
STANDARDIZED MEAN DIFFERENCES FOR COMPLEX MULTILEVEL

MODELS: PARAMETRIC AND NONPARAMETRIC ESTIMATION

A Dissertation

by

HOK CHIO LAI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Oi-man Kwok
Co-Chair of Committee, Myeongsun Yoon
Committee Members, Dudley L. Poston Jr.

Victor L. Willson
Head of Department, Victor L. Willson

August 2015

Major Subject: Educational Psychology

Copyright 2015 Hok Chio Lai



ABSTRACT

This dissertation comprises three separate but interrelated manuscripts exploring

methods for estimating the standardized mean difference effect size with several complex

multilevel data structures. Multilevel modeling techniques are becoming more popular in

handling data with multilevel structure in educational and behavioral research. However,

unlike traditional single level research, methodological studies about multilevel effect size

have been rare and those that have recently appeared had an emphasis on strictly

hierarchical data structure.

In the first manuscript, I propose two methods for obtaining effect size in the

two-level fully and partially cross-classified random effects models. Fully cross-classified

data structure arises when individual observations are clustered by several levels that did

not have a strictly hierarchical structure. For example, students may be classified by both

their middle school and high school, but neither middle school is nested within high

school nor vice versa. Partially cross-classified structure is a structure with an existing

clustering in both the treatment and the control condition, but with the addition of an

artificial clustering level only present in the treatment condition. The study will include

derivation of the formulas, verification of their performances with Monte Carlo

simulation, and illustration of their use with real data examples.

The second manuscript discusses two similar methods for obtaining effect size

with two-level partially nested data. Partially nested data arises in randomized trials

where the intervention creates artificial clustering, but no such clustering is present in the

comparison group. In this manuscript I will present derivation of the formulas for the two

methods, verify their performances with simulated data, illustrate their use with a real

data example, and discuss the impact of failing to honor the partially nested structure on
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effect size estimates.

The third manuscript explores the use of the bootstrap to estimate multilevel

standardized mean difference. I will discuss various bootstrap methods, both parametric

and nonparametric, to obtain effect size estimates for two-level studies. Their

performances will be compared with analytical methods under conditions of excessive

skewness and kurtosis in level-1 and level-2 random effects and varying design features.
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CHAPTER I

INTRODUCTION

In the past few decades there have been two important trends for quantitative

research in the behavioral sciences. One is the increasing popularity of multilevel models

(Goldstein, 2011b; Hox, 2010), which is synonymously called variance component

models (Searle, Casella, & McCulloch, 2006), hierarchical linear models (Raudenbush &

Bryk, 2002), and linear mixed modeling (Littell, Milliken, Stroup, & Wolfinger, 1996).

Traditional analyses such as multiple regression assume that the observations are

independent, which roughly means that knowing one individual’s score says nothing

about another individual’s score. For many situations in the social sciences, however, data

are collected in clusters, with examples like students in classrooms and schools,

employees in organizations, clients in treatment groups, and residents in countries.

Because individuals in the same cluster share the same environment, they may be more

similar to each other than to someone from another cluster. Therefore, knowing an

individual’s score gives some information about the score of another individual in the

same cluster, and the assumption of independent observation is violated.

Multilevel models are developed to address the data dependency issue (Aitkin &

Longford, 1986). They provide a flexible framework for specifying level-specific

regression models (Raudenbush & Bryk, 2002), and for separating the effect of a

lower-level predictor into the individual-level effect and the cluster-level effect. It also

allows the effect of lower-level predictors to vary across clusters by positing a distribution

of the regression slopes. This is a much more efficient way of modeling the slopes than

fitting separate regression models for each cluster. With continuing improvement in

algorithms for estimation (e.g., Bates, 2010; Goldstein, 1986; Longford, 1987) and in
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usability of computer programs (e.g., SPSS MIXED, SAS PROC MIXED, HLM, and

MLwiN), multilevel modeling has already become part of the standard training for

behavioral researchers.

The second important trend that has revolutionized quantitative research in the

behavioral sciences is what was called the “effect size movement” (Robinson, Whittaker,

Williams, & Beretvas, 2003). In the past two to three decades, many authors and editors

have discussed the problems associated with significance testing (Carver, 1978; Cohen,

1994; Harlow, Mulaik, & Steiger, 1997; Kline, 2013; Schmidt, 1996). One of the major

concerns was that p-value was frequently mistreated as an indicator of how strong or

“significant” the result is. However, because the p-value is usually a function of the

sample size (Thompson, 1996), a negligible effect can be “highly significant” with a large

sample while a substantial effect may be “non-significant” just because the sample size is

not large enough.

Recognizing such weakness in significance testing, some authors have proposed

the use of effect size as a mean to quantify an effect of interest (Grissom & Kim, 2012;

Kirk, 1996; Snyder & Lawson, 1993; Wilkinson & Task Force on Statistical Inference,

1999). Many journals have then made effect size reporting mandatory (Huberty, 2002).

Similarly, several professional associations, which includes the American Educational

Research Association (AERA, 2006), the American Psychological Association (APA,

2010), and the National Center for Education Statistics (NCES, 2012), have gradually

made effect size reporting almost a necessary step in reporting the results.

The two most commonly used families of effect size are strength of association and

group difference (Grissom & Kim, 2012; Kirk, 1996; Rosenthal, 1994). In a review of 32

review papers on effect size reporting practices, Peng, Chen, Chiang, and Chiang (2013)

found most of them concluding that the unadjusted proportion of variance accounted for,

or R2, and the standardized mean difference (SMD), with Cohen’s d as an example, are
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the most commonly used effect size measures. The R2 effect size measures the proportion

of variance in the outcome variable explained by the predictor or set of predictors, and is

more naturally associated with observational or correlational studies with continuous

predictors. On the other hand, SMD expressed the difference in outcome scores in

standard deviation (SD) units between two groups, and is more naturally associated with

experimental or quasi-experimental studies where the intervention variable contains

treatment arms. That being said, one should note that both R2 and Cohen’s d can be used

for both observational and experimental studies, and at least for single-level studies

formulas are available for converting R2 to d or vice versa (Lipsey & Wilson, 2001).

The two trends, however, have not mixed well yet. On one hand, the analogue for

R2 in multilevel analyses had been developed for a while (Raudenbush & Bryk, 2002;

Snijders & Bosker, 1994), mainly due to the nature of multilevel models being an

extension of the conventional multiple linear regression. Still, as noted in Peugh (2010),

“no consensus exists as to the effect sizes that are most appropriate” (p. 97, see also

J. K. Roberts, Monaco, Stovall, & Foster, 2011). On the other hand, whereas cluster

randomized trials that implement randomization and interventions at the group-level is

quite popular in education and medical sciences, the analogue of Cohen’s d in multilevel

studies was not discussed until Hedges (2007). Given the complexity of multilevel

models, the variability in multilevel data structures, and the importance of quantifying

effects of interest, much more research efforts are needed to study multilevel effect sizes.

This dissertation comprised three manuscripts representing my research efforts on

multilevel SMD. In the first manuscript, I apply the framework for deriving multilevel

SMD from Hedges (2007) to the cross-classified data structure as well as its variant, the

partially cross-classified data structure. As pointed out by Beretvas (2011), the two-level

hierarchical structure represents only an idealized and unrealistic simplification of the real

data structure. In education, for example, students are not clustered in only one way. The
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data may be collected from students that are clustered by both their middle schools and

high schools, or perhaps by both their schools and neighborhoods of living. In such cases

there are two sources of clustering, but the two sources do not conform to a hierarchical

relationship; Instead they are crossed. Analyses that appropriately model such structure

has been developed and used more frequently in the past few years.

The partially cross-classified structure is a variation in which, for a sample of

participants already clustered by one level, the intervention creates an extra level of

clustering for only the treatment arm but not for the control arm. For instance, to examine

the effect of emotion management group, a researcher may implement the intervention

with groups of students from different classrooms (in order to reduce the probability of

having close friends in a group), so students in the treatment arm is cross-classified by

intervention groups and classrooms, whereas those in the control arm is only nested

within classrooms. Another example would be an example where students in the

treatment arm changes memberships of reading groups but those in the control arm does

not, as presented first manuscript.

The main goal of the second manuscript is to derive SMD for the partially nested

structure, where clustering occurs only in the treatment arm but not in the control arm.

Such a data structure is probably less complicated than the cross-classified one, but it is

perhaps the most common structure for cluster-randomized trials, as Bauer, Sterba, and

Hallfors (2008) found that more studies used it than the two-level hierarchical structure

where clustering occurs in both arms. It is not difficult to see why. In education, many

interventions like reading groups and those that facilitate cooperative learning are

group-based. Similarly, in psychology, there are treatment groups for addiction, family

problems, and other psychological problems or developments. Typically no intervention

is implemented for the control arm, resulting in data with a partially nested structure.

In the first two manuscripts, I propose two analytical methods for obtaining SMD
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and its sampling variance (i.e., the squared value of the standard error, SE2) for each

design, verify their performances, and demonstrate their usage with real data.

As presented in Hedges (2007), Hedges (2011), and the first two manuscripts, the

analytical formulas for obtaining SMD is long and complex. Although they are important

as they outline the influence of different elements, such as sample size and cluster size, on

the point and variance estimates of SMD, they may be inconvenient to use for behavioral

researchers. Also, because in most situations the sample effect size is not normally

distributed, one needs to invoke noncentral probability distributions to obtain confidence

intervals (CIs). Furthermore, given that there are many different multilevel designs, it is

impossible or at least very tedious to derive formulas for SMD and its variance for each

design.

Therefore, in the third manuscript I examine whether the bootstrap (Efron, 1982),

a popular resampling technique, can be a good general technique for obtaining SMD and

other effect size measures with different data structures. The advantage of the bootstrap is

that it requires only the specification of the point estimator for the effect size; The

sampling variance is approximated by resampling. One type of the bootstrap, the

nonparametric one, also has the added advantage that it handles violation of the

nonnormality assumption automatically. In this manuscript, I review five methods of

SMD estimation: the ANOVA method (partitioning sum of squares), the model-based

method (using model estimates of variance components), the parametric bootstrap, the

residual bootstrap, and the case bootstrap. The first two are analytical methods discussed

in the first two manuscripts, and with them one can construct CIs using either asymptotic

normal theory or the noncentral t distribution. For the bootstrap methods I consider in the

manuscript the percentile CI and the bias-corrected and accelerated CI. The 10 CIs will

be compared based on their empirical coverage probability and their width.
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CHAPTER II

STANDARDIZED MEAN DIFFERENCES IN TWO LEVEL CROSS- CLASSIFIED

RANDOM EFFECTS MODELS*

Overview

Multilevel modeling techniques are becoming more popular in handling data with

multilevel structure in educational and behavioral research. Recently researchers have

paid more attention to cross-classified data structure that naturally arises in educational

settings. However, unlike traditional single level research, methodological studies about

multilevel effect size have been rare and those that have recently appeared had an

emphasis on strictly hierarchical data structure. The present article extends the work on

multilevel standardized mean differences from strictly hierarchical structure to both fully

and partially cross-classified structures. Analytically derived formulae for calculating

effect sizes and the corresponding sampling variances (or standard errors) are presented,

verified by simulation results, and illustrated with real data examples. Implications for

primary research studies and meta-analyses are discussed.

Introduction

The field of educational and psychological science has witnessed a movement

from the obsession of statistical significance testing to the evaluation of effect size

(Ferguson, 2009). However, for studies with multilevel data, effect size is still

under-reported, even though some effect size statistics have recently been developed for

multilevel data with a nested structure (e.g., standardized mean difference; Hedges, 2007,

2011) and a cross-classified structure (e.g., proportion of variance accounted for; Luo &

*Reprinted with permission from “Standardized Mean Differences in Two-Level Cross-Classified Ran-
dom Effects Models” by Mark H. C. Lai and Oi-man Kwok, 2014. Journal of Educational and Behavioral
Statistics, 39, 282–302, Copyright 2014 by the American Educational Research Association.
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Kwok, 2010). As cross-classified random effects models (CCREMs) have gained

increasing attention in educational research (e.g., Friedel, Cortina, Turner, & Midgley,

2010; Johnson, 2011), there is a need to develop relevant effect size measures for

CCREMs. The intent of the present article is to (a) analytically develop the standardized

mean difference measure for two-level CCREM, (b) verify the performance of the

mathematically derived formulae using simulated data, and (c) illustrate the computation

of the effect size statistic with real data example.

The American Educational Research Association (AERA, 2006, p. 37), in its

Standards for Reporting on Empirical Social Science Research in AERA Publications,

recommended the use of effect size statistics with the rationale that “[i]nterpretation of

statistical analyses is enhanced by reporting magnitude of relations.” The American

Psychological Association (APA, 2010, p. 34), in its Publication Manual, took a stronger

stance to deem the reporting of effect size statistics as “almost always necessary.” The

attention given to effect size can be attributed to three important advantages of reporting

such statistics. First, effect sizes, rather than statistical significance tests, directly answer

research questions such as how strong two variables are associated, or how effective an

intervention is (see Thompson, 2007). Second, to date effect size is the element to be

synthesized in almost all meta-analytic studies (Lipsey &Wilson, 2001). Third, effect size

estimation also plays a critical role in research planning, such as power analysis (Cohen,

1988). Two of the commonly reported effect size families include the standardized mean

difference (i.e., group difference divided by sample standard deviation, or the d-family)

and the proportion of variance accounted for (or the r-family; Grissom & Kim, 2012).

Whereas the effect size statistics in single level studies are already well-developed, effect

size in multilevel modeling has appeared only recently and is generally limited to strictly

nested data. Therefore, more discussion on this topic will be necessary and valuable.
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Effect Size in Multilevel Analyses

Although techniques for handling data with cluster structures have been developed

for several decades (e.g., Goldstein, 1986; Mason, Wong, & Entwisle, 1983), in the past

ten years they have gained much more attention in educational and behavioral research.

This is not surprising given that in these fields much data collected have intrinsically

nested structure. For example in the field of education, students are naturally nested

within classrooms, and classrooms are naturally nested within schools. Because

traditional data analytic techniques ignore the multilevel structure and give incorrect

standard errors (Hox, 2010), new methods are proposed that provide correct standard

errors and hence accurate statistical inference. One of the most popular approach is

multilevel modeling (Goldstein, 2011b), which is synonymously called hierarchical linear

modeling (Raudenbush & Bryk, 2002), linear mixed modeling (Littell et al., 1996), and

other similar names.

Despite the rapid growth in the number of multilevel studies, rarely did

researchers utilize effect size statistics in reporting multilevel results. Most of these

studies used proportion of variance accounted for, or R2 (see Luo & Kwok, 2010; Snijders

& Bosker, 2012). However, for studies with a binary covariate, such as treatment-control

or male-female, the standardized mean difference is a more natural choice, and is more

easily understood by researchers.

In addition to the point estimates of an effect size, its sampling variance (or

standard error) is also important. As commented by Cohen (1994), it is “far more

informative to provide a confidence interval” (p. 1310), and the computation of

(asymptotic) confidence interval (CI) requires the sampling variance of the effect size.

This is particularly important for meta-analysts (Hedges, 1981; Lipsey & Wilson, 2001),

because both point and variance estimates of effect size are required to get an overall
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average effect size and to understand the influence of study-level covariates including

publication bias in the literature. Given the importance of the point estimate and the

sampling variance of the standardized mean difference effect size, as well as the lack of

discussion about them in complex multilevel models, research efforts to supplement

methods for their calculation are warranted.

Recently Hedges (2007, 2009, 2011) made a seminal effort in defining

standardized mean difference statistics for data with two-level and three-level nested

structures. Particularly he suggested that, depending on the context, there could be

different choices of standard deviations in computing the effect size. Hedges (2007)

illustrated the calculation of effect size in two-level studies with an example about the

effect of using connected mathematics in classrooms. In that example students were

nested within classrooms, and the treatment (i.e., connected mathematics) was defined at

the classroom level (i.e., level-2). He showed that the overall effect size was 0.15 (95% CI

[−0.29, 0.59]) and the within-classroom effect size was 0.17 (95% CI [−0.34, 0.69]). In a

three level cluster-randomized design, five possible effect size statistics can be computed

depending on which variance component is invoked. The formulae given by Hedges

(2007, 2009, 2011) do not require researchers to have the raw data to obtain an effect size

estimate; Instead, only the estimated treatment effect (i.e., grand mean difference between

the treatment and the control arm), sample sizes for all levels of clustering, and the

corresponding intraclass correlations are needed. In the context of meta-analysis, Ahn,

Myers, and Jin (2012) have suggested methods to estimate intraclass correlations when

the original research report does not include the relevant information.

Cross-Classified Random Effects Models (CCREMs)

The number of published articles adopting the CCREM method, a more

complicated structure than nested multilevel models, has increased dramatically in recent
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years. A simple search in the Educational Research Information Center (ERIC) database

with the keyword “cross-classified” found only three articles during 2000 to 2005 but 32

articles during 2006 to 2012. One reason for the increasing adoption of CCREM is that

multilevel data may not always have a strictly hierarchical structure. A typical example is

given by Beretvas (2011), where students are nested within both primary schools (PS) and

high schools (HS), but PS is not nested within HS nor vice versa. That is, not all students

in one HS come from the same PS, nor do all students from one PS go to the same HS. In

this case PS and HS are labeled as crossed factors. If both PS and HS are assumed to be

random effects, then CCREM can be used to analyze such kind of data. Luo and Kwok

(2010) have discussed the R2 effect size for CCREMs. However, to the best of our

knowledge, no discussion has taken place about standardized mean difference for

CCREMs. Standardized mean difference would be suitable, for instance, in describing the

effects of a school-based intervention on students’ learning, where students are nested in

both schools and neighborhoods. Based on the framework of previous studies (Hedges,

2007, 2011), in the present article we develop effect sizes for CCREMs through

mathematical derivation, and evaluate their performances using both simulated and real

data sets.

The purpose of the present article is to analytically develop the standardized mean

difference measure for two-level CCREMs for both balanced and unbalanced designs, and

to verify the performance of the mathematically derived formulae. Because of the

complexity of the formulae, we also provide real data examples for pedagogical purposes

so that applied researchers can better understand how those formulae can apply to their

research. In the following sections we would (a) briefly introduce the notations for a

two-level CCREM with two crossed factors; (b) discuss two estimation approaches to

obtain the standardized mean difference, D, and the corresponding sampling variance,

V (D) (where V (·) denotes the variance operator), for balanced design CCREMs; (c)
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empirically verify their performance through simulations; and (d) illustrate their

calculations with real data having a cross-classified structure. The discussion of partially

cross-classified random effect models (PCCREMs) included the same elements.

Model and Notation

In a balanced design with the cross-classification of two random effects A and B

at level-2, let J and K be the number of clusters in effect A and in effect B respectively. In

the context of education, A can be classrooms in a school and B can be neighborhoods.

To make things more concrete in the following sections, we would use an hypothetical

example where effect A is the classroom effect and effect B is the neighborhood effect,

although the notation is equally applicable to other contexts such as therapy grouping

effect by classroom effect, or in longitudinal settings with person effect by time effect. As

a result there are J classrooms and K neighborhoods, and J × K combinations of

classroom and neighborhood, or J ×K cells. Further let n j k = n be the number of students

in each cell with index i = 1, . . . , n. In addition, assume that classrooms are randomly

assigned to treatment condition or control condition. Because the word “group” can refer

to either people in one of the treatment conditions or people from one of the classroom, to

avoid confusion, in subsequent discussions the group receiving treatment is referred to as

the treatment arm whereas the group in the control condition is referred to as the control

arm (Bauer et al., 2008). For example, a researcher can randomly assign half of the

classrooms to adopt a new reading instruction and the other half to use the traditional

approach. Thus, classrooms are nested within treatment arms but neighborhoods and

treatment arms are crossed. In this case students from the same classroom must have the

same treatment status, whereas students from the same neighborhood can have different

treatment statuses if they come from different classrooms.

Let j = 1, . . . , JT and j = 1, . . . , JC be the index of classroom for the treatment
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(T) and the control (C) arms where JT + JC = J, and k = 1, . . . , KT and k = 1, . . . , KC be

the index of neighborhood. Furthermore, the sets of neighborhoods in the treatment arm

and in the control arm may be completely overlapped, partially overlapped, or completely

separated. Let Koverlap be the number of overlapping clusters, and the three possible

situations are then Koverlap = KT = KC = K (complete overlapping),

Koverlap = (KT + KC) − K > 0 (partial overlapping), or Koverlap = 0 and K = KT + KC

(complete separation). Therefore, the sample size for the treatment group is

NT = JT × KT × n, that for the control group is NC = JC × KC × n, and the total sample

size is N = NT + NC . The model can then be specified as

Yi j k = γ00 + γ10(TREAT j ) + µ0 j + ν0k + εi j k, (1)

where Yi j k refers to the score of the ith student in the jth classroom and the kth

neighborhood, and TREAT j the treatment status variable dummy coded as 0 (control) and

1 (treatment). γ00 is the grand mean of the control arm in the sample, γ10 is the mean

difference between the treatment arm and the control arm, µ0 j is the magnitude of the

effect of the jth classroom, ν0k is the magnitude of the effect of the kth neighborhood,

and εi j k is the within-cell residual (i.e., the student effect). Usually researchers do not

estimate the interaction effect between random effects for simplicity (Shi, Leite, &

Algina, 2010). Also, following (Hedges, 2007), it is assumed that the treatment effect

does not interact with random effects A and B.

In a balanced design, the variance of Y can be partitioned into three independent

components, which are denoted as σ2W , the within cluster variance; σ2A, the

classroom-level variance or the variance due to the random effect A; and σ2B, the

neighborhood-level variance or the variance due to the random effect B. There are several

methods to obtain an estimate of these variance components, such as the ANOVA method,
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full maximum likelihood, and restricted maximum likelihood (Searle et al., 2006). As

discussed in later sections obtaining estimates of these variance components are the key

to computing an effect size.

Intraclass Correlation

The intraclass correlation (ICC) quantifies the degree to which two randomly

drawn observations within a cluster are correlated. In CCREMs there are different

possible ICCs depending on how a cluster is defined. For instance, for observations in the

same classroom (random effect A) but in different neighborhoods (random effect B), the

ICC can be defined as:

ρA =
σ2A

σ2A + σ
2
B + σ

2
W

=
σ2A

σ2T
, (2)

where σ2T = σ
2
A + σ

2
B + σ

2
W . Similarly, for observations in the same neighborhood but in

different classrooms, the ICC can be defined as:

ρB =
σ2B

σ2A + σ
2
B + σ

2
W

=
σ2B

σ2T
. (3)

Standardized Mean Differences for Fully Cross-Classified Data

In educational research, the standardized mean difference is defined as the ratio of

(a) the difference between the population means of the treatment arm and of the control

arm to (b) a standard deviation. Hedges (2009) defined different effect sizes associated

with different levels. For example, a researcher may be interested in how an intervention

is effective in group level, and can use only the between level standard deviation while

ignoring the within group variations. Similarly in CCREM one can consider using σW ,

σA, σB,
√
σ2W + σ

2
A,

√
σ2W + σ

2
B, or σT . Perhaps the issue can be made simpler by

reminding that in single-level studies, standardized mean difference between the treatment
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and the control arms can be converted to an R2 effect size due to the binary treatment

dummy variable (e.g., 0 = control, 1 = treatment). Because in education treatment is

usually a variable at the second or higher level, as in the classroom-neighborhood

example where treatment is on the classroom level, generally the treatment will not

explain within-level (i.e., student-level) variance (Snijders & Bosker, 1994). Therefore, in

our opinions, σ2W is in general not justified unless one assumes that the treatment effect

stays the same, whether it is individually-randomized or cluster-randomized. For

meta-analysts the decision often depends on the nature of the other studies. If there are

single-site studies in the list, generally choosing variance components of classroom or

neighborhood levels makes the comparison in meta-analysis difficult (Hedges, 2007).

