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ABSTRACT 

To non-invasively measure glucose concentrations across the aqueous humor of 

the eye, a high-speed, dual-wavelength optical polarimetric approach is proposed that 

addresses a key limitation of prior set-ups – system response time – while compensating 

for time-varying motion artifact due to corneal birefringence.  

This research is made up of three goals. The first goal is to design and construct a 

high-frequency, ferrite core Faraday rotator that can both rotate and modulate linearly 

polarized light in a frequency range of 30 to 75 kHz. The second goal is to implement a 

single ferrite core Faraday rotator into the current polarimetric approach. The third goal 

is to replace three air-core Faraday rotators with two ferrite core Faraday rotators for 

both modulation and compensation, allowing for two different signals to be measured on 

a single photodetector. 

In vitro phantom studies are performed with and without motion artifact. The 

sensor is shown to stabilize in ~2 msec and provide standard errors for glucose 

concentration of less than 13 mg/dL in the presence of motion. The results indicate that 

higher frequency modulation can reduce the overall system stabilization time with 

minimal loss of accuracy in the presence of motion artifact. 
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CHAPTER I  

INTRODUCTION 

 

Diabetes Mellitus 

Diabetes mellitus is a metabolic disease in which production and/or effective use 

of insulin, the glucose-regulating hormone, is stunted. Diabetes mellitus is, therefore, 

characterized by high blood glucose levels. Glucose, also called dextrose, is a 

monosaccharide that is absorbed directly into the bloodstream during digestion. The 

anabolic hormone, insulin, regulates the transport of glucose from the bloodstream into 

the cardiac and skeletal muscle cells, fat cells, liver cells, and fibroblasts. Insulin is 

manufactured in the islets of Langerhans embedded in the pancreas.  

Two classes of diabetes mellitus exist: primary and secondary. Primary diabetes 

originates from pancreatic inability or insulin resistance. Primary diabetes consists of 

three different types: Type I, Type II, and gestational diabetes mellitus (1). Type I 

diabetes, formerly called juvenile-onset or insulin-dependent diabetes, is an autoimmune 

response inside the pancreas. Specifically, this autoimmune response causes a reduction 

in the β-cells in the islet of the Langerhans, resulting in a stunted manufacture of insulin 

inside the pancreas and a total lack of insulin in the body. Type II diabetes occurs when 

too little insulin exists within the body or when the body’s cells stop accepting the 

insulin pathway to move glucose into the cell. Gestational diabetes occurs in women 

with high glucose levels during pregnancy. The cause for gestational diabetes is 

unknown, but the current theory states that the placenta produces hormones for the 
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development of her baby; similar to Type II diabetes, these hormones can block the 

insulin pathway to move glucose into the cells. 

In contrast, secondary diabetes originates from secondary causes, such as 

hormonal disease, insulin receptor abnormalities, genetic disorders, drugs, chemical 

agents, or toxins. Treatment of the antecedent diseases may prevent the need for glucose 

monitoring during secondary diabetes. Secondary diabetes may bring out primary 

diabetes in people who are predisposed. 

Diabetes is a serious health issue. In 2012, 29.1 million people, or 9.3% of the 

U.S. population, had diabetes (2). Diabetes is ranked as the seventh leading cause of 

death in the United States (2). Diabetes complications include hypertension, heart 

disease, stroke, blindness and other eye problems, kidney disease, nervous system 

disease, dental disease, and amputation (1). Without proper therapy, glucose levels may 

fluctuate between 40 and 900 mg/dL. High blood glucose levels above 126 mg/dL when 

fasting or 200 mg/dL after meals (3) is called Hyperglycemia, which can damage the 

body’s organs including the kidneys, eyes, nerves, and heart. In 2010, hyperglycemic 

crisis caused 2,361 deaths for adults over 20 years (2). In 2011, hyperglycemia caused 

about 175,000 emergency room visits for all ages (2). Low glucose levels below 72 

mg/dL (4) is called Hypoglycemia, which may cause shock or death. In 2011, 

hypoglycemia caused about 282,000 emergency room visits for adults (1). Overall, the 

risk of death for people with diabetes is approximately double that of similarly aged 

individuals without diabetes (1). Thus, strict measurement and regulation of blood 

glucose concentrations is recommended up to five times per day (5).  
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Diabetes Therapy 

The two common methods for glucose sensing are the Colorimetric and the 

Amperometric methods. These two methods are minimally invasive. In the original 

Colorimetric method, the color of the sample is simply compared with a color scale. 

Later in 1941, Miles Laboratories significantly improved the colorimetric method by 

including glucose oxidase (red-ox) and peroxidase. In 1964, Anton (Tom) Clemens 

developed a test strip (Dextrostix®), based on this colorimetric design, that could work 

with blood instead of urine. In 1979, Ames invented the first fingerprick lancet, Ames 

Autolet, for blood sampling. This minimally invasive method requires the patient to 

withdraw a small sample of blood from the interstitial tissue and apply the blood to a 

specially formulated test strip. As shown in Equation 1, Glucose oxidase and peroxidase 

are catalysts that break down the sugar into its metabolites. Glucose oxidase acts as a 

catalyst in the conversion of glucose to gluconic acid and hydrogen peroxide. Hydrogen 

peroxide is proportional to the glucose concentration. 

 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 +   𝑂!  
!"#$%&'  !"#$%&'

𝐺𝑙𝑢𝑐𝑜𝑛𝑖𝑐  𝐴𝑐𝑖𝑑 + 𝐻!𝑂! (1) 

 

When using the catalyst, Peroxidase, the peroxide oxidizes a chromophore or 

chromogenic substrate. Today, Tetramethylbenzydine causes a measureable color 

change as shown in Equation 2. 

 



 

 4 

𝐻!𝑂! + 𝑇𝑒𝑡𝑟𝑎𝑚𝑒𝑡ℎ𝑦𝑙𝑏𝑒𝑛𝑧𝑦𝑑𝑖𝑛𝑒
!"#$%"#,!"#"$#%&&

  
!"#$%&'()"

  𝑇𝑒𝑡𝑟𝑎𝑚𝑒𝑡ℎ𝑦𝑙𝑏𝑒𝑛𝑧𝑦𝑑𝑖𝑛𝑒
!"#$#%&$,!"#$

+   𝐻!𝑂! 

 

(2) 

In 1985, Ames released the Glucometer® that could read the Dextrostix strip. This 

reflectance meter optically measures absorbance or the decrease in reflectance of the dye 

product in the test strip. It generates a numerical value that is representative of the color 

intensity in the reaction layer of the strip and thus the glucose concentration in the blood 

as well. 

The Amperometric method for measuring glucose evolved in the mid-1950s. 

This method involves the reaction involving the oxidation of glucose. Leland Clarke 

proposed that a Platinum electrode can reliably measure oxygen changes if the electrode 

could be separated from the biological medium by a gas permeable membrane (6). The 

method was improved by immobilizing the glucose oxidase on a membrane, allowing 

glucose in the blood to directly react with the electrode. Currently, the electrode contains 

the enzymes, glucose oxidase or dehydrogenase, and the enzyme is deoxidized at the 

electrode generating an electric current (7, 8). The current is proportional to the glucose 

concentration in the blood. In 1974, Yellow Springs Instruments (YSI) released their 

Model 23 glucose analyzer using this method.  In 1985, Cass described an amperometric 

based test strip (9). In 1987, Medisense launched the ExacTech® sensor incorporating 

this method. They deployed an exogenous mediator, such as ferrocene or Os(III), to 

accept electrons from the reduced enzyme. Amperometric detection has evolved 

overtime and now requires less blood, ~0.2 uL. Therefore, the sensing is less painful and 

measurements are faster.  
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Invasive glucometers are far from perfect, as they can be painful, cumbersome, 

embarrassing, and expensive. Repeated puncturing of the skin can lead to potential 

infection, and the disposal of test strips multiple times each day can potentially lead to 

dangerous chemical waste results. The sensors’ reactions are time-dependent, with the 

reactions needing to complete before the blood is removed from the strip. Chemical 

interference and improper wiping can result in incorrect measure.  

