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ABSTRACT

In this Dissertation, computational and analytic methods are presented to address

nonlinear systems with applications in structural and celestial mechanics. Scalar Ho-

motopy Methods (SHM) are first introduced for the solution of general systems of

nonlinear algebraic equations. The methods are applied to the solution of post-

buckling and limit load problems of solids and structures as exemplified by simple

plane elastic frames, considering only geometrical nonlinearities. In many prob-

lems, instead of simply adopting a root solving method, it is useful to study the

particular problem in more detail in order to establish an especially efficient and

robust method. Such a problem arises in satellite geodesy coordinate transformation

where a new highly efficient solution, providing global accuracy with a non-iterative

sequence of calculations, is developed. Simulation results are presented to compare

the solution accuracy and algorithm performance for applications spanning the LEO-

to-GEO range of missions. Analytic methods are introduced to address problems in

structural mechanics and astrodynamics. Analytic transfer functions are developed

to address the frequency domain control problem of flexible rotating aerospace struc-

tures. The transfer functions are used to design a Lyapunov stable controller that

drives the spacecraft to a target position while suppressing vibrations in the flexible

appendages. In astrodynamics, a Taylor series based analytic continuation tech-

nique is developed to address the classical two-body problem. A key algorithmic

innovation for the trajectory propagation is that the classical averaged approxima-

tion strategy is replaced with a rigorous series based solution for exactly computing

the acceleration derivatives. Evidence is provided to demonstrate that high precision

solutions are easily obtained with the analytic continuation approach. For general
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nonlinear initial value problems (IVPs), the method of Radial Basis Functions time

domain collocation (RBF-Coll) is used to address strongly nonlinear dynamical sys-

tems and to analyze short as well as long-term responses. The algorithm is compared

against, the second order central difference, the classical Runge-Kutta, the adaptive

Runge-Kutta-Fehlberg, the Newmark-β, the Hilber-Hughes-Taylor and the modified

Chebyshev-Picard iteration methods in terms of accuracy and computational cost

for three types of problems; (1) the unforced highly nonlinear Duffing oscillator,

(2) the Duffing oscillator with impact loading and (3) a nonlinear three degrees of

freedom (3-DOF) dynamical system. The RBF-Collmethod is further extended for

time domain inverse problems addressing fixed time optimal control problems and

Lamberts orbital transfer problem. It is shown that this method is very simple,

efficient and very accurate in obtaining the solutions. The proposed algorithm is

advantageous and has promising applications in solving general nonlinear dynamical

systems, optimal control problems and high accuracy orbit propagation in celestial

mechanics.
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1. INTRODUCTION

In this Dissertation, several computational and analytic methods are presented

to address nonlinear systems with applications in structural and celestial mechanics.

This dissertation generally addresses the following main points:

1. Solution of nonlinear algebraic equations with Jacobian inverse-free methods

and perturbation methods derived from the physics of the problem.

2. Dynamics and control of aerospace structures with analytic transfer functions.

3. Computational and analytic methods for general nonlinear initial value prob-

lems.

4. Computational techniques for optimal control and two-point boundary value

problems.

In chapter two, the solution of systems of nonlinear algebraic equations is ad-

dressed. Numerical Scalar Homotopy Methods applied to the solution of post-

buckling and limit load problems of solids and structures as exemplified by simple

plane elastic frames, considering only geometrical nonlinearities are developed. Ex-

plicitly derived tangent stiffness matrices and nodal forces of large-deformation pla-

nar beam elements, with two translational and one rotational degrees of freedom at

each node, are adopted. By using the Scalar Homotopy Methods, the displacements

of the equilibrium state are iteratively solved for, without inverting the Jacobian

(tangent stiffness) matrix. It is well-known that, the simple Newton’s method (and

the closely related Newton-Raphson iteration method) that is widely used in non-

linear structural mechanics, which necessitates the inversion of the Jacobian matrix,
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fails to pass the limit load as the Jacobian matrix becomes singular. Although the so

called arc-length method can resolve this problem by limiting both the incremental

displacements and forces, it is quite complex for implementation. Moreover, inverting

the Jacobian matrix generally consumes the majority of the computational burden

especially for large-scale problems. On the contrary, by using the Scalar Homotopy

Methods, the convergence can be easily achieved, without inverting the tangent stiff-

ness matrix and without using complex arc-length methods. On the other hand,

using physical insight, the problem of Cartesian to Geodetic coordinate transforma-

tion is addressed with a singularity-free perturbation solution. Geocentric latitude

is used to model the satellite ground track position vector. A natural geometric per-

turbation variable is identified as the ratio of the major and minor Earth ellipse radii

minus one. A rapidly converging perturbation solution is developed by expanding

the satellite height above the Earth and the geocentric latitude as a perturbation

power series in the geometric perturbation variable. The solution avoids the classical

problem encountered of having to deal with highly nonlinear solutions for quartic

equations. Simulation results are presented to compare the solution accuracy and

algorithm performance for applications spanning the LEO-to-GEO range of missions.

In chapter three, analytic methods are introduced for the dynamics and control

of flexible spacecraft structure and the orbit propagation of the two-body problem in

celestial mechanics. First, a symmetric flexible rotating spacecraft is modeled as a

distributed parameter system of a rigid hub attached to two flexible appendages with

tip masses. Hamilton’s extended principle is utilized to present a general treatment

for deriving the dynamics of multi-body dynamical systems to establish the hybrid

system of integro-partial differential equations. A Generalized State Space (GSS)

system of equations is constructed in the frequency domain to obtain analytic trans-

fer functions for the rotating spacecraft. The frequency response of the generally
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modeled spacecraft and a special case with no tip masses are presented. Numer-

ical results for the system frequency response obtained from the analytic transfer

functions are presented and compared against the classical assumed modes numeri-

cal method. The truncation-error-free analytic results are shown to agree well with

the classical numerical solutions without any truncation errors. Fundamentally, the

rigorous transfer function, without introduction of spatial discretization, can be di-

rectly used in control law design. The frequency response of the system is used in

a classical control problem where a Lyapunov stable controller is derived and tested

for gain selection. The correlation between the controller design in the frequency

domain utilizing the analytic transfer functions and the system response is analyzed

and verified. The derived analytic transfer functions are shown to provide a pow-

erful tool to test various control schemes in the frequency domain and a validation

platform for existing numerical methods for distributed parameters models. Second,

high accuracy orbit propagation for the classical two-body problem is presented with

Taylor series based approximation. The success of this strategy is intimately tied to

the availability of exact derivative models for the system acceleration. In all cases,

a Leibniz product rule provides the enabling analytical machinery for recursively

generating series solutions for all higher order time derivatives. All two-body and

nonlinear perturbation terms are easily handled. A key algorithmic innovation for

the trajectory propagation is that the classical averaged approximation strategy is

replaced with a rigorous series based solution for exactly computing the acceleration

derivatives. Of course, when many terms are retained in a series approximation it

is natural to raise the question: can numerical precision be lost because of many

operations involving products and sums of both large and small numbers. The reso-

lution for this question will remain a research topic for future studies; nevertheless,

evidence is provided to demonstrate that high precision solutions are easily obtained
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with the analytic continuation approach.

In the fourth chapter, the Initial Value Problems (IVPs) for strongly nonlin-

ear dynamical systems are studied to analyze short as well as long-term responses.

Dynamical systems characterized by a system of second-order nonlinear ordinary dif-

ferential equations (ODEs) are recast into a system of nonlinear first order ODEs in

mixed variables of positions as well as velocities. For each discrete-time interval Ra-

dial Basis Functions (RBFs) are assumed as trial functions for the mixed variables in

the time domain. A simple collocation method is developed in the time-domain, with

Legendre-Gauss-Lobatto nodes as RBF source points as well as collocation points.

Numerical examples are provided to compare the present algorithm with explicit as

well implicit methods in terms of accuracy, required size of time-interval (or step)

and computational cost. The present algorithm is compared against, the second

order central difference method, the classical Runge-Kutta method, the adaptive

Runge-Kutta-Fehlberg method, the Newmark-β method, the Hilber-Hughes-Taylor

method and the Modified Chebyshev-Picard Iterations (MCPI) method. First the

highly nonlinear Duffing oscillator is analyzed and the solutions obtained from all

algorithms are compared against the analytical solution for free oscillation at long

times. A Duffing oscillator with impact forcing function is next solved. Solutions

are compared against numerical solutions from state of the art ODE45 numerical

integrator for long times. Finally, a nonlinear 3-DOF system is presented and results

from all algorithms are compared against ODE45. It is shown that the present RBF-

Coll algorithm is very simple, efficient and very accurate in obtaining the solution

for the nonlinear IVP. Since other presented methods require a smaller step size and

usually higher computational cost, the proposed algorithm is advantageous and has

promising applications in solving general nonlinear dynamical systems.
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In chapter five, ill-posed time-domain inverse problems for dynamical systems

with split boundary conditions and unknown controllers are considered. The sim-

ple collocation method, with Radial Basis Function (RBF) as trial solutions, and

Legendre-Gauss-Lobatto nodes as RBF source points as well as collocation points,

is applied. The duffing optimal control problem with various prescribed initial and

final conditions, as well as the orbital transfer Lambert’s problem are solved by the

proposed RBF collocation method as examples. It is shown that this method is very

simple, efficient and very accurate in obtaining the solutions, with an arbitrary initial

guess. Since other methods such as the shooting method and the pseudo-spectral

method can be unstable, the proposed method is advantageous and has promising

applications in optimal control and celestial mechanics.

Finally, in the last chapter, concluding remarks are presented regarding each of

the developed methods, their applicability to other types of problems and future

research thrusts in those areas.
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2. METHODS FOR NONLINEAR ALGEBRAIC EQUATIONS∗

2.1 Introduction

A large number of problems in engineering and applied sciences, such as large de-

formation solid mechanics, fluid dynamics, post-buckling of structural frames, plates,

and shells, etc, are characterized by nonlinear differential equations that will lead to

a system of nonlinear algebraic equations (NAEs) after discretization:

Fi(x1, . . . , xn) = 0, i = 1, . . . , n, or in their vector-form:

F (x) = 0 (2.1)

where F (x) ∈ Rn is a given vector function. We mention that F (x) = 0 may have

zero roots, multiple roots, and the simplest ideal case of a single unique solution.

Furthermore, it is frequently the case that we have some starting approximate root

x0 and we are motivated to consider iterative refinements of this approximate root.

To find the unknown vector x ∈ Rn, the famous Newton’s method is widely used to

iteratively solve Eq. (2.1):

xk+1 = xk −B−1
k Fk

x0 = a

(2.2)

where, a represents the initial guess of the solution, B is the Jacobian (tangent

stiffness) matrix given by B = ∂F
∂x

, and k denotes the number iteration index.

∗Part of this chapter is reprinted with permission from “Solution of Post-Buckling & Limit Load
Problems, Without Inverting the Tangent Stiffness Matrix & Without Using Arc-Length Methods”
by Elgohary, T. A., Dong, L., Junkins, J. L. and Atluri, S. N., 2014. CMES: Computer Modeling in
Engineering & Sciences, Vol. 98, No. 6, pp. 543–563, Copyright [2014] by Tech Science Press. And
from “A Simple Perturbation Algorithm for Inverting the Cartesian to Geodetic Transformation”
by Turner, J. D. and Elgohary, T. A., 2013. Mathematical Problems in Engineering, Vol. 2013
Copyright [2013] by Hindawi Publishing.
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As motivated by Eq. (2.2), the continuous Newton’s method is introduced in [1]

as:

ẋ = −B−1(x)F (x), t > 0

x(0) = a

(2.3)

From a parameter optimization perspective, see [2–4], Eq. (2.1) can be solved by

defining a quadratic cost function to be minimized as:

J =
1

2
F (x)TF (x) (2.4)

Clearly, for the case of a single root of F (x) = 0, J has its global minimum of zeros

at the root. Also note, for the case that there are no exact roots, minimizing J

will seek a point that locally most nearly satisfies F (x) = 0. By locally linearizing

F (x) about the estimate xk, we establish the nonlinear least-squares or Gaussian

least-squares differential correction, and the iterative process is

xk+1 = xk + ∆x

∆x = −(BT

kBk)
−1BT

kFk

(2.5)

This algorithm is ideally suited to the over-determined case that the vector function

F (x) has dimension m > n, where n is the dimension of x. Note for the n× n and

Bk of full rank, that the least squares algorithm reduces identically to the Newton

iteration of Eq. (2.2)

As with the case of the classical and continuous Newton’s methods, nonlinear

least squares convergence can become problematic if the initial guess is too far from

the solution or the Jacobian matrix is either ill-conditioned or rank deficient. The

method of gradients or method of steepest descent tries to overcome these problems

by finding the solution along the direction of steepest descent along the negative
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gradient of J . It can be applied to solve Eq. (2.1) as:

xk+1 = xk − αk∇Fk (2.6)

where the scalar αk is varied to improve convergence and not to overshoot the function

minimum, [2]. In general, gradient methods show very good convergence towards

the solution in the first few iterations. However, convergence is very poor near

the solution and the number of iterations to reach the final solution is generally

unbounded.

