

1

LOW-COST RIGID-FRAME EXOSKELETON GLOVE WITH FINGER-JOINT

FLEXION TRACKING MAPPED ONTO A ROBOTIC HAND

A Thesis

By

ROBERTO GUERRERO, JR.

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Won-jong Kim

Committee Members, Daniel A. McAdams

 Mehrdad Ehsani

Head of Department. Andreas A. Polycarpou

May 2015

Major Subject: Mechanical Engineering

Copyright 2015 Roberto Guerrero Jr., Some Rights Reserved.

Licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

ii

ABSTRACT

 This thesis provides a representation of a low-cost rigid-frame exoskeleton glove

that is used to track finger-joint flexion mapped onto a robotic hand to mimic user

movements. The overall setup consists of an exoskeleton glove (exo-glove), sensors, a

microcontroller, and a telerobotic hand. The design of the exo-glove is crafted to fit onto a

left hand. SolidWorks was used for the prototype designs which were then sent to the

Stratasys 400 rapid prototyping machine to be 3D printed in ABS-M30 plastic.

 The exo-glove houses five rotary position sensors and three flexible sensors to

track angle changes of the finger joints from two fingers and a thumb. Five low-pass filters

are implemented as signal filtering for the rotary position sensors. An Arduino Mega

microcontroller is connected to the sensors of the exo-glove and processes the input values.

Using an open-loop controller to control the robotic hand, the values processed by the

microcontroller from the exo-glove are sent to the servo motors on the robotic hand to

operate the corresponding fingers of the user.

 Throughout the initial calibration and testing phase, each sensor was tested

individually to ensure the sensor functionally performs well. Signal analysis was

conducted on the sensors at steady state and while in operation to show fluctuations in

sensor readings and response to finger flexion. Experimental results show that averaging

sensor data in the processing code yields smoother values and better precision. Due to the

use of low-pass filtering with the rotary position sensors, the data sets collected were

grouped together tightly compared to the flex sensors without filtering. However, the

iii

actual angles measured were not accurately portrayed in sensor readings. The true flexion

angles were compared in the data samplings to find a variety of ranges spanning around the

angles desired to track. Many of the actual flexion angles were offset from the sensor

readings by a variation of degrees, but the data shows the sensor readings were able to

follow the general magnitude of the true flexion angles.

 The precision seen in the data was also apparent in the robotic hand mirroring the

posture. Changes in sensor readings caused jerking movements to occur in the robotic

fingers but were able to maintain an overall flexion mirroring of the RF exo-glove. There

is quarter-second delay between the exo-glove sensor reading and the robotic hand

mirroring capability when not implementing averaging. When averaging the sensor values,

there was a delay of more than half a second between the exo-glove posture and robotic

hand mirroring.

iv

DEDICATION

To my family and my future

v

ACKNOWLEDGMENTS

 First of all, I would like to thank my advisor, Dr. Won-jong Kim, for helping me

throughout my research. Dr. Kim was always patient and encouraging with great advice

and insight towards my research goals. I would also like to thank Dr. McAdams for

agreeing to be one of my committee members and always approachable. Additionally, I

would like to thank Dr. Ehsani and Dr. Enjeti for becoming part of my thesis committee

and for being patient and understanding with me.

 Thanks also go to my friends and lab mates in Dr. Kim’s lab. They were always

encouraging and interested in my research project. Many times I was helped with multiple

questions and they were always willing to help even when they may have been busy.

 Finally, I would like to thank my family for supporting me during my time spent in

school and while I was very busy conducting research. Such support was very critical in

helping me complete this thesis. Their complete understanding for my choice of attending

graduate school helped put my mind at ease for better focus.

vi

TABLE OF CONTENTS
 Page

ABSTRACT .. ii

DEDICATION ... iv

ACKNOWLEDGMENTS ..v

LIST OF TABLES ... ix

LIST OF FIGURES ..x

 CHAPTER

I INTRODUCTION..1

1.1 Flexion Tracking ..1

1.2 Methods of Motion Tracking ...2

1.3 Biomimetic Hand ...4

1.4 Applications of Finger Tracking ..5

1.4.1 Rehabilitation ...5

1.4.2 Robotics ..7

1.4.3 Heavy Equipment ...9

1.5 Contributions of Thesis ..10

1.6 Overview of Thesis12

II EXPERIMENTAL CONCEPT..15

2.1 Conceptual Design ...15

2.2 RF Exo-Glove Features ...21

2.2.1 Fabrication ..22

2.3 Hardware and Components ..22

2.3.1 Rotary Position Sensors ..23

2.3.2 Flex Sensors..23

2.3.3 Arduino Mega Microcontroller ..24

2.3.4 Low-Pass Filter ...25

2.3.5 Component Cost ...26

2.4 Component Wiring ..28

2.4.1 Rotary Position Sensor Circuit ...29

2.4.2 Flex-Sensor Circuit ...29

vii

 CHAPTER Page

2.4.3 LPF Circuit ...30

2.4.4 Robotic Finger Servo Motor Circuit...31

2.5 Telerobotic Hand ...32

2.5.1 Features...32

2.5.2 Constraints ..36

2.6 Mapping the RF Exo-glove to the robotic hand ..36

III SENSOR CALIBRATION ...38

3.1 Rotary Position Sensors ...38

3.1.1 Calibration Testing ...38

3.2 Flex Sensors ...42

3.2.1 Calibration ..42

 3.3 Signal Analysis………………………………………………………………..44

3.3.1 Steady-State Signals ...44

 3.3.2 Flexion Signals…………………………………………………………...47

IV EXPERIMENTAL RESULTS ...49

4.1 Experimental Testing ...49

4.1.1 Postures...50

4.2 Experiments in Multiple Postures ..51

4.2.1 Bottle Grasping Posture ..53

4.2.2 Clenched Fist Posture ...58

4.2.3 Pen-Holding Posture ...61

4.3 Telerobotic Hand Mapping ..64

4.3.1 Mapping Relaxed Hand Posture ...66

4.3.2 Mapping Bottle Grasping Posture ..67

4.3.3 Mapping Clenched Fist Posture..68

4.3.4 Mapping Pen Holding Posture..69

V CONCLUSIONS ...71

5.1 Conclusions ..71

5.2 Future Work ...72

REFERENCES ...74

viii

Page

APPENDIX A BOURNS ROTARY POSITION SENSOR SPECIFICATIONS80

APPENDIX B SPECTRA SYMBOL FLEX SENSOR SPECIFICATIONS82

 APPENDIX C RF EXO-GLOVE DIMENSIONS …….………………………………..84

APPENDIX D ARDUINO CODES USED FOR DATA ACQUISITION86

ix

LIST OF TABLES

 Page

Table 2.1 Component Cost ……………………………………………………………...27

Table 3.1 Rotary Position Sensor Calibration Results ………………………………….41

Table 3.2 Flex Sensor Measurements …………………………………………………..42

Table 3.3 Flex Sensor Calibration Results ……………………………………………...43

Table 4.1 RF Exo-glove Posture Angles………………………………………………...52

Table 4.2 Flexion Angle Average Difference and Standard Deviation for Bottle

 Grasping Posture……………………………………………………………...57

Table 4.3 Flexion Angle Average Difference and Standard Deviation for Clenched

 Fist Posture…………………………………………………………………....61

Table 4.4 Flexion Angle Average Difference and Standard Deviation of Pen

 Holding Posture…………………………………………………………….....64

Table 4.5 Averaged Data Used for Robotic Hand Mapping …………………………....66

x

LIST OF FIGURES

 Page

Figure 1.1 Finger flexion with joints identified.…………………………………………..2

Figure 1.2 Soft glove with flexible sensors………………………………………………..3

Figure 1.3 Unique patterned colored glove………………………………………………..4

Figure 1.4 XT DigiGlide glove for rehabilitation……………….……...………………....6

Figure 1.5 Robotic gripper attached to mechanical arm ……………………………….....7

Figure 1.6 da Vinci surgical robot and surgeon …………………………………………..9

Figure 1.7 Crane machine with claw mechanism………………………………………...10

Figure 1.8 Complete setup of RF exo-glove, robotic hand, and electronic system……….14

Figure 2.1 RF exo-glove………………………………………………………………….15

Figure 2.2 Bourns rotary position sensor mounted onto a custom PCB……....…….…...17

Figure 2.3 Flex sensor mounted on RF exo-glove…………………………....……….....18

Figure 2.4 Active finger joints tracked…………………………………………………...20

Figure 2.5 RF exo-glove finger relative to flex sensor angle………………………..…...22

Figure 2.6 3382G Bourns rotary position sensor…………………………….……...........23

Figure 2.7 Spectra Symbol flex sensor…………………………………………………...24

Figure 2.8 Arduino Mega 2560………………………………………….…………..…...24

Figure 2.9 Low pass filters………………………………….…………..……………………...26

Figure 2.10 Block diagram of electronic component systems …..……..………………..28

Figure 2.11 Rotary position sensor circuit diagram ……………………..………………29

Figure 2.12 Flex sensor circuit diagram ……………………………….………………...30

Figure 2.13 Low pass filter circuit diagram……………………………………………...30

xi

Page

Figure 2.14 Servo motor circuit diagram……………………………….…..….…..……...31

Figure 2.15 Robotic hand……………………………………………....…….….…….......32

Figure 2.16 Top view of robotic hand with base pivoted outwards…….…..…..…..……..33

Figure 2.17 Top view of robotic hand in initial position………………….….…………...33

Figure 2.18 Standard servo…………………………………………...……………..….....34

Figure 2.19 Robotic finger operation mechanism…………………………………………35

Figure 2.20 Flowchart of operation for RF exo-glove and robotic hand…………………..37

Figure 3.1 RF exo-glove middle finger……………………………………...…….………39

Figure 3.2 RF exo-glove thumb and index finger……………………...………….………39

Figure 3.3 Rotary position sensor at 90 angle……………………………..……...……...40

Figure 3.4 Flex sensor bent 90 ……………………………………………………..........43

Figure 3.5 Steady-state signals of flex sensors……………………………………………45

Figure 3.6 Steady-state signals of rotary position sensors……...…………………………46

Figure 3.7 Signal of flex sensor while bent……………………………………………….47

Figure 3.8 Signal of rotary position sensors while rotated………………………………..48

Figure 4.1 RF exo-glove sensor angles …………………………………………………...50

Figure 4.2 RF exo-glove postures (a) Relaxed sensors, (b) Grasping water bottle,

 (c) Holding a pen, and (d) Clenched fist………………………………………50

Figure 4.3 Water bottle and pen used for grasping postures 2 and 3…………..………….51

Figure 4.4 Bottle grasping posture without averaging…………………………………….55

Figure 4.5 Bottle grasping posture with average …………………………………………56

Figure 4.6 Clenched fist posture without averaging………………………….…………...59

Figure 4.7 Clenched fist posture with average …………………………………………...60

xii

 Page

Figure 4.8 Pen holding posture without averaging …………………………………….....62

Figure 4.9 Pen holding posture with averaging ………………………………………......63

Figure 4.10 Relaxed posture with robotic hand ……………………………..……………67

Figure 4.11 Bottle grasping posture with robotic hand ………………………...………....68

Figure 4.12 Clenched fist posture with robotic hand ……………………..………………69

Figure 4.13 Pen holding posture with robotic hand ………………………………………70

Figure Appendix A a) Dimensions of outer casing of rotary position sensor,

 b) rotation ring dimensions, and c) Operation diagram………………………………81

Figure Appendix B a) Example of an actual flex sensor, b) dimensional diagram,

 and c) flex sensor functionality ………………………………………………………...83

1

CHAPTER I

INTRODUCTION

 Hand and finger-motion tracking has been researched for years with new

techniques. The human hand is subjected daily to dexterous use, and as such we rely on

them to be tough and functional. Unfortunately our hands are not invulnerable to

damage, and in some cases they need to be rehabilitated to regain their original function.

In such a case or to prevent possible hand injuries, finger-flexion tracking is required to

instrument new devices for aid. Tracking the flexion of individual fingers is a tedious

task that involves precise measurements. Usually an apparatus with sensing capabilities

is applied to a person’s hand, allowing motion of the fingers to be acquired. The data

obtained from the motion-tracking devices opened a new way for controlling robotic

grippers. Early research into telerobotic technology produced robotic hands that were

tethered to the controller and had only a few degrees of freedom. Recently, necessity to

have a precise and dexterous robotic hand has brought up new research into human-hand

mapping with robotic hands.

1.1 Flexion Tracking

 Movements and flexing of the fingers is known as flexion of the finger joints. A

human finger has an approximate total flexion range of about 260°, although finger

joints have varying ranges of motion based on each individual person [1].

2

The finger joints acquainted with flexion are the distal-interphalangeal (DIP)

joint also referred to as the fingertip joint, proximal-interphalangeal (PIP) joint or center

joint of the finger, and the metacarpal-phalangeal (MP) joint commonly known as the

joint of the knuckles [1]. Fig 1.1 shows the human hand flexed to a clenched fist posture

with the main joints articulated to their flexion positions.