Because in education often data are cross-classified (e.g., Beretvas, 2011), and

researchers are usually interested in generalizing the effect to a broader population of

students (or other level-1 units), σT is a more natural choice. Thus, in subsequent

mathematical derivation we focused on using σT .

On the population level the effect size is defined as

δT =
µT
••• − µ

C
•••

σT
, (4)

where µT
••• and µC

••• are the population means of the treatment and of the control arm

respectively. In a balanced design, the average of the cell means, ȲT
••• =

∑
ȲT
• j k/(JT K )

and ȲC
••• =

∑
ȲC
• j k/(JCK ), are unbiased and efficient estimators of µT

••• and µC
•••. Thus,

the difference between the two averaged cell means is an unbiased and efficient estimator

of the numerator of δT . However, the observed total variance

S2
T =

KT∑
k=1

JT∑
j=1

n∑
i=1

(
Yi j k − ȲT

•••

)2
+

KC∑
k=1

JC∑
j=1

n∑
i=1

(
Yi j k − ȲC

•••

)2
N − 2

(5)
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is in general a biased estimator of the total population variance σ2T in random effect

models. We would present two methods to obtain a consistent estimate of the population

effect size δT , one by multiplying a correction factor to ST and the other by utilizing the

computer estimates of the variance components to obtain σT . The first method is based on

the expected mean squares of the random effects, and the estimated effect size is denoted

as D1 in this paper. It is both efficient and consistent on balanced data structure where

cells have (roughly) equal size, and will be useful for meta-analysts when the primary

research studies did not present estimates of σT . As shown later in the simulation results it

is also robust to unbalanced design. The second method is based on the estimated

variance components of the random effects, and the estimated effect size is denoted as D2.

It is efficient for both balanced and unbalanced data, and is easier to compute than the first

method, provided that the point and variance (or standard error) estimates of variance

components are available. It will be useful for both researchers working with primary

data and meta-analysts having access to the required information.

Estimation of D1

With a balanced data structure assumed, and when the sets of clusters of random

effect B in the treatment arm and in the control arm overlap completely (e.g., students

receiving treatment come from the same set of neighborhoods as those in the control arm),

the sample estimator of δT , D1, and the corresponding sampling variance V (D1) are:

D1 =
ȲT
••• − ȲC

•••

ST

√
1 −

2(Kn − 1)ρA + (Jn − 2)ρB

N − 2
, (6)
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and

V (D1) =
1
Ñ

[
1 + (Kn − 1)ρA

]
+ D2

1
*
,

KnŇKρ
2
A + JnŇJρ

2
B + (N − 2)ρ̄2 + 2ŇK ρ̄ρA + 2ŇJ ρ̄ρB

2
[
(N − 2) − 2(Kn − 1)ρA − (Jn − 2)ρB

]2 +
-
, (7)

where Ñ = NT NC/(NT + NC), ŇK = N − 2Kn, ŇJ = N − Jn, and ρ̄ = 1 − ρA − ρB. See

Appendix A for detailed derivations. On the other hand, if the sets of clusters of random

effect B in the treatment arm are different to those in the control arm (e.g., students from

certain neighborhoods are all in the treatment arm, and students from some other

neighborhoods are all in the control arm), the approximated sampling variance V (D) is:

V (D1) =
1
Ñ

[
1 + (Kn − 1)ρA + (1 − rK )(Jn − 2)ρB

]
+ D2

1
*
,

KnŇKρ
2
A + JnŇJρ

2
B + (N − 2)ρ̄2 + 2ŇK ρ̄ρA + 2ŇJ ρ̄ρB

2
[
(N − 2) − 2(Kn − 1)ρA − (Jn − 2)ρB]2

] +
-
, (8)

where rK =

√
(Koverlap)2/(KT × KC) is the correlation of the random effect B between the

treatment and the control arm, KT and KC are the numbers of effect B clusters specific to

the treatment and the control arm, and Koverlap is the number of overlapping clusters. Note

that K is now defined as the total number of B-clusters such that K = KT + KC − Koverlap.

Equations (6), (7), and (8) outline the influence of cluster size, number of clusters, and

intraclass correlations on the effect size estimates and its sampling variance.

Estimation of D2

The derivation of D1 is based on assumptions that (a) the cluster size is constant

and (b) the ICCs are known or estimated with a reasonable accuracy. In real research these

assumptions may not hold. If either (a) or (b) or both (a) and (b) are violated, then D1 and

V (D1) calculated from equations (6) and (7) can be biased and inefficient. For unbalanced
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designs, the close forms of D1 and V (D1) are very complex and are functions of the cell

sizes in addition to the components in (6) and (7). Because information about the cell

sizes are rarely available from published research reports, it is difficult to obtain efficient

estimates of δT and V (δT ) for unbalanced data starting from expected mean squares.

However, if consistent estimates of the variance components (from maximum likelihood,

restricted maximum likelihood, or Bayesian estimation, etc) are available, researchers can

use both the point estimates and the standard errors of the random effects to calculate the

effect size. Specifically, if estimates of the treatment effect and the variance components,

γ̂10, σ̂2W , σ̂2A, σ̂
2
B, and their corresponding variances (the squared values of the standard

errors), V (γ̂10), V (σ̂2W ), V (σ̂2A), and V (σ̂2B) can be obtained, then we get

D2 =
γ̂10√

σ̂2W + σ̂
2
A + σ̂

2
B

, (9)

V (D2) =
V (γ̂10)

σ̂2W + σ̂
2
A + σ̂

2
B

+
D2
2

[
V (σ̂2W ) + V (σ̂2A) + V (σ̂2B)

]

4(σ̂2W + σ̂
2
A + σ̂

2
B)2

. (10)

Derivations of (9) and (10) can be found in Appendix A.

If meta-analysts can obtain neither information about the degree of imbalance of

the data nor unbiased estimates of the variance components, the best they can do is to

compute the effect size assuming a balanced design and replace n in (6) and (7) with the

average cell size, N/(JK ), to obtain D1. If information about ICC are not obtainable,

they can put in a reasonable guess of ρA and ρB by referring to research with similar

designs and variables. There are also several articles summarizing what typical ICCs are

for various designs and areas (Hedges & Hedberg, 2007; Murray & Blitstein, 2003).
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Monte Carlo Study for Evaluating the Two Effect Size Estimation Approaches Under

Unbalanced Designs

We used a 3 × 2 × 2 × 2 full factorial simulation study to empirically check the

performance of D1 and D2 with unbalanced designs. The design factors included (a)

population effect size (δT = 0.2, 0.5, or 0.8), (b) number of clusters in random effect A

(e.g., classrooms) per treatment status (JT = JC = 20 or 50), (c) average cell size

(n = 0.25 or 1), and (d) ICC of random effect A (ρA = .10 or .25) (which are common

values used in previous simulation studies). In the first simulation we generated data such

that the treatment arm and the control arm shares the same set of neighborhoods. In other

words, KT = KC = K = Koverlap. K was set to equal to JT and JC , and ρB was fixed to .1.

The imbalance of data structure was similar across conditions in which 20% of the cells

had an expected cell count that was 10 times larger than that of the remaining 80% of

cells (see Appendix B for more details). Such a data structure is similar to that described

in Beretvas (2008) where students are nested within the cross-classification of schools and

neighborhoods. Across conditions Pearson’s contingency coefficients ranged from .84 to

.92, showing that the degree of imbalance was quite strong. R 3.0.1 (R Core Team, 2013)

was used to generate 500 data sets for each conditions, with µC
••• = 0 and σ2W = 1.0. All

random effects were normally distributed.

The estimation of D1 and V (D1) was performed in R with ρA and ρB being fixed

to the population value. On the other hand, D2 and V (D2) were obtained using MODEL

CONSTRAINT in the TYPE=CROSSCLASSIFIED procedure in Mplus 7.0 (L. K. Muthén &

Muthén, 1998–2012) with the default non-informative prior Bayesian estimation.

As shown in Table 1, both effect size estimators had relative bias less than 5%.

The relative SE bias was stronger, but the impact was small as the percentage coverage of

the 95% symmetric CI1 was close to nominal value and ranged from 93.6% to 95.6%.
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This is within the expected interval [92.7%, 96.6%] when the true coverage is 95% with

500 replications, and thus we conclude that the performance of both estimators was

satisfactory. As expected D1 was less efficient under unbalanced structure, but the loss of

efficiency was little. Specifically, the relative efficiency, RE = V (D2)/V (D1), of D1 was

lowest when both JT and n were small and when ρA was large, but it was still acceptable

as RE = 86%. In summary, both approaches to obtain δT and V (δT ) performed well in

unbalanced designs.

Next we generated data with Koverlap > 0. We kept K = JT = JC , but set

KT = KC = 3JT/5 and so Koverlap = K/5. In other words, 20% of the clusters in random

effect B were overlapped between the treatment and the control arms, with a correlation

approximately equals to rk =
√

(1/5)2/[(3/5) × (3/5)] ≈ 0.33. The results of the

simulation are shown in Table 2. For all conditions the coverage of 95% CI of both D1

and D2 were acceptable and ranged from 91.8% to 97.4%, which is not too far away from

the expected CI when the true coverage is 95%. However, compared to occasions with

complete overlapping, here the RE of D1 relative to D2 dropped to 70.8% to 87.9%,

indicating that D1 is substantially less efficient than D2. Contrary to the pattern in

occasions with sets of clusters completely overlapped, here RE was lowest when n was

large and ρA was small.

Real Data Example

We would use part of the National Educational Longitudinal Study data set

(NELS:88; Ingles, Abraham, Karr, Spencer, & Frankel, 1990) to illustrate the calculation

of D1 and D2. This longitudinal study followed a nationally representative sample of

students starting from their eighth grade, and recorded students’ experiences in a variety

of areas such as home and working. A hypothetical research question is whether

availability of a mathematics club in middle school predicted students’ mathematics
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Table 1
Simulation Results for Unbalanced CCREMs (With Clusters in Random Effect B
Completely Overlapped)

Coverage Relative Bias Relative SE Bias
δT JT NT ρA D1 D2 D1 D2 D1 D2 RE(D1, D2)
0.2 20 100 .10 94.8 96.0 4.3 1.9 −5.8 3.5 89.2

.25 94.4 94.8 4.4 −4.1 −9.1 0.3 87.2
400 .10 96.4 94.2 −2.9 −0.7 2.2 2.2 95.0

.25 94.8 93.8 −3.2 1.3 0.1 −6.1 93.6
50 625 .10 94.0 93.0 −0.9 −3.4 −7.4 −8.2 93.0

.25 93.2 94.0 −1.9 −3.5 −10.1 −3.4 91.2
2500 .10 94.6 92.4 0.4 0.3 −0.1 −14.2 97.1

.25 94.0 91.4 0.2 2.2 −1.3 −20.2 96.4
0.5 20 100 .10 95.0 95.4 2.0 −1.2 −7.3 2.3 89.5

.25 94.2 94.2 2.1 −3.7 −10.0 −0.1 87.4
400 .10 96.0 95.0 −1.1 −1.7 2.8 4.0 95.1

.25 94.8 93.4 −1.1 −1.1 0.1 −5.3 93.6
50 625 .10 94.4 93.4 −0.3 −1.7 −5.9 −6.1 93.1

.25 93.4 94.0 −0.6 −1.8 −8.9 −1.8 91.4
2500 .10 94.8 92.2 0.3 −0.0 −0.7 −14.1 97.1

.25 94.2 91.8 0.3 0.6 −1.4 −19.3 96.1
0.8 20 100 .10 94.6 94.6 1.4 −2.0 −9.0 1.0 90.0

.25 93.8 93.8 1.5 −3.6 −11.0 −0.6 87.8
400 .10 96.2 95.0 −0.6 −1.9 3.2 5.5 95.5

.25 95.2 93.4 −0.6 −1.7 −0.1 −4.3 93.7
50 625 .10 94.4 93.6 −0.1 −1.3 −4.4 −3.8 93.1

.25 94.2 94.2 −0.3 −1.4 −7.7 0.7 90.9
2500 .10 94.8 92.4 0.2 −0.2 −1.4 −13.4 97.1

.25 94.0 92.6 0.3 0.1 −1.6 −18.7 96.5

Note. Based on 500 replications for each condition. Pearson’s contingency coefficients for all con-
ditions ranged from .84 to .92, indicating strong associations between the clustering of random
effects A and B. δT = population effect size. JT = JC = number of clusters of random effect A
in the treatment (control) arm; Number of clusters of random effect B = JT . NT = NC = total
sample size of the treatment (control) arm. ρA = intraclass correlation of effect A; ρB = 0.1 for all
conditions. Coverage refers to the percentage of replications in which the 95% confidence interval
includes δT . For 500 replications, the Monte Carlo coverage percentage have a confidence inter-
val of [92.7%, 96.6%] if the true coverage percentage is 95 %. RE(D1, D2) = relative efficiency
of estimator D1 to the Mplus (version 7.0) estimation of D2 using TYPE=CROSSCLASSIFIED and
ESTIMATOR=BAYES, which was computed by dividing the sampling variance of the later by that of
the former.
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Table 2
Simulation Results for Unbalanced CCREMs (With Clusters in Random Effect B
Partially Overlapped)

Coverage Relative Bias Relative SE Bias
δT JT NT ρA D1 D2 D1 D2 D1 D2 RE(D1, D2)
0.2 20 100 .10 92.6 94.4 3.2 −5.4 −9.4 −0.7 81.0

.25 93.8 92.6 5.0 −1.4 −9.6 −11.5 81.6
400 .10 95.8 97.4 1.9 −5.6 9.9 18.8 72.5

.25 96.0 95.0 3.7 −9.2 9.5 6.4 77.5
50 625 .10 94.4 94.2 0.6 −10.2 1.4 11.7 83.7

.25 93.4 93.0 2.5 −10.2 −7.2 3.0 87.2
2500 .10 94.2 93.4 0.9 −8.4 1.0 −3.1 70.8

.25 93.8 92.8 −0.1 −15.7 −5.4 −17.0 80.4
0.5 20 100 .10 92.8 94.4 1.5 −5.8 −8.6 0.5 80.8

.25 94.0 93.4 2.4 −4.1 −8.7 −9.6 81.0
400 .10 96.0 97.2 0.9 −3.9 10.0 19.6 72.8

.25 95.8 95.0 1.7 −5.8 9.4 7.0 77.6
50 625 .10 94.6 94.0 0.3 −4.9 2.3 13.2 84.3

.25 93.2 93.0 1.1 −4.7 −7.3 3.2 87.7
2500 .10 94.6 93.2 0.5 −3.7 0.8 −2.7 71.0

.25 94.0 91.8 0.1 −6.8 −5.5 −16.4 80.7
0.8 20 100 .10 93.0 94.0 1.0 −6.0 −7.7 1.9 81.0

.25 93.6 94.0 1.8 −4.8 −7.8 −7.5 80.8
400 .10 95.6 96.8 0.7 −3.5 9.9 20.4 73.5

.25 95.6 94.8 1.1 −5.0 9.2 7.3 78.3
50 625 .10 95.2 94.0 0.3 −3.6 3.1 14.3 85.1

.25 93.0 92.6 0.8 −3.3 −7.4 3.8 87.9
2500 .10 94.6 93.0 0.4 −2.5 0.5 −2.5 71.4

.25 94.0 91.8 0.2 −4.7 −5.6 −15.7 81.0

Note. Based on 500 replications for each condition. Pearson’s contingency coefficients for all con-
ditions ranged from .84 to .92, indicating strong associations between the clustering of random
effects A and B. δT = population effect size. JT = JC = number of clusters of random effect A
in the treatment (control) arm; Number of clusters of random effect B = JT . NT = NC = total
sample size of the treatment (control) arm. ρA = intraclass correlation of effect A; ρB = 0.1 for all
conditions. Coverage refers to the percentage of replications in which the 95% confidence interval
includes δT . For 500 replications, the Monte Carlo coverage percentage have a confidence inter-
val of [92.7%, 96.6%] if the true coverage percentage is 95 %. RE(D1, D2) = relative efficiency
of estimator D1 to the Mplus (version 7.0) estimation of D2 using TYPE=CROSSCLASSIFIED and
ESTIMATOR=BAYES, which was computed by dividing the sampling variance of the later by that of
the former.
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achievement at 10th grade. Using only cases with complete data on all the variables

related to the analysis, the data consisted of 15,611 students cross-classified by 986

middle schools (MS, 383 with math club) and 1,418 high schools (HS, KT = 625,

KC = 940, so Koverlap = 147). The average cell size was thus

15, 611/(986 × 1, 418) = 0.0112. Only 147 HS had both students from MS’s with math

club and those from MS’s without math club, so correlation rK of the HS effect was√
1472/(625 × 940) = .192 for the two treatment arms. Using the SPSS mixed procedure,

we estimated the grouping effect of availability of mathematics club, the variance

components for within cluster, MS (random effect A), and HS (random effect B), as well

as their standard errors. The grouping effect was estimated as 0.731 (SE = 0.362), and

the variance components were estimated as σ̂2A = 18.784 (SE = 1.781), σ̂2B = 7.293

(SE = 1.445), and σ̂2W = 76.296 (SE = 0.902). Using equations (9) and (10), the effect

size D2 for the grouping effect is 0.0722 (SE = 0.0358, 95% CI [0.002, 0.142]), indicating

a small effect size. The estimated value of D1 (with the sample estimated ρA = 0.183 and

ρB = 0.0712) is 0.116 (SE = 0.0338, 95% CI [0.050, 0.182]). Under such an extreme

unbalanced data structure D2 is expected to be more accurate than D1, although the

difference is not truly substantial when the 95% CI is also taken into account.

Standardized Mean Differences for Partially Cross-Classified Data

Thus far we have considered cross-classified data, where observations in both the

treatment and the control arms are cross-classified by effects A and B. However, there are

designs where only observations in the treatment arm are cross-classified, but the

observations in the control arm are nested only in effect A but not in effect B. In this

article we denote such a data structure as partially cross-classified. This is similar to the

partially nested design discussed in Bauer et al. (2008) where the observations in the

treatment arm are nested within random effect A whereas those in the control arm are not.
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The difference is that in partially cross-classified data there is one more level of nested

structure, random effect B, present in both the treatment and the control arms.

Consider a hypothetical example, where students from JT classrooms are

randomly assigned to K emotion management groups (i.e., the treatment), and those from

JC other classrooms do not receive any treatment. Further, assume that each emotion

management group includes students from different classrooms to avoid situations where

group members are very familiar with each other. Suppose that a researcher is interested

in the effectiveness of the emotion management group on students’ life satisfaction (Y ).

Such a design can be represented by the model equation

Yi j k = γ00 + γ10(TREAT j ) + µ0 j + ν0k (TREAT j ) + εi j k, (11)

where TREAT j is the treatment status dummy coded as 0 (control) and 1 (treatment), µ0 j

is the classroom effect, ν0k is the emotion management grouping effect that is only

present in the treatment arm, and εi j k is the student effect. γ00 is the grand mean of Y of

the control arm, and γ10 is the treatment effect. Further assume that both treatment

conditions share the same total variance σ2T and the same variance of effect A σ2A. The

variance of effect B in the treatment arm is σ2B, the within-cell variance of the treatment

arm is σ2W |TREAT, and that of the control arm is σ2W |CON. Let nT
jk be the size of the cells in

the treatment arm and nC
j be the cluster size in the control arm. We denote such a model

as a partially cross-classified random effect model (PCCREM). Finally, we assume that A

and B have no interaction, and ρA and ρB are defined the same way as in (2) and (3).
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Estimation of D1

As shown in Appendix A the sample estimator D1 and V (D1) of the effect size δT

are given as

D1 =
ȲT
••• − ȲC

•••

S̄2
T

√
WTβT +WCβC

WT +WC , (12)

V (D1) =
1 + (KnT − 1)ρA + (JT nT − 1)ρB

NT +
1 + (nC − 1)ρA

NC +
D2

2(WTβT +WCβC)
,

(13)

where S̄2
T = (WT S2

T |TREAT +WC S2
T |CON)/(WT +WC) is the weighted average of the total

variances of the treatment arm, S2
T |TREAT, and of the control arm, S2

T |CON, with weights

WT =
(NT − 1)2

KnT ŇT
Kρ

2
A + JT nT ŇT

J ρ
2
B + (NT − 1)ρ̄2 + 2ŇT

K ρ̄ρA + 2ŇT
J ρ̄ρB

,

WC =
(NC − 1)2

(NC − 1) − 2(nC − 1)ρA + (nC − 1)
[
NC − (nC − 1)

]
ρ2A
,

where ŇT
K = NT − KnT , ŇT

J = NT − JT nT , and ρ̄ = 1 − ρA − ρB, and

β
T = 1 −

(KnT − 1)ρA + (JT nT − 1)ρB

NT − 1
,

β
C = 1 −

(nC − 1)ρA

NC − 1
.

Estimation of D2

When maximum likelihood or other unbiased estimates of the fixed effect, the

variance components, and their sampling variances are available, one can calculate the
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standardized mean difference and its sampling variance as

D2 =
γ̂10√
σ̂2T

, (14)

V (D2) =
V (γ̂10)
σ̂2T

+
D2
2

[
V (σ̂2T )

]

4(σ̂2T )2
, (15)

where σ̂2T is the weighted average of the total estimated variances of the two treatment

arms by their respective sampling variances (i.e., σ̂2T |TREAT and σ̂2T |CON, with

σ̂2T |TREAT = σ̂
2
W |TREAT + σ̂

2
A + σ̂

2
B for the treatment arm and σ̂2T |CON = σ̂

2
W |CON + σ̂

2
A for the

control arm), and V (σ̂2T ) is given by

1
[
V (σ̂2W |TREAT) + V (σ̂2A) + V (σ̂2B)

]−1
+
[
V (σ̂2W |CON) + V (σ̂2A)

]−1 . (16)

If the weighted average of the two variance components is difficult to obtain,

researchers can replace σ̂2T by σ̂2W |CON + σ̂
2
A, which results in some loss of efficiency, but

the loss is in general minor unless the sample size of the treatment arm is much larger

than that of the control arm. Derivations of (14) and (15) can be found in Appendix A.

Monte Carlo Study for Evaluating the Two Effect Size Estimation Approaches Under

Unbalanced Designs

Similar to what we did for fully cross-classified designs, we used simulations to

empirically check the performance of D1 and D2 for PCCREMs. The simulation

conditions were the same as those used for the previous CCREM simulation study except

that the random effect B was not present in the control arm, and the associated variances

were added to ρW |CON. For each condition 500 data sets were generated in R, where D1

for each condition was also computed. For the calculation of D2 the PROC MIXED (Littell

et al., 1996) procedure in SAS 9.3 was used.
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As shown in Table 3, both D1 and D2 have relative bias less than 5% and coverage

percentage of the 95% CI ranging from 92.8% to 95.2%, so their performances are

satisfactory. In general D1 was less efficient under unbalanced structure when ρA was

large and the average cell size was small, but the loss of efficiency was negligible

(minimum relative efficiency being 96.4%). In summary, both approaches to estimate the

effect size δT and V (δT ) perform similarly well in the chosen unbalanced designs.

Real Data Example

For illustrative purpose the data used in Coyne et al. (2013) was analyzed. The

data consisted of 103 kids receiving Early Reading Intervention (ERI). The treatment arm

consisted of 70 kids who have changed group membership based on their performance

over the course of the study, which created a cross-classified data structure given that the

initial group membership of each kid was different from the final group membership. In

other words, kids were cross-classified by the initial and final group memberships in the

treatment arm. On the other hand, the control arm consisted of 33 kids who were

randomly assigned to groups at the beginning of the study and were kept in the same

group over the course of study, which created a strictly hierarchical structure for this

group of kids. The dependent variable is the score on a word identification test at the final

stage. There were 19 groups among those receiving intervention (i.e., JT = 19) and 10

groups among those receiving regular reading instruction (i.e., JC = 10) at the the initial

stage. At the final stage, those in regular reading stayed in original their groups, but some

of those receiving intervention had moved to different groups. In summary, students

receiving regular reading instruction were nested within initial groupings, whereas those

receiving intervention were cross-classified by the initial and final groupings (K = 19).

