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ABSTRACT 

 

 This thesis provides a representation of a low-cost rigid-frame exoskeleton glove 

that is used to track finger-joint flexion mapped onto a robotic hand to mimic user 

movements. The overall setup consists of an exoskeleton glove (exo-glove), sensors, a 

microcontroller, and a telerobotic hand. The design of the exo-glove is crafted to fit onto a 

left hand. SolidWorks was used for the prototype designs which were then sent to the 

Stratasys 400 rapid prototyping machine to be 3D printed in ABS-M30 plastic.  

 The exo-glove houses five rotary position sensors and three flexible sensors to 

track angle changes of the finger joints from two fingers and a thumb. Five low-pass filters 

are implemented as signal filtering for the rotary position sensors. An Arduino Mega 

microcontroller is connected to the sensors of the exo-glove and processes the input values. 

Using an open-loop controller to control the robotic hand, the values processed by the 

microcontroller from the exo-glove are sent to the servo motors on the robotic hand to 

operate the corresponding fingers of the user.  

 Throughout the initial calibration and testing phase, each sensor was tested 

individually to ensure the sensor functionally performs well. Signal analysis was 

conducted on the sensors at steady state and while in operation to show fluctuations in 

sensor readings and response to finger flexion. Experimental results show that averaging 

sensor data in the processing code yields smoother values and better precision. Due to the 

use of low-pass filtering with the rotary position sensors, the data sets collected were 

grouped together tightly compared to the flex sensors without filtering. However, the 
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actual angles measured were not accurately portrayed in sensor readings. The true flexion 

angles were compared in the data samplings to find a variety of ranges spanning around the 

angles desired to track. Many of the actual flexion angles were offset from the sensor 

readings by a variation of degrees, but the data shows the sensor readings were able to 

follow the general magnitude of the true flexion angles.  

 The precision seen in the data was also apparent in the robotic hand mirroring the 

posture. Changes in sensor readings caused jerking movements to occur in the robotic 

fingers but were able to maintain an overall flexion mirroring of the RF exo-glove. There 

is quarter-second delay between the exo-glove sensor reading and the robotic hand 

mirroring capability when not implementing averaging. When averaging the sensor values, 

there was a delay of more than half a second between the exo-glove posture and robotic 

hand mirroring.   
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CHAPTER I 

INTRODUCTION 

 

 Hand and finger-motion tracking has been researched for years with new 

techniques. The human hand is subjected daily to dexterous use, and as such we rely on 

them to be tough and functional. Unfortunately our hands are not invulnerable to 

damage, and in some cases they need to be rehabilitated to regain their original function. 

In such a case or to prevent possible hand injuries, finger-flexion tracking is required to 

instrument new devices for aid. Tracking the flexion of individual fingers is a tedious 

task that involves precise measurements. Usually an apparatus with sensing capabilities 

is applied to a person’s hand, allowing motion of the fingers to be acquired. The data 

obtained from the motion-tracking devices opened a new way for controlling robotic 

grippers. Early research into telerobotic technology produced robotic hands that were 

tethered to the controller and had only a few degrees of freedom. Recently, necessity to 

have a precise and dexterous robotic hand has brought up new research into human-hand 

mapping with robotic hands.  

 

1.1 Flexion Tracking 

 Movements and flexing of the fingers is known as flexion of the finger joints. A 

human finger has an approximate total flexion range of about 260°, although finger 

joints have varying ranges of motion based on each individual person [1].  
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The finger joints acquainted with flexion are the distal-interphalangeal (DIP) 

joint also referred to as the fingertip joint, proximal-interphalangeal (PIP) joint or center 

joint of the finger, and the metacarpal-phalangeal (MP) joint commonly known as the 

joint of the knuckles [1]. Fig 1.1 shows the human hand flexed to a clenched fist posture 

with the main joints articulated to their flexion positions.  

 

 

Figure 1.1 Finger flexion with joints identified [2] 

 

 

1.2 Methods of Motion Tracking 

 Researchers have used methods for tracking motion ranging from simplistic 

designs to very complex systems. Exoskeleton type devices encompass a certain type 
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which uses external mechanical systems to function. By having the mechanisms outside 

of the device the user can wear the system without intrusive parts. Common mechanical 

designs in use are pivoting joints, slide mechanisms, and multiple linkages [3].  

 Gloves have been developed with flexible sensors integrated into the fingers that 

return changes of values based on the change in resistant across the glove [4]–[7] as seen 

in Fig 1.2. A more complex glove shown in Fig 1.3 uses a uniquely patterned glove that 

is tracked with a computer controlled camera. Using the nearest-neighbor technique, this 

glove can be tracked based on the value changes of the colors nearby [8]. Other methods 

used in finger tracking include: motion-detecting cameras and finger markers [9], light 

sensitive variances [10] and [11], magnetic field distortions [12], piezoelectric effect 

sensors, or optical position sensors [13].  

 

 

Figure 1.2 Soft glove with flexible sensors [7] 
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Figure 1.3 Unique patterned colored glove [8] 

 

 

1.3 Biomimetic Hand 

 Biomimetics in general is known as using biological inspiration for purposes that 

differ from their natural use. The range of bio-inspiration varies from mimicking small 

attributes of biology to entire natural processes. Through many years of existence, 

biological organisms have adapted for survival out of necessity, and as such they prove 

to be an effective solution for certain applications [14]. Mimicking human anatomy is 

seen in many areas from folding limbs on a scissor lift to humanoid robotics. Naturally, 

human hands have highly desirable traits that we would like to mirror in other 

applications. This particular research involves the tracking of human finger joints 

because of the dexterous ability fingers support. In terms of biomimicry, the research 

involved with using human-finger tracking to develop new ideas follows a form and 

functional imitation inspired by observation of the human hand [15].   

 The human hand is often overlooked when a person thinks of the word tool. It is 

an appendage that we use to great extent and allows us to live our lives the way we do. 
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There are 23 degrees of freedom (DOFs) in the human hand allowing for excellent 

dexterity for complex movements. The human hand is composed of a thumb, index, 

middle, ring, and little finger. Based on the common physical shape of a human’s hand, 

the rigid-frame exoskeleton glove (RF exo-glove) was designed to fit snugly onto a left 

hand. Human hands are very dexterous and well equipped to perform tedious tasks, the 

RF exo-glove will be unable to fully match the DOFs, rather it provides the basic 

movement a person would normally execute upon flexion. 

 
1.4 Applications of Finger Tracking 

 Many applications in various fields make use of telerobotic controlled hand 

tracking technology. Possible fields in which this thesis can be traced to include: general 

robotics, military, medical, and hazardous environments.   

 

 1.4.1 Rehabilitation 

 Diminished hand and finger control gives the need for devices that can aid in 

rehabilitation for the patient. However, simply understanding and tracking progress in 

finger-joint angles is the start for future development in this area [16]. Finger 

rehabilitation occurs over several months with physical therapists assisting the patient in 

joint movement. During these visits from the physical therapist, each session is charged 

usually to the patient or insurance company adding up to a very costly rehabilitation [3]. 
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Various devices used in the medical field are designed to aid victims of traumatic 

events, such as strokes, become rehabilitated [7]. Fig 1.4 shows a late model hand device 

developed by Kaiser Medical Inc. for patients requiring therapy for their hands [17]. 

This glove promotes the healing process for post-surgery finger joints by repeatedly 

moving the patient’s fingers through a certain range. Correspondingly, data from the 

finger flexion tracking of the RF exo-glove can be used by doctors to provide useful 

information on the progress the patient is making [18]. The resulting changes in data 

from the RF exo-glove can show if progress in flexion is achieved.  

Figure 1.4 XT DigiGlide glove for rehabilitation [17] 

Passive finger joint tracking, such as the RF exo-glove, holds merit for the users 

that have movement and pain sensitivities in their fingers or hands. Due to the lack of 

force-actuating systems in passive devices, they weigh less and are easier to use 

compared to active-controlled devices like the XT DigiGlide glove [19]. 
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1.4.2 Robotics 

Robotic grippers and semi-dexterous hands have been in service in the industry 

for decades. Fig 1.5 shows a three-fingered robotic-gripper attached to a mechanical arm 

used for grasping objects that may weigh more than an average person can carry. Many 

of these grippers and hands are used in hazardous environments such as highly toxic 

locations and can be controlled using a finger tracking method. With the recent influx of 

robotic hand applications spanning from military functions to the medical field, the need 

for precise robotic-hand control is inevitable. In some cases, the operator for these 

robotic devices cannot be in the same location due to constraints or harmful scenarios 

that could arise. These types of situations make use of telerobotics. 

Figure 1.5 Robotic gripper attached to mechanical arm [20] 
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Telerobotics is a way for people to operate mechanical systems or robots from a 

remote location. Typically, telerobotics is used for operation in hazardous environments 

and places that would potentially be dangerous to life. A few applications for industrial 

use telerobotics include space exploration, extreme pressure environments, bomb 

disposal and handling, and chemical exposed areas. In order to use a telerobotic system, 

there must be a human-interface mechanism that communicates with the remote system 

to be operated. The control method for the human-operation mechanism varies based on 

the application and function of the telerobotic device to be operated. Control methods 

can involve traditional methods such as a typical control module with buttons and 

joysticks; however, using a human to interface with the telerobotic system sometimes 

requires more sophisticated controllers. Such controllers may use haptic feedback, 

optical tracking, voice commands, interactive sensors, or digitally rendered 

environments [21]. 

One field of telerobotics is in medical applications. Telemedicine and telesurgery 

allows patients to be monitored and cared for in their own homes or away from medical 

facilities [22]. People with little hand mobility or low strength could use a telerobotic 

hand to help grasp objects which may be out of their abilities [23]. Currently in the 

medical field there is a surgical robot named the da Vinci Surgical System seen in Fig 

1.6, which is controlled remotely by the surgeon replicating their exact movements. 
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Figure 1.6 da Vinci surgical robot and surgeon [24] 

1.4.3 Heavy Equipment 

An alternative use for mapping hand movement in the industrial world would be 

in the use of tractor operation. There are several tractors that use a claw or multiple-

limbed mechanisms to pick up objects such as the claw mechanism seen in Fig 1.7. 

Typically, a tractor operator must receive training and become proficient with the heavy 

machinery before they can perform such tasks. These industrial machines could greatly 

benefit their operators by reducing the learning curve and time to train for operation. 

Simple motions done every day such as attempting to grasp an object would directly 

translate to the use of the control system for operating these tractors. 
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Figure 1.7 Crane machine with claw mechanism [25] 

1.5 Contributions of Thesis 

This thesis was created to contribute experimental results for a new design of a 

finger joint flexion RF exo-glove. Most finger-flexion-tracking devices use a flexible 

glove substrate to house the tracking sensors. My research has shown a niche in 

experimentation done in the field of finger-joint flexion-tracking methods regarding the 

shape distortion caused by human fingers. Each design that used a flexible sensor on an 

amorphous glove did not take into account the slight transverse bending of the sensor 

across the finger. The distorted part of the sensor that is unaccounted for is very 

minuscule. Over many attempts of repeating the experiment, however fatigue may have 

affected the sensor readings. The RF exo-glove uses a rigid frame to maintain a 

controlled and repeatable position for the tracking sensors to adhere to. 
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The RF exo-glove shares some commonality with other finger-tracking gloves. 