 

Noninvasive Glucose Sensing 

Noninvasive glucose sensors measure the glucose concentrations without the 

need for the patient to draw blood, puncture skin, or potentially cause pain or trauma. In 

2012, The National Center for Biotechnology Information published a review of ten 

noninvasive technologies for glucose sensing: bioimpedance spectroscopy (10-13), 

electromagnetic sensing (14-17), fluorescence technologies (18, 19), mid-infrared 

spectroscopy (20), near infrared spectroscopy (21-26), optical coherence tomography 

(27, 28), Raman spectroscopy (29, 30), reverse iontophoresis (31), ultrasound 

technology (32, 33), and optical polarimetry (34-47). They concluded that no technology 

has produced a single commercially viable sensor and that more research is required 

(48).  

Optical polarimetry, which is the focus of this study, measures the rotation of 

linearly polarized light due to an increase in glucose. It is limited to measuring glucose 

in the eye due to the scattering properties of the skin. Eye movement and motion artifact 

provide a source of error. Other rotatory confounders present in the aqueous humor, 
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including proteins, ascorbic acid, and albuin, can provide a source for error. Optical 

polarimetry for glucose sensing is explained in more detail in the following section.  

 

Glucose Sensing using Polarimetry 

In the early 1800s, Jean Baptiste Biot discovered that a medium consisting of 

certain organic molecules, which he named optically active, cause transmitted linearly 

polarized light’s plane of polarization to rotate (49). These optically active molecules 

lack a structural plane of symmetry and are called enantiomers or chiral molecules. 

Glucose is one such molecule. He described the interaction between the optically active 

medium and the transmitted polarized light using Equation 3: 

 

[𝛼]! =
𝛼
𝐿𝐶

 (3) 

 

where [α]λ is the specific rotation of the optically active molecule at a given wavelength 

(λ) that is equal to the observed rotation (α) divided by the sample path length (L) and 

concentration (C) (49). Since the concentration of the optically active medium is in 

direct proportion to the linear rotation, sugar production industries started using optical 

polarimetry for monitoring glucose levels in the late 1800’s (50). 

In 1956, the sugar industry first became interested in Faraday modulation as a 

method to increase the root-mean-square function and stability of their optical 
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polarimeters for glucose sensing (51). This addition to the polarimeter has made the 

detection of small rotations due to physiological glucose levels possible.  

In 1982, March and Rabinovitch first utilized optical polarimetry with the 

precision of the Faraday rotation for the purpose of non-invasive physiological glucose 

monitoring (34, 35). They chose the aqueous humor inside the eye, instead of skin, as a 

suitable sensing location due to its minimal scattering and depolarization.  

In 1992, Cote et al. improved March and Rabinovitch’s polarimeter by increasing 

its sensitivity for glucose-doped water solutions into the millidegree range. They 

implemented a true phase measurement technique that used a rotating linear polarizer for 

both linearizing and modulating the beam’s polarization state (42, 52). That same year, 

Goetz et al. implemented an integrator into the feedback design and showed a micro-

degree sensitivity (53, 54). 

In 1994, King et al. utilized Pockels cells for modulation and compensation and 

implemented a multispectral polarimetric approach to minimize other optically active 

molecules in the aqueous humor (36). A year later, Michael implemented a polarimetric 

differencing technique into the multispectral polarimetric approach (55).  

Also in 1994, Cameron et al. improved the accuracy and sensitivity with the 

implementation of a digital closed loop control system (43). In 1998, Coté et al. 

presented a dual-wavelength approach to minimize the effect of optical confounders and 

potentially motion-induced noise due to birefringence (56). 

In the early 2000’s, Ansari et al. and Rawer et al. proposed a polarimetric 

approach that used Brewster’s reflection (57-59). In 2006, Cameron et al. utilized a 
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birefringence compensator to account for corneal birefringence during real-time 

polarimetric glucose sensing (60). 

In 2010, Malik et al. proposed a closed-loop dual-wavelength polarimetric 

approach that could compensate for time-varying birefringence in eye phantoms (38). In 

2012, Pirnstill et al. showed that dual-wavelength polarimetry can effectively reduce 

noise due to time-varying corneal birefringence in vivo allowing the accurate 

measurement of glucose concentration in the aqueous humor of the eye and correlating 

that with blood glucose (61). In 2013, Pirnstill et al. proposed a high-speed polarimetric 

method with decreased stabilization time; however, this single wavelength design was 

tested on a static glucose sample and did not account for time-varying birefringence 

(62). 

The aforementioned research indicates that optical polarimetry has the potential 

to monitor glucose concentrations in the aqueous humor of the eye, but the approach’s 

speed is limited. In this research, the optimization of the Faraday rotators and the signal 

separation method is proposed such that similar sensitivity from prior polarimeters can 

be provided with faster data-acquisition capability.  

The research is made up of three goals. The first goal is to design and construct a 

high-frequency, ferrite core Faraday rotator that can both rotate and modulate linearly 

polarized light faster than the existing 1.09 kHz air-core Faraday rotator. The second 

goal is to implement a single ferrite core Faraday rotator into the current polarimetric 

approach. The third goal is to replace three air-core Faraday rotators with two ferrite 

core Faraday rotators for both modulation and compensation, allowing for two different 
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signals to be measured on a single photodetector. This new system significantly 

simplifies the system in terms of alignment and amount of signal at the detector by 

eliminating the need for an extra beam splitter, Faraday rotator, detector, and photodiode 

amplifier used in the optical setup. 
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CHAPTER II 

THEORY 

 

 This section describes the theory to address the three research goals. In 

particular, this section overviews fundamentals of polarization and polarimetry, Jones 

calculus, optical activity, polarimetric glucose detection fundamentals, and system 

performance. 

 

Polarization of Light Fundamentals 

In this report, light is described as an electromagnetic wave. This transverse 

wave consists of both an electric and magnetic component orthogonal to each other. The 

wave’s electric field vector, E, and magnetic field vector, H, are transverse to the 

direction of wave propagation. Usually, the electric component of the electromagnetic 

wave is used to describe the polarization vector of light. Polarized light occurs when the 

magnitude of the electric component of the light is aligned in a single direction. In other 

words, the light’s vibrations occur in a single plane. Most sources of light are incoherent, 

randomly polarized, or partially polarized; the magnitude of the electric component of 

the electromagnetic wave randomly reorients itself in different directions. Polarizers are 

optical components that can reorient the direction of the electric component of the 

waves. Other states of polarization include elliptically and circularly polarized light. 

Elliptically polarized light occurs when the x-component of the linearly polarized light 

occurs out of phase of the y-component of the linearly polarized light when the light is 
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propagating in the z-direction. Circularly polarized light occurs when the x-component 

of the linearly polarized light occurs exactly 90 degrees out of phase of the y-component 

of the linearly polarized light. Humans, unlike some animals, cannot differentiate 

between different polarization states. Sensors, such as polarimeters, are therefore 

required to sense changes in polarization state. 