Homotopy methods, as firstly introduced by Davidenko in 1953, [5,6], represents

one of the best methods to enhance the convergence from a local convergence to

a global convergence. Previously, all the homotopy methods were based on the

construction of a vector homotopy function H(x, t), which serves the objective of

continuously transforming a function G(x) into F (x) by introducing a homotopy

parameter t (0 ≤ t ≤ 1). The homotopy parameter t can be treated as a time-like

fictitious variable, and the homotopy function can be any continuous function such

that H(x, 0) = 0 ⇔ G(x) = 0 and H(x, 1) = 0 ⇔ F (x) = 0.

However, in order to find the solution, both the iterative and the continuous

Newton’s methods require the the inversion of the Jacobian matrix. On one hand,

inverting the Jacobian matrix in each iteration is computationally very expensive.

On the other hand, for complex problems where the Jacobian matrix may be singu-

lar at limit points, as shown in Fig. 2.1, finding the solution with Newton’s methods

can not be achieved. Various variants of the arc-length methods have been widely

used for marching through the limit-points such as those presented in [7–10] for

post-buckling analyses. These methods generally involve complex procedures by ap-

pending various constraints, and monitoring the eigenvalues of the Jacobian matrix.
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It will be advantageous to have a method to find the solutions for systems of NAEs

without inverting the Jacobian matrix, without using the arc-length method, and

without worrying about initial guesses for the Newton’s methods.

x

f(x)

Limit Points

Figure 2.1: Newton’s Method & Limit Points
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2.2 Solution of NAEs without Inverting the Jacobian

As introduced in the previous sections, the method steepest descent can be con-

sidered as an early attempt to avoid inverting the Jacobian matrix for solving NAEs.

It is known to converge rapidly in the first few iteration but has very poor conver-

gence in the proximity of the solution. The Davidenko method still require a matrix

inversion operation at each iteration step. Quasi-Newton’s methods have been de-

veloped in order to eliminate the need to compute the Jacobian and consequently

its inverse at each iteration of the solution. In general, at each iteration the Hes-

sian matrix and/or its inverse are computed from the previous step following an

update equation to solve the secant equation which represents the Taylor series of

the gradient/Jacobian. Several variations of the method exist and are implemented

in most optimization toolboxes, [11]. The most famous of which is introduced by

Broyden in several works, [12–15]. A discussion of the derivation of the method and

its application in optimization problem is presented in [16].

In order to eliminate the need for inverting the Jacobian matrix in the Newton’s

iteration procedure, an alternate first-order system of nonlinear ordinary differential

equations (ODEs) is proposed in [17]. The solution of the set of NAEs, F (x) = 0,

in Eq. (2.1), can be obtained by postulating an evolutionary equation for x, thus:

ẋ =
−ν
q(t)

F (x), t > 0 (2.7)

where ν is a nonzero constant and q(t) may in general be a monotonically increasing

function of t. In that approach, the term ν/q(t) plays the major role of being

a stabilizing controller to help obtain the solution even for a bad initial guess, and

speeds up the convergence. This Fictitious Time Integration Method was successfully

applied to the solution of various engineering problems in [17–19]. In spite of its
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success, the Fictitious Time Integration Method was postulated only based on an

engineering intuition, does not involve the Jacobian matrix at all, and was shown to

only have local convergence.

Two of the most popular vector homotopy functions are the Fixed-point Homo-

topy Function:

HF (x, t) = tF (x) + (1− t)(x− x0) = 0, 0 ≤ t ≤ 1 (2.8)

and the Newton Homotopy Function:

HN(x, t) = tF (x) + (1− t) [F (x)− F (x0)] = 0, 0 ≤ t ≤ 1 (2.9)

By using the vector homotopy method, the solution of the NAEs can be obtained by

numerically integrating:

ẋ = −
(
∂H

∂x

)−1
∂H

∂t
, 0 ≤ t ≤ 1 (2.10)

As can be seen in Eq. (2.10), the implementation of the Vector Homotopy Method

necessitates the inversion of the matrix ∂H
∂x

at each iteration. This is a known prob-

lem in homotopy method, [20, 21], where the homotopy path to convergence would

generally have turning points, see Fig. 2.2. This necessitates the use of arc-lengths

along the curve, ds2 = dx2 +dt2, as the independent variable and solve the homotopy

differential equation in Eq. (2.10) for the augmented space, z = [x t]T as in the

Chow-Yorke homotopy method developed in [21].

In order to remedy the shortcoming of the Vector Homotopy Method, the system

of NAEs is solved by constructing a Scalar Homotopy Function h(x, t), such that

h(x, 0) = 0 ⇔ ‖G(x)‖ = 0 and h(x, 1) = 0 ⇔ ‖F (x)‖ = 0, , [22]. As an example,
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t

x

Homotopy Path
x0

xF

t = 0 t = 1

Turning Points

Figure 2.2: Homotopy Path Turning Points

the following Scalar Fixed-point Homotopy Function is introduced in [22]:

h(x, t) =
1

2
[t‖F (x)‖2 − (1− t)‖x− x0‖2], 0 ≤ t ≤ 1 (2.11)

However, it is more convenient to to define homotopy functions with t ∈ [0,∞]

instead of t ∈ [0, 1], and use a positive and monotonically increasing function Q(t) to

enhance the convergence speed. Two new scalar homotopy functions are introduced.

For both of these two methods, the inversion of the Jacobian matrix is not involved.

The two methods are based on the homotopy functions in Eq. (2.8) and Eq. (2.9)

with the Fixed-point Homotopy Function better suited for scalar problems than the

Newton Homotopy Function. The two homotopy functions are introduced as denoted

by the Scalar Fixed-point Homotopy Function:

hf (x, t) =
1

2
‖F (x)‖2 +

1

2Q(t)
‖x− x0‖2, t ≥ 0 (2.12)
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and the Scalar Newton Homotopy function:

hn(x, t) =
1

2
‖F (x)‖2 +

1

2Q(t)
‖F (x0)‖2, t ≥ 0 (2.13)

By selecting a driving vector u so that the evolution of ẋ is parallel to u, the system

of NAEs can be solved by numerically integrating:

ẋ = −
∂h
∂t(

∂h
∂x

)
· uu, t ≥ 0 (2.14)

With different scalar homotopy functions h(x, t), different Q(t), and different driving

vectors, u, Eq. (2.14) leads to different variants of scalar homotopy methods, see

[22–28] for a variety of selection of the driving vector u with various applications in

structural mechanics problems. We select u such that u = ∂h
∂x

. Thus, if hf is to be

used, Eq. (2.14) leads to:

ẋ = −1

2

Q̇‖F ‖2

‖QBTF + x− x0||2
(
QBTF + x− x0

)
, t ≥ 0 (2.15)

and if hn is to be used, we have:

ẋ = −1

2

Q̇‖F ‖2

Q‖BTF ‖2B
TF , t ≥ 0 (2.16)

Q(t) = et is used here for simplicity, while various possible choices can be found

in [28].

In the next sections, two solution methodologies are introduced for structural

mechanics and geodesy problems, [29, 30]. In the first study, the Scalar Homotopy

Methods are applied to the solution of post-buckling and limit load problems of

solids and structures as exemplified by simple plane elastic frames, considering only
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geometrical nonlinearities. Explicitly derived tangent stiffness matrices and nodal

forces of large-deformation planar beam elements, with two translational and one

rotational degrees of freedom at each node, are adopted following the work of Kondoh

and Atluri in [31]. By using the Scalar Homotopy Methods, the displacements of the

equilibrium state are iteratively solved for, without inverting the Jacobian (tangent

stiffness) matrix. The simple Newton’s method (and the Newton-Raphson iteration

method that is widely used in nonlinear structural mechanics), which necessitates

the inversion of the Jacobian matrix, fails to pass the limit load as the Jacobian

matrix becomes singular. Although arc-length method can resolve this problem

by limiting both the incremental displacements and forces, it is quite complex for

implementation. Moreover, inverting the Jacobian matrix generally consumes the

majority of the computational burden especially for large-scale problems. On the

contrary, by using the Scalar Homotopy Methods, the convergence can be easily

achieved, without inverting the tangent stiffness matrix and without using complex

arc-length methods. The study thus opens a promising path for conducting post-

buckling and limit-load analyses of nonlinear structures as applied to the classical

Williams’ toggle problem, [32].

The second study introduces a singularity-free perturbation solution for invert-

ing the Cartesian to Geodetic transformation. Geocentric latitude is used to model

the satellite ground track position vector. A natural geometric perturbation vari-

able is identified as the ratio of the major and minor Earth ellipse radii minus one.

A rapidly converging perturbation solution is developed by expanding the satellite

height above the Earth and the geocentric latitude as a perturbation power series

in the geometric perturbation variable. The solution avoids the classical problem

encountered of having to deal with highly nonlinear solutions for quartic equations.

Simulation results are presented that compare the solution accuracy and algorithm
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performance for applications spanning the Low Earth Orbit (LEO) to Geostationary

Earth Orbit (GEO) range of missions.
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2.3 Solution of Post-Buckling & Limit Load Problems, Without Inverting the

Jacobian & Without Using Arc-Length Methods

In computational solid mechanics, the trend over the past 30 – 40 years has

been to directly derive the tangent stiffness matrix, B, (rather than forming the

nonlinear equations, F (x) = 0) through incremental finite element methods, [7–9,

31]. Recently, however, the system of equations, F (x) = 0, is directly derived for a

von Kármán plate theory using Galerkin method, [28].

As discussed earlier, as the Jacobian matrix becomes singular, such as the limit-

load points for geometrically nonlinear frames or in elastic-plastic solids, the iterative

and the continuous Newton’s methods become problematic, as shown in Fig. 2.3. Var-

ious variants of the arc-length methods have been widely used for marching through

the limit-points, in post-buckling analyses, such as those presented in [7–10]. These

methods generally involve complex procedures by appending various constraints, and

monitoring the eigenvalues of the Jacobian matrices. The present method finds the

solutions for post-buckling problems of structures without inverting the Jacobian

matrix, without using the arc-length method, and without worrying about initial

guesses for the Newton’s methods.

The classical toggle problem, as introduced in [32], comprises of two rigidly jointed

equal members of length l and angle β with respect to the horizontal axis and sub-

jected to an externally applied vertical load W at the apex, as shown in Fig. 2.4.

