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ABSTRACT 

 
POPULATION COMPOSITION OF AN EXPLOITED HAWAIIAN FISHERY 

 
 

Patricia Malamalama Cockett, B.A., University of Hawai‘i at Mānoa 
 
 

Chair of Advisory Committee: Dr. Christopher E. Bird 
 

 

Overharvesting has been implicated in altering the population structure of marine 

organisms, reducing genetic diversity and adaptive capacity. Overharvested fisheries can 

be particularly vulnerable to environmental and anthropogenic stressors due to the loss of 

advantageous mutations. The Hawaiian broadcast-spawning limpet, Cellana exarata, is 

subject to varying levels of harvesting pressure on different islands, ranging from no 

harvest on the uninhabited island of Nihoa in the Papahānaumokuākea Marine National 

Monument, to a reduction in population density on Maui and Kaua‘i, to near extirpation 

on O‘ahu, the most populous of the Hawaiian Islands. In this study, we use genome-wide 

surveys of genetic variation (ezRAD, >21,000 loci) on C. exarata from the islands of 

Nihoa, Kaua‘i, Maui, O‘ahu, and Hawai‘i to test for relationships between genetic 

diversity, population size, island age, and harvest pressure. Global estimates of genetic 

differentiation among islands are greater than those estimated with mtDNA. Pairwise 

comparisons among islands indicate a substantial difference in genetic composition 

between the inhabited Main Hawaiian Islands and the uninhabited island, Nihoa. 

Estimates of nucleotide diversity (π) were greatest on Nihoa (π = 2.05 × 10−3), despite 
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having the smallest estimated population size (without harvesting); estimates of 

nucleotide diversity on the Big Island of Hawai’i are the lowest of all the islands in this 

study (π = 1.71 × 10−3), despite having the largest estimated population size. This 

difference in genetic diversity, while initially counter intuitive, is correlated with island 

age and indicates that C. exarata populations within the MHI experienced a recent 

bottleneck. Overall, these results suggest that the PMNM harbors a stockpile of genetic 

diversity for C. exarata, despite relatively small population sizes when compared to the 

MHI.  
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Introduction 

Overharvesting of a fishery removes alleles from populations causing permanent changes 

in genetic composition (Kenchington et al. 2003; Kenchington 2003; Ryman et al. 1995). 

These genetic changes exacerbate the risk of extinction, reduce resiliency, and may select 

for earlier maturation rates (Hutchings 2000; Law 2007; Olsen et al. 2004; Walsh et al. 

2006). Changes in heritable traits in fish (e.g. weight at age, length at age, spawning 

season etc.) following a collapse have been well documented in Atlantic cod, haddock 

and Pollock stocks (Hutchings 2000; Swain et al. 2007; Trippel et al. 1997; Wright 2005; 

Wright & Tobin 2013). Swain et al. (2007) reported a decrease in the average size and 

average age of Pacific Salmon, attributing the changes to harvesting practices and 

pressures. However, there are few studies that directly demonstrate a reduction in genetic 

diversity in a fishery due to overharvesting and even fewer that demonstrate a loss of 

genetic variation in invertebrate populations. The few examples include New Zealand 

snapper (Hauser et al. 2002) and the Atlantic Cod (Hutchinson et al. 2003). Each 

exhibited slightly lower levels of microsatellite allelic variation following collapses in 

these fisheries.  

Gene flow can be an important determinant of genetic diversity in addition to 

effective population size, selection and genetic mutation rate (Kenchington 2003). For 

example, the exploited population of black-lip abalone from Tasmania, Australia 

displayed higher levels of microsatellite allelic variation in contrast to populations that 

have not been overharvested (Miller et al. 2009). One possible explanation for the 

increased genetic variation of the abalone in the collapsed population is that gene flow 

from other populations introduced new alleles as habitat became available for new 
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recruits (Miller et al. 2009). This underscores the importance of identifying 

subpopulations within a fishery that can be sources of gene flow for declining 

populations. 

If an overexploited population is isolated, meaning there is no introduction of new 

alleles from other populations (gene flow), then there will be reductions in genetic 

diversity, therefore lowering that population’s ability to adapt to environmental changes 

(Hutchings 2000; Jackson et al. 2001; Smith et al. 1991). An exploited population’s 

capacity to recover after a decline can be related to changes in allele frequencies or even 

the loss of alleles (Frankham et al. 2002). Populations that have collapsed can yield low 

productivity because of reduced fitness or decreased allelic diversity (Allendorf et al. 

2008; Guinand et al. 2003; Hauser & Carvalho 2008; Ryman et al. 1995; Wang et al. 

2012) thereby relying on other source populations for production and genetic diversity.  

The collapse of the North Sea cod exemplifies the need for the conservation of 

genetic variation in the face of a changing climate (O'Brien et al. 2000). The number of 

cod was reduced to near extirpation, causing the individuals within the population to be 

much smaller and less fecund. Extreme environmental changes may be the coup de grace 

for the North Sea cod. The ability of species to adapt to new environmental conditions is 

critical in the next few centuries as the world’s human population continues to rise. This 

will inevitably lead to an increase in intensity of human impacts on exploited fisheries 

such as, extreme exploitation of natural resources, anthropogenic pollution, climate 

change and habitat loss (Halpern et al. 2009; Halpern et al. 2008; Selkoe et al. 2009). The 

world’s fisheries are in decline and will continue to decline without improved 

management practices (Thorpe et al. 2000). 



 3 

           Advances in population genetic techniques, such as restriction site associated 

DNA sequencing (RADseq, Miller et al. 2007), allow the precise identification of 

subpopulations, inference of migration rates, and quantification of genetic diversity by 

measuring allele frequencies among population samples and heterozygosity within 

population samples using tens of thousands of genetic markers. RAD markers are a 

repeatable, yet semi-randomly sampled loci across the genome. By identifying spatial 

patterns of gene flow and genetic diversity, population genetic analysis can be used to 

determine the spatial scale at which management plans should be executed and can be 

used to develop detailed management plans, such as a network of harvesting refuges, or 

pu‘uhonua. 

Hawaiian endemic limpets (Cellana spp.), locally referred to as ‘opihi, are a 

culturally and economically important fishery that collapsed in the early 1900’s (Kay & 

Magruder 1977). The fishery has not recovered since, and populations continue to decline 

(~150,000 lbs./year in the 1900’s to ~10,000 lbs./year in 1944). Cellana exarata are one 

of three ‘opihi species that occupy the Hawaiian rocky intertidal shores. They are 

broadcast-spawning limpets that release their gametes into the water column followed by 

a ~2-18 day pelagic larval duration (Bird et al. 2007; Corpuz 1983) which is indicative of 

a population with the potential for high levels of gene flow among islands. 

