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ABSTRACT

We study and implement methods to solve the variable density Navier-Stokes

equations. More specifically, we study the transport equation with the level set

method and the momentum equation using two methods: the projection method

and the artificial compressibility method. This is done with the aim of numerically

simulating multiphase fluid flow in gravity oil-water-gas separator vessels. The

result of the implementation is the parallel Aspen software framework based on the

massively parallel deal.II .

For the transport equation, we briefly discuss the theory behind it and several

techniques to stabilize it, especially the graph laplacian artificial viscosity with higher

order elements. Also, we introduce the level set method to model the multiphase flow

and study ways to maintain a sharp surface in between phases.

For the momentum equation, we give an overview of the two methods and discuss

a new projection method with variable time stepping that is second order in time.

Then we discuss the new third order in time artificial compressiblity method and

present variable density version of it. We also provide a stability proof for the discrete

implicit varaible density artificial compressibility method.

For all the methods we introduce, we conduct numerical experiments for verifica-

tion, convergence rates, as well as realistic models.
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NOMENCLATURE

u|K u restricted to cell K.

u|∂Ω u restricted to the boundary of domain Ω.

ν := . . . define the value of ν.

ν = µ ν and µ have the same value.

∇φ :=
(
∂φ
∂x1
, ∂φ
∂x2
, . . . , ∂φ

∂xd

)>
.

div(f) :=
∑d

i=1
∂fi
∂xi

.

∆φ := div(∇φ) =
∑d

i=1
∂2φ
∂x2
i
.

∇sf := 1
2

(
∇f +∇>f

)
.

(v, u)Ω :=
∫

Ω
vu dx, where u, v : Ω 7→ Rd

L0(Ω) {u measurable | meas{|u| > λ} <∞ ∀λ > 0}.

Lp(Ω) {u | (
∫

Ω
|u|p)

1
p <∞}.

L∞(Ω) {u | maxx∈Ω |u(x)| <∞}.

Lploc(Ω) {u | u|K ∈ Lp(K) ∀K ⊂ Ω, K compact}.

Dαf := ∂|α|f
∂α1x1... ∂αnxn

, e.g. D1,2,0f = ∂3f
∂x∂2y

if f is a function in 3D.

W s,p(Ω) {u | Dαu ∈ Lp(Ω) ∀|α| ≤ s, αi ≥ 0}.

W s,p
loc (Ω) {u | Dαu ∈ Lploc(Ω) ∀|α| ≤ s, αi ≥ 0}.

Hp(Ω) W 1,p(Ω).
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1. INTRODUCTION

In life, we strive to understand the world around us. We see water flow in rivers

and how beautiful and serene it is. On the other hand, we see wind howling in

hurricanes and how fatally dangerous it can become. Both are essentially physical

fluid flows like many in nature and – more specifically – fluid flows in industrial

plants and pipes in many systems around us and the industry. We are interested in

maximizing (or minimizing) a property of these systems so that they run optimally.

To achieve that, one needs to ‘‘tinker’’ with the physical system and hope that

the optimal state is reached. This can be prohibitively expensive, time consuming

and simply impractical. The better approach is to build mathematical models of

such flows, build software that simulates the systems using these models, match the

control variables to the physical system and then be able to predict how such systems

behave. Equipped with that, now one can use algorithms to optimize any aspect of

the physical systems. The mathematical model that describes such motion of fluids

is called the Navier-Stokes equations.

1.1 What are the Navier-Stokes Equations?

The incompressible Navier-Stokes equations are defined as follows:

∂tρ+ div(ρu) = 0, in Ω× (0, T ], (1.1)

ρ[∂tu + (u · ∇)u]− 2µdiv(∇su) +∇p = ρf , in Ω× (0, T ], (1.2)

div(u) = 0, in Ω× (0, T ], (1.3)
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where ρ,u, p are the density, velocity, and pressure respectively. µ is the dynamic

viscosity and f is the driving force. We will elaborate on (1.1)-(1.3) throughout the

upcoming chapters.

The Navier-Stokes equations are conservation laws. They conserve mass, momen-

tum, and energy in a system of partial differential equations (PDE). The equations

have been known for quite a long time (Navier 1823, Stokes 1845) but did not have

many practical uses except in very narrow cases. With the advent of computers, these

equations have risen in importance and a lot of research in the twentieth century was

dedicated to them and still continues today.

In this dissertation, we will describe the Navier-Stokes equations in depth and

explain two different approaches to solving them. Then, we will propose an extension

of the new "Artificial Compressibility" method and investigate its stability. This will

be done in three chapters. In the chapter 3, we will introduce the transport equation

which handles the mass conservation. After that, we will describe the constant density

momentum equation in one chapter and the variable density momentum equation

in the next; both conserve the momentum. In all the chapters, we will present the

equations, the discretization in both space and time, the linear systems produced

and the different numerical schemes to stabilize and solve them. Finally, we present

numerical results and figures. A more detailed overview is presented in section 1.4.

1.2 Commercial CFD Software Packages

To motivate the next section, we will give an overview of the current Com-

putational Fluid Dynamics (CFD) software packages. There are many open and

commercial software solve the Navier-Stokes equations. Over the past few decades,

the market has seen a surge of CFD software packages that has grown in complexity

2



and utility. This has been accompanied with exceptional progress in researching new

and improved numerical methods that address simple and complex flow problems.

These software packages offer myriad tools for automatic mesh generation, error

control mechanisms, efficient parallel iterative solvers, etc. These are the preferred

features for engineering firms and project design institutes. However, those software

packages have offered limited extensibility for research environments. Moreover,

intellectual property (IP) is paramount to commercial companies and they would

require access to the code of CFD software to be able to expand its functionality in

house with their own methods or have a contract with CFD companies. However,

CFD companies have been reluctant to build software with other’s IP and usually

refuse such fundamental customizations. Consequently, building custom software has

become an attractive option to some commercial CFD users.

1.3 The Saudi Aramco Project

In this dissertation, we will develop the methods used in the CFD software project

that was started in Texas A&M Department of Mathematics for Saudi Aramco –

the National Oil Company of Saudi Arabia. Aramco needs a customized simulation

software that:

• simulates multiphase fluid flow. Specifically, oil; water; and gas mixtures

flowing through crude oil production facilities,

• is high performance and massively-parallel (> 1000 processors),

• comes with the source code, and

• is fully customizable and extendable.

3



As shown in the previous section, these requirements are difficult to achieve by

buying an off-the-shelf commercial CFD package.

Figure 1.1: Schematic view of a gravity separation vessel found at Gas Oil Separation
Plants (GOSP).

The software will be used initially to simulate fluid flows in Gas Oil Separation

Plants (GOSP) (see figures 1.1 and 1.2). They are plants that receive feed from the

oil wells - which typically contains oil, water, and gas mixed together. Starting at

one end of the plant, the mixture is allowed some time to settle and gravity does its

work and separates the gas near the beginning of the plant. The oil and water start

separating one-thirds of the way in the plant. Two-thirds the way in, a weir (short

dam) allows the top layer of oil to spill over to the other side. At the same time, two

pipes underneath the plant extract the separated oil and water and a pipe above the

GOSP extracts the gas.

1.4 Overview

The main contributions of this dissertation are as follows: built the massively

parallel CFD framework Aspen, extended a second order projection method for the

4



Figure 1.2: Gas-Oil Separation Plants (GOSP) facility at Murjan, Saudi Arabia.
(courtesy: www.poonglim.co.kr).

Navier-Stokes equation to use variable time stepping, extended the constant density

artificial compressibility method for the Navier-Stokes equation to variable density,

and proved partial stability results using a simplified form of Navier-Stokes equa-

tions. There are also numerous contributions to the deal.II library for performance

enhancement and bug fixing.

There are 4 main chapters in this dissertation, Chapter 2 discusses the Aspen

framework and parallelism. Each of the next 3 chapters address one self-contained

subset of the Navier-Stokes equations: the transport equation in chapter 3, constant-

density momentum equation in chapter 4, and chapter 5 with the variable-density

momentum equation.

In chapter 3, we will explore the transport equation and briefly talk about the

existence and uniqueness of its solution in the literature. Then, we describe the

numerical methods to discretize in space and time and continue on to higher-order

5



methods. After that, we discuss the need for stabilization in the transport equation

and describe several methods, old and new, to achieve that. That leads to the

discussion of linear systems constructed based on the equation and how to solve them

in parallel. We finally conclude the chapter with numerical results and convergence

tests.

Chapter 4 discusses the constant-density momentum equation. Like chapter 2,

we present the model and shortly discuss its existence and uniqueness. Then present

an issue posed by the incompressibility condition and how to address it. This then

leads us to present three time discretization methods: the Uzawa method, Projection

method, and Artificial Compressibility method. Then we will discuss the linear

systems that surface from the equation and how to solve them in parallel. Also, we

conclude the chapter with numerical results and convergence tests.

Finally, chapter 5 discusses the variable-density momentum equation. It will

build upon chapter 4 and investigates the stability of the variable-density system of

equations. The two methods, the projection and artificial compressibility, in chapter

4 are extended to variable-density. We also prove continuous and implicit discrete

stability results for a simplified Navier-Stokes equations. We finally test the methods

with numerical results and convergence tests.
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2. ASPEN FRAMEWORK

In the next few chapters, we will get into the mathematical details of the in-

compressible Navier-Stokes equations. In this chapter, however, we will discuss the

framework Aspen - an acronym for Advanced Solver for multiPhase fluid sEparatioN

- that we built to solve the incompressible Navier-Stokes equations. This framework

was built with the following principles in mind:

• Usability and Extendability: To enhance usability, Aspen allows plugable

geometries, boundary conditions, initial conditions, etc. This extensibility

allows others to modify Aspen with as little change to the core functionality

as possible. Also, the core Navier-Stones equations solver is split into separate

classes following the best practice of minimizing coupling and increasing cohesion

(c.f. Stevens et al. [73]).

• Massively parallel: As we will discuss in the next section, Aspen is built

from the ground up with massive parallelism in mind: scaling to 1000’s of

processors. This is because nowadays higher performance can only be achieved

by running on multiple processors in parallel, each having a portion of the

problem. (deal.II, the underlying finite element library is capable of handling

billions of degrees of freedom [8]).

• Build on other’s work: To push the boundaries of our knowledge, we need to

‘‘stand on the shoulders of giant.’’ Thus, we built Aspen on strong foundational

libraries such as deal.II , PETSc , p4est(Bangerth et al. [6], Balay et al. [4],

Burstedde et al. [12] respectively), etc. These libraries are regularly maintained,

well documented and regularly tested. Taking advantage of these libraries is
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the sensible approach.

Many of the properties above are borrowed from Aspect (c.f. Kronbichler et al.

[50], Bangerth et al. [7]). The idea behind the choice of principles is to be able to

reuse other people’s code to push the boundaries of knowledge. To rebuild what has

already been built well is a waste of time and effort. A better approach is to modify

existing frameworks - preferably by building a reasonably isolated plugin - to achieve

the desired goals. However, the barrier to understanding frameworks is quite high,

and many resort to building code from scratch. This makes building well designed,

usable, and accessible frameworks a necessity in this day and age.

2.1 Motivation

Microprocessor technology started in the late 1970s and dominated the market of

computers. This was due to the processors’ ability to take advantage of enhancements

in intergraded circuit (IC) technology. As a result, single processor performance has

increased at a rate of 52% per year up until 2003 (c.f Hennessy and Patterson [45]).

However, due to the ‘‘maximum power dissipation’’ limit of air cooled processors

and a dearth of instruction-level parallelization that can be efficiently found, the

performance increase has been less than 22% since 2003. Clock speeds also have hardly

changed since 2003 with an average increase of 1% per year. Consequently, Intel, one

of the largest manufacturers of microprocessors, abandoned higher performance single

processor plans in 2004 and declared, with other companies, that the road ahead in

high performance is through multicore chips [45]. As a result, higher performance

can only be achieved by explicitly writing software with parallelization in mind.

Parallelization is based on the concept of splitting computations, as much as

possible, into smaller tasks that run in parallel. Some of the popular technologies
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used to achieve that are MPI [57], OpenMP [20], and Threading Building Blocks (TBB)

[65]. They are the basis technology for splitting and aggregating data among the

tasks to achieve the needed results. Here, we will mainly concentrate on MPI .

Many of the computations required for our code have already been parallelized

efficiently. Our task will be to continue that and build upon the parallelized building

blocks and fine-tune the higher level constructs. For example, although many well

known solvers and preconditioners are already parallelized efficiently, there are many

parameters to tune for the specific matrix being inverted (e.g. Hypre’s BoomerAMG,

see Henson and Yang [46]). Also, assembling the linear system matrix consumes a

sizable portion of execution time and exploiting the processors’ cache and the matrix’s

properties such as symmetry often lead to jumps in parallel performance.

The code developed during this research is based on deal.II (Bangerth et al.

[6, 5]), an open source intrinsically parallel finite element framework written in C++.

The modular and granular design of deal.II in addition to the strong integration

with many high performance parallel packages such as PETSc , Trilinos, and MUMPS

provides a fast and reliable base to build our massively parallel Navier-Stokes solver.

In addition, access to high quality preconditioners helps the parallel solve converge

faster. For example, parallel Incomplete LU decomposition (ILU) preconditioner

performs well but the efficiency goes down as the number of processors goes up

(see Chan and Van der Vorst [14]). A more efficient parallel preconditioner is

Hypre’s BoomerAMG, an algebraic multigrid preconditioner. It helps the solver by

propagating information faster without knowledge of the domain’s geometry. Both

parallel ILU and BoomerAMG are accessible through PETSc.
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2.2 MPI

MPI [57] is a standard interface for communicating among processes. These pro-

cesses can be on the same computer (with multiple cores per processor) or distributed

on a cluster. The advantage of MPI is that it does not matter where the process is

run; it only matters that the processes can communicate by moving data around with

speed and reliability. The underlying system optimizes the communication based on

the hardware platform. The MPI system launches N processes and gives each process

a unique number ‘‘rank’’ ranging from 0 . . . N − 1. Whether the processes are on the

same computer or different computers, MPI handles all the logistics and optimum

communication path.

For many applications such as CFD simulation software, communication among

processes is the bottleneck of performance. Many new technologies try to alleviate

this with very fast interconnection networks such as ‘‘InfiniBand’’. The main char-

acteristics needed for a network interconnect is low latency (the time it takes for a

packet of data to reach its destination) and high throughput (the amount of data per

second). We will, however, go no further into networks in this dissertation.

2.3 Measuring Parallelization Performance

To analyze parallel implementations, we employ several measurement criteria.

Amdahl [2] was the first to discuss the notion of speedup, the most common

measure of parallel performance. Given a program that spends Tser seconds in the

serial part of the code and Tpar seconds in the parallel part, we calculate a fraction

[0, 1] 3 Fp = Tpar
Tser+Tpar

and serial fraction Fs = 1−Fp, then the speedup for p processors
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in perfect conditions is:

Sp = speedup(p) =
T1

Tp
=

1

Fs + Fp
p

where T1 is the time spent in the serial fraction of the program, p is the number of

processors, and Tp is the time spent in the parallel part. This is crucial because the

best speedup we can hope for when p→∞ is:

lim
p→∞

Sp =
1

Fs

which is finite for any Fs > 0. If Fs = 0, then speedup(p) = p. Fs usually includes

serial overhead, communication waiting time (network or storage), etc. This is a

disadvantage for communication-heavy software like the one we are building in this

dissertation. There are some rare cases where this limit is exceeded due to cache

effects (e.g. Benzi and Damodaran [10, p. 95]) .

Another metric that is often used is efficiency:

Ep = efficiency(p) =
Sp
p

(2.1)

The ideal efficiency is 1 and it can range between [0, 1].

When testing implementation’s scalability in practice, two common scalability

tests are used: weak scalability and strong scalability.

• In strong scalability, the program size is fixed and the number of processors

increases. This is usually used to find the optimum number of processors for a

given problem size. Usually, it is difficult to achieve good strong scaling because

communication will dominate as the number of processors increase. This is
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because the processors get ever smaller portions of the problem and, thus, the

processors sit mostly idle waiting for communication to complete.

• In weak scalability, the problem size assigned to each processor is kept

constant while the overall problem size and number of processors increase

(i.e.problem size
p

is constant). To calculate speedup, we need to normalize the time

with respect the problem size. Namely:

Sp =
T1

Tp
× Np

N1

, (2.2)

were Np is the global problem size for p processors while performing weak scaling.

This test reveals how well the program scales up to thousands of processors when

the problem size increases in a typical supercomputer setup. The weak scaling

efficiency is usually consistent for programs that have local communications

with neighbors that is relatively constant when the problem scale is increased.

However, weak scaling efficiency decreases when global communication is used

often. Moreover, iterative solvers tend to need more iterations when the problem

size increases. One way to account for such a change in number of iterations is to

normalize the run time by the average number of iterations. However, we argue

that weak scaling must reflect the effect of real life ‘‘throwing more processors

at a problem’’ when facing big problem sizes regardless of how problem size

affects the internals of the algorithms.

We ran the 2D setup described in section 5.5.1.1 with different weak and strong

scaling parameters. The results are shown in figures 2.1-2.5. We see in figure 2.1 two

regions in the weak scaling on the Brazos supercomputer. The first is p = 1, · · ·, 16

that loses efficiency quickly and the second region p = 16, · · ·, 1024 where efficiency
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is not lost as fast. The reason has to do with p = 16 being the first setup with two

machines with 8 processors each and communicating over InfiniBand (the high-speed

network). It is worth mentioning that at p = 1, 024, Aspen is solving a problem with

360 million degrees of freedom, a significant problem size.

The weak scaling on the 64 processor Symmetric Multiprocessing machine (SMP)

up.math.tamu.edu in figure 2.2 clearly shows the architecture of the machine itself.

The machine has 4 AMD 6380 Opteron microprocessors each containing 16 cores.

The figure shows that after p = 16, communication starts to occur between the

microprocessors which is slower than communicating within the microprocessor and,

thus, leads to lower efficiency.

Figure 2.3 showcases a typical problem with strong scaling. Because the problem

size is constant, the problem can be too big for p = 1 and too small for p = 1, 024.

In this case, p = 1 has ≈ 300, 000 degrees of freedom per processor and p = 1, 024

has ≈ 300 degrees of freedom per processor, a significant difference. This resulted

in the terrible efficiency one can see in figure 2.3. To remedy that, figure 2.4 starts

from p = 16 instead and solve a problem that has 1, 443, 328 degrees of freedom per

processor. It reaches p = 1, 024 with 22, 552 degrees of freedom per processor. As

a result, we notice a less severe decrease in efficiency as the number of processors

reach p = 1, 024. We also see efficiencies that are above 1 at p = 32, 64. This is a

side effect of choosing the initial state on p = 16. Also, this may indicate that the

problem size per processor at p = 64 is optimal for the problem at hand where each

processor has 360, 832 degrees of freedom. Similarly, in figure 2.5, we see the same

behavior on up.math.tamu.edu as we observed on figure 2.3. This also has to do with

the ratio of degrees of freedom between the lowest and highest number of processors.

From all the scaling tests discussed, we can conclude that the communication-

heavy nature of CFD software is clearly observed as an overall significant decrease
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in efficiency as the problem size grows. This can be alleviated by using ever faster

and higher bandwidth communication technology. Also, although we only scale up

to 1,024 processors, deal.II (which Aspen is built upon) is capable of handling

massively parallel computations at 16,384 processors (c.f. Heister [44]).