Although there may be a variety of reasons for their creation, the similarity shared is the 

desire to track hand or finger motion. The DHM glove [6] and NeuroAssess glove [7] 

utilize potentiometer bend sensors similar to the ones in the RF exo-glove. Additionally, 

just as the RF exo-glove was designed to track finger flexion, so were the DHM glove, 

NeuroAssess glove, and SmartGlove [13]. Tracking the flexion of the thumb was not 

seen in all of these devices but was involved with the DHM glove, SmartGlove, 

NeuroAssess glove, and Color glove [8]. Sensor placement for the RF exo-glove occurs 

above the finger joints for the flex sensors. This was also the sensor positioning for the 

DHM glove, NeuroAssess glove, SmartGlove, and augmented-environment project 

device. 

My decision to design the RF exo-glove was to create a unique device that had 

not been tested. In comparison to the previously mentioned devices, the RF exo-glove 

uses rotary position sensors and flex sensors rather than only a single type of sensors. 

Finger tracking in an augmented-environment was done using retroreflective markers 

[11]. The colored-glove experiment uses a unique patterned color glove for tracking. 

SmartGlove uses sliding optical encoders. Magnetic hand tracking uses magneto-

resistive tracking [12]. 

Each experimental finger-tracking device was created with a certain number of 

DOFs and sensors. There are 8 DOFs on the RF exo-glove using 8 sensors. The DHM 

glove has 10 DOFs using 10 sensors. The augmented-environment project used 4 sensors 
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and had 6 DOFs. The color glove did not use sensors but was able to replicate 26 DOFs 

for a 3D model. 

The RF exo-glove was designed for finger-flexion tracking. However, several 

devices designed for hand-tracking were intended for other uses. The augmented-

environment glove and color-glove were designed for virtual reality, and the magnetic 

hand tracking prototype was designed for machine interaction similar to the function of a 

mouse. 

The most discernible difference between the RF exo-glove presented here-in and 

the other tracking devices is the rigid base and structural components. As stated, many of 

the previously published researched gloves that did not use a camera or external tracking 

system were bound with sensors above the finger joints. The RF exo-glove uses sensors 

adjacent to the finger joint with the exception of the MP joint (knuckles) that has sensors 

positioned above the finger. This unique design will allow for new research areas in 

finger-flexion tracking. 

1.6 Overview of Thesis 

This thesis begins with the first chapter, giving an introduction to finger-flexion 

tracking and applications. This introduction will cover methods that have been 

researched and provide examples of current implementations of the topic. 
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In the second chapter, the experimental operation is discussed. This chapter reviews 

the conceptual design of the RF exo-glove, components, hardware, and wiring diagram. 

Features and constraints of the RF exo-glove and robotic hand are conferred with visual 

diagrams. The entire setup can be seen in Fig. 1.8. 

The third chapter covers the calibration methods used to gather initial data from 

the sensors. This chapter consists of three sections   one section covers the calibration of 

the rotary position sensors, another for the calibration of the flex sensors, and the last 

section comparing data of the two types of sensors. 

The fourth chapter details the experimental results and analysis. There are three 

individual sections in this chapter covering the data acquired from four positions with 

the RF exo-glove. The overall results are displayed for the RF exo-glove with the 

inclusion of the transmission of flexion angles onto the robotic hand. 

The final chapter entails the conclusions of the thesis and provides an insight of 

the experiment with remarks for improvements. 
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Figure 1.8 Complete setup of RF exo-glove, robotic hand, and electronic system 
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CHAPTER II 

EXPERIMENTAL CONCEPT 

2.1 Conceptual Design 

The RF exo-glove seen in Fig. 2.1 consists of two fingers and a thumb. Each 

finger is comprised of three parts with the fingertip and center joint modified to 

accommodate the rotary position sensors. The thumb consists of two parts with the 

thumb tip similarly modified to accommodate a rotary position sensor. Each finger and 

the thumb have the knuckle-conjoining section modified on top to allow a flex sensor to 

lie completely flat across. There are three sectional joints for allowing the thumb to 

move more freely just as natural movement would occur. Finally, the RF exo-glove has a 

base for the hand that ties in all of the finger and thumb joints. There are a total of 12 

parts that make up the RF exo-glove mechanical assembly which has an overall length of 

19.8 cm. Part dimensions in appendix C. 

Figure 2.1 RF exo-glove 

Flex 

sensors 

Rotary 

position 

sensors 
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The design of the RF exo-glove was steered to the final concept by previous 

flexion-tracking research methods. With the same intent as Yamaura et al. [3], this 

research project was developed to provide experimental data for a device that could 

possibly be used to supplement the need for a physical therapist to assist a patient in 

rehabilitation. The prototype developed in this research was not designed to be the 

physical therapist replacement mentioned but rather demonstrate the base for such a 

device and show how finger flexion data can be used. Looking at the devices created by 

Lee and Cho [26] and others in the area, these prototypes were designed to actuate a 

force onto the user’s fingers to assist in physical therapy. The RF exo-glove in this 

experiment was designed to measure the joint angle rather than manipulate the user’s 

fingers. Improvement in joint-angle data would allow for more precise and accurate 

devices to aid in physical therapy for finger rehabilitation [26]. 

As stated in [27], optical hand tracking is far more complex and variably 

involved. One major drawback or difficult-to-control variable is the variance in light and 

contrast used when tracking such motions. Textures of the objects being tracked often 

change when flexed, causing the light which is reflected off to vary. Just as Ghosh 

proposed to introduce an alternative to optical hand tracking this experiment provides a 

mechanical design used in tracking finger flexion. 

The RF exo-glove provides a rigid platform to replicate the experimental result 

with precision and accuracy. Similarly to how the exoskeleton glove by Noaman et al. 

[6] was fabricated to be a medium between the user and the sensors, my RF exo-glove 

was designed to hold each sensor in place for flexion readings. Guo and Nguyen [9] 
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proposed to use multiple methods in combination for hand tracking leading to the RF 

exo-glove combining the use of rotary position sensors and flexible sensors attached to a 

RF exo-glove for improved precision. Differing from Guo et al. [9], the tracking of an 

entire hand is not part of this experiment and therefore is beyond the scope of this thesis. 

Research into previous finger tracking methods has inspired my design to use 

rotary sensors along the exoskeleton glove to track joint flexion of the DIP joint 

(fingertip joint) and PIP joint (center joint of the finger). The rotary position sensors 

used were applied onto a small rectangular piece of printed circuit board (PCB) and 

soldered to ribbon wire seen in Fig. 2.2. The resulting product allowed the rotary 

position sensors to be mounted onto the RF exo-glove while maintaining a solid signal 

connection. 

Figure 2.2 Bourns rotary position sensor mounted onto a custom PCB 
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  To track finger joint flexion through the knuckles, the RF exo-glove consists of 

flexible sensors attached to hand body of the design. Flexible sensors (or flex sensors for 

short) are used across the MP joint on top of the exoskeleton glove. Contrary to the term 

“flex sensor” used in this thesis and in [6], the flex sensors used in this thesis vary 

resistivity when the sensor is bent causing a drop in resistivity due to the ink on the 

sensor. The flex sensors used in [6] operate by using a small movable sensor over the 

flexible base to track changes in resistivity. To implement the RF exo-glove and the flex 

sensors, a soft fiber cloth was used to keep the sensors aligned throughout the flexion 

process while preventing the resistive ink on the surface of the flex sensor from damage. 

Each flex sensor is held in place on the finger by the connecting end tabs with the 

opposite ends free to translate across the back of the RF exo-glove fingers shown in Fig. 

2.3.  

  

Fixed end of 

flex sensor 

Translating of flex 

sensor 

Figure 2.3 Flex sensor mounted on RF exo-glove 
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As shown in Fig. 2.4, only two fingers and the thumb are used in my RF exo-

glove to reduce possible errors from hardware limitations and constraints. The 

limitations of the RF exo-glove design lay with the bulkiness of the components. Using 

two more fingers with this design would cause collision interference between the 

adjacent fingers particularly at the pivot points. Any collisions of the RF exo-glove 

finger joints could adversely affect the sensor data leading to highly mixed results. 

Ghosh’s thesis [27] discusses the notion of tracking all joints in the hand that requires a 

high level of precision to track the motion of the bulk part of the hand.  The basic design 

shown here in Fig. 2.4 represents the limited finger joints that are tracked in the exo-

glove. The numbered links are the joints of the hand which the joint tracking follows 

while the remaining links show the other fingers of the human hand but are not used in 

flexion tracking for this experiment. The limited flexion tracking reduces the dexterous 

ability of the mimicking robotic hand, however, it does allow for the minimum necessary 

amount of fingers for complex grasping. As stated in Ghosh’s thesis [27], humans can 

manipulate objects while using great dexterity requiring very little thought. 
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Distal Interphalangeal (DIP) 

Proximal Interphalangeal (PIP) 

Metacarpal Phalangeal (MP) 1 

3 

5 

2 

4 

8 

7 

6 

Active fingers being tracked  

Fingers not tracked  

  

 
 

1
9
.8

 c
m

 
 

   

The range of sensors in Fig 2.4 for 1–3 represent the flex sensors while 4-8 represent 

the rotary position sensors. The sensor numbers are assigned accordingly: 

Figure 2.4 Active finger joints tracked 
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1. Middle finger MP 5. Middle finger PIP

2. Index finger MP 6. Index finger DIP

3. Thumb MP 7. Index finger PIP

4. Middle finger DIP 8. Thumb DIP

2.2 RF Exo-Glove Features 

The design was implemented to encase my own hand in an exoskeleton glove 

that could house rotary sensors and flex sensors for flexion tracking. The RF exo-glove 

is made using a base housing that connects all pivoting parts. There are three joints used 

to support sensors for tracking MP joints and two separate joints for sensors on the PIP 

joints. The thumb does not have a PIP joint, there are only two for the remaining fingers 

used. There are also three joints to support sensors tracking the DIP joints. Each finger 

joint was designed with two protruding edges used to hold the rotary position sensors in 

place parallel to my fingers. The knuckle-conjoining section of the RF exo-glove seen in 

Fig. 2.5 was designed to have a flat parallel surface to the base of the RF exo-glove in 

order to retain the flex sensors in their equilibrium state. The angle  is the difference 

between the actual finger and the top of the RF exo-glove which has the flex sensor. This 

angle is consistent throughout the RF exo-glove allowing the sensor values to be 

obtained directly without any offset required. Since the thumb, middle, and index fingers 

are being tracked, the RF exo-glove has a total of eight DOFs. 
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Figure 2.5 RF exo-glove finger relative to flex sensor angle  

 

 

 2.2.1 Fabrication  

 Measurements of my left hand were taken, and a SolidWorks CAD model was 

created using the measurements to form an exoskeleton glove with DOFs. The 

SolidWorks model was then fabricated using a Stratasys 400 Rapid Prototyper with 

ABS-M30 plastic for a sturdy prototype. The Stratasys 400 Rapid Prototyper has a 

resolution of ±0.127 mm (±0.005 in) resulting in fine and smooth fitting parts. 

 

2.3 Hardware and Components   

The RF exo-glove experiment is made up of various components and hardware 

used to gather data for finger flexion. Basic components used were resistors, capacitors, 

an assortment of wires, PCB, and protective tubing. The following section will discuss 

the major components used in the research.  

 

Base of 

exo-glove 

    Ω Finger 

Exo-glove finger sections 
Flex sensor 
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Ground 

Wiper 

Positive voltage 

 2.3.1 Rotary Position Sensors 

The sensors integrated into the RF exo-glove include five 3382G Bourns rotary 

position sensors that operate in a similar manner to a potentiometer. There are three 

connections on the sensor used for operation. Fig. 2.6 displays the connection tab 

functions for the rotary position sensor. The two outer edge connections are used for 

ground and positive voltage while the middle connection is the wiper that gives the value 

of the sensor reading.   

