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ABSTRACT 

In key survival behaviors like predator-prey interactions and mating, animals have 

to integrate dynamic sensory inputs from a moving target and regulate their motor 

outputs on moment-to-moment basis. The molecular underpinnings of such goal-

oriented behaviors are not well understood because of the genomic and neural system 

complexities of many animals. Here I take advantage of the anatomical simplicity of the 

nematode worm Caenorhabditis elegans and its amenability to optogenetics to 

interrogate the neural mechanisms underlying male mating behavior. Male mating is a 

goal oriented behavioral sequence and serves as a useful paradigm for exploring neural 

control of sex-specific behaviors, behavioral sequence execution and decision-making. 

When not engaged in mating the male, like the hermaphrodite, explores his environment 

with predominantly forward locomotion. However, when the male contacts a potential 

mate he immediately places his tail against her surface and searches for the vulva, 

moving backwards. Male-specific sensory rays of the tail are responsible for sensing 

mate contact, inducing tail apposition and backward movement. Using a combination of 

cell-specific laser ablation, optogentics and mutant analyses, I show that the male 

exploits the sex-shared locomotory system to control his mating movement. The rays 

exert their affect by acting through at least two downstream pathways. One pathway is 

defined by male-specific interneurons PVY and PVX which activate backward 

command interneurons AVA(L/R) and shift the directional bias to backward. This AVA 

activation is mediated by cholinergic receptor subunits ACR-18, ACR-16 and UNC-29, 
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which is an atypical mode for command interneuron regulation. The second pathway is 

defined by male-specific interneurons EF1-3. EFs may promote backing by inhibiting 

sex-shared AVB(L/R) forward command interneurons. Upon vulva detection by the 

hook sensilla, locomotion ceases by the redundant action of hook neurons HOA and 

HOB. Surprisingly, PVY/PVX and EFs activity is required for holding the tail at the 

vulva. Taken together these data suggest that a distributed processing strategy underlies 

male’s accurate, rapid and robust movement control during mating. The male-specific 

nature of his behavior is due male-specific control of sex-shared circuitry. Conceivably, 

similar design and processing strategies may underlie the circuitry controlling analogous 

behaviors in more complex nervous systems.  
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NOMENCLATURE 

Ach Acetylcholine 

AchR Acetylcholine Receptors 

ChR2 Channelrhodopsin-2 

DIC Differential Interference Contrast 

DRG Dorsorectal ganglion 

EGFP Enhanced Green Fluorescent Protein 

FLP FMRFamide-related peptides 

GECI Genetically Encoded Calcium Indicator 

GFP Green Fluorescent Protein 

NLP Neuropeptide-like Protein 

NpHR Halorhodopsin 

p.c.s. post-cloacal sensilla 

PAG Pre-anal ganglion 

RVG Retrovesicular ganglion 

TRP Transient Receptor Potential 

unc Uncoordinated 

VNC Ventral Nerve Cord 

YFP Yellow Fluorescent Protein 
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CHAPTER I 

INTRODUCTION 

A rapid and accurate behavioral response is crucial for survival 

Survival depends on an organism’s ability to respond to its surrounding conditions. 

The faster and more accurate the response, the higher is the chance of survival. One of 

the fundamental questions of neuroscience is how do organisms rapidly process the 

external information to produce an appropriate motor response? The most critical step of 

information processing is decision-making. Even for the simplest behavior a decision 

has to be made, whether to continue the ongoing behavior or choose an alternate one. 

Hence, decision-making is crucial for survival and is conserved across all domains. A 

single celled bacteria exhibits decision-making by taxing towards an attractant and 

moving away from a repellant substance (Adler and Tso, 1974). In animals, decision-

making becomes much more complicated with higher level of cellular organization 

(involving specialized tissues like nerves and muscles), which generate complex 

sensorimotor patterns to produce behavior.  Most animals have dedicated neuronal 

circuits that respond to different external cues. Neuronal circuits sense external stimuli, 

integrate and process the information changing the muscle activity to perform an action. 

Furthermore, in goal-directed behaviors such as mating or predator-prey interplay, 

animals have to respond to moment-to-moment changes in the actions of their targets 

and respond appropriately, often with split second timing. Hence, sensorimotor 
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integration, rapid information processing and decision-making become essential features 

of a neural circuit controlling such behaviors. 

The focus of my thesis is to understand how neural circuits execute a goal-directed 

behavior at the cellular and molecular level. Due to the complexity of higher organisms, 

I am using the simple nematode C. elegans to answer this question. C. elegans male 

mating behavior is an attractive model system to investigate sex-specific behavior, 

sensorimotor integration, rapid information processing and decision-making. The most 

important advantage of using C. elegans is that we can interrogate the neural circuits at a 

single cell level in freely-behaving animals and understand the fundamental principles of 

neural mechanisms.  

  

Neural mechanisms controlling the response to moving targets 

 One of the extensively studied examples of interactions with moving target is the 

predator-prey interplay. Animals have to track the position of the predator and rapidly 

change its own position accordingly to escape. The neural circuits controlling the escape 

response have to be fast, accurate, robust and flexible. What neural mechanisms and 

circuit design features confer such properties? Escape circuits are commonly classified 

into two categories, ones that involve “command” neurons and ones that do not 

(Kupfermann and Weiss, 1978, 2001). The command system is generally characterized 

by the presence of giant fibers which are large in diameter and run along the length of 

the animal, forming direct connections to most of the circuit components (Fotowat et al., 

2009, Herberholz and Marquart, 2012). A single spike in the giant fiber is sufficient to 
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activate the entire escape response (Herberholz and Marquart, 2012). In Drosophila, the 

giant fiber activation leads to motor activity in the mesothoracic legs and wings resulting 

in jump during escape response (Koto et al., 1981, Wyman et al., 1984). Similarly in 

crayfish, tail-flip escape response is controlled by three distinct neural circuits. Two of 

these circuits contain the giant fibers, the lateral giant system and the medial giant 

system, and execute the escape response. The command neuron centralizes the response 

in a rapid and stereotypical manner. However the speed of the response often 

compromises its flexibility. The escape responses which do not involve the command 

neurons are called “non-giant” responses and are known to be more variable but slow. 

One such example is the third neural circuit in the crayfish tail-flip escape response 

which lacks the giant fiber activity (Wine and Krasne, 1982, Wine, 1984). Similar non-

giant mediated escape response is seen in locusts (Fotowat and Gabbiani, 2007) and 

zebrafish (Kohashi and Oda, 2008). The crayfish respond to their natural predators, 

dragonfly nymph by activating all three neural circuits (Herberholz et al., 2004). 

However, the non-giant-mediated tail-flips increase subsequent to the failure of giant-

mediated tail-flips (Herberholz and Marquart, 2012). This leads us to the question of 

how do crayfish decide between the giant-mediated and non-giant-mediated responses? 

The broader implication of this simple example is how neural circuits decide the 

appropriate response.  
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Decision making is essential for producing the appropriate behavioral response 

Decision making involves evaluating different options and making a choice to 

perform the appropriate action (Ernst and Paulus, 2005). Failure to make a stable 

decision can affect a person physically, psychologically, emotionally, socially, and 

economically (Ernst and Paulus, 2005, Gutnik et al., 2006, Frith and Singer, 2008). 

However, from a neuroscience perspective decision-making is an important step in 

getting the right output from a dynamic neural circuit. What happens when these neural 

circuits malfunction and decision making is impaired? For example, people with 

damaged pre-frontal cortex or orbitofrontal cortex have a tendency to make high-risk 

decisions (Ritter et al., 2004, Bechara, 2005, Larquet et al., 2010). When subjects with 

lesions in these brain regions where tested with Iowa Gambling task, they repeatedly 

made poor decisions without contemplating the consequences (Bechara, 2001, Ritter et 

al., 2004). One of the important functions of the prefrontal cortex is to consolidate the 

internal and external information, thus playing a crucial role in cognitive control of 

complex behaviors (Miller and Cohen, 2001). The molecular mechanisms underlying the 

prefrontal cortex functions have been extensively studied (Robbins, 2000, Arnsten, 

2009). Also, based on the decision-making studies performed on humans and primates, 

numerous models have been proposed to explain how decisions are made at the circuit 

level (Glimcher, 2003, Lee, 2006, Gold and Shadlen, 2007). A further complication is 

that the brain has to consolidate the novel experiences and compare them with the old 

ones (retrieving memories) to come to a decision. However, the molecular mechanisms 

used to integrate the existing and new information during decision-making are not 
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completely known. Also, the neural mechanisms used to retrieve memories in the 

prefrontal complex also used to process novel experiences and make a choice? 

In humans and primates, decision-making is a complex process which involves 

multiple neurotransmitter mechanisms. Disorders or conditions with impaired 

neurotransmission affect sensorimotor integration leading to unstable decisions. 

Addictive drugs and diseases which damage dopaminergic systems are proposed to 

impair decision-making (Schultz, 2002, Verdejo-Garcia et al., 2006). Abnormal 

functioning of the dopaminergic neurons is one of the causative factors in the decline of 

brain functions in psychiatric conditions like schizophrenia, depression and mania (Wise 

and Rompre, 1989). Most drugs of abuse like nicotine, cocaine, marijuana and alcohol 

are known to overstimulate the dopaminergic neurons, leading to heightened euphoric 

state (Volkow et al., 2011). The dopaminergic system along with the serotonergic system 

plays a role in impulsivity. More impulsive behavior leads to risky decisions where the 

individual is highly likely to make uninformed, random decisions rather than correct one 

(Cools et al., 2011, Dalley and Roiser, 2012). Also, disruptions in cholinergic system 

through long term cocaine use leads to impaired decisions, primarily due to poor 

learning and memory (Williams and Adinoff, 2008). The malfunctioning of a single 

neuronal molecule can alter the internal states of neural circuits which influence 

decision-making.  Our understanding of how neurotransmitters or neuromodulators 

affect neural circuit functions comes from vertebrate tissue culture studies and 

invertebrate model system analyses, in which circuits are comparatively simpler to 

manipulate. 
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Invertebrate model systems have made seminal contributions to fundamental 

neuroscience 

Experimental studies in a variety of invertebrate model systems have provided 

significant insight into many aspects of nervous system functions (Sattelle and 

Buckingham, 2006). In the 1930s, Hodgkin and Huxley recorded the first action 

potential by placing electrodes in the giant axon of a squid (Hodgkin and Huxley, 1939). 

In the 1950s, they collaborated with Katz to develop voltage-clamp technique and 

explained the ionic conductance during the generation of action potential (Hodgkin and 

Huxley, 1952a, Hodgkin et al., 1952b). Since then, experiments performed on giant 

fibers of other invertebrates have revealed neural mechanisms involved in rapid 

responses. Giant fiber caliber and their electrical coupling with sensory and motor 

neurons play a key role in their speed of neurotransmission (Palikhova et al., 2006, 

Hartline and Colman, 2007, Yono and Aonuma, 2008). The principle of lateral inhibition 

was first discovered by Hartline in 1949 by studying photoreceptors in the horseshoe 

crab, Limulus. Eric Kandel discovered the mechanisms for simple forms of learning and 

memory (habituation, dishabituation and sensitization) by studying the gill-withdrawal 

reflex in Aplysia (Castellucci et al., 1970, Castellucci and Kandel, 1976). The pioneering 

work of Eve Marder in neuromodulation of somatogastric nervous system of lobsters 

revealed that the constituents of neural circuits can change in response to the influence 

of neuromodulators (Eisen and Marder, 1984, Marder, 1984, Marder and Hooper, 1985, 

Marder, 2011). These general principles of the neural circuit design and processing 
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strategies in the smaller invertebrate systems provide an insight into how larger, complex 

vertebrate systems.   

In recent years, Drosophila melanogaster and Caenorhabditis elegans have 

emerged as powerful model organisms. Their relative anatomical and genetic simplicity, 

completely sequenced genomes and their amenability to genetic and molecular 

approaches have made these systems ideal for studying almost any question. Research 

employing these systems have shed light on the neural and molecular underpinnings of  

neurodegenerative diseases, substance abuse, memory and learning and sensory-motor 

integration (reviewed in (Wilson-Sanders, 2011). Drosophila and C. elegans male 

mating  provide paradigms for exploring many neural processes. These behaviors are 

innate, goal-oriented, consist of a sequence of stereotyped steps that are guided by mate 

cues. During mating there are many decision-making points. For example, whether to 

ignore or pursue a mate, whether to initiate mating or not and so on. The dependency on 

mate cues to execute the mating behavior provides a model for studying how sex-

specific behaviors are neurally controlled. Not much is known about the sex-specific 

behaviors. For example, are mating sub-behaviors controlled by dedicated sex-specific 

circuits or by mate cue-specific modulation of the sex-shared neural circuitry? 

My work explores decision-making events during locomotion in C. elegans male 

mating behavior. First, I will give a brief overview Drosophila male mating behavior 

which has similar mating pattern. Then I will discuss in detail what is known about C. 

elegans male mating and locomotory behavior. 
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Decision making in Drosophila mating behavior 

The male courtship behavior is a sequence of motor outputs which are guided by 

sensory cues received from the females. On detecting the pheromone signals from the 

female fly, the male orients himself towards the female and follows her. He taps the 

female abdomen with his forelegs, extends and vibrates his wings producing a male-

specific song which stimulates the female. Based on her prior experience and her 

assessment of the courting male, the female decides whether to mate or not mate. If the 

female decides to reject the male she extrudes her ovipositor, kicks and flies away. If the 

female decides to mate, then she slows down allowing the male to attempt copulation. 

The male responds to the female acceptance by licking her genitalia and bending his 

abdomen to attempt copulation (Dickson, 2008, Dauwalder, 2011, Pavlou and Goodwin, 

2013). 

In flies, two genes fruitless (fru) and doublesex (dsx) contribute to the development 

and functioning of circuits involved in the mating behavior. Consequently defects in 

these genes disrupt courtship behavior (Manoli et al., 2005, Stockinger et al., 2005). By 

identifying FRU and DSX expressing cells researchers have been able to partially 

delineate the neural circuitry underlying male mating behavior (Dauwalder, 2011). For 

example, a subset of FRU-expressing sensory neurons regulates olfaction in males and is 

responsive to female hormones. Another subset is the gustatory receptors, located on the 

forelegs of males, are responsible for discriminating between males and females during 

courtship (Pavlou and Goodwin, 2013).  These studies show that a dedicated subset of 

neurons contributes to sensing and pursuing a mate in Drosophila mating behavior. 
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The next question is where are the sensory inputs integrated and if there are any 

dedicated decision-making neurons? A cluster of fru/ dsx expressing cells, P1 is located 

in dorsal posterior brain and is known to trigger singing in presence of a female. The 

silencing of P1 neurons leads to impaired song formation and courtship performance 

(Kimura et al., 2005, Kohatsu et al., 2011, von Philipsborn et al., 2011). Conversely 

artificial activation of P1 neurons triggers the male to orient towards and follow any 

object (Pan et al., 2012). These results suggest that the P1 cluster integrate the olfactory 

and gustatory inputs and decide on the course of action to court the female (Kohatsu et 

al., 2011). While some of the cellular components of the courtship circuitry have been 

identified the molecular mechanisms controlling circuit transmission are largely 

unknown (Pavlou and Goodwin, 2013).  