2.4 Direct and Iterative Solvers

The result of finite element method system assembly is a linear system: a matrix A

and a right hand side vector b. The next step is to solve Ax = b to get the unknowns

x. There are two types of methods to achieve that: direct methods and iterative

methods.

1. Iterative methods are based on successive projections onto Krylov subspaces

(c.f. Saad [66]). Examples of such methods include Conjugate Gradient Method

(CG), Biconjugate Gradient Stabilized (BiCGSTAB), and Generalized Minimum

Residual Method (GMRES). They solve x ≈ A−1b approximately up to a certain

tolerance. This is done by iteratively generating a sequence of approximations

that converge to the solution. There are several criteria that have to be met for

an iterative method to be convergent (c.f. Saad and Schultz [67] and references

therein). In Aspen, we use CG, BiCGSTAB, and GMRES depending on the

enabled options.

For PDEs that arise in CFD, the linear systems produced converge slowly

and requires ‘‘preconditioning.’’ The preconditioner is applied to the linear

system Ax = b to transform it in such a way that iterative method converges

much faster. Aspen uses many preconditioners such as IL and Multigrid

BoomerAMG.

2. Direct methods such as Gaussian Elimination method, LU factorization, and
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Weak-Scaling Efficiency on Brazos

Figure 2.1: Efficiency of weak scaling on Brazos supercomputer [77]. Note that
the problem size per processor for {p = 4k, k = 0, · · ·, 5} is ≈ 300, 000 and for
{p = 2(4k), k = 0, · · ·, 4} is ≈ 600, 000. Efficiency was calculated using (2.1) and
(2.2).
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Figure 2.2: Efficiency of weak scaling on the Symmetric Multiprocessor (SMP)
machine up.tamu.math.edu. The dip after p = 16 is where the communication
happens between microprocessors. Efficiency was calculated using (2.1) and (2.2).
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Figure 2.3: Efficiency of strong scaling on Brazos supercomputer [77]. Notice the low
efficiency with p = 1, 024 which comes from the fact that huge gap between number
of degrees of freedom: ≈ 300, 000 per processor when p = 1 and ≈ 300 per processor
when p = 1, 024.
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Figure 2.4: Efficiency of strong scaling on Brazos supercomputer [77] when based
on p = 16. Compared to figure 2.3, we see much better efficiency since p = 16 is
two machines with 8 processors each communicating over the high-speed network, a
reasonable setup to compare p = 32, · · · to.
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Figure 2.5: Efficiency of strong scaling on the Symmetric Multiprocessor (SMP)
machine up.tamu.math.edu.

Cholesky factorization solves the system in a single step exactly. They are

robust and work reliably for all invertible matrices. They also do not need

preconditioners but need much more memory than iterative methods.

For small problems (< 100,000 dofs), direct solvers are usually faster than iterative

solvers. On the other hand, large problems with billions of degrees of freedom can

only be feasibly solved with iterative solvers. For a band matrix (a sparse matrix

which has the non-zero elements form a band around the diagonal) in 2D, a direct

solver works O(nb2) where b is the width of the band but an iterative solver can work

only O(n) (or much worse if not properly preconditioned). With clever reordering of

rows and columns, one can minimize the matrix’s fill-in of non-zero entries in the

direct solver’s LU factors resulting in an improved O(n
3
2 ) work (c.f. Poulson [62]).
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2.5 Building Aspen

We spent a year learning deal.II and developing the basic Navier-Stokes equa-

tions to be solved in parallel from the start. Coming from a background of Computer

Science, learning Finite Element and parallel deal.II together was not an easy feat.

We started with the fully parallel heat equation. Then we verified the convergence

rate in time and space for manufactured solutions. Using manufactured solutions

that are part of the discrete space u|K ∈ Qd
k and to expect exactness as a result was

of great help (exactness meaning that the approximation error is machine epsilon:

1.19209e-07 for float, 2.22045e-16 for double, 1.0842e-19 for long double). It pointed to

small problems (e.g. boundary conditions enforcement location within the code) that

did not necessarily alter the solution very much but made the code unreliable. After

the heat equation, we proceeded to implement the stokes equation then introduced

the projection part of the algorithm and finally the nonlinear term. The gradual

building of the code was quite illuminating and helps bridge the gap between one’s

understanding of the finite element method and algorithm actual implementation.

Building the code in parallel from the beginning is crucial. It is not a trivial task to

convert a sequential code to a parallel one. Also, many data structures in parallel are

tricky to implement and difficult to debug. Moreover, during the course of building

Aspen , many performance enhancements and new functionality was contributed

back to deal.II code base.

2.6 Aspen’s Modular Design

Aspen uses a modular design that can be expanded by adding new plugins. The

main modules are the NSSolver classes: NSProjectionSolver, NSACSolver, and

NSVDACSolver classes for the Projection, Artificial Compressibility and Variable

18



Density Artificial Compressibility algorithms respectively. These modules use the

following classes:

• EquationHandler classes solve particular equations of the Navier-Stokes equa-

tion. The classes that inherit from EquationHandler are: ContinuityHandler,

MomentumHandler, and PressureHandler. For each algorithm, different sub-

sets are used by different algorithms:

– The ‘‘Projection’’ algorithm uses: SSPRK3Solver for continuity (or

BDF2Solver), MomentumProjectionSolver, and

PressureProjectionSolver.

– The ‘‘Constant Density Artificial Compressibility ’’ algorithm uses:

MomentumACSolver, and PressureACSolver.

– The ‘‘Variable Density Artificial Compressibility ’’ algorithm uses:

ContinuityVDACSolver, MomentumVDACSolver, and

PressureACSolver.

• GeometryModel is the parent class for all classes that provide the geometry to

be used by NSSolver and mesh refinement functions. Examples include: Box,

ColoredBox, Channel, and DamBreakingGeometry.

• BoundaryCondition provides the boundary conditions for geometries. For

example: SetNoBoundaryCondition, SetInletBoundaryCondition, and

SetZeroBoundaryCondition.

• AspenFunction provides the initial conditions and is used for error analysis.

Examples include: RhoZero, UConstantNE, and

MomentumSourceTermJLGSinCosVarDens.
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Figure 2.6: Overview diagram of Aspen.

The GeometryModel, BoundaryCondition, and AspenFunction initial conditions

are all plugins chosen using a parameter file. For example, the dam breaking problem

discussed in section 5.5.2.2 uses the following parameter file:

...
subsection Initial Conditions

set ExactRho = RhoDamBreaking
set ExactU = UZero
set ExactP = PZero
set MomentumSourceTerm = GravitySource
set ContinuitySourceTerm = SourceContinuityZero

end

subsection Geometry Model
set GeometryModel = DamBreakingGeometry

end

subsection Boundary Conditions
set ContinuityBoundaryConditions = SetNoBoundaryCondition
set MomentumBoundaryConditions = DamBreakingBoundaryCondition
set ProjectionBoundaryConditions = SetZeroBoundaryCondition

end
...

A sample of the output for the parameter file is:
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started 2nd-order method
Cycle 1:
Unable to open points.txt. Assuming no point evaluations.

Number of active cells: 2107392
Number of degrees of freedom U: 51295107
Number of degrees of freedom P: 2167425
Number of degrees of freedom Rho: 17098369
Number of degrees of freedom per processor: 1670704

The current time is Wed Jan 7 09:48:44 2015

Time step 1 at t_tryg=0.01 at t=0.01
Phi_star^1 solved in 5 iterations.
Recreating the continuity SSPRK3 preconditioner ...

PreconditionBlockJacobi done.
SolverCG: Rho^1 solved in 0 iterations.
Phi_star^2 solved in 0 iterations.
SolverCG: Rho^2 solved in 0 iterations.
Phi_star^3 solved in 0 iterations.
SolverCG: Rho^3 solved in 0 iterations.
started assemble_system ... done
Recreating the momentum 2ndorder preconditioner ...

PreconditionBlockJacobi done.
SolverBicgstab: U solved in 9 iterations.
cfl = 0.020423
suggested new time_step = 0.01 t_ty = 0.01 cfl = 0.020423
Recreating the pressure projection dpsi preconditioner ...

PreconditionNone done.
SolverCG: Dpsi solved in 851 iterations.
Recreating the pressure projection dq preconditioner ...

PreconditionBlockJacobi done.
SolverCG: Q solved in 20 iterations.
OUTPUTING VTU PLOT
Saving all vectors to vectors.dat

Time for n-1=0 time steps = 26208.1s. (inf s/dof/step)
Outputed norms at t=0.01
Outputed point values at t=0.01

The current time is Wed Jan 7 09:56:37 2015

Time step 2 at t_tryg=0.02 at t=0.02
Phi_star^1 solved in 0 iterations.
SolverCG: Rho^1 solved in 26 iterations.
Phi_star^2 solved in 0 iterations.
SolverCG: Rho^2 solved in 24 iterations.
Phi_star^3 solved in 0 iterations.
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SolverCG: Rho^3 solved in 24 iterations.
started assemble_system ... done
SolverBicgstab: U solved in 11 iterations.
cfl = 0.235749
suggested new time_step = 0.01 t_ty = 0.02 cfl = 0.235749
SolverCG: Dpsi solved in 885 iterations.
SolverCG: Q solved in 19 iterations.
OUTPUTING VTU PLOT
Saving all vectors to vectors.dat

Time for n-1=1 time steps = 18827.6s. (0.000176082 s/dof/step)
Outputed norms at t=0.02
Outputed point values at t=0.02

The current time is Wed Jan 7 10:03:12 2015

Time step 3 at t_tryg=0.03 at t=0.03
Phi_star^1 solved in 0 iterations.

...

Figure 2.6 shows an overview of how the different modules are connected.

This is the output of a simulation that has a total of 70,500,000 degrees of freedom

taking 450 GB of RAM running on top.math.tamu.edu and 64 processors. This

corresponds to 6850 bytes per degree of freedom. This is high but acceptable for

a project in progress. With optimization, this number will significantly go down

and allow for simulation running in the 100’s of million of degrees of freedom. More

specifically, ordering the allocation of memory for vectors and matrices and calculating

the preconditioners in such a way that the maximum memory used at any given time

does not exceed the machine’s memory. This may reduce the memory per degree of

freedom by 20-30% or more.
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3. THE TRANSPORT EQUATION

The transport equation describes the advection or transport of an incompressible

fluid along a velocity field. It essentially describes the shifting of the infinitesimal

particles of a fluid in the direction of the velocity field.

Consider a simple example in 1D: ∂tρ+ 1∂xρ = 0. This describes the movement

of ρ(x, t) in the positive direction with speed 1 per time t. Let ρ(x, 0) = x which is a

line with slope 1, intersecting the x-axis at 0. Let us approximate the time derivative

with the following ρ(x,1)−ρ(x,0)
1

+ ∂xρ(x, 0) = 0 =⇒ ρ(x, 1) = ρ(x, 0) − 1 = x − 1.

This is a line with slope 1 intersecting the x-axis at 1. Using the terminology of this

section, we transported the function ρ(x, 0) = x to the right by 1 at time t = 1 and

thus becomes ρ(x, 1) = x− 1. If the speed is c instead of 1, then the PDE becomes

∂tρ+ c∂xρ = 0 and the solution ρ(x, t) = x− ct at time t. These results can also be

obtained by using the well known ‘‘method of characteristics.’’

The example above becomes more complicated when working with complex

functions and higher dimensions but follows the same advection principle. Moreover,

the transport equation becomes unstable if not discretized properly. This is going to

be discussed in detail in sections 3.2.1 and 3.2.2. In the next section, we will discuss

the mathematical model of the transport equation. Then, we discuss the temporal

and spatial discretization of the equation. After that, we will show specific techniques

to stabilize the transport equation and compression techniques to counteract the

diffusive effects of stabilization.
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3.1 The Mathematical Model

The transport equation is a hyperbolic, n-dimensional Initial Value Problem scalar

conservation partial differential equation (PDE) that has the following form:

∂

∂t
ρ+ div (uρ) = 0, in Ω, (3.1)

ρ(x, t) = ρ∂Ω, in ∂Ω−, (3.2)

ρ(x, 0) = ρ0, ρ0 > 0, (3.3)

where Ω ⊂ Rd, d = {2, 3} a open domain with a ‘‘smooth enough boundary’’. The

density ρ(x, t) : Ω × R+ 7→ R, and the velocity field u(x, t) : Ω × R+ 7→ Rd. We

mainly work with incompressible fluids where divu = 0 and, thus, (3.1) becomes:

∂

∂t
ρ+ u · ∇ρ = 0, in Ω. (3.4)

Since this is an advection equation, we need to impose the boundary conditions

where the inlets are. Intuitively, when you have an area adjacent to the boundary and

mass is moved inside the domain, something has to be put in its place. Specifically,

∂Ω− (the inlet) is where u·n < 0 where n is the outward unit vector at the boundaries.

This essentially means that the velocity field at the boundary projected to the normal

of that boundary must be negative when ‘‘material’’ is coming into the domain. ρ0 is

the initial density with no vacuum (hence the strict inequality ρ0 > 0).

Since we are using the finite element method, we take the variational form of the

above equations and find the weak solutions to the problem. The problem becomes:
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Find ρ(x, t) ∈ V (Ω) such that:

∫
Ω

v

(
∂

∂t
ρ+ u · ∇ρ

)
dx = 0, ∀v ∈ V (Ω), (3.5)

ρ(x, t) = ρ∂Ω, in ∂Ω−, (3.6)

ρ(x, 0) = ρ0, ρ0 > 0, (3.7)

where V is an appropriate space for the transport equation with Dirichlet boundary

conditions.

For the existence and uniqueness of the solution of (3.5), we quote the following

theorem.

Theorem 3.1.1. (DiPerna and Lions [22, Theorem II.3])

For d = {2, 3}, If u ∈ L1(0, T ;W 1,1
loc (Rd)), div (u) ∈ L1(0, T ;L∞(Rd)) and ρ0 ∈

L0(Rd), then there exists a unique renormalized solution of (3.5) in L∞(0, T ;L0(Rd)).

Theorem 3.1.1 shows that the transport equation has a unique solution in Rd

given the conditions on ρ0 and u. In this dissertation, however, we will deal with

bounded domains Ω which have more complex existence and uniqueness conditions

than shown in DiPerna and Lions [22], Lions [55] which is beyond the scope of this

dissertation. Also, the notion of ‘‘renormalization’’ is discussed in DiPerna and Lions

[21].

3.1.1 The Level Set Model

The fluid mixture we are interested in modeling with the transport equations has

three phases: oil, water, and gas. Each has a different density value. Since they do

not mix, it is important that each phase must be distinct when modeled and the

volume of each phase in Ω be conserved. Otherwise, the incompressibility condition

div (u) = 0 will be violated. As a consequence, when solving the approximation of
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the transport equation, one needs to make sure the interface between two phases is

tracked with enough accuracy. There are many methods to achieve such accuracy,

which can be divided into two classes. In the first one, the interface is implicitly

tracked by a function defined on the whole domain. Such methods include the level

set method, and volume of fluid method. In the second class, the interface is explicitly

tracked with front-tracking methods. We will concentrate in this dissertation on the

level set method between two phases.

The level set method was first introduced by Osher and Sethian [61] to evolve

the interface with speeds depending on the curvature of a given velocity field. The

interface is tracked with a function Φ(x) to represent the n− 1 dimensional interface

Γ ⊂ Ω separating Ω into two phases Ω1 and Ω2. There are many ways to define Γ

but we are going to discuss two: the signed distance function with the interface at

Φ(x) = 0, and tanh function with the interface at Φ(x) = 0.5. The signed distant

function is defined as:

Φ(x) := d(x) =


min
xΓ∈Γ
‖x− xΓ‖, x ∈ Ω1,

− min
xΓ∈Γ
‖x− xΓ‖, x ∈ Ω2.

Note that ‖.‖ can be any norm. The tanh function is defined as:

Φ(x) :=
1

2

(
1 + tanh

(
d(x)

α

))
,

where α controls how steep the interface is. From now on, we will use the tanh

function to define the level set. In order to describe the evolution of an interface that
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is transported along with a fluid, we can use Φ is used instead of ρ in (3.5):

∫
Ω

v

(
∂

∂t
Φ + u · ∇Φ

)
dx = 0, ∀v ∈ V (Ω), (3.8)

Φ(x, t) = Φ∂Ω, in ∂Ω−, (3.9)

Φ(x, 0) = Φ0, Φ0 > 0. (3.10)

This essentially transports the Φ function instead of the density ρ. To reconstruct

ρ from Φ, we use the function H(Φ):

H(Φ(x)) =


ρ1, Φ(x) < 0.5,

ρ2, Φ(x) ≥ 0.5,

(3.11)

where ρ1, ρ2 are the densities of the fluids in Ω1 and Ω2 respectively (ρ1 < ρ2).

However, H(Φ) will produce density fields that have discontinuous transitions between

phases which are undesirable when dealing with PDEs that expect smooth enough

functions. There are many functions that create smoother transitions such as:

H(Φ(x)) =
ρ2 − ρ1

2
+
ρ2 + ρ1

2
tanh

(
Φ(x)

α

)
,

where α controls how steep the transition between the two densities is. The advantage

of this reconstruction is that it produces the closest density field close to (3.11) with

some retained smoothness. Another candidate H function is:

H(Φ(x)) = (ρ2 − ρ1)Φ(x) + ρ1, (3.12)

which is a linear scaling of the level set to the densities in Ω. It is quite robust but

it transfers the undesirable oscillations that extends beyond Φ(x) > 1 or Φ(x) < 0.
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This may be solved by clipping the reconstruction at a certain radius α around 0.5

(0 ≤ α ≤ 0.5) :

H(Φ(x)) =


ρ1, Φ(x) ≤ 0.5− α,

ρ2, Φ(x) ≤ 0.5 + α,(
Φ(x)− (0.5− α)

)ρ2 − ρ1

2α
+ ρ1, otherwise.

(3.13)

However, this reconstruction introduces relatively sharp changes in the density

gradient and affects the stability of simulation runs. Finally, the last reconstruction

we are going to introduce has the property of having slope 0 at the 0.5± α points

and being a transition polynomial of third degree (again 0 ≤ α ≤ 0.5):

H(Φ(x)) =


ρ1, Φ(x) ≤ 0.5− α,

ρ2, Φ(x) ≤ 0.5 + α,

(4α− 2Φ(x) + 1)(2α + 2Φ(x)− 1)2

32α3
(ρ2 − ρ1) + ρ1, otherwise.

Compared to the clipped reconstruction (3.13), the above has smooth gradient

transitions. Figure 3.1 shows how the transitions look in 1D.

3.2 Numerical Methods

Now we discuss numerical methods to solve equation (3.5). Because computers are

of finite capacity, we need to discretize the continuous form (3.5) in both space and

time into finite blocks. This is going to be discussed in sections 3.2.1 and 3.2.2. Then

sections 3.3.1 and 3.3.3 will elaborate on methods to stabilize discretized variational

forms. After that, we will discuss the level set compression technique in 3.3.4.
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Figure 3.1: The various formulas for reconstruction of the level set to the density
field. ρ1 = 1, ρ2 = 3, α = 0.1.

3.2.1 Time Stepping

Since we are solving the transport equation numerically, we need to discretize

the transport equation in time which means we get the values of ρ(x, t) at times

0 = t0 < t1 < · · · < tn = T . There are many methods to discretize the transport

equation in time. Each method has many advantages and disadvantages. For example,

Forward Euler is simple to implement but is first order and requires stabilization

(this will be explained in section 3.3.1). Runge-Kutta, on the other hand, is higher

order and but requires multiple steps and higher memory requirements.

