
 

 

 

 

REACTION OF SIMPLE ORGANIC ACID WITH CALCITE: EFFECT OF 

REVERSIBLE REACTIONS 

 

 

A Thesis 

by 

ABHISHEK PUNASE  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Chair of Committee,  Hisham Nasr-El-Din  

Committee Members, Jerome Schubert 

 Mahmoud El-Halwagi 

Head of Department, Daniel A. Hill 

 

May 2015 

 

Major Subject: Petroleum Engineering 

 

 

Copyright 2015 Abhishek Punase



 

ii 

 

ABSTRACT 

 

Matrix acidizing is widely-used in the petroleum industry as a production 

enhancement technique. In order to design a successful acidizing job, it is important that 

all aspects of the reaction between the treating acid and the formation rock are 

understood. The reaction-rate studies involving organic acids seem to present conflicting 

results regarding the influence of reversible reactions. The primary objective of this 

paper is to comprehensively investigate the effects of the backward reactions on the 

kinetics of the acidizing process. 

In order to understand how weak acids influence the reaction process, a 

comparative study of the different mathematical models existing in the literature was 

conducted and its results have been included in this work. Moreover, experimental data 

were also generated by carrying out experiments with acetic acid on calcite marble disks 

at different temperatures (80, 150, 200, and 250°F), acid concentrations (0.5, 1.0, 1.5, 

and 2.0 molar), and disk rotational speeds (100 - 1700 RPM) using a rotating disk 

apparatus. 

These studies suggest that the rock porosity and backward reactions can 

significantly affect the rate of reaction and should not be neglected. For acidizing 

processes involving weak organic acids (such as acetic acid, formic acid, lactic acid, 

etc.), it was observed that the dissolution rates estimated by the different models gave 

distinct results and varied in two order of magnitudes from each other. This large 

variation can be attributed to the fact that the rate determination process by one method 
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account for the concentration of all the interfacial ions generated during the reversible 

reactions, whereas the other approach considers only the presence hydrogen ions as a 

rate affecting parameter.  

The inclusion of reversible reaction effects on the kinetics study can improve the 

accuracy up to 55-60%. Therefore, evaluation of all these aspects can lead us to develop 

a better field approach intended for the use of weak organic acids for well stimulation 

jobs. It also emphasizes that strong and weak acid systems have very different surface 

reaction mechanisms and, therefore, their kinetics cannot be estimated in the same 

manner. 
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NOMENCLATURE 

 

Cb   Bulk concentration 

Cs   Interfacial concentration 

CI   Corrosion Inhibitor 

CO2   Carbon dioxide 

D   Diffusion coefficient 

Ea   Activation energy 

HAc   Acetic acid 

HCl   Hydrochloric acid 

I   Ionic strength 

ICP-OES  Inductively coupled plasma – Optical emission spectroscopy 

Kc   Conditional equilibrium constant 

Keff   Effective equilibrium constant 

KMT   Mass transfer coefficient 

kr   Effective surface  reaction rate constant 

n   Reaction order 

N   Acid molality 

rD   Dissolution rate 

R   Universal gas constant 

RDA   Rotating disk apparatus 

Sc   Schmidt number 
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T   Temperature 

z   Ionic charge 

γ   Activity coefficient 

κ   Overall reaction rate constant 

ν   Kinematic viscosity 

μ   Dynamic viscosity 

ρ   Density 

ω   Disk rotational speed 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

A reservoir is a heterogeneous system consisting of different fluids and rock 

minerals. The physical and chemical interactions between these two phases can often 

damage the formation by plugging the pores and blocking the flow channels. In such 

cases, well stimulation techniques like matrix acidizing and acid fracturing can be used 

to improve the reservoir permeability.  

Formation damage can be caused due to several mechanisms like 

incompatibilities between rock-fluid or injected fluid-reservoir fluid systems, fines 

migration, wettability alteration, phase trapping, solid invasion, etc. Even the production 

of polysaccharide slimes as biological waste by microbes can damage the near well bore 

region of the formation (Bennion, and Thomas 1994). 

Matrix acidizing works on the principle of the chemical reactions that takes place 

between the rock minerals and the injected acid solution. If the acid can dissolve either 

the rock matrix or the minerals damaging the near well bore region, then it can create the 

channels (wormholes) through which the crude can migrate. During an acidizing 

process, the acid injection pressure is maintained lower than the formation fracture 

pressure. The first on-field acidizing treatment was conducted by Standard Oil Company 

in 1896, where carbonate formation in Lima, Ohio was stimulated using concentrated 

hydrochloric acid (Kalfayan 2008). 
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HCl is one of the most commonly used stimulation fluid in the industry. The 

main advantage of HCl is that it is a strong acid, so it can dissociate quickly and rapidly 

react with the formation. It is also inexpensive and easily available. Moreover, the 

products generated by the reaction of calcite and HCl are water soluble and hence no 

issues related to re-precipitation are observed (Williams, Gidley, and Schechter 1979).  

While operating in deeper formations, where the bottom-hole temperature is very 

high, reaction of HCl becomes very rapid. The high reaction rate results in face or 

complete dissolution of the carbonate minerals, which does not yield high conductivity 

enhancement and also consumes large volume of the injected acid (Fredd, and Fogler 

1998). Weak formations can even collapse due to the rapid spending of such strong acids 

like HCl. Another important disadvantage of using HCl at higher temperature condition 

is its high corrosive tendency which can severely damage the wellbore equipment 

(Schechter 1992).  

Additives like corrosion inhibitors (CI) are added to the acid solution before 

injecting it in order to lower the corrosion impact. The CI generally forms a film at the 

tubular surface and prevents the direct interaction between the acid and the metal. Study 

conducted by Schauhoff and Kissel (2000) suggests that most of the effective CI films 

are made up of amines or their salts which start to decompose at temperatures above 

482°F, so the thermal stability of these chemicals needs to be studied. Moreover, 

corrosion inhibitors can get adsorbed at the reservoir rock surface and alter its wettability 

resulting in lower dissolution (Crowe, and Minor 1982). Another possible problem is the 
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fluid-fluid incompatibility that can arise between CI and other additives of the 

stimulation fluid. 

Organic acids such as formic and acetic acid possess distinct advantage over HCl 

at high temperature conditions due to their slow spending rate (Nierode, and Williams 

1971). This allows the acid to penetrate through the formation easily and improve its 

conductivity. The corrosive capacity and sludge formation tendency of organic acids is 

also lower than HCl.   

Although formic acid is known to be the strongest organic acid with dissociation 

constant of 1.8 x 10-4 mol/L, but its use as a stand-alone stimulation fluid is limited. This 

is because of the low solubility of calcium formate at higher concentrations (above 10%) 

of formic acid (Kalfayan 2008). Calcium acetate, on the other hand has better solubility 

at higher concentrations of acetic acid. Furthermore, study conducted by Harris (1961) 

points out that the corrosion caused by acetic acid and HCl differ with each other, the 

former acid follows a uniform removal of steel pattern whereas the latter develops pit 

corrosion. Pit corrosion causes the serious damage to the wellbore equipment and 

reduces its life. All these advantages make acetic acid a good alternative to HCl as an 

acidizing fluid. Apart from stand-alone stimulation fluid, acetic acid has been used in 

various other oilfield applications as perforating fluid, emulsified acid with formic and 

hydrochloric acid, kill fluid, etc.  

The overall reaction between an acid solution and a reactive rock involves the 

following three processes: 
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a. Transport of reactant from the bulk solution to the rock surface. 

b. Surface reaction between H+ and rock minerals 

c. Transport of reaction product away from the surface 

 

The slowest step among the three limits the overall reaction rate (Rozieres, 

Chang, and Sullivan 1994). If steps a or step c is the slowest step, then the reaction is 

called as mass transfer limiting or else it is called as a surface reaction limiting reaction. 

Each of the three steps affects the overall reaction system differently and therefore it is 

important to study these processes independently.  

The success of an acidizing job depends on selecting the correct type, 

concentration and injection rate of the acid. An acidizing process can either be a mass 

transfer or a surface reaction limiting depending on its reaction kinetics and injection 

rate values. In order to design an optimum acid treatment, it is very important to 

comprehend the limiting regime of the process.  