 

 

 

Figure 2.6 3382G Bourns rotary position sensor 

 

 

 2.3.2 Flex Sensors 

 Fig. 2.7 shows an example of the three Spectra Symbol flex sensors used on the 

RF exo-glove for knuckle flexion. Each flex sensor used had an effective sensor length 

of 2.2 inches with a normal flat resistance of 25 k. There are only two connection tabs 

on the flex sensors for a power supply input and ground. 



24 

Ground tab 

Power supply tab 

2.3.3 Arduino Mega Microcontroller 

The microcontroller used in the system was an Arduino Mega 2560 displayed in 

Fig. 2.8. This microcontroller has a serial port component built onto the board allowing 

direct communication to a computer using a universal serial bus (USB) cable. Since the 

sensors used in this experiment are analog, conversion from analog to digital signals 

need to be processed. The analog to digital converter (ADC) built on the Arduino Mega 

has a 10 bit resolution giving values from 0 to 1023.  

Figure 2.8 Arduino Mega 2560 

Figure 2.7 Spectra Symbol flex sensor 
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 2.3.4 Low-Pass Filter  

 Five anti-aliasing low pass filters (LPFs) were designed and implemented with 

the rotary position sensors to reduce the rapid fluctuation of the sensor reading. The 

LPFs were designed to only allow signals below a cutoff frequency to pass through 

while rejecting all others above it. The circuit designed is an active LPF utilizing a 

UA741CP operational amplifier (Op Amp), 1-kΩ resistors, and 100-pF capacitors. The 

effective filter operates at about half the noise frequency seen from the sensors allowing 

the signal through the sensor to pass without ever reaching the noise frequency.  

 The design for the LPF was dictated by the distortion found in the sensors. Each 

rotary position sensor was analyzed with an oscilloscope to find the noise frequency 

exhibited by the sensor. All sensors tested experienced the same noise frequency 

resulting in five identical low pass filters being created.  

 The noise frequency exhibited by each sensor was approximately 2.05 MHz. To 

have an effective filter I decided to limit the passing frequencies to 75% of the noise 

frequency giving the cutoff frequency of            . I chose capacitors, C = 100-pF 

to use in my circuit and using the cutoff frequency I used the following equation (2.1) to 

find the resistor values. 

       
 

          
 

This equation gave a resistor value of 1030 Ω and thus 1-kΩ resistors were chosen to be 

used. Once the filter was complete, a simple Arduino sketch was used to test the 

(2.1) 
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effectiveness of the LPF circuit on the sensor data values. As expected, the hardware 

noise filtering was able to cut the fluctuation of data values considerably giving smooth 

data points. 

 

  

Figure 2.9 Low pass filters 

  

2.3.5 Component Cost 

 The major components used for the RF exo-glove can be seen in Table 2.1. The 

3D printed parts were made using the university’s rapid prototyper at no cost.  
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Table 2.1 Component Cost 

Description/Quantity Price per each item ($) Price for quantity ($) 

10 x 100-pF Capacitors 0.03 0.30 

10 x 1-kΩ Resistors 0.13 1.30 

3 x 10-kΩ Resistors 0.10 0.30 

5 x UA741CP Op Amp 0.55 2.75 

3 x 2.2” Flex Sensors 7.95 23.85 

5 x Rotary Position Sensors 2.60 13.00 

Arduino Mega Microcontroller No cost/39.54 - 

3D Printed Parts No cost - 

Total $ 41.50 

 With a total of $41.50 for all major components needed, this RF exo-glove has a 

relatively low cost to assemble. Comparing other flexion tracking gloves to this total 

cost, the price for components used here under-cuts various designs by quite a margin. 

For example, [7] uses a glove with six flex sensors which may be similar to the ones 

used in this experiment which alone would cost around $47.70. 
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2.4 Component Wiring  

 

The block diagram in Fig. 2.10 shows the basic connection setup of the Arduino 

Mega microcontroller with the components that make up each finger of the RF exo-

glove and robotic hand. The flex sensors and rotary position sensors are grouped 

together within a box representing the RF exo-glove. There is also a box labeled 

“Robotic Hand” that groups the servo motors that are used for the finger motion of the 

hand. Each sensor is connected to the analog input pins of the microcontroller while the 

servos are connected to the pulse-width-modulation (PWM) pins used for digital output. 

 

 

Figure 2.10 Block diagram of electronic component systems 
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2.4.1 Rotary Position Sensor Circuit 

The circuit for the rotary position sensors is very simple and seen in Fig. 2.11. 

This sensor acts as a potentiometer varying resistance when turned. There are three 

connection tabs used for operation with one tab connecting to ground and the opposite 

end tab connected to the LPF circuit. The center tab or wiper is connected to the Arduino 

Mega using an onboard analog pin. 

Figure 2.11 Rotary position sensor circuit diagram 

2.4.2 Flex-Sensor Circuit 

The flex sensor circuit shown in Fig. 2.12 is simple but involves an additional 

pull up resistor. The flex sensor itself varies in resistance similar to a potentiometer. A 

10 kΩ resistor is connected to one tab on the flex sensor and a 6-V power supply shown 

as Vcc. Between the junction of the flex sensor and resistor, the signal connection is 

made with the Arduino Mega using one of the onboard analog pins. The last remaining 

tab of the flex sensor is connected to ground. 
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Figure 2.12 Flex-sensor circuit diagram 

 

 2.4.3 LPF Circuit 

 In the LPF circuit shown in Fig. 2.13 Cl and C2 consist of 100-pF capacitors 

while R1 and R2 consist of 1-kΩ resistors. The operational amplifier used to make this 

active filter is a UA741CP. An external power supply of 9-V is used to power the Op 

Amp and there is a 5-V input at Vin passing through the filter circuit.   

 

 

Figure 2.13 LPF circuit diagram 
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2.4.4 Robotic Finger Servo Motor Circuit 

Fig. 2.14 shows the servo motor’s internal circuitry and connection with the 

Arduino Mega. The servo motors used to animate the robotic fingers have built-in 

potentiometers and error-detecting amplifiers to determine when the motor has achieved 

the desired position. A 5-V power supply powers the motor. The signal connection of the 

motor is attached to the PWM pin of the Arduino Mega to communicate the angles 

necessary to mirror the RF exo-glove finger flexion. 

Figure 2.14 Servo motor circuit diagram 
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Robotic finger 

Robotic hand 

base 

Figure 2.15 Robotic hand 

      2.5 Telerobotic Hand 

 A robotic hand seen in Fig. 2.15 was created for this experiment to demonstrate 

how the flexion data can be used in robotic applications. This telerobotic hand is 

controlled directly through the Arduino Mega by the flexion data received from the RF 

exo-glove allowing it to mimic finger flexion.   

  

 

 

 2.5.1 Features 

 The robotic hand is made up of three 3D printed base housings for servo motors 

and three 3D printed fingers each consisting of three-finger sections. Each base was 

designed to pivot at the adjoining connection point giving the robotic hand multiple 

grasping functions as in Figs. 2.16 and 2.17. Each base has the capability to become 
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separated from each other allowing the fingers to be operated as standalone robotic 

finger mechanisms. 

Figure 2.16 Top view of robotic hand with base pivoted outwards 

Figure 2.17 Top view of robotic hand in initial position 



 

 

34 

 

Each robotic finger is made up of a DIP joint (fingertip), PIP joint (center of the 

finger), and a MP joint (knuckles). All three fingers were made identical including the 

thumb. The human thumb is only comprised of two joints whereas for this application, 

symmetry was desired to show the robotic hand functioning similarly in any directional 

position. Standard Radioshack servos in Fig. 2.18 were used to operate the robotic 

fingers. These servo motors provided sufficient torque and speed to mirror the flexion of 

the RF exo-glove.  

 

 

Figure 2.18 Standard servo [28] 

 

Each robotic finger is operated by a series of pulleys and guides that is tensioned 

by a servo motor shown in Fig. 2.19. There are five pulleys, three springs, and one cable 

in each robotic finger assembly. With this simplified design, a single motor controls the 

flexion of the finger allowing for a single DOF.  If two more motors are added per finger 

we can achieve control for each individual joint of the robotic finger. As seen in the 
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figure, when the cable is not in tension the springs will hold the robotic finger in a 

vertical position causing the robotic hand to be open. The motor is then operated to 

tension the cable and overcome the spring force causing the robotic hand to close.  

 

 

 

Figure 2.19 Robotic-finger operation mechanism 

 

 

Relaxed robotic finger Flexed robotic finger 

Cable 

Pivot 

Pulley/guide 

Spring 

Base Base 

Motor Motor 
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2.5.2 Constraints 

Unlike the eight individual finger joint DOFs seen in the RF exo-glove, the 

robotic hand has only a single DOF per finger. This constraint of the robotic hand limits 

the precision of the imitation from the RF exo-glove. However, based on values received 

for each individual finger of the RF exo-glove, the robotic fingers use an algorithm to 

achieve a similar result. Each finger joint angle was measured at the maximum flexion 

achieved amongst all postures tested. The combination of the finger joint angles for each 

finger and thumb at maximum flexion were set to be the mapping value to the servo 

motors in the robotic hand. 

      2.6 Mapping the RF Exo-glove to the Robotic Hand 

An open loop controller is the backbone of the RF exo-glove and robotic hand 

integration. A flowchart in Fig. 2.20 shows the basic operations which take place in the 

experiment. The setup used in the experimentation uses the human hand as the input in 

conjunction with the rotary position and flex sensors to relay their signals to the 

microcontroller. The microcontroller then processes the input values and maps them to 

the corresponding finger joints in the robotic hand. During this process, values 

interpreted by the microcontroller for each finger are reduced from individual multiple 

DOFs, seen in the RF exo-glove, to a single DOF on the robotic hand finger. The 

encoders in the servos give feedback to the internal circuitry when the desired position 

has been achieved. 
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Figure 2.20 Flowchart of operation for RF exo-glove and robotic hand 
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CHAPTER III 

SENSOR CALIBRATION  

 

Before the experiment was performed, each sensor was subjected to calibration. 

This calibration test was done to reduce fluctuations in data and set initial reference 

points to track finger flexion.  

 

      3.1 Rotary Position Sensors 

Initial readings taken from the Arduino serial monitor for the rotary position 

sensors showed rapidly fluctuating signals within a range of five digits. In order to 

process these fluctuating signals obtained from the sensors, an algorithm was 

implemented into the Arduino code that averages the sampled data for every 10 

readings. This averaging algorithm allowed the values to be read by observation and 

improved the accuracy of the sensor reading by reducing the effect of outlier data points. 

 

 3.1.1 Calibration Testing 

The rotary position sensors on the RF exo-glove vary in values observed due to 

the position and orientation they were mounted. No two rotary position sensors were in 

identical situations thus giving unique values for each sensor. Fig. 3.1 shows the RF exo-

glove with two rotary position sensors on the middle finger facing opposite of the index 

finger sensors in Fig. 3.2. This change in orientation is due to the constraints on the RF 
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exo-glove that allows room for the sensors to pass in proximity to the neighboring 

finger.  

 

Figure 3.1 RF exo-glove middle finger 

 

 

Figure 3.2 RF exo-glove thumb and index finger 
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Each rotary position sensor was measured individually using the Arduino serial 

monitor to obtain values with a constant power supply input voltage of 5-V. The rotary 

sensors were rotated from a 0° finger joint angle to 90° as seen in Fig. 3.3.  