The structure deforms in a symmetrical mode as shown in Fig. 2.5 with the

deflected position of the neutral axis of member rs denoted by r′s′, Following the

same assumptions and nomenclature in [32], the externally applied load W can be

expressed in terms of the deformation at the apex, δ, through the following series of
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Figure 2.4: The Classical Williams’ Toggle, [29]

r, r′

s

s′

W

δ

Figure 2.5: Symmetrical Deformation of Toggle, [29]
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equations,

W

2
≈ F + P sin β (2.17)

where, F is the component of the reaction force perpendicular to the undeflected

position of the neutral axis denoted here by rs and P is the component of the force

at the end of the member parallel to rs. P is expressed in terms of δ as:

P =
AE

l

(
δ sin β − 0.6

δ2

l

)
(2.18)

where, AE is the extensional rigidity of the member. F is then expressed in terms

of δ using nonlinear elastic stability theory as:

F =
6EI

l2
d5
δ

l
(2.19)

where d5 can be obtained by the following relations:

d5 = 2d4w(ρ)

d4 =
d3

3

d3 = d1 + d2

d2 = d1 − w(ρ)

d1 =
1

2

[
π2ρ

4 (1− w(ρ))
+ w(ρ)

]
w(ρ) =

π

2

√
ρ cot

π

2

√
ρ

ρ =
π2EI

l2

(2.20)

Combining Eq. (2.17) through Eq. (2.20), for a given load W , the vertical displace-

ment, δ, of the Williams’ toggle can be found by solving the following scalar nonlinear
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algebraic equation:

3AEsin β

5l2
δ2 +

(
6EId5

l3
+
AEsin β2

l

)
δ − W

2
= 0 (2.21)

In this study, the set of parameters l, EI, AE are considered to be the same as those

presented in [32], and are given in Table 2.1. By changing the height of the apex

of the toggle, three cases of interest are generated, as shown in Fig. 2.6. The first

case takes l sin β = 0.32, which represents the original plot in [32]. The second and

third cases, l sin β = 0.38 and l sin β = 0.44, respectively, show the effect of raising

the apex on the load-deflection curve of the toggle, and introduce limit points in

Eq. (2.21) at which the Jacobian is singular.

Table 2.1: Parameters set in [32], [29]

Parameter Value Units
l 12.94 in
EI 9.27× 103 lb/in2

EA 1.885× 106 lb

2.3.1 Solving Williams’ Equation with a Scalar Homotopy Method

In order to characterize the deflection δ resulting from a specific external load,

the scalar NAE of Eq. (2.21) must be solved. To better understand the limitations

on solving Eq. (2.21) utilizing the classical Newton’s method, the behavior of the

Jacobian derived analytically from Eq. (2.21) is shown in Fig. 2.7 for the three values

of l sin β introduced earlier.

Limit-points are those where the Jacobian becomes close to zero and thus classical

Newton’s method will fail. For this end, the previously introduced Scalar Homotopy
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Methods are used to avoid inverting the Jacobian for the solution of the NAE. The

Scalar Newton Homotopy Method in Eq. (2.16) only works for a system of NAEs.

Thus, the Scalar Fixed-point Homotopy Method in Eq. (2.15) is adopted here for

the solution of the scalar NAE of the Williams’ toggle.

Setting the tolerance to 10−6 for the original Williams’ toggle with l sin β = 0.32,

the Williams’ equation can be solved for an arbitrary load, here chosen as W = 27.11

lb. A comparison between Newton’s Method and the Scalar Fixed-point Homotopy

Method is shown in Table 2.2

Table 2.2: Solution of original Williams’ equation with no limit points, [29]

Method No. Iteration, N Achieved Accuracy
Newton’s Method N = 9 6.4× 10−7

Scalar Fixed-point Homotopy N = 30 8.9× 10−7

The comparison shows the fast convergence speed of Newton’s method achiev-

ing the required accuracy in just 9 iterations whereas it took the Scalar Fixed-point

Homotopy Method 30 iterations to achieve similar accuracy results. This case of

l sin β = 0.32 as shown in Fig. 2.7 has no singularities in the Jacobian, thus the supe-

rior performance of Newton’s method is expected. Figure 2.8 and Fig. 2.9 show the

evolution of the solution and the fast convergence of Newton’s Method as compared

to the Scalar Fixed-point Homotopy Method.

A second case is considered for l sin β = 0.44 where the Williams’ equation is

solved for an externally applied load selected near the limit point, W = 43.79 lb.

Both Newton’s Method and the Scalar Fixed-point Homotopy Method are utilized,

and the results are shown in Table 2.3
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Homotopy Method, [29]
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Table 2.3: Solution of Williams’ Equation for Loading near Limit Point, [29]

Method No. Iteration, N Achieved Accuracy
Newton’s Method N = 1000 0.044
Scalar Fixed-point Homotopy N = 345 7.6× 10−7

After 1000 iterations Newton’s method did not converge to the solution whereas

the Scalar Fixed-point Homotopy Method achieved the required accuracy in 345

iterations. Figure 2.10 and Fig. 2.11 show a comparison between the evolution of the

solution for the two methods. It is shown that Newton’s method will keep fluctuating

about the solution and not converge to achieve the required accuracy, whereas the

Scalar Fixed-point Homotopy Method converges to the solution with the required

high accuracy.
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Figure 2.10: Vertical Deflection vs. No. Iterations, l sin β = 0.44, Newton’s Method,
[29]
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Figure 2.11: Vertical Deflection vs. No. Iterations, l sin β = 0.44, Scalar Fixed-point
Homotopy Method, [29]

2.3.2 A Generalized Finite Element Model for Frame Structures

The currently adapted Scalar Homotopy Methods can be easily combined with

general purpose nonlinear finite element programs, by taking the directly derived

tangent stiffness matrix at each iteration as the Jacobian matrix, and taking the

difference between generalized internal force vector and the external force vector

(the residual) as F (x). In this work, explicitly derived tangent stiffness matrices and

nodal forces of large-deformation beam-column members are adopted following [31].

The basic derivations in [31] are briefly reviewed here.

First, the nomenclature and the sign convention used in the derivation for a

general beam column member are shown in Fig. 2.12. The functions w(z) and u(z)

describe the displacement at the centroidal axis of the element along the z and the
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x axes, respectively. The angles θ∗1 and θ∗2 are the angles between the tangent to the

deformed centroidal axis and the line joining the two nodes of the deformed element

at nodes 1 and 2, respectively. M1 and M2 are the bending moments at the two

nodes and N is the axial force in the beam member. The total rotation of the beam

1 2

l

z(w)

x(u)
Beam Member Before Deformation

Beam Member after Deformation & Sign Convention

1 S 2
−N −N

Q Q

l

δ

M1 −M2θ∗1

θ∗2

Figure 2.12: Kinematics & Nomenclature for a Beam Member, [29]

member is then given by,

θ = θ̃ + θ∗ (2.22)

where, θ̃ describes the rigid rotation of the beam member and is measured between

the line joining the two nodes of the deformed beam and the z-axis. θ̃ is expressed

in terms of the nodal displacements as,

θ̃ = tan−1

(
ũ

l + w̃

)
(2.23)
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where, ũ = u2 − u1 and w̃ = w2 −w1. From Eq. (2.22) and Eq. (2.23), the non-rigid

rotations at the two nodes, θ∗1 and θ∗2, are given by,

θ∗1 = θ1 − tan−1

(
ũ

l + w̃

)
θ∗2 = θ2 − tan−1

(
ũ

l + w̃

) (2.24)

The total stretch/deformation of the beam member is then expressed in terms of the

displacements at the two nodes as,

δ =
[
(l + w̃)2 + ũ2

]1/2 − l (2.25)

The axial force and bending moment are non-dimensionalized through,

n =
Nl2

EI
, m =

MI

EI
(2.26)

The non-rigid rotation and the non-dimensional bending moment are decomposed

into symmetric and anti-symmetric parts given by,

θ∗a = 1
2

(θ∗1 + θ∗2) , θ∗s = 1
2

(θ∗1 − θ∗2)

ma = (m1 −m2) , ms = (m1 +m2)
(2.27)

The relation between the generalized displacements and forces at the nodes of the

beam member is given by,

θ∗a = hama, θ∗s = hsms

δ

l
=

1

2

(
dha
dn

)
θ∗2a
h2
a

+
1

2

(
dhs
dn

)
θ∗2s
h2
s

+
N

EA

(2.28)
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where, ha and hs are given by,

for n ≤ 0

ha =
1

−n −
1

2(−n)1/2
cot

(
(−n)1/2

2

)
, hs =

1

2(−n)1/2
tan

(
(−n)1/2

2

)
for n > 0

ha = − 1

n
− 1

2(n)1/2
coth

(
(n)1/2

2

)
, hs =

1

2(n)1/2
tanh

(
(n)1/2

2

)
(2.29)

The kinematics variables can then be expressed in a vector form for a beam member

m as,

{dm} =

[
w1 w2 u1 u2 θ1 θ2

]T

(2.30)

The increment of the internal energy of a beam member is then expressed in terms

of the increment of kinematics variables vector, {dm}, the tangent stiffness matrix

[Km] and the internal force vector {Rm} as,

∆π =
1

2
{∆dm}T [Km] {∆dm}+ {∆dm}T {Rm} (2.31)

The tangent stiffness matrix, [Km], and the internal force vector, {Rm}, for the

member m are given by,

[Km] = [Add]−
1

Ann
{And} {And}T (2.32)

{Rm} = {Bd} −
1

Ann
{And} (2.33)
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where the elements constructing Eq. (2.32) and Eq. (2.33) are given by,

[Add] =



(
N ∂2δ

∂w̃2 +Ma
∂2θ∗a
∂w̃2

+EI
l

1
ha

(
∂θ∗a
∂w̃

)2
) [E]

(
N ∂2δ

∂w̃∂ũ
+Ma

∂2θ∗a
∂w̃∂ũ

+EI
l

1
ha

(
∂θ∗a
∂w̃

∂θ∗a
∂ũ

)) [E] EI
2lha

∂θ∗a
∂w̃
{I} EI

2lha

∂θ∗a
∂w̃
{I}

(
N ∂2δ

∂w̃2 +Ma
∂2θ∗a
∂w̃2

+EI
l

1
ha

(
∂θ∗a
∂w̃

)2
) [E] EI

2lha

∂θ∗a
∂ũ
{I} EI

2lha

∂θ∗a
∂ũ
{I}

EI
4l

(
1
ha

+ 1
hs

)
EI
4l

(
1
ha
− 1

hs

)
Symmetric EI

4l

(
1
ha

+ 1
hs

)


(2.34)

{And} =



(
∂δ
∂w̃

+ d
dn

(
1
ha

)
∂θ∗a
∂w̃
θ∗a

)
{I}(

∂δ
∂ũ

+ d
dn

(
1
ha

)
∂θ∗a
∂ũ
θ∗a

)
{I}

1
2

(
d
dn

(
1
ha

)
θ∗a + d

dn

(
1
hs

)
θ∗s

)
1
2

(
d
dn

(
1
ha

)
θ∗a − d

dn

(
1
hs

)
θ∗s

)


(2.35)

Ann =
l3

2EI

(
d2

dn2

(
1

ha

)
θ∗2a +

d2

dn2

(
1

hs

)
θ∗2s

)
− l

EA
(2.36)

{Bd} =



(
N ∂δ

∂w̃
+Ma

∂θ∗a
∂w̃

)
{I}(

N ∂δ
∂ũ

+Ma
∂θ∗a
∂ũ

)
{I}

1
2

(Ma +Ms)

1
2

(Ms −Ma)


(2.37)

Bn = δ +
1

2

d

dn

(
1

ha

)
θ∗2a l +

1

2

d

dn

(
1

hs

)
θ∗2s l −

Nl

EA
(2.38)

{I} =

−1

1

 [E] =

 1 −1

−1 1

 (2.39)

The load-deflection curve generated using the finite element model in Eq. (2.31)

is compared against the original Williams’ problem with l sin β = 0.32 in Fig. 2.13.