Calcite dissolution studies have been expansively conducted throughout the 

acidic medium (pH range from 0 to 7) by various researchers (Lund et al. 1975; Sjöberg, 

and Rickard 1984; Nierode, and Williams 1971; Lund, Fogler, and McCune 1973; 

Pokrovsky, Golubev, and Schott 2005). Depending on the pH conditions and the partial 

pressure exerted by the released CO2, it was observed that the carbonate minerals can 

undergo three surface reactions simultaneously: 
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𝐻+ + 𝐶𝑎𝐶𝑂3  ⇌  𝐶𝑎2+ +  𝐻𝐶𝑂3
−

    Eq. 1.1 

𝐻2𝐶𝑂3 +  𝐶𝑎𝐶𝑂3  ⇌  𝐶𝑎2+ +  2𝐻𝐶𝑂3
−    Eq. 1.2 

𝐻2𝑂 +  𝐶𝑎𝐶𝑂3  ⇌  𝐶𝑎2+ +  𝐻𝐶𝑂3
− + 𝑂𝐻−  Eq. 1.3 

 

The reaction between carbonate and carbonic acid (Eq. 1.2) becomes important 

when the CO2 partial pressure is greater than 0.1 atm and higher pH values (above 5). In 

case of lower partial pressure of CO2, the carbonate reaction is dominated by H+ (Eq. 

1.1) at low pH while H2O reaction (Eq. 1.3) becomes significant at higher pH condition 

(Plummer, Wigley, and Parkhurst 1978).  

A detailed analysis and a comparative study of currently existing models for both 

mass transfer as well as surface reaction limited regime of acetic acid reaction with 

carbonate rock is included in this study. Experimental analyses were also carried to 

comprehend how different parameters like acid concentration, temperature, and 

rotational speed can alter the reaction kinetics. The results were used to analyze the 

appropriateness and accuracy of various analytical models at different conditions. 
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CHAPTER II 

THEORETICAL MODEL 

 

As stated in chapter I, the kinetics of calcite dissolution with HCl has been well 

studied and documented. Many of the commercially used acidizing software packages 

are developed based on the HCl/calcite reaction system. The same is not the case with 

organic acids, primarily because of the complexities associated with its incomplete 

dissociation and occurrence of reversible reactions. Both these phenomenon greatly 

affects the reaction rate and therefore needs to be accounted for.  

Very few studies have been conducted on this topic in the last decade and a half. 

The first prominent research paper dealing with the thermodynamic limitation 

responsible for the incomplete spending of organic acids at high pressure conditions was 

published by Chatelain et al. in 1976. After this, Fredd and Fogler (1998) and Buijse et 

al. (2004) developed distinct models to determine the reaction kinetics of organic acids 

with carbonates. The algorithm or workflows of these models are explained in detail in 

the following section of this chapter. 

Chatelain et al. Model 

Chatelain, Silberberg, and Schechter (1976) presented a correlation which 

accounts for the incomplete dissociation of organic acids at different acid concentration 

and temperature conditions. As per this study, the reaction of calcium carbonate with 

organic acid is considered to be a result of series of ionic reactions. These ionic reactions 

describing the complete organic acid/calcite interaction are given in eq. 2.1, 2.1, and 2.3. 
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2𝐻+
(𝑎𝑞) + 𝐶𝑎𝐶𝑂3(𝑠)

 ↔ 𝐶𝑎2+
(𝑎𝑞) + 𝐻2𝑂(𝑎𝑞) +  𝐶𝑂2(𝑎𝑞)

   2.1 

     𝐻𝐴 ↔  𝐻+ +  𝐴−     2.2 

             𝐶𝑎2+ +  𝐴−  ↔ 𝐶𝑎𝐴+    2.3 

 

The equilibrium constants (k) for these equations in terms of their ionic activity 

coefficients (γ) and concentration are given as follows (Callen 1985): 

 

𝑘1 =  
𝛾3

𝐶𝑎2+𝐴−∗𝛾𝐶𝑂2

𝛾4
𝐻+𝐴−

∗  
[𝐶𝑎2+]∗[𝐶𝑂2]

[𝐻+]2     2.4 

𝑘2 =  
𝛾2

𝐻+𝐴−

𝛾𝐻𝐴
∗  

[𝐻+]∗[𝐴−]

[𝐻𝐴]
     2.5 

𝑘3 =  
𝛾2

𝐶𝑎𝐴+𝐴−

𝛾3
𝐶𝑎2+𝐴−

∗  
[𝐶𝑎𝐴+]

[𝐶𝑎2+][𝐴−]
     2.6 

 

Empirical constants based on the thermodynamic data of different organic acids 

can be used to determine the equilibrium constants. The ionic activity coefficients are 

known to be function of the interfacial concentration and therefore can be estimated if 

the concentration values are known. So, effectively we have a system of 3 equations 

with six unknown concentrations. This system cannot be mathematically solved unless 

additional data or information is added.  The material balance equations listed from eq. 

2.7 - 2.10 can simplify our study. 
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            [𝐶𝑂2] =  
1

2
𝑋𝛽     2.7 

           [𝐶𝑎2+]  + [𝐶𝑎𝐴+] =  
1

2
𝑋𝛽    2.8 

            [𝐴−]  + [𝐶𝑎𝐴+] =  𝑋𝛽    2.9 

                  [𝐻𝐴] =  𝛽(𝑁 − 𝑋)    2.10 

 

Where X represents the number of moles of acid that reacts with 1000 gm of 

water in the original acid solution, N is the initial acid molality and β is given as: 

 

𝛽 =  
1000

1000 + 9𝑋
 

 

The only unknown in the four mass transfer equations (eq. 2.7 – 2.10) is X, so by 

combining these equations with the equilibrium equations (2.4 – 2.6), we will end up 

having a system of 7 equations and 7 unknowns. This system can then be reduced into 

the following two algebraic equations (eq. 2.11 and 2.12) having X and [Ca2+] as 

unknowns. 

             𝐾3 (
𝛾𝐻𝐴 ∗  𝛾3/2

𝐶𝑎2+𝐴−

𝛾2
𝐶𝑎𝐴+𝐴− ∗  𝛾1/2

𝐶𝑂2

) =  
(

1
2 𝑋𝛽 − [𝐶𝑎2+]) ∗  (

1
2 𝑋𝛽)

1/2

𝐾1
1/2 ∗  𝐾2 ∗ (𝑁 − 𝑋) ∗ 𝛽 ∗ [𝐶𝑎2+]1/2

              2.11 

 

          (
𝛾𝐻𝐴

𝛾3/2
𝐶𝑎2+𝐴− ∗  𝛾1/2

𝐶𝑂2

) ∗ 
𝐾1

1
2 ∗  𝐾2 ∗ (𝑁 − 𝑋) ∗  𝛽

(
1
2 𝑋𝛽)

1
2

∗ [𝐶𝑎2+]
1
2

− [𝐶𝑎2+] =  
1

2
𝑋𝛽              2.12 
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Simultaneously solving eq. 2.11 and 2.12 will result in determination of both 

[Ca2+] and the spent acid fraction, X. In addition, the correlations can also be used to 

establish the effect of temperature and initial acid concentration on the acid spending 

rate as all the value of equilibrium constants and ionic activity coefficients are dependent 

on these two parameters.  

A major shortcoming of this approach is that it only focusses on estimating the 

spent acid fraction and does not consider the influence of either mass transfer or surface 

reaction parameters on the reaction kinetics.  

 

Fredd and Fogler Model 

A new approach involving a detailed analysis of the effect of mass transport and 

reversible reactions on the rock dissolution rate was suggested by Fredd and Fogler 

(1998). This study gives a comprehensive description of the kinetics of all the interfacial 

reactions that occurs between carbonate and acetic acid system. Impact or effect of each 

of the reversible reaction as well as the mass transfer parameters, on the overall reaction 

kinetics is accounted for in this model.  