Optical Polarimetry Fundamentals 

 Polarimetry, as shown in Figure 1, is the utilization of polarized light to measure 

light changes from different types of media. One example of light changes is from optical 

activity. Optical activity is due to the chiral molecules in the eye. These molecules rotate 

the plane of the linearly polarized light passing through the sample and will be discussed 

in greater detail later. To be a valid measurement device for polarimetry, it is necessary 

for light to be polarized. A polarizer is used to reflect the unwanted polarization states and 

pass only one plane of polarization. Although there are many types of polarizers, a 

reflective, linear polarizer is used to create polarized light to measure the aqueous humor 

glucose concentration in the anterior chamber of the eye. A second polarizer, called an 

analyzer, is rotated 90 degrees from the first polarizer. All light is reflected from crossed 

polarizers, unless there exists something between the two polarizers that changes the 

electric component state. The amount of change can be measured by the change in the 

intensity or color of the output beam. During glucose measurements, the first polarizer 

creates linearly polarized light. This light passes through the optically active sample, and 

a different polarization angle of transverse waves is created. The analyzer then passes 
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only rotated polarized light. The primary cause for the rotation is the concentration of 

aqueous humor glucose, chiral molecules correlated to blood glucose. The aqueous 

humor glucose concentration is then measurable.  

 

 

Figure 1. Basic polarimeter (63) comprised of two polarizers and an optically active 
sample placed between them. 

 

Jones Calculus 

The electric component of polarized light can be explained using Jones calculus. 

In 1941, R. Clark Jones devised a concise method to represent light, which he named the 

Jones vectors (64). These vectors only apply to polarized waves. Jones vectors, as shown 

in Equation 4, are written in column form and represent the electric field vector of light 

propagating along a path in the Z-direction. 
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𝑬 =
𝐸!(𝑡)
𝐸!(𝑡)

 

 

(4) 

where Ex(t) and Ey(t) are the instantaneous scalar components of the electric field, E, in 

the horizontal and vertical axis respectively. Jones Matrices represent linear optical 

elements in the path of the beam. These elements can affect the beam’s polarization state 

and are represented by 2X2 matrices that mathematically perform operations on the 

Jones vector of an incident beam. 

The block diagram of the optical components in a single wavelength polarimetric 

approach is shown below in Figure 2: 

 

 

Figure 2. Block diagram for the single wavelength polarimetric approach for glucose 
sensing (43). 

 

Goetz et al. showed that the output Jones vector describing the electric field at the 

detector is described by Equation 5 (65). This vector is modeled as the product of Jones 

matrices of each individual element and the input Jones vector. The matrices are 

arranged opposite to the light propagation through each optical element. Goetz et al. 

reduced Equation 5 to Equation 6 (65). 
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𝑬 =
𝐸!(𝑡)
𝐸!(𝑡)

= 1 0
0 0 ∗

𝑐𝑜𝑠 𝜑! − 𝑠𝑖𝑛 𝜑!
− 𝑠𝑖𝑛 𝜑! 𝑐𝑜𝑠 𝜑!

∗
cos 𝜑! − sin 𝜑!
− sin 𝜑! cos 𝜑!

∗ 𝑐𝑜𝑠  (𝜃!𝑠𝑖𝑛𝜔!𝑡) −𝑠𝑖𝑛  (𝜃!𝑠𝑖𝑛𝜔!𝑡)
𝑠𝑖𝑛  (𝜃!𝑠𝑖𝑛𝜔!𝑡) 𝑐𝑜𝑠  (𝜃!𝑠𝑖𝑛𝜔!𝑡)

∗ 0 0
0 1 ∗ 0

1  

 

(5) 

 

𝐼 ∝ 𝜙! +
𝜃!!

2 + 2𝜙𝜃! 𝑠𝑖𝑛 𝜔!𝑡 −
𝜃!
2 𝑐𝑜𝑠 2𝜔!𝑡  

(6) 

 

where I descries the intensity of the detected signal, ϕ represents the net rotation due to 

the optically active sample, θm represents the angular modulation depth from the Faraday 

rotation, and ωm represents the Faraday modulation frequency in radians. A double-

frequency (2ωm) component originates due to the half-shadow effect created by the 

perfectly crossed polarizers. Equation 6 shows that without any optically active sample, 

the second term in the equation becomes zero and the detector shows only information at 

the double-frequency (2ω). When an optically active sample is introduced into the 

sensor, the detected signal becomes an asymmetric sinusoid, which contains both the 

fundamental frequency (ω) and double-frequency (ω) components. For the dual-

wavelength approach, both beams pass through the same optical train. Thus, Equation 6 

can represent both wavelengths. Optical activity (discussed later) explains why two 

different intensities originate in Equation 6 when two different wavelengths are used. 
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Optical Activity 

Optical activity, also termed circular birefringence, rotates linearly polarized 

light. Louis Pasteur first realized that molecular symmetry is responsible for optical 

activity (66). Rotation of linearly polarized light occurs when the beam passes through a 

solution of chiral molecules. Glucose molecules are chiral and therefore rotate linearly 

polarized light. Left-handed and right-handed molecules rotate light differently. The 

equation describing the interaction of these chiral molecules with a light is represented 

by Equation 3 where alpha is the observed rotation, C is the concentration of the 

optically active sample, L is the sample path length, and [α] is the specific rotation, 

which is dependent on the wavelength (λ), temperature and pH. This optical rotation is 

measurable through the use of polarimetry described above. 

The wavelength dependence is described by using the modified Drude equation 

for wavelengths away from or between absorption bands of the media (67). Therefore 

[α]λ can be described by  Equation 7: 

 

[𝛼]! =
𝑘!

𝜆! − 𝜆!!
 

(7) 

where λ is the wavelength of interest, and ko is a rotational constant corresponding to the 

wavelength, λo of maximal absorption. Equations 3 and 7 explain that the observed 

rotation due to glucose is wavelength dependent. 
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System Performance 

A lock-in amplifier extracts signals with a known carrier wave from a noisy 

environment. The output from the lock-in amplifier is configured to be proportional to 

the 2𝜙𝜃! 𝑠𝑖𝑛 𝜔!𝑡  component from Equation 6 above. The lock-in amplifiers lock 

into the fundamental frequency and provide outputs correlated to the net rotation, ϕ, due 

to the optically active sample and Faraday compensators. A lock-in amplifier requires a 

strong reference signal at the same frequency as the frequency of interest. The input 

signal is multiplied by the reference signal, and the result is integrated over a specified 

period of time. This specific time period needs to be large enough (much larger than the 

signal period) in order to suppress unwanted noise. Therefore, the upper limit of the 

integration time from the lock-in amplifiers depends on the modulation frequency from 

the Faraday modulators. In other words, a higher Faraday modulation frequency 

provides the potential to create a faster output signal from the lock-in electronics, and a 

higher frequency modulation has the potential to improve the signal-to-noise ratio in the 

presence of motion artifacts (68). 

It is possible to procure a more accurate and repeatable standard error by 

obtaining more data over a shorter period of time (62). The output from the lock-in 

amplifier is input into a proportional-integral-derivative (PID) controller for the 

controlled feedback into the Faraday compensators. This controller has three separate 

constant parameters. The proportional value, P, depends on the present error. The 

integral value, I, accumulates for past errors. The derivative value, D, predicts future 

errors. For this optical polarimeter, the PID controller takes at least five lock-in amplifier 
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time-constants to stabilize the feedback control system. The faster the lock-in amplifier’s 

time constant, the faster the overall system can stabilize. The overall stabilization time 

also depends on the sampling rate. Experiments have shown that overall stabilization 

time is at least ten times the sampling time. The faster the sampling rate, the faster the 

overall system stabilization time. 