Other cases with l sin β = 0.38 and l sin β = 0.44 are shown in Fig. 2.14 and Fig. 2.15,
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respectively. The Scalar Fixed Point Homotopy Method, Eq. (2.12), is used to gen-

erate the load-deflection curves for the finite element model for all three cases. As

shown, the finite element model accurately describe the load-deflection characteris-

tics of the Williams’ toggle as it agrees well with the solutions of the scalar NAE

presented in [ [32]] and summarized in Eqs. 2.17 – 2.21. The Scalar Fixed-point Ho-

motopy Method successfully solved the FEM equations capturing the load-deflection

relation around the limit points, at which the Newton’s method fails to find the

solution, as shown next.
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Figure 2.13: Load-Deflection, Williams’ Equation & Finite Element, l sin β = 0.32,
[29]
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Figure 2.14: Load-Deflection, Williams’ Equation & Finite Element, l sin β = 0.38,
[29]
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Figure 2.15: Load-Deflection, Williams’ Equation & Finite Element, l sin β = 0.44,
[29]
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2.3.3 Solution of the Finite Element Model Using Scalar Homotopy Methods

The Scalar Fixed-point Homotopy Method, Eq. (2.15), and the Scalar Newton

Homotopy Method, Eq. (2.16), are both applied to the finite element model to solve

for the deflection given a specific load. As with the scalar example, the case of

l sin β = 0.44 is examined with the same value of the load applied near the limit point.

Setting the tolerance for the relative residual error to be 10−6, the two methods are

compared with Newton’s method and the results are shown in Table 2.4.

Table 2.4: Solution of finite element model for loading near limit point, [29]

Method No. Iteration, N Achieved Accuracy
Newton’s Method N = 1000 4.2894
Scalar Fixed-point Homotopy N = 160 6.7× 10−8

Scalar Newton Homotopy N = 500 2.4× 10−8

Both Scalar Homotopy Methods proved superior to the Newton’s method, as

both converged to the solution with the required accuracy whereas the Newton’s

method failed to find the solution after 1000 iterations. A zoomed in plot is shown

in Fig. 2.16 to illustrate the oscillating behavior of Newton’s method and its failure

to find the solution. It must be noted that due to the quadratic convergence nature

of Newton’s method, divergence can generally be shown after 10 − 15 iterations.

In the comparisons presented here the max number of iterations is set to 1000 in

order to accommodate for the Scalar Homotopy Methods convergence rate and to

compare them with Newton’s method. The Scalar Fixed-point Homotopy Method

converged in 160 iterations, Fig. 2.17), which is about one third the number of

iterations required by the Scalar Newton Homotopy Method, Fig. 2.18. This makes

the Scalar Fixed-point Homotopy Method more suitable for solving the problem of
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Williams’ toggle, whereas the Scalar Newton Homotopy Method provides a valid

alternative to obtain the solution. The Scalar Homotopy Methods developed in this

work and in previous works are suitable to solve general nonlinear finite element

models with very high accuracy, without inverting the tangent stiffness matrix, and

without having to use the computationally expensive arc-length methods.

0 20 40 60 80 100

−15

−10

−5

0

5

10

15

No. I terat ions, N

R
e
s
id
u
a
l
E
r
r
o
r

Figure 2.16: Residual Error in Newton’s Method, [29]

In order to illustrate the efficiency of the scalar homotopy methods the toler-

ance for the relative residual error is relaxed to match existing finite element solvers

(0.1%). For this case an external load of 44 lb. is applied and the results are shown

in Table 2.5. The two methods achieved the required accuracy within 14 iterations,

which demonstrates the power of the scalar homotopy methods in solving engineer-

ing problems and the fast convergence that can be achieved when addressing such
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Figure 2.17: Residual Error in Scalar Fixed-point Homotopy Method, [29]
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Figure 2.18: Residual Error in Scalar Newton Homotopy Method, [29]
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problems. The Newton’s method diverged with the same oscillatory non-convergent

behavior shown in Fig. 2.16 for up to 1000 iterations. Figs. 2.19-2.20 show the path

to convergence of the Scalar Fixed-point Homotopy Method and the Scalar Newton

Homotopy Method, respectively.

Table 2.5: solution of finite element model for loading near limit point, [29]

Method No. Iteration, N Achieved Accuracy
Newton’s Method N = 1000 0.3042
Fixed-point Homotopy N = 14 3.9× 10−4

Newton Homotopy N = 14 4.02× 10−4
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Figure 2.19: Residual Error in Scalar Fixed-point Homotopy Method, [29]
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Figure 2.20: Residual Error in Scalar Newton Homotopy Method, [29]

The Scalar Homotopy Method is applied to the solution of post-buckling and

limit load problems of plane frames considering geometrical nonlinearities. Explic-

itly derived tangent stiffness matrices and nodal forces of large-deformation beam-

column members are adopted following the work in, [31]. By using the Scalar Homo-

topy Method, nodal displacements of the equilibrium state are iteratively solved for,

without inverting the Jacobian (tangent stiffness) matrix and without using complex

arc-Length methods. This simple method thus saves computational time and avoids

the problematic behavior of the Newton’s method when the Jacobian matrix is sin-

gular. The simple Williams’ toggle is presented in this work, however, the method

is applicable to general finite element analyses of space frames, plates, shells and

elastic-plastic solids.
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2.4 Geodetic Coordinate Transformation

Frequently, we encounter especially important NAEs, and instead of simply adopt-

ing a standard root solving or homotopy method, it is useful to study the particular

problem in more detail in order to establish an especially efficient and robust method.

Such a problem arises in satellite geodesy and has been the subject of significant his-

torical studies. Here we revisit this problem and establish a new highly efficient

solution that provides global accuracy with a non-iterative sequence of calculations.

A frequent calculation for satellites in Low Earth Orbit (LEO) to Geostationary

Earth Orbit (GEO) involves inverting transformations between 3D satellite Carte-

sian Earth centered coordinates and geodetic coordinates. The geodetic coordinates

consist of λg, φg, and h, which denote the geodetic longitude of the satellite sub-point

g, the geodetic latitude of the satellite, and the height of the satellite above the ref-

erence Earth elliptical surface along the surface normal from the geodetic ellipsoid

to the satellite position. Referring to Fig. 2.21, the transformation from geodetic

coordinates to Cartesian (xs, ys, zs) coordinates is given in [33] by:

xs = (N (φg) + h) cosφg cosλg

ys = (N (φg) + h) cosφg sinλg

zs =
(
N (φg)

(
1− e2

)
+ h
)

sinφg

(2.40)

where, N(φg) = a/
√

1− e2 sin2 φg denotes the ellipsoid radius of curvature in the

prime vertical plane defined by vectors n̂ (ellipsoid outward normal) and τ̂ (local

east), h is assumed to lie along n̂, a denotes the semi-major axis, b denotes the

semi-minor axis and e denotes the eccentricity of the Earth reference ellipsoid. The
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geodetic longitude is trivially obtained from Eq. (2.40) as,

λg = tan−1

(
ys
xs

)
(2.41)

Figure 2.21: Geodetic & Cartesian Coordinates, [30]

Many methods have been proposed for implementing the inverse of the transfor-

mation presented in Eq. (2.40). The nonlinear Cartesian-to-Geodetic transformation

problem is challenging, as geometrical singularities plague many published solution

strategies. The for the geodetic longitude is elementary and non-iterative. The

most common problem encountered is the need for handling sensitive quartic poly-
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nomial solutions, [34–37]. The analytic complexity of the problem arises because

the geodetic latitude and satellite height solution algorithms are coupled and highly

nonlinear. Three classes of methods have been proposed: (i) closed-form solutions

involving cubic and quartic polynomials, (ii) approximate perturbation methods,

and (iii) successive approximation algorithms similar to those in the previous sec-

tions. The closed-form class of solution algorithms typically introduce sequences

of trigonometric transformations that exploit identities to simplify the governing

equation. Important examples of this approach include the following: (i) the well-

known solution in [38], where the reduced latitude is iterated in Newton’s method;

(ii) a closed-form solution for a high-order algebraic equation, [39]; (iii) introducing

the geodetic height of the satellite to develop an elliptic integral-based arc-length

solution, [40]; (iv) development of an approximate closed-form solution, [41]; and

(v) introduction of complicated algebraic transformations to develop a series solu-

tion, [42]. The closed-form solutions are generally highly accurate, but they are

computationally more expensive to perform than a single iteration of most published

algorithms.

Many iterative techniques have been proposed that exploit the special structure of

the problem at hand. Early examples of this approach include the work in [33] which

influenced the GPS-based need for the geodetic transformation methods developed

in [43–45]. Several innovative problem formulations have been proposed, such as

in [34, 35, 46, 47]. Geometric singularities plague many of these iterative strategies.

To avoid troublesome singularities, several authors have investigated vector methods,

as presented in [37,48]. In [49], an elegant optimization-based strategy is presented.

Accelerated convergence techniques are considered in [50], presenting a third-order

version of Newton’s method, known as Halleys method. In [51], Turner has presented

a very fast singularity-free second-order perturbation solution that introduces an
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artificial perturbation variable to transform the classical quartic solution problem

into a singularity-free non-iterative quadratic equation problem. In a more recent

addition to iterative methods, [52], the projection of a point on the reference ellipsoid

is used to solve a system of nonlinear equations using second and third order Newton’s

method. The results presented by the authors show millimeter accuracy in height

and 10−8 accuracy in latitude with the third-order approach.

2.4.1 A Simple Perturbation Solution

The problem is formulated by introducing a local coordinate system that tracks

the local x−y axis motion of the satellite. In the local coordinate system, a simplified

perturbation solution is developed in the τ − z plane by defining a vector constraint

of the form

r − rg = hn̂ = 0 (2.42)

where, r = (rxy, z) denotes the satellite position vector, with rxy =
√
x2 + y2, rg =

[a cosφc, b sinφc]
T the ground track point, φc the geocentric latitude, h the height of

the satellite above the Earth’s surface, and n̂ the unit vector normal to the Earth’s

surface pointing to the satellite is given by,

n̂ =

[
cosφc
a
, sinφc

b

]T√(
cosφc
a

)2
+
(

sinφc
b

)2
(2.43)

See Fig. 2.22 for an illustration. Expanding Eq. (2.42) provides the two necessary
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Figure 2.22: Geodetic Vs. Geocentric Latitude, [30]

conditions in the two unknowns, h, φc:

rxy − a cosφc −
h cosφc

a

√(
cosφc
a

)2
+
(

sinφc
b

)2
= 0

z − b sinφc −
h sinφc

b

√(
cosφc
a

)2
+
(

sinφc
b

)2
= 0

(2.44)

The equations are clearly highly nonlinear. To begin the simplification process, we

replace a in Eq. (2.44) with,

a = b(1 + p), p ≈ 0.00314 (2.45)
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which exploits the natural parameter of the problem and transforms Eq. (2.44) into,

rxy − b(1 + p) cosφc −
h cosφc√

(cosφc)
2 + ((1 + p) sinφc)

2
= 0

z − b sinφc −
h sinφc√(

cosφc
(1+p)

)2

+ (sinφc)
2

= 0
(2.46)

An approximate solution is recovered by assuming that the geocentric latitude and

the satellite height are expanded in the power series representations as:

φc = φ0 + pφ1 + p2φ2 + . . .

h = h0 + ph1 + p2h2 + . . .