29



3.2.1.1 Forward Euler Method

Forward Euler is a first order explicit Ordinary Differential Equation solver (also

called integrator). It can be derived from expanding a Taylor series around the n+ 1

step and truncating after the second order term.

Consider the following Ordinary Differential Equation (ODE):

∂y

∂t
= f(t, y), (3.14)

y(0) = y0. (3.15)

We want to find the solution of y(t) at discrete points {tk}Kk=1 where tk = k∆t

using Forward Euler Method as follows:

yk+1 = yk + ∆tf(tk, yk), (3.16)

which has an error of O(∆t). For the transport equation, we have the following:

∂ρ

∂t
= −u · ∇ρ. (3.17)

Consequently, putting (3.16) and (3.17) together is:

ρk+1 = ρk + ∆t(−uk · ∇ρk). (3.18)

Forward Euler is stable if the time step is small enough for ODEs (and stable for PDEs

when some space stabilization, e.g. artificial viscosity, is added). Moreover, because

Forward Euler stepping is essentially a linear combination of the previous time steps,

if the proper conditions are met, it will be ‘‘maximum principle preserving’’. This
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can be shown by looking at (3.18) and with the proper space discretization discussed

in 3.2.2:

ρk+1
i = ρki + ∆t

∑
j∈supp(ρki )

(−ukj · ∇ρkj ), (3.19)

where the superscript is the time index, the subscript is the degree of freedom (dof)

index, and supp(ρki ) is the set of all dofs that are in the closure of the support of the

shape function for ρi. This can be put more generally as:

ρk+1
i =

∑
j∈supp(ρki )

aijρ
k
j . (3.20)

Then, we can have the following maximum principle preservation lemma:

Lemma 3.2.1. Let |ρkj | <∞, j = 1 . . . N , if (3.18) is a convex combination of ρk. i.e.

∆t, h such that ∀j,
∑

i aij = 1, aij ≥ 0 in (3.20) then:

min
i
ρki ≤ min

i
ρk+1
i ≤ max

i
ρk+1
i ≤ max

i
ρki .

Proof. Assume not. Without loss of generality, ∃ i such that ρk+1
i < minj ρ

k
j . Since

ρk+1
i =

∑
j aijρ

k
j , this implies that there are some ai < 0 which is a contradiction.

Also, if ρk+1
i > maxj ρ

k
j , then

∑
j aij > 1 which is also a contradiction.

Forward Euler is stable for ODEs only when the Courant-Friedrichs-Lewy (CFL)

condition is satisfied (c.f. Courant et al. [18]). The CFL condition for the transport

equation is |u|L∞(Ω)
∆t
h
≤ C where h is the mesh cell edge size and is heuristically

C = 0.5 (with 1D analysis using uniform mesh). The definition of h will be clarified

in the spatial discretization section 3.2.2.
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3.2.1.2 Backward Euler Method

The Backward Euler (or implicit) method is a slight modification on the Forward

Euler method. Backwards Euler is also referred to in the literature as Backward

Differentiation Formula 1 (BDF1). As before, to get y(t) at the discrete points

{tk}Kk=1:

yk+1 = yk + ∆tf(tk+1, yk+1), (3.21)

which also has an error of O(∆t). Applying it to the transport equation means

putting (3.17) and (3.21) together and we get:

ρk+1 −∆t(−uk+1 · ∇ρk+1) = ρk.

The difference between Forward and Backward Euler methods is that the Back-

wards Euler method is unconditionally stable (albeit more computationally expensive).

For a more thorough discussion of finite difference methods, refer to Thomas [78].

3.2.1.3 Crank-Nicolson Method

The Crank-Nicolson method is an implicit method combining both Forward and

Backward Euler. The averaging of Forward and Backward Euler steps turns to be

unconditionally stable and second order in time (Crank and Nicolson [19], Thomas

[78]). The order of convergence can be proven by taking a Taylor’s expansion around

tk+ 1
2 . To get the discrete points of y(t) at {tk}Kk=1:

yk+1 = yk +
∆t

2

[
f(tk, yk) + f(tk+1, yk+1)

]
. (3.22)

The resulting transport equation time step update comes from (3.17) and (3.22)
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as follows:

ρk+1 − ∆t

2
(−uk+1 · ∇ρk+1) = ρk +

∆t

2
(−uk · ∇ρk).

Both the Backward Euler and Crank-Nicolson schemes are implicit and require

the value of an unknown uk+1 which is calculated next when we solve the Navier-

Stokes momentum equation. To overcome this issue, we calculate a second order

extrapolation of such a value: namely uk+1 = 2uk − uk−1.

3.2.1.4 Runge-Kutta Method

Runge-Kutta Methods (RK) are a family of ODE integrators that are generated

in a common way. Specifically, RK uses the information from slope ∂y/∂t = f(t, y)

at several locations in between tk and tk+1 then perform a weighted averaging of the

values. The result is a solution with higher accuracy and better stability property.

The most commonly used RK method is RK of 4th order errors O(∆t4) and is as

follows:

k1 = ∆tf(tk, yk),

k2 = ∆tf(tk +
∆t

2
, yk +

1

2
k1),

k3 = ∆tf(tk +
∆t

2
, yk +

1

2
k2),

k4 = ∆tf(tk+1, yk + k3),

yk+1 = yk +
1

6

(
k1 + 2k2 + 2k3 + k4

)
.

For the transport equation, we will use Strong Stability Preserving Runge-Kutta

with 3 stages and is of order 3 (abbreviated as SSPRK(3,3) ) as described by Gottlieb

[28]. The strong stability preserving property is ‖yk+1‖ ≤ ‖yk‖ which is what makes
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it attractive in the transport equation case. The SSPRK(3,3) steps are:

y(1) = yk + ∆tf(tk, yk), (3.23)

y(2) =
1

4

(
3yk + y(1) + ∆tf(tk+1, y(1))

)
, (3.24)

yk+1 =
1

3

(
yk + 2y(2) + 2∆tf(tk+ 1

2 , y(2))

)
. (3.25)

The SSP property comes from the maximum principle preserving property of the

Forward Euler method. Given that Forward Euler is maximum principle preserving,

we can derive SSPRK(3,3). First:

y(1) = yk + ∆tf(tk, yk). (3.26)

is maximum principle preserving by assumption. So min yk ≤ min y(1) ≤ max y(1) ≤

max yk. Note that y(1) is at time k + 1. Then calculate:

y? = y(1) + ∆tf(tk+1, y(1)). (3.27)

Again, min y(1) ≤ min y? ≤ max y? ≤ max y(1) and y? is at time k + 2. Now, define:

y(2) =
3

4
yk +

1

4
y?. (3.28)

Clearly, since 3
4

+ 1
4

= 1, then min y? ≤ min y(2) ≤ max y(2) ≤ max y? and the time of

y(2) is 3
4
k + 1

4
(k + 2) = k + 1

2
. We take one more Forward Euler:

ỹ = y(2) + ∆tf(tk+ 1
2 , y(2)). (3.29)

Once more, min y(2) ≤ min ỹ ≤ max ỹ ≤ max y(2) and ỹ is one time step later at time
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k + 3
2
. Finally, define:

yk+1 =
1

3
yk +

2

3
ỹ. (3.30)

by substituting (3.29) in (3.30) and (3.27) in (3.28), we get (3.23)-(3.25)

Like before, we use (3.17) and define L(u, ρ) = ∂ρ
∂t

= −u · ∇ρ+stabilization.

ρ(1) = ρk + ∆tLk(u, ρk), (3.31)

ρ(2) =
1

4

(
3ρk + ρ(1) + ∆tLk+1(2uk − uk−1, ρ(1))

)
, (3.32)

ρk+1 =
1

3

(
ρk + 2ρ(2) + 2∆tLk+ 1

2

(
1

2

[
3uk − uk−1

]
, ρ(2)

))
. (3.33)

Now, we can claim the following:

Lemma 3.2.2. The SSPRK (3,3) steps (3.31)-(3.33) satisfy:

min
i
ρki ≤ min

i
ρk+1
i ≤ max

i
ρk+1
i ≤ max

i
ρki .

given the CFL condition is met.

Proof. Since (3.31)-(3.33) are shown to be essentially several applications of Forward

Euler and convex combinations of intermediate solutions. Meeting the CFL condition

implies that the Forward Euler substeps are maximum principle preserving. We

invoke lemma 3.2.1 repeatedly to get the stated result.

3.2.2 Spatial Discretization

Now that we have the time discretization, we need to discretize the space. In this

case, we want to split Ω into disjoint cells and thus create a mesh over Ω. Let Th be
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a mesh as follows:

Th = {Ki, i = 1, .., N | Ki ⊂ Ω̄ with non-empty interior and Lipschitz boundary ,

∪Ni Ki = Ω̄, N <∞,
◦
Ki ∩

◦
Kj = ∅, Ki ∩Kj = {∅|vertex|edge|face} ∀i, j ≤ N}.

The definition above allows for cell K to be shaped in any way possible as long

as either any two cells do not intersect or only intersect at a vertex, edge, or face.

However, in practice, it is much easier to deal with polygonal K. Specifically in

this dissertation, we will deal with cells that have 4 faces and 4 vertices in 2D

(quadrilaterals) and 6 faces, 12 edges and 8 vertices in 3D (hexahedra). The mesh

has to be conforming as in Ern and Guermond [24, Definition 1.55] which essentially

forbids hanging nodes that appear mid edge or face (it is worth mentioning that if

adaptive mesh refinement is used, the hanging nodes restriction will be relaxed with

constraints (c.f. Bangerth et al. [8])). Moreover, the family of meshes {Th}h>0 need

to be non-degenerate which means that

max
i

hi
li
< β <∞.

where hi is defined as the maximum diameter of cell Ki ∈ Th and li is the diameter

of the largest inscribed circle (or sphere) inside Ki. In the literature, such a family of

meshes {Th}h>0 are referred to as ‘‘shape-regular in the sense of Ciarlet’’ (cf. Ciarlet

[17]).

Once we have the mesh, we choose the finite elements to use within each cell.

There are many finite elements to choose from depending on the PDE. Here, we will
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use the Lagrange finite element. Specifically, Qk elements.

Qk =

{ ∑
0≤i1...id≤k

ai1...id x
i1
1 . . . x

id
d

∣∣∣∣ ai1...id ∈ R

}
.

For each node pi or degree of freedom in the local cell, we can construct a shape

function σi(x) ∈ Qk such that:

σi(pj) = δij, ∀i, j.

The set of local shape functions ΣK = {σ1, σ2, ..., σN} in cell K form a basis in

Qk(K). This fundamental property makes it possible to compute approximations

of solutions of PDEs with finite number of degrees of freedom. When the above

are satisfied, the triplet {K,Qk,ΣK} is called a finite element. If, in addition, any

p ∈ Qk(K) is uniquely determined by the degrees of freedom ΣK , then {K,Qk,ΣK}

is also called unisolvent.

Now that we have our finite elements, we want to estimate the error of the

approximate solutions that we get using finite elements with piecewise Qk. We expect

that with higher order polynomials, we should get a better fitting function to the

solution and, therefore, less errors. Indeed, we get the following estimate for the

interpolation error:

Theorem 3.2.1. Consider an affine family of finite elements of type Qk on a quasi-

uniform triangulation Th. Let ΠTh : Hk+1(Ω) 7→ QTh,k(Ω), which is defined piecewise

on the triangulation Th of Ω, be a projector onto piecewise polynomials of degree at

most k. Then there exists a constant c > 0 such that

‖u− ΠThu‖Hr(Ω) ≤ c hk+1−r |u|Hk+1(Ω), for 0 ≤ r ≤ k + 1. (3.34)
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Proof. See Grossmann et al. [29, Theorem 4.28]

We are now ready to define the discrete transport equation. The spatial semi-

discretization of the transport equation becomes: Find ρh ∈ Vh,k(Ω) ⊂ V (Ω) such

that:

∫
Ω

vh

(
∂ρh
∂t

+ uh · ∇ρh
)
dx = 0, ∀vh ∈ Vh,k(Ω), (3.35)

ρh(x, t) = ρh,∂Ω, in ∂Ω−, (3.36)

ρh(x, 0) = ρh,0, ρ0 > 0, (3.37)

where

Vh,k = {vh ∈ C(Ω̄)| ∀K ∈ Th, vh|K ∈ Qk, vh|∂Ω− = 0},

and the time partial derivative is handled by one of the time-stepping schemes

described above. Now that we have the discretization in both space and time, we are

ready to construct the linear system Ax = b which we elaborate on in section 3.4.

But first, we need to address an important issue in the next section.

3.3 Oscillations and Stabilization

Since solving the hyperbolic transport equation is known to introduce ever-

increasing oscillations if not discretized properly, we need to stabilize it. Some of

the stabilization methods are first-order upwinding, streamline upwinding, Petrov-

Galerkin, artificial viscosity, etc. Here, we will study stabilizing by adding artificial

diffusion of different accuracies. This is especially needed with certain explicit time

ODE integrators such as Forward Euler. An important property is that the viscosity

vanishes as the discretization becomes finer. In the next sections, we will discuss

linear, nonlinear, and Graph Laplacian artificial viscosities.
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3.3.1 Linear Artificial Viscosity

Artificial viscosity has been used for over 60 years (c.f. Von Neumann and

Richtmyer [84]) to simulate the hyperbolic wave equations in discretized spaces. It is

used only in areas where discontinuities appear or oscillations (e.g. shocks) where

the gradient of the velocity field at the shock is large. Linear viscosity is added to

dampen the numerical discretization noise using a first-order artificial viscosity (c.f.

Ern and Guermond [24]). This is done usually by adding −div (ν∇ρ) to the equation

3.35):

∫
Ω

vh

(
∂ρh
∂t

+ uh · ∇ρh − div (ν∇ρ)

)
dx = 0, ∀vh ∈ Vh(Ω), (3.38)

where ν|K = CmhK |u|L∞(K) for each cell. This would stabilize the equation nicely

as it adds enough viscosity per cell depending on the speed of the flow. However, it

has a drawback of being first-order and active throughout the mesh making it highly

dissipative. Also, choosing first order artificial viscosity in second order or higher

numerical schemes is ineffective. Choosing the right coefficient Cm is also not trivial

and usually requires tuning on the coarse mesh first. Moreover, the definition of h is

ambiguous when using nonuniform meshes. In the next section, we will describe a

new linear artificial viscosity that does not need tuning.

3.3.2 Graph Laplacian Artificial Viscosity

In this section, we will present a linear artificial viscosity method by Guermond

and Nazarov [32] that preserves the ‘‘maximum-principle.’’ It also has the advantage

of having no tunable constant although it is more computationally intensive to setup.

The maximum-principle states that solutions for certain elliptic and parabolic

PDEs attain their maximum at the boundary. In the context of the transport equation,
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the "local discrete maximum-principle" is defined (by Lax [52, p.190]) for the discrete

solution ρn+1 at time n+ 1, assuming the initial condition ρ0 which has a minimum

ρmin = minx ρ0(x) and ρmax defined equivalently, as follows: ρmin ≤ min ρn ≤ ρn+1 ≤

max ρn ≤ ρmax. The upwind-flux scheme, discontinuous Galerkin finite elements and

finite volumes with piecewise constants have been known to be maximum-principle

preserving since the work of Lax [52] or even before that. Guermond and Nazarov

[32] first introduced maximum-principle preserving continuous finite element scheme.

Although it is only first-order, it paves the way for the development of higher-order

schemes. However, this is outside the scope of this dissertation.

Previously, we identified the stabilization term as ‘‘added viscosity’’ but Guermond

and Nazarov [32] state that maintaining the maximum-principle has little to do with

the physical viscosity. Rather, they show it depends on the velocity, cell geometry,

and shape functions only. They, therefore, propose a new Graph Laplacian term

b(vh, ρh) instead of the regular Laplacian −div (ν∇ρh) as follows:

∫
Ωh

vh

(
∂ρh
∂t

+ uh · ∇ρh
)
dx+ b(vh, ρh) = 0, (3.39)

where b(vh, ρh) =
∑

K∈Th νK
∑

i,j∈I(K) ViPjbK(ϕi, ϕj), such that ρh =
∑N

i=1 Piϕi, vh =∑N
i=1 Viϕi, and :

bK(ϕi, ϕj) :=


− 1

nK − 1
|K|, if i 6= j, i, j ∈ I(K),

|K|, if i = j, i, j ∈ I(K),

0, if i /∈ I(K) or j /∈ I(K),

(3.40)

where I(K) is the union of the support of all shape functions ϕi in K. i.e. let

Si be the support of ϕi, |Si| is its measure and Sij := Si ∩ Sj , then I(K) :=
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{j ∈ {1, ..., N}; |Sj ∩ K| 6= 0} and nk is the number of vertices in cell K, i.e

nK := card(I(K)). Now, we are ready to specify νK :

νK = max
i 6=j∈I(K)

∣∣∣∫Sij(uh · ∇ϕj)ϕidx∣∣∣
−
∑

T⊂Sij bT (ϕj, ϕi)
. (3.41)

The time stepping algorithm becomes:

P k+1
i = P k

i −∆tm−1
i

∑
K⊂Si

(
νkKbK(ρkh, ϕi) +

∫
K

(
ukh · ∇ρkh

)
ϕidx

)
, (3.42)

where mi :=
∫
Si
ϕidx the lumped mass matrix diagonal entries. This is used because

using the consistent mass matrix does not guarantee the maximum-principle preser-

vation. The lumped mass matrix, however, is known to introduce dispersive effects

in the solution. There are techniques to mitigate them (c.f. Guermond and Pasquetti

[34]).

To prove that (3.42) is maximum principle preserving, we start with a few

preliminaries. The discrete space Vh must be such that the lumped mass matrix is

positive definite and:

0 < µmin
k := min

i∈I(K)

1

|K|

∫
K

ϕi(x)dx, µmax
k := max

i∈I(K)

1

|K|

∫
K

|ϕi(x)|dx. (3.43)

Note that ([32, Lemma 4.1])

0 < µmin
K |Si| ≤ mi ≤ µmax

K |Si|. (3.44)

Since µmin
k , µmax

k , and nK depend on K̂ the reference element and there are a finite
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number of reference elements in the mesh family {Th}h>0, we can define:

λ := max
Th

max
K∈Th

µmax
K

µmin
K

< +∞, γ := min
Th

min
K∈Th

1

nK − 1
> 0. (3.45)

Now we are ready for the main theorem.

Theorem 3.3.1. (Discrete maximum principle [32]) Assume that the CFL number

is small enough, i.e., |u|∆tkh−1 ≤ 1/(λ(1 + γ−1)). Then the solution to (3.42)

satisfies the local discrete maximum-principle, i.e., ρmin ≤ minj∈I(Si) P
k
j ≤ P k+1

i ≤

maxj∈I(Si) P
k
j ≤ ρmax for all k ≥ 0

Proof. ([32, Theorem 4.2]) We proceed by induction. Let k ≥ 0 and assume ρmin ≤

P k
i ≤ ρmax for all i = 1, . . . , N . Notice that k = 0 is discrete local maximum principle

preserving by definition. Taking the definition (3.41) together with γ in (3.45), the

inequality ‖∇ϕj‖L∞(K) ≤ h−1
k (c.f. [32, (2.3)]), and the inequality

∫
k
|ϕj|dx ≤ µmax

k |K|

implies that

νkK ≤ |u| max
i 6=j∈I(K)

∣∣ ∫
Sij
‖∇ϕj‖ϕidx

∣∣
γ|Sij|

≤ γ−1|u|h−1µmax
K . (3.46)

We recast (3.42) into the following:

P k+1
i =P k

i

(
1−∆tkm−1

i

∑
k⊂Si

(
νkKbk(ϕi, ϕi) +

∫
k

(ukh · ∇ϕi)ϕidx
))

−∆tkm−1
i

∑
I(Si)3i 6=j

P k
j

∑
k⊂Sij

(
νkKbk(ϕj, ϕi) +

∫
k

(ukh · ∇ϕj)ϕidx
)
,

that we formally write as P k+1
i =

∑
j∈I(Si)

aijP
k
j . First, observe that

∑
j∈I(Si)

aij = 1−∆tkm−1
i

∑
k⊂Si

(
νkKbk

( ∑
j∈I(Si)

ϕj, ϕi

)
+

∫
k

(
ukh · ∇

∑
j∈I(Si)

ϕj

)
ϕidx

)
,
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= 1.