 

C. elegans as a model organism 

C. elegans is a non-parasitic, soil nematode naturally found in decaying vegetation. 

A fully grown adult worm is about 1mm in length. The small size makes it convenient to 

maintain and cultivate worms on small plates. C. elegans has two sexes, hermaphrodites 

and males.  Hermaphrodites are self-reproducing with a limited amount of sperm supply 

to fertilize their eggs. Males can reproduce only by mating with the hermaphrodites. The 

short generation time of 3-4 days (from egg to fertile adult) makes it easier to work with 

as compared to the vertebrate model systems which have longer generation times. On 

hatching, the worm grows through 4 distinct larval stages (L1, L2, L3 and L4) and 

finally develops into an adult (Brenner, 1974). The somatic cell lineage is invariant 
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(~1000) and cell bodies occupy stereotyped positions in the body axis (Sulston et al., 

1980). These features, together with the worm’s transparency make cell identification for 

the purpose of cell-specific ablation or to target gene expression, feasible.    

C. elegans has a simple nervous system with 302 neurons in the hermaphrodite and 

383 in males (Sulston and Horvitz, 1977, Sulston et al., 1980, Jarrell et al., 2012). A big 

advantage in using C. elegans is that the complete wiring diagram of the hermaphrodite 

nervous system and a partial map for male have been determined (White et al., 1986, 

Hall and Russell, 1991, Jarrell et al., 2012).  The lineage together with the wiring 

diagrams reveal that hermaphrodites and males share 294 neurons in common, two third 

of which are sexually dimorphic (i.e. are present in both sexes but are modified in each 

sex). Males have 89 male-specific neurons, 85 of which are located in the male tail and 

are proposed to play a role in mating behavior (Sulston and Horvitz, 1977, Sulston et al., 

1980). In addition to neurons, other tissue types exhibit sex-specificity or sexual 

dimorphism. For example, males have 41 male-specific muscles in the posterior half of 

the body (Sulston and Horvitz, 1977, Sulston et al., 1980). Also, posterior sex-shared 

muscles like anal depressor, sphincter and dorsal body wall muscles are dimorphic, 

presumably to facilitate copulation in males. While minor sex differences exist even in 

the embryo, most sex-specific cell types are added during L3 and integrated with 

existing cell types by the end of L4. The most striking difference in male and 

hermaphrodite development is the tail part. The male tail has majority of the male-

specific and sexually dimorphic tissue types and guides the male mating behavior.  
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C. elegans male mating behavior 

Similar to Drosophila mating behavior, the C. elegans male performs a sequence 

of motor behaviors driven by presumptive chemosensory and mechanosensory cues from 

his mate (Liu and Sternberg, 1995, Simon and Sternberg, 2002, Lipton et al., 2004). In 

absence of specific cues, the male explores his environment moving with a forward 

directional bias but makes intermittent reversals to change direction (Fig. 1.1A). When 

the male comes in contact with the hermaphrodite, he stops exploring his environment 

and starts mating. The decision to initiate mating is affected by the male’s recent 

experience. Adult males deprived of sex are quick to initiate mating whereas males with 

recent experience go through a refractory period during which mating is not initiated. It 

is postulated that during this period male mating circuits are reset for the next mating 

episode (LeBoeuf et al., 2014). 

One of the most striking changes observed when the male starts mating is the 

change in locomotory direction:  a switch from forward to backward movement. When 

the male tail comes in contact with the hermaphrodite (Fig. 1.1B), he apposes his tail, 

ventral side down, against hermaphrodite surface and moves backward along her length 

in search of the vulva (the vulva search). The male tail fan straddles the hermaphrodite, 

bringing the sensory rays and other male-specific sensilla into direct contact with the 

hermaphrodite cuticle. Collectively, tail apposition and initiation of backward movement 

are called “contact response.”  If the male moves along the hermaphrodite (scanning) 

without encountering the vulva, he makes a tight turn to reach the other side and 

continues scanning until he finds the vulva. Throughout scanning and turning, the male  
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A

B

Figure 1.1 C. elegans male mating behavior exhibits distinct locomotory 

patterns. 

A, B. Male mating behavior has stereotyped steps.  

A. In absence of mate contact, male locomotion has a forward directional bias with 

occasional backward movement (known as spontaneous locomotion).  

B. On mate contact, male initiates the vulva search by stopping abruptly, apposing 

his tail on the hermaphrodite surface (inset) and changing the directional bias to 

backward (Koo et al., 2011). This backward directional bias is maintained during 

scanning, as the male sensory rays drive the contact-based search for the vulva. On 

vulva detection male stops the backward movement and restricts his locomotory 

activities to the immediate vulva region. The male finds the precise location of the 

vulva, starts prodding his spicules against the vulval slit to attempt spicule 

insertion. The mating behavior is completed on complete spicule insertion and 

insemination (not shown in the figure). 

(taken from Sherlekar et al., 2013) 
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tail stays in contact with the hermaphrodite cuticle (Fig. 1.1B). On encountering the 

vulva, male stops but maintains tail apposition approximately over the vulva region. He 

then starts prodding with his copulatory spicules to precisely locate the vulval slit. Once 

located, he breaches the vulva, to insert the spicules for insemination.   

As in Drosophila, the development of sex-specific tissues in C. elegans is 

regulated by dsx-related genes but worms lack fru orthologues (Raymond et al., 1998, 

Lints and Emmons, 2002, Mason et al., 2008, Siehr et al., 2011).  dsx-related mutants 

have pleiotropic defects, so their analysis has not helped to identify circuits involved in 

C. elegans mating. Most circuit mapping has been guided by the wiring diagram.  The 

connectivity data enables us to predict putative circuits controlling mating behavior. 

These putative circuits can be tested for relevance by using laser ablations, optogenetics, 

Ca
+2

 imaging and other molecular tools to understand how sex-specific behaviors are 

generated. Below I will describe what is known about the neural substrates underlying 

each step of the male mating behavior. 

 

Contact response and scanning 

Male mating behavior is coordinated by the male-specific sensilla of the tail (Fig. 

1.2A). The tail sensilla include rays, hook, post-cloacal sensilla (p.c.s.) and spicules that 

presumably responsive to mate cues. The ray sensilla sense mate contact and induce and 

guide the vulva search. There are nine, bilateral pairs of sensory rays (numbered 1 to 9; 

anterior to posterior) embedded in a cuticular fan (Fig. 1.2A). Each ray consists of a 

structural cell (Rnst; where n is the ray number) and the dendritic ends of two distinct  
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sensory neurons, type A (RnA) and type B (RnB) (Fig. 1.2B). Except for ray 6, the ray 

tips are open and the dendritic endings of type B ray neurons are exposed to the 

environment. The dendritic endings of type A ray neurons stop short of the ray tip 

opening.  Rays 1, 5, 7 open on the dorsal side of the fan whereas rays 2, 4, 8 open 

ventrally and rays 3 and 9 open at the fan margin (Sulston and Horvitz, 1977, Sulston et 

al., 1980). The sensory modalities and receptors mediating ray neuron response are 

remains an open question. The ray neurons express TRP channel genes, pkd-2 and trp-4; 

and pkd-2 mutants are defective in contact response (Barr and Sternberg, 1999, Li et al., 

Figure 1.2 Male-specific sensory rays initiate and guide the vulva search. 

A. DIC micrograph of male tail (ventral view) showing the nine bilateral pairs of rays 

(numbered 1-9, anterior to posterior), the hook and post-cloacal sensilla (PCS). 

Spicules are located inside the male tail (not seen in this picture). Magnification 

1000X.  

B. A schematic representation one ray ending. Each ray neuron is composed of two 

sensory neurons RnA and RnB (where n is the ray number). The dendritic process of 

RnA ends just before the open ray tip. RnB dendrite is exposed to the environment as 

it extends all the way to the tip of the ray (except for Rn6 ray neurons; they have 

closed tip). The two ray neurons are supported by structural cell, Rnst. The cell bodies 

of RnA, RnB and Rnst lie in the tail ganglion (not shown). 

(adapted from Koo et al., 2011) 
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2006, Koo et al., 2011). However, experiments demonstrating these as the sensory 

receptor molecules have yet to be performed. 

Males lacking all functional rays are unable to initiate or execute the vulva search 

(Liu and Sternberg, 1995, Koo et al., 2011). Elimination of specific sub-sets of rays 

compromises, but does not eliminate the behavior (Koo et al., 2011). Ca
+2

 imaging of 

ray neuron activity during mating reveal that both type A and type B neurons are active 

throughout mating behavior. With initial contact, ray neurons exhibit rebound 

depolarization; the rationale for which is unknown. Following this event, ray neurons 

like many C. elegans neurons exhibit graded activity. The activity increases or decreases 

depending up on the motor output (R. Lints unpublished; Sherlekar and Lints, 2014). 

What is the specific contribution of type A and type B ray neurons? The ablation studies 

done in our lab reveal A-neuron ablated males have impaired posture control and 

movement, making them inefficient in maintaining contact while turning and scanning. 

The B-neuron ablated males have difficulty in initiating contact response; however after 

few failed attempts they can initiate contact and mate with wild type efficiency. 

Collectively these data suggest that both A- and B-neurons are active throughout mating. 

A-neuron activity is required for all steps of mating while B-neurons are functionally 

redundant with A-neurons (Koo et al., 2011). The partial redundancy among the rays and 

ray neurons explains how ray-controlled behaviors are robust, accurate and reproducible.  

The male wiring data shows that sensory rays have both male-specific and sex-

shared neurons and muscles as their downstream cellular targets. The ray neurons form 

massive reciprocal connections among themselves, with other sensory neurons and male-
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specific neurons in the pre-anal ganglion (Jarrell et al., 2012). The connectivity and 

experimental studies suggests that the ray-controlled motor outputs are generated by 

distributed processing through multiple neural pathways and efferent targets (sensory 

neurons, interneurons, motor neurons and muscles). For example, activation of B-

neurons (using ChR2) in males lacking male-specific muscles impairs but does not block 

the ventral curling of tail. Similarly, a percentage of males lacking a significant number 

of male-specific interneurons, motor neurons and muscles can still produce ray-induced 

posture; however not as robustly. These results also reveals that ray motor outputs 

depend on both male-specific and sex-shared cells (Whittaker and Sternberg, 2009, Koo 

et al., 2011). In contrast to our understanding of posture control, the ray-dependent 

pathways that regulate locomotory changes during mating are completely unknown. A 

major objective of my thesis is to identify these ray-controlled locomotory pathways. 

 

Turning 

During his search for the vulva, if the male reaches the hermaphrodite ends (head 

and tail regions), he makes a deep ventral bend of his tail to reach the other side. 

Exposure of worms to endogenous serotonin or dopamine induces a deep ventral curling 

of male tail similar to the turning posture suggesting that these neurotransmitters are 

involved in inducing or modulating turning posture (Loer and Kenyon, 1993, Lints and 

Emmons, 1999, Siehr et al., 2011).  
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Vulva location 

Upon sensing the vulva, the male stops backward movement (Barr and Garcia, 

2006). The male-specific hook neurons and p.c.s. neurons are responsible for sensing the 

general and precise location of the vulva, respectively. The hook sensilla are located 

anterior to the cloacal opening and consist of two sensory neurons, HOA and HOB. 

These neurons are structurally similar to the ray neuron types A and B. Like RnB, the 

dendritic ending of HOB exposed to the environment and like RnA, the HOA process 

ends inside the sensilla, respectively (Sulston et al., 1980). Based on the location of their 

endings, HOB is hypothesized to be chemosensory and HOA, mechanosensory (Barr and 

Garcia, 2006). Males lacking hook neurons, due to their specific ablation, cannot find the 

general vulva location and perform a slow search in which they prod with their spicules 

at random location. Although imprecise, this strategy occasionally leads to successful 

insertion of spicules into the vulva followed by insemination (Liu and Sternberg, 1995). 

Hook neurons express markers for glutamate, acetylcholine and neuropeptides (B. 

LeBoeuf and L. R. Garcia, personal communication; Nathoo et al., 2001, Kim and Lee, 

2011, LeBoeuf et al., 2014). However, the role of neurotransmitters in hook function has 

not been extensively explored.  

The p.c.s. is located posterior to the cloacal opening and consists of three 

bilateral pairs of sensory neurons PCA(L/R), PCB(L/R) and PCC(L/R) (Sulston et al., 

1980). In the absence of p.c.s. neurons, the males can sense the general vulva location; 

however they are not able to position themselves precisely over the vulva and  

consequently fail to insert their spicules (Liu and Sternberg, 1995). Males lacking both 
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the hook and p.c.s. neurons cannot stop at the vulva and keep scanning, without any slow 

search or spicule prodding (Liu and Sternberg, 1995, Garcia et al., 2001).  

 

Spicule insertion and insemination 

The spicules are a bilateral pair of prong-like structures held within the 

proctoderm by two retractor muscles (Sulston et al., 1980). Inside each spicule are the  

dendritic processes of two male-specific sensory neurons SPV(L/R) and SPD(L/R) 

wrapped in a sheath cell and two socket cells (Sulston et al., 1980). Each spicule is 

attached to protractor and retractor muscles which facilitate spicule movement. As the 

muscle name suggests, contraction of protractor muscles causes the spicules to protract 

out through the cloacal opening and contraction of retractor muscles causes the spicules 

to retract back into the proctoderm. Upon sensing the vulva, hook and p.c.s. neurons 

activate the protractor muscles initiating the spicule prodding. The p.c.s neurons are 

cholinergic (PCB and PCC) (Garcia et al., 2001) and glutamatergic (PCA) (LeBoeuf et 

al., 2014). Their activation stimulates the male-specific muscles associated with the 

proctoderm (obliques and gubernaculum muscles) which in turn bring about contractions 

in protractor muscles, causing spicule movements (Liu et al., 2011). Dopaminergic 

signaling is required to inhibit prodding of spicules off the vulva (Correa et al., 2012). 

The spicule prodding at the precise vulva slit results in partial insertion of spicules. This 

activates the cholinergic spicule-associated neurons – SPC(L/R), which cause tonic 

contractions of protractor muscles and complete spicule insertion (Garcia et al., 2001, 

Garcia and Sternberg, 2003, Liu et al., 2011). The SPD and SPV neurons might be 
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involved in inhibiting premature ejaculation; however their exact function is still unclear 

(Liu and Sternberg, 1995, Schindelman et al., 2006). Sperm release is induced by the 

combined activity of the spicule neurons (SPCs, SPVs, SPDs), p.c.s. neurons and 

dopaminergic socket cells (LeBoeuf et al., 2014).  

. 

C. elegans locomotion 

My dissertation focus is on locomotory changes during mating. In this section, I 

will describe what is known about the neural control of C. elegans locomotion in 

absence of mate. Our knowledge of the underlying circuitry is based on studies 

performed in the hermaphrodites. As homologous cells and connectivity exist in the 

male it is assumed that this system mediates movement in the male in the context of sex-

shared locomotory behaviors.  

   

C. elegans movement patterns 

Many C. elegans behaviors involve locomotion. (Chalfie and Sulston, 1981, 

Hedgecock and Russell, 1975, Way and Chalfie, 1989, Mori and Ohshima, 1995, 

Fujiwara et al., 2002, Ryu and Samuel, 2002, O'Hagan et al., 2005, Bargmann, 2006, 

Shtonda and Avery, 2006, Edwards et al., 2008, Ward et al., 2008, Donnelly et al., 

2013). To move, the worm lies on its sides and propagates a dorso-ventral wave along its 

body length. The sinusoidal waveform is generated by alternate contraction and 

relaxation of body wall muscles that are controlled by distinct set of neurons (Brenner, 

1974, White et al., 1986). In absence of specific sensory cues, the worm exhibits so 
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called “spontaneous locomotion,” which is dominated by forward movement with 

occasional sharp or shallow turns to change the direction (Gray et al., 2005, Kim et al., 

2011).  A sharp turn disrupts the sinusoidal waveform as the worm curls it’s head back 

to touch the tail, forming an  shape (omega turns/pirouettes) (Pierce-Shimomura et al., 

1999). In a shallow turn, the worm modulates the amplitude of the bends to change 

direction while maintaining the waveform (Kim et al., 2011). Alternatively, the worm 

simply reverses (spontaneous reversals), and then resume forward movement in a 

different direction (Croll, 1975). These various motifs give the worm a fine degree of 

control over movement in response to external stimuli. 