Since every optical component in an optical train deteriorates the optical signal 

slightly, the reduction of parts improves the signal at the detector. A 50:50 beam splitter 

creates, on average, a 50% loss in signal at one of the detectors, with 50% of the light 

intensity transmitted and 50% of the light reflected. The optical signal in the dual-

wavelength polarimeter is split into two different detectors. As shown in Equation 6, the 

polarimetric approach for glucose sensing signal depends on the intensity of light on the 

detector. Because half the intensity reaches the detector, more amplification is required, 

potentially creating a source for noise. 
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CHAPTER III 

MATERIALS AND METHODS* 

This section describes the materials and methods to address the three research 

goals. 

Goal 1: Faraday Rotator Development 

As described by Malik et al. and Pirnstill et al., one method for creating a dual-

wavelength polarimeter includes Faraday modulation and lock-in electronics that 

produced sub-millidegree sensitivity (38, 61). The lock-in amplifiers’ speed, or system 

response time, has a minimum that depends on the Faraday modulation frequency to 

suppress unwanted noise including the double-frequency term. Put another way, a faster 

Faraday modulation frequency allows for a faster overall system response time. 

Air Core Faraday Modulator Analysis 

The air-core Faraday rotation techniques used in previous studies for glucose 

sensing are limited to direct current (DC) and low frequency alternating current (AC) 

applications (39, 61, 69). This air-core Faraday modulator, as shown in Figure 3, consisted 

of a bobbin of more than 3000 turns of 23 AWG wire wrapped around a Terbium Gallium 

Garnet (TGG) crystal. The impedance of the coil was high in the frequency region of 

interest (30 to 75 kHz). The impedance and self-resonant frequency of the air-core Faraday 

modulator were therefore measured in an attempt to find why the impedance 
___________________
* Part of this chapter are reprinted with permission from D.T. Grunden, C.W. Pirnstill, and G.L. Cote, 
"High-speed dual-wavelength optical polarimetry for glucose sensing," SPIE Photonics West 
895111-895111-895116 (2014). Copyright 2014 SPIE.
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was high. A voltage drop across a 10kΩ resistor placed in series with the coil provided 

the information needed. 

Figure 3. Air core Faraday modulator. 

Ferrite Core Faraday Modulator Development and Analysis 

Three ferrite core Faraday rotators were developed for high-frequency 

modulation of linearly polarized light in the frequency range of 30 to 75 kHz. The ferrite 

C-shaped core, as seen below in Figure 4, made up the bulk of the Faraday rotator.  
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Figure 4. Ferrite core CAD rendering illustrating optical beam passing through core. 

The cores were custom machined by ELNA Magnetics and are described in 

detail by Pirnstill et al. (70). The device properties depend on the geometry of the 

magnetic core, the size of the air gap, the properties of the core material, and the 

operating temperature of the core. As a result, the Faraday rotator’s core properties could 

be optimized for either large magnetic field generation or a large range of modulation 

frequencies (71, 72). The overall lengths of these cores were ~57 mm, the heights were 

~28 mm, and the widths were ~14 mm. The ferrite core was made from a magnetic 

material with a high permeability that confined and guided the magnetic flux densities. 

A 3D printed ferrite core holder was used to prevent magnetic flux density coupling 

between the ferrite core and the metal optics components. The ferromagnetic core was 

comprised of a low-loss MnZn ferrite designed for high flux power applications at 

frequencies up to 200 kHz due to the atomic properties of the ferrite (70). A through-

hole (~2.5mm in diameter) lied within the core as seen in Figure 4 for light to travel 
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through. A magneto-optic cylinder (~11 mm in length) lied inside the gap (~15 mm in 

length) of the C-shaped ferrite core Faraday rotator. Both the optical clarity and the large 

Verdet constant of approximately 134 rad/T/m for 632 nm made Terbium Gallium 

Garnet (TGG) crystal (Deltronic Crystals Inc., Dover, NJ) a good choice for this 

magneto-optic rod. TGG crystal has approximately twice the Verdet constant of terbium-

doped glass. A coil was wrapped around the side of the gapless side of the C-core, and 

current was supplied into the coil. A resulting magneto-motive force (MF) propagated 

around the C-core and through the gap containing the TGG crystal. Similar to the air 

cores, the MF inside the TGG crystal rotated the plane of polarization (β) of the light 

beam travelling through the crystal. Equation 8, below, shows that the rotation results 

from the product of the crystal’s Verdet constant (V), the magnetic flux density (B) 

inside the crystal, and the crystal’s length (L). The AC signal through the coiled wire 

generated an alternating magnetic flux density (±B) inside the crystal. 

𝛽 = 𝑉𝐵𝐿 (8) 

Different types of Litz wire and a different number of turns around the ferrite 

core were used to provide larger magnetic flux densities across the TGG crystal due to 

the decrease in the skin effect and proximity effect at the proposed frequencies (73). At 

high frequencies in and above the kHz range, current is carried mainly on the surface of 

wire. This smaller volume for current to flow causes the wire’s resistance to increase 

above its DC value. Litz wire mitigates this issue, since it is made of smaller, thinner, 
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insulated, parallel strands of wires intertwined so no wire is near the surface or the 

interior. As a result, the skin effect and AC resistance of the overall wire were reduced, 

and larger currents could flow at frequencies in the kHz range. Proximity effect occurs 

when current flows in loops due to the magnetic fields generated by nearby wire. Litz 

wire reduces proximity effect by the twisting or weaving of the strands. The twisting and 

weaving ensures that each strand has equal current. A 3D printed litz wire holder was 

used to prevent shorts along the wire against the sharp edges of the ferrite core. 

Two experiments were performed to find a number of windings around the ferrite 

core that provided sufficient magnetic flux density and optical rotation of linear 

polarized light in the frequency range of 30 to 75 kHz. The first experiment measured 

the self-resonant frequency of three different ferrite cores wrapped with three different 

number of turns of 30 strands of 38-gauge wire: 91, 101, and 324 turns. Figure 5 

describes that the inductor (comprised of the three different coils) was the variable of 

interest. The second experiment measured the impedance of a single winding (101 turns) 

around a single ferrite core with three different capacitors placed in series with this coil. 

Figure 6 describes that three different series capacitors made up the variable of interest. 

A voltage drop across a resistor placed in series was used to measure the impedance and 

SRF of each coil for each experiment. 
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Figure 5. Real inductor with three different number of turns. The inductor itself is the 
variable of interest. A range of frequencies was sent through the coil to provide a 

frequency response of each coil’s impedance. 

Figure 6. Three capacitors were placed in series with a single 101-turn coil to tune the 
coil to resonate at three different frequencies. 

Variable 

Variable 
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After ~100 turns provided a SRF outside of the frequency range of interest, the 

number of individual strands of the litz wire was increased. The method for measuring 

alternating magnetic flux density of the ferrite core Faraday rotator and, therefore, the 

alternating rotation of the linearly polarized light is described below. Equation 8 

provides the optical rotation based on the magnetic flux density achieved. As previously 

stated, the Verdet constant of TGG crystal is calculated to be approximately 134 rad/T/m 

for 632 nm light. The magnetic flux density created by the current flowing through the 

coil wrapped around the C-core was measurable by using a custom built Trifield AC 

Gaussmeter (AlphaLab Inc., Salt Lake City, Utah). The length of the TGG crystal was 

measured with calipers and approximated 11.0 mm. Therefore, a magnetic flux density 

of ±17 mT inside the C-core gap provided ±1 degree of rotation. The inductors were 

tuned with capacitors placed in series with the inductor to maximize the current flowing 

through the device at frequencies ranging from 30 to 75 kHz. A Wideband Power 

Analyzer Model 2335A (Clarke-hess, Medford, NY) was used to measure the voltage, 

current, and total power flowing through the coil.  