As described in the introduction, the overall reaction between an organic acid 

solution and a reactive rock can be categorized into three steps, which are the transport 

of reactants from the bulk solution to the rock surface, the surface reaction between the 

rock minerals and the reactants, and the transport of the generated products away from 

the interface. For a weak organic acid like acetic acid, rate limiting step is the surface 

reaction process and therefore it is important to analyze this step very carefully. 
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The reaction between acetic acid and calcium carbonate system accounts for 

various the interfacial reactions, which are listed in Table 2.1.  

Equilibrium Reactions  

𝐻𝐴𝑐 ↔ 𝐴𝑐− +  𝐻+                                        log K = - 4.76 

𝐶𝑎𝐴𝑐+  ↔ 𝐶𝑎2+ + 𝐴𝑐−                                 log K = - 0.77 

𝐶𝑎𝐶𝑂3  ↔ 𝐶𝑎2+ +  𝐶𝑂3
2−

                             log K = - 8.34              

𝐶𝑎𝐻𝐶𝑂3
+  ↔ 𝐶𝑎2+ +  𝐻𝐶𝑂3

−
                       log K = - 1.02 

𝐶𝑎𝑂𝐻+  ↔ 𝐶𝑎2+ +  𝑂𝐻−                               log K = - 1.40 

𝐶𝑎𝐶𝑂3
0  ↔ 𝐶𝑎2+ +  𝐶𝑂3

2−
                            log K = + 3.26 

𝐻2𝑂 ↔  𝐻+ +  𝑂𝐻−                                        log K = - 14.00 

𝐻2𝑂 +  𝐶𝑂2  ↔ 𝐻𝐶𝑂3
− + 𝐻+                        log K = - 6.37 

𝐻2𝐶𝑂3
0  ↔  𝐻𝐶𝑂3

− + 𝐻+                               log K = - 6.37 

𝐻𝐶𝑂3
−  ↔ 𝐶𝑂3

2− +  𝐻+                                 log K = - 10.33 

𝑁𝑎𝐴𝑐 ↔ 𝑁𝑎+ +  𝐴𝑐−                                     log K = - 1.06 

𝑁𝑎𝐶𝑂3
−  ↔ 𝑁𝑎+ + 𝐶𝑂3

2−
                             log K = + 1.27 

𝑁𝑎2𝐶𝑂3
0  ↔ 2 𝑁𝑎+ + 𝐶𝑂3

2−
                        log K = - 0.67 

𝑁𝑎𝐻𝐶𝑂3
0  ↔ 𝑁𝑎+ +  𝐻𝐶𝑂3

−
                         log K = + 0.25 

 

Table 2.1: Equilibrium reactions for acetic acid/calcium carbonate system 
 

The equilibrium constants for all these reactions at room temperature (25°C) 

were obtained from  Truesdell and Jones (1974), Davies (1962) and Harned and Owen 

(1958). The above system of 14 equations contains 19 unknowns. The last four reactions 

including sodium species does not contribute to the reaction kinetics in acidic medium 

and therefore can be dropped out of the analysis. It should also be noted that the 
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formation of neutral specie CaAc2 is not considered because the work of Nancollas 

(1956) showed that its concentration is negligible in presence of Ca2+ and CaAc+.  

A generalized form of all the surface reactions listed in Table 2.1 can be 

demonstrated by eq. 2.13. 

𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 + 𝐶𝑎𝐶𝑂3  ↔  𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠     2.13 

 

The reactants term includes both H+ as well as the undissociated acid (HA). The 

reaction products comprises of the calcium and carbonate species. Determination of 

mass transfer parameters for all the interfacial species individually is very difficult and 

can be simplified by grouping them together (Vitagliano, and Lyons 1956).   

 

  (𝐻) = (𝐻+) + (𝐻𝐴)     2.14 

(𝑀) = (𝐶𝑎2+) + (𝐶𝑎𝐴𝑐+) + (𝐶𝑎𝐻𝐶𝑂3
−) + (𝐶𝑎𝑂𝐻+)  2.15 

   (𝐶𝑂) = (𝐻𝐶𝑂3
−) + (𝐶𝑂3

2−) + (𝐶𝑂2) + (𝐻2𝐶𝑂3)  2.16 

 

These interfacial grouped concentrations can be calculated using the dissolution 

rate equation of a rotating disk apparatus (RDA), which is explained in detail in the 

chapter 3. The addition of the grouped concentration equations into our system will not 

increase the number of unknowns and therefore we will end up having 17 equations with 

19 variables.  
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   (𝐴) = (𝐴𝑐−) +  (𝐻𝐴𝑐) +  (𝑁𝑎𝐴𝑐)   2.17 

   (𝑁) = (𝑁𝑎+) +  (𝑁𝑎𝐴𝑐) +  (𝑁𝑎𝐶𝑂3
−)  2.18 

 

Two independent correlations based on the overall charge neutrality and sodium 

species balance are represented in eq. 2.17 and 2.18. The value of (A) is determined such 

that the cumulative charge of the interfacial species is neutralized and (N) is assumed to 

be constant throughout the bulk fluid and the boundary layer. These two equations 

complete our system of 19 equations and 19 variables, which are solved iteratively to 

evaluate all the interfacial species concentration. The equilibrium constant values differ 

as per the temperature and initial acid concentration and therefore needs to be corrected. 

Extended form of Debye-Hückel equation (Eq. 2.19, Robinson and Stokes 1955) yields 

activity coefficient value which is used to correct the equilibrium constant.  

                                 log 𝛾 =  
−𝐴𝑧2√𝐼

1+𝐵𝑎√𝐼
+  𝑏𝐼                  2.19 

Where A and B are solvent based constants, z corresponds to the ionic charge, I 

is the ionic strength, parameter a represents the hydrated ion size and parameter b allows 

for the decrease in solvent concentration in concentrated solutions. The values of all the 

constants are listed in Table 2.2 and Table 2.3. These results are used to determine the 

important kinetic parameters like the effective reaction rate constant (kr), the conditional 

equilibrium constant (kc), and the effective equilibrium constant (keff).  
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Temperature (°F) Parameter A Parameter B 

80 0.5125 0.3294 

150 0.5558 0.3384 

200 0.6316 0.3466 

Table 2.2: Values for A & B constants for water (Dean 1972) 

 

 

Species a parameter b parameter 

H+ 

Ac- 

Ca2+ 

CaAc+ 

CO3
2- 

HCO3
- 

CaHCO3
+ 

OH- 

CaOH+ 

9 

4.5 

6 

4.4 

4.5 

4 

4.4 

3.5 

4.4 

0 

0 

0.165 

0 

0 

0 

0 

0 

0 

Table 2.3: Values for a & b parameters for each ionic species (Truesdell and Jones 1974) 
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The generalized form (Eq. 2.13) of the overall reactions can be modified in terms 

of the grouped species concentration (Eq. 2.19) and its corresponding conditional 

equilibrium constant is defined as follows: 

 

[𝐻] +  𝐶𝑎𝐶𝑂3  ↔  [𝑀] + [𝐶𝑂]   2.19 

𝐾𝑐 =  
[𝑀]∗[𝐶𝑂]

[𝐻]
     2.20 

 

Fredd and Fogler (1998) found that the total interfacial concentration of 

carbonate species does not depend on the disk rotational speed and therefore can be 

consider as constant. This finding resulted in defining another parameter called as 

effective equilibrium constant which is nothing but a ratio of conditional equilibrium 

constant to the concentration of the carbonate species. Mathematically, it is given as 

𝐾𝑒𝑓𝑓 =  
𝐾𝑐

[𝐶𝑂]
=  

[𝑀]

[𝐻]
 

At steady state condition, all the three steps of mass transfer of reactants, surface 

reaction rate, and mass transfer of the products are equal. Equating these process rates 

with each other yields the following expression: 

 

𝑟𝐷 =  𝜅 [(𝐻)𝑏 − 
(𝑀)𝑏

𝑘𝑒𝑓𝑓
]    2.21 

𝜅 =  
1

(
𝜈

𝐾𝑚,𝑟
+ 

1

𝐾𝑟
+

1

𝐾𝑚,𝑝𝐾𝑒𝑓𝑓
)

      2.22 
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Where, κ is the overall reaction rate constant, ν is the stoichiometric ratio of 

reactants consumed to the products generated, Km,r is the mass transfer coefficients of 

reactants, , Kr represents the effective forward reaction rate constant, Km,p describes the 

mass transfer coefficient of products and the terms with within the small parenthesis 

with subscript b corresponds to the bulk concentration of those species. 