Figure 1.1 Finger flexion with joints identified [2]

1.2 Methods of Motion Tracking

 Researchers have used methods for tracking motion ranging from simplistic

designs to very complex systems. Exoskeleton type devices encompass a certain type

3

which uses external mechanical systems to function. By having the mechanisms outside

of the device the user can wear the system without intrusive parts. Common mechanical

designs in use are pivoting joints, slide mechanisms, and multiple linkages [3].

 Gloves have been developed with flexible sensors integrated into the fingers that

return changes of values based on the change in resistant across the glove [4]–[7] as seen

in Fig 1.2. A more complex glove shown in Fig 1.3 uses a uniquely patterned glove that

is tracked with a computer controlled camera. Using the nearest-neighbor technique, this

glove can be tracked based on the value changes of the colors nearby [8]. Other methods

used in finger tracking include: motion-detecting cameras and finger markers [9], light

sensitive variances [10] and [11], magnetic field distortions [12], piezoelectric effect

sensors, or optical position sensors [13].

Figure 1.2 Soft glove with flexible sensors [7]

4

Figure 1.3 Unique patterned colored glove [8]

1.3 Biomimetic Hand

 Biomimetics in general is known as using biological inspiration for purposes that

differ from their natural use. The range of bio-inspiration varies from mimicking small

attributes of biology to entire natural processes. Through many years of existence,

biological organisms have adapted for survival out of necessity, and as such they prove

to be an effective solution for certain applications [14]. Mimicking human anatomy is

seen in many areas from folding limbs on a scissor lift to humanoid robotics. Naturally,

human hands have highly desirable traits that we would like to mirror in other

applications. This particular research involves the tracking of human finger joints

because of the dexterous ability fingers support. In terms of biomimicry, the research

involved with using human-finger tracking to develop new ideas follows a form and

functional imitation inspired by observation of the human hand [15].

 The human hand is often overlooked when a person thinks of the word tool. It is

an appendage that we use to great extent and allows us to live our lives the way we do.

5

There are 23 degrees of freedom (DOFs) in the human hand allowing for excellent

dexterity for complex movements. The human hand is composed of a thumb, index,

middle, ring, and little finger. Based on the common physical shape of a human’s hand,

the rigid-frame exoskeleton glove (RF exo-glove) was designed to fit snugly onto a left

hand. Human hands are very dexterous and well equipped to perform tedious tasks, the

RF exo-glove will be unable to fully match the DOFs, rather it provides the basic

movement a person would normally execute upon flexion.

1.4 Applications of Finger Tracking

 Many applications in various fields make use of telerobotic controlled hand

tracking technology. Possible fields in which this thesis can be traced to include: general

robotics, military, medical, and hazardous environments.

 1.4.1 Rehabilitation

 Diminished hand and finger control gives the need for devices that can aid in

rehabilitation for the patient. However, simply understanding and tracking progress in

finger-joint angles is the start for future development in this area [16]. Finger

rehabilitation occurs over several months with physical therapists assisting the patient in

joint movement. During these visits from the physical therapist, each session is charged

usually to the patient or insurance company adding up to a very costly rehabilitation [3].

6

Various devices used in the medical field are designed to aid victims of traumatic

events, such as strokes, become rehabilitated [7]. Fig 1.4 shows a late model hand device

developed by Kaiser Medical Inc. for patients requiring therapy for their hands [17].

This glove promotes the healing process for post-surgery finger joints by repeatedly

moving the patient’s fingers through a certain range. Correspondingly, data from the

finger flexion tracking of the RF exo-glove can be used by doctors to provide useful

information on the progress the patient is making [18]. The resulting changes in data

from the RF exo-glove can show if progress in flexion is achieved.

Figure 1.4 XT DigiGlide glove for rehabilitation [17]

Passive finger joint tracking, such as the RF exo-glove, holds merit for the users

that have movement and pain sensitivities in their fingers or hands. Due to the lack of

force-actuating systems in passive devices, they weigh less and are easier to use

compared to active-controlled devices like the XT DigiGlide glove [19].

7

1.4.2 Robotics

Robotic grippers and semi-dexterous hands have been in service in the industry

for decades. Fig 1.5 shows a three-fingered robotic-gripper attached to a mechanical arm

used for grasping objects that may weigh more than an average person can carry. Many

of these grippers and hands are used in hazardous environments such as highly toxic

locations and can be controlled using a finger tracking method. With the recent influx of

robotic hand applications spanning from military functions to the medical field, the need

for precise robotic-hand control is inevitable. In some cases, the operator for these

robotic devices cannot be in the same location due to constraints or harmful scenarios

that could arise. These types of situations make use of telerobotics.

Figure 1.5 Robotic gripper attached to mechanical arm [20]

8

Telerobotics is a way for people to operate mechanical systems or robots from a

remote location. Typically, telerobotics is used for operation in hazardous environments

and places that would potentially be dangerous to life. A few applications for industrial

use telerobotics include space exploration, extreme pressure environments, bomb

disposal and handling, and chemical exposed areas. In order to use a telerobotic system,

there must be a human-interface mechanism that communicates with the remote system

to be operated. The control method for the human-operation mechanism varies based on

the application and function of the telerobotic device to be operated. Control methods

can involve traditional methods such as a typical control module with buttons and

joysticks; however, using a human to interface with the telerobotic system sometimes

requires more sophisticated controllers. Such controllers may use haptic feedback,

optical tracking, voice commands, interactive sensors, or digitally rendered

environments [21].

One field of telerobotics is in medical applications. Telemedicine and telesurgery

allows patients to be monitored and cared for in their own homes or away from medical

facilities [22]. People with little hand mobility or low strength could use a telerobotic

hand to help grasp objects which may be out of their abilities [23]. Currently in the

medical field there is a surgical robot named the da Vinci Surgical System seen in Fig

1.6, which is controlled remotely by the surgeon replicating their exact movements.

9

Figure 1.6 da Vinci surgical robot and surgeon [24]

1.4.3 Heavy Equipment

An alternative use for mapping hand movement in the industrial world would be

in the use of tractor operation. There are several tractors that use a claw or multiple-

limbed mechanisms to pick up objects such as the claw mechanism seen in Fig 1.7.

Typically, a tractor operator must receive training and become proficient with the heavy

machinery before they can perform such tasks. These industrial machines could greatly

benefit their operators by reducing the learning curve and time to train for operation.

Simple motions done every day such as attempting to grasp an object would directly

translate to the use of the control system for operating these tractors.

10

Figure 1.7 Crane machine with claw mechanism [25]

1.5 Contributions of Thesis

This thesis was created to contribute experimental results for a new design of a

finger joint flexion RF exo-glove. Most finger-flexion-tracking devices use a flexible

glove substrate to house the tracking sensors. My research has shown a niche in

experimentation done in the field of finger-joint flexion-tracking methods regarding the

shape distortion caused by human fingers. Each design that used a flexible sensor on an

amorphous glove did not take into account the slight transverse bending of the sensor

across the finger. The distorted part of the sensor that is unaccounted for is very

minuscule. Over many attempts of repeating the experiment, however fatigue may have

affected the sensor readings. The RF exo-glove uses a rigid frame to maintain a

controlled and repeatable position for the tracking sensors to adhere to.

11

The RF exo-glove shares some commonality with other finger-tracking gloves.

Although there may be a variety of reasons for their creation, the similarity shared is the

desire to track hand or finger motion. The DHM glove [6] and NeuroAssess glove [7]

utilize potentiometer bend sensors similar to the ones in the RF exo-glove. Additionally,

just as the RF exo-glove was designed to track finger flexion, so were the DHM glove,

NeuroAssess glove, and SmartGlove [13]. Tracking the flexion of the thumb was not

seen in all of these devices but was involved with the DHM glove, SmartGlove,

NeuroAssess glove, and Color glove [8]. Sensor placement for the RF exo-glove occurs

above the finger joints for the flex sensors. This was also the sensor positioning for the

DHM glove, NeuroAssess glove, SmartGlove, and augmented-environment project

device.

My decision to design the RF exo-glove was to create a unique device that had

not been tested. In comparison to the previously mentioned devices, the RF exo-glove

uses rotary position sensors and flex sensors rather than only a single type of sensors.

Finger tracking in an augmented-environment was done using retroreflective markers

[11]. The colored-glove experiment uses a unique patterned color glove for tracking.

SmartGlove uses sliding optical encoders. Magnetic hand tracking uses magneto-

resistive tracking [12].

Each experimental finger-tracking device was created with a certain number of

DOFs and sensors. There are 8 DOFs on the RF exo-glove using 8 sensors. The DHM

glove has 10 DOFs using 10 sensors. The augmented-environment project used 4 sensors

12

and had 6 DOFs. The color glove did not use sensors but was able to replicate 26 DOFs

for a 3D model.

The RF exo-glove was designed for finger-flexion tracking. However, several

devices designed for hand-tracking were intended for other uses. The augmented-

environment glove and color-glove were designed for virtual reality, and the magnetic

hand tracking prototype was designed for machine interaction similar to the function of a

mouse.

The most discernible difference between the RF exo-glove presented here-in and

the other tracking devices is the rigid base and structural components. As stated, many of

the previously published researched gloves that did not use a camera or external tracking

system were bound with sensors above the finger joints. The RF exo-glove uses sensors

adjacent to the finger joint with the exception of the MP joint (knuckles) that has sensors

positioned above the finger. This unique design will allow for new research areas in

finger-flexion tracking.

1.6 Overview of Thesis

This thesis begins with the first chapter, giving an introduction to finger-flexion

tracking and applications. This introduction will cover methods that have been

researched and provide examples of current implementations of the topic.

13

In the second chapter, the experimental operation is discussed. This chapter reviews

the conceptual design of the RF exo-glove, components, hardware, and wiring diagram.

Features and constraints of the RF exo-glove and robotic hand are conferred with visual

diagrams. The entire setup can be seen in Fig. 1.8.

The third chapter covers the calibration methods used to gather initial data from

the sensors. This chapter consists of three sections one section covers the calibration of

the rotary position sensors, another for the calibration of the flex sensors, and the last

section comparing data of the two types of sensors.

The fourth chapter details the experimental results and analysis. There are three

individual sections in this chapter covering the data acquired from four positions with

the RF exo-glove. The overall results are displayed for the RF exo-glove with the

inclusion of the transmission of flexion angles onto the robotic hand.

The final chapter entails the conclusions of the thesis and provides an insight of

the experiment with remarks for improvements.

14

Figure 1.8 Complete setup of RF exo-glove, robotic hand, and electronic system

15

CHAPTER II

EXPERIMENTAL CONCEPT

2.1 Conceptual Design

The RF exo-glove seen in Fig. 2.1 consists of two fingers and a thumb. Each

finger is comprised of three parts with the fingertip and center joint modified to

accommodate the rotary position sensors. The thumb consists of two parts with the

thumb tip similarly modified to accommodate a rotary position sensor. Each finger and

the thumb have the knuckle-conjoining section modified on top to allow a flex sensor to

lie completely flat across. There are three sectional joints for allowing the thumb to

move more freely just as natural movement would occur. Finally, the RF exo-glove has a

base for the hand that ties in all of the finger and thumb joints. There are a total of 12

parts that make up the RF exo-glove mechanical assembly which has an overall length of

19.8 cm. Part dimensions in appendix C.

Figure 2.1 RF exo-glove

Flex

sensors

Rotary

position

sensors

16

The design of the RF exo-glove was steered to the final concept by previous

flexion-tracking research methods. With the same intent as Yamaura et al. [3], this

research project was developed to provide experimental data for a device that could

possibly be used to supplement the need for a physical therapist to assist a patient in

rehabilitation. The prototype developed in this research was not designed to be the

physical therapist replacement mentioned but rather demonstrate the base for such a

device and show how finger flexion data can be used. Looking at the devices created by

Lee and Cho [26] and others in the area, these prototypes were designed to actuate a

force onto the user’s fingers to assist in physical therapy. The RF exo-glove in this

experiment was designed to measure the joint angle rather than manipulate the user’s

fingers. Improvement in joint-angle data would allow for more precise and accurate

devices to aid in physical therapy for finger rehabilitation [26].

As stated in [27], optical hand tracking is far more complex and variably

involved. One major drawback or difficult-to-control variable is the variance in light and

contrast used when tracking such motions. Textures of the objects being tracked often

change when flexed, causing the light which is reflected off to vary. Just as Ghosh

proposed to introduce an alternative to optical hand tracking this experiment provides a

mechanical design used in tracking finger flexion.

The RF exo-glove provides a rigid platform to replicate the experimental result

with precision and accuracy. Similarly to how the exoskeleton glove by Noaman et al.

[6] was fabricated to be a medium between the user and the sensors, my RF exo-glove

was designed to hold each sensor in place for flexion readings. Guo and Nguyen [9]

17

proposed to use multiple methods in combination for hand tracking leading to the RF

exo-glove combining the use of rotary position sensors and flexible sensors attached to a

RF exo-glove for improved precision. Differing from Guo et al. [9], the tracking of an

entire hand is not part of this experiment and therefore is beyond the scope of this thesis.