Since
∑

j∈I(Si)
ϕj|Si = 1 and bk(

∑
j∈I(Si)

ϕj, ϕi) = bk(
∑

j∈I(K) ϕj, ϕi) = 0 by design

(3.40). Second, we evaluate a bound from below for aii,

aii : = 1−∆tkm−1
i

∑
k⊂Si

(
νkKbk(ϕi, ϕi) +

∫
k

(ukh · ∇ϕi)ϕidx
)
,

≥ 1−∆tkm−1
i

∑
k⊂Si

(γ−1|u|h−1|K|+ |u|h−1|K|)µmax
k ,

≥ 1− |u|∆tkh−1(1 + γ−1)|Si|µmax
k m−1

i ≥ 1− |u|∆tkh−1(1 + γ−1)λ,

where we used µmax
K |Si|m−1

i ≤ µmax
K /µmin

K ≤ λ (see 3.44). This implies that aii ≥ 0

since |u|∆tkh−1 ≤ 1/(λ(1 + γ−1)). Third, we bound aij from below where i 6= j.

Observe that bk(ϕj, ϕi) ≤ 0. The definition (3.41) implies that

−
∑
K⊂Sij

νkKbK(ϕj, ϕi) ≥ −
∑
K⊂Sij

∣∣∣∫Sij(uh · ∇ϕj)ϕidx∣∣∣
−
∑

T⊂Sij bT (ϕj, ϕi)
bK(ϕj, ϕi),

≥

∣∣∣∣∣
∫
Sij

(uh · ∇ϕj)ϕidx

∣∣∣∣∣ ,
which gives

aij := ∆tkm−1
i

∑
k⊂Sij

(
νkKbk(ϕj, ϕi) +

∫
k

(ukh · ∇ϕj)ϕidx
)
≥ 0.

The above argument shows that P k+1
i is a convex combination of {P k

j }j∈Si . This

proves the local discrete maximum-principle and the induction holds for k + 1.

Tables 3.1 and 3.2 show some of the values for λ for Pn and Qn. The assumptions

above break down when λ < 0. The tables also shows the condition number of the

43



consistent M and lumped ML mass matrices. For a discussion on the optimal and

suboptimal CFL, refer to [32, Remark 4.3].

2D Qn

n λ CFLsuboptimal CFLoptimal κ(M) κ(ML)

1 1.000 2.50E-01 1.00E+00 9 1
2 16.000 6.94E-03 6.25E-02 81 16
3 16.901 3.70E-03 5.92E-02 148.608 9
4 41.327 9.68E-04 2.42E-02 366.506 20.898
5 50.097 5.54E-04 2.00E-02 1058.54 15.5817
6 244.886 8.33E-05 4.08E-03
7 151.943 1.03E-04 6.58E-03
8 -7.086 -1.74E-03 -1.41E-01
9 4233.660 2.36E-06 2.36E-04

Table 3.1: Values based on 2D Qn for λ and optimal and suboptimal CFL for the
Graph Laplacian artificial viscosity where CFLoptimal = 1/λ and CFLsuboptimal =
1/(λ(1 + γ−1)).

3.3.2.1 Graph Laplacian Viscosity and Higher Order

Elements

We will describe here some oscillations observed when using the Graph Laplacian

artificial viscosity. Let Ω = (0, 0.5)× (−2, 2) and the initial conditions be as follows:

ρ(x, 0) =


3, if y > 1.5.

2y, if 1.5 ≥ y > 0.5.

1, otherwise.

(3.47)

The velocity vector field is a constant u = (0,−1) and the boundary condition

for ρ is ρ(x) = 3 at x = (x, 2) where x ∈ [0, 0.5].

44



2D Pn
n λ CFLoptimal CFLoptimal κ(M) κ(ML)

1 1.000 3.33E-01 1.00E+00 5 1
2 ∞ 0.00 0.00 21.5333 ∞
3 13.500 7.41E-03 7.41E-02 67.6667 13.5
4 -14.781 -4.51E-03 -6.77E-02 114.415 ∞
5 26.764 1.78E-03 3.74E-02 239.448 18.1818
6 -4.518 -7.90E-03 -2.21E-01
7 -10.674 -2.60E-03 -9.37E-02
8 -2.979 -7.46E-03 -3.36E-01
9 -2.756 -6.60E-03 -3.63E-01

Table 3.2: Values based on 2D Pn for λ and optimal and suboptimal CFL for the
Graph Laplacian artificial viscosity where CFLoptimal = 1/λ and CFLsuboptimal =
1/(λ(1 + γ−1)).

Like linear artificial viscosity, solutions obtained with the linear transport equation

that are stabilized with the Graph Laplacian artificial viscosity would be completely

smooth at each time step but too diffusive as in figure 3.2. One can observe that

with Q1 elements and a time step obeying the CFL condition. However, Q2 elements

and higher show some ‘‘jaggedness’’ as shown in figures 3.3, 3.4 and 3.5 that are of

order 10−3 and diminishes as the polynomial degree increases.

Moreover, the total variation
∫

Ω
|∂xρ| + |∂yρ|dx is not 0.5 consistently on all

elements. With Q1 as in figure 3.6, one can see that total variation is consistent. Yet,

figures 3.7, 3.8 and 3.9 show that total variation is not consistent for Q2 and higher.

They do seem to converge to more or less 0.5.

To address many of the deficiencies of linear artificial viscosity and to achieve

second order or higher stabilization, we need the nonlinear artificial viscosity: Entropy-

Viscosity.

45



t=0 t=0.3 t=0.7 t=1

Figure 3.2: This figure shows ρ in linear transport test case #1 as in (3.47). It clearly
shows the diffusive nature of the first order artificial viscosity.

3.3.3 Entropy-Viscosity

The Entropy-Viscosity is (at least) a second-order stabilization term introduced

by Guermond et al. [42] and Guermond and Pasquetti [33]. It has the advantage of

having less diffusive effect on the solution and thus allowing to construct stabilized

second order numerical schemes. Using the same transport equation weak form in

(3.38) and ν is calculated for each cell separately as follows. Define E(φ) as convex

functions that satisfies the differential inequality:

∂tE(φ) + u · ∇E(φ) < 0,
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Figure 3.3: The observed jaggedness at the line y = 1.25 at t = 0.037 when using
Q2 elements, Note that the lines between the degrees of freedom are a side effect of
using VisIt visualization software and do not represent the actual cross section from
the solution.

Figure 3.4: The observed jaggedness at the line y = 1.25 at t = 0.037 when using
Q3 elements. Note that the lines between the degrees of freedom are a side effect of
using VisIt visualization software and do not represent the actual cross section from
the solution.

Figure 3.5: The observed jaggedness at the line y = 1.25 at t = 0.037 when using
Q4 elements. Note that the lines between the degrees of freedom are a side effect of
using VisIt visualization software and do not represent the actual cross section from
the solution.
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Figure 3.6: The total variation
∫

Ω
|∂xρ|+ |∂yρ|dx with Q1 elements with 8× 32 cells

in 2D and ∆t = 0.0002.

Figure 3.7: The total variation
∫

Ω
|∂xρ|+ |∂yρ|dx with Q2 elements with 8× 32 cells

in 2D and ∆t = 0.0002.

Figure 3.8: The total variation
∫

Ω
|∂xρ|+ |∂yρ|dx with Q3 elements with 8× 32 cells

in 2D and ∆t = 0.0002.

48



Figure 3.9: The total variation
∫

Ω
|∂xρ|+ |∂yρ|dx with Q4 elements with 8× 32 cells

in 2D and ∆t = 0.00005.

where φ is the level set function mentioned in section 3.1.1 and E(φ) is the entropy

function. For examples, one can use:

E(φ) =


1
p
(φ− 1

2
)p where p = 1, 2, . . . ,

− log(|φ(1− φ)|+ 10−14).

In the fully discretized setting, use φn, φn−1 and compute the following values for

each quadrature points qk, qf in cell k and face f :
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Rn+1/2(qk) =
ΠThE (φn)− ΠThE (φn−1)

∆t
+

1

2

(
un · ∇ΠThE (φn) + un−1 · ∇ΠThE

(
φn−1

))
Jn(qf ) =un · n[[∂nΠThE(φn)]]|f .

Then get the maximum R
n+1/2
k = maxqk∈k

∣∣Rn+1/2(qk)
∣∣ and

Jnk = maxf∈k maxqf∈f |Jn(qf )|. Note that we are using the Crank-Nicolson scheme to

calculate R giving us a second order accurate value for R. The viscosity νk will then

be:

νk = min

(
Cmh|u|L∞ , Ceh2 Rn+1/2 + Jnk

‖E(φn)− E(φn)‖L∞(Ω)

)
, (3.48)

where E(φ) = 1
|Ω|

∫
Ω
E(φ) and ‖E(φn)− E(φn)‖L∞(Ω) is a normalization factor. The

amount of artificial viscosity is proportional to the entropy production but bounded

from above by the linear artificial viscosity. If the solution is smooth and entropy

production is very small, little or no artificial viscosity is added. Some disadvantages

remain such as coefficients Ce, Cm to tune and the ambiguity of h.

3.3.4 Compression for the Level Set

For the level set method to work, the shape of the level set over the boundary

must be maintained to prevent adding non-physical effect to the model. The stabi-

lization viscosity diffuses the level set interface as the simulation marches in time.

Consequently, with the presence of the diffusion term, we add the compression term

div
(
CK

ν
h
(1− φh)φh

∇φh
|∇φh|

)
to the transport equation (3.5) as described in Olsson and

Kreiss [60]:

∫
Ω×[0,T ]

∂

∂t
φh + u · ∇φh − div

(
ν∇φh − CK

ν

h
φh(1− φh)

∇φh
|∇φh|

)
dxdt = 0, (3.49)
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where the level set φ ∈ [0, 1] and defined at φ = 0.5 In practice, it has been observed

that the compression term in (3.49) induces ‘‘fingering’’ effect in simulations. It is

the result of perturbations in the initial level set that the compression term gradually

propagates resulting in the level set extending like fingers. To mitigate that, a

smoothed out φ∗h is used in the normal of the compression front ∇φh|∇φh|
where φ∗h is the

solution to φ∗h − h2∆φ∗h = φ,∇φ∗h · n = 0 on ∂Ω. We will denote S as the operator

that maps φ to the corresponding φ∗ (i.e. Sφh = φ∗h).

Let us detail the algorithm for solving (3.49):

1. Initialize the level set by normalizing the initial density scalar field.

φ0
h =

ρ0
h − ρmin

ρmax − ρmin

,

2. For each of the SSPRK(3,3) steps below, we need to solve the following:

Ln(uh, φh, φ
∗
h) = −uh · ∇φh − div

(
ν∇φh − Ck

ν

h
φh(1− φh)

∇φ∗h
|∇φ∗h|

)
, (3.50)

when solved for each of the three steps below, the values are

φ
(1)
h = φnh + ∆tLn(unh, φ

n
h, Sφ

n
h), (3.51)

φ
(2)
h =

1

4

(
3φnh + φ

(1)
h + ∆tLn+1(2unh − un−1

h , φ
(1)
h , Sφ

(1)
h )

)
, (3.52)

φn+1
h =

1

3

(
φnh + 2φ

(2)
h + 2∆tLn+ 1

2

(
1

2

[
3unh − un−1

h

]
, φ

(2)
h , Sφ

(2)
h

))
. (3.53)

3. Lastly, we ‘‘denormalize’’ the level set with a reconstruction function such as:

ρn+1
h = H(φh)(ρmax − ρmin) + ρmin. (3.54)
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It is worth mentioning that when the entropy-viscosity vanishes in well resolved

regions of the solution, the compression stops working and the sharpness of the level

set interface is lost. This may be remedied by using some ‘‘antivanish’’ viscosity

νantivanish = ν + νε where νε is a small positive amount of viscosity that maintains the

balance between diffusion and compression and, thus, maintains the slope of the level

set.

3.4 Linear Systems and Linear Solvers

After discretizing the PDE in space and time, the complete linear system using

SSPRK(3,3) become a series of linear systems Mx = b where M is the mass matrix.

Also, the calculation of the smoothed φ∗h is also done with the linear system (M +

h2A)x = b. The sum of the matrices behaves well in the sense that it has a condition

number that remain reasonable when h→ 0. In the following linear systems, {ϕi}

signify the shape functions (or basis) of Vh,k.

For the algorithm described in the last section, the linear systems are as follows:

• The smoothed level set φ∗h is obtained by solving:

(M + h2A)φ∗h = φh,

where M is the mass matrix and A is the stiffness matrix.

• The three φh’s solutions in equations (3.51)-(3.53) is obtained by solving

(ϕi, k) = (ϕi, L
n(uh, φ

n, Sφn)). The weak form with proper integration by

parts becomes:

Mkh =

∫
Ω

∇ϕi
(
ν∇φh − Ck

ν

h
φh(1− φh)

∇φ∗h
|∇φ∗|

)
− ϕi(uh · ∇φh)dx,
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where the boundary terms are removed with appropriate boundary conditions

and M is the mass matrix. After that, add the vectors:

φ
(1)
h = φnh + ∆tkh.

The next SSPRK(3,3) steps follow in a similar fashion.

3.5 Numerical Results

Now that we have a parallel, working implementation, the natural next step is to

validate the code. We do that in two ways: conforming (ρ ∈ Vh) and nonconforming

(ρ /∈ Vh) manufactured solutions.

3.5.1 Validation

Implementing numerical schemes is tricky. There are many interdependent

components of the implementation - both programming and mathematical in nature -

that need to be done correctly so that it works with every configuration. To this end,

it is important to test the code against manufactured solutions. We take advantage

of the error estimates (e.g. (3.34)) and use it validate our implementation. If we use

Q2 piecewise elements, we expect that we can ‘‘approximate’’ polynomials of degree

2 exactly; meaning that the error should be machine epsilon. Also, the time stepping

method is accurate to a certain order; e.g. SSPRK(3,3) is third order and, therefore,

would exactly represent polynomials of third degree in time. Let us start by using

the following manufactured solution in the 2D domain Ω = (0, 1)× (0, 1) going to
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T = 0.2:

ρ(x, t) = (t+ 1)
(
x2 − 2y2

)
,

u(x, t) = (1, 1)>,

(3.55)

which is a polynomial of second degree in space and first degree in time. As expected,

when using SSPRK(3,3) and Q3 elements, table 3.3 shows the error is ‘‘machine

epsilon’’ away from zero.

cells ρdof ∆t ‖eρ‖L2

4 49 0.06 8.06E-16
16 169 0.03 1.16E-15
64 625 0.015 1.93E-15
256 2401 0.0075 3.19E-15

Table 3.3: The error when using Q3 elements with the manufactured solution (3.55).

Remark. To get exact results as table 3.3 shows, we need to be careful with when to

enforce boundary conditions. For example, when time stepping using SSPRK(3,3),

we solve three L(u, ρ) equations. Then we add the result to get ρ(1), ρ(2), and ρk+1.

We have to enforce the boundary conditions in the last step only as suggested in

Carpenter et al. [13] to achieve exactness. Otherwise, we do not get the expected

third-order convergence in time. However, when using SSPRK(3,3) with the real

problem instead of the manufactured solution, Carpenter et al. [13] suggests enforcing

the boundary condition in the intermediate steps as well as this would help with

increasing the CFL number.

Remark. For the mass conservation equation specifically, one needs to take care

when constructing a manufactured ρ. For example, figure 3.10 shows Mathematica
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In[1]:= SSPRK3Error = Function@Ρ,

H* L@t,rD = f@tD - u.r where f@tD = ¶tΡ@tD+u.Ρ@tD*L
L@time_, r_D := D@Ρ@timeD, 8t<D + D@Ρ@timeD, 8x<D + D@Ρ@timeD, 8y<D -

D@r, 8x<D - D@r, 8y<D;

H*Do one SSPRKH3,3L step*L
Ρ1 = Ρ@tD + Τ L@t, Ρ@tDD ;

Ρ2 = H3 Ρ@tD + Ρ1 + Τ L@t + Τ, Ρ1D L � 4;

Ρ3 = HΡ@tD + 2 Ρ2 + 2 Τ L@t + Τ � 2, Ρ2D L � 3;

H* Find the SSPRKH3,3L error for the given Ρ *L
Simplify@Ρ3 - Ρ@t + ΤDDD

In[2]:= Ρ@t_D := Hx - 2 yL Ht + 2L ^ 2;

SSPRK3Error@ΡD
Out[3]= 0

In[4]:= Ρ@t_D := Hx - 2 yL ^ 2 Ht + 2L ^ 2;

SSPRK3Error@ΡD

Out[5]= -
Τ4

3

Figure 3.10: Mathematica code to check how much error SSPRK(3,3) introduces for
a given ρ.

code that evaluates the local error that SSPRK(3,3) introduces in a single time

step. In the first example, ρ(t) = (x− 2y)(t+ 2)2 is a second degree polynomial in

time and is exactly reproduced by SSPRK(3,3) as shown in the figure. However,

ρ(t) = (x− 2y)2(t+ 2)2 is also second degree in time but gives a local error of −∆t4

3

for a global error of O(∆t3). This depends on how L is constructed based on the

exact ρ chosen. Just because the time-stepping scheme is O(∆t3) does not mean that

it reproduces 3rd degree polynomials exactly.

3.5.2 Convergence Analysis

Now we use manufactured solutions that are nonconforming and will therefore

show the expected convergence rates for the mass conservation equation. Johnson

et al. [48] shows that the standard continuous Galerkin finite element method using
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Qk elements has an error estimate of O(hk) with no stabilization (With streamline

diffusion stabilization method, the error improves to O(hk+ 1
2 )). We will calculate

convergence rates in two problems: the channel problem setting and the circular

problem setting.

3.5.2.1 Channel problem

The channel problem has a 2D domain (0, 0.5)× (−2, 2) uniform mesh with a

constant downwards velocity u = (0,−1)>. We will use the algorithm (3.51)-(3.53)

with a level set function φ ∈ [0, 1] with the linear reconstruction (3.12) such that

ρmin = 1, ρmax = 3. The boundary condition is set at the top edge y = 2 with

the value of ρh((x, 2)>, t) as given in (3.56). The discrete space for the density

ρh ∈ {Qk | k = 1 . . . 4} and velocity field uh ∈ Q2. Also, Gaussian quadrature is

used with max{deg(ρh), deg(uh)}+ 1 number of points. No stabilization is added to

the algorithm (i.e. Cm = Ce = 0) and the simulation is run until T = 1 so that the

simulations can finish in a reasonable time even for small ∆t. The shape of the initial

density is :

ρh(x) =
ρmax + ρmin

2
+
ρmax − ρmin

2
tanh

y + β

α
, (3.56)

where α = 0.1 and β = −0.5. The time step is chosen small enough to show the

convergence rate in space. This is achieved by taking a time step ∆t� h
k+1

3 . If the

CFL exceeds 0.3 then the time step is adjusted accordingly. Note that we can get the

shape of the exact solution at time t by having β = t− 0.5 in (3.56) because |u| = 1.

