammerhead Shark 
(genus) 

Sphyrna sp.  64 100.0% 0.0% 

Chain Dogfish Scyliorhinus retifer  63 100.0% 0.0% 
Barrelfish Hyperoglyphe perciformis 60 31.7% 68.3% 
Green Moray Gymnothorax funebris  58 100.0% 0.0% 
Rough Scad Trachurus lathami 52 0.0% 100.0% 
Lesser Amberjack Seriola fasciata  51 15.7% 84.3% 
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Significant differences were found in the retention rates for five of the seven IFQ-

managed species in the deepwater reef complex (Table 2).  All tilefish species had lower 

retention rates when compared to the IFQ grouper species; however, only 43 captures 

were observed for goldface tilefish indicating it is a rarely encountered species.  The 

species with the greatest difference relative to the number of fish discarded after the 

implementation of the IFQ system was golden tilefish with a post-IFQ retention rate of 

80.3%, compared with 97.1% prior to the IFQ implementation.  Blueline tilefish had the 

highest percentage (> 44%) of discards under IFQ management but were less commonly 

captured than golden tilefish thus representing a smaller overall number of discards 

observed.  Yellowedge, snowy, and warsaw grouper species all had retention rates > 

96% under IFQ management indicating little evidence of high-grading among these 

species managed under the same IFQ allocation category.  For warsaw grouper and 

goldface tilefish, no analyses were conducted to compare the size of the discarded and 

retained fish under the IFQ system due to limited length data, and because no significant 

difference in retention rates were observed, p = 0.24 and p = 0.39 respectively.      

Size selection of discards under IFQ-management was also apparent for four of the 

five species that had different retention rates with discards being significantly smaller for 

golden tilefish, yellowedge grouper, snowy grouper, and speckled hind (Figure 2).  For 

example, the 90th percentile of discarded golden tilefish lengths was approximately 

equivalent to the 50th percentile of the length of fish retained.  Of these 4 species, the 

results are of greatest concern for golden tilefish that had both the largest number and the 

highest percentage of discards recorded under the IFQ system.  Blueline tilefish was the 



 

 17 

only species with a different retention rate that had a marginally significant difference (p 

= 0.06) between the size of discarded and retained fish.  Prior to the IFQ system when 

fishery observer data were available, there is evidence that most (> 96%) tilefish were 

retained under the derby system when the season was open (Table 3).  A high percentage 

(> 98%) of discarding occurred only when the tilefish and deepwater grouper closures 

did not coincide.  

 

Table 2.  Retention rates for the IFQ-managed deepwater reef fish species using 
fishery observer data from 2006 through 2013. 

Species 

Number 
Retained 

Number 
Discarded Retention Rate Fisher's 

Exact 
Test 

 P-value 
Pre-
IFQ 

Post-
IFQ 

Pre-
IFQ 

Post-
IFQ 

Pre-
IFQ 

Post-
IFQ 

Golden Tilefish 2,169 16,464 65 4,042 97.1% 80.3% < 0.001 

Blueline Tilefish 1,723 3,863 1,761 3,062 49.5% 55.8% < 0.001 
Goldface 
Tilefish 4 12 3 24 57.1% 33.3% 0.39 

Yellowedge 
Grouper 6,834 18,925 41 233 99.4% 98.8% < 0.001 

Snowy Grouper 105 3,968 13 75 89.0% 98.1% < 0.001 

Speckled Hind 392 583 6 93 98.5% 86.2% < 0.001 
Warsaw 
Grouper 98 115 8 4 92.5% 96.6% 0.24 
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Figure 2.  Empirical cumulative distribution of lengths for IFQ-managed 
deepwater reef fish species with significant differences based on the Kolmogorov-
Smirnov test from 2010-2013. 
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Table 3.  Retention rates for most common tilefish species pre-IFQ for time periods 
before and after aggregated deepwater grouper closure. 