 

Muscles and motor neurons 

The sinusoidal wave is generated by sequential contractions and relaxations of 95 

body wall muscles (Sulston and Horvitz, 1977).  Sixteen of the 95 body wall muscles are 

arranged in the head region. These head muscles are innervated by motor neurons 

located in the head ganglion (associated with the nerve ring) and have complex 

activation patterns that allow dorso-ventral and lateral head movements.  In contrast to 

the head, the muscles of the body wall have a comparatively simple organization and are 

oriented longitudinally and are grouped in four quadrants, two on dorsal side and two on 

ventral side of the body. The location and orientation of the body wall muscles restricts 

the worm body movement to dorso-ventral plane. The muscles are innervated by the 75 

motor neurons located along the ventral nerve cord (VNC) and are called as VNC  motor 

neurons (Sulston and Horvitz, 1977).  
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The VNC motor neurons can be divided into 8 distinct classes. Four classes (VA, 

VB, VC and VD) innervate the ventral body wall muscles and remaining four classes 

(DA, DB, DD and AS) innervate the dorsal body wall muscles (White et al., 1976, White 

et al., 1986). The A-motor neurons (VA, DA) and B-motor neurons (VB, DB) are 

cholinergic and excitatory; inducing muscle contraction (Duerr et al., 2008). The D-

motor neurons (VD, DD) are GABAergic and inhibitory; inducing muscle relaxation 

(McIntire et al., 1993).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 The sex-shared C. elegans locomotory system. 
The sinusoidal wave propagation during worm locomotion is controlled by the 

VNC motor neurons. A-motor neurons (VAs, DAs) are dedicated to backward 

locomotion. They are activated by backward command interneurons AVA, AVE 

and AVD. B-motor neurons (VBs, DBs) are dedicated to forward movement and 

are activated by forward command interneurons AVB and PVC. A- and B-motor 

neurons are cholinergic and excitatory, contracting muscles. D-motor neurons 

(VDs, DDs) are GABAergic and inhibitory, relaxing muscles. The wave is 

propagated by alternate contraction of the adjacent motor neurons (either A- or B-

motor neurons) and cross-inhibition of the D-motor neurons. 

(adapted from Chalfie and White, 1988) 
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The activation of class A-motor neurons produces backward movement and 

activation of B-motor neurons produce forward movement (Chalfie et al., 1985, Haspel 

et al., 2010, Kawano et al., 2011). D-motor neurons have an inhibitory action and inhibit 

the contralateral muscle (White et al., 1986, Donnelly et al., 2013). The locomotory 

wave is generated by an out of phase contraction-relaxation. For example, when a 

ventral A- or B-motor neuron induces contraction on the ventral side, the opposite dorsal 

muscle is relaxed. This cross-inhibition pattern is repeated sequentially along the length 

of the worm, propagating the sinusoidal wave and producing movement (Fig. 1.3; 

(White et al., 1986). What controls the direction of wave propagation and thus forward 

or backward movement is still largely unknown. 

 

Command interneurons 

Motor neuron activity is controlled by command interneurons. The command 

interneurons act as the main center of integration, receiving inputs from various sensory 

pathways (Tsalik and Hobert, 2003). The backward command interneurons (AVA, AVD 

& AVE) promote backward movement via regulation of A-motor neurons (VNC motor 

neurons). The forward command interneurons (AVB & PVC) innervate B-motor neurons 

and promote forward movement. The respective functions of command interneurons 

were revealed by systematic laser ablation studies. Elimination of interneurons AVA, 

AVD and AVE impaired backing and elimination of interneurons AVB and PVC 

impaired forward movement (Chalfie et al., 1985). 

 



 

 

23 

 

Current model for neural control of locomotion 

Recent studies have used a combination of neuronal connectivity, optogenetics 

and genetics to define the neural mechanisms underlying locomotion at a single cell 

resolution. In absence of a specific stimulus, the gap-junctional activity between forward 

command interneurons and B-motor neurons keep the later in an active state , so the 

worm moves with a forward bias (Fig. 1.4A; (Kawano et al., 2011). Simultaneously, 

backward movement is inhibited by the RIM interneuron of the disinhibitory pathway 

(Piggott et al., 2011). Occasionally RIM activity decreases and AVA inhibition is 

removed, inducing backing and thus spontaneous reversals (Fig. 1.4B). The decrease in 

RIM activity is due to inhibition by AIB(L/R), a bilateral interneuron pair of head. The 

reason for this stochastic inhibition by AIB in absence of stimuli, is unknown (Piggott et 

al., 2011).   

When the worm encounters a noxious stimulus, he backs away (Fig. 1.4C). 

Sensory pathways that detect such cues converge on AIB and backward command 

interneurons. The stimulation of backward command interneurons and AIB-mediated  

RIM inhibition shifts the directional bias to backwards (Piggott et al., 2011). The 

chemical activity between the backward command interneurons AVA and the A-motor 

neurons also increases the AVA-A gap-junctional activity. The AVA-A gap junctional 

coupling reduces AVA activity, promoting forward movement (Kawano et al., 2011). 

 

 

 



 

 

24 

 

 

 

 

 

  

 
 

Figure 1.4 Directional control of locomotory motor circuit. 
A, B, C. The directional bias of the movement is due to the imbalance in the 

activities of A-motor neurons (A mns) and B-motor neurons (B mns) created by the 

gap-junctional properties between the command interneurons (AVB and AVA) and 

the respective motor neurons with inputs from upstream pathways.  

A. In absence of a stimulus, the activity bias is towards B-motor neurons making 

the worm to move forward which is aided by the inhibition of backing (RIM 

inhibition) via the disinhibitory pathway.  

B. During spontaneous reversals, the AIB activity increases periodically (causes 

not known) to remove RIM inhibition off backing, leading to reversals. 

C. On activation by specific stimulus, the AVA-to-A mns activity increases, 

shifting the bias towards backward. The same stimulus activates AIB, another 

component of the disinhibitory pathway to remove the RIM inhibition 

(disinhibition) from backing.  

Key: Sex-shared cells (pink), interneurons (hexagon), motor neurons (circles). 

Stimulus (arrowheads), unknown stimulus (dotted arrow), stimulatory chemical 

transmission (arrows), inhibitory transmission (line with a cross bar), gap junctions 

(two solid bars). Color intensity of lines and shape indicates relative strength of cell 

activity. 

(adapted from Kawano et al., 2011, Piggott et al., 2011) 
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Dissertation objectives 

  C. elegans male mating behavior provides a simple paradigm for exploring 

many relevant processes such as sensory prioritization, execution of behavioral 

sequences to generate sex-specific behaviors. In spite of knowing the wiring diagram for 

most of the C. elegans male neurons, the exact neuronal pathways involved in 

modulating the locomotory direction during mating are unknown. Out of 89 male-

specific neurons, 85 are located in the posterior region of the male body (Sulston and 

Horvitz, 1977, Sulston et al., 1980). As described above, male mating behavior is 

directed by male-specific sensory neurons in the male tail. However, whether these 

sensory cells use male-specific circuits to produce locomotion in mating or simply 

modulate activity of the sex-shared locomotory system is unknown. This study set out to 

define and interrogate the neural pathways that control male movement during his search 

for the hermaphrodite vulva.  Specific questions I wish to address include:  

 How does ray contact with a mate induce and sustain the backwards locomotion 

that characterizes the vulva search? 

 What processing strategies enable the male to respond rapidly and accurately to 

the unpredictable movement of his mate? 

 Is vulva search locomotion controlled by male-specific or sex–shared circuitry?  

 When the male achieves his goal of locating the vulva, how does the hook 

terminate locomotion and do so without disrupting tail apposition?  

To address these questions I have used a combination of approaches (laser 

ablation, optogenetics and genetics) and the male connectome as my guide to delineate 
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the underlying neural ways and interrogate their properties in freely behaving worms. 

Chapter II describes in detail the experimental procedures used throughout the 

dissertation. In Chapter III, I have identified the neural pathway controlling the atypical 

backward movement seen during vulva search. In Chapter IV, I have investigated how 

hook neurons regulate this pathway to induce pausing at the vulva.  

My work reveals that ray neurons use distributed pathways to regulate the sex-

shared locomotory systems and distinct molecular signaling mechanisms to impart 

speed, accuracy and robustness to the male locomotion during mating.  
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CHAPTER II 

EXPERIMENTAL PROCEDURES 

Strains 

All C. elegans strains (Table 2.1) were maintained at 20 ºC under standard 

conditions as described in Brenner 1974 (Brenner, 1974). pha-1(e2123ts) strain was 

maintained at 15 ºC. All strains have him-5(e1490) mutation in the background to 

generate a high incidence of males (Hodgkin et al., 1979). 

Table 2.1: List of strains used 

Strains used References/Source 

unc-64(e246)III Brenner, 1974 

unc-29(e193)I Lewis et al., 1980a, Lewis et al., 1980b 

unc-4(e120)II Miller et al., 1992a 

acr-15(ok1214)V Feng et al., 2006 

acr-16(ok789)V Francis et al., 2005, Touroutine et al., 2005 

acr-18(1285)V Liu et al., 2011 

him-5(e1490)V Hodgkin et al., 1979 

lite-1(ce3140)X Edwards et al., 2008 

pha-1(e2123ts)III Granato et al., 1994 

eat-4(ky5)III Lee et al., 1999 

nmr-1(ak4)II Brockie et al., 2001 

glr-1(ky176)III Maricq et al., 1995 

nlp-14(tm1880)X National BioResource Project 
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Transgenic arrays 

fkEx transgenic lines (Table 2.2) were generated in a pha-1(ts) background by 

Robyn Lints using standard microinjection technique (Mello and Fire, 1995).   

Transformants survived at 20ºC. 

Table 2.2: List of transgenic strains used 

Transgenic 

strain 
Genotype References 

akIs3 Is[Pnmr-1::GFP+lin-15(+)]V Brockie et al., 2001 

rgIs1 

Ex[Pacr-8(muscle)::unc-29(+)::SL2::GF

P]  
Liu et al., 2011 

rgEx387 Ex[Punc-29::unc-29::YFP+pha-1(+)] Liu et al., 2011 

rgEx196 Ex[Pacr-18::ChR2::YFP+ pha-1(+)] Liu et al., 2011 

rgEx575 Ex[Peat-4::G-CaMP3::SL2::mDsRed] LeBoeuf et al., 2014 

rgEx431
Ex[Phsp-16:egl-2(n693gf)cDNA; Punc-

103E:mDsRed; pha-1(+)] 
Liu et al., 2011 

nIs128 Is[Ppkd-2::GFP]II Yu et al., 2003 

fkEx32, 

fkEx77 

Ex[Pnlp-14(PVY+PVX)::ChR2-

YFP+Punc-122::GFP] 
Sherlekar et al., 2013 

fkIs6 
Is[Pnlp-14(PVY+PVX)::ChR2-YFP+Punc-

122::GFP] 
This study 

fkEx63 
Ex[Pnlp-14(PVY+PVX)::mCherry+Pttx-

3::mCherry] 
Sherlekar et al., 2013 

fkEx66, 

fkEx67 

Ex[Pnlp-14(PVY+PVX)::NpHR-

EYFP+pha-1(+)] 
Sherlekar et al., 2013 

fkEx76: 
Ex[Pnmr-1(AVA)::mCherry+Punc-

122::GFP] 
Sherlekar et al., 2013 
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Table 2.2 continued: List of transgenic strains used 

Transgenic 

strain 
Genotype References 

fkEx71 Ex[Pflp-18(AVA)::mCherry+Pttx-3::GFP] Sherlekar et al., 2013 

fkEx72 
Ex[Pflp-18(AVA)::mCherry+Pnlp-

14(PVY-PVX)::ChR2-YFP] 
Sherlekar et al., 2013 

fkEx92, 

fkEx93 

Ex[Pnmr-1(AVA)::acr-18(+)+Pflp-

18(AVA)::mCherry] 
Sherlekar et al., 2013 

fkEx94 Ex[Pacr-16::mCherry+Pttx3::mCherry] Sherlekar et al., 2013 

fkEx95, 

fkEx96 

Ex[Pnmr-1(AVA)::unc-

29(+)::SL2::GFP+Pttx-3::mCherry] 
Sherlekar et al., 2013 

fkEx97, 

fkEx98 

Ex[Ppkd-2::GCaMP V6 

medium::SL2::dsRED + pha-1(+)] 
This study 

fkEx99 
Ex[Pnlp-14::GCaMP V6 

medium::SL2::dsRED + pha-1(+)]  
This study 

fkEx106 
Ex[Pflp-7::GCaMP V6 medium-dsRED + 

pha-1(+)] 
This study 

 

 

DNA constructs 

The Gateway cloning system (Invitrogen) was used to construct all the plasmids. 

The promoter specific regions were PCR amplified from genomic or plasmid DNA using 

promoter-specific primers containing attB sites. Below (Table 2.3) are the gene-specific 

forward (FWD) and reverse (REV) primer sequences used in conjunction with attB1 and 

attB2 sequences (not shown). 
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Table 2.3: List of primers used 

Gene 

promoters 
Primers References 

nlp-14 

FWD: 

GTTTACCCAGCTTTTTTCATTGTAGAAAACATCAC 
Nathoo et 

al., 2001 

    REV: TGTGCGTGTGTTACCCGGAAAG 

flp-18 FWD: GCAAATCTGTCACATACTGCTCGAATCG Kim and 

Lee, 2011 

    REV: ACCGTTGCATGTCTAACCCTGAAATTATTA 

acr-16  FWD: GATCCGAGAACATGACGATGACAATGATG Feng et al., 

2006 

    REV: TACGGACATGAGAATCAGGGAAAGAAAAGC 

nmr-1 FWD: GACACTTTCATCTGTTCAGAATTGAGATGC Brockie et 

al., 2001 

    REV: AACTAAAGTTTGTCGTGTTCCAAACAGAAG 

pkd-2  FWD: GCTGCAACCAGCAGTATTGTAAATTCGG Barr et al., 

2001 

    REV: TGAAGACGGCTCGCTGAAACAGTAG 

flp-7 FWD: ACTCTCCGCTGATTATTCCTCCCCA Kim and 

Lee, 2011 

    REV: GAAATGCTTGGATCC CGCTTCCTTC 

 

 

The attB site bearing PCR fragments were recombined with pDONR221 using 

Gateway BP clonase to generate the respective entry vectors. The promoter sequences 

were then recombined with the required destination vectors using Gateway LR clonase 

II. The destination vectors used in this study are ccdB C.1::ChR2-YFP (pLR167) (Koo et 

al., 2011),  ccdB C.1::NpHR-EYFP (pZL18) (Sherlekar et al., 2013), ccdB C.1::mCherry 
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(pZL19) (Sherlekar et al., 2013), ccdB C.1 unc-29(+)::SL2::GFP (pYL16) (Liu et al., 

2011), ccdB C.1::GCaMP6::SL2::mDsRed (pLR305) (LeBoeuf et al., 2014). 

