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ABSTRACT

In this dissertation we study an important class of functions in complex analysis,

known as Meromorphic Inner Functions (MIF) and we exploit their properties to

solve problems from mathematical physics.

In the first part, we answer an old problem, first studied by Louis de Branges

about a property of the derivative of MIFs on the real line. We use the theory of

Clark measures to solve this problem with the aid of complex and harmonic analysis

theory.

In the second part, we study the spectral properties of the Schrödinger operator.

Certain inverse spectral problems in this area can be translated into the language

of complex analysis and we use the injectivity of Toeplitz operators to solve these

problems.
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CHAPTER I

INTRODUCTION

A classical question in complex analysis is the following: Given a sequence tλnun

in R, is the family of exponentials teiλnxun complete in L2p´a, aq? Another way

of stating this problem is : Does the sequence tλnu form a zero set in the Paley

Wiener space PWa? This problem was solved by Beurling and Malliavin in a series

of papers from the 1960s ([4], [5]). The answers provide metric characterizations of

the radius of completeness of a family of exponentials and it was shown to be equal

to the Beurling Malliavin density of the sequence (times a constant). In the paper

[27], Makarov and Poltoratski provided a different proof of the Beurling Malliavin

theorem, using model spaces and Toeplitz kernels. By the Paley Wiener theorem,

the Hardy space on the upper half plane H2pC`q can be obtained as the Fourier

transform of L2p0,8q. Let Spzq “ eiz, then the Paley Wiener space PWa can be

written in terms of the model spaces as

PWa “ S´arH2
a S2aH2

s.

The space KSa “ H2aS2aH2 is called the model space of the inner function S2a. In

general, we can define model spaces with respect to any inner function Θ as

KΘ :“ H2
aΘH2.

We restrict our studies to Θ being a meromorphic inner function. Model spaces

play an important role in modern function theory, see [30], [21]. As we saw be-

fore, completeness problems for exponentials is the same as the problem of defining
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uniqueness sets for the model space KS2a . The question of uniqueness sets of general

model spaces is interesting in its own right, but as we will see, it answers many

questions in the inverse problems of 2nd order differential operators.

For U P L8pRq, we define the Toeplitz operator TU : H2pRq Ñ H2pRq as

TUpfq “ P`pUfq,

where P` is the orthogonal projection onto H2pRq. A simple argument shows that

Λ Ă C` is a uniqueness set for KΘ if and only if the Toeplitz operator TΘBΛ
has

a trivial kernel ([27], page 26). Here BΛ is the Blaschke product with zeroes on Λ.

A similar result holds if Λ Ă R. The injectivity problem for a Toeplitz operator

(characterizing symbols U such that ker TU “ 0) is useful in the spectral theory of

Toeplitz operatos see ([7],[31]). Compared with the invertibility problem, the injec-

tivity problem has received considerably less attention. However, we now understand

well the significance of these problems in the context of the spectral theory of 2nd or-

der differential operators ([27],[8]). In this dissertation, we will explore this problem

in detail.

The injectivity problem of Toeplitz operators is connected with the following

inverse problem. Let us consider the Schrödinger equation

´u2 ` qu “ λu (1)

on some interval pa, bq and assume that the potential qptq is locally integrable and a

is a regular point i.e., a is finite and q is in L1 at a. Let us fix the following boundary
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conditions.

cospαqupaq ` sinpαqu1paq “ 0 (2)

cospβqupbq ` sinpβqu1pbq “ 0. (3)

Consider the following problem - Let Λ, a separated sequence on R be spectral data

of the above operator. Can we uniquely reconstruct the operator from this? Borg

proved in [6] that in most cases, 2 spectra is sufficient to reconstruct the potential.

The condition in Borg’s paper was further relaxed by Levinson in [22]. Hochstadt

and Liebermann prove in [18] that if half the potential is known, then one spectrum

is enough to recover the whole potential. Simon and Gesztezy have proved sufficient

conditions for partial potential and one spectrum to determine q uniquely ([15],[16]).

Along with Del Rio in [11], they prove a sufficient condition in the case of spectral

data coming from 3 spectra. In 2005, Horváth made a breakthrough in [19]. In his

result, Horváth allowed all the λ P Λ to be in a different spectra. He proved that

recovering the potential of a Schrödinger operator is equivalent to the closedness of

the family of exponentials te˘2i
?
λxuλPΛ Y te

˘iµxu for some µ R Λ in L2pa, bq. More

results in this area are to be found in ([32],[9]). In [27], Makarov and Poltoratski

establish the relationship of these inverse problems with uniqueness sets in the class

of meromorphic inner functions on C`. In this dissertation, we give necessary and

sufficient conditions for a set to be a uniqueness set for a meromorphic inner function.

As a consequence, we obtain a metric condition for spectral data to determine the

operator uniquely. Moreover, we provide the degree of non-uniqueness of the mero-

morphic inner function in terms of the dimension of an associated Toeplitz kernel.

As a result, one can ask the following question: If some spectral data is not enough

to reconstruct the potential uniquely, then can we calculate the number of different
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potentials that have the same spectral data? We discuss these questions in chapter

8. We also provide some examples of spectral data that do not correspond to any

operator, despite being ’close to’ spectral data of a given operator in chapter 8.

Another topic presented in this dissertation is an old question that was first

studied by Louis de Branges in 1968: Given a separated sequence tλnu on R, does

there exist an MIF Θ with tλnu as spectrum, such that |Θ1| is uniformly bounded

on R? By spectrum of Θ, we are referring to the level set tx P R : Θpxq “ 1u and

by separated sequence, we mean that there is a δ ą 0 such that |λn ´ λm| ą δ,

for all n ‰ m integers. This question was first studied by Louis de Branges in

1968 in his book ’Hilbert Spaces of Entire Functions’ [10]. In the book, De Branges

asserts the existence of such a corresponding MIF for every separated sequence on

R (lemma 16). In 2011, Anton Baranov discovered a flaw in de Branges proof and,

in fact, discovered sequences which served as counterexamples to the assertion. For

instance, the one-sided sequence of natural numbers N does not have a corresponding

MIF with bounded derivative.

As we will see, MIFs are ubiquitous in the study of second order differential oper-

ators, for instance the Weyl Titchmarsh inner function originating from Schrödinger

operators, Dirac systems and similar canonical systems. In particular, MIFs with

bounded derivative play a special role in these studies. De Branges himself used this

to solve Beurling’s gap problem: For which sequences Λ does there exists a non-zero

measure µ, supported on Λ such that µ̂ vanishes on an interval of positive measure.

In [28] Mitkovski and Poltoratski use this property of MIFs to show the relationship

between the gap problem and Pólya sequences. In our studies, we often encounter

the question of uniqueness sets in model spaces and the related question of invertibil-

ity of Toeplitz operators. In [26], [27], Makarov and Poltoratski prove the Beurling

Malliavin multiplier theorem, in a general form using Toeplitz kernels. Here, they
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use MIFs with bounded derivative. We elaborate on these applications in chapter 7.

We discover that in order to bound the derivative of an MIF, the spectrum must

have uniformity. The exact meaning of this phrase is made clear in our results in

chapter 3. We provide characterization of sequences for which there exist correspond-

ing MIFs as well as some counter examples.
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CHAPTER II

PRELIMINARIES

2.1 Theory of Hardy Spaces

2.1.1 Fatou’s Theorem

In our introduction, we mentioned Dirichlet’s problem for functions defined on

the boundary of a disk. Let us recall the solution to Dirichlet’s problem. Let u be a

continuous function defined on T. Then, the following function is harmonic

Upreiθq “
1

2π

ż 2π

0

1´ r2

1` r2 ´ 2r cospθ ´ tq
uptqdt.

Moreover, Upzq Ñ upeiφq as z Ñ eiφ and this convergence is uniform in φ. The

function 1´r2

1`r2´2r cospθ´tq
is called the Poisson kernel and is denoted by Prpθ ´ tq.

The function U is called the Poisson transform of u. A natural question to ask

is if the converse is true, i.e. if U is a harmonic function on D, then can it be

written as the Poisson transform of a continuous function on the boundary T? The

answer is - almost. To be precise, it is true that U is the Poisson transform of some

function u defined on the boundary, but this function need not be continuous. This

question makes one wonder about the boundary behavior of harmonic functions

on the disk. We focus our attention on a particular class of harmonic functions,

namely holomorphic functions. A simple question to ask is the following- Given

a holomorphic function on the disk, what is the behavior of this function as we

approach the boundary of this disk? In general, it is not possible to say anything

about this behavior as the function may have singularities on the boundary. Now

suppose we impose some additional conditions on the boundedness of the functions
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as we approach the boundary. Let us say we bound the L1 norms of this function on

consecutive circles, i.e.,

sup
0ără1

ż 2π

0

|fpreiθq|dθ ă 8. (2.4)

In this case Fatou proved that f will have radial boundary limits and the function

converges to the boundary function in the L1 norm.

Lemma 1. Let f be a holomorphic function on D, satisfying 2.4 above. Then,

fpeiθq “ lim
rÑ1

fpreiθq exists a.e. and

lim
rÒ1

ż 2π

0

|fpreiθ ´ fpeiθq|dθ “ 0

Holomorphic functions on the unit disk which satisfy condition 2.4 form a Banach

space, denoted by H1, with norm defined as

}f}1 “ sup
0ără1

ż 2π

0

|fpreiθq|dθ.

Thus,

H1
pDq “

"

f P HolpDq : sup
0ără1

ż 2π

0

|fpreiθq|dθ ă 8

*

.

In fact Fatou’s theorem is much stronger than that stated above and we refer the

reader to [] for further reading. We also mention that H1pDq is a Hardy space. In

general we can define Hardy spaces corresponding to any 1 ď p ă 8 as follows.

Hp
pDq “

"

f P HolpDq : sup
0ără1

ż 2π

0

|fpreiθq|pdθ ă 8

*

.
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Fatou’s theorem for general Hardy spaces HppDq for 1 ď p ă 8 is stated as the

following.

Theorem 1. If f P HppDq, then for almost all eiθ, lim fpzq for z Ñ= eiθ exists and

is finite. If we call this limit fpeiθq, then

ż π

0

|fpeiθq|pdθ “ }f}pp.

Moreover, we have that

ż π

0

|fpreiθq ´ fpeiθq|pdθ Ñ 0,

as r Ñ 1.

By z Ñ= eiθ, we mean that z approaches eiθ non tangentially, i.e, there exists a

Stolz region, given by tw : ||w| ´ θ| ă cp1 ´ |w|qu for some fixed c ą 0, such that

z converges to eiθ in this region. For more information on nontangential limits, we

refer the reader to [20].

Let us mention here that analogous spaces exist for the upper half plane (C`).

We define them as follows:

Hp
pC`q “

"

f P HolpC`q : sup
yą0

|fpx` iyq|p ă 8

*

.

Given a function f in HppC`q, where 1 ď p ă 8, lim
yÑ0

fpx` iyq “: fpxq exists and is

finite for almost all x P R. Moreover,

fpx` iyq “
1

π

ż

R

y

px´ tq2 ` y2
fptqdt.
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2.1.2 Nevanlinna Class

Let f be an analytic function in D. It is said to be in the Nevanlinna class N

if the following is true

sup
0ără1

ż

T
log` |fpreiθq|dθ ă 8.

Similarly, on C`, the space N pC`q consists of all those analytic functions f such

that

sup
yą0

ż

R
log` |fpx` iyq|dy ă 8.

The Smirnov Nevanlinna class N` consists of all those functions in N such that

lim
rÑ1

ż 2π

0

log` |fpreiθq|dθ “

ż 2π

0

log` |fpeiθ|dθ,

in the case of the disk and

lim
yÑ0

ż

R
log` |fpx` iyq|dx “

ż

R
log` |fpxq|dx,

in the case of the upper half plane.

It is easy to see that Hp Ă N for all p ą 0. We know that for any f P HppDq, its

non-tangential limit to the boundary is in Lp. In fact,

Hp
“ N`

X Lp.

2.1.3 Inner Outer Factorization

A very useful property of functions that lie in the Hardy spaces is that they can

be factorised in terms of certain functions whose behaviour we understand well. This

factorization is often called the canonical factorization. We first state them for the

9



unit disk.

A Blaschke term Ba is a function of the form

Bapzq “
|a|

a

a´ z

1´ az
,

where a P D. This function is holomorphic in D, has the property that |Bapzq| ă 1

on D and |Bapzq| “ 1 on T. A Blaschke product is a product of Blaschke terms

Bpzq “ eic
ź

n

|an|

an

an ´ z

1´ az
,

where we impose the condition that
ř

np1´ |zn|q ă 8 to ensure that the (possibly)

infinite product converges.

A singular inner function S has the form

Spzq “ exp
´ 1

2π

ş

eit`z

eit´z
dσptq

,

where σ is a measure on the circle T that is singular with respect to the Lebesgue

measure on the circle.