The overall rate of dissolution described in eq. 2.21 can also be expressed in a 

linearized form analogous to y = mx + c, where m is the slope and c represents the y-

intercept of the line. For our case, this correlation is developed between reciprocal of 

dissolution rate and reciprocal of the square root of the rotational speed and it 

represented in eq. 2.23. 

1

𝑟𝐷
=  

[
𝜈

𝐾𝑚,𝑟
+ 

1

𝐾𝑒𝑓𝑓𝐾∗
𝑚,𝑝

]

[(𝐻)𝑏− 
(𝑀)𝑏
𝐾𝑒𝑓𝑓

]

∗
1

𝜔1/2
+ 

1

𝑘𝑟[(𝐻)𝑏− 
(𝑀)𝑏
𝐾𝑒𝑓𝑓

]

   2.23 

 

Experimental results can be used to develop a between 1
𝑟𝐷

⁄  and 1
𝜔1/2⁄ . The 

slope and intercept of this plot depicts the first and the second term on the right hand 

side of the eq. 2.23, respectively. Additionally, percentage contribution of each step 

process on the overall reaction kinetics can be estimating by evaluating individual terms 

in the denominator of eq. 2.22. 

This model is very robust, comprehensive and requires a lot of input data. Most 

of the input parameters vary with change in acid concentration, rock composition, and 
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temperature and pressure conditions and therefore their estimation is not easy. Even 

small error in these parameters can result in large variation in the results and therefore, 

this model requires appropriate measurement of various rock and fluid properties at 

different conditions as well as sound knowledge about the aspects of surface chemistry 

and reaction kinetics.  

 

Buijse et al. Model  

Buijse, Boer, and Breukel (2004) suggested a simple and general approach for 

the acid/carbonate system which can be used for all kind of acidic solutions. As per 

them, the reaction mechanisms of strong and weak acids are not similar solely because 

of the difference in their acid dissociation constants. Their model is based on a strong 

acid (HCl) model but includes an additional parameter of acid dissociation constant 

which enables it to be used for weak acid solutions as well. 

Generally, the acid dissociation reaction at equilibrium condition and its 

corresponding dissociation constant are described as follows: 

𝐻𝐴 ↔  𝐻+ +  𝐴−    2.24 

𝐾𝐴 =  
𝐻+∗𝐴−

𝐻𝐴
     2.25 

Strong acids dissociate completely and thus have a very high acid dissociation 

constant, whereas the weak acids are known to have incomplete dissociation yielding 

lower kA values. Table 2.4 (Fredd and Fogler 1998) indicates the dissociation constants 
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and the strength of few commonly used stimulation acids. It can be observed that the 

organic acids are very weak compared to HCl. 

Acid Type 
Dissociation 

Constant, KA (mol/L) 

Acid Strength (for 1 mol/L) 

pH [H+] (mol/L) 

HCl >>1 0 1 

Formic acid 1.80E-04 1.9 0.013 

Acetic acid 1.74E-05 2.4 0.004 

Table 2.4: Dissociation constants and strength of acids 

 

For strong acids, the reaction rate equation is given as eq. 2.26, where k is the 

reaction rate constant, [H]s corresponds to the concentration of hydrogen ion at the 

reaction surface and n represents the reaction order. 

𝑅𝑘𝑖𝑛 = 𝑘. [𝐻+]𝑠
𝑛    2.26 

Eq. 2.26 governs the surface reaction process, but for the strong acids, the mass 

transfer process is limiting step and therefore a correlation describing the rate of mass 

transfer of both reactants and products needs to be developed. Eq. 2.27 explains the rate 

of diffusion process.  

𝑅𝑀𝑇 =  𝐾𝑀𝑇 ([𝐻+]𝑏 −  [𝐻+]𝑠)   2.27 

Where KMT is the mass transfer coefficient and [H+]b and [H+]s corresponds the 

hydrogen ion concentration at bulk and interface, respectively. At steady state condition, 

the rate of surface reaction and the rate of diffusion is equal. Assuming that the reaction 

is a first order reaction (n = 1), we can represent the overall reaction rate as follows: 
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𝑅 =  
𝑘∗ 𝐾𝑀𝑇

𝑘+ 𝐾𝑀𝑇
 [𝐻+]𝑏    2.28 

For a strong acid system, where the surface reaction is very rapid, the value of 

reaction rate constant is very high compared to the mass transfer coefficient (k >>>KMT). 

Therefore, the overall reaction rate will be linearly dependent on the bulk concentration 

of H+. Physically, it signifies that if we increase the acid concentration then the reaction 

rate will also increase proportionally. The same is not the case with weak organic acids 

as they do not dissociate completely and therefore the appropriate rate of mass transport 

is given by eq. 2.29.  

𝑅𝑀𝑇 =  𝐾𝑀𝑇 (𝐶𝑏 −  𝐶𝑠)     2.29 

Where, the undissociated acid concentrations at the bulk and surface are given by 

Cb and Cs respectively. Both the mass transfer equations for strong and weak acids are 

similar with the only difference being that in eq. 2.27, the H+ exists in dissociated state 

in the bulk and gets diffused to the reaction surface, whereas in eq. 2.29, the 

undissociated acid dissociates after being diffused to the surface. A combined model 

should incorporate both these phenomenon within itself and only then it can be used for 

both strong as well as weak acid system. To achieve this, the sum of the concentrations 

of H+ and undissociated acid HA is taken together to define total acid concentration (C). 

An important relationship that correlates the total acid concentration at the reaction 

surface (Cs) with the acid dissociation constant (KA) was developed in this study and is 

represented in eq. 2.30. 
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𝐶𝑠 = [𝐻+]𝑠 + [𝐻𝐴]𝑠 = [𝐻+]𝑠 +  
[𝐻+]𝑠∗𝐶𝑜

[𝐻+]𝑠+ 𝐾𝐴
   2.30 

The mass transfer rate for an acid system can be determined by substituting the 

value of Cs in eq. 2.29. Again at steady state condition and for a first order reaction 

between the rock and the acid system, the overall reaction rate can be written as: 

𝑅 . (1 +  
𝑅

𝑘.𝐾𝐴
) =  

𝑘.𝐾𝑀𝑇

𝑘+ 𝐾𝑀𝑇
 . 𝐶𝑜     2.31 

Comparing eq. 2.31 with eq. 2.28 signifies that the term (1 +  
𝑅

𝑘.𝐾𝐴
) accounts for 

the lower spending of the weak acids compared to strong acids.  

In order to incorporate the effect of reversible reactions on the reaction, a new 

parameter X is defined.  The value of parameter X is related to the calcium carbonate 

solubility product as well as the equilibrium constants of the carbonic acid reactions. The 

final form of the overall rate of reaction which accounts for the reversible reaction and 

can be applied to both strong and weak acids is shown in eq. 2.32. 

𝑅𝑘𝑖𝑛 = 𝑘. ([𝐻+]𝑠
𝑛 − 𝑋𝑛.

(𝐶0− 𝐶𝑠)2𝑛

[𝐻+]𝑠
𝑛 )    2.32 

This model is developed on the basis of the reaction of either dissociated H+ or 

the undissociated acid concentrations and does not consider the effect of all the 

intermediate species that are generated while the acid and rock mineral interacts. It also 

considers that the reaction rate of strong and weak acids differ solely because of the 

difference between their acid dissociation constants. Moreover, the reaction rate constant 
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(k) and the reaction order (n) are not believed to affect the reaction rate and were 

considered same for all types of acid systems.  

All the three models explained in this chapter were analyzed and experimental 

analysis was carried out to establish the accuracy and effectiveness of these models to 

the lab scale results.  
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CHAPTER III  

MATERIALS AND EQUIPMENT 

 

The porosity, mineralogy and composition of the reservoir rock as well as the 

rheological properties of the acid systems can significantly affect the reaction rate of an 

acid treatment. So, it is important to measure these parameters accurately at different 

conditions. Determination of all the aforementioned properties can be achieved by 

conducting a number of experimental studies described as following section. 