In population genetic analyses of a single mtDNA marker (Bird et al. 2007) and 

six nDNA microsatellites (Pennoyer et al., in prep), the C. exarata population exhibits a 

strong gene-flow restriction between the inhabited main Hawaiian Islands (MHI) and the 

uninhabited Northwestern Hawaiian Islands (NWHI), also known as 

Papahānaumokuākea Marine National Monument (PMNM).  mtDNA population genetic 
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structure was much weaker within the MHI and NWHI, with some islands exhibiting no 

differentiation. With the six microsatellites, gene flow restrictions were identified among 

the primary MHI, but little genetic structure was detected among the NWHI. Despite the 

amount of population genetic data for C. exarata, there is no information regarding the 

genetic composition of C. exarata on the island of Oʻahu, where populations have been 

harvested to near extirpation. There are varying levels of harvesting pressure among 

Hawaiian islands because each island has a different human populous and a different 

amount of viable ‘opihi habitat. 

The relationship between humans and the amount of ‘opihi on each island can be 

described by the meters of coastline divided by the human census population, meters of 

habitat per capita. The meters of C. exarata habitat per capita are related to the density of 

C. exarata as measured in transect surveys for four of the main Hawaiian islands (MHI) 

(Fig. 2, Bird et al, in prep), thereby demonstrating a potential link between human 

population, harvest pressure, and ‘opihi populations.  It should be noted that the density 

of ‘opihi in the NWHI, where harvest is prohibited, is approximately 30/m2.  

Identification of C. exarata subpopulations and their genetic diversity will 

provide Hawaii’s managers with the required information to manage the limpet fishery on 

a population level as well as provide insight for the biology of broadcast spawning 

limpets. There are currently minimal regulations for the harvesting of Hawaiian Cellana 

spp.; legal size of collection is 3.1 cm, with no other restrictions. Despite eight years of 

attempts by the Hawai’i State Senate, new regulations for the ‘opihi fishery have not been 

passed. One reason for the failure of legislation is the lack of scientific evidence 

demonstrating that humans are impacting ‘opihi populations.  
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In this study, we test for a relationship between genetic diversity and: (1) island 

age (2) amount of habitable C. exarata coastline per capita (harvesting pressure) (3) the 

amount of habitable coastline. A decline in genetic diversity of C. exarata with 

increasing human population size (decreasing habitable coastline per capita) would be a 

strong indication that humans are affecting the ‘opihi and their ability to recover. 

Additionally, we test for gene flow restrictions among Nihoa, Kaua‘i, O‘ahu, Maui and 

the Big Island of Hawai‘i using ~22,000 loci and compare our results to that of Bird et al. 

(2007) which assessed population structure among islands using one mtDNA locus.  
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Methods 

Collection sites 

Cellana exarata reside exclusively on rocky intertidal shoreline in the Hawaiian 

archipelago. Forty-eight individuals were collected in 2013 from one site on each of four 

main Hawaiian Islands (MHI) and one Northwestern Hawaiian Island (NWHI) from 

Southeast to Northwest: Hilo break wall, Big Island of Hawai‘i (BI); Waihe‘e, Maui 

(MA); Kaʻena, O‘ahu (OA); Ke‘e, Kaua‘i (KA); and Adam’s Bay, Nihoa (NI, Fig. 1).  

Island characteristics 

The Hawaiian Islands decrease in size and increase in age from the Southeast to the 

Northwest, from the Big Island of Hawai‘i to Nihoa (Clague 1996). Island ages were 

obtained from Clague (1996). The amount of C. exarata habitat on each island was 

estimated by multiplying the circumference of each island by the proportion of rocky 

shoreline on each island (Hawai’i DLNR Report, Papahānaumokuākea Marine National 

Monument). The human population on each island was obtained from the 2014 United 

States Census (www.census.gov). The peak human population size on Nihoa (175) was 

obtained from www.hawaiianatolls.org. The length of habitable coastline per capita was 

estimated by dividing the length of coastline that is habitable by C. exarata by the 

number of people residing on each island (175 for Nihoa). 

Sample processing 

Cellana exarata were dissected immediately after collection, and DNA was isolated from 

~150 mg of mantle tissue with the Omega E-Z 96 ® Tissue DNA Kit. A portable 

extraction kit including a vacuum pump, vacuum manifold, Eppendorf ThermoMixer, 
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and Rainin p-200 and p-1000 multichannel pipette were used to perform extractions on 

live tissue to maximize the yield of high molecular weight DNA, which is critical to the 

success of ezRAD (Toonen et al. 2013). DNA samples were transported to the Hawai’i 

Institute of Marine Biology, and lyophilized before final transport to the laboratory at 

Texas A&M University – Corpus Christi. 

Quantification and RADseq library preparation 

All DNA samples were subjected to gel electrophoresis on a 1% agarose gel in 1x Tris-

acetate-EDTA (TAE) to assess the length distribution of isolated DNA fragments. 

SPRIselect paramagnetic beads were used to isolate high molecular weight DNA using a 

0.4x bead: sample reaction ratio. Size-selected samples were re-inspected via gel 

electrophoresis and used for library preparation if low molecular weight DNA was 

successfully removed. DNA concentration was quantified with the AccuBlue High-

Sensitivity fluorescence assay on a SprectraMax M3 plate reader according to the 

manufacturer’s protocol, and DNA concentrations were equalized. Normalized DNA 

samples were pooled (6 - 12 individuals per pool, 3 - 4 four pools per site, Table 1) for a 

total of 80 ng of DNA in each pooled sample prepared with the Illumina TruSeq Nano 

DNA LT kit and 500 ng of DNA in each pooled sample prepared with the Illumina 

TruSeq DNA - PCR free LT kit. RAD libraries were prepared according to the ezRAD 

protocol (Toonen et al. 2013) with modifications to reduce cost and DNA loss. Pooled 

DNA samples (16.67 µl) were purified with 33.3 µl of AmpureXP beads, eluted with 16.9 

µl of nanopure water and digested with the isoschizomers MboI and Sau3AI in 25 µl 

reactions.  Following Fisher et al. (2011), the AmpureXP paramagnetic beads were not 

removed from the samples, and were reactivated with 3M NaCl in 20% polyethylene 
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glycol at the end of each reaction step. Digested samples were inserted into the Illumina 

TruSeq DNA Sample Prep Kit protocol (immediately after the DNA shearing step). Sites 

Nihoa, Kaua‘i, O‘ahu, and Maui were PCR amplified but the Big Island was not 

subjected to PCR amplification. Libraries were quantified using the Kapa qPCR Library 

Quantification Kit; equal concentrations were pooled, and submitted for paired-end 125 

bp sequencing to the Genomic Sequencing and Analysis Facility (University of Texas at 

Austin) on an Illumina HiSeq 2500. 