Given a function f P HppDq, the following function is called an outer function Of

corresponding to f .

Of pzq “ exp
1

2π

ş2π
0

eit`z

eit´z
log |fpeitq|dt

.

We have the following factorization.

Theorem 2. Let f P HppDq. Then there exists a Blaschke product B, a singular

inner function S and outer function Of such that the following representation is true

in D

fpzq “ BpzqSpzqOf pzq.
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On the upper half plane we have a corresponding factorization. Blaschke prod-

ucts are of the form

Bpzq “
ź

n

z ´ an
z ´ an

,

where the an are in C` such that they satisfy the convergence criterion
ř

n
=an

1`|an|2
ă

8.

A singular inner function S is of the form

Spzq “
1

πi

ż

R

ˆ

1

t´ z
´

t

1` t2

˙

dσptq,

where σ is a measure on the real line that is singular with respect to the Lebesgue

measure.

An outer function Of is of the form

1

πi

ż

R

ˆ

1

t´ z
´

t

1` t2

˙

fptqdt,

where f is a real valued function in L1
π, which means that

ş

R
fptq
1`t2

dt ă 8.

The factorization breaks down in the case of N , as we see from the example

expp1`z
1´z
q.

2.1.4 Cauchy Transform

As we saw in a previous section, the Poisson kernel is used to recover functions

from their boundary values. We study a similar kernel in this section, called the

Herglotz kernel defined as follows.

Hzpτq “
τ ` z

τ ´ z
,
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which is analytic in z with <Hz “ Pz ą 0, where Pz is the Poisson kernel. The

Herglotz integral is defined as

Hµpzq :“

ż

Hzpτqdµpτq,

and is analytic on D and has positive real part whenever µ is a positive Borel measure.

We consider the following result by Herglotz quite crucial to our learning. We refer

the reader to [13] for proofs.

Theorem 3. (Herglotz)

1. If u ě 0 on D is harmonic, then u “ Pµ for some positive Borel measure µ.

2. If f is analytic on D, <f ě 0 and fp0q ą 0, then f “ Hµ for some positive

Borel measure µ.

A corresponding result holds for the upper half plane as well. The integral cor-

responding to the Herglotz integral on the upper half plane is the Schwarz integral

defined as follows.

Sµpzq “
1

πi

ż

R

ˆ

1

t´ z
´

t

1` t2

˙

dµptq,

where µ is a positive measure on R which is also Poisson finite, i.e.,

ż

R

dµptq

1` t2
ă 8.

2.2 Meromorphic Inner Functions

2.2.1 Definition and Examples

We have seen in the previous section that an inner function on the upper half

plane C` is a bounded analytic function on C` with unit modulus almost everywhere
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on the real line R. A Meromorphic inner function (MIF) on C` is an inner

function on C` with a meromorphic continuation to C. Examples of MIFs are :

• eiaz, where a ą 0,

• A Blaschke product
ś

z´w
z´w̄

, where w P C`.

It is easy to see that the above examples satisfy the criterion for being MIFs. In fact,

the following characterization of MIFs was proved by Riesz and V.I. Smirnov.

Lemma 2. Given any MIF Θ, it can be represented as

Θpzq “ BΛpzqe
iaz

where a ě 0 and BΛ is the Blaschke product of the zeros of the function given by

Λ “ tλnun where |λn| Ñ 8 and satisfy the convergence criterion,

ÿ

λnPΛ

=λn
1` |λn|2

ă 8.

2.2.2 Spectrum and Properties

For a given MIF Θ, we define its spectrum, σpΘq as follows

σpΘq “ tx P R : Θpxq “ 1u.

For any MIF theta, σpΘq is a discrete set on R.

Lemma 3. Given any MIF Θ,

Θpzq “
1

Θpzq
. (2.5)
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We can use Weierstrass’ factorization to see that the above holds. A proof is

given in [17].

Lemma 4. Given a meromorphic inner function Θ, there exists an increasing, real

analytic function φ : RÑ R such that

Θ “ eiφ, on R

We can use the Riesz-Smirnov factorization to verify this property for the func-

tions eiaz and z´w
z´w̄

and hence for their products.

2.2.3 Clark Measures

Given a function f : D Ñ D, let us consider the following function. For a given

α P T

uαpzq “ <
ˆ

α ` fpzq

α ´ fpzq

˙

“

ˆ

1´ |fpzq|2

|α ´ fpzq|2

˙

. (2.6)

Since uα is the real part of an analytic function, it must be harmonic on D. Moreover,

by Herglotz’s theorem, there is a positive Borel measure µ such that

uαpzq “

ż

T

ˆ

τ ` z

τ ´ z

˙

dµpτq.

This measure is called the Aleksandrov Clark (AC) or simply the Clark measure for

the function f . Conversely if µ is any positive Borel measure on T, then let Hµ be

the Herglotz transform of µ, i.e.,

Hµpzq “

ż

T

ˆ

τ ` z

τ ´ z

˙

dµpτq.
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Then <Hµ ą 0. We can use the fractional linear transformation

λÑ
λ´ 1

λ` 1
,

which maps the right half plane <λ ą 0 onto D. Thus, fpzq :“ Hµpzq´1
Hµpzq`1

is an analytic

self map on D. We notice that

Hµpzq “
1` fpzq

1´ fpzq
.

Thus, we see that

Pµpzq “ <pHµqpzq “ 1´ |fpzq|2

|1´ fpzq|2
.

Thus µ is an AC measure for f . If µ was chosen to be singular with respect to

the Lebesgue measure, then the corresponding function f in inner. Conversely, if

the function f is inner, then its AC measure is singular. As is to be expected, a

corresponding theory holds for the upper half plane. Let us focus on MIFs. Let µ

be a positive measure defined on the real line such that

ż

R

dµptq

1` t2
ă 8.

The above property is called being Poisson finite. For such a measure, one defines

its Cauchy transform as follows.

Kµpzq “
1

πi

ż

R

ˆ

1

t´ z
´

t

1` t2

˙

dµptq.
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By our discussions in a previous section, we know that Kµ : C` Ñ t<z ą 0u. We

can compose this function with the fractional linear transformation λ Ñ λ´1
λ`1

to get

a function Θ : C` Ñ D. Thus,

Θ “
Kµ´ 1

Kµ` 1
.

In particular if the measure has the form

µpzq “
ÿ

n

wnδλn ,

where wn ą 0 and tλnu is a separated sequence on R such that

ÿ

n

wn
1` λ2

n

ă 8,

then the corresponding function Θ obtained as above is a MIF.

2.3 De Branges Spaces

2.3.1 Definition and Examples

An entire function E with the property that

|Epzq| ą |Epz̄q|, for z P C`, (2.7)

is called a De Branges function, named after the mathematician Louis de Branges.

Given a De Branges function E, the space of functions defined as follows is called a

De Branges space of functions, corresponding to E.

BE :“

"

f P HolpCq :
f

E
,
f#

E
P H2

pC`q
*

. (2.8)
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We recall that f#pzq :“ fpz̄q. The space BE is a Hilbert space. In fact, it is a

reproducing kernel Hilbert space, with the kernel defined as follows.

Kzpwq “
EpzqEpwq ´ EpzqEpwq

2ipz ´ wq
.

Example: The function Epzq “ e´iaz is a De Branges function for a ą 0. The related

De Branges space is the Paley Wiener space PWa. In this case, the reproduucing

kernel is given by the sinc function sin apz´wq
pz´wq

.

2.3.2 Relationship with MIFs

Let E be a De Branges function. Then, there is a meromorphic inner function Θ

that is related to E in the following way.

Θpzq “
E#pzq

Epzq
.

Conversely, given any MIF Θ, there is a De Branges function E such that the formula

above holds true. Let Θptq “ eiφptq on R. Then, the phase function of the related E

is defined as ´1
2
φptq. The MIF related to the Paley Wiener space PWa is e2iaz and

the related phase function is ´at.
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CHAPTER III

MODEL SPACES, INVERSE SPECTRAL THEORY

AND BEURLING MALLIAVIN THEORY

In this chapter, we reflect on some results by Makarov and Poltoratski in [27]

concerning uniqueness sets for model spaces. We will see the connection with the

inverse spectral theory of differential operators. The following two sections contain

results and proofs from [27].

3.1 Model Spaces

As we observed in the introduction, model spaces are generalized Paley Wiener

spaces. Let Θ be an inner function in H2. Then the model space KΘ is defined as

KΘ :“ H2
aΘH2.

For any p ě 1, the corresponding definition of a model space in Hp is given by

Kp
Θ “ tf P H

p : Θf P Hpu.

Given an inner function Θ, we define model spaces in the Smirnov class and

general Hardy spaces to be the spaces

K`
Θ “ tF P N`

X Cω
pRq : ΘF̄ P N`

u,

Kp
Θ “ K`

Θ X L
p
pRq.

We recall that to every U P L8pRq, there corresponds the Toeplitz operator TU :
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H2 Ñ H2 defined as

TUpfq “ P`pUfq,

where P` is the projection onto H2. The Toeplitz kernel is defined as

kerU :“ kerTU .

As with model spaces, we can also define the Toeplitz kernels in the Smirnov class

and Hardy spaces as

ker`U “ tF P N`
X L1

locpRq : UF P N`
u

kerpU “ ker`U X L
p
pRq, p0 ă p ď 8q.

3.2 Basic Theory in Hp Spaces

In this section, we see conditions for a Toeplitz operator to be injective. The

proofs are reproduced from [27].

Lemma 5. The Toeplitz kernel kerpU ‰ t0u iff the symbol has the following represen-

tation:

U “ Φ̄
H̄

H
,

where H P Hp X L1
locpRq is an outer function and Φ is an inner function.

Proof. Let F and G be the functions in Hp such that UF “ G. Then, |F | “ |G| on

R. Consider the following inner-outer factorization: F “ FiFe and G “ GiGe. We

have Fe “ Ge, and

U “ pF̄iḠiq
F̄e
Fe
.

Conversely, if U “ Φ̄ H̄
H
, Then, UH “ Φ̄H̄. Since H P Hp, we have that kerpU ‰
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t0u.

The proposition above also holds for ker`U . The following result can be considered

an extension of the previous result. We state the condition in terms of the expo-

nents of the symbols involved and provide the same proof as given in [27], as this

construction is important for our results ahead.

Proposition 1. Let γ P CωpRq. Then ker`eiγ ‰ 0 iff γ has a representation

γ “ ´α ` h̃,

where α P CωpRq is an increasing function and h P L1
Π.

Proof. We first observe that ker`U ‰ 0 iff

U “ Φ̄
H̄

H
on R (3.9)

or some outer function H P CωpRq that does not vanish on R, and some meromorphic

inner function Φ. Indeed, suppose ker`U ‰ 0. Reasoning as in the previous Lemma,

we see that

U “ Ī
F̄

F
,

for some meromorphic inner function I and an outer function F P CωpRq. The outer

function may have zeros on the real line. Suppose the zeros are simple. Take any

meromorphic inner function J such that tJ “ 1u “ tF “ 0u. Then the outer function

H “
F

1´ J
(3.10)
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is zero-free on R and

U “ Ī ¨
1´ J̄

1´ J
¨
H̄

H
“ ´Ī J̄

H̄

H
:“ Φ̄

H̄

H
.

If F has multiple zeros, then we simply repeat this reasoning taking care of the con-

vergence. Next we restate (3.9) in terms of the arguments of the involved functions.

Since H is an outer function, it has the following representation:

H “ e´ph`ih̃q{2, h P L1
Π,

and since H is zero free we have h̃ P CωpRq. It follows that γ “ ´φ` h̃, where φ is a

continuous argument of Φ. Since φ is strictly increasing, this gives the ”only if” part

of the theorem. To prove the ”if” part, we observe that given an increasing function

α, we can find an inner function with argument φ such that

β :“ α ´ φ P L8pRq,

so

γ “ ´α ` h̃ “ ´φ´ β ` h̃ “ ´φ` h̃1, h1 :“ h` β̃.

We can state a similar result for Hp spaces as follows.

Proposition 2. Let U “ eiγ with γ P CωpRq. Then kerpU ‰ 0 iff

U “ Φ̄
H̄

H
,

where H is an outer function in HpXCωpRq, H ‰ 0 on R, and Φ is a meromorphic

21



inner function. Alternatively, kerpU ‰ 0 iff

γ “ ´φ` h̃, h P L1
Π, e´h P Lp{2pRq, (3.11)

where φ is the argument of some meromorphic inner function.

Proposition 3. Let Θ be a meromorphic inner function and Λ Ă R. Then Λ is a

uniqueness set of Kp
Θ if and only if kerp

Θ̄J
“ 0 for every meromorphic inner function

J such that tJ “ 1u “ Λ.

Proof. Suppose we have a non-trivial function F P Kp
Θ which is zero on Λ. By

Lemma 1, we can find an inner function J with tJ “ 1u “ Λ such that

G “
F

1´ J
P Hp.