Table 3.4 shows the convergence rates with respect to space. Notice that all

the Lagrange finite elements Qk with k odd have a convergence rate of O(hk+1)

but when k is even, the rate is O(hk) (note that O(hk+1) is the best error one can

get with Lagrange finite elements approximation space according to theorem 3.2.1).
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FE cells ρdofs ∆t h ‖eρ‖L2 rate CFLmax

Q1

128 165 1.25E-03 2.20E-01 7.41E-02 - 0.01
512 585 5.00E-04 1.17E-01 1.76E-02 2.27 0.008
2048 2193 1.25E-03 6.04E-02 2.42E-03 3.00 0.04
8192 8481 5.00E-04 3.07E-02 4.79E-04 2.40 0.032
32768 33345 1.25E-03 1.55E-02 1.18E-04 2.04 0.16
131072 132225 5.00E-04 7.78E-03 2.94E-05 2.02 0.128

Q2

128 585 6.25E-04 1.17E-01 7.09E-03 - 0.01
512 2193 2.50E-04 6.04E-02 1.41E-03 2.44 0.008
2048 8481 6.25E-04 3.07E-02 3.62E-04 2.01 0.04
8192 33345 2.50E-04 1.55E-02 9.23E-05 2.00 0.032
32768 132225 6.25E-04 7.78E-03 1.93E-05 2.27 0.16
131072 526593 2.50E-04 3.90E-03 4.99E-06 1.96 0.128

Q3

128 1261 5.00E-05 2.82E-02 8.48E-04 - 0.0012
512 4825 1.25E-05 1.44E-02 5.46E-05 4.09 0.0006
2048 18865 2.50E-05 7.28E-03 2.38E-06 4.59 0.0024
8192 74593 5.00E-06 3.66E-03 1.46E-07 4.07 0.001
32768 296641 6.25E-06 1.84E-03 8.65E-09 4.09 0.0024
131072 1183105 1.25E-06 9.19E-04 5.40E-10 4.01 0.001

Q4

128 2193 5.00E-05 2.14E-02 8.07E-05 - 0.0016
512 8481 1.25E-05 1.09E-02 4.12E-06 4.40 0.0008
2048 33345 5.00E-05 5.48E-03 3.18E-07 3.74 0.0064
8192 132225 1.25E-05 2.75E-03 1.94E-08 4.06 0.0032

Table 3.4: The convergence rates with respect to space for the channel problem
setting. The time step was calculated to be small enough (∆t� h

k+1
3 ) so that we

can get the space error. Some time steps are repeated because the time step is small
enough for the fine mesh.
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We conjecture that this phenomena may be attributed to symmetries found in odd

Q finite elements that captures solutions with higher accuracy as oppose to even

numbered finite elements. Figure ?? shows the density and the error of one of the

solutions calculated. One can see some oscillations developing in the red part of the

density field. This could be eliminated by adding some stabilizing viscosity. However,

this would affect the convergence rate calculations which is the aim of this exercise.

3.5.2.2 Circular problem

The circular problem has a 2D unit square domain (0, 0)× (1, 1) with a velocity

field u(x, t) = (sin(2πt) sin(πx) cos(πy),− sin(2πt) cos(πx) sin(πy))>. This field has

the property of having zero normal velocity on the boundaries and thus boundary

conditions need not be enforced there. Also, at times t = 0, 1, 2, . . ., the density

field returns to the initial shape. Similar to the channel problem, we will use the

algorithm (3.51)-(3.53) with a level set function φ ∈ [0, 1] with the linear reconstruction

(3.12) such that ρmin = 1, ρmax = 3. Also, the discrete space for the density

ρh ∈ {Qk | k = 1 . . . 4} and velocity field uh ∈ Q2. Gaussian quadrature is used

with max{deg(ρh), deg(uh)}+ 1 number of points. No stabilization is added to the

algorithm and the simulation is run until T = 1. The initial density is (3.56) with

α = 0.1 and β = 0.

Table 3.5 shows that we get the convergence rate O(hk+1) which is higher than

what we got with the channel problem. It also does not exhibit the same odd/even

elements behavior that we see with the channel problem. Figure 3.12 shows the

density solution at the beginning, middle, and end of the circular simulation. It also

shows the error compared to a stationary solution. Notice that at time t = 1 the

maximum error is lower than the error in the first time step.

The convergence rate of SSPRK(3,3) with respect to time is validated in table 3.6
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FE cells ρdofs ∆t h ‖eρ‖L2 rate CFLmax

Q1

16 25 1.25E-02 2.00E-01 1.66E-01 - 0.0495
64 81 5.00E-03 1.11E-01 4.34E-02 2.28 0.0399
256 289 1.25E-02 5.88E-02 1.04E-02 2.24 0.1999
1024 1089 5.00E-03 3.03E-02 2.65E-03 2.07 0.16
4096 4225 2.50E-03 1.54E-02 6.64E-04 2.04 0.16
16384 16641 1.25E-03 7.75E-03 1.66E-04 2.02 0.16

Q2

16 81 6.25E-03 1.11E-01 1.72E-02 - 0.0495
64 289 2.50E-03 5.88E-02 2.61E-03 2.97 0.0399
256 1089 5.00E-03 3.03E-02 6.18E-04 2.17 0.1599
1024 4225 2.50E-03 1.54E-02 8.13E-05 2.99 0.16
4096 16641 1.25E-03 7.75E-03 1.41E-05 2.56 0.16
16384 66049 5.00E-04 3.89E-03 1.36E-06 3.39 0.128

Q3

16 169 5.00E-03 7.69E-02 5.29E-03 - 0.0594
64 625 1.25E-03 4.00E-02 9.02E-04 2.70 0.0299
256 2401 2.50E-03 2.04E-02 5.17E-05 4.25 0.1199
1024 9409 5.00E-04 1.03E-02 3.12E-06 4.11 0.048
4096 37249 6.25E-05 5.18E-03 1.95E-07 4.03 0.012

Q4

16 289 5.00E-03 5.88E-02 2.47E-03 - 0.0792
64 1089 1.25E-03 3.03E-02 8.43E-05 5.09 0.0399
256 4225 5.00E-04 1.54E-02 3.53E-06 4.68 0.032
1024 16641 1.25E-04 7.75E-03 1.51E-07 4.60 0.016

Table 3.5: The convergence rates with respect to space for the circular problem
setting. The time step was calculated to be small enough (∆t� h

k+1
3 ) so that we

can get the space error. Notice the rates that suggest O(hk+1).
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with a small h. The expected O(∆t3) is clearly evident in the table.

cells ρdofs ∆t h ‖eρ‖L2 rate

128 2193 2.00E-02 2.50E-02 2.74E-03 -
512 8481 1.00E-02 1.25E-02 3.75E-04 2.87
2048 33345 5.00E-03 6.25E-03 4.79E-05 2.97

Table 3.6: Convergence rate with respect to time using Q5 element in the channel
problem. Note that the CFLmax is 0.64.
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ρ− ρh at ∆t = 1.25E-3 ρh at ∆t = 1.25E-3

ρ− ρh at t = 1 ρh at t = 1

Figure 3.11: The channel problem with 32768 Q2 cells, 132225 dofs, ∆t = 1.25E-3,
and run until t = 1. Notice that the error ρ− ρh at t = 1 has a maximum error of
1E-4 compared to the circular problem where the error becomes lower at t = 1.
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ρ at t = 5E-4 ρh at t = 0.5 ρh at t = 1

ρ− ρh at t = 5E-4 ρ− ρh at t = 0.5 ρ− ρh at t = 1

Figure 3.12: The circular problem with 16384 Q2 cells, 66049 dofs, ∆t =5E-4, and run until t = 1. Notice that the error
ρ− ρh at t = 1 has a maximum error of 2E-6 which is lower than the maximum error of 7E-6 at t = 5E-4.
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4. THE CONSTANT-DENSITY NAVIER-STOKES

EQUATION

In this chapter, we consider the simplified constant-density momentum equation.

This simplification allows us to analyze the momentum equation characteristics

without introducing too many unnecessary technicalities. In the next chapter, we

will address the complete and more complicated momentum equation in the variable

density Navier-Stokes equation.

4.1 The Mathematical Model

The flow of a viscous incompressible fluid is described by the incompressible

Navier-Stokes equations — under certain assumptions — defined as follows:

∂tu + (u · ∇)u− 2νdiv (∇su) +∇p = f , in Ω× (0, T ] (4.1)

div (u) = 0, in Ω× (0, T ] (4.2)

Where Ω ⊂ Rd, d = 2, 3 and ∂Ω is its boundary, u(x, t) is the velocity vector field,

p(x, t) is the pressure, ν is the kinematic viscosity coefficient, and f is the driving

external force.

The initial and boundary conditions of u for the incompressible Navier-Stokes

equations are:

u|t=0 = u0, in Ω, (4.3)

u|∂Ω = u∂Ω, in [0, T ], (4.4)
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for Dirichlet boundary conditions where u∂Ω is the boundary condition of u and u0

is the initial condition.

We will discuss what is meant by ‘‘solution’’ for the Navier-Stokes equations.

Before the 1930’s, it was believed that solutions had to have two continuous derivatives

for the velocity and one for the pressure as required by the equations. Such solutions

are call ‘‘classical’’ solutions:

u ∈ C1([0, T ], C2(Ω) ∩ C0(Ω)), p ∈ C0([0, T ], C1(Ω)).

This setting is too restrictive and impractical. This gave rise to the need of weak

solutions. Weak solutions come from solving the weak formulation of (4.1). Define

D(Ω) as the set of C∞ functions that are compactly supported in Ω and V = {v ∈

D(Ω) | div (v) = 0} the restriction of D(Ω) to solenoidal u. The weak formulation

becomes:

Find (u, p) ∈ (H,L2(Ω)) such that

∫
Ω

v
(
∂tu + (u · ∇)u− 2νdiv (∇su) +∇p

)
dx = 〈v, f〉 , ∀v ∈ V, (4.5)

where V is the closure of V in the L2(Ω) norm and H is the closure of V in the H1
0 (Ω).

Figure 4.1 shows a visual of the difference between some classical and weak solutions.

4.1.1 Existence and Uniqueness

The existence and uniqueness theory of the Navier-Stokes equations is non-trivial

and incomplete. The main problem is that the equations have elliptic, parabolic and

hyperbolic characteristics all tangled together. Leray [54] was the first to prove the

existence of weak solutions for (4.5) using sequences of regularized solutions and a

compactness argument. Another proof was presented by Lemarie-Rieusset [53] for the
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Smooth C2 solution

Weak H1 solution Weak discontinuous Galerkin solution

Figure 4.1: The different types of solutions for the Navier-Stokes equations.

existence of Leray weak solutions in R3 . For bounded domains with no boundaries,

Témam [76] presented a proof using spectral decomposition. For further elaboration,

the reader is advised to read Lions [55] and Fernández-Cara and Guillén [25]. As for

uniqueness, it has been proven for d = 2 (c.f. Ladyzhenskaya and Silverman [51]).

The case for d = 3 is unsolved and is one of the Clay millennium prize problems

which has the value of one million dollars.

Efficient approximation of the Navier-Stokes equations is also difficult (c.f. Liu and

Walkington [56] among others). For the discretization of (4.1)-(4.2) to be stable, it is

important for the two spaces for velocity and pressure be ‘‘compatible.’’ This means

that the Ladyženskaja-Babuška-Brezzi (LBB) condition or the inf-sup condition must
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be satisfied (c.f. Girault and Raviart [26] and Ern and Guermond [24, p.100]):

∃βh > 0, inf
uh∈Mh

sup
ph∈Xh

∫
Ω
div (uh)ph dx
‖uh‖Mh

‖ph‖Xh
> βh, (4.6)

where Xh ⊂ H,Mh ⊂ L2(Ω) are finite dimensional subspaces. This is both a necessary

and sufficient condition for saddle point problems to be well posed when using Galerkin

discretization.

4.2 Numerical Methods

Here, we will talk about the spatial discretization then three methods for time

discretization and handling of the saddle point problem.

4.2.1 Spatial Discretization

There is no special inf-sup compatibility requirements for the spaces of density

ρ and velocity field u. The spaces can be chosen as needed. The compatibility for

velocity and pressure spaces still holds as described in section 4.1.

Let us ignore the nonlinear term for the time being. To discretize the momentum

equation (4.1)-(4.2), we need to define the discretization spaces. There are many

standard ways to address it, but we will follow the notation in Ern and Guermond

[24, p.208]. Consider the following discrete problem:

Find (uh, ph) ∈ (Xh,Mh) such that:


a(uh, vh) + b(vh, ph) = f(vh), ∀vh ∈ Xh,

b(uh, qh) = 0, ∀qh ∈Mh.

(4.7)

Let Nu, Np be the dimensions of the subspaces Xh ⊂ H and Mh ⊂ L2(Ω) respec-

tively. Let {vih}1≤i≤Nu be the basis of Xh and {qih}1≤i≤Np be the basis of Mh. In the
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context of finite elements, the basis are the global shape function. For every discrete

uh =
∑Nu

i=1 uiv
i
h in Xh and ph =

∑Np
i=1 piq

i
h in Xh, define U = {u1, . . . , uNu}> in RNu

and P = {p1, . . . , pNp}> in RNp . Note that the map between uh and U and between

ph and P is a bijection because {vih}1≤i≤Nu and {qih}1≤i≤Np are bases. Putting the

expansions of uh and ph in (4.7) and choosing the test functions as part of Xh and

Mh, we get the following linear system:

 A B>

B 0


 U

P

 =

 F

0

 , (4.8)

where the block matrices A ∈ RNu,Nu and B ∈ RNp,Nu are defined as Aij = a(vjh, v
i
h)

and Bij = b(vjh, q
i
h) and the vectors F ∈ RNu such that Fi = f(vih). The definitions of

A and B will be elaborated in the next section.

This linear system is difficult to solve because the matrix is indefinite due to the

saddle point structure. The saddle point comes from the fact that the velocity is

constrained by the incompressibility condition div (u) = 0. The pressure acts like a

Lagrange multiplier constraining the velocity to solenoidal fields.

Many methods exist to address this problem. One simple approach is to use the

Uzawa method. Another more efficient approach for approximating the solution

is by discretizing using fractional time stepping or projection methods algorithms.

Projection methods split the viscous part and the incompressibility constraint of the

equations as first done by Chorin [16] and Témam [75]. The last method we will

address is the "Artificial Compressibility" method which will be discussed in section

4.2.4.

Remark. It is worth mentioning that the methods described above encompass steps

to handle both the time stepping and the saddle point problem. The weak form (4.7)
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only describes the space discretization to illustrate the saddle point problem alone.

Each of the projection method and the artificial compressibility method addresses

the saddle point problem and time stepping together in a different ways, all of which

will be elaborated on in the next sections.

4.2.2 Uzawa Iteration Method

Uzawa [81] was the first to propose converting the saddle point problem (4.8) to

the following block matrix:

 A B>

0 S


 u

p

 =

 f

BA−1f

 , (4.9)

where Aij =
∫

Ω
vjhv

i
h + ∇vjh : ∇vih, Bij = −

∫
Ω
qihdiv v

j
h. If A is symmetric positive

definite then S := BA−1B> is also symmetric positive definite (S is also known as

the Schur complement of A). Now, we can apply the gradient descent algorithm or

conjugate gradient algorithm (c.f. Girault and Raviart [26]).

This algorithm is known to converge slowly because of the condition number of S.

To address this issue, one can either precondition S properly (Bramble et al. [11]) or

split (4.8) to solve for velocity first then pressure (Ern and Guermond [24, p. 306]).

In the next section, we will attempt to do the latter.

4.2.3 Projection Method

As described in the previous section, one way to manage the complexity of velocity

and pressure coupling in the Navier-Stokes system is to split solving for the velocity

and pressure. The unique splitting turns out to be the Helmholtz decomposition of

the L2 space:

Theorem 4.2.1. (Helmholtz Decomposition) Let Ω ⊂ Rd be a domain with a
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Lipschitz boundary. Then the following orthogonal decomposition holds

L2(Ω) = Hdiv=0(Ω)⊕∇H1(Ω),

where

Hdiv=0(Ω) := {u ∈ L2(Ω) | div (u) = 0,u · n = 0}, (4.10)

∇H1(Ω) := {u ∈ L2(Ω) | ∃q ∈ H1(Ω) : u = ∇q}. (4.11)

Proof. Refer to Témam [76, Theorem 1.4].

The idea is to solve the velocity without the incompressibility constraint then

‘‘project’’ the solution onto Hdiv=0(Ω). The common part of the projection method

consists of solving a Poisson equation, a scalar variable Φ (usually the pressure) at

time n+ 1 using an equation that looks like:

−div (∇Φ) = f, ∂nΦ|∂Ω = 0.

which has the disadvantage of inducing a linear system that has a condition number

that scales O(h−2). When the mesh is very small, this would become a bottleneck.

In this section, we will only present pressure correction projection schemes. We

will mention in passing that there are other classes of projection schemes: velocity

correction projection scheme and consistent projection scheme (c.f. Guermond et al.

[40]).

Remark. Please note that, in the next algorithms, we will switch between the Laplacian

−∆u and the divergence of the skew-symmetric tensor −2div (∇su) in the viscous

term in the momentum equation. They are identical when divu = 0 but imply
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different natural boundary conditions.

The first projection scheme was proposed by Chorin/Temam (1968/1969) which

goes as follows:

1. (Viscous) Prediction:


1

∆t
(ũk+1 − uk)− ν∆ũk+1 = fk+1,

ũk+1|∂Ω = 0.

2. Projection: 
1

∆t
(uk+1 − ũk+1)−∇φk+1 = 0,

div (uk+1) = 0, uk+1 · n|∂Ω = 0.

3. Pressure Correction: pk+1 = φk+1.

where ũ is an intermediate unconstrained velocity field. This is a simple and popular

algorithm. It is of order O(∆t) in the L2 norm but only of O(∆t
1
2 ) in the H1 norm

(c.f. Rannacher [64], Shen [68] for proofs). This stems from the fact that we enforce

the extra (artificial) boundary condition in the projection step. Also, because velocity

is ‘‘split’’ from pressure, it has an irreducible splitting error of O(∆t) (Guermond and

Quartapelle [36]). To overcome this limitation, we use the incremental projection

method.

The incremental projection uses the the pressure explicitly in the viscous prediction

step and then correct it appropriately afterwards (cf. Goda [27], van Kan [83]). This

reduces the split between velocity and pressure. The algorithm goes as follows:
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1. Prediction:
1

2∆t
(3ũk+1 − 4uk + uk−1)− ν∆ũk+1 +∇pk = fk+1,

ũk+1|∂Ω = 0.

2. Projection: 
1

2∆t
(3uk+1 − 3ũk+1) +∇φk+1 = 0,

div (uk+1) = 0, uk+1 · n|∂Ω = 0.

3. Pressure Correction: pk+1 = pk + φk+1.

The incremental projection method has the improved error of O(∆t2) in the L2

norm and O(∆t) in the H1 norm. Shen [71] has proved the semi-discrete case and

Guermond [30] proved it for the fully discrete case in general domains. We also have

an improved but still irreducible splitting error of O(∆t2) (Guermond and Quartapelle

[36]). However, we still enforce the artificial boundary condition. This means that it

is not worth using a time stepping scheme better than second order.