Research into previous finger tracking methods has inspired my design to use

rotary sensors along the exoskeleton glove to track joint flexion of the DIP joint

(fingertip joint) and PIP joint (center joint of the finger). The rotary position sensors

used were applied onto a small rectangular piece of printed circuit board (PCB) and

soldered to ribbon wire seen in Fig. 2.2. The resulting product allowed the rotary

position sensors to be mounted onto the RF exo-glove while maintaining a solid signal

connection.

Figure 2.2 Bourns rotary position sensor mounted onto a custom PCB

18

 To track finger joint flexion through the knuckles, the RF exo-glove consists of

flexible sensors attached to hand body of the design. Flexible sensors (or flex sensors for

short) are used across the MP joint on top of the exoskeleton glove. Contrary to the term

“flex sensor” used in this thesis and in [6], the flex sensors used in this thesis vary

resistivity when the sensor is bent causing a drop in resistivity due to the ink on the

sensor. The flex sensors used in [6] operate by using a small movable sensor over the

flexible base to track changes in resistivity. To implement the RF exo-glove and the flex

sensors, a soft fiber cloth was used to keep the sensors aligned throughout the flexion

process while preventing the resistive ink on the surface of the flex sensor from damage.

Each flex sensor is held in place on the finger by the connecting end tabs with the

opposite ends free to translate across the back of the RF exo-glove fingers shown in Fig.

2.3.

Fixed end of

flex sensor

Translating of flex

sensor

Figure 2.3 Flex sensor mounted on RF exo-glove

19

As shown in Fig. 2.4, only two fingers and the thumb are used in my RF exo-

glove to reduce possible errors from hardware limitations and constraints. The

limitations of the RF exo-glove design lay with the bulkiness of the components. Using

two more fingers with this design would cause collision interference between the

adjacent fingers particularly at the pivot points. Any collisions of the RF exo-glove

finger joints could adversely affect the sensor data leading to highly mixed results.

Ghosh’s thesis [27] discusses the notion of tracking all joints in the hand that requires a

high level of precision to track the motion of the bulk part of the hand. The basic design

shown here in Fig. 2.4 represents the limited finger joints that are tracked in the exo-

glove. The numbered links are the joints of the hand which the joint tracking follows

while the remaining links show the other fingers of the human hand but are not used in

flexion tracking for this experiment. The limited flexion tracking reduces the dexterous

ability of the mimicking robotic hand, however, it does allow for the minimum necessary

amount of fingers for complex grasping. As stated in Ghosh’s thesis [27], humans can

manipulate objects while using great dexterity requiring very little thought.

20

Distal Interphalangeal (DIP)

Proximal Interphalangeal (PIP)

Metacarpal Phalangeal (MP) 1

3

5

2

4

8

7

6

Active fingers being tracked

Fingers not tracked

1
9
.8

 c
m

The range of sensors in Fig 2.4 for 1–3 represent the flex sensors while 4-8 represent

the rotary position sensors. The sensor numbers are assigned accordingly:

Figure 2.4 Active finger joints tracked

21

1. Middle finger MP 5. Middle finger PIP

2. Index finger MP 6. Index finger DIP

3. Thumb MP 7. Index finger PIP

4. Middle finger DIP 8. Thumb DIP

2.2 RF Exo-Glove Features

The design was implemented to encase my own hand in an exoskeleton glove

that could house rotary sensors and flex sensors for flexion tracking. The RF exo-glove

is made using a base housing that connects all pivoting parts. There are three joints used

to support sensors for tracking MP joints and two separate joints for sensors on the PIP

joints. The thumb does not have a PIP joint, there are only two for the remaining fingers

used. There are also three joints to support sensors tracking the DIP joints. Each finger

joint was designed with two protruding edges used to hold the rotary position sensors in

place parallel to my fingers. The knuckle-conjoining section of the RF exo-glove seen in

Fig. 2.5 was designed to have a flat parallel surface to the base of the RF exo-glove in

order to retain the flex sensors in their equilibrium state. The angle is the difference

between the actual finger and the top of the RF exo-glove which has the flex sensor. This

angle is consistent throughout the RF exo-glove allowing the sensor values to be

obtained directly without any offset required. Since the thumb, middle, and index fingers

are being tracked, the RF exo-glove has a total of eight DOFs.

22

Figure 2.5 RF exo-glove finger relative to flex sensor angle

 2.2.1 Fabrication

 Measurements of my left hand were taken, and a SolidWorks CAD model was

created using the measurements to form an exoskeleton glove with DOFs. The

SolidWorks model was then fabricated using a Stratasys 400 Rapid Prototyper with

ABS-M30 plastic for a sturdy prototype. The Stratasys 400 Rapid Prototyper has a

resolution of ±0.127 mm (±0.005 in) resulting in fine and smooth fitting parts.

2.3 Hardware and Components

The RF exo-glove experiment is made up of various components and hardware

used to gather data for finger flexion. Basic components used were resistors, capacitors,

an assortment of wires, PCB, and protective tubing. The following section will discuss

the major components used in the research.

Base of

exo-glove

 Ω Finger

Exo-glove finger sections
Flex sensor

23

Ground

Wiper

Positive voltage

 2.3.1 Rotary Position Sensors

The sensors integrated into the RF exo-glove include five 3382G Bourns rotary

position sensors that operate in a similar manner to a potentiometer. There are three

connections on the sensor used for operation. Fig. 2.6 displays the connection tab

functions for the rotary position sensor. The two outer edge connections are used for

ground and positive voltage while the middle connection is the wiper that gives the value

of the sensor reading.

Figure 2.6 3382G Bourns rotary position sensor

 2.3.2 Flex Sensors

 Fig. 2.7 shows an example of the three Spectra Symbol flex sensors used on the

RF exo-glove for knuckle flexion. Each flex sensor used had an effective sensor length

of 2.2 inches with a normal flat resistance of 25 k. There are only two connection tabs

on the flex sensors for a power supply input and ground.

24

Ground tab

Power supply tab

2.3.3 Arduino Mega Microcontroller

The microcontroller used in the system was an Arduino Mega 2560 displayed in

Fig. 2.8. This microcontroller has a serial port component built onto the board allowing

direct communication to a computer using a universal serial bus (USB) cable. Since the

sensors used in this experiment are analog, conversion from analog to digital signals

need to be processed. The analog to digital converter (ADC) built on the Arduino Mega

has a 10 bit resolution giving values from 0 to 1023.

Figure 2.8 Arduino Mega 2560

Figure 2.7 Spectra Symbol flex sensor

25

 2.3.4 Low-Pass Filter

 Five anti-aliasing low pass filters (LPFs) were designed and implemented with

the rotary position sensors to reduce the rapid fluctuation of the sensor reading. The

LPFs were designed to only allow signals below a cutoff frequency to pass through

while rejecting all others above it. The circuit designed is an active LPF utilizing a

UA741CP operational amplifier (Op Amp), 1-kΩ resistors, and 100-pF capacitors. The

effective filter operates at about half the noise frequency seen from the sensors allowing

the signal through the sensor to pass without ever reaching the noise frequency.

 The design for the LPF was dictated by the distortion found in the sensors. Each

rotary position sensor was analyzed with an oscilloscope to find the noise frequency

exhibited by the sensor. All sensors tested experienced the same noise frequency

resulting in five identical low pass filters being created.

 The noise frequency exhibited by each sensor was approximately 2.05 MHz. To

have an effective filter I decided to limit the passing frequencies to 75% of the noise

frequency giving the cutoff frequency of . I chose capacitors, C = 100-pF

to use in my circuit and using the cutoff frequency I used the following equation (2.1) to

find the resistor values.

This equation gave a resistor value of 1030 Ω and thus 1-kΩ resistors were chosen to be

used. Once the filter was complete, a simple Arduino sketch was used to test the

(2.1)

26

effectiveness of the LPF circuit on the sensor data values. As expected, the hardware

noise filtering was able to cut the fluctuation of data values considerably giving smooth

data points.

Figure 2.9 Low pass filters

2.3.5 Component Cost

 The major components used for the RF exo-glove can be seen in Table 2.1. The

3D printed parts were made using the university’s rapid prototyper at no cost.

27

Table 2.1 Component Cost

Description/Quantity Price per each item ($) Price for quantity ($)

10 x 100-pF Capacitors 0.03 0.30

10 x 1-kΩ Resistors 0.13 1.30

3 x 10-kΩ Resistors 0.10 0.30

5 x UA741CP Op Amp 0.55 2.75

3 x 2.2” Flex Sensors 7.95 23.85

5 x Rotary Position Sensors 2.60 13.00

Arduino Mega Microcontroller No cost/39.54 -

3D Printed Parts No cost -

Total $ 41.50

 With a total of $41.50 for all major components needed, this RF exo-glove has a

relatively low cost to assemble. Comparing other flexion tracking gloves to this total

cost, the price for components used here under-cuts various designs by quite a margin.

For example, [7] uses a glove with six flex sensors which may be similar to the ones

used in this experiment which alone would cost around $47.70.

28

2.4 Component Wiring

The block diagram in Fig. 2.10 shows the basic connection setup of the Arduino

Mega microcontroller with the components that make up each finger of the RF exo-

glove and robotic hand. The flex sensors and rotary position sensors are grouped

together within a box representing the RF exo-glove. There is also a box labeled

“Robotic Hand” that groups the servo motors that are used for the finger motion of the

hand. Each sensor is connected to the analog input pins of the microcontroller while the

servos are connected to the pulse-width-modulation (PWM) pins used for digital output.

Figure 2.10 Block diagram of electronic component systems

29

2.4.1 Rotary Position Sensor Circuit

The circuit for the rotary position sensors is very simple and seen in Fig. 2.11.

This sensor acts as a potentiometer varying resistance when turned. There are three

connection tabs used for operation with one tab connecting to ground and the opposite

end tab connected to the LPF circuit. The center tab or wiper is connected to the Arduino

Mega using an onboard analog pin.

Figure 2.11 Rotary position sensor circuit diagram

2.4.2 Flex-Sensor Circuit

The flex sensor circuit shown in Fig. 2.12 is simple but involves an additional

pull up resistor. The flex sensor itself varies in resistance similar to a potentiometer. A

10 kΩ resistor is connected to one tab on the flex sensor and a 6-V power supply shown

as Vcc. Between the junction of the flex sensor and resistor, the signal connection is

made with the Arduino Mega using one of the onboard analog pins. The last remaining

tab of the flex sensor is connected to ground.

30

Figure 2.12 Flex-sensor circuit diagram

 2.4.3 LPF Circuit

 In the LPF circuit shown in Fig. 2.13 Cl and C2 consist of 100-pF capacitors

while R1 and R2 consist of 1-kΩ resistors. The operational amplifier used to make this

active filter is a UA741CP. An external power supply of 9-V is used to power the Op

Amp and there is a 5-V input at Vin passing through the filter circuit.

Figure 2.13 LPF circuit diagram

31

2.4.4 Robotic Finger Servo Motor Circuit

Fig. 2.14 shows the servo motor’s internal circuitry and connection with the

Arduino Mega. The servo motors used to animate the robotic fingers have built-in

potentiometers and error-detecting amplifiers to determine when the motor has achieved

the desired position. A 5-V power supply powers the motor. The signal connection of the

motor is attached to the PWM pin of the Arduino Mega to communicate the angles

necessary to mirror the RF exo-glove finger flexion.

Figure 2.14 Servo motor circuit diagram

32

Robotic finger

Robotic hand

base

Figure 2.15 Robotic hand

 2.5 Telerobotic Hand

 A robotic hand seen in Fig. 2.15 was created for this experiment to demonstrate

how the flexion data can be used in robotic applications. This telerobotic hand is

controlled directly through the Arduino Mega by the flexion data received from the RF

exo-glove allowing it to mimic finger flexion.

 2.5.1 Features

 The robotic hand is made up of three 3D printed base housings for servo motors

and three 3D printed fingers each consisting of three-finger sections. Each base was

designed to pivot at the adjoining connection point giving the robotic hand multiple

grasping functions as in Figs. 2.16 and 2.17. Each base has the capability to become

33

separated from each other allowing the fingers to be operated as standalone robotic

finger mechanisms.

Figure 2.16 Top view of robotic hand with base pivoted outwards

Figure 2.17 Top view of robotic hand in initial position

34

Each robotic finger is made up of a DIP joint (fingertip), PIP joint (center of the

finger), and a MP joint (knuckles). All three fingers were made identical including the

thumb. The human thumb is only comprised of two joints whereas for this application,

symmetry was desired to show the robotic hand functioning similarly in any directional

position. Standard Radioshack servos in Fig. 2.18 were used to operate the robotic

fingers. These servo motors provided sufficient torque and speed to mirror the flexion of

the RF exo-glove.

Figure 2.18 Standard servo [28]

Each robotic finger is operated by a series of pulleys and guides that is tensioned

by a servo motor shown in Fig. 2.19. There are five pulleys, three springs, and one cable

in each robotic finger assembly. With this simplified design, a single motor controls the

flexion of the finger allowing for a single DOF. If two more motors are added per finger

we can achieve control for each individual joint of the robotic finger. As seen in the

35

figure, when the cable is not in tension the springs will hold the robotic finger in a

vertical position causing the robotic hand to be open. The motor is then operated to

tension the cable and overcome the spring force causing the robotic hand to close.