Then G P Kp
Θ, and we have

Θ̄JG “ Θ̄pG´ F q “ Θ̄F
J

1´ J
“ ´

Θ̄F

1´ J̄
P H̄p,

so the Toeplitz kernel is non-trivial. Conversely, if G is a non-trivial element of kerp
Θ̄J

,

then F “ p1´ JqG P Kp
Θ, and so Λ is not a uniqueness set. Indeed, since G P kerp

Θ̄J
,

we have JG P Kp
Θ, and therefore G P Kp

Θ and G´ JG P Kp
Θ.

3.3 Defining Sets

Let Λ be a separated sequence on R and let Φ be a MIF such that Φ “ eiφ on R.

Then Λ is said to be defining for Φ if for any MIF Φ̃(“ eiφ̃ on Rq,

φ “ φ̃ on Λ ñ Φ ” Φ̃.
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One would like to characterize defining sets for a given MIF and we see, in the next

section that these problems are intimately connected with inverse spectral problems

of Schrödinger operator theory.

It is well known that for a given MIF, Φ, its spectrum σpΦq is not defining for it.

In other words, there are more than one MIFs which have exactly the same spectrum.

The details can be found in the following section. We now describe the two spectra

problem. This corresponds to the case:

Λ “ tΦ “ 1u Y tΦ “ ´1u.

Let Φ be a MIF. Then, Φ̃ is another MIF with the property that

tΦ̃ “ 1u “ tΦ “ 1u

tΦ̃ “ ´1u “ tΦ “ ´1u

if and only if

1

πi
log

Φ̃` 1

Φ̃´ 1
“ SχE ` c,

where SχE is the Schwartz transform of the function χE, where E “ t=Φ ą 0u and

c is a constant. We now describe some results, due to Makarov and Poltoratski [27]

that connect the notion of defining sets to that of uniqueness sets of Toeplitz kernels.

The following results characterize sufficient conditions for Λ to be a defining set for

Φ.

Proposition 4. Λ is not defining for Φ if there is a non-constant function G P K8
Φ

such that

G “ Ḡ on Λ. (3.12)
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Lemma 6. If Φ̃ “ Φ on Λ and F “ Φ̃´ Φ, then

F P K8

Φ̃Φ
, F “ 0 on Λ.

In this paper, the authors remark that ’condition 5.31 is very close to the con-

dition that Λ is not a uniqueness set for K8
Φ2 . The precise relation between the two

statements is an interesting question, which we will not discuss here’. We explore

this precise relationship in detail in the chapter titled ’Inverse Spectral Theory’.

3.4 Schrödinger Equation

Consider the Schrödinger equation

´u2 ` qu “ λu (3.13)

on some interval pa, bq and assume that the potential qptq is locally integrable and a

is a regular point i.e., a is finite and q is in L1 at a. Let us fix the following boundary

condition at b.

cospβqupbq ` sinpβqu1pbq “ 0. (3.14)

Then for each λ P C, there is a solution uλ to 3.13 that is actually entire [23].

This family of solutions tuλuλ gives rise to a function called the Weyl-Titchmarsh m

function, defined as

mpλq “
u1λpaq

uλpaq
. (3.15)

Here we only deal with the compact resolvent case, i.e. when m extends to a mero-

morphic function. We can then define a meromorphic inner function as follows.

Θpzq “
mpzq ´ i

mpzq ` i
. (3.16)
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This is called the Weyl inner function corresponding to the potential q and the

boundary condition at b.

Now consider the related Schrödinger operator

uÑ ´u2 ` qu,

defined on the space L2pa, bq, along with the boundary conditions

cospαqupaq ` sinpαqu1paq “ 0 (3.17)

cospβqupbq ` sinpβqu1pbq “ 0. (3.18)

Then, this operator has a discrete spectrum on R, which we denote by σpq, α, βq.

Suppose we fix the Dirichlet boundary condition at a, i.e., α “ 0 and denote the

resulting spectrum thus obtained as σpq,D, βq. Then,

σpΘq “ σpq,D, βq, (3.19)

where Θ is the Weyl inner function obtained by fixing the Dirichlet boundary condi-

tion at a. We can also obtain the spectrum of this operator with varying boundary

conditions at a from Θ in the following way. Let us fix the boundary condition α at

a, i.e.,

cospαqupaq ` sinpαqu1paq “ 0.

Denoting the resulting spectrum by σpq, α, βq, we have the relationship

σpe´iαΘq “ σpq, α, βq,
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where Θ is, as before, the Weyl inner function obtained by fixing the Dirichlet bound-

ary condition at a.

3.4.1 Inverse Spectral Theory

Inverse spectral theory concerns the reconstruction of the operator from spectral

data. Studies of this nature date back to, at least 1929, when Ambarzumian [1]

proved that if you have spectrum at tn2unPN with Neumann boundary condition

at both end points, then the corresponding potential must be 0 a.e. In the years

1950-1952, Borg and Marchenko independently proved several results of what are

now called the Borg-Marchenko uniqueness type theorems ([6],[24]). Along with

Levinson, all three are credited for proving that spectra are enough to recover the

potential [22]. In recent times, Simon, Gesztezy and Del Rio have proved results on

mixed spectral data (conditions under which data coming from multiple spectra may

be enough to recover the potential) ([15], [16],[12]). An important contribution is by

Hórvath [19], who proved in 2005 the following result.

Theorem 4. Let 1 ď p ď 8, q P Lpp0, πq, 0 ď a ă π and let λn P σpq, αn, 0q be real

numbers with λn Û ´8. Then, β “ 0, q on p0, aq and λn determine q in Lp if and

only if

epΛq “ te˘2i
?
λnx, e˘2iµ : n ě 1u (3.20)

is closed in Lppa´ π, π ´ aq for some (any) µ ‰ ˘
?
λn.

Our approach is to use complex analytic tools, namely Weyl functions, model

spaces and Toeplitz kernels to prove our results. Let us describe the fundamental

result this theory is based on. Let

uÑ ´u2 ` qiu
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be two Schrödinger operators on pa, bq with the same boundary condition at b. The

related Weyl m functions are given by m1 and m2 respectively. Then, Marchenko

[24] proved the following

Theorem 5. Suppose m1pzq “ m2pzq, for all z P CzR, then q1pxq “ q2pxq for almost

all x P pa, bq.

Since the Weyl m functions and the Weyl inner functions are in 1-1 correspon-

dence, one deduces that knowing the Weyl inner function of a Schrödinger operator

is enough to recover the potential. As a result, questions about recovery of the

potential of a Schrödinger operator from its spectral data can be reduced to the re-

covery of the related Weyl meromorphic inner function from its spectral data. This

question actually has two parts- firstly, given some spectral data, does there exist a

MIF corresponding to this data? and secondly, is this MIF unique? We will deal

mostly with the second question. We ask and answer questions about uniqueness

in the chapter titled ’Inverse Spectral theory’. We will also provide results from a

preliminary study on the existence of MIFs corresponding to spectral data in the

chapter on future work.

Let us consider some example of questions in this study. We recall the following

definition. Let Λ be a separated sequence on R and let Φ be a MIF such that Φ “ eiφ

on R. Then Λ is said to be defining for Φ if for any MIF Φ̃(“ eiφ̃ on Rq,

φ “ φ̃ on Λ ñ Φ ” Φ̃.

A natural place to start is with the spectrum σpΘq, of a MIF Θ. Does σpΘq define

Θ? The answer to this question is - it does not, in general. As we saw in the section
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with Clark measures that each meromorphic inner function Θ is of the form

Θ “
Kµ´ 1

Kµ` 1
,

where Kµ is the Cauchy transform of the measure µ, which is defined by

µ “
ÿ

n

wnδλn ,

where tλnu = σpΘq. The weights wn satisfy the conditions- wn ą 0 and
ř

n
wn

1`λ2
n
ă 8.

So, there is an infinite choice of twnu, and each choice gives us a different MIF. Hence,

there an infinitely many MIFs with spectrum σpΘq. This indicates that we need more

information than just one spectrum, to uniquely identify the related MIF. This leads

us to ask if 2 spectra may be sufficient? We use Krein’s shift formula to answer this

question. Given any two intertwining and separated sequences Λ` and Λ´, there is

a one-parameter family of MIFs Φc that have the property that tΦc “ 1u “ Λ` and

tΦc “ ´1u “ Λ´. This family is given by the formula

1

πi
log

ˆ

Φc ` 1

Φc ´ 1

˙

“ SχE ` c,

where SχE is the Schwartz transform of χE and E “
Ť

npλn`, λn´q, where λn` ă

λn´ ă λn`1` and λn˘ P Λ˘. It is easy to see that if in addition to the two spectra

we have just one more point, then we can uniquely recover the MIF. In terms of

densities, the two spectra case seems to be the ideal case. One can ask that if we

have spectral data, where each point may belong to a different spectrum, are we still

guaranteed to obtain a unique MIF? We explore this question in detail in the chapter

’Inverse Spectral Theory’.

Let us consider a different problem. We suppose as usual, that u Ñ ´u2 ` qu
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is an operator on L1pa, bq, with q P L1pa, bq. Let c P pa, bq and q´ :“ q|pa,cq.

Suppose we know the part potential q´ and the spectrum σpq, α, βq. Then, can we

recover q? Hochstadt and Liebermann proved in [18] that we can recover q provided

c ě pa`bq{2. This question leads us to many interesting ideas. For instance, consider

the operator

uÑ ´u2 ` q´u

on pa, cq with boundary condition α at a. Let uλ be a solution of the corresponding

equation. From the family of solutions tuλuλ, we construct the Weyl m and inner

functions as before: m´pλq “ ´
u1λpcq

uλpcq
and Θ´ “

m´´i
m´`i

. In the same vein, , let

q` :“ q|pc,bq. We consider the operator

uÑ ´u2 ` q`u,

on pc, bq with boundary condition β at b. Let m` and Θ` be the Weyl m and inner

functions for the right part respectively. Then, it is proved in [27] that

Lemma 7. σpΘ´Θ`q “ σpq, α, βq.

An immediate corollary is

Corollary 1. σpq´, α, σpLqq determine the operator if and only if pΘ´, σpΘ´Θ`qq

determine Θ`,
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where L is the operator on pa, bq. One wonders if it is possible to recover the

operator from σpΘ´q,σpΘ`q and σpΘ´Θ`q. We have proved that it indeed is. And

in fact, this set of information is equivalent to having 2 spectra (Borg-Marchenko

case). The proof and discussions follow in the chapter ’Inverse Spectral Theory’.

3.5 Beurling Malliavin Theory

We recall the problem of completeness of exponentials in some L2 space, as men-

tioned in the introduction. Given a separated sequence Λ on R, it’s counting funtion

nΛ is the step function that jumps by 1 unit at each point in Λ and is 0 at 0. For

a ą 0, a sequence Λ is said to be a-regular if

ż

R

|nΛpxq ´ ax|

1` x2
dx ă 8.

We now define the interior BM density as follows.

D˚pΛq “ supta|D an a´ regular subsequence Λ1 Ă Λu.

The exterior Beurling Malliavin density is defined as

D˚pΛq “ infta|D an a´ regular supersequence Λ1 Ą Λu.

We can now state the famous Beurling Malliavin description of the radius of com-

pleteness. The details can be found in [5].

Theorem 6. (Beurling & Malliavin) Let Λ be a separated sequence in R. Then the

radius of completeness of teiλxuλPΛ is equal to 2πD˚pΛq.

In [28], Mitkovski and Poltoratski proved equivalent descriptions of the Beurling
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Malliavin density in terms of Toeplitz kernels.

D˚pΛq :“ supta : ker2
S
a
J
“ t0uu,

D˚pΛq :“ infta : ker2
JSa

“ t0uu,

where Spzq “ eiz and J is any MIF with σpJq “ Λ.
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CHAPTER IV

DE BRANGES LEMMA∗

In this chapter, we solve a problem that was first studied by Louis de Branges

in the 1960s - Given a separated sequence tanu on R, does there exist an MIF Θ

with tanu as spectrum, such that |Θ1| is uniformly bounded on R? By a separated

sequence tanu, we simply mean that there is a δ ą 0 such that |an ´ am| ą δ, for all

n ‰ m integers.

4.1 Introduction

We recall that an inner function on the upper half plane C` is a bounded an-

alytic function on C` with unit modulus almost everywhere on the real line R. A

meromorphic inner function (MIF) on C` is an inner function on C` with a mero-

morphic continuation to C. The spectrum of an MIF Θ is the level set tx P R : Θ pxq

“ 1u and we denote it by σpΘq. Inner functions arise often in the study of complex

function theory. A rather well studied object is the Weyl-Titchmarsh inner function

that frequently occurs in the study of the spectral theory of differential operators.