Data Processing  

Sequence quality and characteristics were assessed using FASTQC (Babraham 

Bioinformatics).  The dDocent bioinformatics pipeline (Puritz et al. 2014) was used to 

quality control RADseq data, generate de novo reference RAD contigs, map sequence 

reads to reference contigs, and call single nucleotide polymorphisms (SNPs), with some 

modifications to accommodate pooled ezRAD sequences. One sample from each island 

was used to construct a single de novo reference “genome” with Rainbow (Chong et al. 

2012).  In order for sequence reads to be used in the construction of the reference, Trim 

Galore! (Babraham Bioinformatics) was used to ensure they contained no adapter, had a 

per base Phred quality score above 15, length of 118 bp, and were present in at least 3 

samples with at least 3 supporting reads. For reads mapped to the reference, adapter and 

restriction site sequence were removed, only sequence with a per base Phred quality score 

above 20 and a length greater than 50 bp were retained for mapping with BWA (Li & 

Durbin 2010). SNPs were then called using freebayes with the “--pooled-continuous” 

argument, which tallies read frequency rather than assuming a particular ploidy (Garrison 

& Marth 2012). Loci with a mean total read depth less than 20x among samples were 
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removed. Loci were retained for further analysis if they met the following criteria: 

present in all samples, maximum read frequency > 0.1 in at least one sample, biallelic, 

had two or more polymorphic samples. The remaining loci were filtered in each sample, 

independently, with respect to depth of read coverage using R (R Core Team, 2014, Fig. 

3). Specifically, all loci with read depths greater than double the sample-specific mode 

read depth were removed. This effectively removed the long right tails of the read depth 

distributions. Then, 2.5 % of the remaining loci with the highest and the lowest read 

depth were removed from each sample (5% total per sample). Finally, any loci not 

represented in all samples were removed. The remaining loci were used for subsequent 

genetic statistical analyses. All loci were allelotyped, where sequence read frequencies 

were used to estimate the most likely allele frequencies within each of the pooled 

samples. 

Analysis of Genetic Differentiation 

An analysis of molecular variance (AMOVA), coded in the R statistical package, was 

used to estimate two of Wright’s (1951) F-statistics: FCT and FSC (Excoffier et al. 1992). 

Due to the sampling design employed here, FCT is an overall measure of genetic fixation 

and differentiation among islands (Bird et al. 2011), and FSC is a measure of 

differentiation among samples nested within islands, where multiple samples were 

collected from a single site on each island (Table 1). Following Weirand Cockerham 

(1984), F-statistics were calculated across several loci by independently summing the 

variance components associated with island, sample, and within sample.  

In addition to global estimates of FCT and FSC, pairwise estimates of FCT and FSC were 

calculated among islands in order to identify the island populations driving the global 
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genetic structure. Pairwise FCT values were regressed against cumulative stepping-stone 

distance between islands (Bird et al. 2007). A mantel test was performed to assess 

whether genetic differentiation conforms to an isolation by distance model using the 

Isolation by distance web service (Wright 1943; Jenson et al. 2005).  

In an effort to reduce computational expense, we estimated the number of loci 

required to consistently estimate FCT and FSC with minimal variation. To accomplish this, 

1, 10, 100, 1000, 10,000 and 22,474 loci (1 SNP per locus) were randomly drawn from 

the data set and the F-statistics were calculated. This procedure was repeated 1000 times 

to obtain estimates of the mean and variance associated with the F-statistics given the 

number of loci interrogated. The mean F-statistics and variances were plotted against the 

number of loci to determine an acceptable level of precision, as indicated by an 

asymptote (Fig. 5). 

To test for a non-random pattern of genetic differentiation in pooled samples, it is 

critical to model the error associated with both the sampling of individuals from the 

population and the sampling of sequence reads from pooled samples. For the test of FCT 

and FSC, a standard null resampling procedure for a nested AMOVA is employed that is 

similar to that described in Excoffier et al. (1992), with the exception that bootstrapping 

is used rather than permutation (Fig. 4) and we subsampled loci (see previous paragraph). 

(1) A sample of k loci (1 SNP per locus, k is a constant) are drawn from the samples to be 

compared and the observed F-statistics are calculated; (2) the sample allele frequencies of 

each locus from each sampling site are calculated from the data and used as estimates of 

the true frequencies; (3) two alleles per individual are randomly sampled from each 

island to obtain simulated allele frequencies for each pooled sample; (4) the observed 
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number of sequence reads are randomly sampled from each pooled sample; (5) each 

locus in each sample is allelotyped; (6) the null FSC is calculated and recorded; (7) the 

samples are randomly assigned to islands and null FCT is calculated; and (8) this 

procedure is repeated from Step 1 in order to generate the observed and null distributions 

of the F-statistics. The statistical significance of the observed FCT and FSC values is 

determined by comparison of the mean observed values to their null distributions 

(Excoffier et al. 1992).  

Analysis of Genetic Diversity 

Nucleotide diversity (π, Nei and Li 1979) was calculated for each island at each sequence 

locus according to the following equation: 

! =
2!  ×    !"

! − 1   ×  !"#$"%&"  !"#$%ℎ 

where n is the number of alleles sampled, sum pq refers to the summation of the products 

of reference and the variant allele frequencies (after allelotyping) for all polymorphic 

positions in the sequence locus, and j is the sequence length, in base pairs. There was a 

significant relationship between number of individuals in a pool and π, therefore the 

alleleotypes from pools within islands were combined such that approximately 30 

individuals per island were used in the calculation of π (Table 1). After performing this 

procedure, there was no relationship between the number of individuals and nucleotide 

diversity.  