Figure 2.19 Robotic-finger operation mechanism

Relaxed robotic finger Flexed robotic finger

Cable

Pivot

Pulley/guide

Spring

Base Base

Motor Motor

36

2.5.2 Constraints

Unlike the eight individual finger joint DOFs seen in the RF exo-glove, the

robotic hand has only a single DOF per finger. This constraint of the robotic hand limits

the precision of the imitation from the RF exo-glove. However, based on values received

for each individual finger of the RF exo-glove, the robotic fingers use an algorithm to

achieve a similar result. Each finger joint angle was measured at the maximum flexion

achieved amongst all postures tested. The combination of the finger joint angles for each

finger and thumb at maximum flexion were set to be the mapping value to the servo

motors in the robotic hand.

 2.6 Mapping the RF Exo-glove to the Robotic Hand

An open loop controller is the backbone of the RF exo-glove and robotic hand

integration. A flowchart in Fig. 2.20 shows the basic operations which take place in the

experiment. The setup used in the experimentation uses the human hand as the input in

conjunction with the rotary position and flex sensors to relay their signals to the

microcontroller. The microcontroller then processes the input values and maps them to

the corresponding finger joints in the robotic hand. During this process, values

interpreted by the microcontroller for each finger are reduced from individual multiple

DOFs, seen in the RF exo-glove, to a single DOF on the robotic hand finger. The

encoders in the servos give feedback to the internal circuitry when the desired position

has been achieved.

37

Figure 2.20 Flowchart of operation for RF exo-glove and robotic hand

38

CHAPTER III

SENSOR CALIBRATION

Before the experiment was performed, each sensor was subjected to calibration.

This calibration test was done to reduce fluctuations in data and set initial reference

points to track finger flexion.

 3.1 Rotary Position Sensors

Initial readings taken from the Arduino serial monitor for the rotary position

sensors showed rapidly fluctuating signals within a range of five digits. In order to

process these fluctuating signals obtained from the sensors, an algorithm was

implemented into the Arduino code that averages the sampled data for every 10

readings. This averaging algorithm allowed the values to be read by observation and

improved the accuracy of the sensor reading by reducing the effect of outlier data points.

 3.1.1 Calibration Testing

The rotary position sensors on the RF exo-glove vary in values observed due to

the position and orientation they were mounted. No two rotary position sensors were in

identical situations thus giving unique values for each sensor. Fig. 3.1 shows the RF exo-

glove with two rotary position sensors on the middle finger facing opposite of the index

finger sensors in Fig. 3.2. This change in orientation is due to the constraints on the RF

39

exo-glove that allows room for the sensors to pass in proximity to the neighboring

finger.

Figure 3.1 RF exo-glove middle finger

Figure 3.2 RF exo-glove thumb and index finger

40

Each rotary position sensor was measured individually using the Arduino serial

monitor to obtain values with a constant power supply input voltage of 5-V. The rotary

sensors were rotated from a 0° finger joint angle to 90° as seen in Fig. 3.3.

Figure 3.3 Rotary position sensor at 90 angle

The values from the serial monitor were returned as bits ranging from 0 to 1023

due to the built-in 10 bit ADC onboard the Arduino Mega. Based on the values obtained

from the rotary position sensors, the fluctuation was obtained using the following

formulas:

Changes in bits for the equilibrium state (BES) at 0 and 90 for each sensor was

recorded and integrated into the fluctuation formula.

90

(3.1)

41

 In Table 3.1, the results of the rotary position calibration testing is shown. Two

hundred and fifty data points were taken for each sensor during 25 seconds at

equilibrium. Each sensor had at least one bit of fluctuation when tested at equilibrium

while three sensors were shown with two bits of fluctuation.

Table 3.1 Rotary Position Sensor Calibration Results

Middle

Finger

DIP

Middle

Finger

PIP

Index

Finger

DIP

Index

Finger

PIP

Thumb

DIP

 Fluctuation of bits at

equilibrium ()
±2 ±2 ±1 ±1 ±2

Bit value at 0° 585 523 573 598 648

Bit value at 90° 374 305 852 845 857

 211 218 279 247 208

Degrees of

fluctuation
0.852 0.826 0.323 0.364 0.862

Resolution (°/bit) 0.426 0.413 0.323 0.364 0.431

 Comparing the rotary position sensors at 0 and 90 orientations, it is shown that

sensor values for the middle finger experience a drop in bit values. This is caused by the

orientation of the sensors on the RF exo-glove being mounted in an opposite manner

compared to the remaining rotary position sensors.

(3.2)

42

3.2 Flex Sensors

Each of the three flex sensors used in this experiment was subjected to a

calibration test before experimentation. As previously stated, the values obtained

through the serial monitor were averaged for every 10 readings.

 3.2.1 Calibration

 Each flex sensor was measured individually using a multimeter and the serial

monitor of the Arduino software. The Arduino Mega microcontroller was powered at 5-

V from an external power supply. To conduct the calibration process, each flex sensor

was placed completely flat on a smooth surface and had a small block with a flat surface

placed on top of the sensor. The values of the flex sensors were measured once

completely flat shown in Table. 3.2. Flex sensor 3 has an equilibrium resistance of over

5-k more than Flex sensors 1 and 2 causing its sensitivity to change.

Table 3.2 Flex Sensor Measurements

Flex sensor multimeter

values (kΩ)
Serial monitor values (bits)

 Flex sensor 1 24.05 837

Flex sensor 2 24.33 822

Flex sensor 3 29.68 888

 Immediately after the flat measurements were taken, each flex sensor was bent in

a 90° angle as in Fig. 3.4 and data was again acquired using the Arduino serial monitor.

43

Figure 3.4 Flex sensor bent 90

Using the same equations as used for the rotary position sensors, fluctuation

results were obtained. Table 3.3 shows the calibration results for the flex sensors used

over the knuckle of the RF exo-glove. Each flex sensor had one bit of fluctuation in the

bit values received.

Table 3.3 Flex Sensor Calibration Results

Middle

Finger MP

Index

Finger MP

Thumb

MP

 Fluctuation of bits at

equilibrium ()
±1 ±1 ±1

Bit value at 0° 837 822 888

Bit value at 90° 660 568 737

 177 234 151

Degrees of fluctuation 0.510 0.385 0.597

Resolution (°/bit) 0.510 0.385 0.597

44

Comparing the bit values of the flex sensors at 0 and 90 orientations, we can

see that the flex sensor of the index MP joint has the best resolution amongst the three

sensors. All three flex sensors had bit values in the eight hundreds but were no identical.

There was a 66 bit difference between the highest and lowest flex sensor at 0°.

3.3 Signal Analysis

 A signal analysis was conducted on both flex and rotary position sensors while at

steady state and in the process of being flexed. The flex sensors used in this calibration

test were bent 50° and the rotary position sensors were rotated 40°. Each of the

following signal analysis graphs was conducted over five seconds to demonstrate the

different rates of sensor value readings. During these five second data gatherings, 40

data points were acquired without using averaging and during times using the LPFs.

When averaging was used, only 16 data points were collected due to the delay in

response time.

 3.3.1 Steady-State Signals

 Steady-state signal analysis was implemented to acquire fluctuation of the sensor

data while at rest or without flexion. In Fig. 3.5 we have a plot of the steady state values

of the flex sensors with and without averaging. The averaged data clearly has fewer

fluctuations than the data without averaging. A majority of the data points for both

signals remained at 0° with the averaged sample showing 61.1% less fluctuation.

45

However, using the averaging code to reduce fluctuations caused the fewer fluctuations

to increase in flexion angle by 0.053° over the non-averaged data. It is apparent though

that the averaged data exhibited the fluctuations during the first half of the data sample

only, whereas the sample without averaging had fluctuations throughout the plot.

Figure 3.5 Steady-state signals of flex sensors

 In Fig. 3.6 the plot shows the rotary position sensor signals obtained without

averaging, with averaging, and using the LPFs. With the rotary position sensors, we

can see a reduction in data fluctuations when using averaging and LPFs compared to

the data that were not averaged. Compared directly to the data sample without

46

averaging, there was a 72.3% decrease in fluctuations while using LPFs and a 100%

decrease in fluctuations using averaging. Once again, there was a trade off in the

degree of flexion angle seen when reducing the amount of fluctuations. Using LPFs

caused the flexion angle of fluctuations to increase by 0.227° over the non-averaged

data.

Figure 3.6 Steady-state signals of rotary position sensors

47

 3.3.2 Flexion Signals

 A test for sensor flexion signals was conducted to demonstrate the sensor’s

response to flexion from the initial relaxed position to the rotated orientation and

returned back to the relaxed position.

 In Fig. 3.7 the plot shows the response of the flex sensor with and without

averaging. The data set without averaging has immediate leaps in flexion angle as well

as a small negative slope a third of the way through the plot. Using averaging creates a

smoother and gradual transition to the peak angle and return. However, there

considerably less data points involved which causes sudden jumps in values from one

data point to the next.

Figure 3.7 Signal of flex sensor while bent

48

 Fig. 3.8 shows the plot of the rotary position sensors while being rotated without

averaging, with averaging, and while using LPFs. Without averaging we have a plot

similar to the results of the flex sensor testing. There is a sudden leap of values rising to

the peak along with a negative slope in the flexion angle one third of the way through the

plot. Using LPFs and averaging give similar results to one another. There are some

points in the plot that are not as consistent in the slope as other parts but overall the

averaging, and the LPF data were able to show better signal response throughout the

plot.

Figure 3.8 Signal of rotary position sensors while rotated

49

CHAPTER IV

EXPERIMENTAL RESULTS

 After the intermediate calibration was complete, the flex sensors wee placed into

the RF exo-glove pockets created to house the flex sensors and the rotary position

sensors placed into their appropriate positions. The low pass circuit was connected to the

rotary position sensors and external power supplies were attached. To begin the initial

testing phase, each finger joint was flexed around the knuckle and measured using the

Arduino serial monitor.

 4.1 Experimental Testing

In Fig. 4.1 we can see each finger joint has the flexion angle measured against

the previous finger joint or base of the hand. Angle is the change in angle from the

initial position of the finger at rest to the final position where the finger completes

flexion. Essentially, corresponds to the flex sensor values for the finger with respect to

the knuckle.

Since the finger joints farthest away from the hand use rotary position sensors,

the angles measured are taken from the revolute point of the finger joints in the center of

the joint. Angles α and β are the flexion angles of the RF exo-glove center finger section

and fingertip respectively. Similarly to the measurement of angle θ, angles α and β are

measured with respect to the previous finger joint position as shown in Fig. 4.1.

50

Figure 4.1 RF exo-glove sensor angles

 4.1.1 Postures

The experiment was carried over four different postures using the RF exo-glove.

As seen here in Fig. 4.2, the four different postures include a relaxed hand pose, grasping

a water bottle, holding a pen, and a clenched fist.

Figure 4.2 RF exo-glove postures (a) relaxed sensors, (b) grasping water bottle, (c)

holding a pen, and (d) clenched fist

51

 These postures are very common ones that people make and allow for great data

acquisition by flexing each finger joint in multiple ranges. The items in Fig. 4.3 were

used for grasping postures in this experiment which include a half-liter water bottle and

a standard pen.

 4.2 Experiments in Multiple Postures

 The first posture tested was the RF exo-glove placed in the initial relaxed

position resulting in the fingers being nearly flat across the joints. Generally a person

does not hold their hand, when relaxed, perfectly straight which would mean their finger

joints are already angled. This posture was tested first to set reference values the

additional postures could be measured against. In this position 30 seconds was allowed

Figure 4.3 Water bottle and pen used for grasping postures 2 and 3

52

to pass before retrieving data to ensure the sensors reached steady state equilibrium.

Data was logged from the serial connection of the Arduino Mega using the Parallax Data

Acquisition tool (PLX-DAQ) [29]. The PLX-DAQ gathered flexion information of the

sensors from the Arduino serial port and transferred them to a Microsoft Excel

spreadsheet. The data logged for the relaxed sensors was obtained in bits ranging from 0

to 1023 due to the 10 bit ADC on the Arduino Mega. Using the serial monitor data taken

from each sensor reading during the calibration process, each column of sensor data was

evaluated for accuracy at steady state.

 Table 4.1 shows the actual angles measured from the RF exo-glove and the offset

of the reference posture angles.

Table 4.1 RF Exo-glove Posture Angles

 Flexion Angles of RF exo-glove

Posture

Middle

Finger

MP

Index

Finger

MP

Thumb

MP

Middle

Finger

DIP

Middle

Finger

PIP

Index

Finger

DIP

Index

Finger

PIP

Thumb

DIP

Bottle 22 18 15 26 62 11 68 54

Fist 22 25 13 60 68 45 66 65

Pen 15 12 15 34 62 41 55 57

Reference Posture Angles

13 10 10 5 5 5 5 5

 Adjusted Angles

Bottle 9 8 5 21 57 6 63 49

Fist 9 15 3 55 63 40 61 60

Pen 2 2 5 29 57 36 50 52

53

 Once the reference postures were acquired, each of the three remaining postures

underwent the same process for data acquisition. Using the resolution found during the

sensor calibration, I was able to take the difference between the reference posture and

the alternative posture to obtain a difference in bit values sensor by sensor. The

difference in bit values was then multiplied by the resolution to find the change in

flexion angles for each finger joint.