Lastly, we will describe the incremental projection method in rotational form first

proposed by Timmermans et al. [79]. It uses the identity ∆u = ∇divu−∇×∇×u to

implicitly impose a consistent boundary condition on the pressure. This modification

was shown by Guermond and Shen [38] to produce the best error so far for a projection

scheme: O(∆t2) in the L2 norm and O(∆t
3
2 ) in the H1 norm.

We will show the projection method in rotational form presented in Guermond

et al. [43] where we substitute the intermediate unconstrained velocity field ũ inside

the prediction step. Initialize the new variable ϕ0 = p0, q0 = 0 and denote the

incremental steps for ϕ, q as δϕ, δq respectively such that
∑
δqk = qk and for ϕ also.
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1. Prediction:

p∗ = pn +
1

3

(
4δψn − δψn−1

)
,

3un+1 − 4un + un−1

2∆t
− µ∆un+1 +∇p? = f n+1,

un+1
∣∣
∂Ω

= 0,

(4.12)

2. Projection:

∆δψn+1 =
3

2∆t
div (uk+1), ∂nδψ

n+1 = 0, (4.13)

δqn+1 = −div (un+1), (4.14)

3. Pressure Correction: pn+1 = ψn+1 − µqn+1.

The difference, you will notice, is the addition of −µqn+1 in the pressure correction

step. This gives the rotational form its higher accuracy. However, there is a penalty

for doing so; namely, the tangential component of u is not correct and we get

the suboptimality in the H1 norm convergence rate. This is the scheme that we

implemented in our code.

4.2.4 Artificial Compressibility Method

The last method that we will describe in this section is the ‘‘Artificial Compress-

ibility’’ method proposed by Chorin [16]. Instead of the incompressibility constraint,

he used the equation of dynamic pressure at low Mach numbers (derived from the

compressible Navier-Stokes energy equation):

Dp

Dt
+ ρc2div (u) = 0,
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where c is the speed of sound (Drikakis and Rider [23, (2.46)]).

This leads to the Chorin’s formulation:



∂tuε + (uε · ∇)uε −∆uε +∇pε = f ,

ε∂tpε + divuε = 0,

u|∂Ω = 0, in (0, T ],

u|t=0 = u0, p(0) = p0, in Ω.

(4.15)

where ε∂tpε is a perturbation of the incompressibility condition that disappears at

the limit of ε→ 0. It is worth noting that ε is not necessarily related to the speed

of sound c. The idea is to draw inspiration from the equation of dynamic pressure

at low Mach numbers and replace the difficult incompressibility constraint with a

more manageable one that converges to the correct constraint in the limit. This

perturbation suggests the following first-order approximation (the rest of the section

relies heavily on the algorithm buildup and setup in Guermond and Minev [31]):


un+1 − un

∆t
−∆un+1 +∇pn+1 = fn+1 − nln0 , un+1|∂Ω = 0,

ε

∆t

(
pn+1 − pn

)
+ divun+1 = 0,

(4.16)

where nln0 = (un · ∇)un is the nonlinearity handled explicitly. To disentangle the

two equations, we substitute the value of the second equation in the first:


un+1 − un

∆t
−∆un+1 +∇

(
pn − ∆t

ε
divun+1

)
= fn+1 − nln0 , un+1|∂Ω = 0,

pn+1 = pn − ∆t

ε
divun+1,

(4.17)

which has been shown in Shen [70, proposition 5.1] to be first order in both H1-norm
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and L2-norm when ε ∼ ∆t. This method has a big advantage over splitting schemes

discussed in section 4.2.3 because there is no splitting anymore; thus the error can be

improved beyond the irreducible error limits induced by splitting the velocity and

pressure. Moreover, the complexity of solving an operator like v−∆t(∇divv+∆v) =

b is O(∆th−2). This is good because it is comparable to solving a parabolic equation

implicitly.

4.2.4.1 Higher-Order Artificial Compressibility Schemes

We can extend the first order scheme further by adding a second order perturbation

in:



∂tuε + (uε · ∇)uε −∆uε +∇p = f , in Ω× (0, T ],

ε∂ttp+ divuε = 0, in Ω× (0, T ],

uε|∂Ω = 0, in (0, T ],

uε|t=0 = u0, p(0) = p0, ∂tp|t=0 = ∂p(0), in Ω.

(4.18)

Shen [69] has showed that the limit of the continuous version (4.18) is unstable but

Guermond and Minev [31] proved the discrete version can be stabilized if ε is small

enough (e.g.O(∆t3)). Thus, (4.18) becomes:


un+1 − un

∆t
−∆un+1 +∇pn+1 = fn+1,un+1|∂Ω = 0,

ε

∆t2
(pn+1 − 2pn + pn−1) + divun+1 = 0.

(4.19)

This will create a system that is officially O(∆t2) in time. However, if we choose

ε ∼ ∆t3, solving (4.19) would be prohibitively expensive because of the linear system

induced by an elliptic problem like v − ∇divv − ∆t∆v = b behaves like O(h−2).
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This is just as bad as a Poisson operator as explained in the previous section.

To overcome this complexity, Guermond and Minev [31] proposed a bootstrapping

technique. The idea is as follows; Let (u, p) be a solution to (4.1)-(4.2) and let r be an

approximation of p (both smooth in time). Then consider the following perturbation

of the artificial compressibility:


∂tw − 2div (∇sw) +∇s = f, w|Γ = 0, w|t=0 = u0,

ε∂t(s− r) + divw = 0, s|t=0 = p0.

(4.20)

Denote e := u−w and δ := p− s then subtract (4.20) from (4.1)-(4.2) then add ε∂tp

to get:


∂te− 2div (∇se) +∇δ = 0, e|Γ = 0, e|t=0 = u0,

ε∂tδ + div e = ε∂t(p− r), δ|t=0 = 0.

(4.21)

Notice that if r is an O(εk) approximation of p, then ε∂t(p− r) is of order O(εk+1).

Moreover, if the mass equation in (4.20) is stable when perturbations are introduced,

then e = O(εk+1) and δ = O(εk+1) as well. This means that the accuracy of the

pair (w, s) increased by one order in ε (c.f. Guermond and Minev [31] for stability

analysis).

Guermond and Minev [31] show how to use BDF1 to reach a sequence of solutions

(w1, s1) = O(ε) then BDF2 to get a more accurate sequence of solutions (w2, s2) =

O(ε2) which is as follows:

for n ≥ 0


wn+1

1 −wn
1

∆t
− 2div (∇swn+1

1 ) +∇sn+1
1 = fn+1,

sn+1
1 − sn1 + λdivwn+1

1 = 0,

(4.22)
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for n ≥ 1


3wn+1

2 − 4wn
2 + wn−1

2

2∆t
− 2div (∇swn+1

2 ) +∇sn+1
2 = fn+1,

(sn+1
2 − sn2 )− (sn+1

1 − sn1 ) + λdivwn+1
1 = 0,

(4.23)

with w0
1 = u0, s

0
1 = p0 and w0

2 = u0,w
1
2 = w1

1, s
1
2 = s1

1.

We will, however, focus here on a method called ‘‘deferred correction technique’’

discussed in the same reference above and Kress and Gustafsson [49]. The idea

is to construct an approximation of un of order O(∆tk) as follows: u(tn) = un0 +

∆tun1 +∆t2un2 + · · ·+∆tkunk +O(∆tk+1) where un0 , un1 , . . . , unk are successive corrections

computed in sequence. For example, consider for example the following simple ODE:

∂tu(t) = f(t), u(0) = u0, (4.24)

where f is smooth. We will use Euler method for simplicity and robustness. We will

also use implicit Euler for the stiff part of the ODE and explicit for the remainder

(also known as implicit-explicit time stepping method (IMEX) as shown in Ascher

et al. [3] and others). For k = 3, the following is a Taylor expansion:

u(tn) = u(tn+1)−∆t∂tu(tn+1) +
∆t2

2
∂ttu(tn+1)− ∆t3

6
∂tttu(tn+1) +O(∆t4), (4.25)

or

u(tn+1)− u(tn)

∆t
= f(tn+1)− ∆t

2
∂ttu(tn+1) +

∆t2

6
∂tttu(tn+1) +O(∆t3). (4.26)

Inserting un0 + ∆tun1 + ∆t2un2 +O(∆t3) for u(tn) and u(tn+1) and regrouping the terms
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with the same order, we get:

un+1
0 − un0

∆t
= f(tn+1), (4.27)

un+1
1 − un1

∆t
= −1

2
∂ttu

n+1
0 , (4.28)

un+1
2 − un2

∆t
= −1

2
∂ttu

n+1
1 +

1

6
∂tttu

n+1
0 . (4.29)

Lastly, we approximate the high order derivatives with simple divided differences.

This choice makes approximating derivatives easier but introduces a technicality;

higher order corrections are delayed by one stage. This is illustrated as follows:

for n ≥ 0


un+1

0 − un0
∆t

= fn+1,

dun+1
0 =

un+1
0 − un0

∆t
,

(4.30)

for n ≥ 1



d2un+1
0 =

dun+1
0 − dun0

∆t
,

un1 − un−1
1

∆t
= −1

2
d2un+1

0 ,

dun1 =
un1 − un−1

1

∆t
,

(4.31)

for n ≥ 2



d2un1 =
dun1 − dun−1

1

∆t
, d3un+1

0 =
d2un+1

0 − d2un0
∆t

,

un−1
2 − un−2

2

∆t
= −1

2
d2un1 +

1

6
d3un+1

0 ,

un−1 = un−1
0 + ∆tun−1

1 + ∆t2un−1
2 ,

(4.32)

Each stage is staggered in time, un+1
0 is computed before un1 to be able to calculate

d2un+1
0 and so on (a helpful diagram is shown in Guermond and Minev [31] in section

5.2).
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Now, we extend the same technique the nonlinear PDEs. Consider the following:

∂tu+ Au = f +Bu, u(0) = u0, (4.33)

where A : D(T ) ⊂ X → X is densely defined closed unbounded linear operator on a

Banach space X and B is a well defined nonlinear operator on D(T). Let us further

assume that A is maximal and monotone. This, with Hille-Yosida Theorem, allows

A to generate contracting semi groups. Assume also that B still makes the above

problem well posed. Then we can generalize (4.30)-(4.32) as follows:

for n ≥ 0



nln+1
0 = Bun0 ,

un+1
0 − un0

∆t
+ Aun+1

0 = fn+1 − nln+1
0 ,

dun+1
0 =

un+1
0 − un0

∆t
,

(4.34)

for n ≥ 1



d2un+1
0 =

dun+1
0 − dun0

∆t
,

nln1 = B(un0 + ∆tun−1
1 ),

un1 − un−1
1

∆t
+ Aun1 = −1

2
d2un+1

0 − nln1 − nln0
∆t

,

dun1 =
un1 − un−1

1

∆t
,

(4.35)

for n ≥ 2



d2un1 =
dun1 − dun−1

1

∆t
, d3un+1

0 =
d2un+1

0 − d2un0
∆t

,

nln−1
2 = B(un−1

0 + ∆tun−1
1 + ∆t2un−2

2 )

un−1
2 − un−2

2

∆t
+ Aun−1

2 = −1

2
d2un1 +

1

6
d3un+1

0 − nln−1
2 − nln−1

1

∆t2
,

un−1 = un−1
0 + ∆tun−1

1 + ∆t2un−1
2 ,

(4.36)

Finally, we extend the algorithm developed above to the Navier-Stokes equations.

Let us first focus on handling the bootstrapping for the pressure. Let us restrict
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ourselves to the Stokes system for the time being. Denote u0, u1 and p0, p1 the

first two corrections on the velocity and pressure respectively. Set w1 := u0, s1 :=

p0, w2 = u0 + ∆tu1, s2 := p0 + ∆tp1. Then we get:


wn+1

1 −wn
1

∆t
+ Awn+1

1 +∇sn+1
1 = fn+1,

sn+1
1 − sn1 + λdivwn+1

1 = 0,

(4.37)


wn+1

2 −wn
2

∆t
+ Awn+1

2 +∇sn+1
2 = fn+1,

(sn+1
2 − sn2 )− (sn+1

1 − sn1 ) + λdivwn+1
1 = 0.

(4.38)

Subtract (4.37 from (4.38) and divide by ∆t, we get the system to be solved to get

the second set of corrections:


un+1

1 − un1
∆t

+ Aun+1
1 +∇pn+1

1 = fn+1,

(pn+1
1 − pn1 )−∆t−1(pn+1

0 − pn0 ) + λdivun+1
1 = 0.

(4.39)

The structure of the mass conservation is the same at each level. At level k, the mass

conservation will be (pn+1
k − pnk)−∆t−1(pn+1

k−1 − pnk−1) + λdivun+1
k = 0.

With that, we are ready to extend the algorithm to the Navier-Stokes. Set

Bu := u · ∇u, Au := −2div (∇su) and initialize u0
0 = u(0), p0

0 = p(0), u0
1 = u0

2 = 0.

The third order defect correction bootstrapping method can be written as follows:

for n ≥ 0



nln+1
0 = Bun0 ,
un+1

0 − un0
∆t

+ Aun+1
0 − λ∇divun+1

0 +∇pn0 = fn+1 − nln+1
0 ,

pn+1
0 = pn0 − λdivun+1

0 ,

dun+1
0 =

un+1
0 − un0

∆t
, dpn+1

0 =
pn+1

0 − pn0
∆t

,

(4.40)
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for n ≥ 1



d2un+1
0 =

dun+1
0 − dun0

∆t
,

nln1 = B(un0 + ∆tun−1
1 ),

un1 − un−1
1

∆t
+ Aun1 − λ∇divun1 +∇(pn−1

1 + dpn0 )

= −1

2
d2un+1

0 − nln1 − nln0
∆t

,

pn1 = pn−1
1 + dpn0 − λdivun1 ,

dun1 =
un1 − un−1

1

∆t
, dpn1 =

pn1 − pn−1
1

∆t
,

(4.41)

for n ≥ 2



d2un1 =
dun1 − dun−1

1

∆t
, d3un+1

0 =
d2un+1

0 − d2un0
∆t

,

nln−1
2 = B(un−1

0 + ∆tun−1
1 + ∆t2un−2

2 ),

un−1
2 − un−2

2

∆t
+ Aun−1

2 − λ∇divun−1
2 +∇(pn−2

2 + dpn−1)

= −1

2
d2un1 +

1

6
d3un+1

0 − nln−1
2 − nln−1

1

∆t2
,

pn−1
2 = pn−2

2 + dpn−1
1 − λdivun−1

2 ,

un−1 = un−1
0 + ∆tun−1

1 + ∆t2un−1
2 ,

pn−1 = pn−1
0 + ∆tpn−1

1 + ∆t2pn−1
2 .

(4.42)

Guermond and Minev [31] proved that the method is unconditionally stable and third

order when B = 0.

4.3 Stabilization and Turbulence Modeling

The momentum equation is already stabilized by the presence of viscous term.

This, however, may not be enough when the Reynolds number is high. In this situation,

the momentum equation becomes advection-dominated and the same stability issues

we faced in the transport equation are faced here. Even though stabilization appears

to be a numerical technique to stabilize hyperbolic equations, ‘‘Turbulence Modeling’’
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employees the same techniques to model physical turbulence with rapid changes in

pressure and velocity. There are many methods to model turbulence: k-ε Model,

Large Eddie Simulation (LES), etc. We will concentrate here on LES.

The idea behind LES is to split up the flow into large and small scales. Think, for

example, of a hurricane. The large scales can be thought of as the main large vortex.

The small scale are the small eddies that appear and disappear during the hurricane.

They are small and, during simulation, are usually subgrid but have a significant

amount of the energy of the system. For a good overview of LES, see John [47].

In the context of the Navier-Stokes equations, LES is introduced as a cell-wise

targeted viscosity νK ≥ 0 to the term −2νdiv (∇su). The result is a viscosity ν + νK .

The classical Smagorinsky model (Smagorinsky [72]) uses:

νK := Csδ
2
K‖∇su‖,

where Cs is the Smagorinsky constant, δk is the filter width (proportional to hK).

Guermond et al. [41] proposes an Entropy-Viscosity approach:

νK := min

(
CmhK |u|, Ceh2

K

|Dh(x, t)|
‖u2

h‖L∞(Ω)

)
,

where

Dh(x, t) :=∂t

(
1

2
u2
h

)
+ div

((
1

2
u2
h + ph

)
uh

)
−Re−1∆

(
1

2
u2
h

)
+Re−1 (∇uh)2 − f · uh,

is the entropy equation, hK is the local mesh size, ‖u2
h‖L∞(Ω) is a normalizing term, and

Cm, Ce are appropriate constants. The first term CmhK |u| is the first order artificial
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viscosity. When the mesh is fine enough to simulate all the scales, h2
K |Dh(x, t)| is

much smaller than the first-order artificial viscosity. This makes νK a consistent

viscosity that vanishes when scales of all levels are resolved.

4.4 Linear Systems

Once a numerical method is chosen from the previous section, it is now time to

build the linear systems to solve them. One of the main advantages of the Finite

Element Method is that the choice and construction of the bases creates matrices

that are sparse. This has a huge advantage in memory space and computational

performance.

We will concentrate here on the projection and artificial compressibility methods.

For Uzawa iterative method, see Ern and Guermond [24, p.212] or Girault and

Raviart [26, p.74]. We implemented the projection scheme (4.12)-(4.14). The linear

systems to solve it is as follows:

1. Assemble once and solve (4.12) as linear system AUn+1 = b where

Aij =

∫
Ω

3vjhv
i
h + 2∆t∇vjh∇v

i
hdx, (4.43)

bi =

∫
Ω

vih
(
4uin − uin−1 + 2∆t(fn −∇p?)

)
dx, (4.44)

2. Then assemble once and solve the Poisson problem (4.13) BΦn+1 = c where:

Bij =

∫
Ω

∇vjh∇v
i
hdx, (4.45)

ci = −
∫

Ω

3

2∆t
vihdivun+1dx, (4.46)
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3. After that, assemble once and invert the mass matrix (4.14) CQn+1 = d where:

Cij =

∫
Ω

vjhv
i
hdx, (4.47)

di =

∫
Ω

vihdivun+1dx, (4.48)

4. Finally, sum P n+1 =
∑n+1

i=1 Φi − µQi.

Notice that step 1 above has a block structure based on the dimension of the velocity

field space Ω. For example, when d = 2:

A =

 Au Auv

Avu Av

 . (4.49)

For the equation (4.43), we know that Auv = Auv = 0 because the velocity components

are uncoupled. If, however, we choose the viscous term div (∇su) = 1
2
(∆u+∇divu),

then ∇divu couples the components together. The ∇divu term is known to control

the divergence of the solution especially for high Reynolds number (c.f. Olshanskii

et al. [58], Olshanskii and Reusken [59], Heister [44]). The downside of that is that

the coupled system takes longer to solve. Specifically, during the tests in section

4.5.1.1, the coupled version of the projection method took 15 seconds to run vs 10

seconds for the uncoupled version, a significant slowdown.

The uncoupled system creates a much simpler linear system. Each matrix block

of Nu/d × Nu/d can be solved individually (if boundary conditions do not couple

the blocks; e.g. only allowing tangential flow on boundaries not aligned with the

coordinate axes). Therefore, solving d systems that look like AuiU = b is easier than

solving the complete matrix. Also, often, the matrix Au is identical for each velocity

component and requires assembling and preconditioning once for one component then
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use it for the other components. The disadvantage of uncoupled systems is that the

velocity components cannot be controlled implicitly.