 

Rock Properties  

Marble (calcite) disks of known diameter and thickness (1.5” diameter and 0.6” 

thickness) were used for the following analysis. 

Porosity 

The conventional method of porosity determination involves saturating the cores 

with a fluid of known density and measuring the difference in weight of the saturated 

and dry cores. The ratio of weight difference to fluid density gives the pore volume of 

the rock, which is then divided by the bulk volume to estimate the porosity. This 

approach cannot work for a marble disk as it is known to have very low porosity and 

therefore, its saturation will not result in significant increment in weight. In order to 

accurately measure the marble disk porosity, Helium Porositimeter (Fig. 3.1) was used. 
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Figure 3.1: Helium Porositimeter 

 

The governing principle of this device is Boyle’s law, according to which, for a 

fixed mass of gas and at isothermal condition, the product of absolute pressure and 

volume always remain constant. As shown in the diagram, the porositimeter consists of a 

compact chamber, which is firstly filled with metallic disks of known thickness and 

pressurized by the injection of Helium gas. The corresponding pressure reading is 

averaged out and noted down. Subsequently, some metallic disks are replaced by a 

marble disk of similar dimension and the process is repeated. The pressure variation 

obtained between the two cases is equated to calculate the incremental pore volume of 

the marble. The ratio of pore volume to the bulk volume represents the porosity of the 

marble disk. 
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Composition 

The mineralogy of the rock surface reacting with the acid can be estimated by 

performing an X-ray Fluorescence (XRF) analysis. In this technique, the disk surface is 

bombarded with high energy X-rays or gamma rays and the emission of characteristic 

secondary wavelets are analyzed to determine the composition of the solid rock surface. 

The schematic of a XRF is shown in Fig. 3.2. For this study, a cut-off value of 97% 

calcium oxide (CaO) was set to make sure that only high purity cores are chosen for the 

rotating disk apparatus experiments. Having a composition screen reduces the presence 

of impurities at the rock surface and therefore negates their impact on the reaction 

kinetics.  

 

 

Figure 3.2: X-Ray Fluorescence 
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Fluid Properties 

Rheological properties of acetic acid solutions (0.5, 1.0, 1.5, and 2.0 molar 

concentrations) at different temperature conditions were carried out by the following 

methods: 

 

Density 

Density of a substance is defined as the ratio of its mass to its volume. The 

density of a fluid varies with change in temperature and therefore it is important to 

measure it accurately at all the different temperature conditions.  

At room temperature, density measurements were done using a pycnometer. A 

pycnometer is a simple glass flask whose dry weight and volume are known. A sample 

fluid is then used to fill the pycnometer completely and the gas bubbles (if any present) 

are expelled out. The incremental weight gain is then measured, which corresponds to 

the weight of the known volume of the sample and hence the fluid’s density is estimated. 

At higher temperature conditions, instead of pycnometer, a high temperature high 

pressure densitimeter was used. This equipment can determine the density of the fluid 

sample injected at different temperature conditions ranging from 32-200°F. Fig. 3.3 

shows both these devices. 
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Figure 3.3: Pycnometer and High Temperature Densitimeter 

 

 

Viscosity 

A fluid’s resistance to flow is defined as its viscosity. Similar to density, fluid’s 

viscosity also varies with temperature. Use of capillary viscometer is the simplest way to 

measure the viscosity of a Newtonian fluid. A capillary viscometer consists of three 

capillary tubes of different diameters. Small volume of sample (about 10 cm3) is injected 

into the capillary and the entire system is then immersed in an oil bath. The temperature 

of the oil bath can be controlled and the once the stabilized temperature condition is 

reached, the sample is raised through the biggest capillary tube by using a vacuum 

pump. The fluid is then allowed to drop down as per the gravitational force and the time 

taken by it to move from point 1 to point 2 is recorded. This time is used to determine 

the kinematic viscosity of the sample. 

Dynamic viscosity was measured by multiplying the kinematic viscosity of the 

fluid with its density at the given temperature. 
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Reaction Rate Analysis 

The rock and acid solution were allowed to interact at different conditions and 

the effluent samples were analyzed to determine the rate of reaction. Two important 

equipment that were used for this estimation are described below. 

 

Rotating Disk Apparatus 

The overall reaction of a rock with an acid solution is a very complex process due 

to the influence of transport phenomenon along with the surface reaction. A simplistic 

model of fluid flow over a flat plate system was initially developed with a laminar 

boundary layer flow solution (Schlichting 1960). This approach had many disadvantages 

and shortcomings like necessity of a flow tunnel and a large volume of reacting acid, 

high edge and end-effects, two dimensional flow solutions (Litt, and Serad 1964).  

A rotating disk apparatus can overcome all the aforementioned drawbacks 

(Boomer, McCune, and Fogler 1972). It is also shown that if the diameter of the reaction 

vessel is at least double the disk diameter, then the mass transport rate is independent of 

the vessel diameter (Gregory and Riddiford 1956). In order to maintain laminar flow at 

the rotating disk surface, the Reynolds number (Re =  ωR2/ν) should not exceed 2.5 x 

105 (Ellison and Cornet 1971). For the experimental study undertaken in this work, the 

Reynolds number corresponds to 3440 rpm at the highest temperature condition of 

250°F, where the kinematic viscosity of acetic acid solution is lowest. Moreover, study 

conducted by Levich (1962), suggested that in order to maintain a negligible boundary 

layer thickness compared to the disk diameter, the Reynolds number should be 
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approximately 10. Rotational speed of 0.75 rpm at room temperature, where the 

kinematic viscosity will be the highest, corresponds to this condition. All the 

experiments were conducted at rotational speeds between 100-1500 rpm, which are well 

within the specified limits to have a laminar flow regime and no impact of boundary 

layer thickness. 

The mass flux of solute from the bulk solution to the rotating disk surface, under 

laminar condition is given by following equation (Newman 1996): 

 J (gmol/𝑐𝑚2. sec) =  [
0.62048∗Sc

−2
3⁄ ∗ √νω

0.2980∗Sc
−1

3⁄ + 0.1451∗Sc
−2

3⁄
] (Cb − Ci)      3.1 

Where, Sc (Schmidt number) is defined as the ratio of kinematic viscosity (ν) to 

the diffusion coefficient (D) of the fluid solution, ω represents the rotational speed of the 

disk, Cb and Ci are the bulk and interfacial concentrations respectively. 

 

Figure 3.4: Rotating Disk Apparatus (Rabie et al. 2014) 
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Fig. 3.4 depicts the schematic of an RDA, which mainly comprises of two 

cylindrical chambers viz. primary reactor cell and pre-charge reservoir cell. Both these 

cells are fabricated using Hastelloy B alloy to prevent it from acid corrosion and are 

covered with heating jackets. Stimulation fluid is introduced into the reservoir cell and 

its temperature is raised to the desired experimental temperature. The reactor chamber 

comprises of a core holder connected to a long magnetic shaft, which enables the 

rotation of the disk. A rock sample is attached to the core holder using heat shrinkable 

Teflon tubing and placed inside is the reactor chamber. Once the experimental pressure 

and temperature conditions are reached, the acid is injected from the reservoir to the 

reactor to start the reaction between acid and rock. Simultaneously, the core is allowed 

to rotate at a set RPM so as to generate radial flow profile representative of the actual 

acid injection system in the field. The effluent fluid samples are collected periodically, 

which results in reduction of reactor pressure. This pressure reduction can cause 

generated CO2 to liberate as free gas bubbles that can affect the acid reaction with 

carbonate (Plummer, Wigley, and Parkhurst 1978) and also disrupt the laminar flow on 

the rock surface (Taylor, and Nasr-El-Din 2009). In order to prevent these problems, 

special consideration was given to keep the reactor pressure above 1000 psi to keep the 

CO2 in solution.  
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Inductively Coupled Plasma 

The RDA effluent samples, containing the dissolved rock minerals, were 

analyzed for their composition using Perkin Elmer 7000 DV Inductively Coupled 

Plasma – Optical Emission Spectroscopy (ICP/OES). ICP, as shown in Fig. 3.5, works 

on the principle of spontaneous emission of photons from atoms or ions that get excited 

in a radiofrequency induced argon plasma (Hou, and Jones 2008). The energized 

particles are unstable and tend to stabilize by achieving a lower energy state. The release 

in energy in the form of photon emission of each element follows a unique wavelength 

signature or trend. The number of photons emitted for each wavelength signature is used 

to determine the elemental composition of the fluid sample. 