DC Compensation 

The novel Faraday rotators were constructed with both modulation and 

compensation in mind. Different approaches were attempted to create both an AC and 

DC magnetic flux density through the crystal without coupling either signal into the 

other source. The first method, shown in Figure 7, included a modified bias-tee circuit 

to provide both an AC and DC signal through the same coil. The bias-tee circuit used a 
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Hammond 193S inductor (LBiasTee) with an inductance of 1.0 H to block the AC signal 

from flowing into the DC source (Vdc). The series resonant capacitor (Cseries) tuned the 

Faraday rotator and blocked the DC signal from flowing into the AC source (Vac). The 

second method, shown in Figure 8, used two different coils wrapped in various sections 

around the ferrite core and/or crystal to create both an AC and DC magnetic flux density 

across the TGG crystal. LAC and LDC represent the coils for modulation and DC 

compensation respectively. RDC represents the resistor placed in series with the DC 

compensation coil. 

Figure 7. Modified bias-tee to send both an AC and DC signal through the coil 
simultaneously. 
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Figure 8. Two circuits and coils provide both modulation and compensation on a single 
core. 

The AC magnetic flux density was measured using the Trifield AC Gaussmeter. 

The DC magnetic flux density was measured using a basic polarimeter, which consisted 

of a laser source, two crossed polarizers, a detector, and the Faraday rotator. 

Goal 2: Dual-Wavelength Polarimeter with a Single Ferrite Core Faraday 

Modulator 

The dual-wavelength approach has been proven to reduce and potentially 

eliminate the effect of time-variant corneal birefringence (38). The dual-wavelength 

optical polarimetric approach used here consisted of a single high-speed Faraday 

modulator and dual polarimetric optical compensators for a closed-loop configuration. 

The high-frequency, dual-wavelength approach is shown in detail in Figure 9 and is 

described in detail by Grunden et al. (74). 
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Figure 9. Schematic illustrating experimental setup of the high-speed closed-loop dual-
wavelength optical polarimeter utilizing a single Faraday-modulation frequency. 

Two laser diodes (Power Technology, Inc., Little Rock, Arkansas) emitted 

wavelengths of 635 nm and 830 nm with emission power of 7 mW and 20 mW 

respectively. These two beams were minimized and collimated with a converging and 

diverging lens for passing the beams through the Faraday modulator (FM) with minimal 

losses, scattering, and diffraction. 1:100,000 Glan-Thompson linear polarizers (LP) 

(Newport, Irvine, California) then linearly polarized the two beams in the horizontal 

orientation.  The two linearly polarized beams passed through two in-house built air-core 

Faraday rotators (FC) that provided compensation for closed-loop operation. This 

polarimetric approach consisted of two air-core Faraday rotators for compensation and 

one ferrite core Faraday rotator for modulation. These air-core Faraday rotators were 

constructed from TGG crystals (Deltronic Crystals, Inc., Dover, New Jersey) inside 

bobbins wound with electric coils.  
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After a beamsplitter/combiner (BS) (Optosigma Corp., Santa Ana, Califormia) 

combined the two linearly polarized beams, the polarization vector of both beams was 

modulated using the ferrite core Faraday modulator (FM). This approach replaced the 

previously used slower air-core Faraday modulator operating at 1.09 kHz (38, 62) with 

the faster ferrite core Faraday modulator operating at a frequency between 30 and 75 

kHz. For this aim, a combination of 3 capacitors yielding a net capacitance of 7.85 nF 

were placed in series with the ferrite core Faraday modulator for Series Resonance at 37 

kHz modulation frequency. The Faraday modulator was powered by an OPA548F 

operational amplifier and switching power supplies (Dell, Round Rock, TX) to produce 

a modulation depth of ~±1 degree. The OPA548F has a fast frequency response (1 MHZ 

Gain-Bandwidth Product) and current throughput (3A Continuous). The Faraday 

modulator consumed ~2.4 W of power. As described above, the Faraday modulator was 

built from a high permeability ferromagnetic core to enhance the amplitude and 

uniformity of the magnetic flux density produced across the air gap, which contained a 

TGG crystal (70).  

After the beams propagated through the ferrite core Faraday modulator, the two 

beams passed through a quartz cuvette (Sigma, St. Louis, MO) containing varying 

glucose concentrations in the physiological range of 0-600 mg/dL for sensitivity 

experiments. Later, the cuvette was placed on a computer-programmable translation 

stage (Thorlabs, Newton, NJ) for motion artifact studies at frequencies similar to those 

that resemble human cardiac and respiratory cycles. The sample was shifted up 0.5 mm 

and then down 0.5 mm with a velocity of 1 mm/sec.  
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Following the sample, a second linear polarizer (analyzer), oriented 

perpendicular to the initial polarizers, transmited only rotation and birefringence 

information. A second beamsplitter/combiner and bandpass filters then split the two 

beams before the photodetectors. Two photodiodes (PD) (Thorlabs, Newton, NJ) 

followed by two wide-bandwidth amplifiers (Melles-Griot, Albuqurque, New Mexico) 

transduced and amplified the two beams separately. The two signals were then fed into 

two lock-in amplifiers (Standord Research Systems, Sunny-vale, California) utilizing a 1 

msec time-constant. Lock-in amplifiers are described in more detail in CHAPTER II.  

A field-programmable gate array (FPGA) based feedback proportional-integral-

derivative (PID) controller, programmed in Labview 10.0 32-bit (National Instruments, 

Austin, Texas) provided near real-time closed-loop feedback to the Faraday 

Compensators.  Multiple-linear regression (MLR) analysis, which is analogous to scaled 

subtraction, can accommodate for the birefringence. Therefore, Equation 12 can 

potentially predict glucose in the presence of motion artifact. The detected signal, I, on 

the photodetector provided signal at the fundamental frequency, ~37 kHz, only when 

optical activity or birefringence was introduced between the two linear polarizers. 

Similar to Malik et al, the dual-wavelength and MLR approach were used to extract the 

rotation due to optical activity (75). Two wavelengths were used to compensate for the 

time-varying birefringence. 
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Goal 3: Dual-Wavelength Polarimeter with Dual Ferrite Core Faraday Modulators 

Similar to the dual-wavelength polarimeter with a single ferrite core Faraday 

modulator, Figure 10 describes the new optical polarimeter using two ferrite core 

Faraday rotators to modulate the two different beams at two different frequencies. 

Figure 10. Schematic illustrating experimental setup of the high-speed closed-loop dual-
wavelength optical polarimeter utilized dual-Faraday modulation frequencies. 

Two laser diodes (Power Technology, Inc., Little Rock, Arkansas) emitted two different 

wavelengths at 635 nm and 532 nm with emission powers of 7 mW and 10 mW 

respectively. The 830 nm wavelength laser from the second goal was switched to the 532 

nm wavelength for this goal, because the 532 nm wavelength laser creates a larger 

rotation due to optical activity and Faraday effect than the 830 nm wavelength laser. The 

1:100,000 Glan-Thompson linear polarizers (Newport, Irvine, California) linearly 

polarized the two beams in the horizontal orientation. Unlike the single modulation 

approach, this polarimetric approach consisted of two ferrite core Faraday rotators that 
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could compensate and modulate on a single device for each wavelength. The 635 nm 

laser beam was modulated at ~73.6 kHz, and the 532 nm laser beam was modulated at 

~52.2 kHz, both with a modulation depth of ~±1 degree. 100 turns of 125/40 litz wire 

was wrapped around the C-core of the Faraday rotator for modulation. 20 turns of 24 

Gauge wire was wrapped around the TGG crystal residing inside the gap of the C-core 

for DC compensation. Four OPA548F operational amplifiers configured in non-inverting 

linear gain setups supplied power to the four different coils, two for modulation and two 

for DC compensation.  