 The following graphs consist of experimental results from the previously stated

postures with and without averaging. Each posture was tested five times over separate

data-acquisition samplings. In total there were 40 samples taken. Each graph shows five

separate tests run on the particular posture with or without averaging. The x-axis is

labeled with the corresponding fingers tracked with the RF exo-glove. The y-axis is

labeled with the flexion angle to show the degrees of flexion angles of the data acquired.

Each PIP and DIP joint is tracked with a rotary position sensor. Each MP joint uses a

flex sensor for flexion tracking.

 4.2.1 Bottle Grasping Posture

 In Figs. 4.4 and 4.5 we have box plots of the adjusted actual flexion angles

measured directly off of the RF exo-glove and the range of sensor data obtained in the

samplings for the bottle grasping posture. From direct observation, the box plots for the

averaged data in Fig. 4.5 shows better precision for the rotary position sensors. However,

the non-averaged data in Fig. 4.4 was more precise for the flex sensors. Evaluating each

54

finger and thumb in both figures gives mixed results. Each MP joint performed better

without averaging in terms of precision, but had an even trade-off in the accuracy shown

in comparison with both plots. The PIP joints were more accurate without averaging but

compromised the precision of the data. The DIP joints were slightly more accurate

without averaging, However, the precision gained by averaging is a great improvement

in performance.

55

Figure 4.4 Bottle grasping posture without averaging

56

Figure 4.5 Bottle grasping posture with averaging

57

 The observations from Figs. 4.4 and 4.5 can be seen directly on table 4.2. Table

4.2 and proceeding Tables following the posture graphs use the following convention to

identify the sensors:

1. Middle finger MP 5. Middle finger PIP

2. Index finger MP 6. Index finger DIP

3. Thumb MP 7. Index finger PIP

4. Middle finger DIP 8. Thumb DIP

 The standard deviation of the averaged data is lower for each sensor with the

exception of sensor 2 which is greater by 0.24°. The average flexion angle difference

also has better performance with the averaging data which displays lower angle

differences for all but three sensors. Given the difference in angles and standard

deviation from the true angle that was too be met, there was an increase in performance

using averaging.

Table 4.2 Flexion Angle Average Difference and Standard Deviation for Bottle Grasping

Posture

Average Flexion Angle Difference

Sensor 1 2 3 4 5 6 7 8

No averaging 4.55 2.55 1.86 8.19 4.24 13.18 8.47 16.87

Averaging 5.29 2.23 6.25 3.72 3.43 14.52 3.94 11.18

Standard Deviation of Flexion Angles

No averaging 3.09 1.18 1.72 5.84 3.42 9.60 6.16 12.55

Averaging 2.79 2.47 4.25 3.19 1.38 8.00 1.94 8.13

58

 4.2.2 Clenched Fist Posture

 In Figs. 4.6 and 4.7 a box plot of the clenched fist posture data can be seen with

the adjusted actual angles. Looking at the range of data in the plots, it is immediately

apparent that the flexion data obtained does not fit the actual flexion angles. There were

very few data points that coincided with the true angles, but it should be noted that the

data was offset almost consistently across the plot. Flexion values in Fig. 4.6 varied by

46.1° for the middle finger DIP joint, but when compared to the averaged data plot, the

same sensor improves precision by 72.6%. Again, the averaged data remains more

precise but does not have the accuracy to display the true angles.

59

Figure 4.6 Clenched fist posture without averaging

60

Figure 4.7 Clenched fist posture with averaging

 Table 4.3 shows the average flexion angle difference and standard deviation for

the data samplings of the clenched fist postures. Overall, using averaging resulted in a

lower standard deviation and average flexion angle difference from the true angles.

There is at least a 34% improvement in standard deviation of the flexion angles with

averaging.

61

Table 4.3 Flexion Angle Average Difference and Standard Deviation for Clenched Fist

Posture

Average Flexion Angle Difference

Sensor 1 2 3 4 5 6 7 8

No averaging 9.39 8.34 8.35 19.86 15.88 15.17 6.92 19.82

Averaging 7.05 7.39 6.31 12.33 13.61 14.94 6.07 11.67

Standard Deviation of Flexion Angles

No averaging 10.05 4.44 5.10 12.82 3.96 4.07 3.04 6.81

Averaging 6.66 3.15 0.91 5.34 2.60 6.01 3.13 4.38

 4.2.3 Pen-Holding Posture

 In Figs. 4.8 and 4.9 we have box plots that show the flexion angle data for the

pen holding posture. The Fig. 4.8 plot shows a slightly better performance in accuracy

for the middle finger MP over Fig. 4.9 but does not hold this accuracy throughout the

plot. Once again, the plot without averaging displays overall greater accuracy but lacks

the sensor precision gained by averaging. Both plots follow the general pattern of the

true flexion angles but are offset by a similar degree value. The offset angle varies from

sensor to sensor ranging from an average of 1.91° to 13.86° for the averaged data and

4.15° to 14.54° for the non-averaged data. Fig. 4.8 has two outliers that are effectively

removed with the averaging function.

62

Figure 4.8 Pen holding posture without averaging

63

Figure 4.9 Pen holding posture with averaging

 Table 4.4 shows the average flexion difference and standard deviation of the pen

holding posture data compared to the true flexion values. In this pen holding posture we

see that the flexion angle difference is better when using averaging for five of the eight

sensors. However, looking at the standard deviation of the flexion angles shows that

64

there are four sensors in favor for averaging and without averaging giving a mixed

result.

Table 4.4 Flexion Angle Average Difference and Standard Deviation of Pen Holding

Posture

Average Flexion Angle Difference

Sensor 1 2 3 4 5 6 7 8

No averaging 5.12 7.58 4.15 12.38 14.54 12.21 10.26 6.84

Averaging 4.14 10.33 3.08 6.10 12.15 13.86 11.00 2.67

Standard Deviation of Flexion Angles

No averaging 5.38 5.91 4.04 6.50 2.74 1.98 1.18 2.40

Averaging 3.19 4.94 1.37 5.35 3.27 3.86 1.66 1.43

4.3 Telerobotic Hand Mapping

 The lack of a closed-loop controller in this experiment causes the robotic finger

flexion to be mimicked in a way that the finger jumps to the next position sent in the

signal. The signal from the RF exo-glove is almost immediately sent to the robotic hand

which will in turn make the servos react. Since there is no processed feedback to the

servo motor, other than the internal circuitry confirming the desired position, it will

constantly rotate at the same speed regardless of how close it may be to the next

position.

65

(4.1)

(4.2)

In order to manipulate the robotic hand, the finger-joint flexion values needed to

be processed for proper mapping. The average total joint flexion of each finger was

taken to be mapped onto the robotic hand following Fig. 4.1. The flex sensor angle value

is noted as θ, the center rotary position sensor angle value is represented as α, and the

fingertip rotary position sensor angle value is shown as β.

 The formula shown here was used to gather the average flexion of the middle

and index fingers:

This averaging equation was used for tracking the flexion of the thumb:

 The preceding equations were used to control the robotic fingers while reducing

the multiple DOFs for each RF exo-glove finger into a single DOF. It was necessary to

reduce the DOF to operate the robotic hand using only three servo motors. Using the

averages shown above each servo was mapped to 180° allowing the robotic finger to

mimic the flexion done by the RF exo-glove. Table 4.5 shows the averaged data, using

(4.1) – (4.2), to map the finger flexion to the robotic hand. The “Begin” value is the

initial start of the robotic hand mapping. The “End” values designate the terminal values

the robotic hand receives when the servos are positioned at 180°.

66

Table 4.5 Averaged Data Used for Robotic Hand Mapping

Robotic Finger Map Values

 Begin End

Thumb 768 797

Middle

Finger
648 446

Index Finger 664 762

 The Arduino Mega used to communicate between the RF exo-glove and robotic

hand sends signals through PWM at 490-Hz. This frequency is not particularly high, and

due to the averaging there is a delay in real-time control. While operating the RF exo-

glove to control the robotic hand, the signals of the sensors and PWM pins of the

Arduino Mega were recorded to find the time delay between sensor reading and robotic

hand motion. The delay in response for the non-averaged sensor values was a quarter of

a second. This delay was increased when using the averaging of sensor values by 0.375

seconds over the non-averaging. The immediate delay for averaging the sensor values

between posture and robotic finger motion was 0.625 seconds.

 4.3.1 Mapping Relaxed Hand Posture

 Here in Fig. 4.10 we can see the relaxed hand posture mimicked with the robotic

hand. Since this is the reference posture, the robot hand's fingers remain in a relaxed

position as well due to the sensor mapping. Monitoring the sensor values for this state

will yield the initial robotic finger mapping values seen in Table 4.5. When testing the

67

relaxed hand posture, the data set from the sensors varied more than the servo mapping

was created for. This caused the fingers to twitch and partially flex. Observations

between using the averaging code and without averaging showed better results for the

averaging attempt. Sensor values were smoother leading to less twitching.

Figure 4.10 Relaxed posture with robotic hand

 4.3.2 Mapping Bottle Grasping Posture

 Depicted in Fig. 4.11 is the bottle grasping posture. The robotic fingers were able

to flex in a similar manner to the degree given by the RF exo-glove but is unable to

completely close the finger grip. This posture is just about mid way through the servo

rotation leaving 90° additional flexion. As with the relaxed posture, using the averaging

68

code resulted in much less twitching in comparison to not using averaging.

Unfortunately, using averaging in the code meant there was more delay in the sensor

values being read. The delayed sensor reading directly translated to the reaction time the

robotic fingers could move.

Figure 4.11 Bottle grasping posture with robotic hand

 4.3.3 Mapping Clenched Fist Posture

 With Fig. 4.12 we can see the clenched-fist posture mirrored by the robotic hand

rather well to its abilities. Again, the fingers are unable to completely close against each

other which is due to the single DOF for each robotic finger. At this posture, all servos

have rotated 180° with sensors reading the end results in Table 4.5 for the averages.

69

Similarly for this posture, using averaging gave better results for holding the desired

angles.

Figure 4.12 Clenched fist posture with robotic hand

 4.3.4 Mapping Pen-Holding Posture

 Fig. 4.13 shows the posture for holding a pen. This posture is similar to the bottle

grasping posture while using the RF exo-glove due to its bulky parts. Of course the

posture angles are not identical to the bottle grasping posture leading to the middle and

index fingers to be less flexed. With this test the averaging code again present better

results of holding the posture with less twitching.

70

Figure 4.13 Pen holding posture with robotic hand

 Although each posture was meant to represent common ones people make, the

robotic hand itself was not designed to hold the bottle or pen and thus they are used for

demonstration purposes only. The transitioning between postures displayed from the

robotic hand was done very quickly. When experimenting without the use of averaging,

the robotic hand had the ability to full close from the relaxed position in under half a

second. However, when using averaging, the ability to react in real time was hindered by

the code delays more than doubling the time to complete the same task. Mirroring the

RF exo-glove posture was my goal in these experiments and thus averaging was more

desirable.

71

CHAPTER V

CONCLUSIONS

5.1 Conclusions

 The initial motivation to design this unique RF exo-glove was to experiment with

a finger-flexion-tracking device that utilized a rigid frame for repeatable results. This

holds true up to a certain point, however there were a few instances where precision was

not seen in the data. Readings for the sensors were too varied to consider this to be a

precise finger-flexion-tracking apparatus. The best results were seen with the bottle-

grasping posture having six sensors with averaging be within 6° of the true flexion

angles.

 The lack of precision was mostly apparent in the sampling that was done without

averaging. In some cases the range of values for a single sensor were scattered over 40°.

Averaging proved to be effective in reducing fluctuations in data acquired but at the cost

of somewhat greater flexion angle offset. The offset seen was manageable leading to

only a fraction of a degree change making the compromise worth the vice. The data for

using averaging showed up to a 45.2% increase in precision compared to non-averaged

values.

 Over several sets of sensor calibration, the resulting data were always within at

least 2 bits of each set. The major contributing sources to the varied results are the

dissimilar initial sensor values, slight changes in postures, and personal movement. The

sensors used in this research were to be identical to one another per type. Unfortunately,

72

the reading of one flex sensor’s value was considerably different from the other two.

Similarly, testing all of the rotary position sensors revealed variation in sensor data.

 The postures used in this research were meant to be easily repeatable, however,

using an amorphous bottle and postures that could be manipulated with slight motion left

mixed results. With over 40 experimental tests, some changes in flexion angles must

have existed leading to data that would show up differently each time. Based on the

fluctuation of the sensors while the RF exo-glove was on my hand and the sensor

calibration testing alone, there seems to be interference in the data. During the

experiments while using the RF exo-glove I could feel my fingers slightly moving which

could have been the cause of the spikes in the results. On top of my natural movements

when still, the RF exo-glove frame caused my blood to pulse in my fingers further

changing minor sensor values. Each experiment was conducted in the same location

under identical conditions, but my own variances in remaining still change very often.