In his book ’Hilbert spaces of entire functions’ [10], Louis de Branges formulated

a result (Lemma 16) that was equivalent to the the statement, ’Given any sequence of

separated points tanu on R, there exists a meromorphic inner function, Θ such that

|Θ1| is uniformly bounded on R and σpΘq “ tanu.’ In 2011, Anton Baranov discovered

this statement to be false and demonstrated this in private communications with

mathematicians working in this area [3]. He noticed that any meromorphic inner

function having the natural numbers N as spectrum must indeed have unbounded

∗Reprinted with permission from Journal d’Analyse Mathematique: ‘Uniform Boundedness of
derivatives of Meromorphic Inner Functions on the Real line’ by Rishika Rupam, to appear.
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derivative on R. In fact, he formulated a more general result which could be loosely

stated as – any MIF that has as spectrum- clusters followed by gaps must necessarily

have unbounded derivative on R. In this paper, we will characterize sequences for

which there do exist corresponding MIFs with bounded derivatives, as well as describe

the method used by Baranov to contruct counterexamples.

Before proceeding any further, we must clarify de Branges motivation for his

result as well as its application. Lemma 16 that de Branges stated was used to

show the existence of a non-zero measure µ that is supported on a sequence Λ, such

that its Fourier transform µ̂ vanishes on an interval of positive measure. Readers

may recognize this as Beurling’s gap problem for sequences, wherein he asks the

question - under what conditions on the sequence Λ, does there exist a corresponding

measure µ with µ̂ vanishing on an interval of positive measure? In [28], Mitkovski

and Poltoratski provided a sufficient condition for Beurling’s problem for separated

sequences, in terms of the Beurling Malliavin density. We notice in hindsight that

de Branges was specifically looking at sequences that were regular and that these

sequences satisfy the requirement as stated in [28]. Thus, despite the erroneous

lemma, de Branges application of it still holds. We describe this briefly in the

applications below. We remark that even for such special sequences, however, there

may not exist any corresponding MIF with a bounded derivative. This and other

such counterexamples were constructed by Baranov and we decribe these in the last

section.

Apart from this, there have been demands for meromorphic inner functions with a

certain spectrum and a bounded derivative in more general contexts. For instance, in

the Beurling Malliavin theory for Toeplitz kernels, Makarov and Poltoratski require

this to prove the most general form of the BM multiplier theorem [27] (see application

2 below). In [28], Mitkovski and Poltoratski have characterized Pólya sequences
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and gap conditions using the existence of an MIF with bounded derivative. In his

paper [2] on the stability of completeness of a system of exponentials under certain

perturbations, Baranov requires the existence of such an MIF with spectrum as the

perturbed sequence. He also states a sufficient condition (lemma 5.2) on sequences

to possess this special MIF. We will exploit this as well as a new sufficient condition

to describe sequences that are spectra for MIFs with bounded derivatives. We also

prove a partial converse result.

4.2 Basic Properties of MIFs

It is easy to construct a meromorphic inner function with a given spectrum. We

have already demonstrated this in the section with Clark measures. We recall the

following main points arising from that construction.

Let tanu
8
´8 be a separated sequence on R (we proceed similarly for one-sided

sequences also). Let µ be a Poisson finite, positive measure on R with point masses

at the an, i.e.,

µ “
8
ÿ

n“´8

wnδan (4.21)

for some wn ą 0 such that
8
ÿ

n“´8

wn
1` a2

n

ă 8.The Cauchy transform of a Poisson

finite measure ν on R is given by

Kνpzq “
1

πi

ż

R

ˆ

1

t´ z
´

t

1` t2

˙

dνptq.

Applying the Cauchy transform to the measure µ just defined,

Kµpzq “
1

πi

8
ÿ

n“´8

wn
an ´ z

´
wnan
1` a2

n

,
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we have that Kµ is an analytic funtion from the upper half plane C` to the right

half plane. Finally we obtain the MIF Θ :C` Ñ D as follows,

Θpzq “
Kµpzq ´ 1

Kµpzq ` 1
. (4.22)

Observe that Θ is a meromorphic inner function on C`, with spectrum the set,

tanu
8
´8; For µ is non negative, giving us <Kµpzq ą 0 on C`, with Kµpxq P R for all

x P R, along with the fact that

w Ñ
w ´ 1

w ` 1

maps t<w ą 0u onto D, taking iR onto the unit circle. Morever, we notice that Θ

would take the value 1 exactly at the singularities of Kµ, i.e. at the ans.

We recall the measure µ is known as the Clark measure associated with the

function Θ. By a reversal of steps and using Herglotz’s theorem one can construct

a Clark measure given any meromorphic inner function on C`. In particular, Clark

measures associated with inner functions are singular with respect to the Lebesgue

measure, with the spectrum of the inner function as its support except, possibly, the

point at infinity. A natural question to ask is if the inner function with spectrum

tanu is unique. A look at (4.21) assures us that that is quite not the case, for the

wn are almost arbitrarily chosen. We can obtain restrictions on the wn by imposing

additional conditions on the function. Here we ask for boundedness of the derivative

on R.

4.3 Applications of De Branges Lemma

Let us see how useful it is to have an MIF with a bounded derivative on R with

two applications.
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1. We describe the sufficient condition for the gap problem, as described in [28]-

If D˚pΛq ą 0, then there does exist a nonzero measure µ, supported on Λ

such that µ̂ vanishes on an interval of positive length. Here D˚pΛq refers to the

interior Beurling Malliavin density of Λ. There are several equivalent definitions

of D˚. To understand the most relevant definitions here, let us clarify a few

things. Given a separated sequence Λ on R, it’s counting funtion nΛ is the step

function that jumps by 1 unit at each point in Λ and is 0 at 0. For a ą 0, a

sequence Λ is said to be a-regular if

ż

R

|nΛpxq ´ ax|

1` x2
dx ă 8.

We now define the interior BM density as follows.

D˚pΛq “ supta|D an a´ regular subsequence Λ1 Ă Λu.

Using this definition, it is easy to see that a-regular sequences have interior

density equal to a ą 0. Such sequences are also Pólya, i.e., it has the follow-

ing property- if there is an entire function f of zero exponential type that is

bounded on this sequence, then f must be a constant. This was proved by de

Branges in [10] and it’s connection with the gap problem is described in [28].

Thus, for regular sequences, the gap condition holds.

The proof of the gap condition is much simpler in the case the there is an MIF

with Λ as spectrum and bounded derivative on R.

Let us explain briefly De Branges’ motivation for having an MIF with bounded

derivative. We refer the reader to the section on De Branges spaces for defi-

nitions and properties. We recall our discussion in the introduction, wherein
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we mentioned that De Branges required the gap condition to hold for a certain

regular sequence, i.e., he required the existence of a measure µ that was sup-

ported on this regular sequence such that its Fourier transform µ̂ vanished on

an interval of positive length. The crucial result that he used was the existence

of a certain De Branges space of entire functions on C` with some conditions

on the mean type of the space. He was able to do this using the fact that |φ1|

is uniformly bounded on R. We refer the reader to ’Theorem 65’ in [10] for

details.

2. We will refer to [27] for this application. We use the standard notation Hpp“

HppC`qq to denote Hardy spaces and N` “ tG{H : G,H P H8, H is outeru

to denote the Smirnov-Nevanlinna class in C`. We refer the reader to the

section on model Spaces for the notation used here. As described in [27],

these Toeplitz kernels play a crucial role in answering questions in the inverse

spectral theory of differential operators and completeness problems of families

of functions, among others. Let us consider one such problem. Let Φ “ eiφ be

a meromorphic inner function and let Λ Ă R. We say that Λ is a defining set

for Φ if for any other meromorphic inner function Φ̃ “ eiφ̃,

φ̃ “ φ on Λ ùñ Φ ” Φ̃.

It has been described in [27] that a sufficient condition for Λ to be a defining

set for Φ is for Λ to be a uniqueness set for K8
Φ2 . This condition translates to

one about Toeplitz kernels as we saw in 3.

Theorem 7. Λ is a uniqueness set for K8
Θ if and only if for every meromorphic

inner function J such that σpJq “ Λ, we have that ker8
ΘJ
“ 0.
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Thus, the (non) triviality of Toeplitz kernels ker8
ΘJ

is useful in answering ques-

tions about defining sets. In particular, for MIFs that have a bounded deriva-

tive, these questions are easier to answer. Let us refer to the following two

theorems,

Theorem 8. Suppose Θ is a tempered inner function. Then for any mermor-

phic inner function J and any p ą 0,

kerprΘ̄Js ‰ 0 ùñ Dn, ker8rb̄nΘ̄Js ‰ 0.

By Θ being tempered one simply means that Θ1 has at most polynomial growth

at ˘8, i.e., DN,Θ1pxq “ Op|x|Nq, xÑ 8. Here, the n we obtain in the theorem

is the same as N , regarding the growth of |Θ1|. Thus, in the case of bounded

derivative |Θ1|, we have that

kerprΘ̄Js ‰ 0 ùñ ker8rΘ̄Js ‰ 0.

The next theorem comes under the heading of Beurling Malliavin multiplier

theorem.

Theorem 9. Suppose Θ is a meromorphic inner function satisfying |Θ1| ď

const. Then, for any meromorphic inner function J , we have

ker`rΘ̄Js ‰ 0 ùñ @ε, ker8rS̄εΘ̄Js ‰ 0.

The space ker` contains ker8 and hence it is easier to construct functions

in these spaces. Similarly, it is often easier to work with ker2, which is a

subspace of the Hardy spaceH2. Using the above theorems, we can just restrict
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our attention to these larger spaces in case Θ has a bounded derivative. As

mentioned in [27], in the case of a general bounded γ, where Θ̄J “ eiγ, we

cannot multiply down to H8, elements of kerUp“ ker2
Uq even by using factors

like S̄.

Thus, an MIF having a bounded derivative is an extremely useful object.

4.4 Main Results

We’ll denote the gaps between the successive ans as,

∆n :“

$

’

’

&

’

’

%

an`1 ´ an @n ą 0

an ´ an´1 @n ď 0.

(4.23)

In their paper [26], Makarov and Poltoratski have proved the existence of the required

inner function when the ∆n are uniformly bounded.

Our approach in this paper will be to consider sequences characterized by the

growth of their gaps. We start with gaps that are increasing, but very slowly. For-

mally, the gaps obey the relation

ln |an|

ln ln ∆n

À ∆n À ln |an|.

Here, and throughout the paper, fpnq — gpnq will denote the existence of constants

c1, c2 ą 0 such that c1fpnq ď gpnq ď c2fpnq for large enough n. And fpnq À gpnq

will mean fpnq ď cgpnq for some c ě 0 and large enough n.

It turns out that this case is a generalization of the result proved in [26].

Lemma 8. If tanu is a sequence in R and the ∆n, defined by (4.23) are such that

• ∆n`1 — ∆n
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• ln |an|
ln ln ∆n

À ∆n À ln |an|,

then there is a meromorphic inner function Θ on C` such that tanu is the spectrum

of Θ and |Θ1| is uniformly bounded.

Next, we consider sequences with slightly larger gaps. Baranov’s counter example

of the one sided sequence N leads us to ask the natural question- if we have N on

one side, how sparse can the sequence be on the other side? Simple computations

tell us that on the other side, the gaps may be at most geometrically increasing, i.e.,

|λn| À ec|n|, for some c ą 0. To put it precisely,

Observation 1. Let Θ be an MIF on C` with uniformly bounded derivative on R

and Λ the spectrum of Θ. If Λ˘ “ Λ X R˘ and Λ` “ N , then D a c ě 0 such that

|λn| À ec|n| for λn P Λ´.

Proof. If zn “ xn ` iyn are the zeros of Θ “ eiθ, then

θ1pxq “
ÿ

n

yn
px´ xnq2 ` y2

n

.

We notice that these are sums of Poissons kernels, with the property that
ş

R
yn

px´xnq2`y2
n
dx “

π. Let us restrict our attention to the zeroes in the upper right quadrant, i.e. xn ą 0

and yn ą 0. For any t ă 0 and fixed xn, the integral
ş0

t
yn

px´xnq2`y2
n
dx attains mini-

mum at y2
n “ xnpxn ´ tq{t and increases for y2

n ě xnpxn ´ tq{t. But we notice that
ş0

t
yn

px´xnq2`y2
n
dx ď

ş0

t
θ1pxqdx “ |σpΘqXpt, 0q|. So, when |t| is large enough, then larger

the yns, the denser Λ´. Thus, to explore the case when Λ´ is as sparse as possible,

we must assume that yn ď K for all n, for some K ą 0. On the other hand, the zeros

of Θ must be bounded away from the real line in order for |Θ1| to be bounded. Thus,
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we can assume, without loss of generality, that yn — 1. Consider the entire function

E associated with Θ, i.e. Θpzq “ E#pzq{Epzq “ Epzq{Epzq. These functions are

called de Branges functions (associated with an MIF). We refer the reader to [10]

and [28] for more on de Branges functions. We know that E ´ E# has zeroes on N

(at least), and so must be of exponential type at least π. Thus, the exponential type

of E is at least π and so the zeros of E are of the form zn — n ` iyn where n P N.