 

 
 

Figure 3.3 Rotary position sensor at 90 angle 
 

 

The values from the serial monitor were returned as bits ranging from 0 to 1023 

due to the built-in 10 bit ADC onboard the Arduino Mega. Based on the values obtained 

from the rotary position sensors, the fluctuation was obtained using the following 

formulas:  

            
              

                           
  

  

      
   

 

Changes in bits for the equilibrium state ( BES) at 0 and 90 for each sensor was 

recorded and integrated into the fluctuation formula. 

 

90 

(3.1) 
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 In Table 3.1, the results of the rotary position calibration testing is shown.  Two 

hundred and fifty data points were taken for each sensor during 25 seconds at 

equilibrium. Each sensor had at least one bit of fluctuation when tested at equilibrium 

while three sensors were shown with two bits of fluctuation.  

 

Table 3.1 Rotary Position Sensor Calibration Results 

 
Middle 

Finger 

DIP 

Middle 

Finger 

PIP 

Index 

Finger 

DIP 

Index 

Finger 

PIP 

Thumb 

DIP 

 Fluctuation of bits at 

equilibrium (    ) 
±2 ±2 ±1 ±1 ±2 

Bit value at 0° 585 523 573 598 648 

Bit value at 90° 374 305 852 845 857 

       211 218 279 247 208 

Degrees of 

fluctuation 
0.852 0.826 0.323 0.364 0.862 

Resolution (°/bit) 0.426 0.413 0.323 0.364 0.431 

 

 Comparing the rotary position sensors at 0 and 90 orientations, it is shown that 

sensor values for the middle finger experience a drop in bit values. This is caused by the 

orientation of the sensors on the RF exo-glove being mounted in an opposite manner 

compared to the remaining rotary position sensors.    

 

(3.2) 
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3.2 Flex Sensors 

Each of the three flex sensors used in this experiment was subjected to a 

calibration test before experimentation. As previously stated, the values obtained 

through the serial monitor were averaged for every 10 readings.    

  

 3.2.1 Calibration 

 Each flex sensor was measured individually using a multimeter and the serial 

monitor of the Arduino software. The Arduino Mega microcontroller was powered at 5-

V from an external power supply. To conduct the calibration process, each flex sensor 

was placed completely flat on a smooth surface and had a small block with a flat surface 

placed on top of the sensor. The values of the flex sensors were measured once 

completely flat shown in Table. 3.2. Flex sensor 3 has an equilibrium resistance of over 

5-k more than Flex sensors 1 and 2 causing its sensitivity to change.  

 

Table 3.2 Flex Sensor Measurements 

 
Flex sensor multimeter 

values (kΩ) 
Serial monitor values (bits) 

 Flex sensor 1 24.05 837 

Flex sensor 2 24.33 822 

Flex sensor 3 29.68 888 

 

  Immediately after the flat measurements were taken, each flex sensor was bent in 

a 90° angle as in Fig. 3.4 and data was again acquired using the Arduino serial monitor. 
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Figure 3.4 Flex sensor bent 90 

 

Using the same equations as used for the rotary position sensors, fluctuation 

results were obtained. Table 3.3 shows the calibration results for the flex sensors used 

over the knuckle of the RF exo-glove. Each flex sensor had one bit of fluctuation in the 

bit values received.  

 

Table 3.3 Flex Sensor Calibration Results 

 
Middle 

Finger MP 

Index 

Finger MP 

Thumb 

MP 

 Fluctuation of bits at 

equilibrium (    ) 
±1 ±1 ±1 

Bit value at 0° 837 822 888 

Bit value at 90° 660 568 737 

       177 234 151 

Degrees of fluctuation 0.510 0.385 0.597 

Resolution (°/bit) 0.510 0.385 0.597 
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Comparing the bit values of the flex sensors at 0 and 90 orientations, we can 

see that the flex sensor of the index MP joint has the best resolution amongst the three 

sensors. All three flex sensors had bit values in the eight hundreds but were no identical. 

There was a 66 bit difference between the highest and lowest flex sensor at 0°. 

  

 

3.3 Signal Analysis 

 A signal analysis was conducted on both flex and rotary position sensors while at 

steady state and in the process of being flexed. The flex sensors used in this calibration 

test were bent 50° and the rotary position sensors were rotated 40°. Each of the 

following signal analysis graphs was conducted over five seconds to demonstrate the 

different rates of sensor value readings. During these five second data gatherings, 40 

data points were acquired without using averaging and during times using the LPFs. 

When averaging was used, only 16 data points were collected due to the delay in 

response time.   

 

 3.3.1 Steady-State Signals 

 Steady-state signal analysis was implemented to acquire fluctuation of the sensor 

data while at rest or without flexion. In Fig. 3.5 we have a plot of the steady state values 

of the flex sensors with and without averaging. The averaged data clearly has fewer 

fluctuations than the data without averaging. A majority of the data points for both 

signals remained at 0° with the averaged sample showing 61.1% less fluctuation. 
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However, using the averaging code to reduce fluctuations caused the fewer fluctuations 

to increase in flexion angle by 0.053° over the non-averaged data. It is apparent though 

that the averaged data exhibited the fluctuations during the first half of the data sample 

only, whereas the sample without averaging had fluctuations throughout the plot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Steady-state signals of flex sensors 

 

 In Fig. 3.6 the plot shows the rotary position sensor signals obtained without 

averaging, with averaging, and using the LPFs. With the rotary position sensors, we 

can see a reduction in data fluctuations when using averaging and LPFs compared to 

the data that were not averaged. Compared directly to the data sample without 
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averaging, there was a 72.3% decrease in fluctuations while using LPFs and a 100% 

decrease in fluctuations using averaging. Once again, there was a trade off in the 

degree of flexion angle seen when reducing the amount of fluctuations. Using LPFs 

caused the flexion angle of fluctuations to increase by 0.227° over the non-averaged 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Steady-state signals of rotary position sensors 
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 3.3.2 Flexion Signals 

 A test for sensor flexion signals was conducted to demonstrate the sensor’s 

response to flexion from the initial relaxed position to the rotated orientation and 

returned back to the relaxed position.   

 In Fig. 3.7 the plot shows the response of the flex sensor with and without 

averaging. The data set without averaging has immediate leaps in flexion angle as well 

as a small negative slope a third of the way through the plot. Using averaging creates a 

smoother and gradual transition to the peak angle and return. However, there 

considerably less data points involved which causes sudden jumps in values from one 

data point to the next. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Signal of flex sensor while bent 
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 Fig. 3.8 shows the plot of the rotary position sensors while being rotated without 

averaging, with averaging, and while using LPFs. Without averaging we have a plot 

similar to the results of the flex sensor testing. There is a sudden leap of values rising to 

the peak along with a negative slope in the flexion angle one third of the way through the 

plot. Using LPFs and averaging give similar results to one another. There are some 

points in the plot that are not as consistent in the slope as other parts but overall the 

averaging, and the LPF data were able to show better signal response throughout the 

plot.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Signal of rotary position sensors while rotated 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

 

 After the intermediate calibration was complete, the flex sensors wee placed into 

the RF exo-glove pockets created to house the flex sensors and the rotary position 

sensors placed into their appropriate positions. The low pass circuit was connected to the 

rotary position sensors and external power supplies were attached. To begin the initial 

testing phase, each finger joint was flexed around the knuckle and measured using the 

Arduino serial monitor.  

 

      4.1 Experimental Testing 

In Fig. 4.1 we can see each finger joint has the flexion angle measured against 

the previous finger joint or base of the hand. Angle  is the change in angle from the 

initial position of the finger at rest to the final position where the finger completes 

flexion. Essentially,  corresponds to the flex sensor values for the finger with respect to 

the knuckle.  

Since the finger joints farthest away from the hand use rotary position sensors, 

the angles measured are taken from the revolute point of the finger joints in the center of 

the joint. Angles α and β are the flexion angles of the RF exo-glove center finger section 

and fingertip respectively. Similarly to the measurement of angle θ, angles α and β are 

measured with respect to the previous finger joint position as shown in Fig. 4.1.  
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Figure 4.1 RF exo-glove sensor angles 

 

 4.1.1 Postures 

The experiment was carried over four different postures using the RF exo-glove. 

As seen here in Fig. 4.2, the four different postures include a relaxed hand pose, grasping 

a water bottle, holding a pen, and a clenched fist. 

 

 

 

Figure 4.2 RF exo-glove postures (a) relaxed sensors, (b) grasping water bottle, (c) 

holding a pen, and (d) clenched fist 



 

 

51 

 

 These postures are very common ones that people make and allow for great data 

acquisition by flexing each finger joint in multiple ranges. The items in Fig. 4.3 were 

used for grasping postures in this experiment which include a half-liter water bottle and 

a standard pen.  

 

 

      4.2 Experiments in Multiple Postures 

 The first posture tested was the RF exo-glove placed in the initial relaxed 

position resulting in the fingers being nearly flat across the joints. Generally a person 

does not hold their hand, when relaxed, perfectly straight which would mean their finger 

joints are already angled. This posture was tested first to set reference values the 

additional postures could be measured against. In this position 30 seconds was allowed 

Figure 4.3 Water bottle and pen used for grasping postures 2 and 3 
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to pass before retrieving data to ensure the sensors reached steady state equilibrium. 

Data was logged from the serial connection of the Arduino Mega using the Parallax Data 

Acquisition tool (PLX-DAQ) [29]. The PLX-DAQ gathered flexion information of the 

sensors from the Arduino serial port and transferred them to a Microsoft Excel 

spreadsheet. The data logged for the relaxed sensors was obtained in bits ranging from 0 

to 1023 due to the 10 bit ADC on the Arduino Mega. Using the serial monitor data taken 

from each sensor reading during the calibration process, each column of sensor data was 

evaluated for accuracy at steady state.  

 Table 4.1 shows the actual angles measured from the RF exo-glove and the offset 

of the reference posture angles. 

 

Table 4.1 RF Exo-glove Posture Angles 

  Flexion Angles of RF exo-glove 

Posture 

Middle 

Finger 

MP 

Index 

Finger 

MP 

Thumb 

MP 

Middle 

Finger 

DIP 

Middle 

Finger 

PIP 

Index 

Finger 

DIP 

Index 

Finger 

PIP 

Thumb 

DIP 

Bottle 22 18 15 26 62 11 68 54 

Fist 22 25 13 60 68 45 66 65 

Pen 15 12 15 34 62 41 55 57 

 

Reference Posture Angles 

 

13 10 10 5 5 5 5 5 

  Adjusted Angles 

Bottle 9 8 5 21 57 6 63 49 

Fist 9 15 3 55 63 40 61 60 

Pen 2 2 5 29 57 36 50 52 
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 Once the reference postures were acquired, each of the three remaining postures 

underwent the same process for data acquisition. Using the resolution found during the 

sensor calibration, I was able to take the difference between the reference posture and 

the alternative posture to obtain a difference in bit values sensor by sensor. The 

difference in bit values was then multiplied by the resolution to find the change in 

flexion angles for each finger joint.   

 The following graphs consist of experimental results from the previously stated 

postures with and without averaging. Each posture was tested five times over separate 

data-acquisition samplings. In total there were 40 samples taken. Each graph shows five 

separate tests run on the particular posture with or without averaging. The x-axis is 

labeled with the corresponding fingers tracked with the RF exo-glove. The y-axis is 

labeled with the flexion angle to show the degrees of flexion angles of the data acquired. 