In addition to nucleotide diversity, the proportions of sequence loci that were 

polymorphic at each island were estimated by dividing the number of polymorphic loci 

by the total number of loci.  Both the nucleotide diversity and the polymorphic proportion 

of loci were used to test for differences in genetic diversity among islands using the 
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statistical software packages R and JMP Pro (Version 11.2.0).  Specifically, the 

polymorphic proportion of loci was used to assess overall levels of genetic diversity 

across all loci, while π was used to assess the degree of diversity exhibited in 

polymorphic loci. The estimates of genetic diversity (polymorphic proportion of loci and 

mean π in polymorphic loci) were regressed against three predictor factors that are 

thought to affect genetic diversity: island age, amount of habitat, and harvest pressure. 

The mean estimate of π and the values for each factor were log transformed to meet the 

assumptions of least squares linear regression and the F-distribution was used to test if 

each slope was significantly different from zero (Zar 1984). To gain better insight of how 

each locus responds to changes in nucleotide diversity with respect to island age, we 

regressed π against island age for each locus and tabulated the number of loci with each 

specific bin of R2 values. Additionally, we calculated the proportion of loci with a 

positive and negative slope within each bin of R2 values. 

A post-hoc Tukey HSD test was employed to identify differences in π among 

islands. Finally, each predictor factor was log transformed and Pearson product-moment 

correlation coefficients were computed to investigate collinearity between each predictor 

factor and each other predictor factor using the statistical software package JMP.  
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Results 

SNP Discovery 

Raw sequence reads input to the dDocent variant calling pipeline, produced 159,677 

SNPs within 48,764 loci. Removing loci with <20x mean coverage, multiallelic loci, and 

any loci that were not present in all samples yielded 156,042 SNPs within 48,764 loci. 

After removing SNP loci with the sample-specific filter for high and low depth of 

coverage, there were 70,014 SNPs within 23,453 loci (Fig. 3). After removing SNPs with 

a variant frequency <0.1 in at least one sample and SNPs that were present in at least two 

samples, there were 59,730 SNPs remaining within 22,474 loci. Following adjustments 

made to include ~30 individuals per site by randomly selecting samples within each site 

for genetic diversity analyses, 21,529 loci remained. 

Analysis of Molecular Variance 

In order to evaluate the precision and accuracy of F-statistic estimates generated with 

SNPs, the mean global FCT and FSC were plotted against number of randomly drawn loci 

(one randomly drawn SNP per locus, Fig. 5). The mean FCT and FSC both increased with 

an increasing number of loci, from 1 to 100, before reaching an asymptote of FCT = 0.07 

and FSC = 0.002 for 1,000 through 22,474 loci. The standard deviation of the mean F-

statistic decreased with increasing numbers of loci for both FCT and FSC, as expected. 

One-thousand randomly sampled loci was deemed to be sufficient to calculate FCT and 

FSC values with an acceptable amount of error for this study (stdevFCT=0.012, 

stdevFSC=0.004). From here forward, all reported F-statistics are means obtained from 

1000 randomly drawn sets of 1000 loci. 
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The overall population genetic structuring detected among islands was 

significantly greater than zero (FCT = 0.071, P < 0.001, Table 2), and there was no 

detectable genetic differentiation among replicate sample pools (FSC = 0.002, P = 0.811, 

Table 2). Pairwise estimates of genetic differentiation (FCT) between Nihoa and each 

MHI (Kaua‘i, O’ahu, Maui, Big Island of Hawai‘i) are consistently and substantially 

greater than estimates among the MHI (mean FCTpairwiseNIvsMHI = 0.164, stdev = 0.01, 

versus mean FCTpairwiseMHIvsMHI = 0.015, stdev = 0.01; Fig. 6).  Within the MHI, the island 

of Maui exhibited a small amount of genetic differentiation from the other MHI, with a 

mean pairwise FCTpairwiseMAvsMHI = 0.024 (stdev = 0.01). For all other pairwise 

comparisons among the MHI, however, FCT < 0.01, thereby indicating very little genetic 

structuring (Fig. 6). There was no pattern of isolation by distance when regressing 

pairwise FCT against cumulative stepping-stone distance between islands. There is a 

positive linear relationship between FCT and stepping-stone distance, however, the slope 

is not significantly greater than zero (r2 = 0.25, P = 0.125). 

In contrast, pairwise estimates of genetic differentiation among samples collected 

within islands (FSC) were lower than the FCT values (maximum FSC = 0.0164, minimum 

FSC = - 0.0084), with one exception on the island of Kaua‘i (Fig. 6).  The FSC values in 

pairwise comparisons between Kaua‘i and the other MHI were generally similar, but 

greater than the FCT values (FSCpairwiseKAvsMHI = 0.012, StDev = 0.005 versus 

FCTpairwiseKAvsMHI = 0.006, StDev = 0.003).   

Genetic Diversity Among Islands 

Despite filtering out several thousands of monomorphic loci and combining pooled 

samples within islands (Table 1), an average of 53% of the all the remaining loci within 
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each island were invariant, where π = 0.  Consequently, two summary indices of genetic 

diversity are presented: the proportion of loci within each island that are polymorphic and 

the mean nucleotide diversity of the polymorphic loci within each island. 

The polymorphic proportion of loci was greatest on the island of Nihoa (0.630), 

and decreased progressively on each island from Northwest to Southeast: Kaua‘i (0.533), 

O‘ahu (0.504), Maui (0.495), and the Big Island of Hawai‘i (0.491, Fig. 7). Almost all of 

the variation in the proportion of loci that are polymorphic can be explained by the age of 

the island (r2=0.998, P < 0.0018, Fig. 8), where older islands have more polymorphic 

loci.  Large portions of the variation in the proportion of loci that are polymorphic can 

also be explained by the amount of habitat, in linear meters of habitable coastline 

(r2=0.98, P = 0.0066, negative relationship, Fig. 9), and the amount of habitable coastline 

per person (r2=0.92, P < 0.011, positive relationship, Fig. 10). There is a negative linear 

relationship between the amount of habitable coastline and polymorphic proportion of 

loci, and there is a positive linear relationship between the amount of habitable coastline 

per capita and the polymorphic proportion of loci.  

It is clear that there are correlations among the predictor variables employed here 

(Fig. 11).  There was a negative correlation between the amount of habitable coastline per 

capita and the amount of habitable coastline, where the amount of habitat generally 

decreases as the amount of habitat per capita increases  (r = -0.86, Fig. 11.A). There was 

a positive correlation between the age of the islands and the amount of habitable coastline 

per capita, in which the amount of habitat per capita increases as island age increases (r = 

0.47, Fig. 11.B). There was a negative correlation between the amount of habitable 
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coastline and the age of the islands, where the amount of habitable coastline decreases as 

island age increases (r = -0.81, Fig. 11.C). 