Then,

|σpΘq X pt, 0q| Á

ż 0

t

ÿ

N

1

px´ nq2 ` 1
dx —

ÿ

nď|t|

1

n
— ln |t|.

The extreme case in the above situation, i.e. when |λn| — ec|n|, has the property

that the gaps are co-measurable, i.e., ∆n — ∆n`1. This gives us motivation for our

next result where we analyse a more general case of co-measurable gaps. We recall

that the choice of the weights wn determine the growth of the function. Let us choose

wn — ∆n.

Lemma 9. If an is a separated sequence on R and ∆n, defined as in (4.23) are such

that

• ∆n`1 — ∆n and

• ∆n Á pln |an|q
2,

then by choosing wn — ∆n, Θ defined as in (4.22) is a meromorphic inner function

on C` with spectrum tanu
8
´8 such that |Θ1| is uniformly bounded on R.

Some examples of such sequences are an “ psgnnq|n|k, where k ą 0 and an “

psgnnqr|n|, where r ą 1.
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Next, we consider sequences that are sparse. By sparse, we mean sequences that

are at least geometrically increasing with common ratio bigger than 1, for instance

an “ psgnnqee
|n|

. The following statement may seem technical, but all that is being

said is: If we consider finite clusters of points such that consecutive clusters are

sparse, then choosing the weights wn — 1, the corresponding inner function will have

a bounded derivative on R.

Lemma 10. For each n P N, let us consider a finite sequence (cluster) of points

tajnu1ďjďmn (mn being uniformly bounded) that is defined by the property aj`1
n

ajn
Ñ 1

as n Ñ 8 and 1 ď j ď mn. Moreover, the gaps between consecutive clusters is

large, in the sense that there is a d ą 0 such that
ajn`1

aln
´ 1 ą d ą 0 for n ě 0 and

ajn´1

aln
´ 1 ą d ą 0 for n ă 0 . Then, there is a meromorphic inner function Θ such

σpΘq “ tajnu and |Θ1| is uniformly bounded on R.

To summarize, we have the following

Theorem 10. Let tanu be a separated sequence on R satisfying one of the conditions

below,

1. ∆n`1 — ∆n and ln |an|
ln ln |∆n|

À ∆n À ln |an| OR

2. ∆n`1 — ∆n and ∆n Á pln |an|q
2 OR

3. there is a d ą 0 such that the sequence can be partitioned into clusters tajnun,

with number of points in each cluster being uniformly bounded, such that for

any cluster, ajn
aj`1
n
Ñ 1 and between successive clusters :

ajn`1

aln
´ 1 ą d ą 0.

then there exists a meromorphic inner function with spectrum tanu with uniformly

bounded derivative on R.
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The above results cover a wide range of sequences. What happens when the

sequence falls in none of these categories? There are several ways ways in which this

could happen and we have a partial converse, which is inspried by Baranov’s counter

example, as described in [3]. Let us first state Baranov’s result.

Proposition 5. Let tanu be a separated sequence with the following property. Given

any N ą 0, there is a cluster tanu
k`N
n“k such that ak`m “ ak ` m for 1 ď m ď N

and ak`N`1 “ ak`N `N . Then, any MIF with spectrum tanu must have unbounded

derivative on R.

In essence, this sequence has arithmetic clusters followed by unbounded large

gaps. We generalise this result as follows. Let tanu be a sequence of points on R and

a D ą 0 be a constant such that given any N ą 1, there is a cluster of points tanu
N
n“1

such that a2 ´ a1 ě ND and an`1 ´ an ď D for n ě 2. Notice that this sequence

has clusters whose size grows unboundedly (thus excluding case 3 from above) and

∆1 ą N∆2 (thus the gaps are not co-measurable i.e., ∆n ffi ∆n`1). Such sequences

serve as counterexamples and we state the result below.

Proposition 6. Suppose tsnu is a separated sequence on the real line and D ą

0 is a constant such that given any N ą 0, there is a subset ttnu
N
n“1 such that

pt1, tNq
Ş

tsmu “ ttnu
N
n“1 for which t2 ´ t1 ą ND and tn`1 ´ tn ă D for all 2 ď n ď

N ´ 1 and let Θ be an MIF with this spectrum tsnu. Then given any δ ą 0, there is

a zero zn “ xn ` iyn of Θ such that 0 ă yn ă δ. Hence, |Θ1| is unbounded on R.

The above result can be used to prove that even in the regular case, we are not

assured of an MIF with bounded derivative. We describe this in the last section.

4.5 Proofs and Details

As mentioned before, we closely follow the proof of the result in [26] to give a

proof of lemma 8
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Proof. We use Krein’s shift formula to create a meromorphic inner function. Define

bn:=an`an`1

2
and let E :“

Ť

npan, bnq to define the function

1

πi
log

Θ` 1

Θ´ 1
“ Ku` ic, u :“ 1E ´

1

2
, c P R (4.24)

Let µ1 and µ´1 be the corresponding Aleksandrov-Clark’s measures defined by the

Herglotz representation

1`Θ

1´Θ
“ Kµ1 ` const.,

1´Θ

1`Θ
“ Kµ´1 ` const.

The measures µ1, µ´1 have the following form:

µ1 “

8
ÿ

n“´8

αnδan , µ´1 “

8
ÿ

n“´8

βnδbn ,

(4.25)

for some positive numbers αn, βn. We claim that

αn À ∆n ln ∆n, βn À ∆n ln ∆n. (4.26)

Since

|Θ1
| — |1´Θ|2|pKµ1q

1
|, |Θ1

| — |1`Θ|2|pKµ´1q
1
|,

we have

Θ1
pxq — min

"

ÿ αn
px´ anq2

,
ÿ βn
px´ bnq2

*

,
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It follows that if x P pam, am`1q, then by (4.26),

|Θ1
pxq| À

ż

|t´x|ě∆m

ln |t´ x|dt

px´ tq2
À

ln ∆m

∆m

À 1.

We will prove the estimate for αns. The proof for βns is similar.

αn “ Resan

ˆ

ÿ αn
x´ an

˙

“ ResanpKµ1q

“ Resan

ˆ

1`Θ

1´Θ

˙

“ const.Resane
Ku,

where u is as defined in (4.24).

eKu “ exp

"
ż bn

bn´1

uptqdt

t´ z

*

exp

"
ż

Rzpbn´1,bnq

uptqdt

t´ z

*

“ exp

"
ż bn

bn´1

uptqdt

t´ z

*

exp

"
ż

Rzpbn´1,bnq

uptqdt

t´ z

*

“

a

pbn ´ zqpbn´1 ´ zq

an ´ z
exp

"
ż

Rzpbn´1,bnq

uptqdt

t´ z

*

Thus,

Resane
Ku
— ∆n exp

"
ż

Rzpbn´1,bnq

uptqdt

t´ an

*

Thus, it remains to estimate exp
!

ş

Rzpbn´1,bnq
uptqdt
t´an

)

. This is done as follows.
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For j ą n,

ż aj`1

aj

uptqdt

t´ an
“ ln

bj ´ an
aj ´ an

´ ln
aj`1 ´ an
bj ´ an

“ ln

ˆ

1`
∆j

aj ´ an

˙

´ ln

ˆ

1`
∆j

bj ´ an

˙

“
∆j

aj ´ an
´

∆j

bj ´ an
`O

ˆ

∆2
j

paj ´ anq2

˙

“ O

ˆ

∆2
j

paj ´ anq2

˙

Since we are on the positive real line, we can take logs.

We have,

∆2
j

paj ´ anq2
À

ż aj`1

aj

ln t

pt´ anq2
dt.

Thus,

8
ÿ

j“n`1

∆2
j

paj ´ anq2
ď

ż 8

bn

ln tdt

pt´ anq2

ď

ż 8

bn

lnpt´ anqdt

pt´ anq2
`

ż 8

bn

ln andt

pt´ anq2

À
ln ∆n

∆n

`
ln an
∆n

À ln ln |∆n|,

using integration by parts in the second step. Thus,

ˇ

ˇ

ˇ

ˇ

ż 8

bn

uptqdt

t´ an

ˇ

ˇ

ˇ

ˇ

À ln ln ∆n.

Hence, we have obtained the estimate

αn À ∆ne
ln ln |∆n| “ ∆n ln ∆n.
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Let us now indulge in a simple observation that will aid us in proving as well

as understanding the proofs of lemmas 9 and 10. We recall the construction of the

inner function as described in the first section. Using Cauchy’s estimate, it is easy

to see that if there is a strip around the real axis on which the function is uniformly

bounded, then the derivative on the real line is also uniformly bounded. In other

words, if there are constants c,m ą 0 such that for |=z| ă c, |Θpzq| ă m, then

|Θ1
pxq| ď

1

2π

ż

|z´x|“c

|Θpzq|

|z ´ x|2
dz ď

m

c
.

We recall (2.5) and the relationship of Θ with the Cauchy transform (4.22) to for-

mulate a sufficient condition :

Observation 2. If there exist constansts c,m ą 0 such that for 0 ă =z ă c, we

have |Kµpzq ´ 1| ą m, then the MIF Θ :“ pKµ ´ 1q{pKµ ` 1q is such that |Θ1| is

uniformly bounded on R.

Conversely, however, it is only required that there be a zero free strip for Θ about

the real axis. In order to prove lemma 9, we need the following result.

Lemma 11. If ∆n`1 — ∆n then choosing wn := ∆n @n, we have

ˇ

ˇ

ˇ

ˇ

ÿ

n‰k

ˆ

wn
an ´ ak

´
wnan
1` a2

n

˙ˇ

ˇ

ˇ

ˇ

À ln |ak|.

Let us see the effect of this result in the situation when the gaps in the sequence

are at least logarithmically increasing.

Proof. (of lemma 9) Let C be a constant such that ∆n ě C ln2
|an|. Let us choose

and fix a δ ăă C. We will separate the real line into two disjoint sets:
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1. x P pak´1`ak
2

, ak`ak`1

2
q and |x´ ak| ě

δ
2

∆k

ln |ak|
,

2. x P pak´1`ak
2

, ak`ak`1

2
q and |x´ ak| ă

δ
2

∆k

ln |ak|
.

Case 1 We take derivatives in (4.22) to obtain the estimate

|Θ1
pzq| ď |1´Θ|2

ÿ wn
|z ´ an|2

.

For any x P pak´1`ak
2

, ak`ak`1

2
q and |x´ ak| ě

δ
2

∆k

ln |ak|
,

|Θ1
pxq| —

wk
px´ akq2

ď
∆k

δ2∆2
k{4pln |ak|q

2
ď

4pln2
|ak|q

δ2∆k

À 1. (4.27)

Case 2 We first notice that for z P Dpb, rq, where

b “
1

2

ˆ

ak ` ak`1

2
`
ak´1 ` ak

2

˙

and r “

ˆ

ak`1 ´ ak´1

4

˙

,

we have that

|Kµpzq ´Kµpakq| — 1.

For,

ˇ

ˇ

ˇ

ˇ

ÿ

n‰k

ˆ

wn
an ´ ak

´
wn

an ´ z

˙
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ÿ

n‰k

wnpak ´ zq

pan ´ akqpan ´ zq

ˇ

ˇ

ˇ

ˇ

À
ÿ

n‰k

∆n∆k

|pan ´ akqpan ´ zq|

—
ÿ

nRtk´1,k,k`1u

∆n∆k

pan ´ akq2

— ∆k

ż

Rzpak´1,ak`1q

dt

pt´ akq2

— 1
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Let x P pak´1`ak
2

, ak`ak`1

2
q and |x´ ak| ď

δ∆k

2 ln |ak|
, then for any z P D

ˆ

x, δ∆k

2pln |ak|q

˙

|Kµpzq| ě

ˇ

ˇ

ˇ

ˇ

wk
ak ´ z

´
wkak

1` a2
k

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ÿ

i‰k

wi
ai ´ z

´
wiai

1` a2
i

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

∆k

δ∆k{2 ln |ak|
´

∆k

ak

ˇ

ˇ

ˇ

ˇ

´ C 1 ln |ak|

ě
ln |ak|

2δ
´ C 1 ln |ak| `Op1q.

where C 1 is such that

ˇ

ˇ

ˇ

ˇ

ÿ

i‰k

wi
ai ´ z

´
wiai

1` a2
i

ˇ

ˇ

ˇ

ˇ

ď C 1 ln |ak|, by lemma 11. Thus, by

choosing a sufficiently small δ, we have that Kµ is bounded away from 1. We notice

that δ is independent of k. Thus Kµ is large on disks centred at points close to the

ans. We recall obsertaion 2 which stated that it is sufficient to have a strip above the

real line on which |Kµ| is bounded away from 1. Here, we obtain a slightly weaker

configuration - we have disks with centres at ak and radii δ∆k

2 ln |ak|
Á 1 such that at

each point z in the disk, |Kµ| is bounded away from 1. Thus, |Θ1pxq| is bounded for

x P pak´1`ak
2

, ak`ak`1

2
q and |x´ ak| ď

∆k

2 ln |ak|
. Cases 1 and 2 together give us that |Θ1|

is bounded on R.