 

 

Figure 3.5: Inductively Coupled Plasma 
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CHAPTER IV  

EXPERIMENTAL RESULTS AND ANALYSIS 

 

Rotating disk experiments were carried out using acetic acid solutions on calcite 

marble disks at different temperatures (80, 150, 200, and 250°F), acid concentrations 

(0.5, 1.0, 1.5, and 2.0 molar), and disk rotational speeds (100 - 1700 RPM) using a 

rotating disk apparatus. Preparation of acid solutions were done by using deionized 

water with resistivity higher than 18 MΩ/cm at room temperature and appropriate 

corrosion inhibitor (approximately 0.1 vol. %). As stated in the chapter II, various 

properties of cores as well as the acid solutions were analyzed before being used in the 

RDA experiments. The measurements of these properties are important for the 

estimation of different kinetic and mass transfer parameters. 

Porosity can greatly affect the surface area available for the acid to etch through 

and interact with the rock minerals. Helium porositimeter was used to measure the 

porosity of all the marble disks. Table 4.1 includes the results of two sample disks from 

the same marble slab. An average porosity value of 1.5% was estimated for the tested 

marble slab.  

Apart from porosity, the mineral composition of the rock surface was also 

measured using X-Ray fluorescence techniques. A cut-off limit of 97% calcium oxide 

(CaO) was assigned and only the core samples having higher values were used for the 

reaction rate analysis. Table 4.2 indicates the compositional analysis results of some of 

the tested core samples. It can be observed that disk 50 had high amount of impurities in 
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the form of magnesium and sodium oxides which will give lower calcium dissolution 

rates compared to other core samples and therefore it was discarded. 

 

Table 4.1: Porosity measurement of marble disks 
 

 
Table 4.2: Compositional analysis of the marble disks  
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Densities of different acid solutions (0.5, 1.0, 1.5, and 2.0 M) at various 

experimental temperature conditions were measured using pycnometer and high 

temperature high pressure densitimeter. Table 4.3 and 4.4 enlists the calculated density 

values at room temperature and higher temperature conditions, respectively. 

Density Measurement at Room Temperature 

Volume of Pycnometer 25 ml 

Acid 
Conc. 

(mol/L) 

Dry weight of 
Pycnometer 

(gm) 

Weight of Pycnometer fully 
filled with acid (gm) 

Weight 
of acid 
(gm) 

Density 
of acid 
(gm/cc) 

0.5 

21.82 

46.84 25.02 1.0008 

1.0 46.91 25.09 1.0036 

1.5 47.04 25.22 1.0088 

2.0 47.12 25.3 1.012 

Table 4.3: Density measurement at room temperature 

 

High Temperature Density Mesurement 

Acid 
Conc. 

(mol/L) 

100°F 150°F 200°F 

Density 
Avg. 

Density 
Density 

Avg. 
Density 

Density 
Avg. 

Density 

0.50 

0.9961 

0.9961 

0.9729 

0.9728 

0.8876 

0.8873 0.9961 0.9728 0.8873 

0.9961 0.9726 0.8871 

1.00 

0.9993 

0.9993 

0.9825 

0.9819 

0.9248 

0.9206 0.9993 0.9814 0.9171 

0.9993 0.9819 0.9200 

1.50 

1.0033 

1.0033 

0.9865 

0.9856 

0.9382 

0.9320 1.0033 0.9852 0.9249 

1.0033 0.9852 0.9330 

2.00 

1.0065 

1.0065 

0.9897 

0.9889 

0.9402 

0.9353 1.0065 0.9885 0.9331 

1.0065 0.9885 0.9326 

Table 4.4: Density measurement at high temperatures 
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The kinematic viscosity of different acetic acid solutions were measured over a 

temperature range of 75-200°F using a capillary viscometer and are given in Table 4.5. 

Extrapolation of the calculated data points was done in order to estimate the viscosity 

values at temperature conditions higher than 200°F. Fig. 4.1 represents the variation 

trend shown by 0.5 M acetic acid solution with change in temperature. 

 
 Table 4.5: Viscosity values of different acid solutions at various temperatures 
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Figure 4.1: Kinematic viscosity calculations at higher temperature conditions 

 

The diffusion coefficient values of acetic acid solutions at 25°C (77°F) were 

estimated by referring to Fig. 4.2 (Williams, Gidley, and Schechter, 1979).  

 

Figure 4.2: Diffusion coefficients at 25°C 
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At higher temperature conditions, the diffusion coefficients are required to be 

corrected. This correction can be achieved by either using the Arrhenius equation 

(Levich 1962) or the Stokes-Einstein equation. Generally, Arrhenius equation provides 

accurate diffusivity for solid particles whereas Stokes-Einstein is used for the liquid 

diffusivity estimation. In this study, the temperature dependence of diffusion coefficient 

was calculated using both these methods as our system comprises of both liquid acid 

ions as well as solid mineral ions.  

Arrhenius equation of diffusivity is given by Eq. 4.1, where D represents the 

diffusion coefficient (cm2/s), D0 is the maximum diffusion coefficient (at infinite 

temperature, cm2/s), Ea corresponds to the activation energy for diffusion (J/mol), T is 

the temperature (K), and R signifies the gas constant (J/K-mol). 

     𝐷 =  𝐷0𝑒
−𝐸𝑎
𝑅𝑇      4.1 

The calculated diffusion coefficient values using Arrhenius equations are shown 

in Table 4.6.  

 

Temperature 
(°F) 

Temperature 
(K) 

D (cm2/sec) 

0.5 M 1 M 1.5 M 2 M 

77 298.15 1.1250E-05 1.0500E-05 1.0000E-05 9.5000E-06 

150 338.7056 2.4345E-05 2.2722E-05 2.1640E-05 2.0558E-05 

200 366.4833 3.7429E-05 3.4934E-05 3.3270E-05 3.1607E-05 

250 394.261 5.4162E-05 5.0551E-05 4.8144E-05 4.5737E-05 

Table 4.6: Corrected Diffusion coefficients - Arrhenius equation 

 

 

http://en.wikipedia.org/wiki/Activation_energy
http://en.wikipedia.org/wiki/Gas_constant
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Eq. 4.2 represents the Stokes-Einstein equation for the diffusivity of liquid 

particles. D and T denote the diffusion coefficient (cm2/sec) and absolute temperature 

(K), and μ represents the dynamic viscosity of the solvent (Pa-sec). The corrected 

diffusion coefficient values by this approach are given in Table 4.7. 

𝐷𝑇1

𝐷𝑇2

=  
𝑇1

𝑇2

𝜇𝑇2

𝜇𝑇1

      4.2   

Temperature 
(°F) 

Temperature 
(K) 

D (cm2/sec) 

0.5 M 1 M 1.5 M 2 M 

77 298.15 1.1250E-05 1.0500E-05 1.0000E-05 9.5000E-06 

150 338.7056 2.8380E-05 2.6461E-05 2.5990E-05 2.4679E-05 

200 366.4833 4.5562E-05 4.2340E-05 4.0104E-05 3.8544E-05 

Table 4.7: Corrected Diffusion coefficients – Stokes-Einstein equation 
 

It can be observed that both these approaches give very similar results and a 

comparison (Fig. 4.3) between the corrected diffusivity values calculated by both the 

methods yields negligible difference. 