 2007 2008a 
2009 

Fishing Season Open, 1/1-
4/18 

Closed, 
4/19-6/2 

Open, 1/1-
5/10 

Open, 
1/1-5/15 

Closed, 
5/16-6/27 

Golden Tilefish 
Number Kept 44 0 211 1,913 1 

Number Discarded 0 5 8 22 30 

Retention Rate 100.0% 0.0% 96.3% 98.9% 3.2% 
Blueline Tilefish 

Number Kept 3 9 155 1,555 1 

Number Discarded 0 589 0 57 1,115 
Retention Rate 100.0% 1.5% 100.0% 96.5% 0.1% 

a In 2008 the deepwater grouper closure coincided with the tilefish closure. 

 

For examining community structure on large spatial scale, the most consistent method 

for filtering out the fake species across all subsets of the data was using the correlation 

measure of dissimilarity with average agglomerative linkage (Figure 3).  For all subsets, 

the fake species never had a dissimilarity measure less than 0.9 with a 0.5 probability of 

co-occurrence.  The correlation measure of dissimilarity in combination with the average 

linkage resulted in the fake species being absent from all significant clusters (AU ≥ 95).  

The correlation measure of dissimilarity did not perform as well with Ward's linkage 

because the fake species consistently clustered with real species.  Using the Bray-Curtis 

measure of dissimilarity with both average and Ward's linkage resulted in species at a 

higher co-occurrence than the fake species for all subsets of the data, which may indicate 

it is inefficient at determining species relationships on a large spatial scale with this type 

of dataset (Figures 4 and 5).   
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Figure 3.  Dendrogram of species clusters for gear types combined using the 
correlation measure of dissimilarity with average agglomerative linkage. 
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Figure 4.  Dendrogram of species clusters for gear types combined using the Bray-
Curtis dissimilarity measure and average agglomerative linkage.   
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Figure 5.  Dendrogram of species clusters for gear types combined using the Bray-
Curtis measure of dissimilarity with Ward's linkage. 



 

 23 

To validate the correlation measure of dissimilarity with average linkage on this type 

of dataset, the probability of random occurrence for fake species was increased until they 

clustered with real species by 0.05 increments.  For the entire dataset, the fake species 

did not cluster with real species until the probability of occurrence was increased to 0.8.  

For subsets of the data with bottom longline and vertical line gears, the fake species 

clustered with some of the rarely caught species, but the dissimilarity was never less than 

0.95.  In the analysis for species with observations > 1,000 (Figure 6), the fake species 

did not cluster significantly with any real species until the probability of random 

occurrence was increased above 0.95 in the species matrix.  This indicates that the 

correlation measure in combination with average linkage is even more robust than 

random associations on groupings when less likely encountered species are removed.   

The IFQ-managed species of blueline tilefish, yellowedge grouper, and snowy 

grouper consistently clustered together for all subsets of the data (Figures 3 and 6).  

Golden tilefish only clustered with the other IFQ species for the vertical line subset of 

the data when few observations were present, indicating co-occurrence on fishing sets 

capturing other IFQ-managed species is not common.  When the IFQ-managed species 

disposition was added for cluster analysis, the same previous relationships were evident 

(Figure 7).  Retained and discarded golden tilefish clustered significantly, but not with 

any other IFQ species.  Yellowedge, snowy, and speckled hind grouper being retained 

significantly clustered with blueline tilefish retained and discarded.  Discarded 

yellowedge, snowy, and speckled hind grouper significantly clustered together indicating 

that they are not being retained on the same fishing sets. 
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Figure 6.  Dendrogram of species clusters with > 1,000 captures recorded using the 
correlation dissimilarity measure and average agglomerative linkage. 
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Figure 7.  Dendrogram of clusters for IFQ species kept or discarded using the 
correlation dissimilarity measure and average agglomerative linkage. 
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Catch information from 2,414 fishing sets was used for both predictive model types 

with yellowedge grouper as the most common (> 74%) and warsaw grouper the least 

common (6%) species observed on the fishing sets used in the analyses (Table 4).  The 

delta-BRT binomial sub-models indicated good fits for each species with excellent AUC 

(> 0.9) and explained deviance  > 50% for 4 of the 6 IFQ-managed species.  The best 

binomial sub-models were for the tilefish species which both had > 63% of the deviance 

explained.  Longitude had the greatest and gear type the least importance as predictor 

variables for each species except for golden tilefish.  For the catch positive lognormal 

sub-models, the explained deviance was higher for each tilefish species when compared 

to the 4 grouper species.  The relative importance for each variable was not consistent 

between the IFQ-managed species, with latitude and longitude the most important only 

for blueline tilefish, snowy grouper, and speckled hind.  Depth was the most important 

variable for golden tilefish and the second most important for warsaw grouper but was 

the least important for yellowedge grouper.  Yellowedge grouper was the only species 

that did not have gear type as the least important variable. 
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Table 4.  Results from the delta-BRT models for each IFQ-managed deepwater 
species with the AUC score for the binomial model, percent of explained deviance, 
and the relative importance of latitude, longitude, depth, and gear to each sub-
model.   