Let’s now prove Lemma (11)

Proof. The proof is essentially computation of integrals. The underlying idea is that

when ∆n`1 — ∆n , the singular measure µ, now with weight at wn equal to the gap

∆n at an, behaves like the Lebesgue measure. Explicitly, we look at the following

calculations. Let n ą k, then

wn
an ´ ak

À
∆n´1

an ´ ak
ď

ż an

an´1

dt

t´ ak
and

wnan
1` a2

n

ě

ż an

an´1

tdt

1` t2
.
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Thus,

0 ď

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“k`1

ˆ

wn
an ´ ak

´
wnan
1` a2

n

˙ˇ

ˇ

ˇ

ˇ

À

ż 8

ak`ε

ˆ

1

t´ ak
´

t

1` t2

˙

dt

“

ˆ

ln |t´ ak| ´ 1{2 ln |1` t2|

˙ˇ

ˇ

ˇ

ˇ

8

ak`ε

— ln |ak|,

where ε is just some arbitrary positive number that is, say ą 1{2.

Identical calculations exist for the sum
ÿ

năk

ˆ

wn
an ´ ak

´
wnan
1` a2

n

˙

.

We now prove the following result leading to the proof of lemma 10. This lemma

considers sparse singletons, which we will generalize to sparse clusters.

Lemma 12. Let tanu be a sequence on R such that, 1 ´ ak
ak`1

ą d ą 0 @k ě 0 and

1´ ak
ak´1

ą d ą 0 @k ă 0, where d is independent of k. Then, there is a meromorphic

inner function on C` with spectrum tanu whose derivative is uniformly bounded in

R.

Proof. We will use lemma 5.2 in [2] to prove this result. First note that the ratio

test for convergence of a series gives us that
8
ÿ

n“´8

1

|an|
ă 8. We also notice that for

all n ‰ k,

ˇ

ˇ

ˇ

ˇ

ak
an
´ 1

ˇ

ˇ

ˇ

ˇ

ą min

"

d,
d

1´ d

*

“: D. (4.28)

For, if n ą k, then 1 ´ ak
an
ě 1 ´ ak

ak`1
ą d and for n ă k, ak

an
´ 1 ą d

1´d
. We notice

that this also tells us that ak
∆k
ă 1

D
for all k. Let us choose the weights wn “ 1.
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We rearrange terms,

ÿ

n‰k

ˆ

wn
an ´ ak

´
anwn
1` a2

n

˙

“
ÿ

n‰k

1` a2
n ´ a

2
n ` anak

pan ´ akqp1` a2
nq

“
ÿ

n‰k

1

pan ´ akqp1` a2
nq
`

ÿ

n‰k

anak
pak ´ anqp1` a2

nq

“ S1 ` S2.

Then,

|S1| ď
ÿ

n‰k

ˇ

ˇ

ˇ

ˇ

1

pak ´ anqp1` a2
nq

ˇ

ˇ

ˇ

ˇ

À
ÿ

n‰k

ˇ

ˇ

ˇ

ˇ

1

a2
n

ˇ

ˇ

ˇ

ˇ

ă 8

and

|S2| ď
ÿ

n‰k

ˇ

ˇ

ˇ

ˇ

anak
pak ´ anqp1` a2

nq

ˇ

ˇ

ˇ

ˇ

ď
ÿ

n‰k

ˇ

ˇ

ˇ

ˇ

ak
∆k

an
1` a2

n

ˇ

ˇ

ˇ

ˇ

ď
1

D

ÿ

n‰k

ˇ

ˇ

ˇ

ˇ

1

an

ˇ

ˇ

ˇ

ˇ

ă 8.

Thus, we have that

sup
n

ˇ

ˇ

ˇ

ˇ

ÿ

n‰k

ˆ

wn
an ´ ak

´
anwn
1` a2

n

˙
ˇ

ˇ

ˇ

ˇ

ă 8.

Hence, by lemma 5.2 in [2], the corresponding MIF, defined by 4.22 has uniformly

bounded derivative on R.

The hypothesis of the above lemma characterizes sequences which are sparse, i.e.,

at least geometrically increasing with common ratio strictly bigger than 1. Thus, gaps

that grow rapidly (but are still finite) do indeed have the required inner function.

Notice that we could make this result stronger by allowing sequences that, instead of

singletons, have finite bunches that are sparsely distributed. For, each bunch would

contribute a (uniformly) bounded weight to the existing sum. We prove lemma 10.
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Proof. (of lemma 10) Suppose we choose one point from each cluster and call it aj0m0
,

then by the proof of the previous lemma,

ÿ

n‰m0

ˆ

wjn
ajn ´ a

j0
m0

´
ajnw

j
n

1` pajnq2

˙

“
ÿ

n‰m0

ˆ

1

ajn ´ a
j0
m0

´
ajn

1` pajnq2

˙

ă B,

where B is a bound, independent of k. Consider a point aj0n0
and let the ’*’ in the

sum denote summation over all points except aj0m0

ˇ

ˇ

ˇ

ˇ

ÿ

˚

1

ajn ´ a
j0
m0

´
ajn

1` pajnq2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ÿ

j‰j0

1

ajm0 ´ a
j0
m0

´
ajm0

1` pajm0q
2

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ÿ

n‰i0,1ďjďnm

1

ajn ´ a
j0
m0

´
ajn

1` pajnq2

ˇ

ˇ

ˇ

ˇ

ď S `N

ˇ

ˇ

ˇ

ˇ

ÿ

n‰k

1

an ´ ak
´

an
1` a2

n

ˇ

ˇ

ˇ

ˇ

ď S `NB,

where S and B are constants. The maximum size of each cluster N assures that

S is independent of m0 and n0 and we know from the previous lemma that B is

independent of m0 and n0.

We now proceed to the last part of our discussion. Before we begin our proof

of proposition 6, let us elucidate some notations. Let us enumerate the zeroes znp“

xn ` iynq of Θ and let Θpxq “ eiφpxq on R. Let us pick and fix a large N and let ttiu

be a set of points on R as described in the statement of the lemma. Let S be the box

pt2, tNqˆp0,
?
NDq and T the box pt1, t2qˆp0,

?
NDq. Let ã be the mid point of the

interval pt2, tNq and let S̃ be the box pt2, ãq ˆ p0,
?
NDq. On the adjacent interval,

let c̃ be the point in pt1, t2q such that ã´ t2 “ t2´ c̃. Since zn form the zeroes of the

Blaschke product of Θ, we can write

φ1pxq “
ÿ

n

yn
px´ xnq2 ` y2

n

.
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Proof. Suppose that the zeros are bounded away from the real line, i.e., there is a

δ ą 0 such that ynδ for all all the zeros zn “ xn`iyn of Θ. Without loss of generality,

let δ “ 1. We have that for t P pc̃, t2q and s P pt2, ãq,

ÿ

znRSYT

yn
ps´ xnq2 ` y2

n

ď κ
ÿ

znRSYT

yn
pt´ xnq2 ` y2

n

,

where κ ą 0 is a constant independent of N .

Then,

ż ã

t2

ÿ

znRSYT

yn
ps´ xnq2 ` y2

n

dt ď κ

ż t2

c̃

ÿ

znRSYT

yn
pt´ xnq2 ` y2

n

dt ď κπ,

and the zeros in the box T “ pt1, t2q ˆ p0,
?
NDq induce the following inequality

ż ã

t2

ÿ

znPT

yn
ps´ xnq2 ` y2

n

ds ď

ż t2

c̃

ÿ

znPT

yn
pt´ xnq2 ` y2

n

dt ď π.

Let Z be the number of zeros tznu in the box S. Then,

ż ã

t2

ÿ

znPS

yn
ps´ xnq2 ` y2

n

ď Zπ.

Then,

ż ã

t2

ÿ

znPS

yndt

ps´ xnq2 ` y2
n

“

ż ã

t2

ˆ

ÿ

nPZ

´
ÿ

pSYT qc

´
ÿ

T

˙

yn
ps´ xnq2 ` y2

n

dt

ą Nπ ´ κπ ´ π.

Thus,

ˆ

N ´ κ´ 1

˙

π ď Zπ.
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This gives us that

Z ě N ´ κ´ 1.

Thus, for a large enough N , Z ě N{2. In a similar vein it can be proved that the

box S̃ contains at least N{4 zeroes. And for any subinterval of the form pt2, uq,

containing nu points from σpΘq, the box pt2, uq ˆ p0,
?
NDq contains at least nu{2

zeros. We know that tn ď t2 ` pn ´ 1qD for n ě 2. Thus, enumerating the zeros

inside S̃, we have xn ď t2 ` 2pn´ 1qD.

Thus,

π ą

ż t2

c̃

φ1ptqdt ě

ż t2

c̃

ÿ

S̃

yn
pt´ xnq2 ` y2

n

dt ě

ż t2

c̃

N{4
ÿ

n“1

yn
pt´ pt2 ` nDqq2 ` y2

n

dt

Á

N{4
ÿ

n“1

ż t2

c̃

1

pt´ pt2 ` nDqq2 ` 1
dt

“

N{4
ÿ

n“1

arctanpDnq ´ arctanpDn` t2 ´ c̃q

“

N{4
ÿ

n“1

arctan

ˆ

t2 ´ c̃

pDn` t2 ´ c̃qDn

˙

ě

N{4
ÿ

n“1

arctan

ˆ

1

p2Dn{N2 ` 1qDn

˙

Á
1

D

N{4
ÿ

n“1

1

n
,

which diverges as N Ñ 8, which is a contradiction.

Baranov remarks in [3] that since the placement of ’other points’ does not af-

fect the calculations above, we can make such clusters and gaps along a very rare

subsequence of N, without affecting the regularity. For example, let us consider the

following sequence Λ “ NzA, where A “ t2nk `mu for m “ 1, 2, ..., k, where nk is a

rare subsequence of N, say the sequence nk “ 3k. Then, we have gaps of length k,
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which is unbounded, followed by clusters with gaps of size 1, the size of the clusters

ě 2nk`1. This sequence is a-regular, where a “ 1. For,

ż

R

|nΛpxq ´ x|

1` x2
dx —

ÿ

k

k

1` p2nkq2
ă 8.

Thus, even for regular sequences, there may not exist any MIF with bounded deriva-

tive.
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CHAPTER V

EXISTENCE AND UNIQUENESS OF POTENTIAL

In this chapter, we find necessary and sufficient conditions for when a separated

sequence is defining for a MIF. We also establish the extent of non-uniqueness, in

terms of a metric description of the density of the sequence. Our results have conse-

quences on uniquely reconstructing potential from spectral data. In the results that

follow, we use the following notations. Let Λ be a separated sequence on R. Let

Φ be a meromorphic inner functions on C` and let Z “ tf P K`

Φ2 : f |Λ “ 0u. We

observe that Z is a subspace of N`. The results in this section have been proved in

collaboration with Mishko Mitkovski [29].

5.1 Uniqueness

5.1.1 Defining Sets for MIFs

The next result follows the proof of proposition 3.

Lemma 13. Let f P Z. Let Θ be any MIF with σpΘq “ Λ and define g “ f
1´Θ

.

Then, g P ker`
Φ

2
Θ
.

Proof. Given that the function f P N` and Θ is an MIF, the function

f

1´Θ
P N`.
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Moreover,

Φ2Θg “ Φ2pg ´ fq “ Φ2

ˆ

f

1´Θ
´ f

˙

“ Φ2

ˆ

fΘ

1´Θ

˙

“ ´
Φ2f

1´Θ
P N`,

since f P K`

Φ2 .

Lemma 14. Let Λ, Φ and Z be as described above. Let Θ be any MIF with σpΘq “ Λ.

Then,

T : Z Ñ ker`
Φ

2
Θ

(5.29)

defined as

T pfq “
f

1´Θ

is an isomorphism.

Proof. The previous lemma (lemma 13) tells us that for f P Z, f
1´Θ

P ker`
Φ

2
Θ

. It

is easy to see that T is a homomorphism. Moreover, if f
1´Θ

” 0, then, f ” 0.

To see that T is surjective, we simply look at its inverse. Let g P ker`
Φ

2
Θ

. Then,

there is an h P N` such that Φ2Θg “ h. We observe that Θg “ Φ2h P K`

Φ2 and

g “ Φ2Θh P K`

Φ2 . Then, gp1´Θq P K`

Φ2 and gp1´Θq|Λ “ 0. Thus, g Ñ gp1´Θq is

T´1.

Lemma 15. Let Λ be a separated sequence on R. Let Θ be an MIF with σpΘq “ Λ.