The design was not balanced, and the average cell size was 0.187.

Using SPSS mixed with an approach analogous to Bauer et al. (2008), the
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Table 3
Simulation Results for Unbalanced PCCREMs

Coverage Relative Bias Relative SE Bias
δT JT NT ρA D1 D2 D1 D2 D1 D2 RE(D1, D2)
0.2 20 100 0.10 94.2 94.6 1.9 2.3 −6.4 0.4 98.8

0.25 94.0 95.0 2.1 3.0 −8.4 0.2 96.0
400 0.10 95.0 93.0 −3.5 −3.3 −1.2 −0.4 100.5

0.25 94.6 93.6 −3.9 −3.2 −1.6 −1.8 99.9
50 625 0.10 93.2 92.8 −0.5 0.3 −13.1 −9.3 97.9

0.25 93.6 93.2 −1.5 −0.1 −14.5 −10.0 96.1
2500 0.10 94.8 94.0 1.0 0.9 −4.3 −3.7 98.7

0.25 94.8 93.2 0.9 0.7 −3.1 −2.2 98.3
0.5 20 100 0.10 94.6 95.2 0.9 1.6 −7.2 −0.4 98.8

0.25 94.8 95.6 1.0 1.7 −9.1 −0.9 96.2
400 0.10 94.8 93.6 −1.3 −1.1 −0.9 −0.1 100.2

0.25 94.4 93.8 −1.3 −1.0 −1.7 −2.5 99.9
50 625 0.10 93.4 93.2 −0.1 0.3 −11.6 −7.9 97.7

0.25 92.8 93.4 −0.5 0.1 −13.2 −9.0 96.0
2500 0.10 94.4 94.4 0.5 0.5 −4.6 −4.1 98.5

0.25 94.6 94.0 0.5 0.4 −2.9 −2.5 98.2
0.8 20 100 0.10 95.0 95.0 0.7 1.4 −7.9 −1.1 99.0

0.25 94.8 95.2 0.8 1.4 −9.6 −2.1 96.5
400 0.10 94.6 93.6 −0.8 −0.6 −0.4 0.1 99.9

0.25 93.8 93.8 −0.7 −0.5 −1.7 −3.4 100.0
50 625 0.10 93.4 93.4 0.0 0.3 −9.9 −6.5 97.5

0.25 93.4 93.6 −0.2 0.2 −11.6 −8.1 96.0
2500 0.10 95.0 94.0 0.3 0.3 −4.8 −4.5 98.2

0.25 95.0 94.6 0.4 0.3 −2.5 −2.9 98.2

Note. Based on 500 replications for each condition. δT = population effect size. Pearson’s contin-
gency coefficients for all conditions ranged from .84 to .92, indicating strong associations between
the clustering of random effects A and B for the treatment arm. JT = number of clusters of random
effect A in the treatment arm; Number of clusters of random effect B for the treatment arm = JT .
NT = NC = total sample size of the treatment (control) arm. ρA = intraclass correlation of effect
A; ρB = 0.1 for the treatment group for all conditions. Coverage refers to the percentage of repli-
cations in which the 95% confidence interval includes δT . For 500 replications, the Monte Carlo
coverage percentage have a confidence interval of [92.7%, 96.6%] if the true coverage percentage is
95 %. RE(D1, D2) = relative efficiency of the estimator D2 to the estimator D2 computed from SAS
9.3 with DDFM=SATTERTHWAITE and METHOD=REML, which was computed by dividing the sampling
variance of the later by that of the former.
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grouping effect was estimated as 9.202 (SE = 3.492), and the variance components were

estimated as σ̂2A = 3.401 (SE = 15.217), σ̂2B = 100.140 (SE = 42.621),

σ̂2W |TREAT = 97.723 (SE = 20.549), and σ̂2W |CON = 176.504 (SE = 50.411). Assuming that

the total variances of both treatment conditions are comparable, ρA and ρB were estimated

as .018 and .550 respectively. For the estimation of D1, the additional inputs were

ȲT
••• = 105.06, ȲC

•• = 95.73, S2
T |TREAT = 181.83, and S2

T |CON = 199.19. The computed

D1 = 0.675 (SE = 0.264, 95% CI [0.157, 1.192]), which can be interpreted such that on

average students receiving intervention scored .67 SD higher on word identification than

those receiving regular instructions. Using equations (14) and (15), the effect size D2 for

the grouping effect is 0.682 (SE = 0.261, 95% CI [0.171, 1.193]). Both approaches gave

similar point and interval estimates, and both indicated a moderate to large intervention

effect with the 95% CI not including zero.

Conclusion

Unlike single-level research studies in which effect sizes are regularly reported,

effect size statistics for multilevel studies, in particular standardized mean difference, are

still not fully investigated. Effect size is extremely important because it directly quantifies

the effect of interest (e.g., the effect of the treatment, gender difference), regardless of

whether the study consists of single-level or multilevel data.

Our article has included analytically derived formulae of the standardized mean

difference for fully and partially cross-classified treatment-control arm designs, as well as

methods for obtaining the effect size when reliable and consistent estimates of variance

components are available. Although the analytical formulae for D1 are tedious to use and

can lose efficiency when the design is unbalanced or when the sample size is small, they

are nevertheless important. In secondary analyses and meta-analyses where the clustering

is not taken into account in the original analyses or when information about the variance
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components is not available, D1 can still be computed when the following information are

available: number of clusters, cluster size, and intraclass correlations are available. For

occasions where intraclass correlations are not available, Hedges (2007) provided an

example of substituting values reported from other studies or with an educated guess, and

Ahn et al. (2012) suggested quantitative procedures to estimate the ICCs. In addition, one

can perform sensitivity analyses to examine whether different choices of ICCs result in

substantial differences in the estimated effect size and the corresponding standard errors

(Hedges, 2007, 2011).

We have also suggested a method to estimate effect size D2 using maximum

likelihood or Bayesian estimates of variance components. It is easier to implement and

we thus recommend its use when raw data are available. To facilitate future replication

and research synthesis we also recommend researchers analyzing primary data to report

the effect size and its sampling variance, or at least the estimated values and the sampling

variances (or the standard errors) of the variance components.

Given the complexity associated with the effect size estimation equation for

CCREMs, a logical question would be when a researcher can ignore one level of

clustering (i.e., random effect B) but still get a good estimate of the effect size and the

sampling variance. We have reanalyzed the two real data examples by ignoring one level

of clustering, and it appears that when the two crossed random effects are highly

correlated, omitting one random effect does not lead to substantial differences in point

and interval estimates of effect size. This makes sense because when the two effects share

a lot of common information, and most of the information is still preserved when one

effect was omitted (see Luo & Kwok, 2009). On the other hand, if the crossed random

effects were only weakly correlated or uncorrelated (such as when the design is balanced),

in general the bias on the estimated sampling variance increases when number of clusters

K and the intraclass correlation ρB of the omitted random factor is large, based on
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equations (7) and (8). For example, assuming a balanced design, when δT = 0.5,

J = K = 30, n = 1, ρA = 0.25, ρB = 0.1, ignoring the clustering of B results in an

underestimation of V (D1) by 19.1% (from 0.046 to 0.037); when n = 10 and other things

being unchanged but ρB = 0.2, then V (D1) is underestimated by 32.2% (from 0.055 to

0.037); and when n = 1 but K is doubled to 60, V (D1) is underestimated by 32.8% (from

0.028 to 0.019); This would result in CIs of the effect size that are too narrow and not

valid (see Hedges, 2011). Nevertheless, because CCREMs are complex models, further

studies are needed to fully understand the impact of ignoring one or more levels of

clustering on effect size estimation in real research.

The present article is limited to only two-level CCREM with two crossed random

effects, which is an extension of two-level multilevel models. However, the framework

can be extended to CCREMs with three or more levels and with three or more random

effects, or to CCREMs where treatment is defined as a level-1 variable (i.e., the treatment

is individually-randomized). Future research can investigate perhaps effect size

estimations in more complicated designs, as well as in other models in the multilevel

family such as the multiple membership models. Simulation studies comparing different

variance component estimation methods (e.g., Bayesian vs. REML) in the process of

computing effect size are also highly encouraged. Also, in this paper we assumed that the

effect size of interest has σT as the denominator for standardization. There are occasions

where researchers may be interested in effect size with σB or σW or other alternatives as

the denominator, but they are left for discussions in future studies. Finally, procedures to

convert standardized mean difference effect sizes with multilevel structure into proportion

of variance accounted for effect sizes (see Luo & Kwok, 2010) will be highly valuable for

research synthesis methodology.
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Notes
1Relative bias = (

∑500
i=1 D(i)/500 − δT )/δT , where D(i) is the computed effect size

D1 or D2 for the ith replication. Relative SE bias = [
∑500

i=1 ŜE(D(i))/500− SD(D)]/SD(D),
where ŜE(D(i)) is the estimated standard error of D for the ith replication, and SD(D) is the
standard deviation of D across 500 replications. Ninety-five percent confidence interval is
computed as [D(i) − 1.96 × ŜE(D(i)), D(i) + 1.96 × ŜE(D(i))].
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CHAPTER III

STANDARDIZED MEAN DIFFERENCES IN TWO-LEVEL PARTIALLY NESTED

MODELS

Overview

The present paper discussed two methods to obtain standardized mean difference

effect size and the corresponding sampling variance for partially nested cluster

randomized designs. The first method requires input of summary statistics such as

observed means, variances, and intraclass correlation, and would be useful for

meta-analyses and secondary data analyses. The second method takes estimated variance

components as input and would be of interest for primary researchers. The simulation

results showed that the two methods were unbiased and had adequate confidence interval

coverage, although the first method underestimated the variability of D when cluster sizes

were small, intraclass correlation was high, and the distribution of the cluster sizes was

extremely unbalanced. Real data from a youth preventive program are used to

demonstrate the method. Furthermore, I also discuss biases on D under incorrect

modeling of partially nested data, and show that the bias increases with larger intraclass

correlation and cluster size.

Introduction

Effect size statistic is important in educational research. Indeed, it is the core

concept in statistics reform in the behavioral sciences (Cumming, 2014; Kline, 2013;

Wilkinson & Task Force on Statistical Inference, 1999). For primary researcher, it is

crucial in the designing phase for sample size planning in order to achieve a desired level

of statistical power or precision in parameter estimation (Kelley, 2013); In the analysis

and interpretation phase it also gives a sense about the magnitude of a treatment or an
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intervention (Ellis, 2010; Nakagawa & Cuthill, 2007). For meta-analysts, it is the building

block of their research that summarizes and synthesizes a bunch of mixed findings

(Lipsey & Wilson, 2001). The American Educational Research Association (2006)

explicitly recommended using effect size statistics to interpret research findings.

However, whereas effect size reporting has become more common for single-level studies

(Peng et al., 2013), it is still rare for multilevel studies. This manuscript aims to provide

methods to obtain effect size estimates with a special but not uncommon multilevel

design—partially nested design.

Brief Review on Single-Level Effect Size

As discussed in Nakagawa and Cuthill (2007) and Peng and Chen (2014), there

are multiple definitions of effect size, some with reference to a null hypothesis (Grissom

& Kim, 2012; Kramer & Rosenthal, 1999; Thompson, 2002), some as a population

parameter (Hedges, 1981), and some as a sample estimator (Nakagawa & Cuthill, 2007).

In a recent paper, Kelley and Preacher (2012) defines effect size as broad as “a

quantitative reflection of the magnitude of some phenomenon that is used for the purpose

of addressing a question of interest” (p. 137), which may include many index that are not

generally regarded as an effect size1. Regardless of the definition, however, most of them

include the essential characteristic that effect size should be able to quantify the

magnitude of an effect, where an effect can be in the context of intervention, prediction,

or causation. This will form the working definition of effect size for this manuscript.

Effect size measures are well-developed in single-level studies. For experimental

or quasi-experimental studies with two groups, or arms as used in this paper to avoid

confusion with clusters, a straight forward effect size measure is the mean difference

between the treatment arm and the control arm in the original metric of the outcome

measure. However, the metric in psychological measurement usually does not have
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intrinsic meaning (Blanton & Jaccard, 2006; Sechrest, McKnight, & McKnight, 1996),

and the mean difference in the original metric may not be interpretable. Also, different

studies may use different measure for the same outcome construct, and so raw mean

differences may not be comparable across studies. As a compromise, the mean difference

is convert to standard deviation unit, or standardized, in order to establish a common

ground for cross-study comparison. Peng et al. (2013) synthesized 16 articles reviewing

effect size reporting practices after 1999, and found that standardized mean difference (in

particular Cohen’s d) is among the two most commonly reported effect size statistic,

alongside with the unadjusted R2, or variance accounted for effect size.

Contrary to the trend in single-level studies, for multilevel data R2-type of effect

size was more dominant, and multilevel R2 was discussed much earlier in the literature

(e.g., Snijders & Bosker, 1994). Methods to estimate standardized mean differences,

denoted as D in this manuscript, were first formally proposed by Hedges only in 2007 for

two-level cluster-randomized trials. In this paper I aim to extend the work of Hedges to

partially nested designs, where clustering is limited to one but not the other arm (see

Bauer et al., 2008; Lee & Thompson, 2005; Moerbeek & Wong, 2008; C. Roberts &

Roberts, 2005). Specifically I propose two approaches, one useful for meta-analysts and

the other useful for primary researchers, for estimating D and its sampling variance (or

standard errors). An example is given for the use of the formulae in real data, and the

consequence on the estimated effect size of ignoring the clustered structure in the data

would be discussed.

Effect Size With Partially Nested Design

Because of their ability to provide the strongest evidence for causal inference

when properly implemented, randomized experiments has long been regarded as the gold

standard for the social sciences (e.g., Campbell & Stanley, 1963). However, for the
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majority of research questions in the social sciences, randomization on an individual basis

is not feasible. For example in studies of instructional intervention, most of the time it is

impossible to assign students within the same classroom to receive different instructions.

As another example, for a study of family therapies, it is not reasonable to assign family

members to receive different interventions given that the intervention itself has family as

its unit. In such studies where data have a naturally clustered structure, multilevel

modeling has long been suggested as a flexible technique which accounts for the

non-independence among observations (Goldstein, 1986; Mason et al., 1983; Raudenbush

& Bryk, 2002).

Nevertheless, the clustered structure may not be the same in different treatment

arms. In some cases the clustering is a product of the intervention, and the control arm is

left ungrouped. For example in the study by Compas et al. (2009) on children of

depressed parents, the treatment arm received family-based intervention, whereas the

control arm were assigned to self-study condition. In another randomized trial Kirschner,

Paas, Kirschner, and Janssen (2011) compared the effects of collaborative learning and

individual learning. Following previous literature I call such kind of data structure

partially nested (e.g., Bauer et al., 2008; Moerbeek & Wong, 2008). Bauer et al. (2008)

found in their literature review that 32% of the randomized experiments during 2003 to

2005 in four clinical research journals had a partially nested data structure, which was

more common than the fully nested design; However, none of them used the appropriate

analyses. Later Sanders (2011) found that 13% of experiments in educational research in

2007 to 2009 with partially nested data, and only two of them used suitable analyses. For

partially nested data researchers either ignored the clustering in the treatment arm and

analyzed the data with the conventional t test or single-level regression, or created

artificial grouping for the control arm and analyzed the data with standard multilevel

modeling. As pointed out by Bauer et al., Korendijk (2012, chapter 4), and Sanders, the
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first approach resulted in the underestimation of the standard errors of the treatment effect,

whereas the second approach resulted in biased estimates of the treatment effect when the

within-cluster variance in the treatment arm is different than that within the control arm

(also called heteroscedasticity), and also biased estimates of variance components.

Although multilevel modeling techniques has been studied in the methodology

literature for decades, only recently did researchers define and discuss effect size

measures for clustered randomized studies (Hedges, 2007, 2009, 2011). In the following

sections I would introduce the notations, suggest methods to obtain D and V (D) (where

V (·) denotes the variance operator), as well as confidence interval (CI) for D; illustrate

the methods with real data; and discuss the impact of ignoring the clustering for both

primary studies and meta-analyses.

Model and Notations

Consider the situation outlined in Bauer et al. (2008), where participants were

randomly assigned to the treatment or the control arms on an individual basis. Those in

the treatment arm were assigned to subgroups and received the treatment, but those in the

control arm formed no clustering structure. Let YT
i j and YC

j be the scores of the outcome Y

for the ith observation in the jth cluster of the treatment arm and for the jth observation in

the control arm respectively. Note that with this setting I treat each observation in the

control arm as a pseudo cluster (Sanders, 2011). Denote the sample size of the treatment

arm and of the control arm as NT and NC , with the total sample size N = NT + NC . In

the treatment arm, let J be the number of clusters with index j = 1, . . . , J, and let

i = 1, . . . , n j be the index of the observation within the jth cluster in the treatment arm. In

a balanced design we have n1 = . . . = n j = n, and thus NT = Jn. In the control arm,

j = J + 1, . . . , J + NC , and the i subscript is dropped. Let ȲT
•• and ȲC

• be the grand means

of the treatment arm and of the control arm respectively, and ȲT
• j be the mean of the jth
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cluster in the treatment arm. When the pooled within-cluster variance in the treatment

arm equals the variance of the control arm, a situation described in Bauer et al. (2008), I

can let S2
W be the pooled within-cluster level variance, where

S2
W =

J∑
j=1

n∑
i=1

(
YT

i j − ȲT
• j

)2
+

J+NC∑
j=J+1

(
YC

j − ȲC
•

)2
N − J − 1

, (17)

and let S2
B |TREAT be the between-cluster mean squares in the treatment arm, where

S2
B |TREAT =

J∑
j=1

n j
(
ȲT
• j − ȲT

••

)2
J − 1

. (18)

In this manuscript I mainly consider situations where equal within-level variance hold.

See Moerbeek and Wong (2008) for discussion when heteroscedasticity is present.

A model predicting the response variable Yi j can then be conceptualized by the

level-1 model (Bauer et al., 2008)

Yi j = β0 j + β1 j (TREATi j ) + εi j, (19)

and the level-2 model

β0 j = γ00, (20)

β1 j = γ10 + u1 j . (21)

Here β0 j is the within-cluster regression intercept for cluster j, which is assumed fixed

across clusters and equals γ00. In a balanced design γ00 equals ȲC
• . β1 j can be regarded as

the difference between ȲT
• j and ȲC

• , and under a balanced design its mean across all js is
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γ10 = ȲT
•• − ȲC

• . The cluster-specific random effect is captured by u1 j with V (u1 j ) = σ2B. εi j

is the level-1 residual, and its variance, V (εi j ) = σ2W , is assumed constant across both the

treatment and the control arms, which is reasonable when the clustering involves random

assignment and the treatment effect does not change the within-cluster variability. Note

that the sum of the variance components within the treatment arm is σ2W + σ
2
B, whereas

that within the control arm is only σ2W . Thus, the within treatment arm variances differ

unless σ2B = 0. Define the intraclass correlation (ICC) for the treatment arm as ρ, where

ρ =
σ2B

σ2W + σ
2
B

. (22)

Such a model can be easily analyzed in common statistical packages for multilevel

modeling (Baldwin, Bauer, Stice, & Rohde, 2011; Bauer et al., 2008), or can be

reparameterized and analyzed with structural equation modeling (SEM) software (Sterba

et al., 2014).

Effect Size Estimation Using Summary Statistics

In treatment-control arm studies, the commonly used effect size statistic is the

standardized mean difference (Cohen, 1988; Hedges, 1981)

δ =
∆µ

σ
, (23)

where ∆µ is the population treatment effect (i.e., the mean difference between the two

arms) and σ is the pooled within treatment standard deviation. Hedges (2007) commented

that with multilevel data, the concept of effect size is vague. That happens because σ can

refer to σW (with homoscedasticity assumed), σB, or
√
σ2W + σ

2
B, each with a different

target of generalization. For example, choosing σW implies looking at the average

treatment effect within cluster, and choosing
√
σ2W + σ

2
B implies looking at the effect size
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in a population that is naturally clustered. For partially nested data such as the example

given in Bauer et al. (2008), because the clustering is part of the treatment and does not

naturally occur in the general population, σW would be a better choice to define δ.

Using summary statistics and assuming an approximately balanced design, the

effect size is

D1 =
∆Ȳ
SW

, (24)

and

V (D1) =
1 + (n − 1)ρ
NT (1 − ρ)

+
1

NC +
D2
1

2(N − J − 1)
, (25)

where ∆Ȳ = γ10 = ȲT
•• − ȲC

• , SW as defined in (17), and using the equality

E(S2
B |TREAT) = σ2W + nσ2B, (26)

ρ can be estimated by (S2
B |TREAT − S2

W )/[S2
B |TREAT + (n − 1)S2

W ]. The derivation of (24)

and (25) can be found in Appendix C. Note that for unbalanced designs, one can replace n

with the mean of n j , that is, n̄ = NT/J; However, the grand mean is no longer an efficient

estimator of the mean of the control arm, and so D1 is not efficient (i.e., variance of D1 is

larger than the second method described below).

Effect Size Estimation Using Estimated Variance Components

If consistent estimates of γ10 (fixed effect), σW (random effect), and their

associated estimated variances (or standard errors) are accessible, one can use the

following equations based on the estimated variance components (see Appendix C for
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derivation)

D2 =
γ̂10

σ̂W
, (27)

V (D2) =
V (γ̂10)
σ̂2W

+
D2
2V (σ̂2W )

4σ̂4W
. (28)

If maximum likelihood estimates of γ10 and σW , which are, under general conditions,

asymptotically unbiased, consistent (i.e., converged to the population value), and efficient

(i.e., with minimum variance), then D2 is also asymptotically unbiased, consistent, and

efficient, even for conditions with unbalanced data. Thus, when relevant information is

available, D2 is a better estimator than D1.

Constructing Approximate Confidence Interval for D

Like any other point estimates such as the sample mean, the sample D1 and D2

provide absolutely no information about the uncertainty in the estimated effect size.

Numerous authors have commented on the importance of reporting CI for effect size (e.g.

Cumming, 2014; Grissom & Kim, 2012; Hedges, 2008; Peng et al., 2013; Thompson,

2002), and both the AERA (2006) and the American Psychological Association (2010)

strongly encouraged the reporting of CI alongside with an effect size measures.

Based on the Central Limit Theorem, both D1 and D2 will be normally distributed

with a large sample size. Therefore, an approximate (1 − α) × 100% CI for D1 and D2

would be

[D̂ + z1−α/2SE(D̂), D̂ + z1−α/2SE(D̂)],

where z1−α/2 is the (1 − α/2) quantile in the standard normal distribution. For example,

for the commonly reported 95% CI, one uses z.975 ≈ 1.96.

As noted in Hedges (2007, pp. 371–379), under the model described in

equations (19) to (21) with normally distributed residuals, both D1 and D2, when
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multiplied by a constant, follow an approximate noncentral t distribution. Because the

noncentral t distribution is skewed, Cumming and Finch (2001) warned that the common

rule of thumb of using approximation with a normal distribution when degrees of

freedom is larger than 30 may not hold. Nevertheless, in our simulation conditions (see

Appendix D), with df > 75 the asymptotic intervals closely matched the noncentral t

interval in terms of coverage probability and width. As clustered data commonly has a

large size, the simple asymptotic method will be sufficient for many occasions.

Nevertheless, for small sample the noncentral method can be used, as described in

Appendix D.

A Simulation Study Comparing the Performance of D1 and D2

A simulation study was used to check the performance of D1 and D2, and their

analytically derived variances. For each condition 500 data sets were generated in R (R

Core Team, 2014) using the above model defined in equations (19) to (21) with δ = 0.5.

Because the methods were derived analytically, the purpose of the simulation was mainly

to check how robust D1 and D2 are under extreme conditions, including small cluster size,

few number of clusters, and extreme unbalanced cluster sizes.

Design Factors

The simulation employed a 2 × 2 × 2 × 2 × 2 design with five design factors, as

described below.