Species Golden 
Tilefish 

Blueline 
Tilefish 

Yellowedge 
Grouper 

Snowy 
Grouper 

Speckled 
Hind 

Warsaw 
Grouper 

Binomial Model 
     
     

AUC 0.97 0.96 0.96 0.83 0.94 0.8 
Explained 
Deviance 

75.9% 63.7% 59.7% 25.7% 51.8% 21.0% 

Latitude 12.1% 14.7% 14.9% 32.8% 27.5% 16.3% 
Longitude 51.7% 62.2% 25.9% 37.8% 47.8% 46.4% 

Depth 30.7% 13.6% 28.1% 25.8% 23.4% 33.9% 
Gear 5.5% 9.5% 31.1% 3.6% 1.3% 3.4% 

Catch Positive Log-Normal Model 

% CPS a 35.9% 35.6% 74.3% 39.4% 15.8% 6.0% 
Explained 
Deviance 

65.1% 50.4% 46.8% 26.2% 22.5% 1.0% 

Latitude 24.4% 37.6% 20.8% 37.3% 33.8% 35.2% 
Longitude 25.4% 24.6% 36.4% 31.6% 32.6% 29.1% 

Depth 46.5% 23.6% 17.0% 28.9% 21.4% 30.7% 
Gear 3.7% 14.2% 25.8% 2.2% 12.2% 5.0% 

       
a Percentage of catch positive sets out of all fishing sets with an IFQ-managed species 

captured. 

 

Statistically significant ZINB models (p < 0.0001) were generated for each IFQ-

managed species with noticeable differences in the variables selected compared to the 

delta-BRT models (Table 5).  For example, latitude was a very important variable in 

each catch positive delta-BRT sub-model, but was insignificant in each ZINB count 

model for all the species except for blueline tilefish.  Blueline tilefish was the only 

species with all 8 variables retained in the final models compared with yellowedge and 



 

 28 

warsaw grouper that only had the fewest (3) variables in the final models.  Depth was 

significant in all the zero-inflation models and most of the count models for each 

species, but was of varying importance in the delta-BRT sub-models.  Model validation 

for the delta-BRT and ZINB models showed excellent fits for every species except for 

warsaw grouper that had some non-normality in the residuals for the count and catch 

positive sub-models, most likely due to the small number (226) of captures observed.   

 

Table 5.  The results from the final ZINB model for each IFQ-managed deepwater 
species with the overall significance.  The probabilities for each variable area were 
calculated using the χ2 statistic and degrees of freedom (df) when not included in 
the model. 

Species Golden 
Tilefish 

Blueline 
Tilefish 

Yellowedge 
Grouper 

Snowy 
Grouper 

Speckled 
Hind 

Warsaw 
Grouper 

Pr >|χ2| <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
χ2 2055.9 1951.4 1409.7 374.2 874.9 159.7 

Final Model 
df a 9 11 6 9 10 6 

     
Negative Binomial Count Model     

Latitude NS b 0.0003 NS NS NS NS 
Longitude NS 0.0111 NS <0.0001 <0.0001 0.0114 

Depth <0.0001 <0.0001 0.0031 <0.0001 <0.0001 NS 
Gear Type <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 NS 

       
Zero-Inflation Model     

Latitude <0.0001 <0.0001 NS <0.0001 <0.0001 NS 
Longitude <0.0001 <0.0001 NS 0.0158 <0.0001 0.0013 