(2.47)

Substituting Eq. (2.47) into Eq. (2.46) and collecting terms in powers of p the ex-

pansion is carried up to fourth order in the powers of p. Hence, for p0,

h0 =
√
r2
xy + z2 − b

φ0 = 2 tan−1

(√
r2
xy + z2

z
− rxy

z

)
(2.48)

for p1,

h1 = −b cos2 φ0

φ1 =
b− h0

2(b+ h0)
sin(2φc)

(2.49)

for p2,

h2 =
b(3b− h0)

8(b+ h0)
sin2(2φ0)

φ2 =
h2

0 − 4bh0 + 3b2

8(b+ h0)2
sin(4φ0) +

sin(2φ0)

4

(2.50)
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for p3

h3 =
b sin2(2φ0)

8(b+ h0)2

[
(h0 − 3b)2 cos2 φ0 + 4b(h0 − b)

]
φ3 =

sin(2φ0)

6(b+ h0)3

[
C1 cos4 φ0 + C2 cos2 φ0 + C3

] (2.51)

and finally for p4

h4 =
b sin2(2φ0)

32(b+ h0)3

[
C4 cos4 φ0 + C5 cos2 φ0 + C6

]
φ4 =

sin(2φ0)

4(b+ h0)4

[
C7 cos6 φ0 + C8 cos4 φ0 + C9 cos2 φ0 + C10

] (2.52)

where, the set of coefficients C1, . . . , C10 in the third and fourth order expansions

are shown in Table 2.6 These analytic results are very compact for a fourth-order

Table 2.6: Set of coefficients in third & fourth order expansions, [30]

Coeffecient Expression
C1 −4h3

0 + 37b3 − 66b2h0 + 33bh2
0

C2 h3
0 − 31b3 + 75b2h0 − 33bh2

0

C3 3b (b2 + 4h2
0 − 6bh0)

C4 139b3 − 5h3
0 + 49bh2

0 − 143b2h0

C5 h3
0 − 127b3 + 163b2h0 − 45bh2

0

C6 4b (−110bh0 + h2
0 + 5b2)

C7 4h4
0 + 118b4 + 198b2h2

0 − 266b3h0 − 54bh3
0

C8 −155b4 = 2h4
0 + 67bh3

0 + 431b3h0 − 315b2h2
0

C9 49b4 − 15bh3
0 − 185b3h0 + 135b3h2

0

C10 2b2 (10bh0 − 5h2
0 − b2)

perturbation expansion. The conversion from the geocentric to the geodetic latitude

is given by,

φg = tan−1

(
cosφc

a/b sinφc

)
(2.53)
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2.4.2 LEO to GEO Satellite Coordinates Transformation

The perturbation expansion method is used to carry out the coordinate transfor-

mation for cases of LEO-to- GEO orbits. Using the WGS84, the forward transforma-

tion is carried out first, then the perturbation solution is applied, and the results are

compared against the original values, which represent the true values for the inverse

solution. The error is simply calculated as,

∆φg = φg − φ̂g

∆h = h− ĥ
(2.54)

where, ∗̂ represents the perturbation solution. For the sake of demonstration a

longitude angle of 30◦ is utilized. The geodetic latitude, φg, is swept for angles from

−90 to 90 degrees and the height is swept from 200 KM (LEO) to 35, 000 KM (GEO).

We have found that the accuracy is invariant with respect to longitude. First, the

expansion is carried to second order, and the errors in latitude and height are plotted

as functions of the true latitudes and heights as shown in Fig. 2.23 and Fig. 2.24,

respectively. The expansion is then carried out to third order, and the errors in

latitude and height are shown in Fig. 2.25 and Fig. 2.26, respectively. Finally, the

fourth order expansion is used, and the error results are shown in Fig. 2.27 and

Fig. 2.28.

43



−100

−50

0

50

100

0

1

2

3

4

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−6

φg (deg)h (km)

∆
φ
g
(d
eg
)

Figure 2.23: Errors in Latitude, Second Order Expansion, [30]
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Figure 2.24: Errors in Height, Second Order Expansion, [30]
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Figure 2.25: Errors in Latitude, Third Order Expansion, [30]
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Figure 2.26: Errors in Height, Third Order Expansion, [30]
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Figure 2.27: Errors in Latitude, Fourth Order Expansion, [30]
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Figure 2.28: Errors in Height, Fourth Order Expansion, [30]
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The improvement of accuracy is quite obvious as the order of expansion is in-

creased. Two orders of magnitude improvement is achieved by adding the third order

terms to each of the coordinates. Another two orders of magnitude improvement is

achieved with the fourth order terms. In height, millimeter accuracy is achieved at

the fourth order expansion level. As is evident, the fourth order expansion produces

essentially negligible error globally and can be considered an explicit non-iterative

solution. This shows the fast convergence nature and the accuracy of the pertur-

bation solution. The results also demonstrate that higher order approximations are

not needed as they will not provide additional useful information for the inversion

process.

Earth-Centered Earth-Fixed (ECEF) to geodetic coordinate transformation has

been examined with several numerical and analytical approaches throughout the lit-

erature. A non-iterative expansion based approach inspired by the Earth’s perturbed

geometry is introduced, where the expansion parameter is nothing but the ratio of

the Earth semi-major axis and semi-minor axis subtracted from 1. The expansion is

carried out to second, third, and fourth orders. A numerical example is introduced

to compare the accuracy at each order of expansion. Significant improvement in

accuracy is demonstrated as the order of expansion is increased, and at fourth order,

millimeter accuracy is achieved in height and 10−11 degree error in latitude. Those

errors at such low orders of the expansion are proof of the effectiveness of the method

and its potential in solving such a highly nonlinear transformation non-iteratively.

The method can be further streamlined for timing studies, but in general it is a

clean straightforward approach to the coordinate transformation problem that uti-

lizes a physical perturbation parameter and that proved to be globally accurate and

efficient.
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3. ANALYTIC METHODS IN STRUCTURAL MECHANICS AND

ASTRODYNAMICS∗

In this chapter, two analytic approaches are introduced to address problems in

structural mechanics and astrodynamics. First, the problems of a symmetric flexible

rotating spacecraft modeled as a distributed parameter system of a rigid hub attached

to two flexible appendages with tip masses is addressed. Traditional methods typi-

cally initiate with a spatial discretization process such as the finite element method

to obtain a high order, but now truncated system of ordinary differential equations

before initiating controller design. The effects of truncation error therefore corrupts

to some degree the model of the controlled system. We present here an approach

which, for a class of systems, avoids spatial truncation altogether in designing the

control law. Hamilton’s extended principle is utilized to present a general treatment

for deriving the dynamics of multi-body dynamical systems to establish a hybrid sys-

tem of integro-partial differential equations that model the evolution of the system in

space and time. A Generalized State Space (GSS) system of equations is constructed

in the frequency domain to obtain analytic transfer functions for the rotating space-

craft. The frequency response of the generally modeled spacecraft and a special

case with no tip masses are presented. Numerical results for the system frequency

response obtained from the analytic transfer functions are presented and compared

against the classical assumed modes numerical method. The truncation-error-free

analytic results are shown to agree well with the classical numerical solutions, thus

validating the truncated model. Fundamentally, we show that the rigorous transfer

∗Part of this chapter is reprinted with permission from “Dynamics and Controls of a Generalized
Frequency Domain Model Flexible Rotating Spacecraft” by Elgohary, T. A., Turner, J. D. and
Junkins, J. L., 2014. AIAA SpaceOps Conference, Copyright [2014] by AIAA.
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function, without introduction of spatial discretization, can be directly used in con-

trol law design. The frequency response of the system is used in a classical control

problem where a Lyapunov stable controller is derived and tested for gain selection.

The correlation between the controller design in the frequency domain utilizing the

analytic transfer functions and the system response is analyzed and verified. The

derived analytic transfer functions provide a powerful tool to test various control

schemes in the frequency domain and a validation platform for existing numerical

methods for distributed parameters models.

The second analytic method addresses the orbit propagation of the two-body

problem. Arbitrary order Taylor expansions are developed for propagating the tra-

jectories of space objects subject to two-body gravitational potential. Arbitrary

order time derivative models are made possible by introducing a nonlinear change

of variables, where the new variables and the transformed equations of motion are

analytically generated by Leibniz product rule. The analytic continuation algorithm

is developed and numerical examples are introduced for a Low Earth Orbit (LEO)

and a High Eccentricity Orbit (HEO) cases. Numerical simulations and timing com-

parison results are presented for comparing the performance of the series solution

with other state of the art integrators.
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3.1 Analytic Transfer Functions for the Dynamics and Control of Flexible

Rotating Spacecraft Performing Large Angle Maneuvers

A maneuvering flexible spacecraft is often modeled as coupled rigid hub with

attached flexible beam-like sub-structures. A widely used model describing such

systems is shown in Fig. 3.1 where a flexible rotating spacecraft is modeled as two

symmetric flexible appendages with identical tip masses attached to a rotating rigid

hub. Such models are described by coupled systems of Integro-Partial Differential

Equations (IPDEs), [53–59]. Solution techniques presented in these works are mainly

numerical based on spatial discretization approaches that apply the finite element

method and/or the assumed modes technique. Numerical solutions in general are

approximate and the accuracy is a function of the number of elements/modes cho-

sen, which can impose high computational cost, and there is always the issue of

truncation errors associated with the spatial discretization. Also in the case of the

assumed modes technique the number of accurate modes can be limited by the nu-

merical errors introduced by the matrix operations, [58]. As a natural extension

for such techniques the control problem is addressed in several works for optimality

and/or robustness, [58,60–64]. This work presents a new approach based on deriving

analytic transfer functions for the hybrid system that has been recently introduced

by Elgohary and Turner, [65–67]. In those works, results from the analytic solution

have been successfully compared and verified against the classical assumed modes

method.

The control problem of a single axis rotating flexible spacecraft has been ad-

dressed extensively utilizing several controls and modeling schemes. The optimal

control problem of a rotating hub with symmetric four flexible appendages is pre-

sented as a numerical example, [68]. A set of admissible functions that meet both
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physical and geometrical boundary conditions is chosen. The effectiveness of the

minimization rely on the number of modes retained in the series of the chosen ad-

missible function. Finite elements techniques besides the assumed modes approach

are used to solve similar problems, [58]. The natural frequencies of the system are

calculated and the two methods are compared in terms of accuracy and the required

number of elements/modes. Several other flexible structures examples are similarly

addressed, [60]. The optimal control problem is again addressed for various control

schemes and penalty functions including free final time, free final angle and control

rate penalty methods. Large angle maneuvers for a flexible spacecraft are addressed

for a hub-four flexible appendages model, [61]. Two-point boundary value problems

and kinematic nonlinearities are also addressed, [62]. In a more recent work, [69],

the adaptive control problem is addressed for a similar rigid hub flexible appendage

model. Because this work builds on the analytic solution for the integro-partial

differential equation of motion, the proposed control scheme is independent of the

truncation generated from the flexible modes admissible function. No series approxi-

mations are introduced. Several other works address similar problems with emphasis

on optimality, [63,64,70–73], and/or robustness, [63,64]. A comprehensive literature

survey, [74], covers the modeling and control of flexible appendage in the controls

community.

The existence of the exact transfer functions, [65–67], for the rigid hub flexible

beam problem is utilized in developing frequency domain control schemes for the

spacecraft, [75, 76]. The frequency response developed is used to obtain the gains

required to implement a controller that drives the system from its initial state to

a target state while controlling the vibrations of the flexible appendages. First, a

general framework for the derivation of multi-body dynamics is presented. Following

that technique, the dynamical equations for the model in Fig. 3.1 are derived. Next,
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the concept of the Generalized State Space (GSS) is presented with the steps to obtain

its closed form solution and the associated analytic transfer functions. Numerical

results of the frequency response for the general system in Fig. 3.1 and the no tip-

mass special case are then presented. Finally, the control problem in the frequency

domain for the derived analytic transfer functions is presented with numerical results

for the rigid and flexible coordinates response.

Ih

mt, Itmt, It

u

LL

Figure 3.1: Symmetric Rotating Spacecraft, [76]

3.1.1 Dynamics of Multi-Body Hybrid Coordinate Systems

A hybrid coordinates dynamical system is described by m generalized coordinates

describing the rigid body motion, denoted by qi = qi(t), i = 1, . . . ,m and n elastic

coordinates, wj = wj(P , t), j = 1, . . . , n, describing the relative elastic motion of a

spatial position P , [58]. Hence, q = [q1, . . . , qm]T and w = [w1, . . . , wn]T.

For a general multi-body system of n beam-like flexible bodies and one spatial

independent variable xi, the kinetic and potential energy are assumed to have the

general structure,

T = TD(q, q̇) +
n∑
i=1

∫ li

l0i

T̂i(arg)dxi + TB(argB) (3.1)
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V = VD(q, q̇) +
n∑
i=1

∫ li

l0i

V̂i(arg)dxi + VB(argB) (3.2)

where, (∗)D denotes the energy of the rigid body, ˆ(∗) denotes the energy in the

elastic domain, (∗)B denotes the energy at the boundaries of the elastic domain,

arg = {q, q̇,wi, ẇi,wi,w
′
i,w

′′
i , ẇ(l),w(l),w′(l), ẇ′(l)} and

argB = {q, q̇, ẇ(l),w(l),w′(l), ẇ′(l)}.