Mean nucleotide diversity (π) of the polymorphic loci was highest on Nihoa (π = 

2.05 × 10−3), followed by Maui (π = 1.87 × 10−3 ), O‘ahu (π = 1.78 × 10−3 ), Kaua‘i (π = 

1.75 × 10−3 ), and finally Hawai‘i (π = 1.71 × 10−3, Table 1, Fig. 12). Unlike with the 

polymorphic proportion of loci, post hoc tests using the Tukey HSD could be calculated 

on π because there were many observations of π for each island. Post hoc tests indicate 

that the mean nucleotide diversity on Nihoa is significantly greater than that on Maui (P 

< 0.0001), π on Maui is significantly greater than that on Kaua‘i (P < 0.0001) and O‘ahu 

(P < 0.0001), and π on Hawai‘i is significantly less than that on the other islands (P < 

0.0001). A regression of the mean nucleotide diversity of polymorphic loci plotted 

against island age reveal a positive relationship, where mean nucleotide diversity 

increases as island age increases (r2 = 0.0037, P < 0.0001, Figure 13). Nucleotide 

diversity of polymorphic loci regressed against the amount of habitable coastline exhibit 

a negative relationship, in which nucleotide diversity decreases as the amount of 

habitable coastline increases (r2 = 0.0073, P < 0.0001, Fig. 14). There was a positive 

relationship between nucleotide diversity and the amount of habitable coastline per 

person, where nucleotide diversity increases as the amount of habitable coastline per 

person increases (r2 = 0.0058, P < 0.0001, Fig. 15). All three predictor factors had a 

significant linear relationship with nucleotide diversity. Mean nucleotide diversity for 

each island are as follows: Nihoa, 95%CI: 2.0310-3 to 2.0710-3; Kaua‘i, 95%CI: 1.7310-3 

to 1.7810-3; O‘ahu, 95%CI: 1.7610-3 to 1.8010-3; Maui, 95%CI: 1.8610-3 to 1.9010-3; Big 

island of Hawai‘i, 95%CI: 1.6910-3 to 1.7410-3. 
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It is important to recognize that while the diversity results presented thus far are 

averages, there was a lot of variation in the pattern of genetic diversity among islands for 

each locus. For nucleotide diversity regressed against island age for each locus (including 

both polymorphic and monomorphic loci), ~9000 loci have a low coefficient of 

determination (r2 = 0-0.2) compared to the number of loci (~1000) with a high coefficient 

of determination (r2 = 0.8-1, Fig. 16). There was a fair amount of loci (~5000) with a 

coefficient of determination between 0.6 and 0.8 with remaining loci (~7250) exhibiting a 

coefficient of determination between 0.2 and 0.6. For loci where the relationship between 

diversity and island age is not significantly different than zero, there is an expectation 

that there will be equal numbers of loci with positive and negative slopes. Indeed, loci 

with a coefficient of determination between 0 and 0.4 show even proportions of positive 

(~50%) and negative slopes (~%50). The proportion of loci with positive slopes increases 

with the coefficient of determination: ~65% of loci have a positive slope when r2 = 0.4-

0.6 and ~80% of loci have a positive slope when r2 = 0.6-0.8. However, only ~75% of the 

loci with the highest coefficient of determination values (r2 = 0.8-1) have a positive 

slope.  In other words, the nucleotide diversity for a substantial number of loci (>1500) 

are strongly negatively related to island age, and are thus positively related to the amount 

of habitat. 
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Discussion 

Genetic Differentiation Among Islands 

 
Analysis of thousands of loci in C. exarata indicates that there is population structure 

between the MHI and the NWHI as previously documented with mtDNA (Bird et al. 

2007). These results support the conclusions of Bird et al. (2007) and Toonen et al. 

(2011): the 255 km channel separating the MHI and NWHI restricts gene flow for 

intertidal and coastal marine species. In addition to being isolated, Nihoa is a small island 

with 4.73 km of coastline that is habitable by C. exarata, relative to ~109 km on Kaua‘i. 

Without the influence of harvesting, the population on Nihoa should be smaller than that 

of Kaua‘i. Genetic drift is more powerful in smaller populations (Lacy 1987), and given 

sufficient time, could accentuate the observed level of genetic differentiation. On the 

other hand, it is plausible that some of the genetic differentiation between Nihoa and the 

MHI is driven by the difference in genetic diversity which is expected to decrease if 

effective population sizes remain at present levels (see Genetic Diversity below). 

Estimates of genetic differentiation using 22,474 loci (1 SNP per locus) provide 

somewhat greater resolution to detect population structure within the MHI, compared to a 

single mtDNA locus, but not as much as anticipated. Differences in genetic structure 

between mtDNA and a genome-wide survey of SNPs can be caused by a variety of 

factors, such as: increased mutation rates, separate replication events, modes of 

inheritance, and the absence of recombination in mtDNA (mtDNA are matrilineal; Reigh 

& Luck 1966; Zink & Barrowclough 2008). Bird et al. (2007) sampled C. exarata from 

Kaua‘i, Moloka‘i, and the Big Island of Hawai‘i in the MHI, and detected genetic 

partitioning solely between the central island (Moloka‘i) and both Kaua‘i and the Big 
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Island of Hawai‘i. While this was suggestive of Moloka‘i being genetically partitioned 

from the other MHI, Moloka‘i was not partitioned from a second site on Hawai‘i. Here, a 

central island, Maui, is clearly partitioned from the other MHI sampled (Kaua‘i, O‘ahu, 

and the Big Island of Hawai‘i) where FCT between Maui and the other MHI is 4x greater 

than that among the other MHI (Fig. 6). No other genetic structure is evident within the 

MHI.    

When considering the connection between Moloka‘i and Maui, the SNP and 

mtDNA data for C. exarata are consistent with each other, but not with the general 

pattern of genetic structure exhibited by several species (Toonen et al. 2011). Populations 

on Moloka’i and Maui are expected to be genetically similar when considering that 

Moloka‘i and Maui are presently separated by a 13.5 km channel, and fuse into a single 

island, Maui Nui, during ice ages when sea level is can be ~120 meters lower than 

present day. Indeed, Toonen et al. (2011) surveyed the population structure of 23 marine 

species and found little genetic structure among the islands of Maui Nui.  Rather, it is the 

Ka‘ie‘ie Waho (the channel separating Kaua‘i and O‘ahu, ~116km) and the ‘Alenuihaha 

(the channel separating Maui and the Big Island of Hawai‘i, ~45km) that are associated 

with genetic discordance in the MHI (Toonen et al. 2011).   In C. exarata, however, the 

observed genetic discordance is specifically between Maui Nui and the other MHI.  For 

example, the Big Island of Hawai’i is not differentiated from O’ahu or Kaua’i.   