The coupled system solves a Nu×Nu matrix that solves all the velocity components

together. The coupling is often done through the ∇divu. This creates a system

that is more difficult to solve because the coupling blocks are nonzero. However,

the advantage is gaining the stabilizing effect of ∇divu especially in high Reynolds

numbers.

Also, note that the linear systems discussed above so far need to be assembled

once. If, however, we include the nonlinear term implicitly, then the matrix needs to

assembled every time step affecting the performance of algorithm.

4.5 Numerical Results

After explaining the schemes in detail in the last sections, we test them in this

section and check if the numerical results agree with the theory.

4.5.1 Validation

As we did with the transport equation in the previous chapter, we will validate both

the projection and artificial compressibility schemes with conforming manufactured

solutions. We expect to get machine epsilon for the solution errors.

4.5.1.1 Projection Scheme

Using Ω = (0, 1)d domain with a uniform mesh and cell-wise [Q2]
d/Q1 Taylor-

Hood continuous finite elements, we introduce the following simple linear polynomial

manufactured solution for the momentum equation:

u(x, t) = (1 + t)

 x+ y

x− y

 , p(x, t) = (1 + t)xy, when d = 2, (4.50)
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u(x, t) = (1 + t)


1 + z

1 + x

1 + y

 , p(x, t) = (1 + t)xyz when d = 3. (4.51)

We solve the equation (4.12) with µ = 1 running until final time T = 1. The

projection step is disabled, which means that the exact pressure is interpolated from

the exact solution to the discrete space every time step. We enforce the following

boundary condition u|∂Ω = u(x, t)|∂Ω. The source term is modified to reflect the

exact solutions. As expected, table 4.1 shows that the error is machine epsilon (∼ 0)

which means that the algorithm reproduces the conforming manufactured solutions

exactly.

cells udofs ∆t ‖eu‖L2 ‖eu‖H1

2D
16 162 1E-02 8E-16 1E-14
64 578 5E-03 6E-15 4E-14
256 2178 3E-03 2E-14 1E-13

3D
8 375 2E-02 1E-15 1E-14
64 2187 1E-02 3E-15 3E-14
512 14739 5E-03 9E-15 8E-14

Table 4.1: Error values for running conforming manufactured solutions in a unit cube.
We get a machine epsilon as expected.

Now, we validate the scheme by running a convergence rate test. We use the

same 2D setup as before with the following nonconforming manufactured solutions:

u(x, t) =

 cos(x) + cos(y + t)

sin(x) + sin(y + t)

 , p(x, t) = cos(x+ y + t). (4.52)
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We see in table 4.2 that we get the O(∆t2) in the L2 norm as expected. The H1

norms are a bit higher than the expected O(∆t
3
2 ).

cells udofs pdofs ∆t ‖eu‖L2 rate ‖eu‖H1 rate

256 4802 1089 2E-02 1.54E-04 - 1.04E-03 -
1024 18818 4225 1E-02 4.28E-05 1.85 3.11E-04 1.75
4096 74498 16641 5E-03 1.14E-05 1.9 9.01E-05 1.79
16384 296450 66049 2.5E-03 2.98E-06 1.94 2.57E-05 1.81

cells udofs pdofs ∆t ‖ep‖L2 rate ‖ep‖H1 rate

256 4802 1089 2E-02 1.37E-03 - 2.22E-02 -
1024 18818 4225 1E-02 4.10E-04 1.74 8.63E-03 1.36
4096 74498 16641 5E-03 1.18E-04 1.8 3.27E-03 1.4
16384 296450 66049 2.5E-03 3.31E-05 1.83 1.22E-03 1.42

Table 4.2: Convergence rate for the constant density projection method. The CFLmax

is at 0.64.

4.5.1.2 Artificial Compressibility Scheme

We will verify the artificial compressibility method (4.40)-(4.42) in both 2D and

3D using discrete space and time conforming polynomial exact solutions to test for

exactness and then a nonconforming exact solution for convergence rates.

Starting with (0, 1)× (0, 1) domain Ω, we introduce the following simple linear

polynomial manufactured solution for the momentum equation:

u =
1

2
√

2

 y(1 + t)

−x(1 + t)

 , p =
1

2
xy(1 + t), (4.53)

where the constant coefficients normalize the values of the velocity and pressure

such that maxΩ,0≤t≤1 |u| = 1 and maxΩ,0≤t≤1 p = 1. The reason is that we want the
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manufactured solutions in this and next sections to be scaled appropriately compared

to each other.

We start with an initial cell refinement of 23 × 23 with Q2/Q1 Taylor-Hood

element and ∆t = 0.01 running to T = 1. Since (4.53) is linear in all variables, we

expect exactness (machine epsilon) similar to what was done in the previous section.

However, table 4.3 shows the convergence rate of 3 across the L2 and H1 norms and

not the expected machine epsilon. One source of error from the non-linearity nlk

where it is always explicit in the (4.40)-(4.42) equations and an extrapolation from

existing information.

Figure 4.2 shows the error versus time for the case with 256 cells. One can

observe oscillations in the beginning of the solutions that die out at t = 0.5 and reach

2.4E-8 near t = 1. By looking at the plot |u(t)− ut| (not shown here), we observe

waves that keep bouncing off the boundaries back and forth across the domain. This

explains the oscillations as the waves are superpositioned in phase and out of phase

over time until the kinetic viscosity reduces the energy of the waves and get the

actual approximation error. It seems that the source of these waves comes from the

boundary but we are unable to explain them.

We can get exactness with the simpler (4.30)-(4.32) scheme. Using the same setup

above and:

u = (1 + t)3

 x

−y

 , u = (1 + t)3


z

x

−y

 , (4.54)

for 2D and 3D respectively, we get the expected machine epsilon as shown in table

4.4. Notice that u is a vector with third order polynomials in time and, using a third

order scheme, we reproduce the solution almost exactly.
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cells udofs pdofs ∆t ‖eu‖L2 rate ‖eu‖H1 rate

64 578 81 0.01 5.58E-08 - 2.95E-07 -
256 2178 289 0.005 6.99E-09 3.00 3.69E-08 3.00
1024 8450 1089 0.0025 8.74E-10 3.00 4.61E-09 3.00

cells udofs pdofs ∆t ‖ep‖L2 rate ‖ep‖H1 rate

64 578 81 0.01 7.28E-07 - 4.31E-06 -
256 2178 289 0.005 9.08E-08 3.00 5.60E-07 2.95
1024 8450 1089 0.0025 1.13E-08 3.00 7.29E-08 2.94

Table 4.3: Errors for the artificial compressibility method using conforming manufac-
tured solutions using Q2 elements.

cells udofs ∆t ‖eu‖L2 ‖eu‖H1

2D
16 338 0.02 2.71E-14 1.64E-12
64 1250 0.01 3.66E-13 4.92E-11
256 4802 0.005 9.67E-13 2.55E-10

3D
8 1029 0.02 3.47E-15 6.71E-14
64 6591 0.01 7.45E-15 2.64E-13
512 46875 0.005 1.64E-14 9.92E-13

Table 4.4: Error values for running conforming manufactured solutions in a unit cube
using (4.30)-(4.32) scheme. We get a machine epsilon as expected.
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Figure 4.2: The errors |u(t) − ut|H1 and ‖u(t) − ut‖L2 versus t of the artificial
compressibility method with 578 dofs for u. One can see the oscillations in the
beginning of the scheme.

Now, we verify the convergence rates with nonconforming manufactured solutions.

We use the same setup as above but with the nonconforming solutions (4.52). Table

4.5 has the convergence rates with respect to time. It shows a solid convergence rate

of ∼ 3 as expected.

4.5.2 Realistic Models

We will compare our simulation here with the lid cavity test used in Guermond

et al. [39]. The domain is Ω = [0, 1] × [0, 1] × [−1, 1] nonuniform mesh such the

location of the mesh points are at:

xi, yi =
1

2
+

1

2
cos

(
π
i− 1

I − 1

)
, 1 ≤ i ≤ I,
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cells udofs pdofs ∆t ‖eu‖L2 rate ‖eu‖H1 rate

64 1250 289 0.01 1.99E-06 - 1.54E-05 -
256 4802 1089 0.005 2.32E-07 3.1 1.81E-06 3.09
1024 18818 4225 0.0025 2.80E-08 3.05 2.19E-07 3.05

cells udofs pdofs ∆t ‖ep‖L2 rate ‖ep‖H1 rate

64 1250 289 0.01 3.65E-05 - 8.99E-04 -
256 4802 1089 0.005 4.13E-06 3.14 1.48E-04 2.6
1024 18818 4225 0.0025 4.91E-07 3.07 2.74E-05 2.44

Table 4.5: Errors for the artificial compressibility method using nonconforming
manufactured solutions and using Q3 elements.

zi = sin

(
π

2

j − 1

J − 1

)
, 1 ≤ j ≤ J.

We use 39× 39× 30 Q2/Q1 tetrahedra elements. The initial condition is u = 0

with boundary conditions u = 0 everywhere but x = 1 where u = (0, 1, 0)>. Taking

advantage of the symmetry of the domain, we only simulate z ∈ [0, 1] with a symmetric

plane at z = 0. The Reynolds number used is Re = 1000 with time step ∆t = 0.005.

Since we work with constant density, we have no gravity driven forces and therefore

f = 0. We use the projection method (4.12)-(4.14).

Figure 4.3 shows the values calculated with Aspen in black as follows: the vertical

line is the value of −1
2
ux at {x = 1

2
, y ∈ [0, 1], z = 0}, and the horizontal line is −1

2
uy

at {x =∈ [0, 1], y = 1
2
, z = 0}. The black graph is superimposed on the orange graph

obtained from [39] and we can see that it coincides almost exactly.
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Figure 4.3: The velocity profiles calculated with Aspen (black) superimposed on the
orange results from [39]. The velocity profiles are calculated at the symmetry plane
z = 0 at time t = 4. The vertical line is the values of −1

2
ux and the horizontal line is

−1
2
uy.
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5. THE VARIABLE DENSITY NAVIER-STOKES

EQUATION

In chapter one, we discussed the transport equation, which, when solved, results

in a density field. Chapter two discusses the constant density Navier-Stokes equations

which resolves the velocity field in the case of, well, constant density. In this chapter,

we use both models to describe the variable density Navier-Stokes equations. This

is needed when modeling two fluids that diffuse into each other (e.g. dye in water,

fresh river water in salt water sea) or fluids that have distinct phases and do not mix

(e.g. oil/water, gas/liquid mixtures, emulsions).

We will describe the mathematical model and show where the difficulty arises

in solving the coupled system. Also, we will elaborate on the implications of adding

the density field and how that will impact the linear systems. Then we will describe

two methods to solve the variable density Navier-Stokes equations that extend the

methods we saw in the last chapter.

5.1 The Mathematical Model

The variable density incompressible Navier-Stokes equations are defined as follows:

∂tρ+ div(ρu) = 0, in Ω× (0, T ], (5.1)

ρ[∂tu + (u · ∇)u]− 2µdiv(∇su) +∇p = ρf , in Ω× (0, T ], (5.2)

div(u) = 0, in Ω× (0, T ], (5.3)

where Ω ⊂ R2,3 and ∂Ω is the boundary, ρ(x, t) is the density at (x, t) ∈ Ω× [0, T ],

u(x, t) is the velocity vector field, µ is the dynamic viscosity, and p(x, t) is the
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pressure.

The equations above have the following initial and Dirichlet boundary conditions:

u|t=0 = u0, ρ|t=0 = ρ0, in Ω,

u|∂Ω = 0, ρ|∂Ω = ρ0|∂Ω, in [0, T ],

where ρ0 and u0 are the initial conditions for density and velocity respectfully. As we

described for the constant density Navier-Stokes equations in the previous chapter,

the variable density Navier-Stokes equations is difficult to analyze mathematically

because it has elliptic, parabolic and hyperbolic properties. Approximating (5.1)-(5.3)

is also a more difficult task. Most approaches extend methods known for the constant

density incompressible fluid flows to variable density flows. For example, see Bell and

Marcus [9], Almgren et al. [1], Pyo and Shen [63], and Guermond and Quartapelle [35].

Guermond and Quartapelle [35] is the first —to the best of our knowledge —to show

the stability for a variable density projection algorithm. The algorithm in Guermond

and Quartapelle [35] uses two relatively expensive projections. A less expensive

algorithm is presented by Pyo and Shen [63] with a single projection. However, no

complete error analysis of the variable density projection methods can be found so

far in the literature.

5.2 Numerical Methods

The numerical methods that will be described in this section are built upon the

previous two chapters. We will describe the variable density projection and artificial

compressibility schemes and contrast them with the constant density schemes.
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5.2.1 Variable Density Second Order Projection Method

Last chapter, we explained in length the projection schemes. Here, we will extend

only one scheme: incremental projection method in rotational form. This is the

algorithm for the projection method that is second order in time and space. It assumes

that there exists a ρmin such that:

0 < ρmin ≤ inf
Ω
ρ0,

and for all future time steps k ≥ 0:

ρmin ≤ inf
Ω
ρk.

The idea for the variable density projection method described below comes from

the conservative strong form of the momentum equation:

∂t(ρu) +
1

2
div (ρu⊗ u) + · · · = ρf . (5.4)

Using the product rule and rearranging, we get the mass conservation equation:

u
(
∂tρ+ div (ρu)

)︸ ︷︷ ︸
ω=0

+ρ(∂tu + u · ∇u) + · · · = ρf . (5.5)

We could remove ω but Guermond and Salgado [37] has used the term 1
2
div (ρu)u to

prove the stability of the scheme below. So, we multiply ω by 1
2
(it will change nothing

as ω = 0) because, when tested with u, the expression (ρ∂tu + 1
2
u∂tρ)u = ∂t(

1
2
ρu2).

This term gives the kinetic energy conservation when integrated over space and time.

Now, we are ready to describe the second order variable density projection scheme.
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Initialize the algorithm with ρ0 = ρ0,u
0 = u0, p

0 = p0, ϕ
0 = q0 = 0 then proceed as

follows:

1. Setup intermediate variables:

ρ∗ = ρn+1 +
1

6
BDF2(ρn+1),

where BDF2(φn+1) = 3φn+1 − 4φn + φn−1,

p∗ = pn +
1

3

(
4δψn − δψn−1

)
,

u∗ = 2un − un−1.

2. Prediction:

3ρ∗un+1 − 4ρn+1un + ρn+1un−1

2∆t
− ρn+1u∗ · ∇un+1

+
1

2
div
(
ρk+1u∗

)
un+1 − µ∆un+1 +∇p? = ρn+1f n+1, un+1

∣∣
∂Ω

= 0,

3. Projection:

∆δψn+1 =
3ρmin

2∆t
div (uk+1), ∂nδψ

n+1 = 0,

δqn+1 = −div (un+1),

4. Pressure correction: pn+1 = ψn+1 − µqn+1.

This variable density projection method still maintains the same errors of its constant

density counterpart (4.12)-(4.14) and the stability proof can be found in Guermond

and Salgado [37, §5.4]
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5.2.2 Variable Time Stepping

We built on the second-order projection method in the last section and introduce

the variable density variable time stepping projection method. This step is important

to be able to slow down the simulation proportional to the CFL when there is so

much movement in the system then speed up when it calms down.

We assume that the density field ρn+1 is already calculated with one of the

methods in chapter 1 (e.g. SSPRK(3,3)). We redefine how BDF2 is defined and

introduce α = ∆t2
∆t1

the ratio of the previous two time steps as follows: un+1 happens

at time t+ ∆t1, un at t, and un−1 at t−∆t2. The new BDF2 is:

∂y

∂t
≈ ((1 + α)2 − 1)yn+1 − (1 + α)2yn + yn−1

α(1 + α)∆t
.

To avoid clutter, set a1 := (1 + α)2 − 1, a2 := (1 + α)2, a3 := α(1 + α). Also, to

get a second order velocity extrapolation u∗, we use the variable time step central

difference formula:

yn+1 =

(
1 +

1

α

)
yn − 1

α
yn−1 + ∆t1

∆t1 + ∆t2
2

∂tty(x).

Then, the variable time projection algorithm becomes:

1. Prediction:

ρ∗ = ρn+1 +
1

2a1

BDF2α(ρn+1), (5.6)

where BDF2α(φn+1) = a1φ
n+1 − a2φ

n + φn−1, (5.7)

p∗ = pn +
1

a1

(
a2δψ

n − δψn−1

)
, (5.8)

u∗ =

(
1 +

1

α

)
un − 1

α
un−1. (5.9)
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a1ρ
∗un+1 − a2ρ

n+1un + ρn+1un−1

a3∆t1
−ρn+1u∗·∇un+1+∇p?+1

2
div
(
ρk+1u∗

)
un+1

− div (µε(un+1))− λ∇div (un+1) = ρn+1f n+1, un+1
∣∣
∂Ω

= 0. (5.10)

2. Projection:

∆δψn+1 =
a1ρmin

a3∆t1
div (uk+1), where ∂nδψn+1 = 0, (5.11)

δqn+1 = −div (un+1). (5.12)

3. Pressure correction: pn+1 = ψn+1 − µqn+1.

This method is verified in section 5.5.1 and is used to simulate the dam breaking

problem in section 5.5.2.2.

5.2.3 Variable Density Artificial Compressibility

We also build upon the third order constant density artificial compressibility

(4.40)-(4.42). Here, the mass conservation is also calculated using deferred correction

method. The algorithm starts by introducing a first order density solution ρn0 in

(5.13) then correct it to get a second order density solution ρnO(2) in (5.14). The last

step uses third order solution ρnO(3) in (5.15).
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for n ≥ 0



advn+1
0 = −un0 · ∇ρn0 ,

ρn+1
0 − ρn0

∆t
= advn+1

0 ,

dρn+1
0 =

ρn+1
0 − ρn0

∆t
,

nln+1
0 = ρn+1

0 Bun0 ,
ρn+1

0

un+1
0 − un0

∆t
+ Aun+1

0 − λ∇divun+1
0 +∇pn0

= ρn+1
0 fn+1 − nln+1

0 ,

pn+1
0 = pn0 − λdivun+1

0 ,

dun+1
0 =

un+1
0 − un0

∆t
, dpn+1

0 =
pn+1

0 − pn0
∆t

,

(5.13)

for n ≥ 1



d2ρn+1
0 =

dρn+1
0 − dρn0

∆t
,

advn1 = −(un0 + ∆tun−1
1 ) · ∇(ρn0 + ∆tρn−1

1 ),{
ρn1 − ρn−1

1

∆t
= −1

2
d2ρn+1

0 +
advn1 − advn0

∆t
,

dρn1 =
ρn1 − ρn−1

1

∆t
, ρnO(2) = ρn0 + ∆tρn1 ,

d2un+1
0 =

dun+1
0 − dun0

∆t
,

nln1 = ρnO(2)B(un0 + ∆tun−1
1 ),

ρnO(2)

un1 − un−1
1

∆t
+ Aun1 − λ∇divun1 +∇(pn−1

1 + dpn0 )

= −1

2
ρnO(2)d

2un+1
0 − nln1 − nln0

∆t
,

pn1 = pn−1
1 + dpn0 − λdivun1 ,

dun1 =
un1 − un−1

1

∆t
, dpn1 =

pn1 − pn−1
1

∆t
,

(5.14)
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for n ≥ 2



d2ρn1 =
dρn1 − dρn−1

1

∆t
, d3ρn+1

0 =
d2ρn+1

0 − d2ρn0
∆t

,

advn−1
2 = −(un−1

0 + ∆tun−1
1 + ∆t2un−2

2 )·

∇(ρn−1
0 + ∆tρn−1

1 + ∆t2ρn−2
2 ),{

ρn−1
2 − ρn−2

2

∆t
= −1

2
d2ρn1 −

1

6
d3ρn−1

1 +
advn−1

2 − advn−1
1

∆t2
,

d2un1 =
dun1 − dun−1

1

∆t
, d3un+1

0 =
d2un+1

0 − d2un0
∆t

,

ρn−1
O(3) = ρn−1

0 + ∆tρn−1
1 + ∆t2ρn−1

2 ,

nln−1
2 = ρn−1

O(3)B(un−1
0 + ∆tun−1

1 + ∆t2un−2
2 ),

ρn−1
O(3)

un−1
2 − un−2

2

∆t
+ Aun−1

2 − λ∇divun−1
2 +∇(pn−2

2 + dpn−1)

= ρn−1
O(3)(−

1

2
d2un1 +

1

6
d3un+1

0 )− nln−1
2 − nln−1

1

∆t2
,

pn−1
2 = pn−2

2 + dpn−1
1 − λdivun−1

2 ,

un−1 = un−1
0 + ∆tun−1

1 + ∆t2un−1
2 ,

pn−1 = pn−1
0 + ∆tpn−1

1 + ∆t2pn−1
2 , ρn−1 = ρn−1

O(3).