Each PIP and DIP joint is tracked with a rotary position sensor. Each MP joint uses a 

flex sensor for flexion tracking.  

 

 4.2.1 Bottle Grasping Posture 

 In Figs. 4.4 and 4.5 we have box plots of the adjusted actual flexion angles 

measured directly off of the RF exo-glove and the range of sensor data obtained in the 

samplings for the bottle grasping posture. From direct observation, the box plots for the 

averaged data in Fig. 4.5 shows better precision for the rotary position sensors. However, 

the non-averaged data in Fig. 4.4 was more precise for the flex sensors. Evaluating each 
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finger and thumb in both figures gives mixed results. Each MP joint performed better 

without averaging in terms of precision, but had an even trade-off in the accuracy shown 

in comparison with both plots. The PIP joints were more accurate without averaging but 

compromised the precision of the data. The DIP joints were slightly more accurate 

without averaging, However, the precision gained by averaging is a great improvement 

in performance.    
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Figure 4.4 Bottle grasping posture without averaging 
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Figure 4.5 Bottle grasping posture with averaging 
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 The observations from Figs. 4.4 and 4.5 can be seen directly on table 4.2. Table 

4.2 and proceeding Tables following the posture graphs use the following convention to 

identify the sensors: 

1. Middle finger MP    5.   Middle finger PIP 

2. Index finger MP    6.   Index finger DIP 

3. Thumb MP     7.   Index finger PIP 

4. Middle finger DIP    8.   Thumb DIP 

 

 The standard deviation of the averaged data is lower for each sensor with the 

exception of sensor 2 which is greater by 0.24°. The average flexion angle difference 

also has better performance with the averaging data which displays lower angle 

differences for all but three sensors. Given the difference in angles and standard 

deviation from the true angle that was too be met, there was an increase in performance 

using averaging. 

 

Table 4.2 Flexion Angle Average Difference and Standard Deviation for Bottle Grasping 

Posture 

Average Flexion Angle Difference 

Sensor 1 2 3 4 5 6 7 8 

No averaging 4.55 2.55 1.86 8.19 4.24 13.18 8.47 16.87 

Averaging 5.29 2.23 6.25 3.72 3.43 14.52 3.94 11.18 

Standard Deviation of Flexion Angles 

No averaging 3.09 1.18 1.72 5.84 3.42 9.60 6.16 12.55 

Averaging 2.79 2.47 4.25 3.19 1.38 8.00 1.94 8.13 
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 4.2.2 Clenched Fist Posture 

 In Figs. 4.6 and 4.7 a box plot of the clenched fist posture data can be seen with 

the adjusted actual angles. Looking at the range of data in the plots, it is immediately 

apparent that the flexion data obtained does not fit the actual flexion angles. There were 

very few data points that coincided with the true angles, but it should be noted that the 

data was offset almost consistently across the plot. Flexion values in Fig. 4.6 varied by 

46.1° for the middle finger DIP joint, but when compared to the averaged data plot, the 

same sensor improves precision by 72.6%. Again, the averaged data remains more 

precise but does not have the accuracy to display the true angles.  
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Figure 4.6 Clenched fist posture without averaging 
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Figure 4.7 Clenched fist posture with averaging 

 

 Table 4.3 shows the average flexion angle difference and standard deviation for 

the data samplings of the clenched fist postures. Overall, using averaging resulted in a 

lower standard deviation and average flexion angle difference from the true angles. 

There is at least a 34% improvement in standard deviation of the flexion angles with 

averaging. 
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Table 4.3 Flexion Angle Average Difference and Standard Deviation for Clenched Fist 

Posture 

Average Flexion Angle Difference 

Sensor 1 2 3 4 5 6 7 8 

No averaging 9.39 8.34 8.35 19.86 15.88 15.17 6.92 19.82 

Averaging 7.05 7.39 6.31 12.33 13.61 14.94 6.07 11.67 

Standard Deviation of Flexion Angles 

No averaging 10.05 4.44 5.10 12.82 3.96 4.07 3.04 6.81 

Averaging 6.66 3.15 0.91 5.34 2.60 6.01 3.13 4.38 
 

 

 4.2.3 Pen-Holding Posture 

 In Figs. 4.8 and 4.9 we have box plots that show the flexion angle data for the 

pen holding posture. The Fig. 4.8 plot shows a slightly better performance in accuracy 

for the middle finger MP over Fig. 4.9 but does not hold this accuracy throughout the 

plot. Once again, the plot without averaging displays overall greater accuracy but lacks 

the sensor precision gained by averaging. Both plots follow the general pattern of the 

true flexion angles but are offset by a similar degree value. The offset angle varies from 

sensor to sensor ranging from an average of 1.91° to 13.86° for the averaged data and 

4.15° to 14.54° for the non-averaged data. Fig. 4.8 has two outliers that are effectively 

removed with the averaging function.  
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Figure 4.8 Pen holding posture without averaging 
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Figure 4.9 Pen holding posture with averaging 

 

 Table 4.4 shows the average flexion difference and standard deviation of the pen 

holding posture data compared to the true flexion values.  In this pen holding posture we 

see that the flexion angle difference is better when using averaging for five of the eight 

sensors. However, looking at the standard deviation of the flexion angles shows that 
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there are four sensors in favor for averaging and without averaging giving a mixed 

result.  

 

Table 4.4 Flexion Angle Average Difference and Standard Deviation of Pen Holding 

Posture 

Average Flexion Angle Difference 

Sensor 1 2 3 4 5 6 7 8 

No averaging 5.12 7.58 4.15 12.38 14.54 12.21 10.26 6.84 

Averaging 4.14 10.33 3.08 6.10 12.15 13.86 11.00 2.67 

Standard Deviation of Flexion Angles 

No averaging 5.38 5.91 4.04 6.50 2.74 1.98 1.18 2.40 

Averaging 3.19 4.94 1.37 5.35 3.27 3.86 1.66 1.43 

 

 

4.3 Telerobotic Hand Mapping  

 The lack of a closed-loop controller in this experiment causes the robotic finger 

flexion to be mimicked in a way that the finger jumps to the next position sent in the 

signal. The signal from the RF exo-glove is almost immediately sent to the robotic hand 

which will in turn make the servos react. Since there is no processed feedback to the 

servo motor, other than the internal circuitry confirming the desired position, it will 

constantly rotate at the same speed regardless of how close it may be to the next 

position.  
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(4.1) 

(4.2) 

In order to manipulate the robotic hand, the finger-joint flexion values needed to 

be processed for proper mapping. The average total joint flexion of each finger was 

taken to be mapped onto the robotic hand following Fig. 4.1. The flex sensor angle value 

is noted as θ, the center rotary position sensor angle value is represented as α, and the 

fingertip rotary position sensor angle value is shown as β.  

 The formula shown here was used to gather the average flexion of the middle 

and index fingers: 

                 
     

 
  

This averaging equation was used for tracking the flexion of the thumb: 

            
   

 
  

 The preceding equations were used to control the robotic fingers while reducing 

the multiple DOFs for each RF exo-glove finger into a single DOF. It was necessary to 

reduce the DOF to operate the robotic hand using only three servo motors. Using the 

averages shown above each servo was mapped to 180° allowing the robotic finger to 

mimic the flexion done by the RF exo-glove. Table 4.5 shows the averaged data, using 

(4.1) – (4.2), to map the finger flexion to the robotic hand. The “Begin” value is the 

initial start of the robotic hand mapping. The “End” values designate the terminal values 

the robotic hand receives when the servos are positioned at 180°. 
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Table 4.5 Averaged Data Used for Robotic Hand Mapping 

Robotic Finger Map Values 

  Begin End 

Thumb 768 797 

Middle 

Finger 
648 446 

Index Finger 664 762 

 

 The Arduino Mega used to communicate between the RF exo-glove and robotic 

hand sends signals through PWM at 490-Hz. This frequency is not particularly high, and 

due to the averaging there is a delay in real-time control. While operating the RF exo-

glove to control the robotic hand, the signals of the sensors and PWM pins of the 

Arduino Mega were recorded to find the time delay between sensor reading and robotic 

hand motion. The delay in response for the non-averaged sensor values was a quarter of 

a second. This delay was increased when using the averaging of sensor values by 0.375 

seconds over the non-averaging. The immediate delay for averaging the sensor values 

between posture and robotic finger motion was 0.625 seconds.  

   

 4.3.1 Mapping Relaxed Hand Posture 

 Here in Fig. 4.10 we can see the relaxed hand posture mimicked with the robotic 

hand. Since this is the reference posture, the robot hand's fingers remain in a relaxed 

position as well due to the sensor mapping. Monitoring the sensor values for this state 

will yield the initial robotic finger mapping values seen in Table 4.5. When testing the 



 

 

67 

 

relaxed hand posture, the data set from the sensors varied more than the servo mapping 

was created for. This caused the fingers to twitch and partially flex. Observations 

between using the averaging code and without averaging showed better results for the 

averaging attempt. Sensor values were smoother leading to less twitching.  

 

 

Figure 4.10 Relaxed posture with robotic hand 

 

 

 4.3.2 Mapping Bottle Grasping Posture 

 Depicted in Fig. 4.11 is the bottle grasping posture. The robotic fingers were able 

to flex in a similar manner to the degree given by the RF exo-glove but is unable to 

completely close the finger grip. This posture is just about mid way through the servo 

rotation leaving 90° additional flexion. As with the relaxed posture, using the averaging 
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code resulted in much less twitching in comparison to not using averaging. 

Unfortunately, using averaging in the code meant there was more delay in the sensor 

values being read. The delayed sensor reading directly translated to the reaction time the 

robotic fingers could move.  

 

 

Figure 4.11 Bottle grasping posture with robotic hand 

 

 

 4.3.3 Mapping Clenched Fist Posture 

 With Fig. 4.12 we can see the clenched-fist posture mirrored by the robotic hand 

rather well to its abilities. Again, the fingers are unable to completely close against each 

other which is due to the single DOF for each robotic finger. At this posture, all servos 

have rotated 180° with sensors reading the end results in Table 4.5 for the averages. 
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Similarly for this posture, using averaging gave better results for holding the desired 

angles.  

 

 

Figure 4.12 Clenched fist posture with robotic hand 

 

 4.3.4 Mapping Pen-Holding Posture 

 Fig. 4.13 shows the posture for holding a pen. This posture is similar to the bottle 

grasping posture while using the RF exo-glove due to its bulky parts. Of course the 

posture angles are not identical to the bottle grasping posture leading to the middle and 

index fingers to be less flexed. With this test the averaging code again present better 

results of holding the posture with less twitching.  

 



 

 

70 

 

 

Figure 4.13 Pen holding posture with robotic hand 

 

 Although each posture was meant to represent common ones people make, the 

robotic hand itself was not designed to hold the bottle or pen and thus they are used for 

demonstration purposes only. The transitioning between postures displayed from the 

robotic hand was done very quickly. When experimenting without the use of averaging, 

the robotic hand had the ability to full close from the relaxed position in under half a 

second. However, when using averaging, the ability to react in real time was hindered by 

the code delays more than doubling the time to complete the same task. Mirroring the 

RF exo-glove posture was my goal in these experiments and thus averaging was more 

desirable.  
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CHAPTER V 

CONCLUSIONS 

 

5.1 Conclusions 

 The initial motivation to design this unique RF exo-glove was to experiment with 

a finger-flexion-tracking device that utilized a rigid frame for repeatable results. This 

holds true up to a certain point, however there were a few instances where precision was 

not seen in the data. Readings for the sensors were too varied to consider this to be a 

precise finger-flexion-tracking apparatus. The best results were seen with the bottle-

grasping posture having six sensors with averaging be within 6° of the true flexion 

angles.   