It is not immediately clear why Maui is genetically differentiated from the other 

MHI, but it is likely a consequence of historical demographics. Given the relative 

estimated population sizes and lack of genetic structure among Kaua’i, O’ahu, and 

Hawai’i, the genetic differentiation of Maui Nui from the other MHI is indicative of a 
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non-equilibrium condition.  Effective population size (Ne), migration rate (m), and 

mutation rate (µ) interact to affect genetic structure.  In an Island Model (Wright 1943), 

large populations, where 2Nem>>1 or 4Nµ>>1, converge upon the same allele 

frequencies at equilibrium and are unlikely to exhibit genetic structure (Crow & Kimura 

1970), but the populations here do exhibit structure. Smaller populations where 2Nem<1 

or 4Nµ<1 would be expected to be differentiated at equilibrium. In a Stepping-Stone 

Island Model (Kimura & Weiss 1964), genetic differentiation would be expected to 

increase among islands that are farther apart. The observed pattern of genetic structure in 

the MHI, however, is unrelated to geographic distance or the amount of habitable 

coastline (proxy for population size without harvest), which is roughly similar among 

Kaua‘i, O‘ahu, and Maui, and 3-4x greater on the Big Island of Hawai‘i. During the last 

low sea level stand, the amount of habitat on Maui Nui was roughly similar to Hawai‘i. 

While identifying the demographic scenarios consistent with the observed pattern are 

beyond the scope of this paper, Maui Nui is the only instance where C. exarata 

populations are appreciably split and joined with changes in sea level, and this process 

may be involved. 

Genetic Differentiation Among Pooled Samples Collected Within Sites 

The advantage of preparing multiple pooled samples per site, rather than the more 

common practice of preparing a single pooled sample, is that the amount of error 

introduced by sampling, sample preparation, and sequencing is estimated and accounted 

for in comparisons of sampling locations.  Errors may stem from pipetting, DNA 

quantification, or sample collection among other possibilities that could result in the 

misrepresentation of a population.  Here, the original population sample was divided into 
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3-4 sub samples of 6-12 ‘opihi per site, but an alternative would be to make one large 

pooled sample and replicate it in triplicate, which would incur the same cost as the 

strategy employed here.  The global FSC was not significant, indicating that a small 

amount of error was introduced by sampling and sample prep (Table 2).   Two sub-

samples, however, did not conform to expectations, one from O’ahu and one from 

Kaua’i.  The sample from O’ahu was flagged very early on in the quality control process 

for having a low read depth and skewed frequency distributions relative to other samples 

taken from the same location and was removed prior to data analysis.  The sample from 

Kaua’i was identified with FSC, an index of the level of fixation among samples (Fig. 

6).  If a sub-sampling or replication procedure were not employed, Kaua’i may have been 

erroneously identified as genetically differentiated from other locations, and the O’ahu 

sample may have been lost. The sample from Kaua‘i could be removed from the analysis, 

however, it is most likely unnecessary as FCT estimates should be unaffected by the 

differences among samples from Kaua‘i. In order to better understand the effects of 

pooling procedures, further tests that directly compare results from multiple small pools, 

one large pool, replicates of large pools made with the same individuals would be 

instructive.  

Mean Genetic Diversity 

Both genome-level metrics that were used to quantify genetic diversity (the proportion of 

loci that are polymorphic and the mean nucleotide diversity among loci) yielded 

qualitatively similar results.  Both diversity metrics are positively related to island age 

and the length of habitable coastline per person (for C. exarata) and negatively related to 

the length of habitable coastline, a proxy for population size without harvesting.  This 
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was unexpected because, in C. exarata, mitochondrial COI (Bird et al 2007) and a nDNA 

intron, ATPSß (Bird et al 2011), both exhibit the opposite qualitative relationship where 

the larger populations in the MHI have greater nucleotide diversity than the smaller 

populations in the NWHI. There are other species in the Hawaiian Archipelago with 

higher levels of mitochondrial nucleotide diversity (π) in the NWHI compared to the 

MHI, including C. sandwicensis (Bird et al. 2007), Holothuria atra (Skillings et al. 

2011), Acanthaster planci (Timmers et al. 2011), Acanthurus nigroris (DiBattista et al. 

2010), and Epinephelus quernus (Rivera et al. 2004). Of these, only C. sandwicensis, a 

sibling species of C. exarata, is known to exhibit large decreases in population size in the 

NWHI due to a decrease in habitat. 

Population genetic theory, such as the infinite sites model, indicates that at 

equilibrium (or a steady state) and all else being equal, larger populations will exhibit 

greater genetic diversity (Crow & Kimura 1970; Hartl et al. 1997). Empirical studies 

have found positive relationships between genetic diversity and population size (Soule 

1976; Frankham 1996) but Bazin et al. (2006) did not find the expected relationship with 

mtDNA. In contrast, the nucleotide diversity of mtDNA in C. exarata conforms to 

expectations and the overall genetic diversity of the RAD loci (mostly nuclear) does not 

(Figs. 9 & 14). The negative relationship between genetic diversity and population size in 

C. exarata indicates that most loci have not achieved equilibrium with respect to effective 

population size, mutation, and migration. Supporting this inference, both the COI and 

ATPSß loci in C. exarata exhibit a signature starburst haplotype network Bird et al. 

(2007, 2011) that is consistent with a population bottleneck followed by population 
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expansion. The timing of the bottleneck in C. exarata is estimated to be greater than 2000 

years old, prior to human harvesting of C. exarata (unpublished, but see Bird et al. 2011) 

The positive relationship between the polymorphic proportion of loci and island 

age is striking (r2=0.998, Fig. 8). Nihoa, by far the oldest and smallest island sampled, 

has the greatest polymorphic proportion of loci and nucleotide diversity. There are two 

primary hypotheses that would explain the observed pattern. (1) The ancestor of C. 

exarata colonized the Hawaiian archipelago via Nihoa (or an island farther to the 

Northwest, ~5.1 Mya according to Bird et al. 2011) then subsequently colonized each 

island to the Southeast as they emerged. (2) There was a more recent population 

bottleneck that affected the MHI more severely and/or more recently than Nihoa. The 

latter hypothesis seems more plausible given the shallow divergences among haplotypes 

of COI and ATPSβ (Bird et al. 2007, 2011), and the proportionately low nucleotide 

diversities for the RAD loci at all locations (Fig. 12). Further, island age is likely to be 

correlated with the amount of time since population expansion began given the 

progressively lower levels of genetic diversity on each island to the Southeast, which 

each have greater amounts of habitat. We expect that the genetic diversity of C. exarata 

will increase in the MHI if effective population sizes are maintained. 