A beamsplitter/combiner (Optosigma Corp., Santa Ana, California) then 

combined the two modulating linearly polarized beams. The two beams passed through a 

quartz cuvette (Sigma, St. Louis, MO) containing varying glucose concentrations in the 

physiological range of 0-600 mg/dL.  

Following the sample, a second linear polarizer (analyzer) oriented perpendicular 

to the initial polarizers supplied only rotation and birefringence information. Unlike the 

single frequency approach, a second beamsplitter/combiner and bandpass filters were not 

needed to optically separate the two beams before the photodetectors. Therefore, a single 

photodiode (PD) (Thorlabs, Newton, NJ) followed by a single wide-bandwidth amplifier 

(Melles-Griot, Albuqurque, New Mexico) transduced and amplified the two beams 

together. The two signals were then fed into two lock-in amplifiers (Stanford Research 

Systems, Sunny-vale, California), both utilizing a 100 usec time-constant. This time-

constant was ten times faster than the 1 msec time-constant used in the single modulator 

approach. The SR850 Lock-in amplifier was tuned to the 73.6 kHz signal and filtered 
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noise and the signal at 52.2 kHz. The SR830 Lock-in amplifier was tuned to the 52.2 

kHz signal and filtered noise and the 73.6 kHz signal.  

The same field-programmable gate array (FPGA) based feedback proportional-

integral-derivative (PID) controller, programmed in Labview 10.0 32-bit (National 

Instruments, Austin, Texas) provided closed-loop feedback to the Faraday Compensators 

As a result of these two frequencies, a single detector replaced the beam splitter 

and two detectors shown in Figure 10. A Melles Griot Photodiode Amplifier was also 

removed. The single detector passed both the 635 nm and 532 nm laser beams and 

converted these two optical signals into electrical signals. Then the single photodiode 

amplifier amplified both signals. The output of the photodiode amplifier was split into 

the two Lock-in amplifiers. The two air-core Faraday rotators for DC compensation were 

no longer required, because the Faraday compensation now occurs in the same crystal 

responsible for Faraday modulation.  

The sensor’s sensitivity was determined by three runs of static glucose 

concentrations varying from 0-600 mg/dL in increments of 100 mg/dL for both 

wavelengths similar to testing described by Malik et al. (38). These sensitivity 

experiments were performed without motion. Later, the cuvette was placed on a 

computer-programmable translation stage (Thorlabs, Newton, NJ) for motion artifact 

studies. Noise was simulated at a frequency of 0.33 Hz and simulated respiration at 20 

beats per minute. 
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CHAPTER IV 

RESULTS AND DISCUSSION* 

This section outlines the results with discussion for each research goal. 

Goal 1: Faraday Rotator Development 

For the first research goal, a high-frequency, ferrite core Faraday rotator, that 

modulated and rotated linearly polarized light in a frequency range of 30 to 75 kHz, was 

developed. 

Air Core Faraday Modulator Analysis 

This section  describes the high impedance of the air core Faraday modulator. 

The impedance, ZL, of an inductor modulated at a frequency is shown in Equation 9. 

𝑍! =    𝑅!"! + 𝑋!! 
(9) 

The impedance depends on the inductor’s AC resistance, RAC, and reactance, XL. This 

reactance, as shown in Equation 10, increases with frequency (f) and inductance (L).  

𝑋! =   2𝜋𝑓𝐿 (10) 

___________________
* Part of this chapter are reprinted with permission from D.T. Grunden, C.W. Pirnstill, and G.L. Cote, 
"High-speed dual-wavelength optical polarimetry for glucose sensing," SPIE Photonics West 
895111-895111-895116 (2014). Copyright 2014 SPIE.
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The inductance for any coil of wire can be approximated by Equation 11. 

𝐿 =   
𝑁!𝜇𝐴
𝑙

(11) 

where L is the inductance of the coil, N is the number of turns of the coil,  µ is the 

permeability of the core, A is the area of the coil, and l is the average length of the coil. 

Although an increase in the inductor’s number of turns increases its inductance 

and therefore its reactance and magnetic flux density generation, all real inductors have 

parasitic capacitance between the windings of the coil. A coil’s self-resonant frequency 

(SRF) exists when parasitic capacitance of the coil resonates with the coil’s inductance 

at a specific frequency. At this specific frequency, the SRF, the capacitance resonates 

with the inductor’s inductance, L, creating, in essence, a parallel resonant tuned circuit.  

A coil’s SRF can be calculated using Equation 12 below: 

𝑆𝑅𝐹 =   
1

2𝜋 𝐿𝐶!"#

(12) 

As previously mentioned, the coil’s inductance (L) is a function of the number of 

turns, but the parasitic capacitance (Cpar) is a function of how well the coil is wound. 

Parasitic capacitance exists when two conductors at different potentials are in close 

proximity to one another and affect each other’s electric field. 



35 

As shown in Figure 11, the air core Faraday modulator had a SRF of 40 kHz; as 

a result, there existed large impedance in the frequency range of interest. 

Figure 11. Self-resonance for the air core Faraday rotator. 

Ferrite Core Faraday Modulator Development and Analysis 

Because the air core Faraday modulator provided a high impedance and SRF in 

the frequency range of interest (30 to 75 kHz), a new ferrite core Faraday rotator was 

developed for high frequencies. The core was first wrapped with three different numbers 

of litz wire. This first experiment consisted of measuring the SRF of three different 

number of windings of 30 strands of 38-gauge wire. Figure 12 shows that a decrease in 

the number of turns around the core caused the Faraday rotator’s SRF to increase and the 

overall impedance inside the desired frequency range of 30 to 75 kHz to decrease.  
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Figure 12. Self-resonance for various windings (91 turns, 101 turns, and 324 turns) of 30 
strands of 38-gauge litz wire. 

The 324, 101 and 91-turn coils each had a SRF of ~98.5, ~223, and ~389 kHz 

respectively. At frequencies above the inductor’s self-resonant frequency, parasitic 

capacitive effect appeared to dominate, and the overall impedance of the inductor 

decreased.  
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During the series resonance experiment, three different capacitors are placed in 

series with the 101-turn coil. During series resonance, the inductor’s reactance dropped 

to zero at a specific, tuned frequency. The inductor’s resulting minimized impedance 

(ZL) at the tuned frequency is shown in Equation 13. 

𝑍! = 𝑅!"  (13) 

The inductor’s resulting impedance at the tuned frequency is theoretically equal to the 

inductor’s AC resistance (RAC) at the tuned frequency. Figure 13 shows the 101-turn 

coil’s impedance with various capacitors placed in series for series resonance. The 101-

turn coil was chosen over the other two coils, because during the previous SRF 

experiment that compared the three coils with different windings, the 101-turn coil 

provided similar impedance in the frequency range of interest while having a higher SRF 

than the 91 turn coil.  
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Figure 13. Series-resonance frequency response of the 101-turn litz wire tuned to various 
frequencies. 

 As shown, the impedance at series resonance increased with an increase in the 

series resonance frequencies, especially when the tuned frequency approached the coil’s 

SRF. The 101 turn coil could achieve series resonance of ~473 ohms at ~115 kHz while the 
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324 turn coil could only achieve ~447 ohms at ~16 kHz. A series resonance near the 

coil’s SRF increased power consumption. 