5.2 Future Work

 The design used in this experimental setup has several areas where improvements

can be made for more accurate results. Looking at the tolerances of the finger shafts used

to rotate the rotary position sensor, there is a small gap between the inner walls of the

sensor and the shaft of the RF exo-glove finger joint. Future postures used in analysis

should be easily repeatable with little variance in dimensional changes or characteristics

of changing the postures.

73

 Higher-strength materials could allow for a less bulky design which would lead

to all five fingers being able to have tracking sensors. Higher-precision rotary position

sensors and flex sensors could provide a superior range of accuracy for the flexion

tracking.

 Additional DOFs can be added to the design to make the RF exo-glove more

operable and functional. A recommended site for and additional degree of freedom is the

top of the knuckle. Since the finger joints at the knuckle allow the finger to move side to

side, there can be another DOF to be exploited.

 The Arduino Mega microcontroller has an onboard 10-bit ADC that was used in

the experiments giving a maximum range of values to be from 0 to 1023. By adding an

external analog to digital converter of 12 bits or more, the values obtained for the flexion

angle can be far greater. For example, the 10-bit converter gives us 1024 values while a

12-bit converter would give us 4096 values. Using the simple formula of 2
x

where x

represents the bit value of the converter, we can see that a larger bit converter will yield

a better resolution.

 Signal-processing filters should be used on all sensor signals when gathering

results from the system to remove outlier data points from being part of the analysis.

Noise filters should be used on power supplies used in the system if they are known to

be unstable or their quality is uncertain.

74

REFERENCES

[1] L. A. Jones and S. J. Lederman, Human Hand Function. Oxford: Oxford

University Press, 2006.

http://books.google.com/books?id=InyYROA6j_0C&printsec=frontcover&dq=h

uman+hand&hl=en&sa=X&ei=R60LVPu7GYqdygTvhIHwAw&ved=0CB8Q6A

EwAA#v=onepage&q=human%20hand&f=false

[2] . Sch nke, E. Schulte, U. Schumacher, L. Ross, and E. Lamperti, Thieme Atlas

 of Anatomy. Stuttgart: Thieme, 2006.

[3] Y. Liu and D. Sun, Biologically Inspired Robotics. Boca Raton, FL: CRC Press,

2012.

[4] S-H. Bae, Y. Lee, B. Sharma, H-J. Lee, J-H. Kim and J-H. Ahn, “Graphene-

based transparent strain sensor,” Carbon, vol. 51, pp. 236–242. Science Direct,

Jan 2013. http://www.sciencedirect.com/science/article/pii/S0008622312007002

[5] A. Drimus, G. Kootstra, A. Bilberg and D. Kragic, “Design of a flexible tactile

sensor for classification of rigid and deformable objects,” Robotics and

Autonomous Systems, vol. 62, no. 1, pp. 3–15. Science Direct, Jan 2014.

http://www.sciencedirect.com/science/article/pii/S092188901200125X

[6] N. M. Noaman, A. R. Ajel, and A. A. Issa, “Design and implementation of DHM

glove using variable resistors sensors,” Journal of Artificial Intelligence, vol. 1,

no. 1, pp. 44–52. Science Alert, 2008.

http://www.scialert.net/abstract/?doi=jai.2008.44.52

75

[7] N. P. Oess, J. Wanek and A. Curt, “Design and evaluation of a low-cost

 instrumented glove for hand function assessment,” Journal of

 NeuroEngineering and Rehabilitation, vol. 9, no. 1, doi: 10.1186/1743-0003-9-2.

 BioMed Central, Jan 2012.

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305482/

[8] R. Y. Wang and J. Popović “Real-time hand-tracking with a color glove,” ACM

Trans. Graph., vol. 28, no. 3, doi: 10.1145/1531326.1531369. ACM Digital

Library, Aug 2009. http://dl.acm.org/citation.cfm?doid=1531326.1531369

[9] J-M. Guo, Y-F. Liu, C-H. Chang and H-S. Nguyen, “Hybrid hand tracking

system,” 2011 18
th

 IEEE International Conference on Image Processing (ICIP),

Brussels, pp. 549–552. IEEE Xplore, Sept 2011.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6116404

[10] J-M. Guo, Y-F. Liu, C-H. Chang and H-S. Nguyen, “Improved hand tracking

system,” IEEE Transactions on Circuits and Systems for Video Technology, vol.

22, no. 5, pp. 693–701. IEEE Xplore, May 2012.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6093954

[11] D-U. Klaus and D. Schmalstieg, “Finger tracking for interaction in augumented

 environments,” in proceedings of IEEE and ACM International Symposium in

 Augmented Reality, New York City, NY, pp. 55–64. IEEE Xplore, 2001.

 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=970515

[12] Y. Ma, Z. Mao, W. Jia, C. Li, J. Yang and M. Sun, “Magnetic hand tracking for

 human-computer interface,” IEEE Transactions on Magnetics, vol. 47, no. 5, pp.

76

 970–973. IEEE Xplore, May 2011.

 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5754773

[13] K. Li, I-M. Chen, S. H. Yeo and C. K. Lim, “Development of finger-motion

 capturing device based on optical linear encoder,” Journal of Rehabilitation

 Research and Development, vol. 48, no. 1, pp. 69–82. Directory of Open Access

 Journals, 2011. http://www.rehab.research.va.gov/jour/11/481/pdf/li.pdf

[14] P. Gruber, Biomimetics -- Materials, Structures and Processes. Berlin: Springer

 Verlag, 2011. http://link.springer.com.lib-

 ezproxy.tamu.edu:2048/chapter/10.1007/978-3-642-11934-7_1

[15] A. von Gleich, C. Pade, U. Petschow, and E. Pissarskoi, Potentials and Trends in

 Biomimetics. Berlin: Springer, 2010. http://link.springer.com.lib-

 ezproxy.tamu.edu:2048/book/10.1007%2F978-3-642-05246-0

[16] S-y. Jung, S-k. Kang and I. oon, “Design of biomimetic hand prosthesis with

 tendon-driven five fingers,” in proceedings of 2nd IEEE RAS & EMBS

 International Conference on Biomedical Robotics and Biomechatronics,

 Scottsdale, AZ, 2008, pp. 895–900. IEEE Xplore, 2008.

 http://ieeexplore.ieee.org.lib-

 ezproxy.tamu.edu:2048/xpl/articleDetails.jsp?arnumber=4762803

[17] Thera Tech Equipment Inc., XT DigiGlide Kaiser Portable Hand CPM. 2014.

 http://theratechequip.com/products/xt-digiglide-kaiser-portable-hand-cpm/

[18] U. Jeong, H-K. In, and K-I. Cho, “Implementation of various control algorithms

 for hand rehabilitation exercise using wearable robotic hand,” Intelligent Service

http://ieeexplore.ieee.org.lib-/
http://ieeexplore.ieee.org.lib-/

77

 Robotics, vol. 6, no. 4, pp. 181–189. Berlin: Springer, Sept 2013.

 http://link.springer.com/article/10.1007/s11370-013-0135-5

[19] S. W. Lee, K. A. Landers and H-S. Park, “Development of a biomimetic hand

 exotendon device (BiomHED) for restoration of functional hand movement post-

 stroke,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,

 vol. 22, no. 4, pp. 886–898. IEEE Xplore, Jan 2014.

 http://ieeexplore.ieee.org.lib-

 ezproxy.tamu.edu:2048/xpl/articleDetails.jsp?arnumber=6710121

[20] Ardelis Engineering (Pty) Ltd, 3-Finger Robotic Hand on Comau Robot. 2013.

 http://www.ardelis.co.za/products-grippers/

[21] M. Ferre, M. Buss, R. Aracil, C. Melchiorri, and C. Balaguer, Advances in

 Telerobotics. Berlin: Springer, 2007. http://link.springer.com.lib-

 ezproxy.tamu.edu:2048/book/10.1007%2F978-3-540-71364-7

[22] H. Karamanoukian, R. Pande, Y. Patel, A. Freeman, P. Aoukar and G. D'Ancona,

“Telerobotics, telesurgery, and telemonitoring,” Pediatric Endosurgery &

Innovative Techniques, vol. 7, no. 4, pp. 421–425. Mary Ann Liebert, Inc., July

2004. http://online.liebertpub.com.lib-

ezproxy.tamu.edu:2048/doi/abs/10.1089/109264103322614295

[23] F. Y. Wu and H. Asada, “Bio-artificial synergies for grasp posture control of

 supernumerary robotic fingers,” MIT Open Access Articles. University of

 California, Berkeley, USA. MIT Press, July 2014.

 http://hdl.handle.net/1721.1/88457

http://ieeexplore.ieee.org.lib-/
http://ieeexplore.ieee.org.lib-/
http://online.liebertpub.com.lib-ezproxy.tamu.edu:2048/doi/abs/10.1089/109264103322614295
http://online.liebertpub.com.lib-ezproxy.tamu.edu:2048/doi/abs/10.1089/109264103322614295
http://hdl.handle.net/1721.1/88457

78

[24] Robot Surgery: Dr. M. Hewitt, Da Vinci robot and surgeon. 2008.

 http://www.robotsurgery.ie/

[25] Teach Engineering: curriculum for k–12 teachers, Crane Claw. 2007.

 http://www.teachengineering.org/view_lesson.php?url=collection/van_/lessons/v

 an_cleanupmess_less/van_cleanupmess_less1.xml

[26] Y. Lee and C. Cho, “A biomimetic hand employing a dual actuation scheme,”

Journal of Mechanical Science and Technology, vol. 26, no. 12, pp. 4131–4139.

ProQuest, Dec 2012. http://search.proquest.com.lib-

ezproxy.tamu.edu:2048/docview/1439740051?accountid=7082

[27] S. Ghosh, “Capturing human hand kinematics for object grasping and

 manipulation,” Master's thesis, Texas A&M University, 2013.

 http://repository.tamu.edu/bitstream/handle/1969.1/149611/GHOSH-THESIS-

 2013.pdf?sequence=1.

[28] Radioshack, RadioShack Standard Servo, Date Accessed: 2. Sept. 2014.

 http://www.radioshack.com/product/index.jsp?productId=22472146#

[29] Parallax Data Acquisition Tool (PLX-DAQ). Parallax Inc., 2014.

 http://www.parallax.com/downloads/plx-daq

[30] Bourns 3382 - 12 mm Rotary Position Sensor, 2nd ed. Bourns. Date Accessed: 2.

 Mar. 2014. http://www.bourns.com/pdfs/3382.pdf

[31] Flex Sensor FS, 2nd ed. Spectra Symbol, 2015.

 http://www.spectrasymbol.com/wpcontent/themes/spectra/images/datasheets/Fle

 xSensor.pdf

http://www.teachengineering.org/view_lesson.php?url=collection/van_/lessons/v%09an_c
http://www.teachengineering.org/view_lesson.php?url=collection/van_/lessons/v%09an_c
http://repository.tamu.edu/bitstream/handle/1969.1/149611/GHOSH-THESIS-
http://repository.tamu.edu/bitstream/handle/1969.1/149611/GHOSH-THESIS-
http://www.bourns.com/pdfs/3382.pdf
http://www.spectrasymbol.com/wpcontent/themes/spectra/images/datasheets/Fle%09xSen
http://www.spectrasymbol.com/wpcontent/themes/spectra/images/datasheets/Fle%09xSen

79

[32] Ale., “Arduino and real time charts in excel,” Robottini RSS, 2011.

 http://robottini.altervista.org/arduino-and-real-time-charts-in-excel

[33] D. Mellis and T. Igoe, “Arduino – Smoothing,” Arduino, 2012.

 http://arduino.cc/en/Tutorial/Smoothing

80

APPENDIX A

BOURNS ROTARY POSITION SENSOR SPECIFICATIONS

Item #: 3382G

 Features

- Surface mount and through-hole versions

- 12mm Square/Dustproof

- 1,000,000 rotation cycles

- Thin profile

- RoHS compliant

 Electrical Characteristics

Standard resistance range: 2.5K to 100K ohms

Resistance tolerance: 30% std

Linearity: 2%

Resolution: Infinite

 Environmental Characteristics

Power rating: 16 volts max

Operating temperature range: -40°C to 120°C

Rotational life: 1,000,000 cycles

Thermal Shock: 5 cycles

81

Figure Appendix A a) Dimensions of outer casing of rotary position sensor, b)

rotation ring dimensions, and c) Operation diagram [30]

a)

b)

c)

82

APPENDIX B

SPECTRA SYMBOL FLEX SENSOR SPECIFICATIONS

 Features

- Angle displacement measurement

- Flexible body for bending

- Variety of applications

- Simple design

- Slim profile

 Mechanical characteristics

Life cycle: over 1,000,000

Temperature range: -35°C to +80°C

 Electrical characteristics
Flat resistance: 25K Ohms

Resistance tolerance: 30%

Bend resistance range: 45K Ohms to 125K Ohms

Power rating: 0.5 Watts continuous to 1 Watt peak

83

Figure Appendix B a) Example of an actual flex sensor, b) dimensional
diagram, and c) flex sensor functionality [31]

c) c)

a)

b)

84

APPENDIX C

RF EXO-GLOVE DIMENSIONS

Each dimension is given in centimeters. The dimensions alongside the finger and thumb

components are given from pivot to pivot directly in the center were the sensors are

attached. The diameter of each finger and thumb component is given for the center of the

component. Since each finger and thumb component is tapered from the top to bottom

the diameter changes along the length. Ex: Thumb Tip d = , so the largest

diameter which is the top is actually 2.4cm while the smallest diameter which is the

bottom end is really 2.2cm.