Intraclass correlation, ICC. The two conditions of ICC were .1 and .5. The

former represents the normal ICC level in education (Hedges & Hedberg, 2007) and the

latter represents an extreme case.

Number of clusters in the treatment arm, J . According to Kreft and De Leeuw

(1998), 30 is the recommended minimum sample size for using multilevel modeling. In

this simulation I included conditions with either 15 or 30 clusters to represent extreme
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and minimum J values.

Average cluster size, n̄. The n̄ values were either 5 or 25. The former represents

an insufficient level by most standards (e.g. Hox, 2010), but is nevertheless typical for

longitudinal or family data. The latter is chosen to represent typical classroom size in the

US.

Sample size ratio between the two arms, NT : NC . The clustering in the

treatment arm reduces information contained in the sample. That is, even when the

level-1 sample sizes for both the treatment and the control arms are equal, the treatment

arm with clustering has a smaller effective sample size (see Hox, 2010; Moerbeek &

Wong, 2008). In this simulation I used the conditions where NT : NC = 1 or 5.

Distribution of cluster sizes in the treatment arm. Although for simplicity, in

the previous derivation of D1 I assumed equal cluster sizes, such an assumption seldom

holds in real research. Even when equal cluster size was emphasized in research planning,

nonresponses due to various reasons render the final sample unbalanced. Unequal cluster

sizes further reduces the effective sample size, particularly when the variability of the

cluster sizes are large relative to the mean (Candel & Breukelen, 2009). Therefore, I

would also investigate the impact of unequal cluster sizes on the performances of D1 and

D2. Because the cluster size can be considered count data with strictly positive values, a

suitable distribution to model cluster sizes would be the zero-truncated negative

binomial2(see James, 1953, for an example in modeling size of pedestrian groups). The

larger the variance of the negative binomial, the more unbalanced the cluster sizes. For

this simulation I generate the group sizes from a zero-truncated Poisson (a special case

where the variance roughly equals the mean) or from an extreme zero-truncated negative

binomial with variance roughly 10 times the mean.
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Data Generation and Analyses

For each of the 32 simulation conditions, I set σ2W to 1.0, and the variance

component σ2B was computed based on the ICC. Then I use R (R Core Team, 2014) to

generate 500 sets of between-level cluster sizes and cluster-specific effect u1 (with mean 0

and variance σ2W , assuming normality) for the treatment arm. Then for both the treatment

and the control arms, the individual-specific effect was generated (with mean 0 and

variance σ2W , and the outcome scores were generated according to equations (19) to (21).

For each data set, D1 and V (D1) were obtained as described in equations (24) and

(25). To obtain D2 and V (D2), I first analyzed each data set with the partially nested

model using lme4 (Bates, Maechler, Bolker, & Walker, 2014). Because lme4 does not

compute the estimated SE of the variance components (which is done intentionally; see

Bates, 2011, for detail), I used the parametric bootstrap SE with 200 resamples instead.

Then D2 and V (D2) were calculated based on equations (27) and (28). The R code

implementing the whole simulation were shown in Appendix F.

Evaluation Criteria

Relative SE bias. For both D1 and D2, the percentage relative SE bias was

computed as ∑500
i=1 ŜE(D(i))/500 − SD(D)

SD(D)
× 100%,

where ŜE(D(i)) is the squared root value of the estimated variance of D for the ith

replication, and SD(D) is the SD of the 500 estimated values of D, and is also denoted as

the empirical SE. Following Hoogland and Boomsma (1998), a relative SE bias with an

absolute value larger than 10% would be considered unacceptable.

Coverage of 95% CI. Ideally a 95% CI should have have a .95 confidence

coefficient, which in the frequentist sense means that in the long run, 95% of the CIs
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constructed at the sample level should include the population parameter. However, due to

sampling variations, different degrees of approximations, and violations of assumptions,

the results from the simulation will show deviations. In this simulation, the empirical

coverage percentage is computed as

Number of replications with CI covering δ
500

Following L. K. Muthén and Muthén (2002), I consider coverage between 91% and 98%

as acceptable.

Root Mean Squared Squares (RMSE). Even though both D1 and D2 are roughly

unbiased estimators of δ, under unbalanced cluster sizes D1 is expected to be inefficient,

meaning that it will have a larger sampling variance. Therefore, the RMSE is also

computed, which is defined as

√∑500
i=1 (D(i) − δ)2

500
.

When both of the estimators are approximately unbiased, RMSE mainly reflects their

sampling variability. An estimator with lower RMSE is more efficient, and thus is

preferred.

Simulation Results

As expected, both D1 and D2 were approximately unbiased (with relative bias

< 5%). Table 4 showed the simulation results. In terms of relative SE bias, both D1 and

D2 were in acceptable range when cluster sizes followed a Poisson distribution. Under

extreme unbalanced conditions, however, D1 showed substantial SE bias when ICC = .5

(SE was underestimated by 11% to 26%). The coverage of CI was substantially smaller

and ranged from 84% to 91% for D1 under those conditions. On the other hand, the SE
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bias of D2 remain less than 10%, and the CI for D2 showed adequate coverage. Under

conditions where D1 showed substantial SE bias, D1 had a larger RMSE and was thus less

efficient. Otherwise the efficiency was similar between the two estimators.

Real Data Illustration

The summary of the multilevel analysis provided in Model 1 of Bauer et al. (2008,

p. 231) would be used to demonstrate the usage equations (27) and (28). The data

concerned the effectiveness of the Reconnecting Youth (RY) preventive intervention

program, which involved grouping 325 adolescents into 41 classes. There were two other

comparison arms called control (n = 675) and typical (n = 598) that did not receive

treatment and were not clustered into higher level units. The outcome variable is deviant

peer bonding. The fixed effects included dummy variables representing the memberships

of the treatment arm and of the typical arms, as well as those representing the schools

they attended. The two random effects were the person level residuals (which was

assumed constant across arms) and the class level residuals.

Here I only focused on the treatment effect of RY compared to control, which had

a coefficient γ̂10 = 0.19. Using equation (27) it is straight forward to see that the effect

size of RY = 0.19/
√
0.789 = 0.214. Bauer et al. (2008) did not report the sampling

variance nor the standard error for the effect of RY. However, they did report that the t

value equaled 2.63, and thus SE of the effect of RY could be estimated as

0.19/2.63 = 0.0722. Similarly, for the level-1 residual variance, its standard error could

be obtained as 0.789/26.73 = 0.0295. Substituting V (γ̂10) = 0.07222, D2 = 0.214,

σ̂2W = 0.789, and V (σ̂2W ) = 0.02952 into the formula for V (D2), that is, equation (28), I

got 0.07222/0.789 + (0.2142)(0.02952)/(4 × 0.7892) = 0.0066 (or SE = 0.0814). Then

the approximate 95% symmetric confidence interval could be obtained as

0.214 ± z.025(0.0814) (where z.025 is the .25 quantile for the standard normal
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Table 4
Percentage Relative Standard Error Bias and Mean Squared Errors of D1 and D2 Across
Different Conditions

Distribution RBias(SE(D̂)) 95% CI Coverage RMSE(D)
of n j J ρ NT : NC average n D1 D2 D1 D2 D1 D2

Poisson 15 .10 1 5 1.6 3.5 95.6 96.2 0.18 0.18
25 −9.3 −8.0 92.6 92.4 0.12 0.12

5 5 1.4 −0.2 94.4 94.0 0.29 0.30
25 0.3 0.6 95.4 95.6 0.15 0.15

.50 1 5 −8.1 −0.1 92.0 93.6 0.33 0.31
25 −8.8 −6.5 91.4 91.6 0.29 0.28

5 5 −2.7 −2.1 94.8 94.8 0.39 0.40
25 0.0 1.6 94.8 94.4 0.28 0.28

30 .10 1 5 2.2 4.2 96.2 97.2 0.13 0.13
25 0.0 0.4 94.8 95.0 0.08 0.08

5 5 4.8 4.1 95.6 95.4 0.20 0.20
25 1.7 2.6 95.2 95.0 0.11 0.11

.50 1 5 −1.4 4.6 94.0 94.2 0.22 0.21
25 −0.8 0.1 93.6 93.6 0.19 0.19

5 5 1.8 4.7 95.8 96.2 0.27 0.26
25 0.4 2.5 94.0 94.6 0.20 0.20

NB 15 .10 1 5 −5.3 3.1 93.8 96.2 0.19 0.19
25 −17.7 −6.9 89.2 92.2 0.13 0.12

5 5 −3.2 −1.6 94.0 94.2 0.31 0.31
25 −4.3 1.1 94.2 96.0 0.16 0.15

.50 1 5 −26.0 −0.3 84.2 93.8 0.40 0.32
25 −21.8 −5.8 87.0 92.0 0.33 0.28

5 5 −20.4 −3.6 88.4 96.2 0.48 0.41
25 −12.1 2.2 91.8 94.4 0.32 0.28

30 .10 1 5 −8.6 −0.2 93.0 95.0 0.14 0.14
25 −9.4 −0.1 92.4 95.4 0.09 0.08

5 5 0.1 4.0 96.0 96.4 0.21 0.21
25 −3.2 2.1 94.6 95.8 0.11 0.11

.50 1 5 −23.8 0.9 89.2 95.8 0.28 0.23
25 −14.7 −0.2 91.0 94.4 0.22 0.19

5 5 −15.6 4.3 91.2 95.2 0.32 0.27
25 −11.1 1.8 91.6 94.0 0.23 0.20

Note. The population effect size is δ = 0.5. ρ = intraclass correlation of the treatment arm. n =
average cluster size. RBias(SE(θ̂)) = percentage relative standard error bias, which is calculated as
[
∑
SE(θ̂ j )/R− SD(θ̂)]/SD(θ̂) × 100, where SE(θ̂ j ) is the estimated standard error for the jth replication,

R is the number of replications, SD(θ̂) is the standard deviation of the R estimates of θ. RMSE = mean
squared error [RMSE(D) = bias(D) + V (D)]. NB = negative binomial distribution with mean equals to
the average n and variance approximately equals to 3 × average n.

distribution), which equals [0.054, 0.374].
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Effect Size Using Only the SD of the Control Arm

For single level study, Glass (1976) suggested to compute the effect size using

only the standard deviation of the control arm if there is evidence or reason to believe that

the treatment changes the variance of the score distribution. Similarly, in partially nested

design, the within-cluster variance, σW , could be affected by the treatment. The effect size

δC would be defined as

δ
C =

∆µ

σC , (29)

where σC is the standard deviation of the control group. First I define the within-cluster

variance of the treatment group and the variance of the control group as

S2
W =

∑J
j=1

∑n
i=1(YT

i j − ȲT
••)

2

NT − J
,

S2
C =

∑J+NC

j=J+1(YC
j − ȲC

• )2

NC − 1
.

A sample estimator DC
1 can be obtained as

DC
1 =

∆Ȳ
SC

(30)

V (DC
1 ) = κ

1 + (n − 1)ρ
NT (1 − ρ)

+
1

NC +
(DC

1 )2

2(NC − 1)
, (31)

where κ = S2
W/S2

C is the estimated variance ratio between the treatment and the control

arms. Note that V (DC
1 ) > V (D1) when κ = 1, so D1 is preferred when variance can be

assumed equal.

If reasonable point and variance estimates of the variance components for σ2W and
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σ2C can be obtained, then DC
2 and its sampling variance can be estimated as

DC
2 =

γ̂10

σ̂C
, (32)

V (DC
2 ) =

V (γ̂10)
σ̂2C

+
D2
2V (σ̂2C)

4σ̂4C
. (33)

Effects of Ignoring the Clustering Structure on D

When the clustering in the treatment arm is not modeled, the impacts on D and

V (D) are functions of the intraclass correlation ρ, the average cluster size n, and the total

sample size ratio of the treatment arm and the control arm. In general it leads to

underestimation of both D and its sampling variance. Table 5 showed the expected

percentage relative bias of the estimated D and its estimated variance for some

combinations of ρ and n when the sample sizes for both the treatment and the control

arms equaled to 200. Even for a small intraclass correlation of .10, V (D) would be

underestimated by 9 to 15% for n between 2 to 8. For ρ = .50 and n = 8, the effect size is

expected to be underestimated by 18% whereas its sampling variance is expected to be

underestimated by 60%. Increases in both ρ and n, which contribute to the increase in

design effect = 1 + (n − 1)ρ (see B. O. Muthén & Satorra, 1995), lead to more severe

underestimated V (D), whereas only increases in ρ leads to more severe underestimation

of the effect size point estimate.

Because one of the most popular way in combining multiple effect sizes in a

meta-analysis is to use inverse variance weights (Lipsey & Wilson, 2001), an

underestimated V (D) can lead to biased results. Because cluster-randomized trials

usually have a medium to large level-1 sample size, ignoring the clustering in those

studies may incorrectly lead to results that are largely only driven by a few studies.
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Table 5
Percentage Relative Bias of Effect Size and Its VarianceWhen Clus-
tering of the Treatment Group is Ignored

ρ average n RBias(D) RBias[V (D)]
.10 2 −2.66 −8.90

4 −2.65 −10.68
8 −2.64 −14.49

.30 2 −9.23 −25.04
4 −9.21 −30.23
8 −9.17 −38.95

.50 2 −18.32 −43.19
4 −18.28 −50.00
8 −18.21 −59.77

Note. ρ = intraclass correlation of the treatment arm. n = average clus-
ter size. RBias(θ) = percentage relative bias, which is calculated as
(
∑
θ̂ j/R − θtrue)/θtrue × 100.

Conclusion

The present paper proposed two methods to estimate effect size D for partially

nested design. This helps primary researchers working with such designs to appreciate

the practical significance of their results, and is a tool for meta-analysts synthesizing

effects of group interventions. I also showed that when the clustering of one arm is not

accounted for, the estimated D and V (D) showed negative bias, and the degree of bias

was magnified with larger design effect. Educators working with similar designs should

incorporate effect size presented here in addition to statistical significance to evaluate

treatment efficacy, and for studies with large sample size the point and interval estimates

of D are much more informative.

There are a few limitations of this paper. First, the calculations of D1 and D2, and

particularly their variances, can be tedious. Researchers in substantive areas may prefer
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more automated procedures. In Appendix E I presented sample codes for estimating D2

using the SEM approach in Mplus. Future study may investigate other methods such as

bootstrapping. Second, the simulation results in this study only apply to the simple

situation with two arms and no covariates. Impact of additional complexity on effect size

estimation can be further addressed in the future.

Notes
1For example, under such conceptualization a p-value may also be called an effect

size, if the “question of interest” is something like the likelihood that the treatment has an
effect. This may be somehow counterintuitive.

2In the simulation, I generate zero-truncated negative binomial numbers as follow:
(a) Get f (0), the cumulative density at 0, in the given negative binomial distribution; (b)
Generate a uniform random value, u in the range [ f (0), 1]; (c) Get the u quantile of the
given negative binomial distribution. Appendix F shows a R functional ZeroTruncate
that convert a standard distribution to the zero-truncated version.
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CHAPTER IV

BOOTSTRAP CONFIDENCE INTERVAL FOR MULTILEVEL EFFECT SIZE

Overview

Although many methodologists have urged the use of effect size measures

accompanying tests of statistical significance, discussions on obtaining confidence

intervals (CIs) multilevel effect sizes has been rare. In this manuscript I explore the

bootstrap as a viable and accessible alternative for obtaining CIs for multilevel

standardized mean differences. A simulation is carried out to compare 10 procedures for

constructing CIs in terms of empirical coverage probability. Results showed that, across

all simulation conditions, the semiparametric bootstrap with the bias-corrected and

accelerated CI and the model-based analytical methods with asymptotic symmetric CI

performed the best, with the former being more robust to violation of the normality

assumption.

Introduction

Although many methodologists have urged the use of effect size measures

accompanying tests of statistical significance (e.g. Cohen, 1990; Cumming, 2014; Kelley

& Preacher, 2012; Thompson, 2007), discussions on effect size estimation for multilevel

data has been rare (e.g. Hedges, 2007; Snijders & Bosker, 1994). Much rarer is the

discussion on obtaining interval estimates of multilevel effect size. One reason is that the

computational formulas for confidence intervals (CIs) for effect size with multilevel data

can be extremely complex (Hedges, 2007), even with the use of asymptotic theory that

may not hold for finite samples. In addition, whereas traditional single-level data can be

regarded as one type of data structure (with the assumption of simple random sampling),

multilevel data comprise a collection of data structures with varying numbers of clustering
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levels and relations between levels (i.e., nested vs. crossed). This makes it tedious to

derive complex formulas for CIs for each type of multilevel data structures. Recognizing

such difficulties, in this manuscript I explore the bootstrap (Efron, 1982), a type of

resampling techniques, as a viable alternative for obtaining CIs for multilevel effect size.

In the past two decades, effect size reporting has been the central theme in the

“statistical reform” in the behavioral sciences (e.g. Kline, 2013; Thompson, 2002). Many

professional organizations, including the American Educational Association (AERA,

2006), the American Psychological Association (APA, 2010), the International

Committee of Medical Journal Editors (Schulz, Altman, Moher, & CONSORT Group,

2010), and the National Center for Education Statistics (NCES, 2012), have guidelines for

reporting effect size.

In addition to reporting point estimates of effect size measures, many sources have

also encouraged the use of CI to quantify the uncertainty associated with a sample effect

size. For example, the APA publication manual (APA, 2010) stated that “[w]henever

possible, [researchers should] provide a confidence interval for each effect size reported to

indicate the precision of estimation of the effect size” (p. 34). A similar statement is found

in the AERA (2006) reporting standards that “there should be included . . . [a]n indication

of the uncertainty of that index of effect (such as a standard error or a confidence interval”

(p. 37). Hedges (2008) and Thompson (2002) have also made similar recommendations.

Whereas point estimates of effect size measures, such as standardized mean

difference (SMD) and proportion of variance accounted for (the d-family and the

r-family; Grissom & Kim, 2012; Rosenthal, 1994), are regularly reported in single-level

studies, the CIs are still rarely attached. Peng et al. (2013) reviewed 32 review papers of

effect size reporting practices in published articles from 116 journals in education and

psychology, and found that whereas the median effect size reporting rates were 58.0%

after 1999, some of the review papers reported that the reporting rates for CIs for effect
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size were essentially zero (Byrd, 2007; Fritz, Morris, & Richler, 2012). This is in sharp

contradiction to the existing guidelines on effect size reporting.

Although different researchers have proposed methods for obtaining CIs for effect

size, substantive researchers may not be familiar with them. Even for single-level studies,

the analytical formulas for the sampling variance of effect size is not simple, and as would

be discussed later some method for obtaining CIs invokes noncentral distributions, which

is seldom part of the quantitative training for behavioral researchers. For the simplest

multilevel structure with two nested levels, the variance of SMD already fills two lines of

space (Hedges, 2007); For the more complicated cross-classified structure the variance of

SMD takes three full lines. On the other hand, computer intensive methods such as the

bootstrap (Efron & Tibshirani, 1993) requires computation of only the point but not the

variance estimates, which greatly simplifies the analytical load on substantive researchers.

It also has the added advantage of handling automatically some violations of assumptions

such as the normality of random effects, which makes it an ideal method for obtaining CIs

for effect size. Although the present study concerns mainly the use of the bootstrap for

SMD with two-level data, the method can easily apply to other types of effect size

measures and to more complicated data structures.

The Bootstrap

Efron (1982) has popularized the bootstrap method for obtaining standard errors

and variances of some statistical estimators when closed form solutions are difficult or

impossible to obtain. Probably one of the applications of the bootstrap that are most

familiar to behavioral researchers is for mediation analyses (e.g., Preacher & Hayes,

2004). For mediation analyses the sampling distribution of indirect effects is in general

skewed even when multivariate normality holds, making the standard procedures of

significance testing and CI construction biased. Indeed, MacKinnon, Lockwood, and
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Williams (2004) showed that the bias-corrected bootstrap outperformed other methods in

the study for constructing CI for the indirect effect. For single-level studies, Kelley (2005)

and Chen and Peng (2014) recommended the bootstrap method as the approach for

estimating SMD, especially when the normality assumption is violated.

Although there are different types of bootstrap methods with different

implementations, they generally follow the same general framework:

1. Get an approximated population distribution (formally called the cumulative

distribution function, or CDF), denoted as F̂, from the sample data x;

2. Simulate a large number, R, of independent samples (i.e., sampling with

replacement) from F̂, each with the same size as the original sample x, and denote

the ith sample as x∗i ;

3. Compute the target estimator T (x∗i ), such as the mean or the effect size, for each

sample;

4. Obtain the empirical sampling distribution of T as the distribution of the R values

of T (x∗i ).

Note that X can include more than one observed variables. After the empirical sampling

distribution is obtained, various methods can be applied to obtain SEs and CIs for T .

Usually R needs to be large (say 1000 or more) when CI is of interest (Davison &

Hinkley, 1997).

Types of Bootstrap

Three variations of the bootstrap that has been discussed most often in the

literature is the parametric bootstrap, the semiparametric bootstrap, and the

nonparametric bootstrap (Davison & Hinkley, 1997; Efron & Tibshirani, 1993). The

main differences among the three lie in how F̂ is defined in step 1.
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Parametric bootstrap. In the parametric bootstrap, the family of distribution is

specified for F̂, but the parameters of F̂ are estimated from the sample data. For example,

if a researcher is interested in the mean of a variable X and think that the distribution of X

in the population is at least approximately normal, the researcher can specify F̂ as the

CDF of a normal random variable, denoted as N ( x̄, s2x), where x̄ and s2x are the sample

mean and variance of X . This method relies on the assumption that the family of

distribution of F̂ is specified correctly.

Semiparametric bootstrap.When there are at least two variables in the data, the

semiparametric bootstrap can be used. For example, if one is interested in the relation

between two variables, X and Y , from a sample of size N , one can specify the regression

model

yi = β0 + β1xi + εi,

and use least squares methods to estimate β0, β1, and the residual εi. If the distribution of

εi is specified, then the model is fully parametric. However, in the semiparametric

bootstrap, one resamples from the empirical distribution of εi rather than the joint

distribution of X and Y . The empirical distribution of ε assigns a probability of 1/N to

each of the N ε values, and thus is a discrete distribution. Each bootstrap sample x∗i then

includes the same original values of X and the new Y values are computed as

y∗i = β0 + β1xi + ε
∗
i ,

where ε∗i is a resampled value of the residual from the empirical distribution. The method

makes the assumption that the functional form between X and Y (e.g., linear or quadratic)

is specified correctly; However, it makes no assumption on the residuals, thus the name

semiparametric bootstrap is also called the semiparametric bootstrap (Davison &
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Hinkley, 1997).

Nonparametric bootstrap. In the nonparametric bootstrap, each observation is

assigned a probability of 1/N . Bootstrap, samples each of size N , are then drawn with

replacement from the original sample. Note that when a case is selected into a bootstrap

sample, the observed values on all variables are kept. Thus, one can think of F̂ as a

discrete distribution with each element being the vector of observed values for an

observation. Because no distributional assumptions are made on F̂, it is called the

nonparametric bootstrap.

As noted in Davison and Hinkley (1997), because the nonparametric bootstrap

does not rely on distributional assumptions, it is expected to outperform the other two

methods when the model is misspecified. On the other hand, When the model is specified

correctly, the parametric bootstrap and the semiparametric bootstrap can produce more

efficient results (i.e., with smaller sampling variance), and are more stable when N is

small.

Models and Notations

As an initial effort to compare methods for constructing CIs with multilevel data,

this study focuses on SMD for the simplest but most commonly used multilevel

structure—the two-level hierarchical structure. There are plenty of examples of this

structure in educational and psychological research, including students nested within

classrooms and then schools, citizens nested within regions and countries, and employees

nested within organizations. In many educational studies, researchers have no choice but

to implement randomization and interventions at the classroom or the school level rather

than at the individual level.