 The lack of precision was mostly apparent in the sampling that was done without 

averaging. In some cases the range of values for a single sensor were scattered over 40°. 

Averaging proved to be effective in reducing fluctuations in data acquired but at the cost 

of somewhat greater flexion angle offset. The offset seen was manageable leading to 

only a fraction of a degree change making the compromise worth the vice. The data for 

using averaging showed up to a 45.2% increase in precision compared to non-averaged 

values.  

 Over several sets of sensor calibration, the resulting data were always within at 

least 2 bits of each set. The major contributing sources to the varied results are the 

dissimilar initial sensor values, slight changes in postures, and personal movement. The 

sensors used in this research were to be identical to one another per type. Unfortunately, 
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the reading of one flex sensor’s value was considerably different from the other two. 

Similarly, testing all of the rotary position sensors revealed variation in sensor data.  

 The postures used in this research were meant to be easily repeatable, however, 

using an amorphous bottle and postures that could be manipulated with slight motion left 

mixed results. With over 40 experimental tests, some changes in flexion angles must 

have existed leading to data that would show up differently each time.   Based on the 

fluctuation of the sensors while the RF exo-glove was on my hand and the sensor 

calibration testing alone, there seems to be interference in the data. During the 

experiments while using the RF exo-glove I could feel my fingers slightly moving which 

could have been the cause of the spikes in the results. On top of my natural movements 

when still, the RF exo-glove frame caused my blood to pulse in my fingers further 

changing minor sensor values. Each experiment was conducted in the same location 

under identical conditions, but my own variances in remaining still change very often.  

 

5.2 Future Work 

 The design used in this experimental setup has several areas where improvements 

can be made for more accurate results. Looking at the tolerances of the finger shafts used 

to rotate the rotary position sensor, there is a small gap between the inner walls of the 

sensor and the shaft of the RF exo-glove finger joint. Future postures used in analysis 

should be easily repeatable with little variance in dimensional changes or characteristics 

of changing the postures.  
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 Higher-strength materials could allow for a less bulky design which would lead 

to all five fingers being able to have tracking sensors. Higher-precision rotary position 

sensors and flex sensors could provide a superior range of accuracy for the flexion 

tracking.  

 Additional DOFs can be added to the design to make the RF exo-glove more 

operable and functional. A recommended site for and additional degree of freedom is the 

top of the knuckle. Since the finger joints at the knuckle allow the finger to move side to 

side, there can be another DOF to be exploited.  

 The Arduino Mega microcontroller has an onboard 10-bit ADC that was used in 

the experiments giving a maximum range of values to be from 0 to 1023. By adding an 

external analog to digital converter of 12 bits or more, the values obtained for the flexion 

angle can be far greater. For example, the 10-bit converter gives us 1024 values while a 

12-bit converter would give us 4096 values. Using the simple formula of 2
x 

where x 

represents the bit value of the converter, we can see that a larger bit converter will yield 

a better resolution.  

 Signal-processing filters should be used on all sensor signals when gathering 

results from the system to remove outlier data points from being part of the analysis. 

Noise filters should be used on power supplies used in the system if they are known to 

be unstable or their quality is uncertain.   
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APPENDIX A 

BOURNS ROTARY POSITION SENSOR SPECIFICATIONS 

 

Item #: 3382G 

 Features  

- Surface mount and through-hole versions 

- 12mm Square/Dustproof 

- 1,000,000 rotation cycles 

- Thin profile 

- RoHS compliant 

 

 Electrical Characteristics 

Standard resistance range: 2.5K to 100K ohms 

Resistance tolerance: 30% std 

Linearity: 2% 

Resolution: Infinite 

 

 Environmental Characteristics 

Power rating: 16 volts max 

Operating temperature range: -40°C to 120°C 

Rotational life: 1,000,000 cycles  

Thermal Shock: 5 cycles 
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Figure Appendix A a) Dimensions of outer casing of rotary position sensor, b) 

rotation ring dimensions, and c) Operation diagram [30] 

a) 

b) 

c) 
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APPENDIX B 

SPECTRA SYMBOL FLEX SENSOR SPECIFICATIONS 

 

 Features 

- Angle displacement measurement 

- Flexible body for bending 

- Variety of applications 

- Simple design 

- Slim profile 

 

 Mechanical characteristics 

Life cycle: over 1,000,000 

Temperature range: -35°C to +80°C 

 

 Electrical characteristics 
Flat resistance: 25K Ohms 

Resistance tolerance: 30% 

Bend resistance range: 45K Ohms to 125K Ohms 

Power rating: 0.5 Watts continuous to 1 Watt peak 
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Figure Appendix B a) Example of an actual flex sensor, b) dimensional 
diagram, and c) flex sensor functionality [31] 

c) c) 

a) 

b) 
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APPENDIX C 

RF EXO-GLOVE DIMENSIONS 

 

Each dimension is given in centimeters. The dimensions alongside the finger and thumb 

components are given from pivot to pivot directly in the center were the sensors are 

attached. The diameter of each finger and thumb component is given for the center of the 

component. Since each finger and thumb component is tapered from the top to bottom 

the diameter changes along the length. Ex: Thumb Tip d =        , so the largest 

diameter which is the top is actually 2.4cm while the smallest diameter which is the 

bottom end is really 2.2cm.   
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APPENDIX D 

ARDUINO CODES USED FOR DATA ACQUISITION 

 

This is the original reference code from Robottini [32] used to create my own custom 

data acquisition code. This code was heavily modified for initial testing and servo 

control allowing me to use the PLX-DAQ software: 

 int x = 0; 

int row = 0; 

void setup() { 

  Serial.begin(128000); // opens serial port, sets data rate to 9600 bps 

  Serial.println("CLEARDATA"); 

  Serial.println("LABEL,Time,x,sin(x)"); 

} 

 

void loop() { 

  Serial.print("DATA,TIME,"); Serial.print(x); Serial.print(","); 

Serial.println(sin(x*PI/180)); 

  row++; 

  x++; 

  if (row > 360)  

   { 

    row=0; 

    Serial.println("ROW,SET,2"); 

   } 

  delay(100); 
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} 

 

This is the original reference code from the Arduino website [33] I used to create my 

own custom code for averaging the sensors during initial testing: 

/* 

 

Smoothing 

 

Reads repeatedly from an analog input, calculating a running average 

and printing it to the computer. Keeps ten readings in an array and  

continually averages them. 

 

The circuit: 

* Analog sensor (potentiometer will do) attached to analog input 0 

 

Created 22 April 2007 

By David A. Mellis <dam@mellis.org> 

modified 9 Apr 2012 

by Tom Igoe 

http://www.arduino.cc/en/Tutorial/Smoothing 

 

This example code is in the public domain. 

 

 

*/ 

 

 

// Define the number of samples to keep track of. The higher the number, 

// the more the readings will be smoothed, but the slower the output will 

// respond to the input. Using a constant rather than a normal variable lets 

// use this value to determine the size of the readings array. 

const int numReadings = 10; 

 

int readings[numReadings]; // the readings from the analog input 

int index = 0; // the index of the current reading 

int total = 0; // the running total 
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int average = 0; // the average 

 

int inputPin = A0; 

 

void setup() 

{ 

// initialize serial communication with computer: 

Serial.begin(9600);  

// initialize all the readings to 0:  

for (int thisReading = 0; thisReading < numReadings; thisReading++) 

readings[thisReading] = 0;  

} 

 

void loop() { 

// subtract the last reading: 

total= total - readings[index];  

// read from the sensor:  

readings[index] = analogRead(inputPin);  

// add the reading to the total: 

total= total + readings[index];  

// advance to the next position in the array:  

index = index + 1;  

 

// if we're at the end of the array... 

if (index >= numReadings)  

// ...wrap around to the beginning:  

index = 0;  

 

// calculate the average: 

average = total / numReadings;  

// send it to the computer as ASCII digits 

Serial.println(average);  

delay(1); // delay in between reads for stability  

} 

 

Custom code used for initial sensor testing without averaging: 
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const int flexpin = A0; // flexpin refers to the flex sensor on the index finger on analog 

pin 0 

const int flexpin2 = A1; // flexpin2 refers to the flex sensor on the index finger on analog 

pin 1 

const int flexpin3 = A2; // flexpin3 refers to the flex sensor on the middle finger on 

analog pin 2 

const int potPin = A3; // potPin refers to the potentiometer on the thumb using analog 

pin 3 

const int potPin2 = A4; // potPin2 refers to the potentiometer on the index finger center 

using analog pin 4 

const int potPin3 = A5; // potPin3 refers to the potentiometer on the index finger tip 

using analog pin 5 

const int potPin4 = A6; // potPin4 refers to the potentiometer on the middle finger center 

using analog pin 6 

const int potPin5 = A7; // potPin5 refers to the potentiometer on the middle finger tip 

using analog pin 7 

 

int flexPin = 0; 

int flexPin2 = 0; 

int flexPin3 = 0; 

int potpin = 0; 

int potpin2 = 0; 

int potpin3 = 0; 

int potpin4 = 0; 

int potpin5 = 0; 

int row = 0; 

void setup() { 
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  Serial.begin(9600); // opens serial port, sets data rate to 9600 bps 

  Serial.println("CLEARDATA"); 

Serial.println("LABEL,Time,flexPin,flexPin2,flexPin3,potpin,potpin2,potpin3,potpin4,p

otpin5,"); 

} 

 

void loop() { 

  flexPin = analogRead(flexpin); 

flexPin2 = analogRead(flexpin2); 

flexPin3 = analogRead(flexpin3); 

potpin = analogRead(potPin); 

potpin2 = analogRead(potPin2); 

potpin3 = analogRead(potPin3); 

potpin4 = analogRead(potPin4); 

potpin5 = analogRead(potPin5); 

 

  Serial.print("DATA,TIME,"); Serial.print(flexPin = analogRead(flexpin)); 

Serial.print(",");  

  Serial.print(flexPin2 = analogRead(flexpin2)); Serial.print(",");  

  Serial.print(flexPin3 = analogRead(flexpin3)); Serial.print(","); 

  Serial.print(potpin = analogRead(potPin)); Serial.print(",");   

  Serial.print(potpin2 = analogRead(potPin2)); Serial.print(",");   

  Serial.print(potpin3 = analogRead(potPin3)); Serial.print(",");   

  Serial.print(potpin4 = analogRead(potPin4)); Serial.print(",");   
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  Serial.println(potpin5 = analogRead(potPin5));  

  row++; 

  flexPin++; 

  flexPin2++; 

  flexPin3++; 

  potpin++; 

  potpin2++; 

  potpin3++; 

  potpin4++; 

  potpin5++; 

   

  if (row > 285)  

   { 

    row=0; 

    Serial.println("ROW,SET,2"); 

   } 

  delay(100); 

} 

 

Custom code used for initial sensor testing with averaging: 

const int flexpin = 0; // flexpin refers to the flex sensor on the thumb on analog pin 1 

const int flexpin2 = 1; // flexpin2 refers to the flex sensor on the index finger on analog 

pin 2 
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const int flexpin3 = 2; // flexpin3 refers to the flex sensor on the middle finger on analog 

pin 3 

const int potPin = 3; // potPin refers to the potentiometer on the thumb using analog pin 