 

Laser-mediated cell ablations 

PVY, PVX, HOA, HOB, AVG ablations at L4: L4 males were mounted on 10% 

agar pads with 0.25µL of polystyrene beads (Fang-Yen et al., 2009) and minimal amount 

of M9. PVY and/or PVX ablations were performed on males carrying fkEx32 or fkEx77 

[Pnlp-14(PVY+PVX)::ChR2-YFP+Punc-122::GFP] transgenic arrays. HOA ablations 

were performed on male carrying rgEx575[Peat-4::G-CaMP3::SL2::mDsRed] 

transgenic array. HOB ablations were performed on male carrying nIs128 [Ppkd-

2::GFP] transgenic array. AVG ablations were performed on male carrying fkEx106 

[Pflp-7::GCaMP V6 medium-dsRED + pha-1(+)] transgenic array. Fluorescent 

expression (PVY/PVX-YFP; HOA-GCaMP; HOB-GFP; AVG-GCaMP) was used to 

identify the cells for ablations. Control males were mounted on the 10% agar pads with 

polystyrene beads and M9 but not subjected to laser treatment. Post-ablation males were 

put on a separate plate from hermaphrodites, allowed to recover and grow into adults for 

approximately 24 hours. Mating assays or ChR2 assays were performed as described 

below. To confirm cell death, absence of fluorescence was checked under Zeiss D1 

compound microscope after mating and/or ChR2 assays. Only data from animals with 

confirmed cell death were used for subsequent analysis.  

EF neuron ablations at L1: L1 animals were mounted on 5% agar pads with 2mM 

sodium azide (NaN3) used as an anesthetic (Bargmann and Avery, 1995). The ablations 
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of precursor cells F and U were carried out in males carrying fkIs6 [Pnlp-

14(PVY+PVX)::ChR2-YFP+Punc-122::GFP] array or in him-5 mutant males. F and U 

were identified using DIC (Sulston et al., 1983) and laser ablated at L1 stage. The loss of 

F and U cells in males was confirmed by crumpled state of spicules.  

AVA ablations at L1 and L4: AVA interneurons were ablated at L1 stage. L1 

animals were mounted put under anesthetic as described in EF ablations. AVA ablations 

were carried on males carrying fkEx71 [Pflp-18(AVA)::mCherry+Pttx-3::GFP] or 

fkEx72 [Pflp-18(AVA)::mCherry+Pnlp-14(PVY-PVX)::ChR2-YFP] arrays. FLP-

18::mCHERRY expression was used to identify the AVA cells. Control males were also 

mounted on agar pads with anaesthetic but not exposed to laser treatment. AVA neurons 

are difficult to ablate and even after subjecting to laser treatment, sometimes there is 

residual fluorescence suggesting the cell is not completely destroyed.To ensure that the 

cells were completely eliminated, L1 males were allowed to grow to for day and 

remounted on agar pads with anaesthetic to check FLP-18::mCHERRY expression in 

AVA. If there was mCHERRY expression then the cells were re-ablated.  The ablated 

and control animals were allowed to grow to L4 stage and then males were separated 

from hermaphrodites. These virgin males were allowed to grow into adults and subjected 

to mating and/or ChR2 assays. After assays, cell ablations were confirmed by checking 

for absence of fluorescene under compound microscope.  

 

Mating behavior assays 

Mating assays were performed as per procedures described in (Liu et al., 2007).  
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Preparation of animals for mating assays: The experimental males (10 per plate) were 

picked at L4 stage, a day before the assays and allowed to mature into adults, separate 

from hermaphrodites so they were virgins and of the same age. Similarly, virgin L4 

hermaphrodites (20 per plate) were picked and allowed to mature overnight into adults.  

Preparation of mating plate: On the day of assays, 1 mL of OP50 was centrifuged 

for 5 minutes at 6000 rpm. The supernatant was discarded leaving 50uL for 

resuspending the pellet. 5uL of the concentrated suspension was spotted on a fresh plate 

to make a mating lawn of approximately 5mm in diameter and allowed to soak in. 

Mating assays:  For the ablation and mutant studies, 5 unc-64; lite-1 virgin 1-day 

old adult hermaphrodites were placed on the lawn. After 5 minutes (to allow the 

hermaphrodites to settle), one experimental male was placed on the mating lawn. The 

mating behavior was recorded using a Zeiss AxioCam HS digital camera and 

AxioVision software (release 4.7) for 15 minutes or until the male ejaculated, whichever 

occurred first. 

Mating behavior analysis: The videos were analyzed for execution of different 

motor behaviors during mating. The efficiency of vulva search was measured by 

quantifying contact respone, scanning speed and loss of tail contact during scanning. 

% Contact Response = 100 x [the number of times the male exhibits contact 

response/the number of times the ventral part of the male tail makes contact with a 

hermaphrodite]. A successful (complete) contact response involves both tail apposition 

and initiation of backwards locomotion (Koo et al., 2011).  
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Scanning speed on the non-vulva side(μm/sec) = average length of 1-day old adult 

unc-64; lite-1 hermaphrodites (1044 μm)/ the time required for a male to travel the 

length (sec).  The average speed for a male was calculated from a random selection of 5 

non-vulva sides scanned, or all non-vulva sides scanned if the number of sides 

completed was less than 5.   

Loss of tail contact = the number of times a male lost tail contact with the 

hermaphrodite during the mating trial while scanning. 

The efficiency of scanning was measured by the frequency of pausing = number of 

times the male pauses while scanning the non-vulva side of the hermaphrodite during a 

mating trial. 

 

ChR2 & NpHR assays 

ChR2 assays: All strains, except for the –ATR controls were grown on plates 

seeded with E.coli OP50 containing 50µM ATR. Since ATR is light sensitive, all plates 

were kept in dark by wrapping them in a foil. A day before the assays, five L4 males or 

hermaphrodites were placed on separate +ATR (spread with E.coli OP50 and 50µM 

ATR) or –ATR (spread with E.coli OP50 only) plates to mature. The worms were 

allowed to mature overnight into adults. Assays for individual worms were recorded 

using Zeiss AxioCam HS digital camera and AxioVision software. A Zeiss M2 Imager 

stereomicroscope with epi-fluorescence was used to perform the assays. For ChR2 

assays, each worm was exposed to three, 500 msec flashes of blue light (470/40 nm in 

wavelength), when they were moving forward. The flashes were evenly spaced allowing 
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enough time in between for recovery from the previous flash. Mostly, response to the 

first flash was quantified (as described in the following section). For PVY/PVX 

activation, fkEx32, fkEx77 or fkIs6 [Pnlp-14(PVY+PVX)::ChR2-YFP+Punc-122::GFP] 

strains were used. After the assays, PVY and PVX expression for ChR2-YFP was 

verified in each worm at 600X magnification using Zeiss D1 compound microscope 

equipped with epi-fluorescence. Only data from animals with expression in both the cells 

were used for subsequent analysis. 

NpHR assays: Worms were maintained under similar conditions as described for 

ChR2 assays (NpHR also requires ATR for functional activity). For PVY/PVX 

inhibition, fkEx66 or fkEx67 [Pnlp-14(PVY+PVX)::NpHR-EYFP+pha-1(+)] strains 

were used. The day before the assays, ten L4 males were placed on separate plates 

spread with E.coli OP50 (with ATR and without ATR). For NpHR assays with solitary 

males, each worm was exposed to five, 500msec flashes of yellow light (540/25 nm in 

wavelength) with evenly spaced intervals while the male was moving in forward 

direction. Pausing on light exposure was calculated as follows: 

% pauses with light flash = 100 X [number of pauses on light flash/5(total number of 

flashes)] 

For NpHR assays in context of mating, a one-day old adult, virgin male was placed 

on a mating lawn with 5 one-day old adult, virgin unc-64; lite-1 hermaphrodites. When 

the male started backing on a hermaphrodite, he was exposed to five, evenly spaced 

flashes of yellow light. The percentage for number of pauses induced out of five was 

measured. 
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Rescue experiments 

The experiments for rescuing acr-18 and unc-29 function in AVA interneurons 

were performed by Robyn Lints.  

For acr-18 rescue: acr-18; fkEx92 or fkEx93 [Pnmr-1(AVA)::acr-18(+)+Pflp-

18(AVA)::mCherry] hermaphrodites were crossed with acr-18; fkEx32 or fkEx77 [Pnlp-

14(PVY+PVX)::ChR2-YFP+Punc-122::GFP]  males. L4 stage F1 cross progeny males 

identified as being UNC-122::GFP (ChR2 in PVY/PVX) and FLP-18::mCHERRY (acr-

18(+) in AVA) positive, were transferred to plates (5/plate) spread with E.coli OP50 and 

50µM ATR. The males were allowed to mature overnight into adults. Wild type and acr-

18 males carrying transgene fkEx32 or fkEx77 were used as positive and negative 

controls respectively. ChR2 assays were performed on each male as described above. 

After assays, each individual male was checked for CHR2-YFP expression in PVY and 

PVX; and mCHERRY expression in AVA interneurons (Sherlekar et al., 2013).   

For unc-29 rescue: unc-29; acr-16; rgIs1[Pacr-8(muscle)::unc-29(+)::SL2::GFP]; 

fkEx95 or fkEx96 [Pnmr-1(AVA)::unc-29(+)::SL2::GFP+Pttx-3::mCherry] 

hermaphrodites were crossed with unc-29; acr-16; fkEx32 or fkEx77 Ex[Pnlp-

14(PVY+PVX)::ChR2-YFP+Punc-122::GFP]  males. The F1 progeny L4 males with 

UNC-122::GFP (ChR2 in PVY/PVX) and TTX-3::mCHERRY (unc-29 (+) in AVA) 

expression were selected for ChR2 assays. The assays were performed as described in 

acr-18 rescue experiments (Sherlekar et al., 2013). 
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ChR2 assay quantification  

In ChR2 assays, the response to blue light flash was digitally recorded as described 

in the above sections. The “start of flash” was easily tracked by the fluorescence of 

coelomocytes (Fig. 2.1A). After the flash, the first frame where the male started backing 

was extracted from the movie using Axiovision software tool and labeled “start of 

response” (Fig. 2.1B). The frame wherein the male stopped backing was also extracted 

and labelled “end of response” (Fig. 2.1C). For each frame, the distance of the male head 

(or tail, keeping the head/tail parameter consistent for one given worm) was measured  

 

 

 

 

Figure 2.1 Quantification of locomotory response. 

A, B, C. Micrographs of adult male showing different stages in ChR2-mediated 

activation of PVY/PVX.  

A. “Start of flash” frame. Head is on the left and tail is on the right side. The top left 

corner shows the time stamp. The fluorescent dots on the worm body is the coelomocyte 

fluorescence in response to blue light, used as a marker to identify the start of flash.  

B. “Start of response” frame. The male starts moving backwards in response to the light 

flash. To locate the position of the male at “start of response”, a line (in red) is drawn 

using Axiovision software from the head to the left edge (nearest edge to the male head). 

The distance is measured in µm.  

C. “End of response” frame. The distance at “end of response” is measured similarly as 

described for “start of response” frame. Distance moved in µm = length in “start of 

response” frame – length in “end of response” frame. 
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from the closest edge of the frame. The “distance moved” (in µm) = length in “start of 

response” frame – length in “end of response” frame (In Fig. 2.1, distance moved = 228 

– 283 = -55 µm).  

The average time to respond (time to respond in secs = time at “start of response” – 

time at “end of response”) and the average time of response (response time in secs = 

time at “end of response” – time at “start of response”) was calculated from the animals 

who responded by backing on exposure to light flash. These values were then plugged in 

to the “start of flash” time for the non-responders to extract “start of response” frame and 

“end of response” frame. The distance moved for these animals was in forward direction 

and gave a positive value. Based on the “distance moved” values scored, the 

experimental animals were categorized into three different groups; backing = distance 

travelled < 0 µm, pausing = distance travelled 0 to +2.5 µm, forward = distance travelled 

> +2.5 µm. 

  

GCaMP assays 

The strains used to study Ca
2+

 transients carried the following transgenes:  

PVY activity - fkEx99 [Pnlp-14::GCaMP V6 medium::SL2::dsRED + pha-1(+)] 

HOB activity - fkEx97 or fkEx98 [Ppkd-2::GCaMP V6 medium::SL2::dsRED +         

pha-1(+)] 

AVG activity - fkEx106 [Pflp-7::GCaMP V6 medium-dsRED + pha-1(+)] 

A day prior to the assays, the experimental males were picked at L4 stage and 

allowed to mature overnight. The hermaphrodites used in these assays were of the 



 

 

39 

 

genotype rgEx431[Phsp-16:egl-2(n693gf)cDNA; Punc-103E:mDsRed; pha-1(+)]. On 

the previous day, hermaphrodites were heat shocked for 2-3 hrs at 33ºC. The 

overexpression of EGL-2 on heat treatment of hsp-16 promoter, completely paralyze the 

hermaphrodites. UNC-103E::dsRED expression marks the vulva location. The mating 

lawns were prepared as described in the mating behavior assays section. On the day of 

assays, eight 2-day old heat shocked hermaphrodites were placed on the mating lawn, 

allowing them enough time to settle (10-15 minutes). A 2cm square containing the 

mating lawn was cut and placed on a microscope slide. An individual one-day old male 

was then placed on the mating lawn. The mating behavior was recorded after the male 

came in the vicinity of the hermaphrodites on a fluorescene equipped Olympus BX52 

microscope. The GCaMP and DsRed signals were visualized and recorded 

simultaneously using a Dual View Simultaneous Imaging Systems with an Ol-11-EM 

filter and Hamamatsu ImagEM Electron multipier (EM) CCD camera. The mating 

behavior movies were analyzed for the activity of PVY, HOB and AVG neurons in 

response to vulva location. 

The mating movies were cut in to smaller recordings which included the approach 

of male tail to the vulva and the response on vulva location. The Hamamastu SimplePCI 

software was used to locate region of interest (ROI); centered on the neurons to be 

studied (PVY or HOB or AVG) in both GCaMP and dsRed channels. A neutral ROI was 

selected from the bacterial lawn to record background fluorescence. The recording was 

analyzed on frame-by-frame basis, to score the mean gray levels for all the three ROIs. 

In case of any movement, the ROIs were adjusted to center on the neurons of interest. 
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The neutral ROI is kept at the same position in all the frames. The data for all the frames 

for a given recording is then transferred to a Microsoft Excel sheet to calculate % F/F0 

(Correa et al., 2012). F0 is the fluorescent intensity of dsRed which is used as a baseline 

and corrects any discrepancies caused by focal plane changes or any other imaging 

artifacts. F is the difference between the fluorescent intensity of GCaMP (F) and the 

baseline (F0). The neuronal activity can be seen by plotting % F/F0 (on Y-axis) against 

time (on X-axis). 

 

Statistical analysis 

All the groups were compared to the control or wild type groups using Wilcoxon-

Mann-Whitney ranksum test.  
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CHAPTER III 

THE NEURAL AND MOLECULAR MECHANISMS REGULATING 

BACKWARD MOVEMENT DURING THE VULVA SEARCH 

 

Sex-shared backward command interneurons control locomotion during mating  

C. elegans male mating behavior is initiated when the male tail contacts a potential 

mate.  The contact prompts the male to cease forward locomotion, appose his tail against 

the hermaphrodite surface and start backing along the cuticle in search of the vulva. The 

sensory rays in the male tail induce and guide the search by promoting two sub-

behaviors: backward movement and tail apposition (Koo et al., 2011). The male tail 

connectivity shows that sensory ray neurons connect to male-specific interneurons in the 

pre-anal ganglion which in turn form connections to backward and forward command 

interneurons. The connectivity weightage favors the backward command interneurons, 

especially AVA(L/R) (Fig. 3.1; Sherlekar et al., 2013). To test whether male backing 

during mating is controlled by AVA interneurons, I laser ablated these cells in males and 

assessed its impact on mating behavior. AVA interneurons are present from the embryo 

stage; however presynaptic male-specific cell types in the tail do not form or connect 

until larval stage L4. Hence, the cell-specific laser ablations were done in L4 males. To 

aid identification of AVA and assess the effectiveness of cell killing, I used transgenic 

strain in which AVA was marked with a reporter (Pflp-18(AVA)::mCherry). Mock-

ablated males were exposed to anaesthetic and mounted on the slide but were not 

subjected to laser (refer Experimental Procedures). Mock and  laser-ablated males were  

file:///C:/Atirma/Research/Thesis/Thesis%20corrections%20OGAPS/Amrita%20Sherlekar%20519004352%20Round%202.docx%23_ENREF_116
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allowed to recover and mature overnight into adults in absence of hermaphrodites. For 

some unknown reason, AVA neurons were difficult to ablate as evidenced by persistent 

fluorescence the next day. If still present, the cells were laser ablated again. Mock-

ablated and laser ablated animals were allowed recovery for more than 5 hours. Mating 

assays were performed with unc-64 hermaphrodites, which are paralyzed due to a   

 
 

Figure 3.1 Putative backing circuit. 