Methods for inference of treatment effect in cluster-randomized trials were

developed a long time ago (e.g. Goldstein, 1986; Mason et al., 1983). In the multilevel
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modeling framework, the level-1 model is

yi j = β0 j + εi j, (34)

and the level-2 model is

β0 j = γ00 + γ01TREATMENT j + u0 j . (35)

In the model, yi j is the outcome values of the ith individual in the jth cluster,

TREATMENT is the dummy variable with 1 being the treatment arm and 0 being the

control arm, and β0 j is the cluster mean of the jth cluster. γ00 is the grand mean of the

control arm, and γ01 is the treatment effect that represents the grand mean difference

between the treatment and the control arms. The level-1 and level-2 residuals are εi j and

u0 j , which are assumed independent. Typically, one assumes εi j ∼ N (0, σ2W ) and

u0 j ∼ N (0, σ2B), where the variances are constant across clusters and treatment arms. The

parameters can be estimated using standard statistical packages such as SPSS and SAS, as

well as specialized programs such as HLM and MLwiN.

Obtaining CI for SMDWith Two-Level Data

Effect size measures of these studies, on the other hand, were not discussed until

recently (Hedges, 2007). The effect size of SMD is defined as the ratio between the

treatment effect and the standard deviation (SD) of the outcome. Whereas such a

definition causes no confusion for single-level studies, it is ambiguous in multilevel

studies several different SDs can be used, including the within-cluster SD, the

between-cluster SD, and the total SD. Hedges (2007) viewed the issue in the

meta-analysis framework, and suggested that the choice should depend on the nature of

other studies in the synthesis. For example, if in most other studies data are collected
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from a single site, the within-cluster SD may be a better choice.

It is not a purpose of this study to argue which SD should be used. Indeed, any

effect size can be estimated with the bootstrap as long as the estimator can obtained from

the original sample one. I chose the total SD in this study simply because it uses more

information in the data and theoretically can be converted to a variance accounted for

effect size Snijders and Bosker (1994).

Analysis of Variance Method

Using the total SD of the outcome, the population SMD for a two-level

treatment-control arm design is defined as

δT =
γ01√

σ2W + σ
2
B

. (36)

When each cluster contains the same number of observations n, in other words, when

cluster sizes are constant, a sample estimator of δT can be defined as (Hedges, 2007,

p. 349)

dT =

(
ȲT
•• − ȲC

••

ST

) √
1 −

2(n − 1)ρ
N − 2

, (37)

where ȲT
•• and ȲC

•• are the grand means of the outcome for the treatment and the control

arms, ρ is the intraclass correlation (ICC), and ST is the pooled total sample standard

deviation such that

S2
T =

∑JT
j=1

∑n
i=1(YT

i j − ȲT
••)

2 +
∑JC

j=1
∑n

i=1(YC
i j − ȲC

••)
2

N − 2
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with JT and JC being the number of clusters in the treatment and the control arm

respectively. The variance of dT is

V (dT ) =
(

NT + NC

NT NC

)
(1 + (n − 1)ρ)

+ δ2T

(
(N − 2)(1 − ρ)2 + n(N − 2n)ρ2 + 2(N − 2n)ρ(1 − ρ)

2[(N − 2) − 2(n − 1)ρ]2

)
. (38)

In reality δ is not known and so one has to replace it with dT . Because the method is

derived from decomposing the sum of squares, some authors denoted it as the analysis of

variance (ANOVA) method (Searle et al., 2006).

When the cluster sizes are not constant, Hedges (2007) also derived a formula for

V (dT ). However, the formula is quite complex and requires the information about the size

of each cluster, which usually happens only when researchers have the raw data. In that

case the method described later would be much simpler to use, and thus should be

preferred.

With the estimates dT and V (dT ), there are two methods to construct CI for dT .

First, based on the central limit theorem (see Casella & Berger, 2002), dT/
√

V (dT ) has an

asymptotic standard normal distribution. Therefore, a symmetric (1 − α) × 100% CI can

be obtained as

[dT − z1−α/2
√

V (dT ), dT + z1−α/2
√

V (dT )], (39)

where z1−α/2 denotes the 1 − α/2 quantile of the standard normal distribution. As noted

by Hedges (2007), the distribution of dT is better approximated by a scaled noncentral t

distribution. Cumming and Finch (2001) pointed out that the degrees of freedom of the

noncentral t needs to be larger than 60 for the normal approximation to work properly.

For small samples, it would be better to use the noncentral t distribution to form
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asymmetric CI. In particular, the random variable

dT

(
NT NC[1 + (n − 1)ρ]

NT + NC

)

has an approximate noncentral t distribution with noncentrality parameter

ncp = δT NT NC[1 + (n − 1)ρ]/(NT + NC) and degrees of freedom

ν =
[(N − 2) − 2(n − 1)ρ]2

(N − 2)(1 − ρ)2 + n(N − 2n)ρ2 + 2(N − 2n)ρ(1 − ρ)
.

Using the method discussed in Kelley (2005) and Steiger and Fouladi (1997), and

replacing δT by dT in the ncp, we can obtain an asymmetric (1 − α) × 100% CI as

[tα/2,ν,ncp/ncp, t1−α/2,ν,ncp/ncp], (40)

where tα/2,ν,ncp is the α/2 quantile of the noncentral t distribution with degrees of freedom

df .

Model-Based Approach

When raw data is available, researchers can fit the model as described in (34) and

obtain γ̂01, σ̂2W , and σ̂2B as the parameter estimates, as well as their variances (i.e., squared

value of the SEs). Then the sample effect size can be estimated as (see Hedges, 2009)

δ̂T =
γ̂01√

σ̂2W + σ̂
2
B

(41)

with variance

V (δ̂T ) =
V (γ̂01)
σ̂2W + σ̂

2
B

+
δ2T [V (σ̂2W ) + V (σ̂2B)]

4(σ̂2W + σ̂
2
B)2

. (42)
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Note that some programs, such as the lme4 package in R (R Core Team, 2014), does not

report the asymptotic variance of the variance components. One can instead obtain the

variance using parametric bootstrap with 200 resamples, which in my experience is quite

close to the value based on asymptotic theory. Ames (2013) has shown that the

model-based approach outperformed the ANOVA approach in terms of bias in the

estimated variance, especially when the sample size was small.

The asymptotic symmetric CI can then obtained by replacing dT and V (dT ) by δ̂T

and V (δ̂T ) respectively in equation (39). The noncentral CI can similarly be obtained by

plugging in

ncp =

√
σ̂2W + σ̂

2
B

V (γ̂01)

df =
2(σ̂2W + σ̂

2
B)2

V (σ̂2W ) + V (σ̂2B)

into expression (40).

Parametric Bootstrap

The parametric bootstrap for multilevel data (Goldstein, 2011a) looks like the

semiparametric bootstrap discussed previously where residuals are sampled and new

response variable is computed based on the model. What makes it parametric is that the

distributions of the residuals are specified as normal. Specifically, ε∗ is drawn from

N (0, σ̂2W ) and u∗ is drawn from N (0, σ̂2B), and new response y∗i j is computed based on (34)

and (35). The multilevel model is then refitted to the new bootstrap data, and δ̂∗T is

computed with equation (41).

There are numerous ways to construct CIs with the bootstrap (Davison & Hinkley,

1997; Efron & Tibshirani, 1993; Van der Leeden, Meijer, & Busing, 2008; Wu, 1986).

For this study I only focus on two of them: percentile CI and the bias-corrected and
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accelerated (BCa) CI. In the percentile CI (Efron & Tibshirani, 1993) with confidence

level equal (1 − α), one simply obtain the α/2 and the 1 − α/2 quantiles from the

distribution of the bootstrapped values δ̂∗T . The percentile CI has the advantage of being

easy to compute and understand. It also does not make any distributional assumption on

the estimator, so the two confidence limits need not be symmetric. On the other hand, as

noted by Davison and Hinkley (1997) and Van der Leeden et al. (2008), the percentile CI

tends to produce biased confidence limits, especially with the nonparametric bootstrap.

Specifically it is not very accurate when the estimator is biased or when the original

sample size is small (Efron & Tibshirani, 1993).

One can improve the performance of the percentile method with the (BCa)

method. Like the percentile method, the BCa method took the two quantile values in the

distribution of the bootstrapped values of the estimator. However, instead of using the α/2

and the 1 − α/2 quantiles, one uses αL and αU defined as (Efron & Tibshirani, 1993,

p. 185)

αL = Φ

(
w +

w + zα/2
1 − a(w + zα/2)

)
αU = Φ

(
w +

w + z1−α/2
1 − a(w + z1−α/2)

,

)

where Φ(·) is the CDF for the standard normal distribution (and can be obtained with the

pnorm function in R and the NORM.S.DIST with CUMULATIVE=TRUE in Microsoft Excel).

The two correcting factors are w and a, with w correcting for median bias and a
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correcting for the skewness of the distribution of the estimator, and can be estimated as

w = Φ−1 *
,

#{δ̂∗T < δ̂T }

R + 1
+
-

a =

∑J
j=1 l3j

6(
∑J

j=1 l2j )3/2
,

with Φ−1(.) being the quantile function (or the inverse CDF) of the standard normal

distribution and l j being the influence values (Davison & Hinkley, 1997) of the estimator

and can be estimated using the grouped jackknife (Van der Leeden et al., 2008)1.

#{δ̂∗T < δ̂T } is the number of bootstrapped samples with δ̂∗T < δ̂T . Note that when the

estimator is unbiased, one has w = 0; When the influence function is symmetric, one has

a = 0. With both conditions αL = α/2 and αU = 1 − α/2, and the BCa CI is equivalent to

the percentile CI.

Semiparametric Bootstrap

For multilevel models, one can obtain two types of level-2 residuals: one being

ordinary least squares (OLS) estimates and the other being the shrinkage estimates (see

Hox, 2010). Whereas the shrunken residuals are biased, they have a smaller mean squared

error (MSE) (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). There is no clear

answer regarding which type of residuals should be used. Van der Leeden, Busing, and

Meijer (1997) found that using the shrunken residuals produced a smallerMSE than using

the OLS residuals. However, Carpenter, Goldstein, and Rasbash (2003) noted that the

variance of the shrunken residuals was too small and did not match the estimated values

of the variance components. They proposed a transformation method to make the

variance-covariance matrix of the shrunken residuals matches that of the variance

components; They also showed that their procedures outperformed the parametric

bootstrap in terms of CI coverage when the data was generated from a chi-squared
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distribution with one degree of freedom. Goldstein (2011a) further modified the

transformation method to preserve the dependencies across levels. Vallejo Seco, Ato

García, Fernández García, and Livacic Rojas (2013) showed that the semiparametric

bootstrap produced smaller root mean squared error RMSE. In this study the method by

Goldstein (2011a) is included for comparison. The same procedures apply to the

semiparametric bootstrap for the percentile and the BCa CIs.

Nonparametric Bootstrap

The nonparametric bootstrap assumes that each observation is independent

(Davison & Hinkley, 1997), which is clearly violated with multilevel data (Goldstein,

2011a; Hox, 2010; J. K. Roberts & Fan, 2004; Van der Leeden et al., 2008). While there is

multiple modifications proposed (J. K. Roberts & Fan, 2004; Van der Leeden et al., 2008),

the major ones are (a) to resample only clusters, and keep the level-1 units in a cluster

intact, and (b) resample first the clusters, and within each clusters resample the level-1

units. Both methods resulted in bootstrap samples with level-1 sample size different from

the original size. For simplicity, only method (a) is included in this study for comparison.

It should be noted that because the nonparametric bootstrap makes much less

assumptions than the parametric and the semiparametric bootstraps, it requires more

information from the data. Therefore, its performance would be poor compared to the

other two methods, even when the assumptions for the latter two methods are violated

(Efron & Tibshirani, 1993; Van der Leeden et al., 2008). Thai, Mentré, Holford,

Veyrat-Follet, and Comets (2013) found that in longitudinal linear-mixed models, the

semiparametric bootstrap and the nonparametric bootstrap performed similarly when

there were at least 100 individuals.
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Simulation Study

I conducted a simulation study comparing the performances of ten methods of

conducting CIs: symmetric and noncentral intervals for dT and δ̂T , and percentile and

BCa intervals for the parametric, residual, and nonparametric bootstraps. Six design

factors were used as described below.

Design Factors

Intraclass correlation (ICC). The three ICC levels were chosen to reflect the

common values in educational research based on a review of articles in 2011–2013 in

American Educational Research Journal and Child Development (see also Hedges &

Hedberg, 2007): .05, .10, and .20, to see how the methods for constructing CIs perform.

As found in Vallejo Seco et al. (2013), the performance of the semiparametric bootstrap

got worse with increasing ICC.

Distribution of u0. Because one of the goal of the present study is to recommend

methods to construct CIs when the normality assumption is violated, the level-2 residuals,

u0, followed either a normal distribution or a scaled chi-squared distribution defined as

σ2B (χ21 − 1)/2. For all conditions I set σ2W as 1.0, and so σ2B = ICC/(1 − ICC). The χ21

distribution is positively skewed with skewness ≈ 2.82 and kurtosis ≈ 12, and has been

often used in previous literature to examine the impact of nonnormality (e.g., Carpenter et

al., 2003; Maas & Hox, 2004).

Distribution of ε. The levels for the distribution of level-1 residuals, ε, were the

same as those for the distribution of u0, except that the variance of the distribution is σ2W

instead of σ2B. This allows examination of the relative impact of nonnormality in level-1

and level-2 residuals.

Number of clusters, J . It is generally agreed that multilevel models require at

least 30 clusters (e.g., Hox, 2010). Indeed, Flynn and Peters (2004) found that the 95% CI
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coverage with the semiparametric bootstrap was only about 91% when there was 24

cluster and the ICC was 0.1. In this study, J was set to either 20, 30, or 70 based on the

literature review, and there was equal number of clusters in the treatment and the control

arms (i.e., JT = JC). The level with 20 clusters matches the most extreme condition in the

simulation by Carpenter et al. (2003).

Average cluster size, n̄. There were two levels for n̄: 5 for small and 25 for

medium. The small value is typical for longitudinal or family data (and matches the

conditions in Thai et al., 2013) , whereas the medium value is chosen to represent typical

classroom size in the US.

Distribution of cluster sizes, P(n). Among the five methods for estimating δT ,

only the ANOVA method assumes equal cluster sizes. However, Ames (2013) showed

that the model-based estimates of effect size can also be biased with unequal cluster sizes.

Unequal cluster sizes also reduces the effective sample size (Candel & Breukelen, 2009),

which may make both the analytical methods and the bootstrap methods less stable. One

possible family of distributions to model cluster sizes, which are strictly positive numbers,

would be the zero-truncated negative binomial (James, 1953). By varying the dispersion

or the variance of the negative binomial one can control the degree of imbalance of the

cluster sizes. For this study I set the ratio between the variance and the mean of the group

sizes to be either 1 (i.e., the zero-truncated Poisson) or 10.

Data Generation and Analyses

In this study there is a total of 3 (ICC) × 2 (distribution of u0) × 2 (distribution of

ε) × 3 (J) × 2 (n̄) × 2 (distribution of n) = 144 conditions. A thousand sets of u0 and ε

will be first generated independently in R (R Core Team, 2014) according to the

predefined distribution (i.e., normal or chi-squared) for each condition, and the outcome

values will be computed based on the model described in equation (34). The population
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effect size δT was fixed to 0.5 to represent a medium effect.

For each data set, the 95% CIs using the 10 methods of interest will be obtained in

R. With the exception of the two CIs for dT , all CIs calculation required fitting mixed

models, which is performed using lme4 (Bates et al., 2014). The lme4 package includes a

method bootMer to do parametric bootstrap and semiparametric bootstrap. However, the

procedure for “reflating” the shrunken residuals is not yet implemented, and the

nonparametric bootstrap procedure is not available. Therefore, I have written my own

implementation of the three bootstrap methods in R as the SimpleBoot function, as

shown in Appendix G (together with the full R code of the simulation).

Evaluation Criteria

Coverage of 95% CI. If the methods for constructing CI are accurate, then I

would expect in 950 out of the 1,000 replications the CIs constructed would include the

population value δT = 0.5, with a standard error of
√
.95 × .05/1, 000 ≈ 0.7%. The

empirical coverage percentage will be calculated as

Number of replications with CI covering δT

1000

The closer this percentage is to 95% the better the CI performs.

Results

Convergence Rate

Across conditions and methods and procedures to obtain CI, the convergence

percentage is at least 98%. The conditions with lowest convergence rate were mainly from

semiparametric bootstrap with low ICC (i.e., .05) and small average cluster size (i.e., 5),

and the main cause for nonconvergence is that with small clustering effect and small

cluster size sometimes the random effect covariance matrix is singular, and so the step of
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“reflating” the predicted random effects ũ0 and ε̃ in semiparametric bootstrap failed.

Type of CI

Given that the current study includes a large number of simulation conditions, I

first reduced the conditions by choosing, for each of the five methods to obtain CI, the

better procedure in terms of coverage (i.e., normal vs. noncentral t for the analytical

methods and percentile vs. BCa for the bootstrap methods). As ideally the coverage

should be exactly 95% and for many conditions the empirical coverage was less than 95%,

I computed the root mean squared error (RMSE) of the coverage for each condition as

RMSE =

√∑
(Empirical percentage coverage − 95%)2

1000
.

Surprisingly, simpler procedures to compute CIs appear to work better for methods

relying on the normality assumption. For the ANOVA method, RMSE = 0.039 for

symmetric CIs and 0.040 for noncentral t CIs; for the model-based method,

RMSE = 0.016 for symmetric CI and 0.017 for noncentral t CI; for parametric bootstrap,

RMSE = 0.019 for percentile CI and 0.020 for BCa CI. The BCa CIs had better coverage

for semiparametric bootstrap (RMSE = 0.017) and nonparametric bootstrap

(RMSE = 0.021) than the percentile CIs (RMSE = 0.020 and 0.023 respectively).

For subsequent analyses, the results only pertain to symmetric CI for ANOVA and

model-based methods, percentile CI for parametric bootstrap, and BCa CI for

semiparametric and nonparametric bootstrap.

Results of Logistic Regression

Because of the large number of conditions (144 × 5 methods to obtain CI), a

logistic regression is conducted to determine the effect of all main effects and all two-way

interactions on the coverage. Given the large sample size, and that a factorial design is
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employed, I computed the McFadden’s pseudo R2 for each effect as

R2 = 1 −
DevianceModel

DevianceNull
,

where Deviance = −2 × log-likelihood and the null model refers to the model with only

the intercept. The term with the biggest R2 is the type of methods (R2 = 21.8%), followed

by the type of methods × cluster size distribution (P(n)) interaction (R2 = 13.5%), the

main effect of P(n) (7.3%), the main effects of number of clusters (J) (6.5%), distribution

of ε (4.5%), and distribution of u0 (3.7%). Other terms with R2 > 1.0 can be found in

Table 6. Mean empirical coverage by conditions were shown in Table 7, 8, and 9.

Table 6
Summary of Logistic Regression Results With Empirical Con-
fidence Interval Coverage as the Dependent Variable

Effect df Deviance Pseudo R2

CI Method 4 539.86 21.76
Number of Clusters, J 2 161.01 6.49
Average Cluster Size, n̄ 1 46.56 1.88
Cluster Size Distribution, P(n) 1 181.79 7.33
Distribution of ε, f (ε) 1 110.53 4.46
Distribution of u0, f (u0) 1 90.80 3.66
CI Type × ICC 8 69.00 2.78
CI Type × J 8 36.15 1.46
CI Type × P(n) 4 334.09 13.47
CI Type × f (ε) 4 46.82 1.89
CI Type × f (u0) 4 42.69 1.72
ICC × n̄ 2 68.12 2.75
ICC × P(n) 2 31.04 1.25
J × n̄ 2 36.66 1.48
n̄ × f (ε) 1 30.01 1.21

Note. Only effects with pseudo R2 > .01 are shown. df = de-
grees of freedom. CI = confidence interval. ICC = intraclass
correlation.
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Table 7
Mean and Median Confidence Interval (CI) Coverage for the Two Ana-
lytical Methods

CI Method ICC J P(n) Mean Coverage Median Coverage
ANOVA Poisson 20 .05 .929 .931

.1 .933 .933

.2 .928 .927
30 .05 .936 .937

.1 .934 .935

.2 .937 .937
70 .05 .938 .940

.1 .936 .938

.2 .937 .931
NB 20 .05 .913 .913

.1 .905 .905

.2 .885 .890
30 .05 .917 .919

.1 .900 .898

.2 .887 .886
70 .05 .920 .921

.1 .907 .905

.2 .884 .886
Model-Based Poisson 20 .05 .933 .933

.1 .935 .933

.2 .934 .933
30 .05 .937 .938

.1 .938 .940

.2 .941 .941
70 .05 .941 .944

.1 .942 .942

.2 .945 .944
NB 20 .05 .934 .933

.1 .933 .934

.2 .931 .931
30 .05 .935 .937

.1 .931 .929

.2 .938 .936
70 .05 .940 .941

.1 .942 .940

.2 .940 .944

Note. NB = Negative Binomial. ICC = intraclass correlation. J = number of clusters.

P(n) = distribution of cluster sizes.
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Table 8
Mean and Median Confidence Interval (CI) Coverage for the Parametric
and the Semiparametric Bootstrap Methods

CI Method ICC J P(n) Mean Coverage Median Coverage
Parametric Poisson 20 0.05 0.930 0.931
Bootstrap 0.1 0.931 0.931

0.2 0.931 0.931
30 0.05 0.934 0.935

0.1 0.934 0.935
0.2 0.937 0.935

70 0.05 0.937 0.939
0.1 0.940 0.940
0.2 0.943 0.942

NB 20 0.05 0.930 0.932
0.1 0.933 0.933
0.2 0.929 0.929

30 0.05 0.933 0.934
0.1 0.928 0.929
0.2 0.933 0.933

70 0.05 0.939 0.942
0.1 0.938 0.938
0.2 0.937 0.940

Semiparametric Poisson 20 0.05 0.933 0.938
Bootstrap 0.1 0.937 0.937

0.2 0.932 0.930
30 0.05 0.940 0.940

0.1 0.937 0.938
0.2 0.940 0.939

70 0.05 0.944 0.945
0.1 0.943 0.945
0.2 0.945 0.944

NB 20 0.05 0.937 0.940
0.1 0.935 0.936
0.2 0.927 0.928

30 0.05 0.937 0.937
0.1 0.932 0.935
0.2 0.934 0.929

70 0.05 0.938 0.939
0.1 0.939 0.938
0.2 0.938 0.940

Note. NB = Negative Binomial. ICC = intraclass correlation. J = number of clusters.

P(n) = distribution of cluster sizes.
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Table 9
Mean and Median Confidence Interval (CI) Coverage for the Nonparametric
Bootstrap Methods

CI Method ICC J P(n) Mean Coverage Median Coverage
Nonparametric Poisson 20 0.05 0.917 0.915

Bootstrap 0.1 0.923 0.923
0.2 0.922 0.922

30 0.05 0.933 0.933
0.1 0.930 0.929
0.2 0.934 0.935

70 0.05 0.941 0.940
0.1 0.941 0.939
0.2 0.942 0.942

NB 20 0.05 0.927 0.925
0.1 0.927 0.926
0.2 0.924 0.923

30 0.05 0.931 0.935
0.1 0.930 0.933
0.2 0.931 0.931

70 0.05 0.940 0.940
0.1 0.940 0.938
0.2 0.939 0.940

Note. NB = Negative Binomial. ICC = intraclass correlation. J = number of clusters. P(n) =

distribution of cluster sizes.

CI methods. The main effect of CI methods had the largest R2, which is mainly

attributed to the relatively low coverage of the ANOVA methods (91.8%) compared to

other methods (mean empirical coverage > 93.2%). Overall, the model-based method

and the semiparametric bootstrap performed the best with mean coverage of 93.7%,

followed by parametric bootstrap with 93.4% and nonparametric bootstrap with 93.2%.