The number of individual strands was then increased. The increased number of 

strands allowed for a larger current to flow while keeping the coil’s SRF out of the 30 to 

75 kHz frequencies of interest. The magnetic flux density is a function of both the 

number of turns and the current flowing through the coil. As shown in Figure 11, a 

decrease in the number of turns increased the coil’s SRF, but MFD is a function of the 

number of turns and current. With fewer turns, more current was required to flow for a 

given MFD. 100 turns of 125 individually stranded 40-gauge AWG wires (type SPNSN 

125/40 served litz wire, MWS Industries) was chosen due to the previous 101 turn coil 

providing the highest SRF and lowest AC resistance in the desired frequency range of 30 

to 75 kHz.  More strands allowed more total current to flow. For one specific frequency 

inside the 30 to 75 kHz frequency range, ~2.4 W created ±17 mT and thus ±1 degree of 

rotation at ~37 kHz during series resonance. The air-core Faraday modulator required 

~1.92 W to generate ±1 degree of rotation at ~1 kHz during series resonance. The ferrite 

core Faraday rotator had an inductance of ~2 mH compared to the ~200 mH air core 

inductors. 

Implementation of DC Compensation Inside the Faraday Rotator 

Two methods were created to simultaneously modulate and compensate the 

linearly polarized light using a single ferrite core based Faraday rotator. The first method 

to send both an AC and DC signal through the coil included a purely electric design. 
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After experimenting with the purely electric bias-tee circuit shown in Figure 7, the 

inductor did not provide enough impedance to completely block the AC signal from 

flowing into the DC source. A decrease in AC MFD resulted across the crystal.  

A new method was, therefore, developed to create both an AC and DC MFD 

across the TGG crystal. A 20-turn coil was wrapped around the crystal, which resided 

inside the core’s gap. The coil did not touch the ferrite core to reduce coupling of AC 

and DC signals. 23-gauge wire was chosen, because this gauge allows a maximum of 4.7 

amps of DC signal. Also, standard AWG wire can potentially help prevent AC from 

flowing through the DC compensation circuit. A 10-ohm resistance was used in series 

with the 20-turn coil to increase the DC circuit impedance. With the resistor in place, 

this coil required ~14 W to produce 1 degree of DC rotation, but the resistor effectively 

blocked the coupling of the AC signal from the 100-turn coil in the frequency range of 

30 to 75 kHz. 

Ferrite Core Faraday Rotator Concluding Statement 

In summary, a high-frequency, ferrite core Faraday rotator – that modulated and 

rotated linearly polarized light in a frequency range of 30 to 75 kHz – was effectively 

developed. Wrapping a ferrite C-shaped core with 100 turns of litz wire for AC 

modulation and 20 turns of AWG wire for DC compensation appeared to produce 

reasonable results for this Faraday rotator. Preliminary studies showed that the lock-in 

amplifiers in the polarimetric glucose sensor could lock into the signal inside the 

frequency range of 30 to 75 kHz (62); also, there was ~4 degrees Celsius increase in 
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temperature in the coil over 50 minutes. A box, as shown in Figure 14, was placed 

around the Faraday rotator to help isolate the device from temperature fluctuations in the 

environment. 

Figure 14. Ferrite core Faraday modulator box in optical setup. 
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Goal 2: Dual-Wavelength Polarimeter with a Single Ferrite Core Faraday 

Modulator 

For the second research goal, the 1.09 KHz air-core Faraday rotator in the dual-

wavelength optical polarimetry setup described by Malik et al. (39) was replaced with a 

new ferrite core Faraday rotator for modulation only. The ferrite core Faraday rotator, 

shown in Figure 9, could drive faster modulation frequencies than the air-core Faraday 

rotator used in previous designs (38, 61). Faster modulation frequencies and the resulting 

faster Lock-in amplifier’s time constant settings decreased the overall speed of the 

closed-loop system response and sensor reading. The air-core Faraday rotators used in 

the previous dual-wavelength approach described by Malik et al. could only modulate 

light at 1.09 kHz; therefore, the lock-in amplifiers required a slow 100 msec time 

constant setting, and the system resulted in a 300 msec stabilization time for the overall 

response time for his sensor (38). More recently, Malik et al. and Pirnstill et al. 

performed ex vivo and in vivo studies with a 100 msec stabilization time (39, 61). The 

dual-wavelength polarimetric closed-loop approach in Figure 9 was designed and is 

described in detail by Grunden et al. (74). It consisted of a Faraday modulation 

frequency of ~37 kHz, a lock-in amplifier time-constant setting of 1 msec, and a system 

response stabilization time of less than 10 msec. 

Sensitivity Experiments 

To test the repeatability and accuracy of the device, data processing without

motion was performed and is described in detail by Grunden et al. (74).  A linear 
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regression model of the data acquired from the high-speed dual-wavelength polarimeter 

with a single Faraday modulation frequency provided a standard error of 20.3 and 10.0 

mg/dL for the 635 and 830 nm wavelengths respectively. The high error in the 635 nm 

wavelength laser may have been due to a misalignment of the system. The 635 and 830 

nm wavelengths provided correlation coefficients of 0.992 and 0.998 respectively. 

Figure 15 shows MLR of the data without motion. The MLR reduced the standard error 

to 9.43 mg/dL and improved the correlation coefficient to 0.999.

Figure 15. Predicted glucose concentration as a function of actual glucose concentration 
for 635 nm and 830 nm dual-wavelength approach from 0-600 mg/dL without motion. 
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Experiments with Motion Artifact 

Dual-wavelength sensitivity studies with motion, reported by Malik et al. 

resulted in 14.5 mg/dL error with a correlation coefficient of 0.998 (76). Static glucose 

concentrations between 0-600 mg/dL with 100 mg/dL increments determine the sensor’s 

repeatability and accuracy in the presence of motion artifact. Figures 16 and 17 show 

the predicted glucose concentrations as a function of the actual glucose concentrations 

for wavelengths 635 nm and 830 nm (74). 

Figure 16. Predicted glucose concentration as a function of actual glucose concentration 
of 0-600 mg/dL for 635 nm wavelength with time-variant motion. 
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Figure 17. Predicted glucose concentration as a function of actual glucose 
concentration of 0-600 mg/dL for 830 nm wavelength with time-variant motion. 
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In the presence of motion and the resulting time-varying birefringence, a simple 

linear regression first provided error for each wavelength. The mean error for glucose 

prediction using the 635 nm and 830 nm wavelengths were 39.9 and 59.9 mg/dL 

respectively, or an average of 49.9 mg/dL error (74). The correlation coefficients for 

glucose prediction using the 635 nm and 830 nm wavelengths were 0.970 and 0.935 

respectively. Multiple-linear regression analysis was applied to predict and essentially 

subtract out the contribution of birefringence from the total rotation of the two 

wavelengths’ polarization state. The MLR approach reduced the error to 25.7 mg/dL 

with a correlation coefficient of 0.990 shown in Figure 18 (74). This error was larger 

than previous works (76), because the 635 nm wavelength error was large before motion 

was added. The study without motion showed 20.3 mg/dL error with the 635 nm 

wavelength. The MLR approach could not reduce noise if the noise wasn’t correlated 

between the two wavelengths. The third goal reduced system components and therefore 

increased sensitivity. 
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Figure 18. Predicted glucose concentration as a function of actual glucose concentration 
of 0-600 mg/dL with time-variant motion after MLR analysis. 
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These results show a decrease in system response time over the real-time dual-

wavelength approach presented by Malik et al. Their slower modulation frequency (1.09 

kHz) and their software based (not FPGA based) PID control feedback system required 

~100 msec for system stabilization (39). The high-speed approach combined a faster 

modulation frequency (37 kHz) and a faster FPGA based PID control feedback system 

for a faster 10 msec system stabilization time. It, therefore, follows that the high-speed 

approach was ~10 times faster. 