Wiring diagram of the circuit model being tested (based on male tail connectivity; 

(Jarrell et al., 2012). The rays have heavy connections to male-specific interneurons 

PVY/PVX, which have major connections to backward command interneurons, 

AVA(L/R). In sex-shared locomotory circuit, AVA interneurons activate VNC A-

motor neurons to promote backing. 

Key: Sex-shared cells (pink), male-specific (blue), sensory neurons (triangles), 

interneurons (hexagon), motor neurons (circles). Stimulus (dotted arrow), 

stimulatory chemical transmission (arrows).  
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Figure 3.2 Male-specific and sex-shared interneurons control direction of 

male locomotion during mating. 

A, B, C. The impact of cell-specific ablations on the initiation and maintenance 

of vulva search behavior.   

A. Contact response (in %) measures the efficiency of the male to initiate 

mating response. A successful contact response requires both tail apposition 

and initiation of backward movement along the hermaphrodite (Koo et al., 

2011).  

B-C.  The efficiency of scanning on the hermaphrodite.  

B. Scanning speed (in µm/sec) is the speed with which the male scanned the 

hermaphrodite length.  

C. Loss of tail contact indicates the number of times the male lost contact 

during mating. 

A box-plot representation of the data shown, with median and mean values 

indicated by a line and a plus “+” sign, respectively. n for each treatment group: 

Mock=63; -PVY-PVX=15; -PVY=19; -PVX=8; -AVA=22. Statistical 

comparisons were made using ranksum test for differences in median. 

Significance, *p <0.05, **p <0.005, ***p <0.001 
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mutation in the syntaxin gene (Saifee et al., 1998). Both the males and hermaphrodites 

were virgin, 1-day old adults.  For the mating assay, one male was put on a mating lawn 

with 5 hermaphrodites and the assay was recorded for 15 minutes or until the male 

ejaculated (Koo et al., 2011). The mating behavior was analyzed to determine the ability 

of the male to induce and maintain backing. Contact response was measured to see if the 

male could initiate the backing response. The efficiency of backing was determined by 

quantifying scanning speed and loss of tail contact during scanning. Scanning speed 

measurements indicated the strength of backing response and loss of tail contact during 

scanning measured the ability of the male to keep scanning and to maintain mating 

postures.  

A successful contact response constitutes pressing of the male tail against the 

hermaphrodite cuticle and initiation of backing. Mock-ablated males show 100% 

(median) efficiency in contact response (Fig. 3.2A; Sherlekar et al., 2013), i.e. virtually 

all contacts resulted in a complete contact response. On completion of the contact 

response males initiated a systematic search of the hermaphrodite cuticle in search of the 

vulva. Typically the search would involve scanning and turning until the vulva was 

located. Scanning speed (µm/sec) was measured by dividing the average length of the 

hermaphrodites by time taken by a male to scan from one end to the other. If the male 

encountered the vulva, typically he stopped there. This pausing prolonged the time taken 

to scan the vulva side of the hermaphrodite. So, all the scanning speed measurements 

were taken on the non-vulva side of the hermaphrodite. Mock-ablated males scanned the 

non-vulva side at the speed of 180µm/sec (Fig. 3.2B; Sherlekar et al., 2013). Another 
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important feature of the male scanning is that the ventral side of the male tail is 

continuously in contact with the hermaphrodite throughout the mating behavior. To 

determine whether the male could maintain contact during scanning and turning, I 

counted the number of times the male lost contact with the hermaphrodite (ventral side 

of the tail came off). Mock-ablated males were efficient in maintaining contact with the 

hermaphrodite, having a median of 1 loss of tail contact during the vulva search (Fig. 

3.2C; Sherlekar et al., 2013).  

AVA-ablated males showed defects in reversing. When not engaged in mating, 

similar to hermaphrodites AVA-ablated hermaphrodites (Chalfie et al., 1985), these 

solitary males showed difficulties in switching from forward to backward direction. 

Males spent most of the time spent moving in the forward direction or pausing during 

attempts to reverse. Males also exhibit locomotory defects during mating. The AVA-

ablated males showed varied contact response though not significantly different from the 

controls (Fig. 3.2A; Sherlekar et al., 2013), indicating that they can sense the 

hermaphrodite and try to initiate the backing behavior. However, the other two 

parameters which measure the strength and ability of backing were clearly more 

affected. AVA-ablated males had average scanning speeds of 140µm/sec, significantly 

slower than the control males (180µm/sec; Fig. 3.2B; Sherlekar et al., 2013). Also, 

AVA-ablated males had difficulty in maintaining contact with the hermaphrodite; a loss 

of contact median of 5 cf. control male 1 (Fig. 3.2C; Sherlekar et al., 2013). These latter 

defects can be attributed to the uncoordinated phenotype of the AVA-ablated males. 

Taken together, these results suggest that the sensory rays use sex-shared backward 
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command interneurons to induce and maintain backing during the search. However, as 

the AVA-ablated males can still back stochastically; other neural pathways may also 

contribute.  

                                                                                                                                                                                                                                                                                

Male-specific interneuron PVY promotes backward locomotion during mating  

The next question was how do sensory rays activate the backward command 

interneurons. Sensory rays have sparse direct connections to backward command 

interneurons; however, they are heavily connected to AVA interneurons via male-

specific interneurons PVY and PVX (Fig. 3.1; Jarrell et al., 2012; Sherlekar et al., 2013). 

To determine if PVY and PVX represent a key connection between the rays and AVA, I 

laser ablated PVY and/or PVX. PVY differentiates at L3 stage; hence the PVY and PVX 

ablations were done at L4 stage and ablated males were allowed to mature overnight on 

a separate plate. Mating assays were performed as described for AVA ablations.  

Males ablated for PVY only showed defects in mating behavior.  They had 

difficulty in completing the contact response, with an efficiency median of 30% as 

compared to control males with 100% efficiency median (Fig. 3.2A; Sherlekar et al., 

2013). The few times PVY-ablated males were able to initiate backing they exhibited 

slow scanning speed (135µm/sec as compared to 180µm/sec of control males; Fig. 3.2B; 

Sherlekar et al., 2013). In addition, PVY-ablated males could not maintain contact with 

the hermaphrodite. The median number of times males lost tail contact was 5 as 

compared to a 1 for control males (Fig. 3.2C; Sherlekar et al., 2013). These mating 

defects are similar to AVA-ablated males consistent with the hypothesis that rays, PVY 
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and AVA form a pathway. Males ablated for both PVY and PVX showed similar defects 

to PVY only ablated males. By contrast, PVX-ablated males were not significantly 

different from control males, suggesting that PVX is either functionally redundant with 

PVY or that it has no role in the vulva search locomotion.  

Together with the wiring data (Jarrell et al., 2012), these results argue that sensory 

rays modulate backward command interneurons AVA through male-specific interneuron 

PVY to promote backing during mating. In contrast to AVA-ablated males, males 

lacking PVY showed no obvious defects in locomotion when they are not mating. This 

suggests that PVY mediated AVA activation only occurs in the context of mating. The 

slow and erratic backing in AVA- and PVY-ablated males strongly suggest that the 

sensory rays–to–PVY–to–AVA pathway is the major pathway that controls backing 

during mating. However, as in AVA-ablated males, PVY-ablated males show stochastic 

backing behavior suggesting that sensory rays might also utilize other pathway to control 

movement. This alternate pathway will be examined later in this chapter.  

 

Artificial activation of PVY induces backward movement in solitary males 

To confirm the role of PVY and further explore if PVX has any role in backing, I 

artificially activated PVY and/or PVX using the light-gated channel Channelrhodopsin 

(ChR2) from Chlamydomonas reinhardtii (Nagel et al., 2005).  ChR2 is a cation 

channel, activated on exposure to blue light and in presence of its essential co-factor all-

trans-retinal (ATR). The blue light (approximate wavelength 450nm) brings about 

conformational change in the retinal molecule by changing it from all-trans-retinal to 
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all-cis-retinal ultimately causing the channel to open. The open channel allows the influx 

of cations which in turn depolarizes the neuron membrane and activates the neuron. 

Previous experiments in our lab, using Pnlp-14::GFP (Nathoo et al., 2001) transgene 

showed NLP-14::GFP expression in PVY and PVX. To target PVY and PVX, ChR2 

transgene was placed under the control of nlp-14 promoter (Nathoo et al., 2001). The 

ChR2 transgene was tagged with YFP (ChR2::YFP) allowing visualization of cells 

expressing the channel. ATR is an essential co-factor, required for ChR2 activity. 

However, C. elegans does not produce ATR endogenously so it was supplemented with 

the food. All the experimental animals (except for “-ATR” males) were grown in 

presence of ATR. In absence of ATR, ChR2 is non-functional and ChR2 transgenic 

strains grown without ATR can be used as an internal control for any non-specific 

responses to blue light exposure such as escape response, which involves reversals 

(Edwards et al., 2008).   

ChR2 assays were performed on virgin, one-day old adults. The experimental 

animal was exposed to a 500msec flash of blue light when moving in a forward 

direction. The response was quantified by measuring the distance travelled in response to 

the light flash. A negative distance value indicates movement in backward direction and 

a positive value indicates forward movement (see Experimental Procedures). In presence 

of ATR, Pnlp-14::ChR2-YFP males reverse immediately after the blue light flash. 

Ninety percent animals from this group backed with a median distance of -5µm 

(“Males” in Fig. 3.3A; Sherlekar et al., 2013).  
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The following sets of controls confirm that the reversal response was specific to 

PVY and PVX activation. Pnlp-14::ChR2-YFP males grown in absence of ATR have 

non-functional ChR2 and did not back in response to blue light. The “-ATR” males 

moved a median distance of 7µm in forward direction (“-ATR Males” in Fig. 3.3A; 

Sherlekar et al., 2013). The expression pattern for nlp-14 reporter gene shows expression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3 PVY activity is sufficient to induce backing. 

A, B. Artificial activation PVY/PVX using ChR2, induces backward movement. All 

the animals carry the transgene Pnlp-14(PVY,PVX)::ChR2-YFP. The graphs depict 

the distance moved (in µm, Y-axis) on cell-specific ChR2 activation (500msec flash 

with blue light). The “distance moved” (in µm) = coordinate in the “start of 

response” frame – coordinate in the “end of response” frame, where backward 

movement (BK) has a negative value and forward (FWD) movement has a positive 

value. The X-axis indicates worm sex, growth conditions (A) and cells ablated (B). 

Except for herms (hermaphrodites) in (A) all animals tested are males. Except for “-

ATR Males” treatment, all animals tested were grown on ATR supplemented OP50 

E. coli (food).  In (B), the controls for ablated animals are indicated by “Mock”.  

A box-plot representation of the data shown, with median and mean values 

indicated by a line and a plus “+” sign, respectively. Statistical comparisons were 

made using ranksum test for differences in median. Significance, *p <0.05,  

***p <0.001 
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in sex-shared neurons ASI, ASK, ASE, PHA, PVT, two retrovesicular ganglion neurons 

and ventral nerve cord motor neurons (Nathoo et al., 2001). Pnlp-14::ChR2-YFP males 

lacking PVY and PVX (due to their laser ablation) did not reverse in response to blue 

light in presence of ATR (“-PVY PVX” in Fig. 3.3B; Sherlekar et al., 2013), eliminating 

contributions from other ChR2 expressing neurons in backing. Pnlp-14::ChR2-YFP 

hermaphrodites grown in presence of ATR which lack PVY and PVX but express ChR2 

in the sex-shared cells, did not reverse on flashing with blue light (“Herms” in Fig. 3.3A; 

Sherlekar et al., 2013). Collectively, these results confirm that PVY and potentially PVX 

activation is sufficient to induce reversal in solitary males. 

To further dissect the role of PVY and PVX, I activated only PVY or PVX by laser 

ablating PVX or PVY, respectively. Consistent with their impact on mating behavior, 

PVY was primarily responsible for driving backward movement.  By, contrast activating 

PVX alone, did not promote reversal (“-PVY” in Fig. 3.3B; Sherlekar et al., 2013). 

However, its activation without PVY greatly increased reversal robustness (“-PVX” in 

Fig. 3.3B; Sherlekar et al., 2013). These results indicate that PVY is the major effector in 

the PVY/PVX induced reversals and that PVX may serve an auxiliary function. In the 

context of mating, other ray targets might be functionally compensating loss of PVX. 

 

PVY, PVX inputs modulate sex shared backward locomotory circuit to induce 

backing  

My next step was to confirm whether PVY and PVX induced reversals are 

dependent on sex-shared locomotory circuit. To test this, I disrupted the activity of 
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specific sex-shared cell types: AVA interneurons (by means of laser ablations) and the A 

type motor neurons of the ventral nerve cord (VNC) (by genetic means). Activation of  

PVY/PVX in AVA-ablated males resulted in little or no reversal (Fig. 3.4; Sherlekar et 

al., 2013). Thus, PVY/PVX induced reversals depend on AVA activation. 

The backward command interneurons induce reversals by activating a distinct set 

of VNC motor neurons called A-motor neurons which control the body wall muscles to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 PVY/PVX induced backing during mating depends on sex-shared 

backward locomotory circuit for activity. 
Males with impaired sex-shared backward locomotory circuit have defects in 

PVY/PVX induced backing. All the animals carry the transgene Pnlp-

14(PVY,PVX)::ChR2-YFP for artificial activation of PVY/PVX. See legend for 

Fig. 3.3. The X-axis indicates Treatment/Genotype; cells ablated/defective. The 

controls are indicated by “Mock”.  

A box-plot representation of the data shown, with median and mean values 

indicated by a line and a plus “+” sign, respectively. Statistical comparisons were 

made using ranksum test for differences in median. Significance, *p <0.05, ***p 

<0.001 
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induce backing. To confirm PVY/PVX induced reversals are dependent on A-motor 

neurons, I activated PVY/PVX in unc-4 mutant males. In unc-4 mutants, the ventral A-

motor neurons are mis-specified and incorrectly wired as B-motor, the motor neurons 

responsible for forward movement (Miller et al., 1992a). I observed that, only 27% unc-

4 mutant males backed (and less than 1µm) on PVY/PVX activation (Fig. 3.4; Sherlekar 

et al., 2013). Taken together, these results suggest that PVY/PVX induced reversals are 

dependent on sex-shared backward command interneurons AVA and backward A-motor 

neurons.  

 

PVY is required continuously while backing on the hermaphrodite  

The above experiments suggest that PVY is sufficient to induce the directional 

change during mating behavior and PVX playing an auxiliary but non-essential role (Fig. 