4 

const int potPin2 = 4; // potPin2 refers to the potentiometer on the index finger center 

using analog pin 5 

const int potPin3 = 5; // potPin3 refers to the potentiometer on the index finger tip using 

analog pin 6 

const int potPin4 = 6; // potPin4 refers to the potentiometer on the middle finger center 

using analog pin 7 

const int potPin5 = 7; // potPin5 refers to the potentiometer on the middle finger tip 

using analog pin 8 

 

int row = 0; 

 

const int numReadings = 10; 

const int numReadings2 = 10; 

const int numReadings3 = 10; 

const int numReadings4 = 10; 

const int numReadings5 = 10; 

const int numReadings6 = 10; 

const int numReadings7 = 10; 

const int numReadings8 = 10; 

 

int readings[numReadings];       

int readings2[numReadings2];       
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int readings3[numReadings3];      

int readings4[numReadings4];       

int readings5[numReadings5];       

int readings6[numReadings6];      

int readings7[numReadings7];       

int readings8[numReadings8];       

 

int index = 0;                 

int index2 = 0;                   

int index3 = 0;                

int index4 = 0;                   

int index5 = 0;                  

int index6 = 0;                   

int index7 = 0;                  

int index8 = 0;                   

 

int total = 0;                

int total2 = 0;               

int total3 = 0;                   

int total4 = 0;                 

int total5 = 0;                  

int total6 = 0;               

int total7 = 0;                

int total8 = 0;                
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int avg = 0;              

int avg2 = 0;           

int avg3 = 0;             

int avg4 = 0;                

int avg5 = 0;              

int avg6 = 0;               

int avg7 = 0;                

int avg8 = 0;               

 

void setup() 

{ 

Serial.begin(9600); 

Serial.println("CLEARDATA"); 

Serial.println("LABEL,Time,flexpin,flexpin2,flexpin3,potPin,potPin2,potPin3,potPin4,p

otPin5,"); 

   

  // initialize all the readings to 0:  

  for (int thisReading = 0; thisReading < numReadings; thisReading++) 

    readings[thisReading] = 0;  

     // initialize all the readings to 0:  

  for (int thisReading2 = 0; thisReading2 < numReadings2; thisReading2++) 

    readings[thisReading2] = 0;   

     // initialize all the readings to 0:  
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  for (int thisReading3 = 0; thisReading3 < numReadings3; thisReading3++) 

    readings[thisReading3] = 0;   

     // initialize all the readings to 0:  

  for (int thisReading4 = 0; thisReading4 < numReadings4; thisReading4++) 

    readings[thisReading4] = 0;   

     // initialize all the readings to 0:  

  for (int thisReading5 = 0; thisReading5 < numReadings5; thisReading5++) 

    readings[thisReading5] = 0;   

     // initialize all the readings to 0:  

  for (int thisReading6 = 0; thisReading6 < numReadings6; thisReading6++) 

    readings[thisReading6] = 0;   

     // initialize all the readings to 0:  

  for (int thisReading7 = 0; thisReading7 < numReadings7; thisReading7++) 

    readings[thisReading7] = 0;    

      // initialize all the readings to 0:  

  for (int thisReading8 = 0; thisReading8 < numReadings8; thisReading8++) 

    readings[thisReading8] = 0;  

} 

 

void loop() 

{ 

  

//1111111111111111111111111111111111111111111111111111111111111111111111

111 
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    // subtract the last reading: 

  total= total - readings[index];          

  // read from the sensor:   

  readings[index] = analogRead(flexpin);  

  // add the reading to the total: 

  total= total + readings[index];        

  // advance to the next position in the array:   

  index = index + 1;                     

 

  // if we're at the end of the array... 

  if (index >= numReadings)               

    // ...wrap around to the beginning:  

    index = 0;                            

 

  // calculate the average: 

  avg = total / numReadings;          

  // send it to the computer as ASCII digits 

   

 

//2222222222222222222222222222222222222222222222222222222222222222222222

222 

    // subtract the last reading: 

  total2= total2 - readings2[index2];          

  // read from the sensor:   
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  readings2[index2] = analogRead(flexpin2);  

  // add the reading to the total: 

  total2= total2 + readings2[index2];        

  // advance to the next position in the array:   

  index2 = index2 + 1;                     

 

  // if we're at the end of the array... 

  if (index2 >= numReadings2)               

    // ...wrap around to the beginning:  

    index2 = 0;                            

 

  // calculate the average: 

  avg2 = total2 / numReadings2;          

  // send it to the computer as ASCII digits 

 

  

//3333333333333333333333333333333333333333333333333333333333333333333333

333 

    // subtract the last reading: 

  total3= total3 - readings3[index3];          

  // read from the sensor:   

  readings3[index3] = analogRead(flexpin3);  

  // add the reading to the total: 

  total3= total3 + readings3[index3];        
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  // advance to the next position in the array:   

  index3 = index3 + 1;                     

 

  // if we're at the end of the array... 

  if (index3 >= numReadings3)               

    // ...wrap around to the beginning:  

    index3 = 0;                            

 

  // calculate the average: 

  avg3 = total3 / numReadings3;          

  // send it to the computer as ASCII digits 

   

  

//4444444444444444444444444444444444444444444444444444444444444444444444

444 

    // subtract the last reading: 

  total4= total4 - readings4[index4];          

  // read from the sensor:   

  readings4[index4] = analogRead(potPin);  

  // add the reading to the total: 

  total4= total4 + readings4[index4];        

  // advance to the next position in the array:   

  index4 = index4 + 1;                     
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  // if we're at the end of the array... 

  if (index4 >= numReadings4)               

    // ...wrap around to the beginning:  

    index4 = 0;                            

 

  // calculate the average: 

  avg4 = total4 / numReadings4;          

  // send it to the computer as ASCII digits 

   

  

//5555555555555555555555555555555555555555555555555555555555555555555555

555 

    // subtract the last reading: 

  total5= total5 - readings5[index5];          

  // read from the sensor:   

  readings5[index5] = analogRead(potPin2);  

  // add the reading to the total: 

  total5= total5 + readings5[index5];        

  // advance to the next position in the array:   

  index5 = index5 + 1;                     

 

  // if we're at the end of the array... 

  if (index5 >= numReadings5)               

    // ...wrap around to the beginning:  
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    index5 = 0;                            

 

  // calculate the average: 

  avg5 = total5 / numReadings5;          

  // send it to the computer as ASCII digits 

   

  

//6666666666666666666666666666666666666666666666666666666666666666666666

666 

    // subtract the last reading: 

  total6= total6 - readings6[index6];          

  // read from the sensor:   

  readings6[index6] = analogRead(potPin3);  

  // add the reading to the total: 

  total6= total6 + readings6[index6];        

  // advance to the next position in the array:   

  index6 = index6 + 1;                     

 

  // if we're at the end of the array... 

  if (index6 >= numReadings6)               

    // ...wrap around to the beginning:  

    index6 = 0;                            

 

  // calculate the average: 
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  avg6 = total6 / numReadings6;          

  // send it to the computer as ASCII digits 

   

  

//7777777777777777777777777777777777777777777777777777777777777777777777

777 

    // subtract the last reading: 

  total7= total7 - readings7[index7];          

  // read from the sensor:   

  readings7[index7] = analogRead(potPin4);  

  // add the reading to the total: 

  total7= total7 + readings7[index7];        

  // advance to the next position in the array:   

  index7 = index7 + 1;                     

 

  // if we're at the end of the array... 

  if (index7 >= numReadings7)               

    // ...wrap around to the beginning:  

    index7 = 0;                            

 

  // calculate the average: 

  avg7 = total7 / numReadings7;          

  // send it to the computer as ASCII digits 
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///888888888888888888888888888888888888888888888888888888888888888888888

8888 

    // subtract the last reading: 

  total8= total8 - readings8[index8];          

  // read from the sensor:   

  readings8[index8] = analogRead(potPin5);  

  // add the reading to the total: 

  total8= total8 + readings8[index8];        

  // advance to the next position in the array:   

  index8 = index8 + 1;                     

 

  // if we're at the end of the array... 

  if (index8 >= numReadings8)               

    // ...wrap around to the beginning:  

    index8 = 0;                            

 

  // calculate the average: 

  avg8 = total8 / numReadings8;          

  // send it to the computer as ASCII digits 

    

  Serial.print("DATA,TIME,");   

  Serial.print(avg); Serial.print(",");  

  Serial.print(avg2); Serial.print(",");  
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  Serial.print(avg3); Serial.print(","); 

  Serial.print(avg4); Serial.print(",");   

  Serial.print(avg5); Serial.print(",");   

  Serial.print(avg6); Serial.print(",");   

  Serial.print(avg7); Serial.print(",");   

  Serial.println(avg8);  

 

delay(100); // wait 100ms between servo updates 

} 

 

 

Custom code used for postures without averaging and includes servo motor control: 

#include <Servo.h> 

Servo servo1; // servo1 is the first robot finger 

Servo servo2; // servo2 is the second robot finger 

Servo servo3; // servo3 is the third robot finger 

 

const int flexpin = A0; // flexpin refers to the flex sensor on the index finger on analog 

pin 0 

const int flexpin2 = A1; // flexpin2 refers to the flex sensor on the index finger on analog 

pin 1 

const int flexpin3 = A2; // flexpin3 refers to the flex sensor on the middle finger on 

analog pin 2 

const int potPin = A3; // potPin refers to the potentiometer on the thumb using analog 

pin 3 
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const int potPin2 = A4; // potPin2 refers to the potentiometer on the index finger center 

using analog pin 4 

const int potPin3 = A5; // potPin3 refers to the potentiometer on the index finger tip 

using analog pin 5 

const int potPin4 = A6; // potPin4 refers to the potentiometer on the middle finger center 

using analog pin 6 

const int potPin5 = A7; // potPin5 refers to the potentiometer on the middle finger tip 

using analog pin 7 

 

 int flexposition = 0; // Input value from the analog pin for the flexsensor on the 

thumb 

 int flexposition2 = 0; // Input value from the analog pin for the flexsensor on the 

index finger 

 int flexposition3 = 0; // Input value from the analog pin for the flexsensor on the 

middle finger 

 int potposition = 0; // Input value from the analog pin for the potentiometer on 

the thumb 

 int potposition2 = 0; // Input value from the analog pin for the potentiometer on 

the index finger center 

 int potposition3 = 0; // Input value from the analog pin for the potentiometer on 

the index finger tip 

 int potposition4 = 0; // Input value from the analog pin for the potentiometer on 

the middle finger center 

 int potposition5 = 0; // Input value from the analog pin for the potentiometer on 

the middle finger tip 

        int row = 0; 

       int servoposition1; // Output value for servo1 

       int servoposition2; // Output value for servo2 
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       int servoposition3; // Output value for servo3 

       int average; // average of the thumb sensors 

       int average2; // average of the index finger sensors 

       int average3; // average of the middle finger sensors 

 

void setup() 

{ 

 Serial.begin(9600); // sets the baud rate at 9600 

        Serial.println("CLEARDATA"); 

        

Serial.println("LABEL,Time,flexposition,flexposition2,flexposition3,potposition,potposi

tion2,potposition3,potposition4,potposition5"); 

         

servo1.attach(9);// servo1 will be connected to output pin 9 on the PWM of the Arduino 

Mega 

servo2.attach(8);// servo2 will be connected to output pin 8 on the PWM of the Arduino 

Mega 

servo3.attach(7);// servo3 will be connected to output pin 7 on the PWM of the Arduino 

Mega 

} 

 

void loop() 