(5.15)

All the operators used in the above algorithm are simple and work well as explained in

section 4.2.4. We have a mass matrix inversion for the density and pressure updates.

The only difference is that to solve the momentum equation, we need to invert an

operator like ρv −∆t(∇divv + ∆v) = b. This means that the ρv part of the matrix

has to be reconstructed every time step three times for a third order method because

of the density changes.

99



5.3 Linear Systems

The algorithms described in the previous section are almost exactly the same as

the ones in the previous chapter. The difference is that the linear system associated

with the momentum equation has the density ρ implicitly. Thus, the matrix has to

be reconstructed at every time step and, with that, the preconditioner. The matrix

used by the variable density artificial compressibility method in the last section is

symmetric and can be solved using conjugate gradient (CG) method but the variable

density projection method is not symmetric and, therefore, requiring an iterative

solver like biconjugate gradient stabilized (BiCGSTAB) method (c.f. van der Vorst

[82]) or generalized minimal residual (GMRES) method (c.f Saad and Schultz [67]).

5.4 Simplified Variable Density Artificial Compressibility

Method

In this section, we will prove the stability of the continuous and discrete forms of

a simplified Navier-Stokes equations (5.16)-(5.18). This simplified version removes

the space derivatives and keeps the essential features of full Navier-Stokes equations

that is relevant to the time discretization. We will first prove the stability of the

continuous simplified Navier-Stokes equations. Then prove the simplified implicit

discrete Navier-Stokes equation.

5.4.1 Continuous Equations Stability Analysis

Lemma 5.4.1. Let u ∈ H1((0, T );L2(Ω)), p ∈ H1((0, T );L2(Ω)) and

ρ ∈ H1((0, T );L1(Ω)) be the solution to:

∂tρ+ βρu = 0, (5.16)
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∂t(ρu) + µu + p = −β
2
ρu2, (5.17)

∂tp− λu = 0. (5.18)

Then (5.16)-(5.18) is stable if λ > 0, µ > 0 and ρ > 0,∀ρ. i.e.

(
ρ
u2

2

)
(T ) +

p2

2λ
(T ) ≤

(
ρ
u2

2

)
(0) +

p2

2λ
(0),

Proof. Start with (5.17) and multiplying it by u:

u∂t(ρu) + µu2 + pu =
β

2
ρu2u,

uρ∂tu + u2∂tρ+ µu2 + pu =
β

2
ρu2u,

ρ∂t
u2

2
+ u2∂tρ+ µu2 + pu =

β

2
ρu2u,[

ρ∂t
u2

2
+

u2

2
∂tρ

]
+

u2

2
∂tρ+ µu2 + pu =

β

2
ρu2u,

∂t

(
ρ
u2

2

)
+

u2

2
∂tρ+ µu2 + pu =

β

2
ρu2u.

Then using (5.16):

∂t

(
ρ
u2

2

)
− u2

2
βρu + µu2 + pu = −β

2
ρu2u,

∂t

(
ρ
u2

2

)
+ µu2 + pu = 0.

Finally, using (5.18):

∂t

(
ρ
u2

2

)
+ µu2 +

1

λ
p∂tp = 0,

∂t

(
ρ
u2

2

)
+ µu2 +

1

λ
∂t
p2

2
= 0,
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Integrating over t = [0, T ]:

∫ T

0

[
∂t

(
ρ
u2

2

)
+ µu2 +

1

λ
∂t
p2

2

]
dt = 0,(

ρ
u2

2

)
(T ) +

p2

2λ
(T ) +

∫ T

0

µu2dt =

(
ρ
u2

2

)
(0) +

p2

2λ
(0),

Or more specifically:

(
ρ
u2

2

)
(T ) +

p2

2λ
(T ) ≤

(
ρ
u2

2

)
(0) +

p2

2λ
(0),

and this completes the proof

5.4.2 Discrete Implicit Equations Stability Analysis

Lemma 5.4.2. Let (un, pn, ρn)n>0 be a sequence of solutions to:

ρn+1 − ρn

∆t
+ βρn+1un+1 = 0, (5.19)

ρn+1u
n+1 − un

∆t
+ (µ+ λ)un+1 + pn = −β

2
ρn+1(un)2, (5.20)

pn+1 − pn

λ
− un+1 = 0. (5.21)

with (u0, p0, ρ0) as initial conditions Then (5.19)-(5.21) is stable if λ > 0, µ > 0,∆t > 0

and ρn > 0,∀n. i.e.

λρk+1(uk+1)2 + ∆t(pk+1)2 ≤ λρ0(u0)2 + ∆t(p0)2.

Proof. Start with (5.20) and multiplying it by un+1:

ρn+1u
n+1 − un

∆t
un+1 + (µ+ λ)

(
un+1

)2
+ pnun+1 = −β

2
ρn+1(un)2un+1.
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Then using the identity (a− b)a = 1
2
[a2 + (a− b)2 − b2]:

1

2∆t
ρn+1

[
(un+1)2 + (un+1 − un)2 − (un)2

]
+ (µ+ λ)

(
un+1

)2
+ pnun+1 = −β

2
ρn+1(un)2un+1,

then we remove and add ρn(un)2

2∆t
and regroup:

ρn+1(un+1)2 − ρn(un)2

2∆t
+
ρn+1

∆t
(un+1 − un)2 +

ρn − ρn+1

∆t

(un)2

2

+ (µ+ λ)
(
un+1

)2
+ pnun+1 = −β

2
ρn+1(un)2un+1,

applying (5.19):

ρn+1(un+1)2 − ρn(un)2

2∆t
+
ρn+1

∆t
(un+1 − un)2 − βρn+1un+1 (un)2

2

+ (µ+ λ)
(
un+1

)2
+ pnun+1 = −β

2
ρn+1(un)2un+1,

ρn+1(un+1)2 − ρn(un)2

2∆t
+
ρn+1

∆t
(un+1 − un)2 + (µ+ λ)

(
un+1

)2
+ pnun+1 = 0.

Take (5.21) multiplied by pn and use the identity (a− b)b = 1
2
[a2 − (a− b)2 − b2]:

(pn+1)2 − (pn+1 − pn)2 − (pn)2

2λ
− pnun+1 = 0. (5.22)

Applying (5.22) to the previous equation:

ρn+1(un+1)2 − ρn(un)2

2∆t
+
ρn+1

∆t
(un+1 − un)2

+ (µ+ λ)
(
un+1

)2
+

(pn+1)2 − (pn+1 − pn)2 − (pn)2

2λ
= 0.
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But the term −(pn+1 − pn)2 will need to be dealt with because it is negative. Take

(5.21) and square both sides:

(
pn+1 − pn

λ

)2

= (un+1)2,

Putting it back:

ρn+1(un+1)2 − ρn(un)2

2∆t
+
ρn+1

∆t
(un+1 − un)2 + µ(un+1)2+

(pn+1 − pn)2

λ
+

(pn+1)2 − (pn+1 − pn)2 − (pn)2

2λ
= 0,

ρn+1(un+1)2 − ρn(un)2

2∆t
+
ρn+1

∆t
(un+1 − un)2 + µ(un+1)2+

(pn+1 − pn)2

2λ
+

(pn+1)2 − (pn)2

2λ
= 0,

Finally, summing over n = 0 . . . k:

λ
(
ρk+1(uk+1)2 − ρ0(u0)2

)
+ ∆t

(
(pk+1)2 − (p0)2

)
+

k∑
n=0

2λρn+1(un+1 − un)2 + 2λ∆tµ(un+1)2 + ∆t(pn+1 − pn)2 = 0,

Or more generally:

λρk+1(uk+1)2 + ∆t(pk+1)2 ≤ λρ0(u0)2 + ∆t(p0)2,

and this completes the proof
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5.5 Numerical Results

As usual, we test the schemes discussed in the previous sections numerically and

present them here.

5.5.1 Validation

Here, we will only present the validation of the variable time stepping projection

method (5.10) with density ρ(x, t) = 1 (this is considered a constant density test.

However, we are using the variable time stepping scheme presented in this chapter).

Using Ω = (0, 1)d domain with a uniform mesh and cell-wise [Q2]d continuous finite

elements, we introduce the following simple linear polynomial manufactured solution

for the momentum equation:

u(x, t) = (1 + t)

 x+ y

x− y

 , p(x, t) = (1 + t)xy, when d = 2, (5.23)

u(x, t) = (1 + t)


1 + z

1 + x

1 + y

 , p(x, t) = (1 + t)xyz when d = 3. (5.24)

We solve the equation (5.10) with µ = 1 running until final time T = 1. The

projection step is disabled, which means that the exact pressure is interpolated every

time step. The boundary condition u|∂Ω = u(x, t)|∂Ω is enforced. The time step is

changed to roughly achieve a CFL of 0.25. As expected, table 5.1 shows that the

error is machine epsilon which means that the algorithm reproduces the conforming

manufactured solutions exactly.
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cells udofs ∆t ‖eu‖L2 ‖eu‖H1 CFLmax

2D
16 162 8E-03 3E-13 1E-12 0.2621
64 578 4E-03 1E-15 2E-14 0.2606
256 2178 2E-03 1E-14 8E-14 0.2607

3D
8 375 3E-02 9E-16 1E-14 0.2601
64 2187 1E-02 5E-15 3E-14 0.2614
512 14739 7E-03 7E-15 7E-14 0.2613

Table 5.1: Error values for running conforming manufactured solutions in a unit cube.
We get the expected value of machine epsilon.

5.5.1.1 Convergence Rate Analysis

We tested the first-order variable density artificial compressibility algorithm (5.13)

for the purpose of checking convergence rates. The domain is 2D Ω = (0, 1)× (0, 1)

with the following manufactured solutions:

• Manufactured Solutions used in the 2D case:

ρ = 2 + sin2(x+ y + t),

u = (cos(x) + cos(y + t), sin(x) + sin(y + t))>,

p = cos(x+ y + t)

• Manufactured Solutions used in the 3D case:

ρ = 2 + sin2(x+ y + z + t)

u = (sin(πx) cos(πy) cos(πz) cos(t),

sin(πy) cos(πx) cos(πz) cos(t),

−2 sin(πz) cos(πx) cos(πy) cos(t))>,
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p = cos(x+ y + z + t).

The mesh is uniform with Taylor-Hood finite elements; i.e. Q2 approximation for

both the density and velocity and Q1 for the pressure. We add first order artificial

viscosity to the transport equation as explained in section 3.3.1 with Cm = 0.125. The

source term is calculated such that we get the exact solutions above. The simulation

is run to t = 0.5 then the errors are calculated as shown in table 5.2. The errors are

calculated with higher order Gaussian quadrature.

cells ∆t ‖eρ‖L2 rate ‖eu‖L2 rate ‖eu‖H1 rate

256 0.01 1.81E-03 - 2.90E-04 - 2.04E-03 -
1024 0.005 8.81E-04 1.04 1.34E-04 1.12 9.75E-04 1.06
4096 0.0025 4.34E-04 1.02 6.47E-05 1.04 4.78E-04 1.03

cells ∆t ‖eP‖L2 rate ‖eP‖H1 rate

256 0.01 6.80E-03 - 4.63E-02 -
1024 0.005 3.79E-03 0.84 2.42E-02 0.94
4096 0.0025 1.91E-03 0.99 1.23E-02 0.97

Table 5.2: Convergence rates with respect to time for the first-order variable density
artificial compressibility Navier-Stokes equations in 2D (essentially solving only
(5.13)). As one can see, the convergence rate is 1 across all solution variables in their
associated norms. CFL=0.32.

The convergence rate of interest here is with respect to time by choosing h� ∆t.

As one can see in table 5.2, the expected asymptotic convergence rate of 1 is reached

across all variables and their associated norms.
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5.5.2 Realistic Models

In this section, we will study the applications of variable density projection scheme

on a more realistic model; the Rayleigh-Taylor instability test. We compare our

results with the work of Guermond et al. [42]. Specifically in the early times before

turbulent behavior.

5.5.2.1 Rayleigh-Taylor Instability

We now apply the method to a more realistic problem. We use the Rayleigh-

Taylor instability test that Tryggvason [80] used. Two fluids are initially at rest in

the 2D domain (−d/2, d/2)× (−2d, 2d) and the heavier fluid is on top. The transition

of the phase-field variable ρ is as follows:

ρ(x, y, t = 0) =
ρmax + ρmin

2
+
ρmax − ρmin

2
tanh

(
y + µ(x)

αd

)
, (5.25)

where α ≈ 0.04 and the initial interface is slightly perturbed as follows:

µ(x) = 0.1 cos(2πx/d).

The time is also scaled using the Atwood number in Tryggvason as tTryg = t
√
At

At =
ρmax

0 − ρmin
0

ρmax
0 + ρmin

0

,

where ρmax
0 := maxx∈Ωρ0(x) and ρmin

0 := minx∈Ωρ0(x). As the system progresses

at t > 0, the heavy fluid will fall into the lighter fluid as a result of having the

momentum equation gravity source term equal ρg

We non-dimensionalize the equations as follows. We divide by: ρmin
0 for the

density ρ, d for length, and d1/2/|g|1/2 for time. Consequently, d1/2|g|1/2 is the
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velocity reference and the Reynolds number is Re = ρmin
0 d1/2|g|1/2d/µ. We will

restrict ourselves to the domain (0, d/2) × (−2d, 2d) because we assume that the

symmetry of the initial setup continues as time progresses. The top and bottom

parts have no-slip boundary conditions and the left and right sides have u · n = 0,

(I − n ⊗ n)ν∇u = 0 boundary conditions (known as symmetry or free boundary

conditions).

Remark. Note that we must integrate the pressure term by parts in the weak form

for p to be in L2. In this experiment, we tested both intergrating by parts and

leaving the pressure term as is. This leads to different boundary conditions for each

case: (I − n ⊗ n)(ν∇u − Ip) = 0, and (I − n ⊗ n)ν∇u = 0 respectively. In this

experiment, both were numerically stable and gave almost exactly the same results

when compared to previous papers. By not integrating by parts, p will be in H1 and

we have to answer the question: Is the discrete LBB condition (4.6) satisfied for

the space pair H1, H1? In this experiment specifically, it seems to be stable but we

cannot generalize to all possible cases without a rigours .

As hyperbolic equations need stabilization, we do so with the nonlinear entropy

viscosity Guermond et al. [42] using the entropy function E(x) = − log |ρ(1− ρ) +

10−14|. In figure 5.1, the evolution of the density field of ratio 3 at times 1, 1.5, 2,

and 2.5 in Tryggvason time scale tTryg = t
√
At with Re = 1000. The same times are

shown in figure 5.2 with density ratio of 100. The are 8484 Q2 degrees of freedom for

ρ with uniform mesh size of 2048 cells. The time stepping is variable and maintains

a maximum CFL of 0.4.

Now, we want to conduct a more challenging test. Specifically, we will test with

density ratio 100 to check the robustness of the scheme (see, for example, Sussman

et al. [74]). As figure 5.2 shows, the simulation holds nicely. Also, when figure 5.1 is
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t=1.0 t=1.5 t=2.0 t=2.5

Figure 5.1: The Rayleigh-Taylor instability with density ratio of 3.

visually compared with the results in Guermond et al. [43], the are almost identical.

5.5.2.2 Dam Breaking Simulation

The Dam Breaking problem is setup in domain Ω = [0, 4]× [0, 3]× [−1, 1] with

a uniform mesh and 393,216 Q2/Q1 elements. The symmetry plane is placed at

z = 0 with boundary conditions ∇u · n = 0 and u = 0 otherwise. We solve using

(5.6)-(5.12). The Reynolds number is 1000 with time stepping variable to maintain a

CFL of 0.4. The initial density ρ(x, t) used is (5.25) with ρmin = 1 and ρmax = 10.

The initial velocity is 0 and the source term is gravity ρg. The compression coefficient
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t=1.0 t=1.5 t=2.0 t=2.5

Figure 5.2: The Rayleigh-Taylor instability with density ratio of 100.

Ck = 1, Entropy-Viscosity Ce = 0.2, and linear viscosity Cm = 0.125. The total

number of degrees of freedom is 13,309,189.

Figure 5.3 shows the two snapshots of the simulation at times 0.2 and 1.46. The

visible band are densities ρ ∈ [2, 9] which is essentially the transitional part of the

level set. You can see how the compression maintained the thickness of the level set.
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Figure 5.3: The dam breaking simulation with density ratio of 10. Since we use level
set to represent the interface, we make the band of densities between ρ ∈ [2, 9] visible
to showcase how the compression of the level set maintains a narrow range of a few
cells.
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6. CONCLUSION

In this dissertation, we introduced the reason for starting this (potentially mas-

sively) parallel Navier-Stokes solver. Then went through explaining the Aspen

framework and the different parts of it. The planned next step for Aspen is to

prepare it to be published as open-source software and thus help other scientist build

upon it.

After that, we explained the theory of transport equation and the different time

stepping methods that can be followed. We shed light afterwards on stabilization

techniques then talked about linear systems and finally validate with numerical results.

Hyperbolic equation are tricky to solve and stabilize. Add to that the necessary next

step of handling more that two and more phase flow.

Then we explained the constant density Navier-Stokes model and give an overview

of its theoretical background. We discussed three methods to handle the saddle point

problem that the Navier-Stokes equations pose. The we talked about turbulence

and stabilization of the schemes. Finally we validated with numerical results. As

the results of lid cavity driven flow show, we need to be careful how the mesh is

distributed. If the mesh is not fine enough near the boundaries, the simulation breaks.

In the last chapter, we talked about the variable density Navier-Stokes equations.

We offered the variable time stepping technique and a variable density artificial

compressibility scheme. We provided stability results for a simplified Navier-Stokes

equations in both continuous and implicit discrete setups. We finally provided

numerical results at the end. As the dam breaking problem showed, using LES

turbulence modeling handles the numerical stability issues that are inevitably faced

when the Reynolds number is high.
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Aspen is still in its beginnings. There is a lot of work to be done to clean it

up to add more functionality. For example, higher order variable density artificial

compressibility is still underdevelopment. Also, artificial compressibility variable

time stepping would need to be developed for long running simulations.

All visualizations in this dissertation are done with VisIt visualization software

(c.f. Childs et al. [15]).
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