The Lagrangian can then be expressed as,

L = T − V

= LD +
n∑
i=1

∫ li

l0i

L̂idxi + LB

(3.3)

where, arg, argB are dropped for brevity, LD ≡ TD − VD, L̂i = T̂i − V̂i, and LB =

TB − VB. The non-conservative virtual work can then be expressed as,

δWnc = QTδq +
n∑
i=1

{∫ li

l0i

f̂T

i (xi)δwidxi + fT

i δwi(li) + gT

i δw
′
i(li)

}
(3.4)

where, Q is the non-conservative force associated with the rigid body coordinates

q, f and g are the non-conservative force and torque, respectively, applied at the

boundary, xi = li. Hamilton’s extended principle, Eq. (3.5), is then applied to

obtain the set of coupled hybrid ordinary and partial differential equations and the

associated boundary conditions, Eq. (3.6) through Eq. (3.9)

∫ t2

t1

(δL+ δWnc) = 0 δq = δwi = 0 at t = t1, t2 (3.5)

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= QT (3.6)
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d

dt

(
∂L̂i
∂ẇi

)
− ∂L̂i
∂wi

+
∂

∂xi

(
∂L̂i
∂w′i

)
− ∂2

∂x2
i

(
∂L̂i
∂w′′i

)
= f̂T

i (3.7)

{
∂L̂i
∂w′i

− ∂

∂xi

(
∂L̂i
∂w′′i

)}
δwi

∣∣∣∣∣
li

l0i

+

{
∂LB
∂wi(li)

− d

dt

(
∂LB
∂ẇi(li)

)}
δwi(li)

+ fT

i δwi(li) = 0

(3.8)

∂L̂i
∂w′′i

δw′i

∣∣∣∣∣
li

l0i

+

{
∂LB
∂w′i(li)

− d

dt

(
∂LB
∂ẇ′i(li)

)}
δw′i(li) + gT

i δw
′
i(li) = 0 (3.9)

where, LB ≡ LB +
n∑
i=1

∫ li

l0i

L̂idxi. Eq. (3.6) through Eq. (3.9) are used to derive the

dynamics of the hybrid model presented in Fig. 3.1.

Considering the deformation and the coordinate system presented in Fig. 3.2,

the inertial position and velocity of a point on the i-th flexible appendage for the

multi-body system is given by,

Ih
mt, It

u

L
b̂1

b̂2
y(x, t)

r

Figure 3.2: Deformation & Axis of Flexible Appendage, [76]

pi = (xi + r) b̂1 + yib̂2 (3.10)

vi = ẏib̂2 + θ̇b̂3 ×
[
(xi + r) b̂1 + yib̂2

]
(3.11)

54



where, r is the rotating hub radius, L the length of the flexible appendage, x ∈

[0, L] the position on the flexible appendage and y the transverse deflection of the

flexible appendage. Neglecting the yθ̇ term in the velocity and assuming that the

two appendages have the same deflection profiles, y1(x, t) = y2(x, t), the kinetic and

the potential energy for the model in Fig. 3.1 can be expressed as,

T = Thub + 2Tappendage + 2Ttip

T =
1

2
Ihubθ̇

2 +

∫ L

0

ρ
(
ẏ + (x+ r)θ̇

)2

dx

+mtip

(
(r + L)θ̇ + ẏ(L)

)2

+ Itip

(
θ̇ + ẏ′(L)

)2

(3.12)

V =

∫ L

0

EI (y′′)
2

dx (3.13)

The Lagrangian can then be constructed as,

L =
1

2
Ihubθ̇

2 +

∫ L

0

ρ
(
ẏ + (x+ r)θ̇

)2

dx−
∫ L

0

EI (y′′)
2

dx

+mtip

(
(r + L)θ̇ + ẏ(L)

)2

+ Itip

(
θ̇ + ẏ′(L)

)2
(3.14)

where from Eq. (3.6) and Eq. (3.7) we have, LD = 1
2
Ihubθ̇

2, L̂ = ρ
(
ẏ + (x+ r)θ̇

)2

−

EI (y′′)2, LB = mtip

(
(r + L)θ̇ + ẏ(L)

)2

+ Itip

(
θ̇ + ẏ′(L)

)2

and LB = LB +
∫ L

0
L̂dx.

The equations of motion and the boundary conditions are then derived from Eq. (3.6)

through Eq. (3.9) as,

Ihubθ̈ + 2

∫ L

0

ρ(x+ r)
(
ÿ + (x+ r)θ̈

)
dx

+ 2mtip(L+ r)
(

(L+ r)θ̈ + ÿ(L)
)

+ 2Itip

(
θ̈ + ÿ′(L)

)
= u

ρ
(
ÿ + (x+ r)θ̈

)
+ EIyIV = 0

(3.15)
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atx = 0 : y = 0, y′ = 0

atx = L : EI
∂3y

∂x3

∣∣∣∣
L

= mtip

(
(L+ r)θ̈ + ÿ(L)

)
,

EI
∂2y

∂x2

∣∣∣∣
L

= −Itip

(
θ̈ + ÿ′(L)

) (3.16)

It is noted that by setting mtip = Itip = 0 a simpler no-tip-mass model dynamics and

boundary conditions are obtained as,

Ihubθ̈ + 2

∫ L

0

ρ(x+ r)
(
ÿ + (x+ r)θ̈

)
dx = u

ρ
(
ÿ + (x+ r)θ̈

)
+ EIyIV = 0

(3.17)

atx = 0 : y = 0, y′ = 0

atx = L : EI
∂3y

∂x3

∣∣∣∣
L

= 0, EI
∂2y

∂x2

∣∣∣∣
L

= 0
(3.18)

3.1.2 The Generalized State Space Model

A generalized state space (GSS) model is developed by taking the Laplace trans-

form, Eq. (3.19), of Eq. (3.15) and performing integration by parts to remove the

spatial dependency from the integral, [66, 67]:

F (s) =

∫ ∞
0

e−stf(t)dt (3.19)

s2Jθ̄ + 2s2ρ

∫ L

0

(r + x)ȳdx+ 2s2mtip(r + L)ȳ(L) + 2s2Itipȳ
′(L) = ū

s2ρ
(
ȳ + (x+ r)θ̄

)
+ EIȳIV = 0

(3.20)

where J is the total inertia of the model and is given byJ ≡ Ihub+2mtip(r+L)2+2Itip+

2
∫ L

0
ρ(r + x)2dx. Integration by parts is then utilized to decouple the deformation
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parameter ȳ from the spatial variable x such that,

∫ L

0

(r + x)ȳdx = (r + x)

∫ L

0

ȳdx−
∫∫

ȳdxdx′ (3.21)

Plugging Eq. (3.21) into Eq. (3.20) yields the generalized integral equation,

s2Jθ̄ + 2s2ρ

(
(x+ r)

∫ L

0

ȳdx−
∫∫

ȳdxdx′
)

+ 2s2mtip(r + L)ȳ(L) + 2s2Itipȳ
′(L) = ū

s2ρ

EI

(
ȳ + (x+ r)θ̄

)
+ ȳIV = 0

(3.22)

Similar to the equations of motion, the boundary conditions are expressed in the

Laplace/frequency domain as,

atx = 0 : ȳ = 0, ȳ′ = 0

atx = L : ȳ′′′ =
s2mtip

EI

[
(r + L)θ̄ + ȳ(L)

]
, ȳ′′ = −s

2Itip

EI

[
ȳ′(L) + θ̄

] (3.23)

which leads to the definition of the state space system,

z1 =
∫∫

ȳdxdx′ z′1 = z2

z2 =
∫
ȳdx z′2 = z3

z3 = ȳ z′3 = z4

z4 = ȳ′ z′4 = z5

z5 = ȳ′′ z′5 = z6

z6 = ȳ′′′ z′6 = −β
(
z3 + (r + x)θ̄

)
where, β ≡ s2ρ

EI
(3.24)
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In state space representation Eq. (3.24) can be simply expressed as,



z′1

z′2

z′3

z′4

z′5

z′6



=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 −β 0 0 0





z1

z2

z3

z4

z5

z6



+



0

0

0

0

0

−β(r + x)θ̄



(3.25)

or in the more compact form,

{Z ′} = A {Z}+ {b} (3.26)

The state space is generalized in the sense that the states consist of a distributed

parameter variable, spatial partial derivatives, and first and second order integrals,

which mix solutions at points in the flexible body domain with global response vari-

ables. The generalized state space model system of equations is solved by first de-

veloping the homogeneous and the forced solutions for the linear state space model

in Eq. (3.26),

{Z(x)} = exp[Ax] {Z(0)}︸ ︷︷ ︸
ZH

+

∫ x

0

exp [A(x− τ)] {b(τ)} dτ︸ ︷︷ ︸
ZF

(3.27)

58



where the homogeneous solution ZH is given by,

{ZH} =



(1− f)z5/β − (βx+ f ′′′)z6/β
2

−f ′z5/β + (1− f)z6/β

−f ′′z5/β − f ′z6/β

−f ′′′z5/β − f ′′z6/β

fz5 − f ′′′z6/β

f ′z5 + fz6



(3.28)

and the forced part is evaluated from,

{ZF} =

∫ x

0

exp [A(x− τ)] {b(τ)} dτ

= −βθ̄
∫ x

0

(r + τ)



(β(x− τ) + f ′′′(x− τ)) /β2

(1− f(x− τ)) /β

−f ′(x− τ)/β

−f ′′(x− τ)/β

−f ′′′(x− τ)/β

f(x− τ)



dτ

(3.29)

The function f that represents the elements of the solution is derived from the matrix

exponential solution of the flexible appendage sub-problem and is given by, [66,67]

f(x) = cos

(
β1/4x√

2

)
cosh

(
β1/4x√

2

)
(3.30)

Observing that the function f represents the real part of the complex function

f = Re {cos(σx)} , where, σ ≡
√
i
√
β (3.31)
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the homogeneous solution in Eq. (3.28) follows,

{ZH} =



(1− cos(σx))z5/β + (βx+ σ3 sin(σx))z6/β
2

σ sin(σx)z5/β + (1− cos(σx))z6/β

σ2 cos(σx)z5/β + σ sin(σx)z6/β

−σ3 sin(σx)z5/β + σ2 cos(σx)z6/β

cos(σx)z5 − σ3 sin(σx)z6/β

−σ sin(σx)z5 + cos(σx)z6



(3.32)

Similarly, the forced part of the solution, Eq. (3.29), is obtained as,

{ZF } =



1
6β

(
−3βrx2 − βx3 + 6σ2r cos(σx) + 6σ sin(σx)− 6σ2r − 6σ2x

)
θ̄

1
2σ2

(
−2σ2rx− σ2x2 + 2σr sin(σx)− 2 cos(σx) + 2

)
θ̄

1
σ (σr cos(σx) + sin(σx)− σr − σx) θ̄

(−σr sin(σx) + cos(σx)− 1) θ̄

−σ (σr cos(σx) + sin(σx)− σr − σx) θ̄

− 1
σ2 (β (σr sin(σx)− cos(σx) + 1)) θ̄



=



I1(x)

I1(x)

I3(x)

I4(x)

I5(x)

I6(x)



θ̄

(3.33)
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Eq. (3.32) and Eq. (3.33) are combined to produce the full GSS solution as a function

of the GSS variables z5 and z6.