{ 

        int row; 

 int flexposition; // Input value from the analog pin for the flexsensor on the 

thumb 
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 int flexposition2; // Input value from the analog pin for the flexsensor on the 

index finger 

 int flexposition3; // Input value from the analog pin for the flexsensor on the 

middle finger 

 int potposition; // Input value from the analog pin for the potentiometer on the 

thumb 

 int potposition2; // Input value from the analog pin for the potentiometer on the 

index finger center 

 int potposition3; // Input value from the analog pin for the potentiometer on the 

index finger tip 

 int potposition4; // Input value from the analog pin for the potentiometer on the 

middle finger center 

 int potposition5; // Input value from the analog pin for the potentiometer on the 

middle finger tip 

        int servoposition1; // Output value for servo1 

        int servoposition2; // Output value for servo2 

        int servoposition3; // Output value for servo3 

        int average; // average of the thumb sensors 

        int average2; // average of the index finger sensors 

        int average3; // average of the middle finger sensors 

   

// Read the position of the flex sensor (0 to 1023).  I have limited the values to make it 

more responsive. 

  flexposition = analogRead(flexpin); 

  flexposition2 = analogRead(flexpin2); 

  flexposition3 = analogRead(flexpin3); 

  potposition = analogRead(potPin); 
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  potposition2 = analogRead(potPin2); 

  potposition3 = analogRead(potPin3); 

  potposition4 = analogRead(potPin4); 

  potposition5 = analogRead(potPin5); 

 

                   average = (flexposition3 + potposition5)/2; 

                   average2 = (flexposition2 + potposition3 + potposition4)/3; 

                   average3 = (flexposition + potposition + potposition2)/3; 

                  

         servoposition1 = map(average, 768, 797, 180, 0); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition2 = map(average2, 648, 446, 180, 0); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition3 = map(average3, 664, 761, 180, 0); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition1 = constrain(servoposition1, 0, 180); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition2 = constrain(servoposition2, 0, 180); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition3 = constrain(servoposition3, 0, 180); // This maps the rotary 

position sensor averages onto the robotic finger 

                 

//command the servo to move to the appropriate position: 

                servo1.write(servoposition1); // This will move the robotic hand to mimic the 

exo-glove finger movement 

                servo2.write(servoposition2); // This will move the robotic hand to mimic the 

exo-glove finger movement 
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                servo3.write(servoposition3); // This will move the robotic hand to mimic the 

exo-glove finger movement 

                                              

        Serial.print("DATA,TIME,");  

        Serial.print(flexposition); Serial.print(","); 

        Serial.print(flexposition2); Serial.print(","); 

        Serial.print(flexposition3); Serial.print(","); 

        Serial.print(potposition); Serial.print(","); 

        Serial.print(potposition2); Serial.print(","); 

        Serial.print(potposition3); Serial.print(","); 

        Serial.print(potposition4); Serial.print(","); 

        Serial.println(potposition5);  

      

        row++; 

        flexposition++; 

        flexposition2++; 

        flexposition3++; 

        potposition++; 

        potposition2++; 

        potposition3++; 

        potposition4++; 

        potposition5++; 

        average++; 

        average2++; 
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        average3++; 

         

        if (row > 285) // resets the excel data once it has reached 285 rows of acquired data 

        { 

          row=0; 

          Serial.println("ROW,SET,2"); 

        } 

  delay(100); // wait 100ms between servo updates 

} 

 

Custom code used for postures with averaging and servo control: 

#include <Servo.h> 

Servo servo1; // servo1 is the first robot finger 

Servo servo2; // servo2 is the second robot finger 

Servo servo3; // servo3 is the third robot finger 

 

int flexpin1 = A0; 

int flexpin2 = A1; 

int flexpin3 = A2; 

int potpin1 = A3; 

int potpin2 = A4; 

int potpin3 = A5; 

int potpin4 = A6; 

int potpin5 = A7; 
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int flexPin11; 

int flexPin12; 

int flexPin13; 

int flexPin14; 

int flexPin15; 

 

int flexPin21; 

int flexPin22; 

int flexPin23; 

int flexPin24; 

int flexPin25; 

 

int flexPin31; 

int flexPin32; 

int flexPin33; 

int flexPin34; 

int flexPin35; 

 

int potPin11; 

int potPin12; 

int potPin13; 

int potPin14; 

int potPin15; 
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int potPin21; 

int potPin22; 

int potPin23; 

int potPin24; 

int potPin25; 

 

int potPin31; 

int potPin32; 

int potPin33; 

int potPin34; 

int potPin35; 

 

int potPin41; 

int potPin42; 

int potPin43; 

int potPin44; 

int potPin45; 

 

int potPin51; 

int potPin52; 

int potPin53; 

int potPin54; 

int potPin55; 
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int average1; 

int average2; 

int average3; 

int average4; 

int average5; 

int average6; 

int average7; 

int average8; 

 

        int servoposition1; // Output value for servo1 

        int servoposition2; // Output value for servo2 

        int servoposition3; // Output value for servo3 

        int average10; // average of the thumb sensors 

        int average11; // average of the index finger sensors 

        int average12; // average of the middle finger sensors 

int row = 0; 

 

void setup() 

{ 

  Serial.begin(9600); 

  Serial.println("CLEARDATA"); // this clears the rows and columns of previous data to 

start with new values 
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Serial.println("LABEL,Time,flexpin1,flexpin2,flexpin3,potpin1,potpin2,potpin3,potpin4

,potpin5,"); // LABEL is used to setup the columns with the following headings such as 

Time,.... 

 

servo1.attach(9);// servo1 will be connected to output pin 9 on the PWM of the Arduino 

Mega 

servo2.attach(8);// servo2 will be connected to output pin 8 on the PWM of the Arduino 

Mega 

servo3.attach(7);// servo3 will be connected to output pin 7 on the PWM of the Arduino 

Mega 

} 

 

void loop() 

{ 

  

//1111111111111111111111111111111111111111111111111111111111111111111111

111 

  flexPin11 = analogRead(A0); 

  delay(10); 

  flexPin12 = analogRead(A0); 

  delay(10); 

  flexPin13 = analogRead(A0); 

  delay(10); 

  flexPin14 = analogRead(A0); 

  delay(10); 

  flexPin15 = analogRead(A0); 
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  average1 = (flexPin11 + flexPin12 + flexPin13 + flexPin14 + flexPin15)/5; 

   

  

//2222222222222222222222222222222222222222222222222222222222222222222222

222 

  flexPin21 = analogRead(A1); 

  delay(10); 

  flexPin22 = analogRead(A1); 

  delay(10); 

  flexPin23 = analogRead(A1); 

  delay(10); 

  flexPin24 = analogRead(A1); 

  delay(10); 

  flexPin25 = analogRead(A1); 

   

  average2 = (flexPin21 + flexPin22 + flexPin23 + flexPin24 + flexPin25)/5; 

   

  

//3333333333333333333333333333333333333333333333333333333333333333333333

333 

  flexPin31 = analogRead(A2); 

  delay(10); 

  flexPin32 = analogRead(A2); 

  delay(10); 
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  flexPin33 = analogRead(A2); 

  delay(10); 

  flexPin34 = analogRead(A2); 

  delay(10); 

  flexPin35 = analogRead(A2); 

   

  average3 = (flexPin31 + flexPin32 + flexPin33 + flexPin34 + flexPin35)/5; 

   

  

//4444444444444444444444444444444444444444444444444444444444444444444444

444 

  potPin11 = analogRead(A3); 

  delay(10); 

  potPin12 = analogRead(A3); 

  delay(10); 

  potPin13 = analogRead(A3); 

  delay(10); 

  potPin14 = analogRead(A3); 

  delay(10); 

  potPin15 = analogRead(A3); 

   

  average4 = (potPin11 + potPin12 + potPin13 + potPin14 + potPin15)/5; 
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//5555555555555555555555555555555555555555555555555555555555555555555555

555 

  potPin21 = analogRead(A4); 

  delay(10); 

  potPin22 = analogRead(A4); 

  delay(10); 

  potPin23 = analogRead(A4); 

  delay(10); 

  potPin24 = analogRead(A4); 

  delay(10); 

  potPin25 = analogRead(A4); 

   

  average5 = (potPin21 + potPin22 + potPin23 + potPin24 + potPin25)/5; 

   

  

//6666666666666666666666666666666666666666666666666666666666666666666666

666 

  potPin31 = analogRead(A5); 

  delay(10); 

  potPin32 = analogRead(A5); 

  delay(10); 

  potPin33 = analogRead(A5); 

  delay(10); 

  potPin34 = analogRead(A5); 
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  delay(10); 

  potPin35 = analogRead(A5); 

   

  average6 = (potPin31 + potPin32 + potPin33 + potPin34 + potPin35)/5; 

   

  

//7777777777777777777777777777777777777777777777777777777777777777777777

777 

  potPin41 = analogRead(A6); 

  delay(10); 

  potPin42 = analogRead(A6); 

  delay(10); 

  potPin43 = analogRead(A6); 

  delay(10); 

  potPin44 = analogRead(A6); 

  delay(10); 

  potPin45 = analogRead(A6); 

   

  average7 = (potPin41 + potPin42 + potPin43 + potPin44 + potPin45)/5; 

   

  

//8888888888888888888888888888888888888888888888888888888888888888888888

888 

  potPin51 = analogRead(A7); 

  delay(10); 
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  potPin52 = analogRead(A7); 

  delay(10); 

  potPin53 = analogRead(A7); 

  delay(10); 

  potPin54 = analogRead(A7); 

  delay(10); 

  potPin55 = analogRead(A7); 

   

  average8 = (potPin51 + potPin52 + potPin53 + potPin54 + potPin55)/5; 

   

               average10 = (average3 + average8)/2; // thumb averaging 

               average11 = (average2 + average6 + average7)/3; // index finger averaging 

               average12 = (average1 + average4 + average5)/3; // middle finger averaging 

   

           servoposition1 = map(average10, 768, 797, 180, 0); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition2 = map(average11, 648, 446, 180, 0); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition3 = map(average12, 664, 762, 180, 0); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition1 = constrain(servoposition1, 0, 180); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition2 = constrain(servoposition2, 0, 180); // This maps the rotary 

position sensor averages onto the robotic finger 

                servoposition3 = constrain(servoposition3, 0, 180); // This maps the rotary 

position sensor averages onto the robotic finger 
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//command the servo to move to the appropriate position: 

                servo1.write(servoposition1); // This will move the robotic hand to mimic the 

exo-glove finger movement 

                servo2.write(servoposition2); // This will move the robotic hand to mimic the 

exo-glove finger movement 

                servo3.write(servoposition3); // This will move the robotic hand to mimic the 

exo-glove finger movement 

   

  Serial.print("DATA,TIME,"); 

  Serial.print(average1); Serial.print(",");  

  Serial.print(average2); Serial.print(",");  

  Serial.print(average3); Serial.print(","); 

  Serial.print(average4); Serial.print(",");   

  Serial.print(average5); Serial.print(",");   

  Serial.print(average6); Serial.print(",");   

  Serial.print(average7); Serial.print(",");   

  Serial.println(average8);  

  

   row++; 

  flexpin1++; 

  flexpin2++; 

  flexpin3++; 

  potpin1++; 

  potpin2++; 
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  potpin3++; 

  potpin4++; 

  potpin5++; 

 

  if (row > 285)  

   { 

    row=0; 

    Serial.println("ROW,SET,2"); 

   } 

  delay(100); 

} 

 

 

 

 

 