85

86

APPENDIX D

ARDUINO CODES USED FOR DATA ACQUISITION

This is the original reference code from Robottini [32] used to create my own custom

data acquisition code. This code was heavily modified for initial testing and servo

control allowing me to use the PLX-DAQ software:

 int x = 0;

int row = 0;

void setup() {

 Serial.begin(128000); // opens serial port, sets data rate to 9600 bps

 Serial.println("CLEARDATA");

 Serial.println("LABEL,Time,x,sin(x)");

}

void loop() {

 Serial.print("DATA,TIME,"); Serial.print(x); Serial.print(",");

Serial.println(sin(x*PI/180));

 row++;

 x++;

 if (row > 360)

 {

 row=0;

 Serial.println("ROW,SET,2");

 }

 delay(100);

87

}

This is the original reference code from the Arduino website [33] I used to create my

own custom code for averaging the sensors during initial testing:

/*

Smoothing

Reads repeatedly from an analog input, calculating a running average

and printing it to the computer. Keeps ten readings in an array and

continually averages them.

The circuit:

* Analog sensor (potentiometer will do) attached to analog input 0

Created 22 April 2007

By David A. Mellis <dam@mellis.org>

modified 9 Apr 2012

by Tom Igoe

http://www.arduino.cc/en/Tutorial/Smoothing

This example code is in the public domain.

*/

// Define the number of samples to keep track of. The higher the number,

// the more the readings will be smoothed, but the slower the output will

// respond to the input. Using a constant rather than a normal variable lets

// use this value to determine the size of the readings array.

const int numReadings = 10;

int readings[numReadings]; // the readings from the analog input

int index = 0; // the index of the current reading

int total = 0; // the running total

88

int average = 0; // the average

int inputPin = A0;

void setup()

{

// initialize serial communication with computer:

Serial.begin(9600);

// initialize all the readings to 0:

for (int thisReading = 0; thisReading < numReadings; thisReading++)

readings[thisReading] = 0;

}

void loop() {

// subtract the last reading:

total= total - readings[index];

// read from the sensor:

readings[index] = analogRead(inputPin);

// add the reading to the total:

total= total + readings[index];

// advance to the next position in the array:

index = index + 1;

// if we're at the end of the array...

if (index >= numReadings)

// ...wrap around to the beginning:

index = 0;

// calculate the average:

average = total / numReadings;

// send it to the computer as ASCII digits

Serial.println(average);

delay(1); // delay in between reads for stability

}

Custom code used for initial sensor testing without averaging:

89

const int flexpin = A0; // flexpin refers to the flex sensor on the index finger on analog

pin 0

const int flexpin2 = A1; // flexpin2 refers to the flex sensor on the index finger on analog

pin 1

const int flexpin3 = A2; // flexpin3 refers to the flex sensor on the middle finger on

analog pin 2

const int potPin = A3; // potPin refers to the potentiometer on the thumb using analog

pin 3

const int potPin2 = A4; // potPin2 refers to the potentiometer on the index finger center

using analog pin 4

const int potPin3 = A5; // potPin3 refers to the potentiometer on the index finger tip

using analog pin 5

const int potPin4 = A6; // potPin4 refers to the potentiometer on the middle finger center

using analog pin 6

const int potPin5 = A7; // potPin5 refers to the potentiometer on the middle finger tip

using analog pin 7

int flexPin = 0;

int flexPin2 = 0;

int flexPin3 = 0;

int potpin = 0;

int potpin2 = 0;

int potpin3 = 0;

int potpin4 = 0;

int potpin5 = 0;

int row = 0;

void setup() {

90

 Serial.begin(9600); // opens serial port, sets data rate to 9600 bps

 Serial.println("CLEARDATA");

Serial.println("LABEL,Time,flexPin,flexPin2,flexPin3,potpin,potpin2,potpin3,potpin4,p

otpin5,");

}

void loop() {

 flexPin = analogRead(flexpin);

flexPin2 = analogRead(flexpin2);

flexPin3 = analogRead(flexpin3);

potpin = analogRead(potPin);

potpin2 = analogRead(potPin2);

potpin3 = analogRead(potPin3);

potpin4 = analogRead(potPin4);

potpin5 = analogRead(potPin5);

 Serial.print("DATA,TIME,"); Serial.print(flexPin = analogRead(flexpin));

Serial.print(",");

 Serial.print(flexPin2 = analogRead(flexpin2)); Serial.print(",");

 Serial.print(flexPin3 = analogRead(flexpin3)); Serial.print(",");

 Serial.print(potpin = analogRead(potPin)); Serial.print(",");

 Serial.print(potpin2 = analogRead(potPin2)); Serial.print(",");

 Serial.print(potpin3 = analogRead(potPin3)); Serial.print(",");

 Serial.print(potpin4 = analogRead(potPin4)); Serial.print(",");

91

 Serial.println(potpin5 = analogRead(potPin5));

 row++;

 flexPin++;

 flexPin2++;

 flexPin3++;

 potpin++;

 potpin2++;

 potpin3++;

 potpin4++;

 potpin5++;

 if (row > 285)

 {

 row=0;

 Serial.println("ROW,SET,2");

 }

 delay(100);

}

Custom code used for initial sensor testing with averaging:

const int flexpin = 0; // flexpin refers to the flex sensor on the thumb on analog pin 1

const int flexpin2 = 1; // flexpin2 refers to the flex sensor on the index finger on analog

pin 2

92

const int flexpin3 = 2; // flexpin3 refers to the flex sensor on the middle finger on analog

pin 3

const int potPin = 3; // potPin refers to the potentiometer on the thumb using analog pin

4

const int potPin2 = 4; // potPin2 refers to the potentiometer on the index finger center

using analog pin 5

const int potPin3 = 5; // potPin3 refers to the potentiometer on the index finger tip using

analog pin 6

const int potPin4 = 6; // potPin4 refers to the potentiometer on the middle finger center

using analog pin 7

const int potPin5 = 7; // potPin5 refers to the potentiometer on the middle finger tip

using analog pin 8

int row = 0;

const int numReadings = 10;

const int numReadings2 = 10;

const int numReadings3 = 10;

const int numReadings4 = 10;

const int numReadings5 = 10;

const int numReadings6 = 10;

const int numReadings7 = 10;

const int numReadings8 = 10;

int readings[numReadings];

int readings2[numReadings2];

93

int readings3[numReadings3];

int readings4[numReadings4];

int readings5[numReadings5];

int readings6[numReadings6];

int readings7[numReadings7];

int readings8[numReadings8];

int index = 0;

int index2 = 0;

int index3 = 0;

int index4 = 0;

int index5 = 0;

int index6 = 0;

int index7 = 0;

int index8 = 0;

int total = 0;

int total2 = 0;

int total3 = 0;

int total4 = 0;

int total5 = 0;

int total6 = 0;

int total7 = 0;

int total8 = 0;

94

int avg = 0;

int avg2 = 0;

int avg3 = 0;

int avg4 = 0;

int avg5 = 0;

int avg6 = 0;

int avg7 = 0;

int avg8 = 0;

void setup()

{

Serial.begin(9600);

Serial.println("CLEARDATA");

Serial.println("LABEL,Time,flexpin,flexpin2,flexpin3,potPin,potPin2,potPin3,potPin4,p

otPin5,");

 // initialize all the readings to 0:

 for (int thisReading = 0; thisReading < numReadings; thisReading++)

 readings[thisReading] = 0;

 // initialize all the readings to 0:

 for (int thisReading2 = 0; thisReading2 < numReadings2; thisReading2++)

 readings[thisReading2] = 0;

 // initialize all the readings to 0:

95

 for (int thisReading3 = 0; thisReading3 < numReadings3; thisReading3++)

 readings[thisReading3] = 0;

 // initialize all the readings to 0:

 for (int thisReading4 = 0; thisReading4 < numReadings4; thisReading4++)

 readings[thisReading4] = 0;

 // initialize all the readings to 0:

 for (int thisReading5 = 0; thisReading5 < numReadings5; thisReading5++)

 readings[thisReading5] = 0;

 // initialize all the readings to 0:

 for (int thisReading6 = 0; thisReading6 < numReadings6; thisReading6++)

 readings[thisReading6] = 0;

 // initialize all the readings to 0:

 for (int thisReading7 = 0; thisReading7 < numReadings7; thisReading7++)

 readings[thisReading7] = 0;

 // initialize all the readings to 0:

 for (int thisReading8 = 0; thisReading8 < numReadings8; thisReading8++)

 readings[thisReading8] = 0;

}

void loop()

{

//11

111

96

 // subtract the last reading:

 total= total - readings[index];

 // read from the sensor:

 readings[index] = analogRead(flexpin);

 // add the reading to the total:

 total= total + readings[index];

 // advance to the next position in the array:

 index = index + 1;

 // if we're at the end of the array...

 if (index >= numReadings)

 // ...wrap around to the beginning:

 index = 0;

 // calculate the average:

 avg = total / numReadings;

 // send it to the computer as ASCII digits

//22

222

 // subtract the last reading:

 total2= total2 - readings2[index2];

 // read from the sensor:

97

 readings2[index2] = analogRead(flexpin2);

 // add the reading to the total:

 total2= total2 + readings2[index2];

 // advance to the next position in the array:

 index2 = index2 + 1;

 // if we're at the end of the array...

 if (index2 >= numReadings2)

 // ...wrap around to the beginning:

 index2 = 0;

 // calculate the average:

 avg2 = total2 / numReadings2;

 // send it to the computer as ASCII digits

//33

333

 // subtract the last reading:

 total3= total3 - readings3[index3];

 // read from the sensor:

 readings3[index3] = analogRead(flexpin3);

 // add the reading to the total:

 total3= total3 + readings3[index3];

98

 // advance to the next position in the array:

 index3 = index3 + 1;

 // if we're at the end of the array...

 if (index3 >= numReadings3)

 // ...wrap around to the beginning:

 index3 = 0;

 // calculate the average:

 avg3 = total3 / numReadings3;

 // send it to the computer as ASCII digits

//44

444

 // subtract the last reading:

 total4= total4 - readings4[index4];

 // read from the sensor:

 readings4[index4] = analogRead(potPin);

 // add the reading to the total:

 total4= total4 + readings4[index4];

 // advance to the next position in the array:

 index4 = index4 + 1;

99

 // if we're at the end of the array...

 if (index4 >= numReadings4)

 // ...wrap around to the beginning:

 index4 = 0;

 // calculate the average:

 avg4 = total4 / numReadings4;

 // send it to the computer as ASCII digits

//55

555

 // subtract the last reading:

 total5= total5 - readings5[index5];

 // read from the sensor:

 readings5[index5] = analogRead(potPin2);

 // add the reading to the total:

 total5= total5 + readings5[index5];

 // advance to the next position in the array:

 index5 = index5 + 1;

 // if we're at the end of the array...

 if (index5 >= numReadings5)

 // ...wrap around to the beginning:

100

 index5 = 0;

 // calculate the average:

 avg5 = total5 / numReadings5;

 // send it to the computer as ASCII digits

//66

666

 // subtract the last reading:

 total6= total6 - readings6[index6];

 // read from the sensor:

 readings6[index6] = analogRead(potPin3);

 // add the reading to the total:

 total6= total6 + readings6[index6];

 // advance to the next position in the array:

 index6 = index6 + 1;

 // if we're at the end of the array...

 if (index6 >= numReadings6)

 // ...wrap around to the beginning:

 index6 = 0;

 // calculate the average:

101

 avg6 = total6 / numReadings6;

 // send it to the computer as ASCII digits

//77

777

 // subtract the last reading:

 total7= total7 - readings7[index7];

 // read from the sensor:

 readings7[index7] = analogRead(potPin4);

 // add the reading to the total:

 total7= total7 + readings7[index7];

 // advance to the next position in the array:

 index7 = index7 + 1;

 // if we're at the end of the array...

 if (index7 >= numReadings7)

 // ...wrap around to the beginning:

 index7 = 0;

 // calculate the average:

 avg7 = total7 / numReadings7;

 // send it to the computer as ASCII digits

102

///888

8888

 // subtract the last reading:

 total8= total8 - readings8[index8];

 // read from the sensor:

 readings8[index8] = analogRead(potPin5);

 // add the reading to the total:

 total8= total8 + readings8[index8];

 // advance to the next position in the array:

 index8 = index8 + 1;

 // if we're at the end of the array...

 if (index8 >= numReadings8)

 // ...wrap around to the beginning:

 index8 = 0;

 // calculate the average:

 avg8 = total8 / numReadings8;

 // send it to the computer as ASCII digits

 Serial.print("DATA,TIME,");