Then,

Λ is not defining for Φ ô ker`
Φ2Θ

‰ t0u (5.30)

Proof. Let Φ2 ı Φ be an MIF such that argpΦ2q “ argpΦq. Then, F “ Φ´Φ2 P K
`
ΦΦ2

,
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F “ 0 on Λ and F ı 0. By the previous lemma, this means that ker`
ΦΦ2Θ

‰ 0. By

proposition 1, this means that

argpΘq ´ pargpΦq ` argpΦ2qq

is almost decreasing. Since } argpΦq ´ argpΦ2q}8 ď 2π, we can replace argpΦq `

argpΦ2q by 2 argpΦq, while remaining almost decreasing. Thus, ker`
Φ

2
Θ
‰ t0u.

Conversely, if ker`
Φ2Θ

‰ t0u, then by the previous lemma, there is a function

G P K`

Φ2 , such that G “ 0 on Λ, G ı 0. Then, there is an F P H2 such that

Φ2G “ F . We follow the proof of proposition 4 in [27]. Define a new function Φ̃ as

Φ̃ “
Φ2 ` F

Φ` ΦG
.

The function Φ̃ ı Φ, since if that were true, we would have G ” Ḡ, implying that G

is a real valued function, thus a constant function, which in this case must be 0. But

this would contradict our assumption, hence Φ̃ ‰ Φ. We also have that Φ̃ is inner

because

|Φ2
` F | “ |Φ2

` Φ2Ḡ| “ |1`G| “ |Φ` ΦG|.

Moreover,

Φ2 ` F

Φ` ΦG
“

Φ2 ` Φ2Ḡ

Φ` ΦG
“ Φ

1` Ḡ

1`G
.

On the set Λ, the function G “ 0. Thus Φ̃ “ Φ on Λ. It is an easy geometric proof

that | argp1` Ḡq ´ argp1`Gq| = 2g, where g is the principal value of the argument

of the function G. Thus,

} arg Φ´ arg Φ̃}8 ă 2π.

Thus arg Φ “ arg Φ̃ on Λ.
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The proof above shows: Every new ’dimension’ in ker`
Φ

2
Θ

gives us a one-parameter

family of MIFs that agree with with Φ on Λ.

Lemma 16. Let xvy be a one-dimensional subspace in ker`
Φ

2
Θ

generated by v. Then,

there is a family of MIFs tΦr,vurPR such that arg Φ “ arg Φr,v on Λ, Φr,v ı Φ, given

by the formula

Φr,v :“ Φ

ˆ

1` rG

1` rG

˙

,

where G :“ p1´Θqv P K`

Φ2 and r P R.

We observe another consequence of the proof of lemma 15: If G P K`
Φ such that

G “ G on Λ, then Φ̃ :“ Φ1`Ḡ
1`G

is a MIF, with arg φ̃ “ arg φ on Λ. Indeed, this is

proposition 4 in [27], for the space K`
Φ , instead of Kp

Φ.

Proposition 7. (Makarov & Poltoratski) Λ is not defining for Φ if there is a non-

constant function G P K`
Φ such that

G “ Ḡ on Λ. (5.31)

A natural question to ask is- do all such MIFs Φ̃ with arg Φ̃ “ arg Φ on Λ have

the form Φ̃ “ Φ1`Ḡ
1`G

, with G P K`
φ , G “ G on Λ? Let us try to construct this G. If

such a G were to exist, then

arg
Φ̃

Φ
“ arg

1` Ḡ

1`G

“ Principal ArgpGq.

Let us choose a branch with this principal argument and extend it to C` using the
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Schwartz transform. Then,

log

˜

Φ̃

Φ

¸

“ log

ˆ

1`G

1`G

˙

` c

Φ̃

Φ
“ ec

1`G

1`G
.

Since Φ̃ “ Φ “ 1 on Λ, it must be the case that ec “ 1. Since arg Φ̃ “ arg Φ (which

also means that Φ̃ “ Φ on Λ), this forces G to be real on Λ. Moreover, we have the

following computation

Φ̃` Φ̃G “ Φ` ΦG

φG “ φ̃` φ̃G´ φ

φG “ φ̃` φ̃G´ φ.

Thus, G P K`
φ . We have proved the following result.

Lemma 17. Let Φ̃ be a MIF, different from Φ such that arg Φ “ arg Φ̃ on Λ. Then,

there is a G P K`
Φ , G “ G on Λ such that

Φ̃ “ Φ

ˆ

1`G

1`G

˙

.

We now reconnect with the space K`

Φ2 with the following result.

Lemma 18. If G P K`
φ , G “ G on Λ, then D F P K`

φ2, F “ 0 on Λ.

Proof. Let H P K`
φ be such that φG “ H. Define a function F “ φG ´ H P N`.
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Then,

φ
2
F “ φG´ φφG

“ H ´G P N`,

Thus, F P K`

φ2 . Moreover, F “ φG´ φG “ 0 on Λ.

We can now state a corollary which will serve the purpose of a converse to corol-

lary 16.

Corollary 2. Let Φ̃ be a MIF, different from Φ such that arg Φ “ arg Φ̃ on Λ. Then,

there is v P ker`
Φ

2
Θ

and a one- parameter family of MIFs tΦr,vurPR with the property

arg Φr,v “ arg Φ on Λ, Φr,v ı Φ such that

Φr,v “ Φ

ˆ

1` rf

1` rf

˙

,

where f :“ p1´Θqv and r P R.

5.1.2 Applications in the Schrödinger Case

Let us now state some applications of lemma 15. In the following result, we recall

the Beurling Malliavin densities (BM density), which are defined as follows [28].

D˚pΛq “ supta|D an a´ regular subsequence Λ1 Ă Λu.

D˚pΛq “ infta|D an a´ regular supersequence Λ1 Ą Λ,

where a separated sequence Λ1 is said to be a´ regular is

ż

R

|nΛ1pxq ´ ax|

1` x2
dx ă 8,
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where nΛ1 is the counting function of Λ1.

Lemma 19. Let q1 P L
1pa, bq be the potential of the operator

uÑ ´u2 ` q1u,

with boundary conditions as follows. Let αn be different boundary conditions at a:

upaqcospαnq ` u
1
paq sinpαnq “ 0,

and fixed boundary condition β at b

upbq cospβq ` u1pbq sinpβq “ 0.

Let Λ “ tλnun be such that λn P σpq1, αn, βq. Then the following is true.

1. Let q2 P L
1pa, bq be a potential for another operator with the same boundary

conditions and let λn P σpq2, αn, βq. If D˚pΛq ą 2D˚pσpΦqq, then q1 “ q2 a.e.

2. If D˚pΛq ă 2D˚pσpΦqq, then there is a q2 ı q1 such that λn P σpq2, αn, βq.

Proof. 1. Let Φ1 be the Weyl inner function corresponding to q1. Using Marchenko’s

result, it is enough to show that Λ is a defining set for Φ1. We know that σpΦ1q “

σpH1, D, βq, where D refers to the Dirichlet boundary condition at a. It is well known

that for Schrödinger operators, the spectrum is regular, i.e., D˚pσpΦ1qq “ D˚pσpΦ2qq.

By the hypothesis,

D˚pΛq ą 2D˚pσpΦ1qq “ 2D˚pσpΦ1qq. (5.32)
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Let Θ be any MIF with σpΘq “ Λ. By lemma 15, it is enough to show

ker`
Φ2

1Θ
“ t0u. (5.33)

Suppose that ker`
Φ2

1Θ
‰ t0u. Let a P pD˚pσpΦ1q, D

˚pΛqq. We recall the equivalent

definitions of densities, as given in [28].

D˚pΛq :“ supta : ker2
S
a
J
“ t0uu,

D˚pΛq :“ infta : ker2
JSa

“ t0uu,

where Spzq “ eiz and J is any MIF with σpJq “ Λ. Then, by the definition of the

densities, we have the following relations.

ker2
S
a
Θ
“ t0u (5.34)

ker2

Φ1
2
Sa

“ t0u

ker2
S
a
Φ2 ‰ t0upñ ker`

S
a
Φ2 ‰ t0uq (5.35)

ker`
Φ1

2
Θ
‰ t0u. (5.36)

However, 5.35 and 5.36 combine to give ker`rS̄aΘs ‰ t0u, which is a contradiction

to 5.34. Thus, it must be the case that ker`rΦ1
2
Θs “ t0u.

2. This is an application of Hórvath’s result (theorem 4) and the fact that if RpΛq is

the radius of completion on the exponentials teiλxuλPΛ, then D˚pΛq “ 1
2π
RpΛq.

5.1.3 A Special 3-Spectra Case

We also have an extension of Krein’s construction to the case of 3 spectra in the

following sense.
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Lemma 20. Let Λi = σpΘiq, i “ 1, 2 and Λ=σpΘ1Θ2q. Given Λ1, Λ2 and Λ, pairwise

disjoint, there exist meromorphic inner functions θi such that σpΘiq “ Λi, that are

unique upto a Möebius transformation.

Proof. Consider the function

f “
Θ1Θ2 ´ 1

pΘ1 ´ 1qpΘ2 ´ 1q

f is a holomorphic function on C` and since fpxq= ´fpxq @x P R, the argument of

f only takes the values ˘π
2
. Let

T1 :“ tx P R : Θ1pxq “ 1 or Θ2pxq “ 1u

T2 :“ tx P R : Θ1Θ2 “ 1u.

Simple geometric arguments tell us that

targpfq “ π{2u “ tPrinc argpΘ1q ` Princ argpΘ2q ě 2πu,

targpfq “ ´π{2u “ tPrinc argpΘ1q ` Princ argpΘ2q ă 2πu.

Using the above characterization, it is not hard to see that T1 and T2 actually

interlace i.e. between any two elements of T1, there is an element of T2 and between

any two of T2, there is one of T1.

Consider the function

F “
1

πi
log f.
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Let Sπ{2 :“ targpfq “ π{2u. Then,

F pzq “ SχSπ{2 ` ic,

where SχSπ{2 is the Schwartz transform of χSπ{2 . We notice that f can be rearranged

as

f “
1

Θ1 ´ 1
`

1

Θ2 ´ 1
` 1 (5.37)

If there exist Θ̃1 and Θ̃2 such that they have the same spectrum Λ1 and Λ2 and Θ̃1Θ̃2

has the spectrum Λ, then

f̃ “
1

Θ̃1 ´ 1
`

1

Θ̃2 ´ 1
` 1 (5.38)

differs from f by only a constant, say c. Suppose a P Λ1. Then we take radial limits

to the boundary,

lim
zÑa

fpzq “ lim
zÑa

f̃pzq ` c (5.39)

1

Θ1
1paq

“
1

Θ̃1
1paq

` c. (5.40)

Thus, the spectral measure of Θ1 and Θ̃1 are equal, upto a constant. Thus, the two

functions are defined upto a constant. The same is true for Θ2 as well.

Let us see the application of this result in spectral theory.

Lemma 21. Consider the operators

H1u :“ ´u2 ` q1u,

H2u :“ ´u2 ` q2u.
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on L2pa, bq, with boundary conditions:

upaq cospαq ` u1paq sinpαq “ 0

upbq cospβq ` u1pbq sinpβq “ 0.

Let c be a point in pa, bq. Let Θ1 :“ Θc
a,α and Θ2 :“ Θc

b,β be the Weyl inner functions

corresponding to H1 and Θ̃1 :“ Θc
a,α and Θ̃2 :“ Θc

b,β be the Weyl inner functions

corresponding to H2. If

σpΘ1q “ σpΘ̃1q, σpΘ2q “ σpΘ̃2q and σpΘ1Θ2q “ σpΘ̃1Θ̃2q,

then q1 ” q2 a.e. Consequently, q|pa,cq is completely determined by Θ1 and q|pc,bq is

completely determined by Θ2.

Proof. By the previous lemma, Θ1 and Θ2 are determined to be unique, upto a

Möebius transform by σpΘ1q, σpΘ2q, σpΘ1Θ2q.

It is interesting to note that in the above case, if any of the spectra agree on

all points but one, then we can use Hórvath and Chelkak’s result to reconstruct a

different potential, also from a Schrödinger operator.

5.2 Existence of Potential

In the previous section, we investigated the uniqueness of potential corresponding

to some spectral data. We now ask the existence question: Is a given sequence Λ, is
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there a potential that corresponds to it? In general, if we have data that corresponds

to two spectra of a Schrödinger operator, we can use Borg’s result to conclude the

existence of the corresponding potential. At the MIF level, this corresponds to 2

spectra of the Weyl inner function. One may ask if the data has the BM density of

2 spectra, but with points from several spectra, will it necessarily correspond to a

MIF? The answer is : No! The following result is an example of such a case.

Lemma 22. Let Λ1 “ tanu :“ t2nun and Λ2 “ tbnu :“ t2n ` 1un‰0. There is an

x P p0, 2q such that if Θ is an MIF with σpΘq “ Λ1, Θpbnq “ ´1 and Θpb0q “ i, then

b0 ď x, i.e., the solution to Θpzq “ i cannot lie in the interval px, 2q .