{Z(x)} =



(1− cos(σx))z5/β + (βx+ σ3 sin(σx))z6/β
2 + I1(x)θ̄

σ sin(σx)z5/β + (1− cos(σx))z6/β + I2(x)θ̄

σ2 cos(σx)z5/β + σ sin(σx)z6/β + I3(x)θ̄

−σ3 sin(σx)z5/β + σ2 cos(σx)z6/β + I4(x)θ̄

cos(σx)z5 − σ3 sin(σx)z6/β + I5(x)θ̄

−σ sin(σx)z5 + cos(σx)z6 + I6(x)θ̄



(3.34)

The expressions obtained can then be expressed in the general compact form as,

{Z(x)} =



g1(x)

g2(x)

g3(x)

g4(x)

g5(x)

g6(x)



θ̄ (3.35)

The solution of the GSS model in Eq. (3.34) is obviously invariant to many aspects

of the modeling assumptions, and holds for all infinity of model parameters (e.g.,

EI, ρ, L, r), and clearly admits a variety of boundary conditions. By applying the

specific model boundary conditions and solving for the unknown GSS variables, z5, z6,

the solution is complete in terms of the known system parameters. This makes the

GSS solution capable of handling a wide range of distributed parameters problems

as the need to apply the model specific boundary conditions arises at the last step

of the solution.
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By setting the inertia and the tip mass to 0 and by applying the model dependent

boundary conditions for the no-tip-mass model, Eq. (3.36), z5, z6 are completely

solved for as shwon in Eq. (3.37)

atx = 0 : {Z} =

[
0 0 0 0 z5 z6

]T

atx = L : z5(L) = 0, z6(L) = 0

(3.36)

 z5

z6

 =
1

σ4 sin(σL)/β − cos(σL)2

 cos(σL) σ3 sin(σL)/β

σ sin(σL) cos(σL)


 I5(L)

I6(L)

 θ̄

(3.37)

For the no-tip-mass model, from Eq. (3.17) the rotation angle of the rigid hub is

associated with the control torque by the transfer function,

s2 [J1 + 2ρ ((r + x)g2(x)− g1(x))] θ̄ = ū

θ̄ =
ū

s2 [J1 + 2ρ ((r + x)g2(x)− g1(x))]

(3.38)

and from the GSS model, Eq. (3.24), the beam deformation is given by,

ȳ = g3(x)θ̄ =
g3(x)

s2 [J1 + 2ρ ((r + x)g2(x)− g1(x))]
ū (3.39)

where, J1 ≡ Ihub + 2
∫ L

0
ρ(r + x)2dx is the total inertia for the model.

For the general model with tip mass shown in Fig. 3.1, the boundary conditions
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are expressed in terms of the GSS variables as,

atx = 0 : {Z} =

[
0 0 0 0 z5 z6

]T

atx = L : z5(L) = −α
[
z4(L) + θ̄

]
, z6(L) = γ

[
z3(L) + (r + L)θ̄

]
where, α ≡ s2Itip

EI
and γ ≡ s2mtip

EI

(3.40)

where the unknown z5, z6 are obtained from,

 z5

z6

 =
1

σ4 sin(σL)2/β − cos(σL)2

 −α cos(σL) γσ3 sin(σL)/β

−ασ sin(σL) γ cos(σL)


 z4(L)

z3(L)


+

σ3 (γ(r + L)− I6(L)) /β (−α− I5(L))

σ (−α− I5(L)) γ(r + L)− I6(L)


 sin(σL)

cos(σL)

 θ̄

 z4(L)

z3(L)

 =
1

β

−σ3 sin(σL) σ2 cos(σL)

σ2 cos(σL) σ sin(σL)


 z5

z6

+

I4(L)

I3(L)

 θ̄

(3.41)

The beam deformation ȳ is represented as a function of the input torque ū as,

s2 [J2 + 2mtip(r + L)g3(L) + 2Itipg4(L) + 2ρ ((r + x)g2(x)− g1(x))] θ̄ = ū

θ̄ =
ū

s2 [J2 + 2mtip(r + L)g3(L) + 2Itipg4(L) + 2ρ ((r + x)g2(x)− g1(x))]

ȳ =
g3(x)

s2 [J2 + 2mtip(r + L)g3(L) + 2Itipg4(L) + 2ρ ((r + x)g2(x)− g1(x))]
ū

(3.42)

where the total inertia in that case is J2 ≡ Ihub+2mtip(r+L)2+2Itip+2
∫ L

0
ρ(r+x)2dx.

The analytic transfer functions obtained in Eq. (3.38), Eq. (3.39) and Eq. (3.42) are

utilized to accurately obtain the frequency response of the hybrid system and in

control of the flexible modes when performing large angle maneuvers.
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3.1.3 Frequency Response Numerical Results

From Eq. (3.39) and Eq. (3.42), the transfer function of the no-tip-mass model,

G1(s, x), and the tip-mass model G2(s, x) are expressed as,

G1(s, x) =
g3(x)

s2 [J1 + 2ρ ((r + x)g2(x)− g1(x))]

G2(s, x) =
g3(x)

s2 [J2 + 2mtip(r + L)g3(L) + 2Itipg4(L) + 2ρ ((r + x)g2(x)− g1(x))]

(3.43)

For the purpose of numerical comparison the classical assumed modes solution, [58],

is utilized. The method assumes a decoupled spatial and time dependent beam

response expressed with the series,

y(x, t) =
N∑
i=1

qi(t)φi(x) (3.44)

The spatial function φi(x) describes the i-th spatial assumed mode shape function

of the flexible structure and is designed to meet the physical and the geometrical

boundary conditions of the beam. A widely used admissible function that satisfies

the boundary conditions is given in [58,62] as,

φi(x) = 1− cos(iπx)

L
+

1

2
(−1)i+1

(
iπx

L

)2

where, 0 ≤ x ≤ L

(3.45)

Using Eq. (3.44) and Eq. (3.45) with Eq. (3.12) and Eq. (3.13) and following the

Lagrangian approach,

d

dt

(
∂T

∂ẋ

)
− ∂T

∂x
+
∂V

∂x
= F (3.46)
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the system of equations of motion for the tip mass model is represented in the matrix

form,  J2 MT
θq

Mθq Mqq

 ẍ+

0 0

0 Kqq

x =

 u

0

 (3.47)

where the elements of the mass and the stiffness matrices are defined as,

J2 = Ihub + 2mtip(r + L)2 + 2Itip + 2

∫ L

0

ρ(r + x)2dx

[Mθq]i = 2

[
ρ

∫ L

0

(r + x)φi(x)dx+mtip(r + L)φi(L) + Itipφ
′
i(L)

]
[Kqq]ij = 2

∫ L

0

φ′′i (x)φ′′j (x)dx

(3.48)

In order to obtain the no-tip-mass model equations, one can set mtip = Itip = 0

in Eq. (3.48) to obtain the mass and stiffness matrices elements for the model. A

comparison between the frequency response of the analytical GSS and the numerical

assumed modes method, assuming 10 modes, is presented in Fig. 3.3 and Fig. 3.4

for the no-tip-mass model at x = 2 ft. and x = 4 ft., respectively. The set of

parameters values used in this comparison are extracted from the physical model

presented in [58], and are shown in Table 3.1. Similar results are obtained for the

tip-mass model and are shown in Fig. 3.5 and Fig. 3.6

It is shown that the numerical results obtained from the analytic transfer func-

tions are in agreement with the classical numerical solutions. It is also noted that

in Fig. 3.3 and Fig. 3.5 a slight truncation error can be observed in the numerical

solution.

In this case, this assumed model has previously been tuned to match experimental

results, so it is not a huge surprise that the distributed parameter model, with

zero truncation error, was in good agreement with the known to be reasonably well
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Table 3.1: System Parameters Values

Parameter Value
Ihub 8 slug-ft2

ρ 0.0271875 slug/ft
E 0.1584× 1010 lb/ft2

L 4 ft
r 1 ft
I 0.47095× 10−7 ft4

m 0.1569 slug
Itip 0.0018 slug-ft2
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Figure 3.3: Frequency Response Comparison No Tip Mass Model at x = 2 ft, [76]
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converged discretized model. More generally however, it is important to note that

the distributed parameter approach affords a rigorous means to address the issue of

whether or not the discrete model has unacceptable truncation errors, and to design

controllers, as shown next, which are free of truncation errors.

3.1.4 The Control Problem

Building on the analytical solution obtained for the more general tip mass model,

the control problem is analyzed. To gain some insight on the system behavior, the

unit step input Bode plots are generated at the midpoint of the appendage x = 2 ft.

for both the responses of the rigid body, θ̄(jω), and the flexible appendage, ȳ(jω),

Fig. 3.7 and Fig. 3.8 respectively. The resonant behavior of the system previously

obtained from the GSS tranfer function, Eq. (3.43), is clearly present in this analysis

with the phase angle shifting between +90◦ and −90◦ at those frequencies. For
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further insights, the assumed modes method is used to generate the model time

response for a unit step input for θ(t), ˙θ(t), Fig. 3.9 and Fig. 3.10, and for y(x, t),

ẏ(x, t), Fig. 3.11 and Fig. 3.12. A case study is constructed for the more general tip
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Figure 3.9: Step Input Response θ(t), [76]

mass model applying a Lyapunov stable controller, [58]. First Eq. (3.15) is rewritten

as,

Ihubθ̈ = u+ (M0 − rS0)

− (M0 − rS0) =

∫ L

0
ρ(x+ r)

(
ÿ + (x+ r)θ̈

)
dx+mtip(L+ r)

(
(L+ r)θ̈ + ÿ(L)

)
ρ
(
ÿ + (x+ r)θ̈

)
+ EIyIV = 0

(3.49)

where, (M0, S0) represent the bending moment and shear force at the root of the

beam. The effect of the tip mass inertia is left out for simplification and can be con-

70



0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time (sec)

θ̇
(r
a
d
/
s)

Figure 3.10: Step Input Response θ̇(t), [76]

0 5 10 15

−0.02

−0.015

−0.01

−0.005

0

Time (sec)

y
(x

=
2
,
t
)
(i
n
)

Figure 3.11: Step Input Response y(x = 2, t), [76]

71



0 5 10 15

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (sec)

ẏ
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Figure 3.12: Step Input Response ẏ(x = 2, t), [76]

sidered as a disturbance error or as part of the model uncertainty the controller needs

to overcome. The set of boundary conditions in Eq. (3.16) can then be simplified as,

atx = 0 : y = 0, y′ = 0

atx = L : EI
∂3y

∂x3

∣∣∣∣
L

= mtip

(
(L+ r)θ̈ + ÿ(L)

)
, EI

∂2y

∂x2

∣∣∣∣
L

= 0
(3.50)

We are interested in large angle maneuvers with a target final state given by,

[
θ, θ̇, y(x, t), ẏ(x, t)

]
Target

= [θf , 0, 0, 0] (3.51)
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A weighted Lyapunov function is then given by,

2V = w1Ihubθ̇
2 + w2 (θ − θf )2

+ w3

[∫ L

0
ρ
(
ẏ + (x+ r)θ̇

)2
dx+mtip

(
(r + L)θ̇ + ẏ(L)

)2
+

∫ L

0
EI
(
y′′
)2

dx

] (3.52)

where an extra term that includes a penalty for the current state versus the target

state, (θ − θf ) is added to achieve the required maneuver. By differentiating the

Lyapunov function, Eq. (3.52) w.r.t. time and substituting the dynamics, Eq. (3.49),

and the boundary conditions, Eq. (3.50), V̇ can be expressed as,

V̇ = w1uθ̇ + w2 (θ − θf ) θ̇

+ (w3 − w1)

[∫ L

0
ρ(x+ r)

(
ÿ + (x+ r)θ̈

)
dx+mtip(L+ r)

(
(L+ r)θ̈ + ÿ(L)

)]
θ̇

= [w1u+ w2 (θ − θf ) + (w3 − w1) (rS0 −M0)] θ̇

(3.53)

In order to ensure stability, V̇ should meet the condition V̇ ≤ 0 and the control law

is chosen as,

u =
−1

w1

[
w2 (θ − θf ) + (w3 − w1) (rS0 −M0) + w4θ̇

]
(3.54)