3.3B; Sherlekar et al., 2013). To further investigate whether PVY activity (and that of 

PVX, since nlp-14 reporter gene in expressed in both cells) is also required to maintain 

the backward movement throughout the vulva search, I inhibited PVY/PVX activity in 

context of mating, specifically while the male was scanning the hermaphrodite. 

PVY/PVX activity was inhibited by using NpHR, a chloride pump from Natrosomonas 

pharaonis which hyperpolarizes the cell on activation by yellow light (540nm) (Zhang et 

al., 2007, Zhao et al., 2008). Similar to ChR2, NpHR activity depends on co-factor ATR, 

which was supplemented through the worm food. The males grown in absence of ATR 

had non-functional NpHR and were used as controls to eliminate the possibility of  
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yellow light affecting the male behavior. NpHR was targeted to PVY and PVX by 

placing a NpHR-EYFP transgene under the control of nlp-14 promoter. As per standard 

mating assays, a one-day old virgin male was placed on a mating lawn with 5 one-day 

old adult virgin hermaphrodites and allowed to initiate backing. While backing on the 

 

Figure 3.5 PVY, PVX are required continuously for backing in context to 

mating. 
Artificial inactivation of PVY/PVX using NpHR, blocks backing during mating. 

All the males carry transgene  Pnlp-14(PVY,PVX)::NpHR-EYFP.  The X-axis 

indicates treatment (food supplemented with ATR “+ATR” or without ATR “-

ATR”) and mating conditions used (“Mating” or “Not Mating”). In Mating, assays 

performed while male was backing on the hermaphrodite and in Not Mating, 

assays were performed on solitary males. The Y-axis indicates the percentage of 

flashes (out of 5 evenly spaced flashes) the males stopped backing. n for each 

group: -ATR mating=34; +ATR mating=33; -ATR Not Mating=10; +ATR Not 

Mating=11. Statistical comparisons were made using ranksum test for differences 

in median. Significance, ***p <0.001 
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hermaphrodite, the male was exposed to a 500msec flash of yellow light and the 

response was recorded. Each male was given 5 such flashes at evenly spaced intervals 

and the total number of light-induced pauses was counted. The males with active NpHR 

in PVY and PVX paused in 4 out of 5 flashes, giving an average mean frequency of 80% 

for all the experimental animals (“+ATR Mating” in Fig. 3.5; Sherlekar et al., 2013). 

However, the “- ATR” males, with non-functional NpHR, did not respond to the yellow 

light flash and paused with an average mean frequency of 1% (“-ATR Mating” in Fig. 

3.5; Sherlekar et al., 2013). The presence of NpHR in PVY and PVX was confirmed by 

checking the YFP tag expression after the assays. The next question was whether the 

NpHR-mediated PVY/PVX inactivation is specific to the mating behavior. To test this, 

solitary Pnlp-14::NpHR-EYFP males grown in presence of ATR where exposed to 

500msec yellow light flashes while they were moving in forward direction. These males 

seldom paused, having an average mean frequency of 10% (“+ATR Not Mating” in Fig. 

3.5; Sherlekar et al., 2013). As NpHR-mediated inhibition has no impact on behavior, 

this suggests that PVY and PVX neurons are not active in non-mating male, only in the 

context of mate-contact. 

The above data was further supported by our examination of PVY activity during 

mating using the Ca
2+

 sensor GCaMP. GCaMP is a heterologous Genetically Encoded 

Calcium Indicator (GECI) consisting of EGFP (Enhanced Green Fluorescent Protein), 

calmodulin or CaM (Ca
2+

 binding peptide) and M13 (containing target sequence for 

CaM binding). Ca
2+

 binds to CaM, which in turn interacts with M13 resulting in 

conformational changes in EGFP-CaM-M13 complex (Nakai et al., 2001, Tian et al., 
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2009). The conformational change in EGFP increases the fluorescence intensity of the 

protein which can be recorded and quantified. An activated cell is in a depolarized state, 

which is caused by increase in influx of cations.  GCaMP binds to Ca
2+

 and its level of 

fluorescent intensity is proportional to Ca
2+

 concentration in the cell. GCaMP expression 

was targeted to PVY/PVX using nlp-14 promoter. The GCaMP transgene is fused to 

dsRED (Pnlp-14::GCaMP6::SL2::dsRED). The SL2 leader splices GCaMP and dsRED 

to give polycistronic expression. Since dsRED is co-expressed with GCaMP and is not 

affected by the changes in Ca
2+ 

concentration, it is used as a reference to account for any 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 PVY is essential for contact response and maintaining backward 

movement during mating. 
Representative trace of Ca

2+  
transients in PVY on contact with the hermaphrodite. 

All the males tested carry transgene Pnlp-14::GCaMP6::SL2::dsRED. The Y-axis 

is %F/F0 and X-axis is time in seconds. Shaded area represents mating response 

on tail contact followed by backing. 
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changes in the GCaMP intensity due to movement of the cell, in or out of the focal 

plane. For the assays, one-day old transgenic virgin males were put on a mating lawn 

with 8-10 adult heat-treated  Phsp-16:egl-2(n693gf)cDNA; Punc-103E:mDsRed 

hermaphrodites. egl-2 encodes for a K
+
 channel and heat shocking egl-2(gf) worms 

results in complete paralysis. Punc-103D::dsRED marks the vulva muscles and making 

it possible to visualize the vulva region under fluorescent conditions. The mating 

behavior was recorded using the Dual View Simultaneous Imaging system, which allows 

the dsRED and GCaMP fluorescence to be visualized simultaneously in separate 

channels. GCaMP fluorescent changes can be quantified relative to changes in dsRED. 

The changes in the fluorescence are plotted as % F/F0 against time. F is the 

difference in fluorescent intensity as compared to the baseline (F0 – fluorescent intensity 

of dsRED at time 0). Plotting F/F0 corrects the expression level for GCaMP with 

respect to dsRED. 

I focused on PVY activity because results from my previous experiments 

suggested that PVY plays a major role in vulva search locomotion. GCaMP fluorescent 

intensity increased in PVY within half a second of contact and stayed up while the male 

is backed on the hermaphrodite (Fig. 3.6). However, the increase in activity was graded 

as the changed with the speed modulations. This data along with the results of the 

optogenetic and ablation studies, confirms that PVY plays an essential role in inducing 

and maintaining backing during mating.  
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PVY uses cholinergic transmission to stimulate AVA  

To investigate which neurotransmitter molecules and receptors are involved in the 

PVY/PVX induced reversals, we studied expression patterns of reporters for various 

neurotransmitter pathway genes. In addition to NLP-14, PVY and PVX expressed 

cholinergic marker UNC-17::GFP (Fig. 3.7A; Sherlekar et al., 2013). The unc-17 gene 

encodes the synaptic vesicle acetylcholine transporter, required for loading acetylcholine 

into synaptic vesicles (Alfonso et al., 1993, Lickteig et al., 2001, Zhu et al., 2001). 

PVY/PVX might be using acetylcholine as a fast acting neurotransmitter to control male 

locomotion during mating. UNC-17 is widely expressed in C. elegans nervous system 

(Alfonso et al., 1993, Garcia et al., 2001) and unc-17 mutants are extremely 

uncoordinated in locomotion (Brenner, 1974). Thus, using unc-17 mutants to test 

whether cholinergic signaling is relevant to PVY/PVX induced backing will be 

uninformative. One way to overcome this issue is to use cholinergic receptors (acr) gene 

mutants, as teir site of action are more limited and defects less pleiotropic. First we 

determined which receptors are expressed in AVA. AVA interneurons express alpha 

nicotinic acetylcholine receptor subunits acr-15 and acr-16 (Jones and Sattelle, 2004, 

Feng et al., 2006), DEG-3 type acetylcholine receptor acr-18 (Fig. 3.7B; Sherlekar et al., 

2013), and a non-alpha receptor subunit unc-29 (Fig. 3.7C; Sherlekar et al., 2013).  
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Figure 3.7 PVY and PVX are cholinergic and backward command interneurons, 

AVA express multiple cholinergic receptor genes. 

A. Fluorescent micrograph of adult male tail (lateral view, posterior to right) showing 

co-expression of NLP-14::mCHERRY (PVY/PVX marker) and UNC-17::GFP 

(cholinergic marker). PVY, PVX are located in pre-anal ganglion (PAG) indicated by 

the dotted line. SP indicates spicule auto-fluorescence.  

B. Fluorescent micrograph of L3 male head showing expression of Pacr-18::ChR2-

YFP transgene in AVA.  

C. Fluorescent micrograph of L3 male head expression of a full-length unc-29 

translational reporter. * indicates cells which co-express unc-29 and acr-16 transgene. 

Scale bar indicates 10 µm. 

(taken from Sherlekar et al., 2013) 
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To test whether any of these receptors are required for PVY/PVX-to-AVA 

cholinergic transmission, PVY/PVX were artificially activated in various cholinergic 

receptor mutant backgrounds, using ChR2. acr-18 single mutants showed a significant 

reduction in PVY/PVX induced reversals where only 28% males were able to back while 

56% males kept moving forward and 16% paused (Fig. 3.8; Sherlekar et al., 2013). This 

suggests that acr-18 activity is partially required to induce backing.  acr-18 is expressed 

in many sex-shared and male-specific neurons. To test if acr-18 activity is required 

specifically in AVA, we tested whether restoring acr-18 wild type function to AVA 

restores backing response. acr-18 was rescued by placing the wild type acr-18 transgene 

under the control of the nmr-1 promoter, which is expressed in backward command 

interneurons AVA, AVD, AVE and few other neurons. The presence of wild type acr-18 

transgene was confirmed by the presence of co-injection marker mCHERRY, which was 

placed under the control of the flp-18 promoter, also expressed in AVA. acr-18 mutant 

males expressing acr-18 wild type transgene were indeed more efficient in PVY/PVX 

induced reversals. The reversal response was rescued in 76% males as compared to 

reversal response in 28% acr-18 mutant males (Fig. 3.8; Sherlekar et al., 2013). 

Together these results support the hypothesis that cholinergic receptor subunit acr-18 

acts in the backward command interneurons (likely AVA) to mediate PVY/PVX-to-

AVA cholinergic transmission.  

acr-18 receptor subunit activity accounts for part of PVY/PVX induced reversals, 

suggesting contributions from other cholinergic receptor subunits. I activated PVY/PVX 

in acr-15 and acr-16 single mutants which are expressed in backward command 
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Figure 3.8 PVY/PVX modulates AVA interneurons via cholinergic signaling. 

Cholinergic receptor mutants show reduced backing response on artificial activation 

of PVY/PVX using ChR2. All the animals carry the transgene Pnlp-

14(PVY,PVX)::ChR2-YFP. See legend for Fig. 3.3. The X-axis indicates genotype. 

Except for “-ATR Males” treatment, all animals tested were grown on ATR 

supplemented OP50 E. coli (food).  All males with unc-29 mutation in the 

background carry rgIs1 transgene which specifically rescues the mutation in body 

wall muscles.  

A box-plot representation of the data shown, with median and mean values 

indicated by a line and a plus “+” sign, respectively. Statistical comparisons were 

made using ranksum test for differences in median. Significance, ***p <0.001 
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interneurons, AVA. The backing response reduced a little but was not significantly 

different from the wild type (Fig. 3.8; Sherlekar et al., 2013). To eliminate the possible 

redundant activity of acr-18 subunit, I also activated PVY/PVX in acr-15 acr-18 and 

acr-16 acr-18 double mutant background. acr-15 acr-18 double mutant reversal 

response was not significantly different from the wild type and acr-16 acr-18 backing 

response was similar to the acr-18 single mutants (Fig. 3.8; Sherlekar et al., 2013).  

AVA interneurons also express a non-alpha receptor subunit unc-29. It has been 

shown in previous studies that unc-29 is functionally redundant with acr-16 in body wall 

muscles used for locomotion and in some male-specific muscles involved in spicule 

insertion behavior (Francis et al., 2005, Liu et al., 2011). Mating analyses of unc-29; 

acr-16 double mutants done in our lab, revealed slow scanning behavior similar to PVY-

ablated males. In these animals, unc-29 function was rescued in body wall muscles as 

the absence of both unc-29 and acr-16 from muscle results in paralysis, thus precluding 

mating studies (Ballivet et al., 1996, Francis et al., 2005, Touroutine et al., 2005). 

Specifically, a wild type unc-29 cDNA was placed under the control of the acr-8 

promoter (expressed in body wall muscles and few VNC neurons) generating the 

transgene rgIs1 [Pacr-8::unc-29cDNA::SL2::GFP] (Ballivet et al., 1996, Brockie et al., 

2001, Francis et al., 2005, Touroutine et al., 2005, Liu et al., 2011). To further test the 

contribution of unc-29 and acr-16 to PVY/PVX induced reversals, I activated PVY/PVX 

in unc-29; acr-16 double mutant males carrying rgIs1. Only 31% of these animals 

showed backing response (Fig. 3.8; Sherlekar et al., 2013). This indicates unc-29 and 

acr-16 together play an important role in PVY/PVX induced backing behavior. To 
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further confirm that the site of action for unc-29 is in AVA interneurons, we rescued 

unc-29 specifically in AVA interneurons by placing it under the control of the nmr-1 

promoter. Eighty six percent of the rescued males reversed (Fig. 3.8, Sherlekar et al., 

2013), confirming that the UNC-29 receptor subunit plays a role in PVY/PVX-to-AVA 

cholinergic transmission.  

To further test whether the three cholinergic receptor subunits acr-18, acr-16 and 

unc-29 are sufficient for the PVY/PVX induced activation of AVA interneurons, I 

activated PVY/PVX in unc-29; acr-16 acr-18 triple mutant background. Indeed, only 

4% of the unc-29; acr-16 acr-18 triple mutant males were able to reverse on PVY/PVX 

activation (Fig. 3.8; Sherlekar et al., 2013). Taken together, these data support a model 

in which PVY/PVX use cholinergic signaling to modulate the activity of AVA 

interneurons during mating and this transmission is mediated by cholinergic receptor 

subunits ACR-18, ACR-16 and UNC-29. 

Rescue experiments with the cholinergic mutants were performed by Robyn Lints. 

 

Cholinergic receptor mutants exhibit defective movement during mating  

Mutations in acr-18, unc-29 and acr-16 significantly compromised reversal 

efficiency in the context of ChR2 assays. I next examined whether these mutations 

correspondingly caused vulva search defects in the context of mating. In spite of 

showing 60% reduction in reversals in the ChR2 PVY/PVX assays, acr-18 mutant males 

exhibited wild type mating behavior except for some difficulty in contact response (Fig. 

3.9A; Sherlekar et al., 2013). Similarly, unc-29; acr-16 double mutant showed varied  
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Figure 3.9 Cholinergic receptors play a functionally redundant role in mating 

locomotion. 
A, B, C. The impact of cholinergic receptor mutations on the initiation and efficient 

maintenance of vulva search behavior.  See legend for Fig. 3.1 and Fig. 3.8.  

A box-plot representation of the data shown, with median and mean values 

indicated by a line and a plus “+” sign, respectively. n for each genotype: 

Mock=36; acr-18=12, unc-29; acr-16=14; unc-29; acr-16 acr-18=12. Statistical 

comparisons were made using ranksum test for differences in median. Significance, 

*p <0.05 
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defects in contact response though not significantly different from wild type. However, 

these double mutants exhibited a slower scanning speed (150µm/sec) than the wild type 

(Fig. 3.9B; Sherlekar et al., 2013). A possible reason for these relatively mild defects is 

that unc-29; acr-16 and acr-18 are partially redundant. I therefor examined unc-29; acr-

16 acr-18 triple mutant mating behavior. The triple mutant males were defective in all 

aspects of the vulva search behavior scored and magnitude of these defects was similar 

to PVY and PVX-ablated males (Fig. 3.2B, Fig. 3.9B; Sherlekar et al., 2013). These data 

strongly support partially redundant roles for acetylcholine receptor subunits unc-29, 

acr-16 and acr-18 most likely in PVY/PVX-to-AVA transmission. Also, like in PVY 

and PVX-ablated males, unc-29; acr-16 acr-18 triple mutant males can still back slowly. 