 Serial.print(avg); Serial.print(",");

 Serial.print(avg2); Serial.print(",");

103

 Serial.print(avg3); Serial.print(",");

 Serial.print(avg4); Serial.print(",");

 Serial.print(avg5); Serial.print(",");

 Serial.print(avg6); Serial.print(",");

 Serial.print(avg7); Serial.print(",");

 Serial.println(avg8);

delay(100); // wait 100ms between servo updates

}

Custom code used for postures without averaging and includes servo motor control:

#include <Servo.h>

Servo servo1; // servo1 is the first robot finger

Servo servo2; // servo2 is the second robot finger

Servo servo3; // servo3 is the third robot finger

const int flexpin = A0; // flexpin refers to the flex sensor on the index finger on analog

pin 0

const int flexpin2 = A1; // flexpin2 refers to the flex sensor on the index finger on analog

pin 1

const int flexpin3 = A2; // flexpin3 refers to the flex sensor on the middle finger on

analog pin 2

const int potPin = A3; // potPin refers to the potentiometer on the thumb using analog

pin 3

104

const int potPin2 = A4; // potPin2 refers to the potentiometer on the index finger center

using analog pin 4

const int potPin3 = A5; // potPin3 refers to the potentiometer on the index finger tip

using analog pin 5

const int potPin4 = A6; // potPin4 refers to the potentiometer on the middle finger center

using analog pin 6

const int potPin5 = A7; // potPin5 refers to the potentiometer on the middle finger tip

using analog pin 7

 int flexposition = 0; // Input value from the analog pin for the flexsensor on the

thumb

 int flexposition2 = 0; // Input value from the analog pin for the flexsensor on the

index finger

 int flexposition3 = 0; // Input value from the analog pin for the flexsensor on the

middle finger

 int potposition = 0; // Input value from the analog pin for the potentiometer on

the thumb

 int potposition2 = 0; // Input value from the analog pin for the potentiometer on

the index finger center

 int potposition3 = 0; // Input value from the analog pin for the potentiometer on

the index finger tip

 int potposition4 = 0; // Input value from the analog pin for the potentiometer on

the middle finger center

 int potposition5 = 0; // Input value from the analog pin for the potentiometer on

the middle finger tip

 int row = 0;

 int servoposition1; // Output value for servo1

 int servoposition2; // Output value for servo2

105

 int servoposition3; // Output value for servo3

 int average; // average of the thumb sensors

 int average2; // average of the index finger sensors

 int average3; // average of the middle finger sensors

void setup()

{

 Serial.begin(9600); // sets the baud rate at 9600

 Serial.println("CLEARDATA");

Serial.println("LABEL,Time,flexposition,flexposition2,flexposition3,potposition,potposi

tion2,potposition3,potposition4,potposition5");

servo1.attach(9);// servo1 will be connected to output pin 9 on the PWM of the Arduino

Mega

servo2.attach(8);// servo2 will be connected to output pin 8 on the PWM of the Arduino

Mega

servo3.attach(7);// servo3 will be connected to output pin 7 on the PWM of the Arduino

Mega

}

void loop()

{

 int row;

 int flexposition; // Input value from the analog pin for the flexsensor on the

thumb

106

 int flexposition2; // Input value from the analog pin for the flexsensor on the

index finger

 int flexposition3; // Input value from the analog pin for the flexsensor on the

middle finger

 int potposition; // Input value from the analog pin for the potentiometer on the

thumb

 int potposition2; // Input value from the analog pin for the potentiometer on the

index finger center

 int potposition3; // Input value from the analog pin for the potentiometer on the

index finger tip

 int potposition4; // Input value from the analog pin for the potentiometer on the

middle finger center

 int potposition5; // Input value from the analog pin for the potentiometer on the

middle finger tip

 int servoposition1; // Output value for servo1

 int servoposition2; // Output value for servo2

 int servoposition3; // Output value for servo3

 int average; // average of the thumb sensors

 int average2; // average of the index finger sensors

 int average3; // average of the middle finger sensors

// Read the position of the flex sensor (0 to 1023). I have limited the values to make it

more responsive.

 flexposition = analogRead(flexpin);

 flexposition2 = analogRead(flexpin2);

 flexposition3 = analogRead(flexpin3);

 potposition = analogRead(potPin);

107

 potposition2 = analogRead(potPin2);

 potposition3 = analogRead(potPin3);

 potposition4 = analogRead(potPin4);

 potposition5 = analogRead(potPin5);

 average = (flexposition3 + potposition5)/2;

 average2 = (flexposition2 + potposition3 + potposition4)/3;

 average3 = (flexposition + potposition + potposition2)/3;

 servoposition1 = map(average, 768, 797, 180, 0); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition2 = map(average2, 648, 446, 180, 0); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition3 = map(average3, 664, 761, 180, 0); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition1 = constrain(servoposition1, 0, 180); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition2 = constrain(servoposition2, 0, 180); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition3 = constrain(servoposition3, 0, 180); // This maps the rotary

position sensor averages onto the robotic finger

//command the servo to move to the appropriate position:

 servo1.write(servoposition1); // This will move the robotic hand to mimic the

exo-glove finger movement

 servo2.write(servoposition2); // This will move the robotic hand to mimic the

exo-glove finger movement

108

 servo3.write(servoposition3); // This will move the robotic hand to mimic the

exo-glove finger movement

 Serial.print("DATA,TIME,");

 Serial.print(flexposition); Serial.print(",");

 Serial.print(flexposition2); Serial.print(",");

 Serial.print(flexposition3); Serial.print(",");

 Serial.print(potposition); Serial.print(",");

 Serial.print(potposition2); Serial.print(",");

 Serial.print(potposition3); Serial.print(",");

 Serial.print(potposition4); Serial.print(",");

 Serial.println(potposition5);

 row++;

 flexposition++;

 flexposition2++;

 flexposition3++;

 potposition++;

 potposition2++;

 potposition3++;

 potposition4++;

 potposition5++;

 average++;

 average2++;

109

 average3++;

 if (row > 285) // resets the excel data once it has reached 285 rows of acquired data

 {

 row=0;

 Serial.println("ROW,SET,2");

 }

 delay(100); // wait 100ms between servo updates

}

Custom code used for postures with averaging and servo control:

#include <Servo.h>

Servo servo1; // servo1 is the first robot finger

Servo servo2; // servo2 is the second robot finger

Servo servo3; // servo3 is the third robot finger

int flexpin1 = A0;

int flexpin2 = A1;

int flexpin3 = A2;

int potpin1 = A3;

int potpin2 = A4;

int potpin3 = A5;

int potpin4 = A6;

int potpin5 = A7;

110

int flexPin11;

int flexPin12;

int flexPin13;

int flexPin14;

int flexPin15;

int flexPin21;

int flexPin22;

int flexPin23;

int flexPin24;

int flexPin25;

int flexPin31;

int flexPin32;

int flexPin33;

int flexPin34;

int flexPin35;

int potPin11;

int potPin12;

int potPin13;

int potPin14;

int potPin15;

111

int potPin21;

int potPin22;

int potPin23;

int potPin24;

int potPin25;

int potPin31;

int potPin32;

int potPin33;

int potPin34;

int potPin35;

int potPin41;

int potPin42;

int potPin43;

int potPin44;

int potPin45;

int potPin51;

int potPin52;

int potPin53;

int potPin54;

int potPin55;

112

int average1;

int average2;

int average3;

int average4;

int average5;

int average6;

int average7;

int average8;

 int servoposition1; // Output value for servo1

 int servoposition2; // Output value for servo2

 int servoposition3; // Output value for servo3

 int average10; // average of the thumb sensors

 int average11; // average of the index finger sensors

 int average12; // average of the middle finger sensors

int row = 0;

void setup()

{

 Serial.begin(9600);

 Serial.println("CLEARDATA"); // this clears the rows and columns of previous data to

start with new values

113

Serial.println("LABEL,Time,flexpin1,flexpin2,flexpin3,potpin1,potpin2,potpin3,potpin4

,potpin5,"); // LABEL is used to setup the columns with the following headings such as

Time,....

servo1.attach(9);// servo1 will be connected to output pin 9 on the PWM of the Arduino

Mega

servo2.attach(8);// servo2 will be connected to output pin 8 on the PWM of the Arduino

Mega

servo3.attach(7);// servo3 will be connected to output pin 7 on the PWM of the Arduino

Mega

}

void loop()

{

//11

111

 flexPin11 = analogRead(A0);

 delay(10);

 flexPin12 = analogRead(A0);

 delay(10);

 flexPin13 = analogRead(A0);

 delay(10);

 flexPin14 = analogRead(A0);

 delay(10);

 flexPin15 = analogRead(A0);

114

 average1 = (flexPin11 + flexPin12 + flexPin13 + flexPin14 + flexPin15)/5;

//22

222

 flexPin21 = analogRead(A1);

 delay(10);

 flexPin22 = analogRead(A1);

 delay(10);

 flexPin23 = analogRead(A1);

 delay(10);

 flexPin24 = analogRead(A1);

 delay(10);

 flexPin25 = analogRead(A1);

 average2 = (flexPin21 + flexPin22 + flexPin23 + flexPin24 + flexPin25)/5;

//33

333

 flexPin31 = analogRead(A2);

 delay(10);

 flexPin32 = analogRead(A2);

 delay(10);

115

 flexPin33 = analogRead(A2);

 delay(10);

 flexPin34 = analogRead(A2);

 delay(10);

 flexPin35 = analogRead(A2);

 average3 = (flexPin31 + flexPin32 + flexPin33 + flexPin34 + flexPin35)/5;

//44

444

 potPin11 = analogRead(A3);

 delay(10);

 potPin12 = analogRead(A3);

 delay(10);

 potPin13 = analogRead(A3);

 delay(10);

 potPin14 = analogRead(A3);

 delay(10);

 potPin15 = analogRead(A3);

 average4 = (potPin11 + potPin12 + potPin13 + potPin14 + potPin15)/5;

116

//55

555

 potPin21 = analogRead(A4);

 delay(10);

 potPin22 = analogRead(A4);

 delay(10);

 potPin23 = analogRead(A4);

 delay(10);

 potPin24 = analogRead(A4);

 delay(10);

 potPin25 = analogRead(A4);

 average5 = (potPin21 + potPin22 + potPin23 + potPin24 + potPin25)/5;

//66

666

 potPin31 = analogRead(A5);

 delay(10);

 potPin32 = analogRead(A5);

 delay(10);

 potPin33 = analogRead(A5);

 delay(10);

 potPin34 = analogRead(A5);

117

 delay(10);

 potPin35 = analogRead(A5);

 average6 = (potPin31 + potPin32 + potPin33 + potPin34 + potPin35)/5;

//77

777

 potPin41 = analogRead(A6);

 delay(10);

 potPin42 = analogRead(A6);

 delay(10);

 potPin43 = analogRead(A6);

 delay(10);

 potPin44 = analogRead(A6);

 delay(10);

 potPin45 = analogRead(A6);

 average7 = (potPin41 + potPin42 + potPin43 + potPin44 + potPin45)/5;

//88

888

 potPin51 = analogRead(A7);

 delay(10);

118

 potPin52 = analogRead(A7);

 delay(10);

 potPin53 = analogRead(A7);

 delay(10);

 potPin54 = analogRead(A7);

 delay(10);

 potPin55 = analogRead(A7);

 average8 = (potPin51 + potPin52 + potPin53 + potPin54 + potPin55)/5;

 average10 = (average3 + average8)/2; // thumb averaging

 average11 = (average2 + average6 + average7)/3; // index finger averaging

 average12 = (average1 + average4 + average5)/3; // middle finger averaging

 servoposition1 = map(average10, 768, 797, 180, 0); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition2 = map(average11, 648, 446, 180, 0); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition3 = map(average12, 664, 762, 180, 0); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition1 = constrain(servoposition1, 0, 180); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition2 = constrain(servoposition2, 0, 180); // This maps the rotary

position sensor averages onto the robotic finger

 servoposition3 = constrain(servoposition3, 0, 180); // This maps the rotary

position sensor averages onto the robotic finger

119

//command the servo to move to the appropriate position:

 servo1.write(servoposition1); // This will move the robotic hand to mimic the

exo-glove finger movement

 servo2.write(servoposition2); // This will move the robotic hand to mimic the

exo-glove finger movement

 servo3.write(servoposition3); // This will move the robotic hand to mimic the

exo-glove finger movement

 Serial.print("DATA,TIME,");

 Serial.print(average1); Serial.print(",");

 Serial.print(average2); Serial.print(",");

 Serial.print(average3); Serial.print(",");

 Serial.print(average4); Serial.print(",");

 Serial.print(average5); Serial.print(",");

 Serial.print(average6); Serial.print(",");

 Serial.print(average7); Serial.print(",");

 Serial.println(average8);

 row++;

 flexpin1++;

 flexpin2++;

 flexpin3++;

 potpin1++;

 potpin2++;

120

 potpin3++;

 potpin4++;

 potpin5++;

 if (row > 285)

 {

 row=0;

 Serial.println("ROW,SET,2");

 }

 delay(100);

}