Depth <0.0001 0.0176 <0.0001 <0.0001 <0.0001 <0.0001 
Gear Type <0.0001 <0.0001 NS NS 0.0276 NS 

a The χ2 statistic is based on the difference between the null with 3 df and the df in the 
final model. 
b NS = Not significant at 0.05 level. 
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On a large spatial scale, the ZINB models were a better fit to the observed values for 

each area compared with the delta-BRT models that consistently underfit CPUE for each 

region (Figure 8).  For all delta-BRT models, the underfitting was improved from the 

initial results by increasing the bag fraction from 0.50 to 0.75 to capture some of the 

fishing sets with extreme observations.  On a finer spatial scale, the delta-BRT models 

continued to underfit the abundance observed, but were superior to the ZINB models in 

capturing the variation observed at different depths for each region (Figures 9, 10, and 

11).  The relationships observed for the IFQ-managed species with cluster analyses were 

evident with both predictive models.  The most notable spatial differences were between 

golden and blueline tilefish.  Blueline tilefish were primarily captured in the Florida 

Keys and West Florida region in depths < 250 m while golden tilefish consistently 

showed up in the other 4 regions of the Western Gulf in depths > 250 m.  Differences 

between speckled hind and warsaw grouper were evident with similar depth of capture, 

but marked differences in the location as speckled hind only occurred in the Florida 

Keys and West Florida region while warsaw grouper were found mostly in the western 

Gulf off Louisiana and Texas.  Yellowedge grouper were distributed across the Gulf in a 

wide range of depths, but snowy grouper were more common in the eastern Gulf with a 

diminishing chance of occurrence in the western Gulf. 
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Figure 8.  The mean CPUE by area for observed, boosted regression tree (BRT), 
and zero-inflated negative binomial (ZINB) models with 95% bootstrapped 
confidence intervals for IFQ-managed species. 
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Figure 9.  The observed CPUE per fishing set by area and depth for IFQ-managed 
species. 
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Figure 10.  The predicted CPUE per fishing set using delta-BRT models by area 
and depth for IFQ-managed species.   
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Figure 11.  The predicted CPUE per fishing set using ZINB models by area and 
depth for IFQ-managed species. 
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4. CONCLUSIONS 

 

The results from this study are of primary interest to research for modeling fishery-

dependent data on a large spatial scale.  The modeling techniques presented can provide 

the information needed to stratify target and non-target species into distinct management 

units based on their species co-occurrence in the fishery.  Using the IFQ-managed 

tilefish species as an example, a refinement of the current allocation category (i.e., 

blueline and golden tilefish) may be warranted since evidence exists that these species 

have separate spatial distributions and differing retention rates.  Blueline tilefish are 

most commonly associated with vessels capturing yellowedge and snowy grouper in the 

eastern Gulf while golden tilefish are more common in the western Gulf.  Differences in 

retention rates among the species may be due to price differentials.  For example, in 

2012 blueline tilefish ex-vessel price was $1.32/lb, while golden tilefish was higher at 

$2.50/lb possibly explaining the higher retention rate for that species (SERO 2013).  

Another possible reason for the difference in retention rates is that vessels fishing in the 

eastern Gulf may have insufficient tilefish IFQ allocation available to retain all the 

blueline tilefish captured when targeting grouper species.  The blueline tilefish retention 

rate of 55.8% under the current IFQ management scheme through 2013 indicated a high 

amount of discarding and represents an inefficient use of this fishery resource.  Size 

selection of discards was evident for 4 of the 7 species of interest under the current 

management strategy and is most likely due to lower prices for smaller sized fish.  
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Golden tilefish was the species of greatest concern due to the high number and 

percentage of discards observed.  

Methodologically, Bray-Curtis may be a robust measure of composition for species 

assemblages in other ecological contexts, but for fishery data on a large spatial scale 

using presence or absence information, we found that the correlation measure was 

superior.  Fake species have often been used as a null model for evaluating the 

significance of species relationships since first being introduced by Strauss (1982).  

However, only a limited number of ecological studies have applied the techniques as a 

comparison tool between the dissimilarity and linkage choices available in combination 

with a bootstrap approach.  Our findings indicated that the correlation method of 

dissimilarity outperformed the Bray-Curtis measure substantially by filtering out the 

random fake species introduced in the species matrix for all subsets of the data.  The 

correlation measure in combination with average linkage was even more robust when 

less likely encountered species were removed indicated by the high probability (> 0.95) 

needed for fake species to significantly cluster with real species.  Future studies using 

count data, instead of the presence or absence information, would benefit by comparing 

the same measures of dissimilarity and linkage used in this study to discover whether 

similar results could be obtained.   