This suggests the presence of a parallel pathway which may be able to compensate the 

loss of the main backing pathway in its absence, making mating locomotory circuits 

functionally robust. 

 

EF neurons are acting parallel or upstream to the PVY-controlled backing circuit  

The above results suggest that rays may use more than one pathway to regulate 

backward movement. The sensory rays have many post-synaptic targets which could be 

possible candidates for such parallel pathways. However, sensory rays have the highest 

number of inputs on male-specific interneurons of pre-anal ganglion, EF1-3 (Jarrell et 

al., 2012). EF neurons form reciprocal connections with most of the male-specific 

neurons and are unique in their morphology, being the only male-specific tail neurons 

which have processes running all the way up to the nerve ring of the worm head.  
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Figure 3.10 EF interneurons are required for continuous backing. 

 A. Wiring diagram showing EF interneurons connectivity to the locomotory 

circuit (based on male tail connectivity; (Jarrell et al., 2012). EF interneurons are 

presynaptic to forward command interneurons, AVA and male-specific 

interneurons PVY and PVX. 

For key, refer legend for Fig. 3.1. 

B. The impact of F and U ablations on the maintenance of vulva search behavior. F 

and U ablations eliminate EF and DX neurons. The number of pauses indicates 

discontinuous backing. To eliminate pauses induced on vulva detection, only 

pauses on non-vulva side of the hermaphrodite were quantified.   

C. Artificial activation of PVY/PVX in EF ablated males did not affect the reversal 

response. All the animals carry the transgene Pnlp-14(PVY,PVX)::ChR2-YFP.  

Statistical comparisons were made using ranksum test for differences in median. 

Significance, ***p <0.001  
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Interestingly, one of the major post-synaptic target of EFs are forward command 

interneurons, AVB(L/R) (S. W. Emmons, personal communication).  Also, EFs are pre-

synaptic targets of PVY and PVX (Fig. 3.10B). To test if EF interneurons play a role in 

locomotory control, I laser ablated the precursor cells F and U at L1 stage eliminating 

EF and their lineal sisters, DX interneurons. Killing the precursors was necessary 

because there are no known reporter genes which can be used to mark EF interneurons. 

Also, the number of EF cells varies from individual to individual (Sulston et al., 1980). 

The precise F and U pattern at L1 is known, making it easier to identify and kill the 

cells. The ablated and mock animals were grown to L4 stage and then the males were 

isolated on fresh plates and allowed to mature into adults. Their mating behavior was 

recorded and analyzed. The EF-ablated males were defective in mating, though their 

defects differ from PVY-ablated males. Specifically, backing was erratic such that EF-

ablated males paused frequently during scanning. Males typically stop at the vulva, to 

prod at the vulva slit for spicule insertion and insemination. The median number of  

pauses on the non-vulva side was 9 in EF-ablated males, as compared to a median of 0 in 

mocks (Fig. 3.10B). The discontinuous backing in EF-ablated animals indeed suggests 

that EF interneurons activity contributes to backing.  

The connectivity suggests that EFs act by suppressing the activity of forward 

command interneurons AVB (Fig. 3.10A; Jarrell et al., 2012). Also, DXs do not have 

connections to command interneurons, suggesting that they are not contributing to the 

locomotory circuit (Jarrell et al., 2012). In the absence of EFs, AVB activity might not 

be completely inhibited and this may interfere with backward pathway activity. Another 
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possibility can be EFs are reinforcing the PVY and PVX activity to maintain backing 

through their stimulation by the rays. To test whether EFs modulate PVY/PVX activity, I 

activated PVY/PVX in males lacking EFs. The EF-ablated males showed wild type 

PVY/PVX induced reversals (Fig. 3.10C), suggesting that the EF interneurons either act 

parallel or upstream of PVY and PVX.  

In conclusion, these results support a simple backing circuit model for vulva 

search. The sensory rays target the male-specific interneurons in the PAG to induce 

backward locomotion. The critical targets are interneurons PVY and PVX which initiate 

and maintain backing by modulating the sex-shared backward locomotory circuit. Also, 

EF interneurons may contribute by suppressing the forward command interneurons, 

AVB. Together, male-specific interneurons PVY, PVX and EFs override the forward 

directional bias and induce backing. Further ablation studies are required to kill PVY, 

PVX and EFs together and determine the combined functions of these interneurons in 

the vulva search behavior.  
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CHAPTER IV 

THE NEURAL MECHANISMS CONTROLLING PAUSING AT THE VULVA 

 

Hook neuron HOA does not contribute significantly to induce pausing at the vulva 

During mating, the male stops scanning upon encountering the vulva and starts 

prodding his spicules in an attempt to breach the vulva for insemination. The ventral side 

of the male tail has male-specific sensory neurons; sensory rays, hook neurons and post 

cloacal sensilla (p.c.s.) neurons (Fig. 1.2A). Previous ablation studies show that males 

lacking hook neurons are unable to detect the vulva and continue scanning without 

stopping (Liu and Sternberg, 1995). How hook neurons inhibit movement is completely 

unknown. The hook comprises two neurons, HOA and HOB (Sulston et al., 1980). In the 

wiring diagram, it is possible to trace pathways from the hook neurons to the forward 

and backward command cells some involving PVY/PVX and EFs (Jarrell et al., 2012). 

These putative pathways suggest that hook neurons could either activate the forward 

command interneurons (Pathway 1 in Fig. 4.1A) to counteract the backward pathway 

activity or alternatively inhibit the backward circuit (Pathway 2 in Fig. 4.1A) to induce 

pausing (Jarrell et al., 2012). The third possibility is that hook neurons may use both 

mechanisms to achieve pausing. 

In the circuits for possibility (1), hook neuron activation of forward command 

interneurons (Pathway 1 in Fig. 4.1A). HOA connects indirectly to the forward 

command interneurons, AVB(L/R) via AVG. AVG is a single interneuron with the cell 

body located in the retrovesicular ganglion (RVG) of the head and its process extends  
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along the VNC to the PAG. AVG is sex-shared and is primarily used as a guidepost cell 

to define the right longitudinal tract of the ventral nerve cord (Wadsworth et al., 1996). 

In the male, but not hermaphrodite, AVG is connected to the AVB forward interneurons 

by gap junctions (Jarrell et al., 2012). To determine if this simple HOA-to-AVG-to-AVB 

circuit induces pausing (Pathway 1 in Fig. 4.1A), I eliminated HOA or AVG by laser 

 
 

Figure 4.1 Male-specific hook neurons induce pausing on vulva detection. 

A. A putative neural circuit for hook neuron regulation of backward circuit (based 

on (Jarrell et al., 2012).  

Key: Sex-shared cells (pink), male-specific (blue), sensory neurons (triangles), 

interneurons (hexagon), motor neurons (circles). Stimulus (dotted arrow), 

stimulatory chemical transmission (arrows), inhibitory chemical transmission (T-

bar), possible cross-talk (double-headed arow).  

B. The impact of cell-specific ablations on the efficiency of the male to stop on 

vulva detection. The Y-axis indicates % Stopped at the vulva = 100 x [the number 

of times the male stopped at the vulva/the number of times the ventral part of the 

male tail came in contact with the vulva]. The X-axis indicates Treatment.  

A box-plot representation of the data shown, with median and mean values 

indicated by a line and a plus “+” sign, respectively. Statistical comparisons were 

made using ranksum test for differences in median. Significance, ***p <0.001 
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ablations and measured the ability of the male to stop at the vulva. To visualize HOA for 

ablations, I used transgenic males carrying Peat-4::G-CaMP3::SL2::mDsRed. To 

visualize AVG, I used Pflp-7::GCaMP V6 medium-dsRED transgenic males. To reduce 

the possibility of developmental compensation, HOA and AVG were ablated at L4 stage. 

The ablated males were allowed to recover and mature overnight, separate from 

hermaphrodites. The mock animals were treated similarly to the ablated animals except 

for the laser exposure (refer Experimental Procedures). Each male was assayed for their 

mating behavior by putting an individual one-day adult male with five one-day adult 

hermaphrodites on a mating lawn. The mating behavior was recorded for 15 minutes or 

until the male ejaculated. Each mating trial was analyzed for the number of times the 

male stopped at the vulva. Similar to mock males, males lacking HOA invariably 

detected the vulva and paused there (Fig 4.1B). My results are contradictory to results 

from a previous study which show that HOA-ablated males cannot stop at the vulva (Liu 

and Sternberg, 1995). A possible explanation for this is that collateral damage may have 

been more likely with the equipment used 20 years ago. Additionally, I used a 

fluorescent marker (dsRED) to identify HOA cell body and loss of marker expression 

may be a more sensitive indicator of cell death than morphological criteria (blebbing or 

cell body swelling).  Eliminating AVG had no effect on the pausing behavior at the 

vulva. The AVG-ablated males missed the vulva 1 out of 10 times which was not 

significantly different from the mock males (Fig 4.1B). These results suggest that HOA 

and AVG might have a redundant role to HOB and its post-synaptic targets. 
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To further analyze the role of HOA, I studied HOA activity when the male was at 

the vulva using Ca
2+

 sensor GCaMP. All the males tested carried the transgene Peat-

4::G-CaMP3::SL2::mDsRed. The eat-4 promoter drives the expression of GCaMP and 

dsRED in HOA. The mating assays were performed by placing a one-day old adult, 

virgin Peat-4::G-CaMP3::SL2::mDsRed male with 8-10 paralyzed Phsp-16:egl-

2(n693gf)cDNA; Punc-103E:mDsRed hermaphrodites (heat shocked for 2-3 hrs; refer 

Experimental Procedures). A Dual View Simultaneous Imaging system was used to 

record GCaMP and dsRED fluorescence intensities simultaneously in separate channels. 

dsRED fluorescence intensity was used as a baseline to measure the changes in GCaMP 

activity. The HOA GCaMP activity did not change as the male approached and 

Figure 4.2 HOA activity does not change at the vulva. 
Representative Ca

2+  
transients in HOA on vulva detection. All the males tested for 

HOB carry transgene Ppkd-2::GCaMP V6 medium::SL2::dsRED.  



 

 

72 

 

encountered the vulva (Fig. 4.2). This data suggests that HOA plays a minor role in 

stopping the male at the vulva, if any. The AVG GCaMP analyses showed similar 

results, namely no change in AVG activity was observed during the male’s approach to 

the vulva or its detection (data not shown). Taken together, the ablation and GCaMP 

data for HOA and AVG indicates that HOA-to-AVG-to-AVB circuit does not play a 

significant role in promoting pausing at the vulva. 

 

Investigation of hook neurotransmission mechanisms 

Several neurotransmitter markers are known to be expressed in hook neurons, 

HOA and HOB. HOA is glutamatergic (evidenced by expression of eat-4 marker).  HOB 

expresses markers for neuromodulators NLP-8 (Nathoo et al., 2001) and FLP-5 (Kim 

and Lee, 2011). The receptors for NLP-8 and FLP-5 are not known and hence the post-

synaptic targets cannot be tested. Recently HOB has been found to be positive for 

cholinergic marker (B. LeBoeuf and L. R. Garcia, personal communication). 

To test the role of glutamate in stopping at the vulva, I tested mating behavior of 

eat-4 mutant males (refer Experimental Procedures). eat-4 gene encodes for vesicular 

glutamate transporter and mutant animals are defective in glutamate signaling (Lee et al., 

1999). The eat-4 mutant males had marginal defects in locating the vulva (Fig. 4.3), 

suggesting glutamate might have a minor role in vulva detection. The eat-4 mutation 

affects all the glutamatergic neurons (78/302 neurons in the hermaphrodite and 20 

additional tail neurons in males (Serrano-Saiz et al., 2013). A more specific way to 

investigate glutamate signaling is to evaluate mating behavior in various glutamate  
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receptor mutants. If glutamate is required then receptor mutants should phenocopy the 

eat-4 mutant defects in vulva detection. NMDA-type ionotropic glutamate receptor 

subunit, NMR-1 is expressed in backward command interneurons and AVG. AMPA-

type ionotropic glutamate receptor subunit, GLR-1 is expressed in both the backward 

and the forward command interneurons. In addition these neurons, NMR-1 and GLR-1 

are expressed in many other sex-shared and male-specific neurons of the tail (A. 

Sherlekar unpublished; Brockie et al., 2001). I tested mating behavior of nmr-1 and glr-1 

mutant males. The glr-1 mutant males were similar to wild type males. The nmr-1 

Figure 4.3 Glutamate signaling may have a minor role in pausing at the vulva. 

The impact of mutant males defective in glutamatergic signaling on the efficiency 

of the male to stop on vulva detection. The Y-axis indicates % Stopped at the vulva. 

Refer Fig. 4.1B legend for details. The X-axis indicates Genotype.  

A box-plot representation of the data shown, with median and mean values 

indicated by a line and a plus “+” sign, respectively. Statistical comparisons were 

made using ranksum test for differences in median. Significance, *p <0.05,  

**p <0.01 
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mutant males phenocopied eat-4 mutant males in having amarginal defect in vulva 

detection (Fig. 4.3). These data suggests that glutamate plays a minor role in inducing 

pausing at the vulva. In context of HOB, further analyses of cholinergic receptor mutants 

should reveal the contribution of cholinergic signaling to this behavior. 

 

HOB plays a major role to induce pausing at the vulva 

The next step was to evaluate possibility (2) where the backward circuit is 

inhibited to induce pausing (Pathway 2 in Fig. 4.1A). Unlike HOA, the sensory endings 

of HOB are exposed to the external environment, bringing HOB in direct contact with 

the hermaphrodite surface during the vulva search (Sulston et al., 1980). To test whether 

HOB is important for pausing at the vulva, I laser ablated this neuron in Ppkd-2::GFP  

L4 males, where the cell body is marked. One-day old virgin, adult HOB-ablated and 

mock males were tested for their mating behavior. The males lacking HOB showed a 

significant reduction in their ability to detect the vulva. In HOB-ablated males, pausing 

at the vulva was reduced to 40% as compared to 100% in mock male. This indicates that 

HOB is required for stopping at the vulva (Fig 4.1B) and is consistent with the previous 

HOB ablation studies (Liu and Sternberg, 1995). It is also consistent with the results of 

mutant analyses on the three genes expressed in HOB, lov-1, pkd-2 and egl-46 mutants 

(Barr and Sternberg, 1999, Yu et al., 2003). EGL-46 is a transcriptional factor that 

regulates the expression LOV-1 and PKD-2 (Yu et al., 2003). Thus, loss of HOB 

function either by ablation or genetic mutation disrupts the male’s ability stop at the 

vulva.  
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The HOB-ablation data was further supported the GCaMP assays performed to 

assess HOB activity during mating. To visualize HOB activity, I used a strain carrying 

Ppkd-2::GCaMP V6 medium::SL2::dsRED transgene. GCaMP and dsRED were 

simultaneously expressed in HOB under the control of pkd-2 promoter. The mating 

assays were performed and the HOB activity was analyzed in the same way as described 

for the HOA GCaMP assays. Upon vulva detection, the GCaMP activity in HOB 

increased several fold (Fig. 4.4).  These data, along with the ablation data confirm that 

HOB activity is needed for vulva detection. However, elimination of HOB does not 

entirely disrupt stopping at the vulva. One possibility is that HOA may compensate in 

Figure 4.4 HOB is essential for stopping at the vulva. 
Representative Ca

2+  
transients in HOB on vulva detection. All the males tested for 

HOA carry transgene Peat-4::G-CaMP3::SL2::mDsRed. The Y-axis is %F/F0 

and X-axis is time in seconds. 
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absence of HOB. The GCaMP assays show that HOA activity does not change at the 

vulva. Visualizing HOA activity in the absence of HOB would be one way of testing this 

hypothesis.  