 

Figure 4.3: Corrected Diffusion Coefficients 
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The calcium dissolution rate is determined experimentally by using the plot 

between moles of calcium liberated versus time. The effluent samples collected 

periodically from the RDA experiments are diluted and analyzed in the ICP-OES for 

calcium concentration. The mass of calcium liberated is then corrected and the 

cumulative calcium concentration including the amount of calcium present in the reactor 

chamber is estimated. The slope of total moles of calcium liberated with respect to time 

gives the rate of calcium dissolution for the given disk surface area. At each temperature 

condition, this analysis is carried out for 4 different acid concentrations and 7 distinct 

rotational speeds. Results corresponding to 0.5 Molar acetic acid solutions at 150°F over 

a range of rotational speeds (100-1500 RPM) are shown in Fig. 4.4. All the other 

experimental results (28 experiments each for 2 other temperature conditions) are 

included in the appendix section of this work.  

 

 

Figure 4.4: Calcium liberation rate 
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Apart from the reaction rate determination, another important inference that can 

be derived from these plots is the reaction regime. As described in the previous chapter, 

the calcium ion flux follows Eq. 3.1 and therefore if the dissolution rate increases 

linearly with the increment in square root of disk rotational speed (√ω), then it is said to 

follow a mass transfer limited regime. On the other hand, if the increase in √ω does not 

cause any effect the dissolution rate, then the process is believed to follow a surface 

reaction limited regime. It can be seen from Table 4.8 and Fig. 4.5, that the reaction of 

0.5 M acetic acid solution with calcite at 150°F is mass transfer limited. 

RPM ω ω^1/2 
Dissolution 

rate 

100 10.46667 3.235223 4.17E-07 

300 31.4 5.60357 6.80E-07 

500 52.33333 7.234178 8.44E-07 

700 73.26667 8.559595 9.03E-07 

1000 104.6667 10.23067 1.09E-06 

1300 136.0667 11.66476 1.14E-06 

1500 157 12.52996 1.46E-06 

Table 4.8: Experimental dissolution rates 

 

 

Figure 4.5: Reaction rate curve - 0.5 M acetic acid at 150°F 
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The experimentally determined reaction rates can be used to calculate the 

activation energy of the reaction. This can be done by first calculating the Schmidt 

number corresponding to the experimental reaction rate using Eq. 3.1 and then 

estimating the diffusion coefficient of the fluid. The slope of the plot of natural log of the 

diffusion coefficient versus the reciprocal of the absolute temperature yields the value of 

activation energy. The effect of reversible reaction on the overall reaction kinetics can be 

quantified by accurate estimation of the activation energy. An important assumption 

related to calculation of diffusion coefficient from the experimental reaction rate data is 

the negligible presence of the reactant concentration at the reaction surface. This 

assumption holds good for the strong acid systems as the acid dissociates and reacts 

completely with the rock minerals. Contrarily, due to the occurrence of reversible 

reactions, both reactants and products exist in equilibrium at the mineral-fluid interface.  

Study conducted by Vitagliano and Lyons (1956) highlights the activation energy 

value for a purely diffusion limited reaction of undissociated acetic acid as 3.817 

Kcal/mol. Table 4.9 includes the experimental data obtained for 0.5 M acetic acid 

solutions at three different temperature conditions, viz. room temperature (80°F), 150 

and 200°F. Using these data points, the Schmidt number and diffusion coefficients were 

calculated as shown in Table 4.10. Fig. 4.6 was plotted to determine the calculated 

activation energy as 5.87 Kcal/mol.  The difference between calculated and expected 

values represents the effect of reversible reactions and makes it imperative to consider 

the thermodynamic limitation associated with organic acids.  
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      Dissolution rate (gmole/cm2-sec) 

RPM ω ω^1/2 80°F 150°F 200°F 

100 10.46667 3.235223 1.33E-07 4.17E-07 6.38E-07 

300 31.4 5.60357 2.69E-07 6.80E-07 1.19E-06 

500 52.33333 7.234178 2.24E-07 8.44E-07 1.72E-06 

700 73.26667 8.559595  3.23E-07 9.03E-07 1.88E-06 

1000 104.6667 10.23067 4.43E-07 1.09E-06 2.31E-06 

1300 136.0667 11.66476 5.90E-07 1.14E-06 2.34E-06 

1500 157 12.52996 5.22E-07 1.46E-06 2.56E-06 

Table 4.9: Dissolution rates of 0.5 M acetic acid at different temperatures 

 

Temp (F) Temp (K) 1/T De (cm2/sec) ln (De) 

80 299.8167 0.003335 6.76029E-05 -9.60186 

150 338.7056 0.002952 0.000159974 -8.7405 

200 366.4833 0.002729 0.000427223 -7.75821 

Table 4.10: Calculated diffusion coefficients – Fredd and Fogler 
 

 

Figure 4.6: Estimation of activation energy 
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CHAPTER V  

COMPARATIVE STUDY 

 

The experimentally determined values of various parameters like reaction rates, 

diffusion coefficients and activation energies can be compared to the corresponding 

results obtained from different theoretical models. The coherence and accuracy of the 

calculated model results with the experimental results points towards the validity of 

these models and also highlights their effectiveness in estimating the different mass 

transfer and reaction kinetics parameters.  

As mentioned in chapter II, the approach described by Chatelain et al. (1976) did 

not include the influence of either kinetic or mass transfer parameters and therefore was 

could not be used for a comparative analysis. The workflow or algorithm associated with 

Fredd and Fogler approach (1998) and Buijse’s et al. method (2004) was developed as a 

part of this study and values of various parameters estimated by both these processes 

were compared to the experimentally obtained values.  

As per the Fredd and Fogler approach, a system of 19 equations and 19 variables 

were solved iteratively at each experimental condition. The published data for reaction 

rates corresponding to 0.5 M and 1.0 M acetic acid solutions at room temperature is 

compared to the experimentally determined reaction rates in Table 5.1. These values are 

close to each other (Fig. 5.1 and 5.2) and the variation between them could be because of 

inaccuracy in viscosity or reaction rate measurement. Also the diffusion coefficients 
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estimations at higher temperature conditions are not entirely accurate as they were 

obtained using correlations and not measured directly, which can be a source of error.  

 

   

0.5 M Acetic acid 1.0 M Acetic acid 

   

Experimental 
Results 

Fredd and 
Fogler Method 

Experimental 
Results 

Fredd and 
Fogler Method 

RPM ω ω^1/2 
Dissolution 

rate 
Dissolution 

Rate 
Dissolution 

rate 
Dissolution 

Rate 

100 10.46667 3.235223 1.33E-07 1.00E-07 2.67E-07 1.20E-07 

300 31.4 5.60357 2.69E-07 1.90E-07 3.99E-07 2.20E-07 

500 52.33333 7.234178 2.24E-07 2.00E-07 4.96E-07 2.80E-07 

1000 104.6667 10.23067 4.43E-07 2.80E-07 6.43E-07 3.80E-07 

1300 136.0667 11.66476 5.90E-07 3.50E-07 6.70E-07 4.00E-07 

1500 157 12.52996 5.22E-07 3.80E-07 8.15E-07 4.40E-07 

Table 5.1: Comparative analysis: Experimental and Fredd and Fogler Results 
 

 

Figure 5.1: 0.5 M Acetic acid at room temperature 
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Figure 5.2: 1.0 M acetic acid at room temperature 

 

Additional results in the form of effective forward reaction rate constant (kr), 

effective equilibrium constant (Keff), and contribution of each of the three reaction steps 

at room temperature were also obtained and these values are compared to the published 

data (Table 5.2).  

 

 
Concentration kr (cm/s) Keff 

Reactant 
Transport 

Surface 
Reaction 

Product 
Transport 

Published 
Results 

0.5 M 

5.00E-03 0.16 18.00 16.00 66.00 

Model 
Results 

3.47E-03 0.259 14.60 7.68 77.72 

Published 
Results 

1.0 M 

2.00E-03 0.087 11.00 15.00 74.00 

Model 
Results 

3.91E-03 0.171 10.25 6.83 82.92 

Table 5.2: Overall comparison with Fredd and Fogler method 
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Figure 5.3: Resistance contribution of each reaction step 

 

From Fig. 5.3, it can be observed that the mass transfer process of reactants and 

products have a very high impact on the overall reaction kinetics and it increases with 

increase in initial acid concentration. The contribution of surface reaction is also 

significant and should not be considered negligible.  