Proof. Suppose Θ is an MIF with σpΘq “ Λ1, Θpbnq “ ´1 and Θpb0q “ i. Let B be

the point in p0, 2q such that ΘpBq “ ´1. Then, by Krein’s construction, we have

that

Θ` 1

Θ´ 1
“ exppπiKuq, (5.41)

where Ku is the Cauchy transform of u :“ χE´
1
2

where E “
Ť

n‰0pan, bnqY pa0, Bq.

On R, we have the above equation taking the form

Θ` 1

Θ´ 1
“ exppπiKuq “ exppπiuq. expp´πũq, (5.42)
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where ũ is the Hilbert transform of u. Thus,

´i “
i` 1

i´ 1
“

Θpb0q ` 1

Θpb0q ´ 1
“ i. expp´πũq

“ i exp

„

´
π

2

ˆ
ż B

0

1

t´ b0

dt`
ÿ

n‰0

ż 2n`1

2n

1

t´ b0

dt

´
ÿ

n‰1

ż 2n

2n´1

1

t´ b0

dt´

ż 2

B

1

t´ b0

dt

˙

The right hand side is a continuous function of B. We will prove that for no B P p0, 2q

does the above equation hold.

Notice that since Θpb0q “ i, B ą b0. We evaluate the right hand side

i exp

„

´
π

2

ˆ
ż B

0

1

t´ b0

dt`
ÿ

n‰0

ż 2n`1

2n

1

t´ b0

dt´
ÿ

n‰1

ż 2n

2n´1

1

t´ b0

dt´

ż 2

B

1

t´ b0

dt

˙

“ i exp

„

´
π

2

ˆ 8
ÿ

n“´8

ż 2n`1

2n

1

t´ b0

dt´
8
ÿ

n“´8

ż 2n

2n´1

1

t´ b0

dt` 2

ż B

1

1

t´ b0

dt

˙

“ ´
eiπb0 ` 1

eiπb0 ´ 1
exp

ˆ

´ π

ż B

1

1

t´ b0

dt

˙

“ ´
eiπb0 ` 1

eiπb0 ´ 1
exp

ˆ

π ln
b0 ´ 1

B ´ b0

˙

“: αi,

where α is negative. We are interested in the solution to α “ ´1. As B increases,

the solution (i.e., the value of b0 ) that gives us α “ ´1 also increases. When B “ 2,

the solution is given by b0 “ 1.5. Thus, if we let x ą 1.5, then Θpxq ‰ i, for any

value of B in the interval p0, 2q. In other words, for any x P p1.5, 2q, the MIF for

which σpΘq “ Λ1, Θpbnq “ ´1 for n ‰ 0 and Θpxq “ i does not exist.
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Will it help if we remove another or a few more ´1s? The answer is No! Let us

remove N ´1s, situated at 1, 3, 5, .., 2N ´ 1 and again place an i at 1.5. We will do

similar calculations as above to prove that there will not exist an MIF corresponding

to this configuration. We denote by S the set t0, 1, ..., N ´ 1u. Precisely,

Lemma 23. Let Λ1 “ t2nun and Λ2 “ bn :“ t2n`1unRS. Then, there is an x P p0, 2q

such that if Θ is an MIF with σpΘq “ Λ1, Θpbnq “ ´1 for n R S and Θpb0q “ i for

bo P p0, 2q, then b0 ď x.

Proof. As before, we will assume, for a contradiction, the existence of such an MIF

Θ. For each i “ 0, 1, ..., N ´ 1, let Bi P p2i, 2pi ` 1qq such that ΘpBiq “ ´1. Then,

Θ is determined by Krein’s formula and

´i “
i` 1

i´ 1
“

Θpb0q ` 1

Θpb0q ´ 1
“ i exp

„

´
π

2

ˆN´1
ÿ

i“0

ż Bi

2i

1

t´ b0

dt`
ÿ

nRS

ż 2n`1

2n

1

t´ b0

dt(5.43)

´
ÿ

nRS

ż 2n`2

2n`1

1

t´ b0

dt´
N´1
ÿ

i“0

ż 2i`2

Bi

1

t´ b0

dt

˙

.

We know that B0 ą 1.5. For each i ą 0, suppose that Bi “ 2i ` 1, i.e. at

3, 5, 7, ..., 2N ´ 1. Then, by the previous lemma, i cannot be placed at 1.5- it would

have to be in the interval p0, 1.5q. It is easy to see that if Bi increases, so does the

position of i in p0, 2q. So, let us assume that Bi “ i` 2 for all i ą 0. Then, the right
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hand side evaluates as

i exp

„

´
π

2

ˆN´1
ÿ

i“0

ż Bi

2i

1

t´ b0

dt`
ÿ

nRS

ż 2n`1

2n

1

t´ b0

dt´
ÿ

nRS

ż 2n`2

2n`1

1

t´ b0

dt´
N´1
ÿ

i“0

ż 2i`2

Bi

1

t´ b0

dt

˙

“ ´
eiπb0 ` 1

eiπb0 ´ 1
exp

ˆ

´ π

ż 2

1

1

t´ b0

dt´
N´1
ÿ

n“0

ż 2n`2

2n`1

1

t´ b0

dt

˙

“ ´
eiπb0 ` 1

eiπb0 ´ 1
exp π

ˆ

ln
b0 ´ 1

2´ b0

`

N´1
ÿ

n“1

ln

ˆ

2n` 1´ b0

2n` 2´ b0

˙˙

“ ´
eiπb0 ` 1

eiπb0 ´ 1

„ˆ

b0 ´ 1

2´ b0

˙ˆ

3´ b0

4´ b0

˙

...

ˆ

2N ´ 1´ b0

2N ´ b0

˙π

“ αi,

where α is again a negative real number. Let us call the solution to α “ ´1 as xN .

Then, for x P pxN , 2q, the MIF Θ for which σpΘq “ Λ1, Θpbnq “ ´1 for n R S and

Θpxq “ i does not exist.

How does xN approach 2 as N approaches 8? We notice that when x P p1.5, 2q,

peiπb0 ` 1qpb0 ´ 1q

„ˆ

3´ b0

4´ b0

˙

...

ˆ

2N ´ 1´ b0

2N ´ b0

˙

“ C
ΓpN ´ yNq

ΓpN ` 0.5´ yNq
,

where C is a constant dependent on N , but lies in p1, 2q and yN P p0, 0.5q. We recall

the asymptotics of the Gamma function: Γpxq « xx as xÑ 8. Thus,

ΓpN ´ yNq

ΓpN ` 0.5´ yNq
« elnp1{Nq.

Thus, the solution xN of the equation

´
eiπy ` 1

eiπy ´ 1

„ˆ

y ´ 1

2´ y

˙ˆ

3´ y

4´ y

˙

...

ˆ

2N ´ 1´ y

2N ´ y

˙π

“ ´i
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obeys the asymptotic relation

1

pxN ´ 2q2
eπ lnp1{Nq

« 1.

Thus xN ´ 2 “ Op 1
Nπ{2 q.

We generalize lemma 22 to arbitrary intertwining sequences. Let Λ1 “ tanu and

Λ2 “ tbnu be 2 separated intertwining sequences. Let Λ˚2 “ Λ2ztb0u.

Theorem 11. Let Θ be an MIF with σpΘq “ Λ1 and ΘpΛ˚2q “ ´1, then there is

an x P pa0, a1q such that the solution of Θpyq “ i in the interval pa0, a1q must be in

pa0, xq.

Proof. We follow the algorithm in the proof of lemma 22. Let Φ be an MIF with

σpΦq “ Λ1 and σp´Φq “ Λ2. Let B P pa0, a1q such that ΘpBq “ ´1 and let c be the

solution of Θpyq “ i in the interval pa0, a1q. Then, by Krein’s construction again, we

have that

´i “ ´
Φpcq ` 1

Φpcq ´ 1
exp

ˆ

π ln
c´ a0

B ´ c

˙

“ ´αi,

where α is some positive real number. The position of B varies from c to a1. Let

cB be the solution of this equation that depends on B. Let x “ ca1 . Since cB is an

increasing function of B, it follows that cB ď ca1 “ x. We know that x ă a1 because

the RHS blows up at c “ a1, B “ a1.

5.2.1 Application in Mixed Spectra Problem with Incomplete Data

We reflect on the implications of the above results in the theory of differential

operators. An immediate consequence of lemma 22 is that since there is no MIF
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with the configuration as described in the lemma, correspondingly, there cannot be

a Schrödinger operator with the same configuration. Thus, it is easy to see that

Lemma 24. Given any Schrödinger operator L on pa, bq, with a fixed boundary

condition β at b. If the operator has the following configuration.

σpL,D, βq “ t2nun, σpL,N, βq Ă t2n` 1un‰0,

then there is no eigenvalue for pL, eiπ{2D, βq, in the interval p1.5, 2q. Here D and N

refer to the Dirichlet and Neumann conditions at a.

Proof. Suppose there is an operator with these properties, then there is a correspond-

ing Weyl inner function Θ, with σpΘq “ t2nun, σp´Θq Ă t2n` 1un‰0 and Θpxq “ i.

But this would contradict lemma 22. Thus, the lemma is proved.
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CHAPTER VI

SUMMARY AND FUTURE WORK

6.1 Summary

In this dissertation, we have discussed three problems arising in the study of

complex analysis, used in spectral theory.

In the seventh chapter, we discussed an old problem of Louis de Branges that he

had first studied in the 1960s: For which separated sequences Λ does there exist a

MIF Θ, with σpΘq “ Λ and |Θ1| uniformly bounded in R. De Brange had claimed

this was true for all sequences. But this was not true (lemma 16, [10]). We were able

to correct his erroneous lemma and provide a near complete description of sequences

for which this holds and also sequences for which it doesn’t.

In the eighth chapter, we discussed the recovery of potentials from spectral data.

In the first part, we discussed the uniqueness of potential and in the second part,

we discussed the existence of potential. In both these studies, we used the Weyl

Titchmarsh m and inner functions. Using Makarov and Poltoratski’s results in [27],

we were able to equate these problems with those about the uniqueness sets in Model

spaces as well as kernels of Toeplitz operators. We have characterized exactly when

a sequence is defining for an MIF. Moreover, we have also characterized the degree

to which a set is not defining for an MIF, and related that with the dimension of the

kernel of a related Toeplitz operator. In this chapter, we saw a different problem-

that of characterizing the sets which do not form spectral data sets of any MIF. This

is useful in concluding when a spectral data set does not come from a Schrödinger

operator.
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6.2 Future Work

6.2.1 De Branges Lemma

We have seen in chapter 7 that for a sequences to have a corresponding MIF with

bounded derivative, it sequence itself must be uniform in some sense. We also have a

counter example in case the sequence is not uniform. But there are some other ways

in which the sequences could display non uniformity. Let us describe those here.

1. A way to characterize sparsity would be to have growing clusters that are

sparser than any arithmetic progression, with common ratio approaching 1,

intertwining with a subsequence having non-comeasurable gaps.

2. Some other cases that we still don’t know about is when the gaps are co-

measurable, ∆n — ∆n`1 and

(a) The gaps are very small, ∆n À
ln |an|

ln ln ∆n
.

(b) The gaps are ’in between’ i.e., ln |an| À ∆n À ln2
|an|.

(c) The sequence has clusters and gaps, i.e. ∆n Ã pln |an|q
2 and ∆n Â ln |an|.

Problem 1: What happens to the derivative of the MIF with spectrum as described

above?

6.2.2 Uniqueness of Potential

In the chapter 8, we observed that if D˚pΛq ă 2D˚pσpΦqq, then we have a family

of MIFs that agree with Φ on Λ. One wonders if each of the MIFs in this family

corresponds to a Schrödinger operator. If we can characterize this, then we would

have a description of the number of Schrödinger operators which agree on a certain

spectral data set.

Problem 2: If there are multiple MIFs that agree on a certain set, and if one of them
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comes from a Schrödinger operator, do all of them have to come from Schrödinger

operators as well?

In general, MIFs have a one-to-one correspondence with canonical systems. Thus,

in this wider setting one can ask the more general question

Problem 3: If there are multiple MIFs that agree on a certain set, do all of them

have to belong to a certain subclass of canonical systems, eg. Schrödinger operators,

Dirac systems.

6.2.3 Existence of Potential

As we saw in the previous chapter, the interpolation of MIFs from a discrete

set of R is a subtle one. We used Krein’s formula for two spectra and by altering

two spectra slightly, were able to construct sequences that from which we cannot

interpolate MIFs. This leads us to ask many more questions.

Problem 4: What if instead of removing finitely many points from two spectra, we

remove infinitely many points, and replace it with a point from a third spectrum.

Will it still fail to be interpolating for an MIF?

Problem 5: Instead of starting with 2 fixed spectra, suppose we have data coming

from multiple spectra, can anything be said in that case?
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