 

PVY/PVX and EFs are essential for staying at the vulva 

To explore the possibility that backward circuit components contribute to pausing 

at the vulva, I analyzed PVY/PVX- and EF-ablated males for their ability to stop a t the 

vulva. An unexpected finding of this study was that PVY/PVX-  and EF-ablated males 

spent significantly less amount of time at the vulva during the mating trial. The mock 

animals spent a median time of 300secs at the vulva in an attempt to insert their spicules.  

The median time spent at the vulva by PVY/PVX-ablated males was 40secs and by EF-

ablated males was 60secs (Fig. 4.5B). These results suggest that the backward circuit is 

the backward circuit might be contributing to either maintaining the tail over the vulva 

or to spicule insertion (Fig 4.5A).  

To further investigate the contribution of these cells during spicule insertion 

attempts, I studied PVY activity using GCaMP when the male was at the vulva. The 

GCaMP assays were performed on Pnlp-14::GCaMP V6 medium::SL2::dsRED males as 

described in the previous sections (refer Experimental Procedures). There was a small 

decrease in the PVY activity on vulva detection (Fig. 4.6) consistent with the possibility 

that HOB is inhibiting PVY to induce pausing. Upon vulva detection, the male changes 

his tail posture, cupping the vulval mound slightly to maintain his position (Liu et al., 

2011). This posture change is mediated by a major hook neuron target, the p.c.s.  
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neurons. These neurons synapse with several tail muscles and likely promote their 

differential contractions through cholinergic transmission, which is the dominant 

transmitter of the p.c.s. neurons (Liu and Sternberg, 1995, Garcia et al., 2001, Liu et al., 

2011).  

 

 
 

Figure 4.5 Male-specific interneurons controlling backing are also required for 

staying at the vulva. 
A. Wiring diagram explaining the regulation of backward circuit components by hook 

neuron, HOB (based on Jarrell et al, 2012). Key: Refer Fig. 4.1A legend 

B. Males lacking PVY/PVX  or EFs cannot stay at the vulva. –PVY-PVX animals carry 

the transgene Pnlp-14(PVY,PVX)::ChR2-YFP. The Y-axis indicates the time spent at 

the vulva during a 15-minute mating trial or until the male ejaculated, whichever 

occurred first. The X-axis indicates Treatment. The controls are indicated by “Mock”.  

A box-plot representation of the data shown, with median and mean values indicated by 

a line and a plus “+” sign, respectively. Statistical comparisons were made using 

ranksum test for differences in median. Significance, ***p <0.001 
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PVY activity increases during the spicule insertion attempts (Fig. 4.6). Pnlp-

14::GCaMP V6 medium::SL2::dsRED transgene is sometimes expressed in one or two 

cells of dorsorectal ganglion (DRG) in the posterior part. The increase in PVY-activity 

coincides with the increase in activity of the two DRG cells. Based on the location, these 

cells are possibly male-specific interneurons DVE or DVF.  Interestingly, these cells 

form significant connections to the SPC neurons which control spicule prodding and 

Figure 4.6 PVY activity is required during spicule insertion. 
Representative  Ca

2+  
transients in PVY at the vulva. In an attempt to breach the vulva, 

males prod their spicules increasing the PVY activity. All males tested carry transgene 

Pnlp-14::GCaMP6::SL2::dsRED. The Y-axis is %F/F0 and X-axis is time in 

seconds.  
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insertion.  Moreover, PVY is electronically coupled to DVF. These results suggest an 

interesting possibility that PVY activity could contribute to spicule insertion. 

In conclusion, these results suggest that hook neuron HOB induces pausing at the 

vulva and probably acts redundantly with HOA. Further studies are required to test the 

contribution of cholinergic signaling in HOB function. Additionally based on the 

neuropeptide repertoire of the hook neurons, there is an interesting possibility that the 

neuromodulators released by the hook neurons act to alter the circuit affiliations of the 

backing circuit components. Upon vulva detection, the hook neuromodulator action 

could be uncoupling PVY from AVA, to associate with the DRG cells of the spicule 

insertion circuit. 
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CHAPTER V 

SUMMARY OF EXPERIMENTS AND DISCUSSION 

 

The rays exploit the sex-shared locomotory system to control vulva search 

locomotion  

In this study I used an integrative approach by combining connectivity data, 

genetics, optogenetics and laser ablations to delineate the neural circuits controlling male 

locomotion during mating. My studies reveal that the rays exploit the sex-shared 

locomotory system and control it via multiple upstream inputs.  The rays exert their 

effect via two male-specific pathways that converge on the command cells of the system.  

Interneurons PVY and PVX define the major control pathway and EF1-3 interneurons 

define a second, possibly minor pathway (Fig. 5.1; Sherlekar et al., 2013).  Each 

pathway converges on the control centers of the sex-shared locomotory system: PVY 

and PVX target the AVA backward command interneurons and the EFs, the AVB 

forward.  Our working model is that PVY activation of AVA promotes backward 

movement, while EF inhibition of AVB enhances the efficiency of reversal or confers its 

fine control.  The use of parallel pathways would explain the robustness and accuracy of 

ray-controlled movement during mating.  The model for PVY/PVX involvement is 

supported by multiple and independent lines of data (cell-specific ablation, optogenetics 

and mutant analyses).  The involvement of EFs is supported by ablation data only and 

will require further experimentation once promoters expressed in EFs are identified and   

file:///C:/Atirma/Research/Thesis/Thesis%20corrections%20OGAPS/Amrita%20Sherlekar%20519004352%20Round%202.docx%23_ENREF_116
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Figure 5.1 A circuit model for backward locomotion during male mating 

behavior. 

A, B. A circuit model for mate-induced locomotory changes in male. The different 

shapes indicate the type of neurons: Sensory neurons (triangles), interneurons 

(hexagon), motor neurons (circles). Color indicates the sex-specficity: male-specific 

neurons (blue) and sex-shared neurons (pink). The arrows indicate activation of the 

post-synaptic targets and T-bar indicates inhibition of post-synaptic target. Color 

intensity indicates cell activity (Dark color=high activity, faint color=low activity).  

A. In absence of mate contact, the male moves with a forward directional bias 

because of higher activity of forward command interneurons, AVB and B-motor 

neurons (FWD mns). The forward bias is an intrinsic property of the sex-shared 

locomotory circuit (Kawano et al., 2011) and represents the exploratory behavior of 

the worm.  

B. On contact with the mate, ray neurons initiate contact response and induce 

backing by activating male-specific interneurons, PVY and PVX. The cholinergic 

PVY, PVX activate backward command interneurons AVA via acetylcholine 

receptor subunits ACR-18, ACR-16 and UNC-29. AVA interneurons further 

activate A-motor neurons (BK mns) to produce backward directional movement. 

Ray-neurons send parallel inputs to male-specific EF interneurons which possible 

promote backing by inhibiting forward command interneurons, AVB. “X” 

indicates the PVY/PVX-independent pathway used by ray neurons to promote 

backing. 
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it neurotransmitter fate determined through comprehensive gene analyses. The wiring 

diagram also indicates other ray-to-locomotory system connections worthy of in future 

investigation. These include sex-shared interneurons PVN, AVF, AVJ and AVH (“X” in 

Fig. 5.1; Sulston and Horvitz, 1977, Sulston et al., 1980, Jarrell et al., 2012, Sherlekar et 

al., 2013). 

 

PVY/PVX regulate the command cells using an atypical transmission mechanism 

In hermaphrodite locomotion, directional change during spontaneous reversals and 

in response to stimuli is effected by glutamatergic regulation of command interneurons 

(Brockie and Maricq, Hart et al., 1995, Maricq et al., 1995, Chalasani et al., 2007, 

Ohnishi et al., 2011, Piggott et al., 2011). However, PVY/PVX-induced directional shift 

towards backing is mediated by cholinergic signaling. The cholinergic receptor subunits 

ACR-18, ACR-16 and UNC-29 mediate the increase in AVA activity to promote 

backing (Fig. 5.1; Sherlekar et al., 2013). A previous study has shown that command 

interneuron activity is regulated via AchRs in response to exogenous nicotine (Feng et 

al., 2006). My study is the first to show that command interneurons can be regulated by 

cholinergic inputs in the context of a natural C. elegans behavior. Why does the C. 

elegans male use this atypical mode of neurotransmission?  First, its atypical use may 

confer response specificity. Second, it may make it easier to coordinate vulva search 

behavior with other mating sub-behaviors, as many appear to depend on cholinergic 

transmission (Garcia et al., 2001, Whittaker and Sternberg, 2009, Liu et al., 2011, Siehr 

et al., 2011). .. 

file:///C:/Atirma/Research/Thesis/Thesis%20corrections%20OGAPS/Amrita%20Sherlekar%20519004352%20Round%202.docx%23_ENREF_116
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Finally, the kinetics of cholinergic signaling may confer some speed advantage in 

processing as many other rapid response behaviors in invertebrates also depend on 

acetylcholine several. For example, cholinergic signaling mediates escape response in 

Drosophila, snails, crayfish and crickets (Miller et al., 1992b, Fayyazuddin et al., 2006, 

Palikhova et al., 2006, Yono and Aonuma, 2008).  

The design of the C. elegans locomotory system itself may also enhance 

processing speed.  The command interneurons in C. elegans are structurally analogous to 

the giant fibers, as in their processes run along the entire length of the worm and they 

form chemical and electrical connections with motor neurons and other neurons (White 

et al., 1986).  In other invertebrate systems rapid response behaviors are often mediated 

by mediated by giant fibers. Greater giant fiber diameter decreases resistance and 

increases impulse conduction speed (Hartline and Colman, 2007). Also, like C. elegans 

command interneurons and their motor neurons targets, giant fibers are electrical 

coupled to their motor neurons. These neurochemical and organizational design features 

enable the worm to rapidly process the information and respond quickly. 

 

Male-specific interneuron PVY acts as a decision-making interneuron to switch the 

directional bias to backward 

A decision-making cell acts as a center for the integration for multiple sensory 

inputs and is necessary and sufficient to induce changes in the motor output. PVY fulfills 

all these criteria and can be considered a decision-making cell in the male locomotion. 

The artificial activation of PVY (using ChR2) is sufficient to induce backing. Males 
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lacking PVY are defective in scanning for the vulva. Also, inhibiting PVY (using 

NpHR) while the male is scanning the hermaphrodite stops backing, indicating that PVY 

is necessary for backing.  The levels of PVY activity during mating (visualized with 

GCaMP) also correlated positively with the initiation and speed of backward locomotion 

arguing that its activity played a direct role in driving backward momentum.  Consistent 

with the notion that decision-making interneurons are to centers for sensory integration, 

PVY receives input from multiple sensory pathways: the male-specific rays, p.c.s. and 

hook (required for mating) and the sex-shared phasmids (required for mate-search 

behavior (Jarrell et al., 2012) 

 

Regulation of the backward circuit to induce pausing at the vulva 

The male-specific hook and p.c.s. neurons detect general and precise location of 

the vulva respectively, to induce pausing (Liu and Sternberg, 1995). How does their 

action interface with that of PVY, the EF interneurons and the command interneurons? 

One possibility is that the hook induces pausing by stimulating the forward command 

cells, thus a balancing backward and forward pathway activity. In support of this 

possibility, we identified a pathway connecting HOA to AVB via a sex-shared 

interneuron AVG.  To determine whether this HOA-AVG-AVB pathway contributed to 

pausing behavior at the vulva I assessed the impact of ablating HOA or AVG on vulval 

location.  Surprisingly I found that neither ablation interfered with pausing at the vulva. 

Additionally, I saw no change in AVG or HOA activity (visualized with GCaMP) during 

vulva detection.  Together these data suggest that HOA-AVG-AVB connectivity does  
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ny of the p.c.s. in this step. .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not contribute significantly to terminating the search and that the hook probably does not 

act by up regulating the forward locomotory pathway.   This result also emphasizes that 

 
 

Figure 5.2 A possible circuit model for hook neuron induced locomotory 

changes at the vulva. 
A putative circuit for how inputs from hook neuron, HOB alter the backward 

locomotory circuit activity to induce pausing at the vulva. The different shapes 

indicate the type of neurons: Sensory neurons (triangles), interneurons (hexagon), 

motor neurons (circles). Color indicates the sex-specficity: male-specific neurons 

(blue) and sex-shared neurons (pink). The arrows indicate activation of the post-

synaptic targets and T-bar indicates inhibition of post-synaptic target. Color 

intensity indicates cell activity (Dark color = high activity, faint color = low 

activity).  

Upon sensing vulva, hook neuron HOB might be inhibiting the PVY/PVX and EF 

interneurons to induce pausing by possibly using neuromodulators NLP-8 and 

FLP-5. 
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though the wiring data may be compelling, the functional relevance of circuits can only 

be determined experimentally. 

The alternative possibility is that hook neurons induce pausing by attenuating 

backward pathway interneurons by inhibiting PVY/PVX (Fig. 5.2).  Consistent with this 

I observed that PVY decreases transiently with vulva detection.  Other data suggests that 

PVY may this decrease in activity could be caused by HOB, rather than HOA activity. In 

contrast to HOA, HOB activity increases dramatically with vulva detection and HOB 

ablation significantly interferes with the success of this step. HOB has few connections 

with PVY but interestingly this neuron has recently been identified to be cholinergic (B. 

LeBoeuf and L. R. Garcia, personal communication). Further studies are required to 

verify this model and to identify the neurotransmission mechanism used by HOB to 

induce pausing at the vulva. 

Another interesting observation made in my studies is that, paradoxically PVY and 

the EFs are also required to stay at the vulva.  This may relate to the observation that, 

PVY activity (using GCaMP) increases at dramatically spicule insertion attempts.  Two 

DRG cells, potentially DVE and DVF. also display an increase in activity  suggesting 

that PVY, PVX and these DRG cells are acting in a circuit . Based on these data and the 

connectivity data, two possible models can be proposed to explain these observations. In 

the first model PVY/PVX induce backing in response to two different sensory systems, 

the rays and the hook and p.c.s. neurons.  In the latter, changes in the tail posture with 

vulva location cause the backward force to be channeled into downward pressure that 

hold the tail over the vulva. In the second model, detection of the vulva causes 
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PVY/PVX to change their circuit affiliations so they become part of a spicule insertion 

circuit that also includes DVF and DVE. . 

The mapping of male mating locomotory circuit has laid the groundwork to 

explore how decisions are made during mating. C. elegans male mating is a sequence of 

stereotyped steps in response to mate cues. For example, on reaching the hermaphrodite 

end the male curls his tail to go to the opposite side. Upon vulva location male starts 

prodding his spicules in an attempt to insert and inseminate. Depending on the 

hermaphrodite cues, how does a male decide which step to perform next? The male 

locomotory circuits have to be further investigated to answer how males decide to 

proceed with the sequential execution of the sub-behaviors of mating.  

Altogether, my work on C. elegans male locomotory circuits revealed how sex-

specific inputs control the existing sex-shared circuits by using distinct mechanisms to 

generate rapid behaviors. Also, how same circuit components are possibly used to 

control different motor outputs. Thus, studying smaller circuits in simple organisms will 

help us understand the underpinnings of more complex, larger circuits in higher 

organisms.  
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