Buijse et al. (2004) approach is much simpler and straight forward. This model 

considers that all the different types of acids react with calcite in a similar manner and 

the only variation in the reaction rate result arises due to the difference in the degrees of 

acid dissociation of these acid solutions. The rate calculation steps by this approach is 

described through an algorithm shown in Fig. 5.4.  
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Figure 5.4: Algorithm - Buijse et al. approach 
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It can be inferred from the Fig 5.4 that there are two distinct ways to determine 

the reaction rates, viz. by considering the effect of reversible reaction or by ignoring it. 

An excel program (As shown in the appendix) was developed on the basis of this 

algorithm and reaction rates were estimated at all the experimental conditions. A sample 

comparison for 1.5 M acetic acid solution at room temperature is included in Table 5.3.  

1.5 M 
Acetic 
acid 

RPM ω ω^1/2 
Experimental 
Dissolution 

rate 

Without backward 
reactions 

With backward 
reactions 

100 10.46667 3.235223 2.97E-07 8.54E-07 3.76E-07 

300 31.4 5.60357 3.96E-07 1.14E-06 4.16E-07 

500 52.33333 7.234178 3.81E-07 1.29E-06 4.32E-07 

700 73.26667 8.559595 4.24E-07 1.39E-06 4.41E-07 

1000 104.6667 10.23067 4.25E-07 1.51E-06 4.49E-07 

1300 136.0667 11.66476 5.22E-07 1.60E-06 4.54E-07 

1500 157 12.52996 6.22E-07 1.65E-06 4.57E-07 

Table 5.3: Comparative analysis: Experimental and Buijse method 

 

 

Figure 5.5: 1.5 M acid at room temperature 
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At room temperature, the surface reaction effect is very dominant and therefore, 

we observe that the reaction rates calculated by considering the reversible reaction effect 

agrees very well with the experimental values as shown in Fig. 5.5. The same trend was 

followed by other acid solutions at room temperature as well. In order to analyze the 

temperature effect on the reaction rate determination process, we carried out the similar 

experiments at elevated temperature (150 and 200°F). The kinematic viscosity and 

diffusion coefficient were corrected for the temperature increment and the updated 

values were used in the model. The comparative results for these two conditions are 

described in Fig. 5.6 and Fig. 5.7.  

 

 

Figure 5.6: 1.5 M acid at 150°F 
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Figure 5.7: 1.5 M acid at 200°F 

 

A clear difference between these two cases can be seen as compared to the room 

temperature results. For elevated temperature conditions, the acid reactivity increases 

thus driving the overall reaction in the forward direction. The impact of reversible 

reaction decreases with temperature increment and hence the model results estimated by 

neglecting the reversible reactions are coherent with the experimental results at higher 

temperatures. 

1.00E-07

8.00E-07

1.50E-06

2.20E-06

2.90E-06

3.60E-06

0 2 4 6 8 10 12 14

D
is

so
lu

ti
o

n
 R

at
e 

(g
m

o
l/

cm
2

-s
ec

)

√ω

1.5 M - 200°F

Experimental Results W/o BR With BR



 

49 

 

CHAPTER VI  

APPLICATION AND CONCLUSIONS 

 

Acidizing a damaged formation using HCl is an efficient and cost effective 

method but at high temperature conditions, it is associated with various drawbacks such 

as rapid rock dissolution, high corrosion rate, sludge formation tendency with asphaltene 

molecules, etc. Different organic acid solutions like formic, acetic and citric acid are 

used as an alternative to HCl for higher temperature acidizing jobs. These acid solutions 

have shown good field applications but they too have certain limitations which hinders 

its performance as stimulation fluid. Firstly, these acids are weakly dissociated and 

therefore have lower reactivity compared to HCl. Formic acid is among the strong 

organic acids and still its dissociation constant in just about 1.3%. Apart from this the 

reaction between formic acid and calcite generates calcium formate, which has very low 

solubility at higher concentrations. Furthermore, the use of formic acid also causes many 

environmental issues. Acetic acid also showcases some of the aforementioned 

limitations, but in a very low magnitude and therefore is used most widely. Although the 

application of acetic acid in the field of acidizing started even before 1960, its reaction 

kinetics is not comprehensively studied. The impact of backward reactions on the overall 

reaction rate determination lacks clarity.  

The focus of this study was to look into the effect of reversible reactions on the 

overall kinetics of the acidizing process involving organic acids. Acetic acid was chosen 

as a representative organic acid and all the analysis were carried out using its different 
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concentration solutions. The reaction of acetic acid with calcite is known to be 

thermodynamically limited by the presence of products at the reaction surface. Study 

conducted by Buijse et al. (2004) highlighted that for pH values lower than 4, the effect 

of reversible reactions on the overall rate determination process is negligible and can be 

neglected. This means that the acidizing process of acetic acid can be modeled in the 

same way as HCl, which works on the principle of complete dissociation and does not 

incorporate impact of partial dissociation. 

In this study, different models were developed on the basis of earlier research 

and rotating disk experiments were carried out at various conditions to establish the 

effectiveness of the theoretical models. Using Fredd and Fogler (1998) approach, the 

activation energy value required to complete the acetic acid reaction with calcite was 

calculated. A comparison of the calculated value with that obtained for a purely 

diffusion limited process showed that additional activation energy is required to 

complete the process due to occurrence of reversible reactions.  In addition to 

determination of activation energy, this model was also used to evaluate the contribution 

of each of the mass transfer as well as the surface reaction process on the overall 

reaction resistance. It was inferred that the mass transport of products away from the 

surface had maximum contribution to the overall resistance, followed by the mass 

transfer of reactants. The surface reaction process also had considerable contribution and 

hence should not be neglected. The experimental results also agreed with the 

theoretically calculated results from the model.  
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Another model on the basis of the work published by Buijse et al. (2004) was 

developed and used to estimate the reaction rate values at different acid concentration 

and temperature conditions. The calculated results showed coherence with the 

experimental results, thus validating it. Two approaches were included while developing 

this model, one of them considered the effect of reversible reaction on the rate 

determination step while the other did not. It was observed that at lower temperature 

conditions, the experimental data matched the former approach describing the effect of 

reversible reaction. Contrarily, as the temperature is increased, the impact of the 

backward reaction reduces as the reactivity of the acid increases. This results in a better 

match of experimental data with the latter approach where reversible reactions are 

neglected at higher temperature condition. 

Important inferences derived from this work is that the occurrence of reversible 

reactions causes increase in the activation energy of the process by a considerable degree 

and therefore its significance should not be neglected. Secondly, increase in temperature 

enhances the acid reactivity and decreases the effect of reversible reactions and therefore 

at high temperature conditions, reaction rate modeling without considering the effect of 

backward reactions can give appropriate results. 
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CHAPTER VII  

FUTURE WORK 

 

The work presented in this research describes the reaction kinetics of acetic acid 

with calcite and focuses on the impact that reversible reactions have on the overall rate 

of reaction. Additional experimental work including a complete set of rotating disk 

experiments for other organic acids at different temperatures and acid concentrations 

should be conducted. The results obtained from RDA experiments could be used in the 

model to estimate various kinetic and mass transfer parameters. Moreover, the effect of 

other additives that are added to prepare an acid solution on the overall reaction rate 

could also be studied.  

The optimum acid injection rate could also be evaluated by performing a set of 

core-flood experiments for different initial acid concentration at various temperature 

conditions. 
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APPENDIX

Excel Program - Buijse et al. Model 
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Room Temperature 

0.5 M Acetic acid 
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1.5 M Acetic acid 

 

 

2.0 M Acetic acid 

 

 

 

y = 3E-08x + 2E-07
R² = 0.8597
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150°F 

0.5 M Acetic acid 

 

 

1.0 M Acetic acid 

 

 

R² = 0.9552
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1.5 M Acetic acid 

 

 

2.0 M Acetic acid 

 

 

y = 2E-07x + 3E-07
R² = 0.952
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200°F 

0.5 M Acetic acid 

 

 

1.0 M Acetic acid 

 

R² = 0.9711
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1.5 M Acetic acid 

 

 

2.0 M Acetic acid 

 

 

R² = 0.9874
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Rotating Disk Experiments 

 