Concluding Statement for the Single Faraday Modulation Frequency Approach 

In summary, the integration of a high-speed ferrite based Faraday rotator into the 

dual-wavelength polarimeter was accomplished and in vitro phantom studies were 

performed with and without motion artifact. The stabilization time was shown to be less 

than 10 msec, and standard errors were less than 26 mg/dL. The faster Faraday 

modulation improved the slow filtering process and improved the stabilization time in 

the closed-loop response of the sensor. In the third goal (described in the next section), 

an attempt was made to reduce the 26 mg/dL error and increase the speed even further 

by the removal of system components. 
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Goal 3: Dual-Wavelength Polarimeter with Dual Ferrite Core Faraday Modulators 

For the third research goal, the two signals riding on the two different 

wavelengths were separated electronically with lock-in amplifiers, rather than optically 

with filters, to remove overall system components. Specifically, a beam splitter, two 

filters, a photodiode, and a photodiode amplifier were removed. The Faraday rotator also 

included DC-compensation for closed-loop feedback onto the same ferrite core Faraday 

rotator that was already modulating linearly polarized light. As a result, two Faraday 

rotators that could modulate and compensate replaced the three Faraday rotators used in 

the second research goal. The simplified sensor was then characterized in vitro with and 

without motion artifact to evaluate system error. 

Sensitivity Experiments 

The simplified dual-wavelength polarimeter utilizing dual Faraday modulation 

for glucose sensing was designed.  The design operated at frequencies within the 30 to 

75 kHz region of interest. Specifically, the design operated at 52.2 and 73.5 kHz with 

modulation and compensation on a single crystal. The faster modulation frequency 

allowed for a faster stabilization time than previous air-core systems.  

For data processing without motion, a linear regression model of the data 

acquired from the high-speed dual-wavelength polarimeter provided a standard error of 

8.51 and 15.1 mg/dL for the 635 and 532 nm wavelengths respectively. As previously 

stated, the 830 nm wavelength laser from the second goal was switched to the 532 nm 

wavelength for this goal, because the 532 nm wavelength laser creates a larger rotation 
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due to optical activity and Faraday effect than the 830 nm wavelength laser. The 635 and 

532 nm wavelengths provided correlation coefficients of 0.999 and 0.995 respectively. 

Figure 19 shows a MLR of the results of three tests and their errors corresponding to 

various glucose concentrations ranging from 0-600 mg/dL with 100 mg/dL intervals. 

The MLR improved the standard error and correlation coefficient of the data without 

motion to 7.89 mg/dL and 0.999. 

Figure 19. Predicted glucose concentration as a function of actual glucose concentration 
for 635 nm and 532 nm dual-wavelength approach from 0-600 mg/dL without motion. 
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52.2 kHz and 73.6 kHz modulation frequencies are roughly twice the frequency 

used for the second research goal. As a result, the lock-in amplifiers could filter with 

faster 100 usec time constants (as opposed to 1 msec time constants used in the single 

frequency experiments reported in the second goal), and the FPGA-based dual-

wavelength system could stabilize as fast as ~2 msec (as opposed to ~10 msec from the 

single frequency experiments). Figure 20 shows the stabilization time for the 635 nm 

(red) wavelength. The recorded feedback voltage began to stabilize at ~3.5465 seconds 

and completely stabilized by ~3.5485 seconds. The PID built with the FPGA had an 

acquisition rate of 100 usec. Any acquisition rate faster than 100 usec produced unstable 

results.  
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Figure 20. Stabilization time for the closed-loop dual-wavelength optical polarimeter to 
sense glucose. 
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Experiments with Motion Artifact 

Similar to the results without motion, the dual-frequency dual-wavelength 

polarimetric approach functioned within a target range of 0-600 mg/dL glucose 

concentration with a target error equivalent to the air-core system in the presence of 

motion artifact of ideally less than 15 mg/dL. Glucose concentrations between 0-600 

mg/dL with 100 mg/dL increments determined the sensor’s repeatability and accuracy in 

the presence of motion artifact. Figures 21 and 22 show the predicted glucose 

concentrations as a function of the actual glucose concentrations for wavelengths 635 

nm and 532 nm. A simple regression analysis showed that the mean error for glucose 

prediction using the 635 nm and 532 nm wavelengths were 19.6 and 63.5 mg/dL 

respectively, in the presence of motion and the resulting time-varying birefringence. The 

635 nm and 532 nm wavelengths provided correlation coefficients of 0.993 and 0.916. 

Similar to Malik et al., MLR analysis was applied to minimize the contribution of 

birefringence from the total rotation of the two wavelengths’ polarization state (39). The 

MLR approach reduced the error to 13.0 mg/dL with a correlation coefficient of 0.997 as 

shown in Figure 23.  
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Figure 21. Predicted glucose concentration as a function of actual glucose concentration 
of 0-600 mg/dL for 635 nm wavelength with time-variant motion. 
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Figure 22. Predicted glucose concentration as a function of actual glucose concentration 
of 0-600 mg/dL for 532 nm wavelength with time-variant motion. 
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Figure 23. Predicted glucose concentration as a function of actual glucose concentration 
of 0-600 mg/dL with time-variant motion after MLR analysis. 

Concluding Statement for the Dual-Frequency Faraday Modulation Approach 

In summary, overall system components were removed by separating the two 

signals riding on the two different wavelengths electronically with lock-in amplifiers, 

rather than optically with filters. The modulation frequencies of 52.2 and 73.6 kHz 

allowed for a faster stabilization time than previous air-core systems. 
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CHAPTER V 

CONCLUSIONS 

For the first research goal, a high-frequency, ferrite core Faraday rotator – that 

modulated and rotated linearly polarized light in a frequency range of 30 to 75 kHz – 

was effectively developed. This rotator was made to work by wrapping 100 turns of 

125/40 litz wire around a C-shaped ferrite core for AC-modulation and 20 turns of 24-

gauge wire around TGG crystal for DC-compensation.  

For the second goal, a high-speed ferrite based Faraday rotator was integrated 

into the dual-wavelength polarimeter. In vitro phantom studies were performed with and 

without motion artifact, with stabilization times less than 10 msec and standard errors 

less than 26 mg/dL in the presence of motion. The faster Faraday modulation improved 

the slow filtering process as well as the stabilization time in the closed-loop response of 

the sensor. The 635 nm wavelength error was large before motion was added. The study 

without motion showed 20.3 mg/dL error with the 635 nm wavelength. The MLR 

approach could not reduce noise if the noise was not correlated between the two 

wavelengths.  

For the third goal, system components were reduced to improve sensitivity. In 

particular, signal separation was accomplished using an electronic method (as opposed 

to optically with filters), which ultimately resulted in the removal of unnecessary parts 

(one beam splitter, one Faraday rotator, two filters, one photodiode, and one phodiode 

amplifier). This approach used two modulation frequencies instead of one, provided 
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simplicity, and reduced the overall system cost. Moreover, the dual-Faraday modulation 

method reduced error to 13.0 mg/dL in the presence of motion. A higher modulation 

frequency and a faster lock-in amplifier reduced the overall system stabilization time 

from ~100 msec obtained in the air core approach to ~10 msec obtained in the single 

Faraday modulation approach and finally to ~2 msec obtained in the dual Faraday 

modulation approach.  
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