P(n). As expected when the cluster sizes became more unbalanced, empirical

coverage dropped. Specifically, with P(n) having a zero-truncated Poisson distribution

with variance approximately equaled to n̄, the mean empirical coverage was 93.6%; with
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P(n) having a zero-truncated negative binomial distribution with variance approximately

equaled to 10 × n̄, the mean empirical coverage dropped to 92.7%.

CI methods × P(n). It should be noted that the difference in coverage with

different P(n) was more salient with the ANOVA method, where the mean coverage was

93.4% for Poisson and 90.2% for negative binomial (see Figure 1). This was not

surprising given that the formulae for the ANOVA method was derived for balanced

design. For all the remaining four methods, although the coverage was better in general

for the Poisson conditions, the differences were all less than 0.4%, showing that these 4

methods were robust to unbalanced cluster sizes.
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Figure 1: Boxplots showing the empirical coverage of CI methods by distribution of cluster
sizes across conditions.
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ICC.Whereas the main effect for ICC was small (R2 = .0067), as shown in

Figure 2 it was found that for the ANOVA method coverage dropped with increasing ICC

(92.6% for ICC = 0.05, 91.9% for ICC = 0.10, 91.0% for ICC = 0.20). For the other four

methods the differences were at most 0.2%.
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Figure 2: Boxplots showing the empirical coverage of CI methods by intraclass correlation
across conditions.

J . As expected, more clusters helped to achieve a better CI coverage. The

difference was most prominent for nonparametric bootstrap: As shown in Figure 3, with

J = 20, the mean coverage for the nonparametric bootstrap CI was only 92.4%, compared

to 93.3% for the model-based method, 93.1% for parametric bootstrap, and 93.4% for

semiparametric bootstrap. However, when J = 70, nonparametric bootstrap (94.0%) had
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comparable performance with the parametric bootstrap (93.9%), model-based method

(94.2%), and the semiparametric bootstrap (94.1%).
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Figure 3: Boxplots showing the empirical coverage of CI methods by number of clusters
across conditions.

n̄. Compared to the effect of J, the effect of average cluster sizes was smaller (see

Figure 4). In general larger n̄ resulted in better coverage, but the difference between n̄ = 5

and n̄ = 25 was 0.8% for ANOVA method, 0.5% for semiparametric bootstrap, and

around 0.3% or less for the other three methods. It was found that average cluster size was

more important with a larger J, as the difference in empirical coverage between n̄ = 5 and

n̄ = 25 was only 0.02% for J = 20 but 0.8% for J = 70.
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Figure 4: Boxplots showing the empirical coverage of CI methods by average cluster size
across conditions.

f (u0). Surprisingly, when the level-2 random effects followed a χ21 distribution,

the coverage was better than when the random effects followed a normal distribution. The

mean coverage being 92.9% when f (u0) is normal and 93.5% when f (u0) is chi-squared.

As shown in Figure 5, with the exception of the nonparametric bootstrap, all other four

methods showed better coverage when f (u0) is chi-squared, with the difference ranging

between 0.4% to 1.2%.
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Figure 5: Boxplots showing the empirical coverage of CI methods by distribution of level-2
random effects across conditions.

f (ε). As expected, and different from the results with the level-2 random effects,

when normality of level-1 random effects did not hold, the coverage was suboptimal, with

mean coverage being 93.5% when f (ε) is normal and 92.9% when f (u0) has a chi-square

distribution with one degree of freedom. As shown in Figure 6, for the three methods

(i.e., ANOVA, model-based, and parametric bootstrap) that assume normality, the

difference in coverage was about 1%. On the other hand, for the semiparametric

bootstrap, the coverage under different f (ε) were both 93.7%; whereas for the

nonparametric bootstrap, the two coverage rates were 93.3% and 93.0%.
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Figure 6: Boxplots showing the empirical coverage of CI methods by distribution of level-1
random effects across conditions.

Discussion

Despite recommendations in the field (e.g. AERA, 2006; APA, 2010; Hedges,

2008), very rarely did researchers report CIs for effect size in single level studies, and

little attention has been given to assist substantive researchers in computing CIs for the

newly developed multilevel effect size. The present study compared the performance of

the bootstrap methods to the analytical methods in obtaining CIs, and results supported

both the parametric bootstrap and the semiparametric bootstrap as viable alternatives

when analytical methods are not available. Below I summarize the results of the study.
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Performances of the Five Methods to Construct CI

Although I found differences in performance among the five methods to compute

CI for multilevel SMDs, the difference tended to be small as for most of the conditions the

empirical coverage was above 91%. Indeed, if all the clusters in a real data set have equal

size, all five methods would give CIs with similar performance. If, however, the cluster

sizes were not equal, then the ANOVA method should not be used.

Overall, the model-based method and the semiparametric bootstrap produced CIs

with highest coverage. Therefore, when either one of these two methods were available,

they should be used. However, each of these two methods have its limitations. The

model-based method relied on the normality assumption for the random effect in each

level. Although the present study showed that chi-squared distribution for level-2 random

effects did not lead to lower coverage for the model-based method, it was still a question

whether it can be generalized to distributions that were multimodal or deviate from

normal in a different way than the chi-squared distribution with one degree of freedom

did. Future research effort is needed to understand the robustness of the model-based

method to nonnormality of higher-level random effects. Also, the present result clearly

showed that nonnormality at level-1 resulted in a suboptimal performance for the

model-based method. Therefore, methods that did not rely on the normality assumption

such as the semiparametric and the nonparametric bootstrap will produce CIs with better

coverage with nonnormal data. Another limitation of the model-based method is that the

variance estimator is specific to a given multilevel structure. Although formulae for

computing the variance of multilevel SMD have been derived for three-level data

(Hedges, 2011) and for cross-classified data (Lai & Kwok, 2014), there are many more

different multilevel structures such as the multiple membership structure (Beretvas,

2011), structure with more than two crossed factors, and the partially nested structure
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(Bauer et al., 2008). It would be tedious if not impossible to derive the formulae for the

variance estimator every time researchers have data with a new structure.

On the other hand, the semiparametric bootstrap did not make the normality

assumption and performed better than the model-based approach with extremely

nonnormal data. However, it had a slightly worse coverage than the model-based

approach when normality holds. Also, the need to “reflate” the residuals for each level

introduces the risk that the Cholesky decomposition or its inverse may be difficult to

compute, especially in models with more random effects in multiple levels. Also, because

the semiparametric bootstrap is not a built-in feature for most software packages that do

multilevel analyses, researchers may need to program the procedure on their own or wait

for other methodologists to make the procedure accessible in different software packages.

The percentile method with parametric bootstrap showed slightly lower but very

similar coverage than the model-based method, and showed lower but acceptable coverage

than the semiparametric bootstrap when normality did not hold. As the parametric

bootstrap is easy to implement and is available either as a built-in feature in lme4 in R and

as user-written scripts in SAS and in SPSS. Therefore it can be a good alternative for

multilevel data when the model-based method is not yet accessible. The nonparametric

bootstrap, on the other hand, had lower coverage than the parametric bootstrap when

normality holds and showed no advantage when normality is violated, and so was not

recommended.

Suggested Practice in Reporting CIs for Multilevel Effect Size

It is inconsistent for researchers to regularly report measures of uncertainty for

sample statistics such as mean, regression coefficients, but not reporting SEs or CIs for

effect size. After all, effect size aims to quantify the effect of interest in an interpretable

way. A significant barrier for substantive researchers to adhere to the reporting guidelines
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is the complexity associated with CI computations for effect size, especially with

multilevel data. The goal of the present study is to demonstrate to and familiarize

researchers with some of the tools they can use to obtain CIs for multilevel effect size.

Based on the results of the present study, I have a few suggestions for reporting CIs for

two-group multilevel studies:

1. When normality is not severely violated, use model-based methods for data with

two-level of clustering (Hedges, 2007), three-level of clustering (Hedges, 2011),

cross-classified structure (Lai & Kwok, 2014), and two-level partially nested

structure (Lai, 2014, Chapter III of this dissertation), as the formulae were already

developed;

2. When normality is in doubt or when analytical formulae are not available, use the

semiparametric bootstrap if available and accessible;

3. If neither the model-based method nor the semiparametric bootstrap CI are

available, obtain the CIs by the parametric bootstrap.

Limitations

There are several limitations of the present study that should be addressed in future

studies. First, I only considered the chi-squared distribution with df = 1 as the condition

for nonnormal random effects. It is possible that the results may be different if the random

effects follow a different nonnormal distribution, although given the results in this study

the difference is not likely to be large. Second, it is not obvious why the coverage for all

methods were higher under level-2 nonnormality. Inspection of the data showed that in

those conditions, the point estimate of effect size is closer to the population value

δT = 0.5. As the effect size estimator is know to be positively biased especially when

sample size is small (Hedges, 1981, 2007), it is possible that the bias got canceled when

the distribution deviated from normal, thus resulting in better coverage. Future theoretical
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work is needed to understand the impact of nonnormality of point and interval estimates

of effect size. Third, the bootstrap procedures studied in the present study only represents

three procedures that are better known to researchers (Van der Leeden et al., 2008). Other

bootstrap procedures (Field, Pang, & Welsh, 2010; Owen & Eckles, 2012, e.g.) have been

developed and may perform better for multilevel effect size. Fourth, the bootstrap

procedures described in the present study are not yet available in some multilevel software

packages, and future effort is needed to make them more accessible to substantive

researchers. Finally, simulations done in the present study only pertains to the basic

two-level strictly hierarchical structure. Future research should utilize more complex

structures to verify whether the bootstrap procedures still perform well in those designs.

Notes
1In the conventional jackknife estimate, li = T (x) − T(i) (x) represents the changes

in T (x) when the ith observation is deleted. As noted in Van der Leeden et al. (2008), as
the level-1 observations are not independent for multilevel data, one can perform jackknife
only on the highest level, so l j is the changes in δ̂T when the jth cluster is deleted. In this
paper I used a simplified version than the one used in Van der Leeden et al.

82



CHAPTER V

CONCLUSIONS

This dissertation discusses parametric and nonparametric estimations for

multilevel effect size. As effect size has been regularly reported in single level studies,

there is no reason to not adhere to the same standard for multilevel studies. Because the

definition and estimation of multilevel standardized mean difference (SMD) was

developed relatively recently (Hedges, 2007), much more work is needed. One direction

is to extend the analytical formulae to more complex multilevel data structure, and

Hedges (2011) did exactly the same for three-level strictly nested structure. The other

direction is to utilize estimation methods that are more flexible and can easily handle

structures with different complexities; Otherwise it would be tedious to develop analytical

methods for each novel multilevel structure.

The first and the second manuscript of this dissertation extended analytical

methods to commonly utilized non-hierarchical structures. In the first manuscript, I

developed ANOVA and model-based methods to obtain SMD and the corresponding

sampling variance for cross-classified and partially cross-classified data structure. It can

be argued that in reality, multilevel data are often not strictly hierarchical, as people share

more than one environment. For example students are clustered by both schools and

neighborhood. As Luo and Kwok (2009) have shown that ignoring a crossed factor can

lead to incorrect standard error estimates of the coefficients, it is important to develop

appropriate method to compute effect size and the corresponding sampling variance for

cross-classified data. Simulation results from the first manuscript showed that both the

ANOVA method and the model-based method have acceptable performance, with the

later being more robust to unequal cell sizes. The methods were also demonstrated with
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NELS:88 and the ERI data sets.

The second manuscript dealt with the partially nested structure. In such structure,

data in the treatment arm is clustered because of the intervention, but data in the control

arm is not. Although such data are not commonly seen in multilevel observational

studies, it nevertheless is popular in clinical trial and experimental studies (Bauer et al.,

2008; Sanders, 2011), where SMD is a more natural effect size choices. Again I

developed ANOVA and model-based methods to obtain SMD and the corresponding

sampling variance for such design. Simulation results showed that under slight imbalance

of the cluster sizes, both methods performed very well in terms of CI coverage (all above

92.4%), except under the condition with ICC = .5 and average n = 25 (i.e., high design

effect) where the CI coverage was still above 91%. Both methods had similar

performances as they had similar root mean squared errors. On the other hand, under

extreme imbalance of cluster sizes, only the model-based method maintained the same

performance, whereas the CI coverage with the ANOVA method suffered the most with

high design effect and dropped below 90%. The two methods were demonstrated with the

Reconnecting Youth preventive intervention program (Bauer et al., 2008). Finally, a

modified estimator using only the standard deviation of the control arm was discussed,

and the effect of ignoring the clustering on the treatment arm on the effect size and

variance estimates were reported.

In the third manuscript, the focus is no longer only on the analytical procedures to

compute multilevel effect size, but more on the potential usefulness of the bootstrap as a

more flexible alternative. Whereas analytical formulae to estimate point estimate for

SMD is straight forward and can easily be generalized to more complex data structure not

yet discussed, this is not true for the sampling variance or standard error of multilevel

SMD. Even when such formulae can be developed, they are likely to be complex and not

user-friendly in their look. On the other hand, the bootstrap is originally developed to deal
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with the problem of obtaining sampling variance and CIs for complex estimators (Efron

& Tibshirani, 1993). By adapting the bootstrap to multilevel data (Van der Leeden et al.,

2008) it can potentially be applied to a lot of multilevel problems, including the problem

of obtaining CIs for multilevel SMD in the third manuscript. The simulation results

showed that whereas the semiparametric bootstrap performed the best out of the three

bootstrap methods studied, the model-based method was quite robust to nonnormality of

the random effects. After all, the difference between the model-based method and the

three bootstrap methods in terms of empirical CI coverage was relatively small, and in

practice the choice is likely to be determined by the ease of use and availability of each

methods. Thus, the results supported the potential usefulness of the bootstrap when

reporting multilevel effect size.

The findings of the three manuscripts in this dissertation can be summarized in the

following recommendations.

1. Always report some kind of effect size for cluster randomized trials or multilevel

studies with binary predictors, either the mean difference in the original metric of

the outcome or the SMD;

2. Attach with the effect size measure the corresponding SE and/or CI;

3. When computing CI for multilevel SMD, use either the model-based method or the

semiparametric bootstrap when available;

4. If neither the model-based method nor the semiparametric bootstrap CI are

available, obtain the CIs by the parametric bootstrap.
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APPENDIX A

DERIVATION OF SAMPLING DISTRIBUTIONS OF SMDWITH

CROSS-CLASSIFIED DATA

The following steps to find an unbiased estimator were developed based on the

work of Hedges (2007, pp. 360-362). Here we extended the framework to CCREMs with

some differences in notation. Note that the theorem section below is general in the sense

that it can be used to derive effect size statistics for designs other than those presented in

the current paper. For example, Hedges (2011) used it for data with three-level nested

structure. In future studies researchers may apply the same theorem to more complicated

designs such as those with more than two crossed random effects or those with crossed

random effect in lower level.

Theorem

Suppose that ∆Ȳ ∼ N (∆µ, aσ2/Ñ ) is a random variable that represents the grand

mean difference of the outcome variable Y in the sample, and a is a variance inflation

factor due to clustering, which equals one in data with simple random sampling but is

larger than one in clustered data; Ñ is a function of the sample sizes that relates the

variance of Y , σ2, to the variance of Ȳ .

Let S2 be a sample estimator of σ2, the population variance component of Y ,

where σ is the denominator of the population effect size. Assuming Y and all random

effects are normally distributed, S2 is a quadratic form of normally distributed variables

that is independent of ∆Ȳ . For example, when the variance component of interest is σ2T

(i.e., the sum of all variance components of Y , see the section “Intraclass Correlation”),

the sample estimator S2 can be chosen as the pooled observed total variance within

treatment status of Y , or it can be the maximum likelihood estimate σ̂2T . Let E(S2) = bσ2
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and V (S2) = 2cσ4, where a, b, c, and Ñ are known constants that are fixed by the study

design (as shown later). As Searle et al. (2006) suggested, S2 has an approximate

sampling distribution of the product of a chi-squared with h degrees of freedom (df ) and

a constant k, which implies that S2/k would follow a chi-squared distribution with h df .

Because a chi-squared has an expected value equals df and a variance equals to 2df , it

follows that E(S2) = kh = bσ2 and V (S2) = 2k2h = 2cσ4. Solving the two equations we

get k = cσ2/b and h = b2/c.

Then define

T =

∆Ȳ√
aσ2/Ñ√

S2/(cσ2/b)
b2/c

=

√
Ñb
a

(
∆Ȳ
S

)
. (A1)

The middle of the equality shows that the numerator of T is a normal random variable

with variance equals 1, and the denominator of T is the square root of the ratio between a

chi-squared and its degrees of freedom. Therefore, T follows a noncentral t distribution

that has df = b2/c and a noncentral parameter θ equals the expectation of the numerator,

that is

θ =

√
Ñ
a

(
∆µ

σ

)
=

√
Ñ
a
δ,

where δ = ∆µ/σ. In the present study we are interested in the effect size δT = ∆µ/σT . As

suggested by Hedges (1981), by substituting S = ST , where ST is defined in equation (5),

we get

D =
√

b
∆Ȳ
ST
= T

√
a
Ñ

(A2)

as a consistent estimator of δT (i.e., D → δT in large sample) with approximate variance

a
Ñ
+

cδ2T
2b2

. (A3)

From (A2), the effect size of interest, D, can be obtained by dividing the grand
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mean difference of Y in the sample by the sample mean squares (which equals sum of

squares divided by the degrees of freedom), and then multiplied by a correction factor
√

b,

the square root of the ratio of the expected mean square to the variance component. In

single-level data, the expected mean square equals the variance component, and thus

b = 1 and no correction is needed. In data with cluster structure, however, b , 1 in

general and so correction is needed.

An approximately unbiased estimator of δT would be g = DJ (b2/c) (Hedges,

2007, p. 361), where J (x) ≈ 1 − 3/(4x − 1). The difference between D and g is

negligible for large sample size (Hedges, 1981). In multilevel studies, the bias of D is a

function of b2/c that increases when either or both of the average cluster size and the

number of clusters increase. Roughly speaking, the bias is small as the total sample size is

large. For example, with K = KT = KC = 10, JT = JC = 10, ρA = ρB = .25, n = 0.5

(i.e., on average each cell has 0.5 student), and thus NT = NC = 50, the expected values

of D and g differ only by about 3%. So throughout the paper it is assumed that D is the

effect size estimator of interest. Because D and V (D) are defined solely in terms of a, b,

c, and Ñ , given the grand mean difference of Y of the treatment and of the control arms

and their pooled unadjusted observed variance S2
T , the next tasks are to express the

constants a, b, c, and Ñ in terms of summary statistics in CCREMs and PCCREMs, and

substituted these constants into (A2) and (A3) so that D and V (D) can be defined in terms

of summary statistics of the data.
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D1 for Fully Cross-Classified Data

Assuming a balanced design, the variance of the unweighted average of the cell

means in the treatment arm will be

V (ȲT
•••) =

σ2W

JT Kn
+
σ2A

JT +
σ2B
K

=
σ2T

NT

[
1 + (Kn − 1)ρA + (JT n − 1)ρB

]
.

Similar expression will apply to V (ȲC
•••). It is assumed that the treatment arm and the

control arm share the same intraclass correlations, and have the same cluster sizes. We

thus get

V (ȲT
••• − ȲC

•••) =
(
1

NT +
1

NC

)
σ
2
T [1 + (Kn − 1)ρA + (1 − rK )(Jn − 2)ρB],

where rK is the correlation due to the fact that observations in the treatment and the

control arm may share some B-clusters, and in a balanced design it equals√
(Koverlap)2/(KT × KC). For the special case of Koverlap = 0, KT = KC = K , we get

rK = 1 and thus the last term in the bracket (1 − rK )(Jn − 2)ρB equals zero, which

explains the difference between equations (7) and (8).

Substituting σ = σT into the above theorem, we get Ñ and a such that

Ñ =
1

1/NT + 1/NC =
NT NC

NT + NC , (A4)

a = 1 + (Kn − 1)ρA + (1 − rK )(Jn − 2)ρB . (A5)

To find b and c, we need to consider the sampling distribution of the observed

variance S2
T . First define the three mean squares (MS) in a given data with cross-classified
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structure:

SSA = Kn
JT∑
j=1

(ȲT
• j• − ȲT

•••)
2 + Kn

JC∑
j=1

(ȲC
• j• − ȲC

•••)
2,

SSB = JT n
K∑

k=1

(ȲT
••k − ȲT

•••)
2 + JCn

K∑
k=1

(ȲC
••k − ȲC

•••)
2,

SSW =

JT∑
j=1

K∑
k=1

n∑
i=1

(ȲT
i jk − ȲT

•••)
2 +

JC∑
j=1

K∑
k=1

n∑
i=1

(ȲC
i jk − ȲC

•••)
2 − SSA − SSB .

Note that the interaction between A and B is assumed zero. The corresponding degrees of

freedom for SSA, SSB, and SSW are J − 2, K − 1, and N − J − K + 1. The sample MS can

then be obtained as SS/df .

We then start with the expected mean squares, E(MS), for a balanced design with

two crossed effects A and B:

E(MSA) = Knσ2A + σ
2
W = σ

2
T [1 + (Kn − 1)ρA − ρB],

E(MSB) = Jnσ2B + σ
2
W = σ

2
T [1 − ρA + (Jn − 1)ρB],

E(MSW ) = σ2W = σ
2
T (1 − ρA − ρB).

Note that for a given data MS f for an effect f equals sum of squares SS f divided by its

degrees of freedom m f . Assuming normality of the measured criterion variable, a mean

squares multiplied by its df = m f and then divided by its expectation is distributed as a

chi-squared with m f degrees of freedom (Searle et al., 2006). Thus,

E(SS f ) = m f E(MS f ),

V (SS f ) = 2m f
[
E(MS f )

]2
.

Apply the above results and the degrees of freedom for two groups design to different
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random effects, we get the expectations of the variance components:

E(SSA) = (J − 2)σ2T [1 + (Kn − 1)ρA − ρB],

E(SSB) = (K − 1)σ2T [1 − ρA + (Jn − 1)ρB],

E(SSW ) = (N − J − K + 1)σ2T (1 − ρA − ρB),

and their variances:

V (SSA) = 2(J − 2)σ4T
[
1 + (Kn − 1)ρA − ρB

]2 ,
V (SSB) = 2(K − 1)σ4T

[
1 − ρA + (Jn − 1)ρB

]2 ,
V (SSW ) = 2(N − J − K + 1)σ4T

(
1 − ρA − ρB

)2 .
Because S2

T = (SSA + SSB + SSW )/(N − 2), the expected value and the variance of S2
T are

E(S2
T ) = σ2T

[
1 −

2(Kn − 1)ρA + (Jn − 2)ρB

N − 2

]
,

and

V (S2
T ) =

2σ2T
(N − 2)2

[
KnŇKρ

2
A + JnŇJρ

2
B + (N − 2)ρ̄2 + 2ŇK ρ̄ρA + 2ŇJ ρ̄ρB

]
,

where ŇK = N − 2Kn, ŇJ = N − Jn, and ρ̄ = 1 − ρA − ρB. Again, substituting σ = σT

and S = ST into the above theorem, we get

b = 1 −
2(Kn − 1)ρA + (Jn − 2)ρB

N − 2
, (A6)

c =
1

(N − 2)2
[
KnŇKρ

2
A + JnŇJρ

2
B + (N − 2)ρ̄2 + 2ŇK ρ̄ρA + 2ŇJ ρ̄ρB

]
. (A7)

Substituting a in equation (A5), b in (A6), and c in (A7) into equations (A2) and (A3), we
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can obtain equations (6) and (8).