Population bottlenecks caused by overharvesting can also reduce the genetic 

diversity, but hard evidence demonstrating this phenomenon in marine fish and 

invertebrates is uncommon (Allendorf et al. 2008; Hauser et al. 2002). Cellana exarata 

exhibit lower genetic diversity on islands with less habitat per person (MHI) than Nihoa, 

an island presently unoccupied by humans and estimated to be able to support 175 

humans prior to European contact (Cleghorn 1988). O’ahu is the island with the greatest 
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harvesting pressure (~0.12 meters of habitat per person) that has resulted in low 

population densities relative to other islands (pers. obs.).  However, genetic diversity on 

O‘ahu is greater than on the Big Island of Hawai‘i (~2.2 meters of habitat per person). 

Detecting a decline in genetic diversity due to overharvesting may be difficult for C. 

exarata, given that genetic diversity is likely to be low in the MHI due to a relatively 

recent population bottleneck that predates human occupation. The COI nucleotide 

diversity of both C. sandwicensis and C. talcosa are much greater than in their sibling 

species, C. exarata, and if at equilibrium, should be more sensitive to population 

bottlenecks caused by harvesting. 

Perhaps the most intriguing pattern in genetic diversity observed in this study is 

the relatively high nucleotide diversity for polymorphic loci on Maui relative to the other 

MHI (Fig. 12) despite a low proportion of loci that are polymorphic (Fig. 7). In Figures 

13-15, Maui is the sample that deviates from the overall trend. Pairwise FSC estimates of 

pooled samples within Maui were not unusual as seen with pooled samples within 

Kaua‘i; hence, sequencing and laboratory errors are unlikely to explain the observed 

nucleotide diversity. As mentioned earlier, the population on Maui fuses with the 

populations presently isolated on Moloka‘i, Lana‘i, and Kaho‘olawe during low sea level 

stands. The Wahlund Principle predicts that the alternating fusion and isolation of 

populations should lead to a reduction in genetic diversity relative to a population that is 

not subdivided (Hartl & Clark 2007). However, when a population is not at equilibrium 

and the historical demographics are unknown, seemingly odd patterns of diversity may 

develop. To understand gene flow among the islands of Maui Nui, additional genetic 

information will need to be collected and analyzed. Population genetic simulations 
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mimicking the effects of sea level rise and fall on populations of C. exarata on Maui Nui 

would provide insight as to whether additional historical demographic events are required 

to explain the observed levels of nucleotide diversity. 

Locus by Locus Analysis of Nucleotide Diversity (π) 

While the average diversity estimated using RAD loci suggests that island age is its 

strongest correlate, not all RAD loci follow this trend (Fig. 16). Thus far, inferences 

about genetic diversity have been made from averages of 21,529 loci, but the true power 

of RAD sequencing is the ability to analyze each locus. For ~10% of all loci investigated, 

nucleotide diversity exhibits a negative relationship with island age (r2>0.4), and thus a 

positive relationship with the length of habitable coastline (a proxy for population size 

without harvesting). With this knowledge, the positive relationships between nucleotide 

diversity and habitable coastline for COI (Bird et al. 2007) and ATPSβ (Bird et al. 2011) 

are consistent with the RAD loci. Specifically, COI and ATPSβ are popular genetic 

markers because of their high mutation rates, low Neµ, and subsequent utility in detecting 

genetic structure. Given a bottleneck, followed by population expansion, nucleotide 

diversity is expected to rise the fastest in the loci with high mutation rates and low Neµ 

(see Zink et al. 2008 for review). Therefore, we propose that the ~10% of loci 

characterized by a negative relationship between nucleotide diversity and island age are 

likely to have mutation rates that are higher than average. Frankham (1996) notes that the 

relationship between population size and genetic diversity is likely to differ among loci, 

but selection is advanced as the primary reason, which cannot be ruled out here.  

It is instructive to consider that with a handful of sequenced DNA loci or a sample 

of 100 RAD loci (~200bp per locus), this pattern (30% of loci positively correlated with 
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island age and 10% negatively correlated) may have gone undetected or overlooked as an 

anomaly. We suggest that at least 1000 loci should be surveyed when investigating 

patterns of genetic diversity, which coincidently, was the same number of loci required to 

obtain a reasonable estimate of FCT. Further, a few loci, selected haphazardly are not 

expected to be representative of the whole genome. 

Conclusions 

Restriction site associated DNA sequencing (RAD) has promised to bring population 

genomic to non-model species at a reasonable cost (Davey & Blaxter 2010). Here, we 

employed pooled sample sequencing with ezRAD to further reduce the costs.  Compared 

to the mtDNA study of C.exarata (Bird et al. 2007), RAD facilitated larger population 

samples, marginally greater resolution for the detection of genetic structure with F-

statistics, much greater confidence in conclusions of no genetic structure, and a much 

more detailed inferences about the processes driving observed patterns of genetic 

diversity. Both the genetic structure and diversity of C. exarata are strongly influenced 

by historical demographics.  It would be worthwhile to compare multiple locations on 

each island to confirm the results presented here.  Finally, the results here do not preclude 

the utility of RAD markers in detecting patterns of gene flow at very small scales, within 

islands; and sequencing individuals would facilitate additional analysis options. 