Applying the Bray-Curtis measure with fake species as a null model, only two 

defined clusters would be considered valid in this study: (1) blueline tilefish, yellowedge 

grouper, and snowy grouper, and (2) golden tilefish, king snake eel (Ophichthus rex), 

and cuban dogfish (Squalus cubensis) (see Figure 4).  However, under the assumption 
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that the correlation measure of dissimilarity is a better choice for determining valid 

clusters of species assemblages on a large spatial scale, three distinct groups were 

present.  These represent a shallow water component consisting of snapper species, a 

mid-depth component including yellowedge and snowy grouper with blueline tilefish, 

and a deeper depth component of golden tilefish, cuban dogfish, and king snake eel.  

Additionally, the stratification of the fishery into smaller sub-units may allow more 

accurate determinations of bycatch levels or provide insight into other species of 

concern.  For instance in the mid-depth cluster, many of the large shark species clustered 

together indicating that these may be captured on fishing sets with extended soak times, 

certain bait types, or other unknown factors that are influencing their capture.  In 

addition, the four most commonly discarded IFQ-managed grouper species significantly 

clustered separately from those being retained possibly due to insufficient IFQ 

allocations.   

In the present study, two methods of dissimilarity and linkage were examined using 

fishery observer data on a large spatial scale.  Jackson et al. (2010) examined cluster 

analysis and ordination commonly used by community ecologists and found that the 

field has been slow to adopt recent advances such as the bootstrap or Bayesian methods.  

The authors advocated using the bootstrap approach with the caveat that the underlying 

independence of the samples cannot be assumed and therefore the probabilities should 

represent the degree of association between species instead of statistical significance.  

This precaution was given due to interspecific relationships existing between sampling 

locations underlying independence.  While the lack of a significant relationship does not 
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mean that none exists between species, a significant relationship suggests that future 

ecological studies warrant exploration of these species associations.   

Our research revealed that the correlation dissimilarity with average linkage for 

cluster analysis complemented the results from both predictive models, confirming that 

spatial distributions and community structure can be modeled using fishery observer 

data.  The predictive models for the dominant two tilefish and some grouper species 

confirmed clear separation between depth and area captured.  Latitude, longitude, and 

depth were important variables for both modeling approaches.  Incorporation of other 

environmental or temporal variables may be able to increase predictive performance.  

Boosted regression trees are a relatively new technique for analyzing ecological data, but 

have been used to predict the spatial distribution of fish in coral reefs using bathymetry 

data and the incidental catch of wahoo, Acanthocybium solandri, in the Mexican tuna 

purse-seine fishery (Pittman and Brown 2011; Martinez-Rincon et al. 2012).  If 

algorithms using a negative binomial or Gamma distribution become available for 

boosted regression trees, future research could compare the predictive performance of 

these distributions to the delta-BRT models used in this study.  It is possible one of these 

distributions may eliminate some of the model underfitting observed with the lognormal 

transformation used for catch positive fishing sets.  On a fine spatial scale, the delta-

BRT models were superior to the ZINB models in representing the variations observed, 

but the ZINB models appeared to better represent abundance fishing sets when they were 

aggregated on a large spatial scale.  

Specific determinations of stock status are one of the driving forces of current fishery 
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management schemes and managers are often forced to rely on limited data sources.  A 

recent report on the status of the Gulf of Mexico ecosystem found that abundance 

indices for tilefish and some of the grouper species in our research have been in decline 

since the 1980’s, while some of the primary species of commercial and recreational 

importance such as red snapper (Lutjanus campechanus) and red grouper (Epinephelus 

morio) in the region have increased in abundance (Karnauskas et al. 2013).  These 

authors suggest the pattern may be due to greater attention applied to the species of 

higher importance, or that fishers may be targeting the secondary species to compensate 

for increased regulation on other species.  Since many fisheries interact with multiple 

species, a clear understanding of patterns in species composition as revealed in our 

research will allow for a more accurate representation of the potential impacts of 

changes for management.     
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