D1 for Partially Cross-Classified Data

With a balanced design, the variance of the unweighted average of the cell means

in the treatment arm and the unweighted average of the group means in the control arm

can be shown respectively as

V (ȲT
•••) =

VTσ2T

NT , (A8)

V (ȲC
••) =

VCσ2T

NC , (A9)

where VT = 1 + (KnT − 1)ρA + (JT nT − 1)ρB and VC = 1 + (nC − 1)ρA. Because the two

treatment conditions are assumed to be independent,

V (ȲT
••• − ȲC

••) = σ
2
T

(
VT

NT +
VC

NC

)
. (A10)

Note that V (ȲT
••• − ȲC

••) can no longer be separated as a and Ñ . Instead, we substitute

a∗ = a/Ñ into (A3), and thus the variance of the estimator D of the effect size δT becomes

a∗ +
cδ2T
2b2

, (A11)

where

a∗ =
1 + (KnT − 1)ρA + (JT nT − 1)ρB

NT +
1 + (nC − 1)ρA

NC . (A12)

The expectations of the observed total variances in the treatment arm and in the
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control arm are respectively

E(S2
T |TREAT) = σ2T

[
1 −

(KnT − 1)ρA + (JT nT − 1)ρB

NT − 1

]
= βT

σ
2
T,

E(S2
T |CON) = σ2T

[
1 −

(nC − 1)ρA

NC − 1

]
= βC

σ
2
T,

where βT and βC are the correction factors for clustering for the within treatment status

total variances. Their variances are

V (S2
T |TREAT) =

2σ4T
[
KnT ŇT

Kρ
2
A + JT nT ŇT

J ρ
2
B + (NT − 1)ρ̄2 + 2ŇT

K ρ̄ρA + 2ŇT
J ρ̄ρB

]

(NT − 1)2

= 2(WT )−1σ4T,

V (S2
T |CON) =

2σ4T
{
(NC − 1) − 2(nC − 1)ρA + (nC − 1)

[
NC − (nC − 1)

]
ρ2A

}

(NC − 1)2

= 2(WC)−1σ4T,

where ŇT
K = NT − KnT and ŇT

J = NT − JT nT . The weighted average of S2
T will then be

S2
T =

WT S2
T |TREAT +WC S2

T |CON

WT +WC , (A13)

and its variance will be

V (S2
T ) =

2σ4T
WT +WC . (A14)

We then get

b =
WTβT +WCβC

WT +WC ,

c =
1

WT +WC .

Then we can obtain the desired effect size estimates and the sampling variance by
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substituting a∗, b, and c into (A2) and (A11).

Derivation of Effect Size Estimator D2

When unbiased point estimates (or those with negligible bias) and the sampling

variances (or standard errors) of both the fixed effect of the treatment and the variance

components (i.e., the random effects variance) are available, the calculations of D and

V (D) are greatly simplified. First, we define the population effect size to be

δT = ∆µ/
√
σ2T . The sample estimator of ∆µ is then the estimated fixed effect of the

treatment, γ̂01, and that of σ2T have been defined in the sections of estimation of D2 for

CCREM and for PCCREM, which is a function of σ̂2A, σ̂
2
B, and σ̂

2
W . The estimated

sampling variance of γ̂01 is V (γ̂01), and that of V (σ̂2T ) is defined again in the section

pertaining to D2 and is a function of V (σ̂2A), V (σ̂2B), and V (σ̂2W ). All of the quantities γ̂01,

V (γ̂01), σ̂2A, V (σ̂2A), σ̂2B, V (σ̂2B), σ̂2W , and V (σ̂2W ) can be obtained from multilevel modeling

software such as SAS or SPSS.

Specifically, from the theorem we have ∆Ȳ ∼ N (∆µ, aσ2/Ñ ). Replacing ∆Ȳ by

γ̂10 and σ2 by σ̂2T , we get γ̂10 ∼ N (∆µ, aσ̂2T/Ñ ). Based on the variance of γ̂10, we get

a
Ñ
=

V (γ̂10)
σ̂2T

.

Also from the theorem, we have E(S2) = bσ2. Now we use σ̂2T as the sample estimator, so

S2 = σ̂2T . Because E(σ̂2T ) = σ2T , we have b = 1, which merely reflects the fact that σ̂2T is an

unbiased estimator of σ2T . The theorem also defines c such that V (S2) = 2cσ4. When

replacing S2 by σ̂2T and σ by σ̂T , we get

c =
V (σ̂2T )

2(σ̂2T )2
.

Then by substituting the above results of a/Ñ , b, and c into (A2) and (A3), we obtain
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equations (9), (10), (14), and (15).
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APPENDIX B

GENERATING UNBALANCED CCREM DATA

Take, for example, JT = JC = K = 20, n = 1, and NT = NC = 400. The sizes of

the JT = 20 clusters were first generated by sampling on a multinomial distribution with

total counts of 400 and equal probabilities. The resulting cluster sizes were for example

21, 10, 24, 18, 22, . . . , 25, 14, 22. Then, for each cluster, the cell sizes were generated by

sampling on a multinomial distribution with a vector of K = 20 predefined probabilities

with four being .179 (high) and sixteen being .0179 (low). The configuration of cells with

high and low probabilities were shown in Table B1. The same procedure was used to

generate unbalanced data in other conditions.
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APPENDIX C

DERIVATION OF SMD FOR PARTIALLY NESTED DESIGNS

The following steps to find an unbiased estimator were based on the work of

Hedges (2007, pp. 360-362). The theorem part is also given in Appendix A on page 98 of

this dissertation, and is not repeated in this appendix. As shown in equation (A2) and

(A11), our task is to express a∗, b, and c in terms of known quantities, and substitute them

into the two equations.

Derivation of D1 for Partially Nested Designs

In a balanced design where the cluster sizes in the treatment arm are equal, the

sample grand mean is an unbiased and efficient estimator of the population mean in both

the treatment arm and the control arm. Denote ȲT
•• and ȲC

• as the grand means for the

treatment arm and the control arm, with corresponding sampling variance

V (ȲT
••) =

σ2W + nσ2B
NT = σ2W

1 + n(1 − ρ)
NT (1 − ρ)

, (C1)

V (ȲC
• ) =

σ2W

NC . (C2)

The last equality for V (ȲT
••) follows from the definition of ICC such that

ρ = σ2B/(σ2B + σ
2
W ). The treatment effect could be then estimated as

∆Y = ȲT
•• − ȲC

• , (C3)

with sampling variance

V (ȲT
•• − ȲC

• ) = σ2W

[
1 + (n − 1)ρ
NT (1 − ρ)

+
1

NC

]
. (C4)
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The expectation and variance of the variance components would then be

E(SSW |TREAT) = (NT − J)σ2W,

E(SSW |CON) = (NC − 1)σ2W,

V (SSW |TREAT) = 2(NT − J)σ4W,

V (SSW |CON) = 2(NC − 1)σ4W .

Because S2
W = (SSW |TREAT + SSW |CON)/(NT − J + NC − 1),

E(S2
W ) =

(NT − J)σ2W + (NC − 1)σ2W
NT − J + NC − 1

= σ2W

and

V (S2
W ) =

2(NT − J)σ4W + 2(NC − 1)σ4W
(NT − J + NC − 1)2

=
2σ4W

N − J − 1
.

Hence

a∗ =
1 + (n − 1)ρ
NT (1 − ρ)

+
1

NC ,

b = 1,

c =
1

N − J − 1
.

We can now substitute a∗, b, and c into (A2) and (A11) to get the expressions in the main

text.

If only the standard deviation of the control arm is used, and the homoscedasticity

assumption is not made, then

V (ȲT
••) = κσ

2
C
1 + n(1 − ρ)
NT (1 − ρ)
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and c = 1/(NC − 1), resulting in the formula for V (DC
1 ) in equation (31).

Derivation of D2 for Partially Nested Designs

The procedure to obtain D2 for CCREMs (see page 106 in Appendix A) can also

be used for partially nested data. In order to calculate D2, we assume that estimates of the

fixed effect γ̂01, of the within-level variance component σ̂2W , as well as of their

corresponding variance V (γ̂01) and V (σ̂2W ) are available.

By definition we have ∆Ȳ ∼ N (∆µ, a∗σ2). Replacing ∆Ȳ by γ̂10 and σ2 by σ̂2W , we

have V (γ̂210) = a∗σ2W , and so

a∗ =
V (γ̂210)

σ̂2W
.

From the theorem, if we use S2 = σ̂2
W as an estimator for σ2W , we get E(σ̂2

T ) = bσ2W .

Assuming that σ̂2
T is unbiased, that is, E(σ̂2T ) = σ2T , we have

b = 1.

The theorem also states that V (S2) = 2cσ4, and in our case, if we replace S2 by σ̂2W and σ

by σ̂W , we get

c =
V (σ̂2W )

2(σ̂2W )2
.

Then by substituting a∗, b, and c into (A2) and (A11), one get the expressions for D2 and

V (D2).
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APPENDIX D

CONSTRUCTING NONCENTRAL CONFIDENCE INTERVAL FOR EFFECT SIZE

WITH PARTIALLY NESTED DATA

As shown in Appendix A, a sample estimator D, when multiplied by a constant λ,

follow an approximate noncentral t distribution with noncentrality parameter equal λδ

with degrees of freedom (df ) equal N − J − 1 and 2(σ̂2W )2/V (σ̂2W ) respectively. Here δ is

the population effect size, and unless df is very small (say less than 15; Cumming &

Finch, 2001) the expected values of D1 and D2 are very close to δ. Because the

distribution of λD can be considered approximately independent of δ, it can be used as a

pivotal quantity (Casella & Berger, 2002) for constructing CI. Denote tp,ν,θ as the p

quantile of the noncentral t distribution with df = ν and noncentrality parameter = θ, then

an approximate (1 − α) × 100% CI for D1 and D2 is obtained as (cf. Steiger & Fouladi,

1997)

[tα/2,ν,λD/λ, t1−α/2,ν,λD/λ],

where for D1, ν1 = N − J − 1 and

λ1 =

√[
1 + (n − 1)ρ
NT (1 − ρ)

+
1

NC

]−1
,

and for D2, ν2 = 2(σ̂2W )2/V (σ̂2W ) and λ2 =
√
σ̂2W/V (γ̂210), as followed from Appendix C.
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APPENDIX E

ESTIMATING EFFECT SIZE FOR PARTIALLY NESTED DATA WITH MPLUS

In structural equation modeling (SEM) software that allow multilevel data and

nonlinear constraints, such as Mplus (L. K. Muthén & Muthén, 1998–2012), D2, DC
2 , and

their standard errors can be estimated simultaneously with other model parameters. The

Mplus code for a simple hypothetical example is shown below.

Estimation of D2

TITLE: Effect size D2 for partially nested data;
DATA: File = pnested.dat;
VARIABLE:

Names = id y clus treat;
Usevar = y treat;
Cluster = clus;
Within = treat;

ANALYSIS:
Type = twolevel random;

MODEL: %Within%
s | y on treat;
y (sigma2w);
%Between%
s; y@0;
[s] (gamma10);

MODEL CONSTRAINT:
new(d2);
d2 = gamma10 / sqrt(sigma2w);

OUTPUT: Cinterval;

Estimation of DC
2

TITLE: Effect size D2c for partially nested data;
DATA: File = pnested.dat;
VARIABLES:

Names = id y clus treat;
Usevar = y;
Cluster = clus;
Group = treat (0 = control 1 = treat);

ANALYSIS:
Type = twolevel;
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MODEL: %Within%
y;
%between%
y;

MODEL CONTROL:
%Within%
y (sigma2c);
%Between%
y@0;
[y] (yc);

MODEL TREAT:
%Within%
y;
%between%
y;
[y] (yt);

MODEL CONSTRAINT:
new(d2c);
d2c = (yt - yc) / sqrt(sigma2c);

OUTPUT: Cinterval;

115



APPENDIX F

R CODE FOR SIMULATION (PARTIALLY NESTED)

# ----------------------------------------------------------------------- #
# 2014 Mark Lai
#
# Script to run simulation to check the performance of standardized mean
# difference with partially nested data, as described in dissertation
# manuscript 2.
# ----------------------------------------------------------------------- #

# House keeping: remove all objects in workspace. -------------------------
rm(list = ls())

setwd("/mnt/Dropbox/Research/pnested_ES/sim_checking/")
source("mc_hack.R")

# Load required packages. -------------------------------------------------
library(lme4)
library(parallel)

# Define helper functions. ------------------------------------------------
ZeroTruncate <- function(dist) {
# A function factory for generating random numbers from a zero-truncated
# version of the given distribution. It works by first sampling in a
# uniform distribution with range (F0, 1), where F0 is the cdf at 0.
# The random numbers are then inverted to the corresponding quantiles.
#
# Args:
# dist: A character string of the kernel of the distribution.
# E.g., "norm" for normal, "pois" for Poisson, and
# "nbinom" for negative binomial.
#
# Returns:
# A function for generating random numbers. The first argument `n` is
# the number of observations, and the other arguments are the same
# as those in the non-zero-truncated counterparts.
pdist <- get(paste0("p", dist))
qdist <- get(paste0("q", dist))
function(n, ...) {
qdist(runif(n, pdist(0, ...), 1), ...)

}
}
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GenClusID <- function(nclus, ave_csize, var_inflat = NULL) {
# Convert cluster sizes of length = nclus to a vector of cluster ids
# of length = N
#
# Args:
# nclus: Number of clusters.
# ave_csize: Average cluster size.
# var_inflat: Ratio of variance to the mean of the distribution of
# cluster sizes. When it is null (default), the Poisson is
# used. Otherwise the negative binomial is used to get the
# desired variance.
#
# Returns:
# A sorted vector of length exactly equals N.
if (is.null(var_inflat)) {
csizes_unscaled <- ZeroTruncate("pois")(nclus, ave_csize)

} else {
csizes_unscaled <-
ZeroTruncate("nbinom")(nclus, mu = ave_csize,

size = ave_csize / (var_inflat - 1))
}

N <- nclus * ave_csize
csizes <- round(prop.table(csizes_unscaled) * N, 0)
nclus <- length(csizes_unscaled)
N_org <- sum(csizes)
extra_pos <- sample(which(csizes > 2), abs(N_org - N),

prob = csizes[csizes > 2])
csizes[extra_pos] <- csizes[extra_pos] - sign(N_org - N)
clus_id <- rep(seq_len(nclus), times = csizes)
return(clus_id)

}

CalcD1 <- function(mean_T, mean_C, s2_w, s2_b, N_T, N_C, J, icc, n) {
# Compute effect size estimates D1 for partially nested data.
# The input can be numeric values or vectors.
#
# Args:
# mean_T: Grand mean(s) of the outcome for the treatment arm.
# mean_C: Grand mean(s) of the outcome for the control arm.
# s2_w: Pooled within-level variance(s).
# s2_b: Between-level ariance(s) for the treatment arm.
# N_T: Total (Level-1) sample size(s) for the treatment arm.
# N_C: (Level-1) sample size(s) for the control arm.
# J: Number(s) of clusters in the treatment arm.
# icc: Intraclass correlation(s).
#
# Returns:
# A list including a vector of estimated D1 values and another vector of
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# the corresponding variances.
n <- N_T / J
if (missing(icc)) { # compute ICC if necessary
icc <- (s2_b - s2_w) / (s2_b + (n - 1) * s2_w)

}

est_D1 <- (mean_T - mean_C) / sqrt(s2_w)
est_VarD1 <- (1 + (n - 1) * icc) / N_T / (1 - icc) + 1 / N_C +
est_D1^2 / 2 / (N_T + N_C - J - 1)

return(list(D1 = est_D1, VarD1 = est_VarD1))
}

CalcD2 <- function(gam10, var_gam10, sigma2, var_sigma2) {
# Compute effect size estimates D2 for partially nested data.
# The input can be numeric values or vectors.
#
# Args:
# gam10: Estimated gamma_10(s) (i.e., treatment effect).
# var_gam10: Estimated variance(s) of gamma_10.
# sigma2: Estimated pooled within-level variance component(s).
# var_sigma2: Estimated variance(s) of sigma2.
#
# Returns:
# A list including a vector of estimated D2 values and another vector of
# the corresponding variances.
est_D2 <- gam10 / sqrt(sigma2)
est_VarD2 <- var_gam10 / sigma2 + est_D2^2 * var_sigma2 / 4 / (sigma2)^2
return(list(D2 = est_D2, VarD2 = est_VarD2))

}

# Wrapper function for computing D1 and D2 from raw data.
GetD1s <- function(data_T, data_C, clus_id, N_T, N_C, n_clus) {
# A wrapper for computing D1 from matrices of datasets.
#
# Args:
# data_T: A matrix where each column is a data vector for the treatment.
# data_C: A matrix where each column is a data vector for the control.
# clus_id: A matrix where each column is a vector of cluster ID for
# the treatment.
# N_T: Within-level sample size for the treatment group.
# N_C: Within-level sample size for the control group.
# n_clus: Number of clusters in the treatment group.
#
# Returns:
# A list with four sublists: (a) D1, (b) variances of D1,
# (c) degrees of freedom for noncentral t approximation,
# (d) scaling factor for the noncentrality parameter.
means_T <- colMeans(data_T)
means_C <- colMeans(data_C)
between_data_T <- vapply( # Replace all data points in data_T by the group means
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seq_along(means_T), function(i) ave(data_T[ , i], clus_id[ , i]),
FUN.VALUE = vector("numeric", N_T)

)
within_data <- rbind(data_T - between_data_T, # group-mean centered data

data_C - mean(data_C))
ComputeMS <- function(x, df, m = 0) {
# Quicker function to compute mean squares (MS).
# x = data (can be vector or matrix), df = degrees of freedom,
# m = centering matrix; default to 0, meaning that x already centered.
x_centered <- x - m
diag(crossprod(x_centered)) / df

}
s2_b <- ComputeMS(between_data_T, n_clus - 1,

rep(1, N_T) %*% t(means_T)) # create centering matrix
s2_w <- ComputeMS(within_data, N_T + N_C - n_clus - 1)
n <- N_T / n_clus
icc <- (s2_b - s2_w) / (s2_b + (n - 1) * s2_w)
c(CalcD1(means_T, means_C, s2_w, s2_b, N_T, N_C, n_clus, icc),
df1 = list(rep(N_T + N_C - n_clus - 1, length(means_T))),
lambda1 = list(((1 + (n - 1) * icc) / N_T / (1 - icc) + 1 / N_C)^(-0.5)))

}

GetD2s <- function(data_all, clus_id, treat) {
# A wrapper for computing D1 from matrices of datasets.
#
# Args:
# data_all: A matrix where each column is a combined data vector.
# clus_id: A matrix where each column is a vector of cluster ID.
# Each unit in the control group is treated as a cluster with
# unique ID.
# clus_id: A matrix where each column is a vector of cluster ID for
# the treatment.
# treat: A vector of 0 (treatment) and 1 (control).
#
# Returns:
# A list with four sublists: (a) D2, (b) variances of D2,
# (c) degrees of freedom for noncentral t approximation,
# (d) scaling factor for the noncentrality parameter.
GetS2Boot <- function(ss, x) {
# Compute sigma2w for bootstrap sample.
foo <- try(sigma(refit(x, ss))^2, silent = TRUE)
if (inherits(foo, "try-error")) NA
else foo

}
ExtractParam <- function(data, clus_id, treat) {
# Run mixed model and extract required parameters for CalcD2
df <- data.frame(y = data, cid = clus_id)
m1 <- lmer(y ~ treat + (treat - 1 | cid), data = df)
# parametric bootstrap to obtain sampling variance
ss <- simulate(m1 , nsim = 200)
boot_var_sigma2 <- var(vapply(ss, GetS2Boot, FUN.VALUE = 1.0, x = m1),
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na.rm = TRUE)
return(c(est_gam01 = fixef(m1)["treat"],

est_var_gam01 = vcov(m1)["treat", "treat"],
est_sigma2 = sigma(m1)^2,
est_var_sigma2 = boot_var_sigma2))

}

param_D2 <- # extracted parameters
vapply(seq_len(ncol(data_all)),

function(i) ExtractParam(data_all[ , i], clus_id[ , i], treat),
numeric(4))

c(CalcD2(param_D2[1, ], param_D2[2, ], param_D2[3, ], param_D2[4, ]),
df2 = list(2 * param_D2[3, ]^2 / param_D2[4, ]),
lambda2 = list(sqrt(param_D2[3, ] / param_D2[2, ])))

}

RunSim <- function(nrep, n_clus, clus_size, N_ratio, icc, pop_ES,
csize_dist = c('pois', 'nbinom', 'balance'),
sigma2 = 1.0, seed = 50, simID = NULL,
save_each = FALSE) {

# A function that simulate data, compute D1, D2, and their corresponding
# variances, and evaluate the bias, efficiency, and the Mean-squared
# error (MSE).
#
# Args:
# nrep: Number of replications for the simulation.
# n_clus: Number of clusters for the treatment arm.
# clus_size: (Average) Cluster size for the treatment arm.
# N_ratio: Ratio of within-level sample size between treatment and
# control arm.
# icc: Intraclass correlation.
# pop_ES: Population effect size.
# csize_dist: Distribution of cluster sizes. If `balance`, all clusters
# have the same size; if `pois`, small imbalance occurs;
# if `nbinom`, severe imbalance happens.
# sigma2: Within-level variance component; default to 1.0.
# seed: Random seed for data generation; default to 50.
# simID: Optional Condition ID; default to NULL.
# save_each: If TRUE, the function returns NULL, and the output for each
# condition is saved to the current working directory as
# "simresult-i.rds", where i = simID. If FALSE, the output
# will be print to console.
#
# Returns:
# If save_each = FALSE (default), returns a list composed of 8 sublists,
# in the order of: D1, VarD1, df1, lambda1, D2, Var2, df2, lambda2.
# If save_each = TRUE, then returns NULL.
if (is.null(simID) & save_each == TRUE) {
cat("No input on simID. Cannot save output to disk.

Print to console instead")
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save_each = FALSE
}

set.seed(seed) # set the seed
# initialize values of sample sizes, between-level variance,
# dummy variable for treatment.
N_T <- clus_size * n_clus
N_C <- floor(N_T / N_ratio)
N <- N_T + N_C
tau_00 <- sigma2 * icc / (1 - icc) # between-level variance component
treat <- rep(c(1, 0), c(N_T, N_C))
# Generate data (data_T, data_C) for all replications
error_w <- matrix(rnorm(nrep * N, sd = sqrt(sigma2)),

ncol = nrep)
error_b <- matrix(rnorm(nrep * n_clus, sd = sqrt(tau_00)),

ncol = nrep)
if (csize_dist == 'balance') { # same size for all clusters

clus_id <- matrix(rep(1:n_clus, each = clus_size), nrow = N_T, ncol = nrep)
} else { # If `nbinom`, the variance is 10 times the mean
var_inflat <- if (csize_dist == 'pois') NULL else 10
clus_id <- replicate(nrep, GenClusID(n_clus, clus_size, var_inflat))

}

data_T <- vapply(seq_len(nrep), function(i) error_b[clus_id[ , i], i],
FUN.VALUE = vector("numeric", N_T)) +

error_w[1:N_T, ] + pop_ES * sqrt(sigma2)
data_C <- error_w[(N_T + 1):N, ]
data_all <- rbind(data_T, data_C)
D1_out <- GetD1s(data_T, data_C, # Compute D1 (with partial vectorization)

clus_id, N_T, N_C, n_clus)
# Compute D2 (with lapply, then with vectorization)
clus_id <- rbind(clus_id, matrix((1:N_C) + n_clus, nrow = N_C, ncol = nrep))
D2_out <- GetD2s(data_all, clus_id, treat)

cat("Finish simulation Condition", simID, "\n")
flush.console()
if (save_each) saveRDS(c(D1_out, D2_out), paste0("simresult-", simID, ".rds"))
else c(D1_out, D2_out)

}

# Test simulation function -------------------------------------------
# result <- RunSim(20, 30, 5, 1, .1, .5, "balance")
# cat("Mean estimated value of D1 =", mean(result$D1),
# "\nMean estimated variance of D1 =", mean(result$VarD1),
# "\nEmpirical variance of D1 =", var(result$D1),
# "\n% SE Bias =", (mean(sqrt(result$VarD1)) / sd(result$D1) - 1) * 100, "%",
# "\nMean estimated value of D2 =", mean(result$D2),
# "\nMean estimated variance of D2 =", mean(result$VarD2),
# "\nEmpirical variance of D2 =", var(result$D2),
# "\n% SE Bias =", (mean(sqrt(result$VarD2)) / sd(result$D2) - 1) * 100,
# "%\n")
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# Run Simulation. ---------------------------------------------------------
# Define design factors and constants.
DESIGNFACTOR <- expand.grid(n_clus = c(15, 30),

clus_size = c(5, 25),
N_ratio = c(5, 1),
icc = c(.1, .5),
csize_dist = c('pois', 'nbinom'))

POP_ES <- .5
NREP <- 500
COND_TO_RUN <- 1:32 # define which conditions to run
# Run and time the simulation.
system.time(
simresult <-
mcMap(RunSim, nrep = nrep, n_clus = DESIGNFACTOR[COND_TO_RUN, 1],

clus_size = DESIGNFACTOR[COND_TO_RUN, 2],
N_ratio = DESIGNFACTOR[COND_TO_RUN, 3],
icc = DESIGNFACTOR[COND_TO_RUN, 4],
csize_dist = DESIGNFACTOR[COND_TO_RUN, 5],
pop_ES = POP_ES, simID = COND_TO_RUN, save_each = TRUE,
mc.cores = 8L) # Use 4 cores in Linux; not applicable with Windows.