For fishery management, a more detailed analysis of migration rate and 

population size is required than what is presented or warranted here. F-statistics are 

notoriously insensitive to intermediate levels of Nem and while it would superficially 

seem that there is connectivity among most of the MHI, realize that there are differences 

in genetic diversity and genetic structure among islands that would be erased by high 
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migration rates at a scale where stock replenishment among islands could occur on a 

reasonable time scale. Counter intuitively, the majority of genetic diversity is found in the 

smallest population investigated. Falling within the Papahānaumokuākea Marine 

National Monument, Nihoa houses a genetic stockpile for the C. exarata in the MHI. The 

other three NWHI harboring C. exarata should be investigated to determine if they have 

equivalent levels, or even greater levels of genetic diversity than Nihoa.   
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Tables  

 
Table 1 Region, island, number of pools, number of individuals per pool, mean 
nucleotide diversity (π) for polymorphic loci, and percent polymorphic loci for Cellana 
exarata. Samples used to calculate nucleotide diversity and polymorphic proportions of 
loci are denoted with an asterisk (*). 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Region  Island      # of pools  Individuals/pool  Mean !          Polymorphic loci (%) 
 
NWHI  Nihoa             3     7*,7*,8*           2.05 " 10#3  62.988    
MHI     Kaua‘i       4     6,7*,11*,12*              1.75 " 10#3  53.346   

  O‘ahu       4     10*,8*,10*                 1.78 " 10#3  50.427 

   Maui       3     9*,10*,7*                  1.87 " 10#3  49.546 

   Hawai‘i       4                     10*,10*,10*,10          1.71 " 10#3  49.159 

 

!"#$%&'&

                   FCT 
Source     d.f             FSC        Sig 

  
Island          4            0.071             < 0.001 
Sample(Island)       16            0.002             0.811 
Total               20 
 

!"#$%&'&

Table 2 Analysis of Molecular Variance. The islands are a 
comparison of each island to each other island: Nihoa, 
Kaua‘i, O‘ahu, Maui, and the Big Island of Hawai‘i. The 
island variance component with respect to the total variance 
is FCT. The among sample within island variance component 
is FSC. Bold font indicates statistical significance α = 0.05). 
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Figures 
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Figure 1 Map of sample locations within the Hawaiian archipelago. There 
is one sample collection site within the Northwestern Hawaiian Islands 
(Adam’s Bay, Nihoa) and four sample collection sites within the Main 
Hawaiian Islands (Ke‘e, Kaua‘i; Ka‘ena, O‘ahu; Waihe‘e, Maui; Hilo 
break wall, the Big Island of Hawai‘i). 
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Figure 2 The linear meters of C. exarata coastal habitat/ per person with 
respect to C. exarata densities (number of C. exarata /meter2) on each of 
four of the largest MHI: O‘ahu, Maui, Kaua‘i, and Big Island. Densities of 
C. exarata populations were estimated via intertidal surveys (C.E.B 
unpublished data). 
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Figure 3 Total depth of coverage distributions for loci within two samples prior to 
removing SNP loci with the sample-specific filter for high and low depth of coverage 
(A, B) and total depth of coverage distributions for SNP loci within the same two 
samples after removing sample specific loci for high and low depth of coverage (C, 
D). 
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Step 4 
Randomly sample the same 
number of sequence reads 

as observed from each 
sample pool   

Step 5 
Estimate allele frequencies 

from read frequencies 
(allelotyping) 

Step 6 
Record FCT and FSC to 
build null distributions 

Step 1 
Use observed allele frequencies 

to create a hypothetical 
panmictic population  

Step 2 
Randomly sample the observed 

number of individuals from 
each island 

Step 3 
Randomly pool DNA of 

individuals within each island 
using the observed number of  

individuals per pool and 
observed number of pools 

Repeat 
1000x 

Figure 4 Representation of the simulation coded in R that was used to 
create null FCT and FSC distributions. Steps 1 through 5 were simulated 
1000 times. Randomly sampled individuals in step 2 were sampled from 
the same hypothetical panmictic population without resampling. 
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Figure 5 Plots of mean FCT and FSC vs. 1, 10, 100, 1000, 
10,000, and 22,474 randomly drawn SNPs from 22,474 loci. 
SNPs were drawn 1000x. Bars represent ±1 standard 
deviation.  
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Figure 6 Heat map of pairwise FCT and FSC estimates. An FCT or FSC value relatively 
close to zero (represented by white) indicates little to no genetic differentiation. 
FCT  and FSC values greater than zero (represented by pink/red) indicates increased 
levels of genetic differentiation. FCT is a measure of variance among two islands and 
FSC is a measure of variance among samples within islands. 
 



 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!"#$%&'()'

*)('

*)+'

*),'

*)-'

Po
ly

m
or

ph
ic

 P
ro

po
rti

on
 o

f L
oc

i  

Figure 7 Comparison of polymorphic proportions of loci by island. 
Bars represent binomial confidence intervals. Islands are in order from 
Southeast to Northwest.  
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Figure 8 Response of polymorphic proportions of loci (21,529 total loci) 
to island age. Island age is in millions of years ago. Island age is 
represented on a logarithmic scale (log2). 
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Figure 9 Response of polymorphic proportions of loci (21,529 total loci) to the 
length of habitable coastline (km). The length of habitable coastline is represented 
on a logarithmic scale (Ln) and represents the linear available habitat for C. 
exarata.  
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Figure 10 Plot of polymorphic proportions of loci vs. the length of habitable 
coastline per capita. The length of habitable coastline per capita was calculated 
by dividing the length of habitable coastline by the human population size for 
each island.  
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Figure 11 Plots of length of habitable coastline (km) vs. length 
of habitable coastline per person (A), island age vs. length of 
habitable coastline (km, B), and island age vs. the length of 
habitable coastline (km, C). Each predictor was log transformed 
(log10). Pearson product-moment correlation coefficients are 
included to match each plot of the predictors (a,b,c).  
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Figure 12 Comparison of the mean nucleotide diversity of polymorphic 
loci by island. Bars are 95% confidence intervals and each island with a 
different letter is significantly different (Tukey’s HSD, p < 0.05) 
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Figure 13 Plot of mean nucleotide diversity of polymorphic loci vs. island age. 
Island age is represented as millions of years ago. Bars are 95% confidence 
intervals. 
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Figure 14 Plot of mean nucleotide diversity of polymorphic loci vs. length of 
habitable coastline. Length of habitable coastline is represented in km. Bars are 
95% confidence intervals. 
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Figure 15 Plot of mean nucleotide diversity of polymorphic loci vs. length of 
habitable coastline per capita. The length of habitable coastline per capita is 
measured by the linear meters of C. exarata habitat per person. Bars are 95% 
confidence intervals. 
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Figure 16 Comparison of the number of loci with respect to the coefficient of 
determination calculated from regressions of 21,529 loci. Nucleotide diversity was 
regressed against island age. Pie charts represent the proportion of loci that share a 
positive (represented by red) or negative (represented by black) relationship.  
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