)
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APPENDIX G

R CODE FOR SIMULATION (BOOTSTRAP EFFECT SIZE)

# ----------------------------------------------------------------------- #
# 2015 March 5, Mark Lai
#
# Script to run simulation to check the performance of bootstrap
# standardized mean difference with partially nested data, as described
# in dissertation manuscript 3.
# ----------------------------------------------------------------------- #

# House keeping: remove all objects in workspace. -------------------------
rm(list = ls())
dir.create("result", showWarnings = FALSE)

# Load required packages. -------------------------------------------------
library(lme4, quietly = TRUE)

# Define helper functions. ------------------------------------------------
ZeroTruncate <- function(dist) {
# A function factory for generating random numbers from a zero-truncated
# version of the given distribution. It works by first sampling in a
# uniform distribution with range (F0, 1), where F0 is the cdf at 0.
# The random numbers are then inverted to the corresponding quantiles.
#
# Args:
# dist: A character string of the kernel of the distribution.
# E.g., "norm" for normal, "pois" for Poisson, and
# "nbinom" for negative binomial.
#
# Returns:
# A function for generating random numbers. The first argument `n` is
# the number of observations, and the other arguments are the same
# as those in the non-zero-truncated counterparts.
pdist <- get(paste0("p", dist))
qdist <- get(paste0("q", dist))
function(n, ...) {
qdist(runif(n, pdist(0, ...), 1), ...)

}
}

GenClusID <- function(nclus, ave_csize, var_inflat = NULL) {
# Convert cluster sizes of length = nclus to a vector of cluster ids
# of length = N
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#
# Args:
# nclus: Number of clusters.
# ave_csize: Average cluster size.
# var_inflat: Ratio of variance to the mean of the distribution of
# cluster sizes. When it is null (default), the Poisson is
# used. Otherwise the negative binomial is used to get the
# desired variance.
#
# Returns:
# A sorted vector of length exactly equals N.
if (is.null(var_inflat)) {
csizes_unscaled <- ZeroTruncate("pois")(nclus, ave_csize)

} else {
csizes_unscaled <-
ZeroTruncate("nbinom")(nclus, mu = ave_csize,

size = ave_csize / (var_inflat - 1))
}

N <- nclus * ave_csize
csizes <- round(prop.table(csizes_unscaled) * N, 0)
csizes[csizes == 0] <- 1
nclus <- length(csizes_unscaled)
N_org <- sum(csizes)
extra_pos <- sample(which(csizes >= 2), abs(N_org - N),

prob = csizes[csizes >= 2])
csizes[extra_pos] <- csizes[extra_pos] - sign(N_org - N)
clus_id <- rep(seq_len(nclus), times = csizes)
return(clus_id)

}

GetConfint <- function(d, type = c("asymptotic", "noncentral"),
ase, df, lambda) {

# Get central (asymptotic) or noncentral confidence interval for multilevel
# effect size.
#
# Args:
# d: Estimated effect size(s).
# type: Type of confidence interval.
# ase: Asymptotic standard error(s); used only for type = "asymptotic".
# df: Degrees of freedom(s) of noncentral t distribution; used only for
# type = "noncentral".
# lambda: Scaling factor(s) such that the noncentrality parameter of
# the noncentral t distribution is lambda * d; used only for
# type = "noncentral".
#
# Returns:
# A list of two vectors of upper and lower confidence limits.
type = match.arg(type)
if (type == "asymptotic") {
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return(list(as_ul = d + qnorm(.975) * ase,
as_ll = d - qnorm(.975) * ase))

} else if (type == "noncentral") {
return(list(nc_ul = qt(.975, df, lambda * d) / lambda,

nc_ll = qt(.025, df, lambda * d) / lambda))
}

}

SimpleBoot <- function(x, FUN, nsim,
type = c("parametric", "semiparametric", "case"),
parallel_boot = FALSE, mc.cores = 1L + parallel_boot) {

# Generate bootstrap samples of an estimator for fitted model object of lmer.
# Random slope is not yet supported.
#
# Args:
# x: Fitted model object of class `lmerMer`.
# FUN: Function to be applied to each bootstrap samples.
# nsim: Number of bootstrap samples
# type: Type of bootstrapping. Parametric bootstrap generates both level-1
# and level-2 residuals from normal distributions, with variance
# equal to the estimated variance components. Nonparametric
# bootstrap samples "reflated" level-1 and level-2 residuals with
# with replacement from the original model. See Goldstein (2011)
# for detail.
# parallel_boot: Whether to use parallel computing with `mclapply`. Default
# is FALSE.
# mc.cores: Number of cores to be used. Default is 2 for
# parallel_boot = TRUE.
#
# Returns:
# A vector of length = nsim of bootstrap statistics.
type <- match.arg(type)
if (type == "parametric") {
ss <- simulate(x, nsim = nsim, use.u = FALSE)

} else {
group <- as.numeric(getME(x, "flist")[[1]])
N <- getME(x, "N")
if (type == "semiparametric") {
n_clus <- max(group)
vcs <- c(getME(x, "theta"), 1) * sigma(x)
Qt <- cbind(as.matrix(ranef(x)[[1]][group, ]), residuals(x, "response"))
S <- cov(Qt) * (N - 1) / N
if (any(vcs == 0)) { # handling when tau00 is zero
A <- vcs / sqrt(diag(S))
A[!is.finite(A)] <- 0
A <- diag(A)

} else {
U_R <- diag(vcs)
U_S <- try(base::chol(S), silent = TRUE)
if (inherits(U_S, "try-error")) return(rep(NA, nsim))
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A <- try(solve(U_S, U_R), silent = TRUE)
if (inherits(A, "try-error")) return(rep(NA, nsim))

}
Qt_star <- Qt %*% A
fixed <- model.matrix(x) %*% fixef(x)
U_star <- Qt_star[!duplicated(group) , -ncol(Qt_star), drop = FALSE]
e_star <- Qt_star[ , ncol(Qt_star), drop = FALSE]
Z <- getME(x, "Z")
ss <- replicate(nsim, fixed +

as.matrix(Z %*% U_star[sample(n_clus, replace = TRUE), ,
drop = FALSE]) +

e_star[sample(N, replace = TRUE), , drop = FALSE],
simplify = FALSE)

} else {
BootCase <- function(x, group, N) {
new_index2 <- c(sample(unique(group), replace = TRUE))
new_index1 <- lapply(new_index2, function(i) seq_len(N)[group == i])
group_length <- vapply(new_index1, length, FUN.VALUE = integer(1))
new_group <- rep(seq_along(new_index2), group_length)
org_data <- x@frame
fname <- names(getME(x, "flist"))
new_data <- org_data[unlist(new_index1), , drop = FALSE]
new_data[fname] <- new_group
new_data

}
ss <- replicate(nsim, BootCase(x, group, N), simplify = FALSE)

}}
ffun <- local({
type
FUN
refit
x
function(newsample) {
if (type != "case") foo <- try(FUN(refit(x, newsample)), silent = TRUE)
else {
use_REML <- as.logical(getME(x, "REML"))
foo <- try(FUN(lmer(formula(x), data = newsample, REML = use_REML)),

silent = TRUE)
}
if (inherits(foo, "try-error")) NA
else foo

}
})

if (!parallel_boot) vapply(ss, ffun, FUN.VALUE = 1.0, USE.NAMES = FALSE)
else as.numeric(mclapply(ss, ffun, mc.cores = mc.cores))

}

CalcDT <- function(mean_T, mean_C, s2_t, icc, n, N_T, N_C) {
# Compute effect size estimates D1 for nested data.
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# The input can be numeric values or vectors.
#
# Args:
# mean_T: Grand mean(s) of the outcome for the treatment arm.
# mean_C: Grand mean(s) of the outcome for the control arm.
# s2_t: Pooled sum of variance component(s).
# icc: Intraclass correlation(s).
# n: (Average) cluster size.
# N_T: Total (Level-1) sample size(s) for the treatment arm.
# N_C: (Level-1) sample size(s) for the control arm.
#
# Returns:
# A list including a vector of estimated D1 values and two vectors of
# the upper and lower confidence limits.
N <- N_T + N_C
const_a <- 1 + (n - 1) * icc
const_b <- 1 - (2 * (n - 1) * icc) / (N - 2)
const_c <- ((N - 2) * (1 - icc)^2 + n * (N - 2 * n) * icc^2 +

2 * (N - 2 * n) * icc * (1 - icc)) / (N - 2)^2
N_tilde <- N_T * N_C / (N_T + N_C)
est_DT <- (mean_T - mean_C) * sqrt(const_b / s2_t)
est_VarDT <- const_a / N_tilde + const_c * est_DT^2 / 2 / const_b^2
as_ci_DT <- GetConfint(est_DT, "asymptotic", ase = sqrt(est_VarDT))
nc_ci_DT <- GetConfint(est_DT, "noncentral", df = const_b^2 / const_c,

lambda = sqrt(N_tilde / const_a))
c(list(DT = est_DT), as_ci_DT, nc_ci_DT)

}

CalcDTM <- function(gam10, var_gam10, sigma2_T, var_sigma2_T) {
# Compute effect size estimates D2 for nested data.
# The input can be numeric values or vectors.
#
# Args:
# gam10: Estimated gamma_10(s) (i.e., treatment effect).
# var_gam10: Estimated variance(s) of gamma_10.
# sigma2_T: Estimated pooled sum of variance component(s).
# var_sigma2_T: Estimated variance(s) of sigma2_T.
#
# Returns:
# A list including a vector of estimated D2 values and two vectors of
# the upper and lower confidence limits.
est_DTM <- gam10 / sqrt(sigma2_T)
const_a_star <- var_gam10 / sigma2_T
const_c <- var_sigma2_T / 2 / sigma2_T^2
est_VarDTM <- const_a_star + est_DTM^2 * const_c / 2
as_ci_DTM <- GetConfint(est_DTM, "asymptotic", ase = sqrt(est_VarDTM))
nc_ci_DTM <- GetConfint(est_DTM, "noncentral", df = 1 / const_c,

lambda = 1 / sqrt(const_a_star))
c(list(DTM = est_DTM), as_ci_DTM, nc_ci_DTM)

}

127



# Wrapper function for computing D1, D2, and bootDT from raw data or fitted
# data.
GetDTs <- function(data, treat, clus_id, N_T, N_C, n_clus) {
# A wrapper for computing D1 from matrices of datasets.
#
# Args:
# data: A vector or matrix where each column is the raw response.
# treat: A vector or matrix where each column is the treatment dummy
# variable.
# clus_id: A matrix where each column is a vector of cluster ID for
# the treatment.
# N_T: Within-level sample size for the treatment group.
# N_C: Within-level sample size for the control group.
# n_clus: Number of clusters in the treatment group.
#
# Returns:
# A list with five sublists: (i) D1,
# (ii & iii) upper and lower asymptotic confidence limits of D1,
# (iv & v) upper and lower noncentral confidence limits of D1.
N <- N_T + N_C
means_T <- colMeans(data[treat == 1, ])
means_C <- colMeans(data[treat == 0, ])
between_data <- vapply( # Replace all data points in data_T by the group means
seq_along(means_T), function(i) ave(data[ , i], clus_id[ , i]),
FUN.VALUE = vector("numeric", N)

)

ComputeMS <- function(x, df, m = 0) {
# Quicker function to compute mean squares (MS).
# x = data (can be vector or matrix), df = degrees of freedom,
# m = centering matrix; default to 0, meaning that x already centered.
x_centered <- x - m
diag(crossprod(x_centered)) / df

}

grand_means <- rbind(rep(1, N_T) %*% t(means_T), rep(1, N_C) %*% t(means_C))
s2_b <- ComputeMS(between_data, n_clus - 2, grand_means)
s2_w <- ComputeMS(data, N - n_clus, between_data)
n <- N / n_clus
icc <- (s2_b - s2_w) / (s2_b + (n - 1) * s2_w)
icc[icc < 0] <- 0
s2_t <- ComputeMS(data, N - 2, grand_means)
CalcDT(means_T, means_C, s2_t, icc, n, N_T, N_C)

}

GetDTMs <- function(model_all) {
# A wrapper for computing D2 from fitted model objects.
#
# Args:
# model_all: A list with one or more fitted model objects.
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#
# Returns:
# A list with five sublists: (i) D2,
# (ii & iii) upper and lower asymptotic confidence limits of D2,
# (iv & v) upper and lower noncentral confidence limits of D2.
ExtractParam <- function(model) {
# Run mixed model and extract required parameters for CalcD2
# parametric bootstrap to obtain sampling variance
GetSigma2T <- function(x) unname((1 + getME(x, "theta")^2) * sigma(x)^2)
nboot_var <- 200
boot_var_sigma2 <- var(SimpleBoot(model, GetSigma2T, nsim = nboot_var),

na.rm = TRUE) * (nboot_var - 1) / nboot_var
c(est_gam01 = fixef(model)["treat"],
est_var_gam01 = vcov(model)["treat", "treat"],
est_sigma2_T = GetSigma2T(model),
est_var_sigma2_T = boot_var_sigma2)

}

param_D2 <- # extracted parameters
vapply(model_all, ExtractParam, numeric(4))

CalcDTM(param_D2[1, ], param_D2[2, ], param_D2[3, ], param_D2[4, ])
}

GetDTboots <- function(model_all, nsim, type, ...) {
# A wrapper for computing bootstrap DT from fitted model objects.
#
# Args:
# model_all: A list with one or more fitted model objects.
# nsim: Number of bootstrap samples
# type: Type of bootstrapping. Parametric bootstrap generates both level-1
# and level-2 residuals from normal distributions, with variance
# equal to the estimated variance components. Nonparametric
# bootstrap samples "reflated" level-1 and level-2 residuals with
# with replacement from the original model. See Goldstein (2011)
# for detail.
# ... : Additional argument passed to SimpleBoot.
#
# Returns:
# A list with five sublists: (i) DTboot,
# (ii & iii) upper and lower percentile confidence limits of DTboot,
# (iv & v) upper and lower BCa confidence limits of DTboot.
DTMer <- function(x) {
# Compute DT from fitted object.
unname(fixef(x)["treat"] / sqrt(1 + getME(x, "theta")^2) / sigma(x))

}

InfluenceJackm <- function(model) {
# Jackknife estimate of influence on DT for each data point.
group <- as.numeric(getME(model, "flist")[[1]])
vapply(unique(group),

function(i) DTMer(lmer(formula(model),
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data = model@frame[group != i, ])),
FUN.VALUE = numeric(1)) - DTMer(model)

}

BootDT <- function(x, nsim, type) {
# Get percentile and BCa bootstrap.
t <- DTMer(x)
l_j <- InfluenceJackm(x)
resample <- SimpleBoot(x, DTMer, nsim, type, ...)
w <- qnorm(sum(resample <= t) / (nsim + 1))
a <- sum(l_j^3) / sum(l_j^2)^1.5 / 6
prob <- c(.025, .975)
zalpha <- qnorm(prob)
bca_p <- pnorm(w + (w + zalpha) / (1 - a * (w + zalpha)))
# pnorm(2 * w + qnorm(prob)) # bias-corrected with no accelaration
c(mean(resample), quantile(resample, c(prob, bca_p), na.rm = TRUE))

}

out <- vapply(model_all, BootDT, FUN.VALUE = numeric(5),
nsim = nsim, type = type)

list(DTboot = out[1, ], perc_ul = out[3, ], perc_ll = out[2, ],
bca_ul = out[5, ], bca_ll = out[4, ])

}

RunSim <- function(nrep, n_clus, clus_size, icc, pop_ES,
csize_dist = c('balance', 'pois', 'nbinom'),
sigma2 = 1.0, lv1_dist = c("norm", "chisq"),
lv2_dist = c("norm", "chisq"), nboot = 10,
parallel_boot = FALSE, mc.cores = 1L + parallel_boot,
seed = 548, simID = NULL, save_each = FALSE) {

# A function that simulate data, compute D1, D2, and their corresponding
# variances, and evaluate the bias, efficiency, and the Mean-squared
# error (MSE).
#
# Args:
# nrep: Number of replications for the simulation.
# n_clus: Number of clusters for the (treatment and control arm combined).
# clus_size: (Average) Cluster size for the treatment arm.
# icc: Intraclass correlation.
# pop_ES: Population effect size.
# csize_dist: Distribution of cluster sizes. If `balance`, all clusters
# have the same size; if `pois`, small imbalance occurs;
# if `nbinom`, severe imbalance happens.
# sigma2: Within-level variance component; default to 1.0.
# lv1_dist: Distribution for level-1 random effects. "norm" is normal;
# "chisq" is chi-squared.
# lv2_dist: Distribution for level-2 random effects. "norm" is normal;
# "chisq" is chi-squared.
# nboot: Number of bootstrap samples for each bootstrap method.
# parallel_boot: Whether to use parallel computing with `mclapply`. Default
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# is FALSE.
# mc.cores: Number of cores to be used. Default is 2 for
# parallel_boot = TRUE.
# seed: Random seed for data generation; default to 50.
# simID: Optional Condition ID; default to NULL.
# save_each: If TRUE, the function returns NULL, and the output for each
# condition is saved to the current working directory as
# "simresult-i.rds", where i = simID. If FALSE, the output
# will be print to console.
#
# Returns:
# If save_each = FALSE (default), returns a list composed of 20 sublists,
# with 4 groups of effect size: D1, D2, DTboot (parametric),
# DTboot (semiparametric). Each group with five lists: point estimate,
# and 2 sets of confidence limits.
if (save_each == TRUE) {
if (is.null(simID)) {
cat("No input on simID. Cannot save output to disk.
Print to console instead\n\n")

save_each = FALSE
} else cat("Note: All results will be saved to the working directory.\n\n")

}

csize_dist <- match.arg(csize_dist)
lv1_dist <- match.arg(lv1_dist)
lv2_dist <- match.arg(lv2_dist)

set.seed(seed) # set the seed
# initialize values of sample sizes, between-level variance,
# dummy variable for treatment.
N_T <- N_C <- clus_size * n_clus / 2
N <- N_T + N_C
tau_00 <- sigma2 * icc / (1 - icc) # between-level variance component
treat <- rep(c(1, 0), c(N_T, N_C))
# Generate level-1 and level-2 random effects.
# chisq_df <- 1
rranef <- function(n, dist, var = 1) {
# Generate random effect values.
if (dist == "norm") return(rnorm(n, sd = sqrt(var)))
else if (dist == "chisq") {
x <- rchisq(n, df = 1)
(x - 1) * sqrt(var / 2)

}
}

error_w <- matrix(rranef(nrep * N, lv1_dist, var = sigma2), ncol = nrep)
error_b <- matrix(rranef(nrep * n_clus, lv2_dist, var = tau_00), ncol = nrep)
if (csize_dist == 'balance') { # same size for all clusters
clus_id <- matrix(rep(1:n_clus, each = clus_size), nrow = N, ncol = nrep)

} else { # If `nbinom`, the variance is 10 times the mean
var_inflat <- if (csize_dist == 'pois') NULL else 10
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clus_id <- replicate(nrep,
c(GenClusID(n_clus / 2, clus_size, var_inflat),
GenClusID(n_clus / 2, clus_size, var_inflat) +
n_clus / 2))

}

data <- vapply(seq_len(nrep), function(i) error_b[clus_id[ , i], i],
FUN.VALUE = vector("numeric", N)) + error_w +

pop_ES * sqrt(sigma2 + tau_00) * treat
# D1
DT_out <- GetDTs(data, treat, # Compute D1 (with partial vectorization)

clus_id, N_T, N_C, n_clus)
data_df <- lapply(seq_len(nrep),

function(i) data.frame(y = data[ , i], cid = clus_id[ , i]))
m1_all <- lapply(data_df, lmer, formula = y ~ treat + (1 | cid))
# D2
DTM_out <- GetDTMs(m1_all)
# Parametric bootstrap DT
DTboot_par_out <- GetDTboots(m1_all, nboot, "parametric",

parallel_boot = parallel_boot,
mc.cores = mc.cores)

# # Semiparametric bootstrap DT
DTboot_spar_out <- GetDTboots(m1_all, nboot, "semiparametric",

parallel_boot = parallel_boot,
mc.cores = mc.cores)

# # Case bootstrap DT
DTboot_npar_out <- GetDTboots(m1_all, nboot, "case",

parallel_boot = parallel_boot,
mc.cores = mc.cores)

cat("Finish simulation Condition", simID, "\n")
flush.console()
output <- c(DT_out, DTM_out,

DTboot_par_out,
DTboot_spar_out,
DTboot_npar_out)

if (save_each) saveRDS(output, paste0("result/simresult-", simID, ".rds"))
else output

return(DTM_out)
}

# Test simulation function -------------------------------------------
# result <- RunSim(2, 20, 4, .4, .8, "nbinom", parallel_boot = FALSE)
# cat("Mean estimated value of D1 =", mean(result$D1),
# "\nMean estimated variance of D1 =", mean(result$VarD1),
# "\nEmpirical variance of D1 =", var(result$D1),
# "\n% SE Bias =", (mean(sqrt(result$VarD1)) / sd(result$D1) - 1) * 100, "%",
# "\nMean estimated value of D2 =", mean(result$D2),
# "\nMean estimated variance of D2 =", mean(result$VarD2),
# "\nEmpirical variance of D2 =", var(result$D2),
# "\n% SE Bias =", (mean(sqrt(result$VarD2)) / sd(result$D2) - 1) * 100,
# "%\n")
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# Run Simulation. ---------------------------------------------------------
# Define design factors and constants.
DESIGNFACTOR <- expand.grid(n_clus = c(20, 30, 70),

clus_size = c(5, 25),
icc = c(.05, .1, .2),
pop_ES = c(.5),
csize_dist = c('pois', 'nbinom'),
lv1_dist = c('norm', 'chisq'),
lv2_dist = c('norm', 'chisq'),
stringsAsFactors = FALSE)

NREP <- 1000
COND_TO_RUN <- seq_len(nrow(DESIGNFACTOR)) # define which conditions to run
# Run and time the simulation.
time_proc <- system.time({
jid <- seq_along(COND_TO_RUN)
simresult <-
mclapply(jid, function(i) {

RunSim(nrep = NREP,
n_clus = DESIGNFACTOR[COND_TO_RUN[i], 1],
clus_size = DESIGNFACTOR[COND_TO_RUN[i], 2],
icc = DESIGNFACTOR[COND_TO_RUN[i], 3],
pop_ES = DESIGNFACTOR[COND_TO_RUN[i], 4],
csize_dist = DESIGNFACTOR[COND_TO_RUN[i], 5],
lv1_dist = DESIGNFACTOR[COND_TO_RUN[i], 6],
lv2_dist = DESIGNFACTOR[COND_TO_RUN[i], 7],
nboot = 999, simID = COND_TO_RUN[i], save_each = TRUE)

}, mc.cores = 2L)
})

print(time_proc)
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