By substituting Eq. (3.54) into Eq. (3.53), the negative semi-definite expression,

V̇ = −w4θ̇
2 ≤ 0 is obtained. In order to simplify the gain choices associated with

the control law, Eq. (3.54) can be re-written as,

u = −
[
k1 (θ − θf ) + k2 (rS0 −M0) + k3θ̇

]
(3.55)

where, k1 ≡ w2

w1
≥ 0, k2 ≡ w3−w1

w1
> −1 and k3 ≡ w4

w1
≥ 0. The sign and value

of k2 will determine whether the beam vibration energy, w3 − w1 > 0, or the hub

motion energy, w1 > w3 is dissipated. To investigate the frequency domain response
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applying the control law, the Laplace transformation of Eq. (3.55) is expressed as,

ū = −k1

(
θ̄ − θf

s

)
− k2s

2

(
ρ

∫ L

0

(x+ r)
(
ȳ + (x+ r)θ̄

)
dx+mtip(L+ r)

(
(L+ r)θ̄ + ȳ(L)

))
− k3sθ̄

(3.56)

Utilizing integration by parts the transformed control law is expressed in terms of

the GSS state variables as,

ū =

[
−k1 − k2ρs

2

∫ L

0

(r + x)2dx− k2mtips
2(L+ r)2 − k3s

]
θ̄

+ k1
θf
s
− k2ρs

2 ((x+ r)g2(x)− g1(x))− k2mtips
2(L+ r)g3(L)

(3.57)

Substituting Eq. (3.57) into the transfer function, Eq. (3.42), and collecting variables

produced the transfer function for the hub angle θ̄ as,

θ̄ =

[
k1
θf
s
− k2ρs

2 ((x+ r)g2(x)− g1(x))− k2mtips
2(L+ r)g3(L)

]
/

s2

[
k1

s2
+ k2ρ

∫ L

0

(r + x)2dx+ k2mtip(L+ r)2 +
k3

s
+ J2

+mtip(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x)− g1(x))

] (3.58)

The deformation transfer function can then be expressed in terms of θ̄ as,

ȳ = g3(x)θ̄ (3.59)

After some trial and error the controller gains are adjusted to obtain the most stable

response. To illustrate the effect of gain changes on the system frequency response

74



the gains are first set to k1 = 1, k2 = 1, k3 = 1. Figure 3.13 and Fig. 3.14 show the

amplitude and phase plots associated with the two transfer functions, Eq. (3.58) and

Eq. (3.59), respectively, for unit gains. Clearly, the frequency response highlights
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Figure 3.13: Bode Plot Θ̄, Unit Gains, [76]

potential system instability with order of magnitude gain amplifications and a −180◦

phase angle. The gains are then adjusted to k1 = 12, k2 = 0, k3 = 16. The amplitude

and phase plots associated with the new set of gains are shown in Fig. 3.15 and

Fig. 3.16.

With no significant lags or high amplitude amplification, the chosen set of pa-

rameters can be suitable for a controller to drive the rigid hub to its target final

angle while mitigating the vibrations effect of the flexible appendages. The time

response plots for the system are shown for θ(t), θ̇(t), in Fig. 3.17 and Fig. 3.18, and
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Figure 3.15: Bode Plot Θ̄, Designed Gains, [76]
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Figure 3.16: Bode Plot Ȳ Designed Gains, [76]

for y(x = 2, t), ẏ(x = 2, t) in Fig. 3.19 and Fig. 3.20.

The results show achieving the target state for θ and θ̇ while reducing the vibra-

tions in, y(x, t) and ẏ(x, t), It has to be noted that no controls are applied to the

flexible appendage and the control torque is solely driving the hub while achieving ac-

ceptable results on the vibrations control. Several works discussed techniques of con-

trolling the flexible structure by applying controls to the flexible appendages, [77,78].

The generalized state space approach provides analytic transfer functions for the

system frequency response for both the tip-mass and the no-tip-mass models, without

introducing spatial discretization. The fact that nontrivial problems can be solved

by these methods, using distributed parameter models, does not appear to be widely

appreciated. These special case models and control design methods serve important

roles in evaluating the applicability and validity of the approximations implicit in
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more generally applicable spatial discretization methods. Several other boundary

conditions and constitutive assumptions can be applied and the analogous steps to

those presented here can be followed in order to obtain the analytical distributed pa-

rameter solution. By utilizing the full transfer function solution provided by the GSS

approach any control problem design in the frequency domain can be addressed. A

case study is constructed for the gain selection of a Lyapunov stable control law. By

looking at the frequency response and changing the gains an acceptable performance

was achieved driving the structure from a stationary initial state to a target state

while suppressing the beam vibrations. The GSS approach can be considered a plat-

form through which distributed parameters models can be addressed. Most recently,

the more complex model following the Timoshenko beam theory is addressed with

possible extensions to a variety of boundary conditions and control problems, [79].

The presented control problem has potential for several extensions. Optimization

was not considered in this work whereas several techniques exists for optimization

in the frequency domain based on Parseval’s theorem. The approach can also be

extended to address the tracking problem where the control law can be designed

to track a specified rigid-body motion while suppressing vibrations of the flexible

appendage following the work presented in [70]. In general the GSS solution provides

a general framework for any control scheme in the frequency domain. This is shown

to be a very powerful tool. When it is possible to use discretization and truncation-

free distributed parameter model transfer function solutions provided by the GSS

approach, any control problem design in the frequency domain can be addressed

rigorously. The set of distributed parameter systems for which analogous exact

solutions for the response and closed loop frequencies can be established, provide

important tools for validation of codes for more general applications where spatial

discretization is required.
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3.2 Analytic Power Series Solutions for the Two-Body Problem

Several methods exist for integrating the Keplerian motion of two bodies. By

introducing two scalar Lagrange-like invariants, it is possible to integrate the two-

body and two-body problem using a recursive formulation for developing an analytic

continuation-based power series that overcomes the limitations of standard integra-

tion methods. Numerical comparisons with RKN12(10), and other state of the art

integration methods indicate significant performance improvements, while maintain-

ing millimeter accuracy for the orbit predictions. The proposed mathematical models

are expected to be broadly useful for celestial mechanic applications for optimization,

uncertainty propagation, and nonlinear estimation theory, [80–82].

The equation of motion for the relative perturbed two-body problem is given by,

r̈ = − µ
r3
r + ad (3.60)

where, r = [x, y, z]T is the inertial relative position, µ the gravitational param-

eter, r =
√
r · r and ad refers to the perturbation acceleration. For the unper-

turbed/classical two-body problem, ad = 0, Eq. (3.60) has an analytical solution

extracted from the the conservation of angular momentum and the fundamental

orbit integrals, [83, 84]. Similarly, the Lagrange/Gibbs, F&G, solution exploits the

conservation of angular momentum to express the future state vector as a linear com-

bination of the initial conditions, [83, 84]. The recursion of the equation produced

by successive differentiation has also been exploited to produce a power series based

solution with Lagrange Fundamental Invariants, [83].

Several numerical techniques exist to handle the solution of the nonlinear initial

value problem (IVP) in Eq. (3.60). The Runge-Kutta, RK, family of methods can

be considered as the most widely used explicit methods for numerical integration.
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The classical or the 4th-order RK method is the most commonly used among vari-

ous RK methods. Adaptive step-size 4th-order RK methods are developed and are

known as the Runge-Kutta-Fehlberg, RKF, methods, [85]. Higher order adaptive

RK methods are then developed for high accuracy requirement applications. Adap-

tive Runge-Kutta-Nyström, RKN, methods with order 8(7), 9(8), 10(9) and 11(10)

are developed to solve general second-order ordinary differential equations, [86]. For

orbit propagation problems, the Gauss-Jackson method is studied extensively and

compared against other numerical techniques, e.g. RK4, RKN and Taylor series ex-

pansion, [87]. It is a predictor-corrector finite difference method designed specifically

for solving second order differential equations, [88]. The RKN12(10) and RKN8(6)

methods are introduced for general dynamical systems, [89]. The method is then

compared against several Nyström methods and recursive power series solutions for

orbit propagation problems, [90, 91]. Furthermore, the accuracy of several of the

above mentioned numerical integrators are tested in solving different N celestial

bodies problems such as, Sun, Jupiter, Saturn, Uranus, and Neptune and nine plan-

ets problems, [92]. Most of the comparisons performed in the literature addressed

the issue of the integration step-size. The need for a high accuracy solution in many

cases necessitates a smaller time-step. More recently, Modified Chebyshev-Picard It-

eration (MCPI) method has been developed for orbit propagation and general initial

value problems, [93,94]. The method combines orthogonal basis function, Chebyshev

polynomials, with Picard iterations to solve the initial value problem. It is used in

long-term orbit propagation problem and showed significant improvement over the

RKN12(10) in terms of computational speed, [93]. Parallelization of MCPI is then

explored and showed a substantial improvement in computational cost over Matlab

ode45 for several initial value problems including a near circular orbit for the classical

two-body problem, [94].
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In this study an analytic power series continuation algorithm is developed to

address the solution of the unperturbed/classical two-body problem. The algorithm

exploits the recursive nature of the two-body problem and introduces an accurate

and efficient solution for various types of orbits as will be shown next.

3.2.1 Analytic Continuation for the Two-Body Problem

Building on the idea of Lagrange invariants and the recursive nature of the clas-

sical two-body problem, arbitrary order time derivatives are recursively computed.

The recursive algorithm is made by introducing a nonlinear change of variables. Two

scalar variables are defined, whose higher order time derivatives are recursively gen-

erated from applying Leibniz product rule. The first variable involves a quadratic

measure of distance and Leibniz rule provides an explicit derivative calculation. The

second variable is defined as a constraint equation involving the first variable. A first-

order differential equation is developed for the constraint equation and manipulated

to eliminate division operations. The resulting differential equation is differentiated

using Leibniz product rule to provide an implicit differential equation for the high-

est time derivative of the second variable. The trajectory calculations are evaluated

by introducing the second variable into the equation of motion to yield a quadratic

product involving a position vector and the second variable, which can be differ-

entiated by Leibniz product rule as an explicit equation. By linking the recursive

calculations for the two scalar variables and the two-body acceleration, one obtains

a recursive algorithm for generating arbitrary order time derivatives for the trajec-

tory motion. After computing all the vector trajectory time derivatives, one easily

generates Taylor expansions for the position and velocity.
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The first scalar variable is defined as,

f = r · r (3.61)

From Leibniz rule, arbitrary order derivatives of Eq. (3.61) can be computed from,

f (n) =
n∑

m=0

 n

m

 r(m) · r(n−m) (3.62)

where, the expression with the superscript f (n) denotes the n-th order time derivative

of f and

 n

m

 is the binomial coefficient. The second scalar variable is then defined

as,

gp = f−p/2 (3.63)

where, p = 3 corresponds to two-body interactions and larger values of p correspond

to higher-order gravity perturbations. Efforts to generate arbitrary order time deriva-

tive models for Eq. (3.63), using classical methods quickly lead to very complicated

vector-valued differential expressions. To eliminate the analytical complexity, this

work develops a first-order differential equation for Eq. (3.63), which is cleared of

fractions, leading to the differential constraint equation,

fġp +
p

2
gpḟ = 0 (3.64)

Two observations are important: (1) higher order time derivatives of gp are implicitly

defined, and (2) all expressions involve bilinear products which are ideally suited for

an application of Leibniz product rule. By applying Leibniz product rule to each term

one can solve for the implicitly defined highest order of gp. For example, computing
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the nth order time derivative of Eq. (3.64), leads to the implicit rate equation,

n∑
m=0

 n

m

 f (m)g(n−m+1)
p +

p

2

n∑
m=0

 n

m

 g(m)
p f (n−m+1) = 0 (3.65)

The highest time derivative of gp is contained in the first term when m = 0. Factoring

this term out leads to the highest time derivative of gp given by,

g(n+1)
p = −

p
2
f (1)g(n) +

n∑
m=1

 n

m

(p
2
f (m+1)g(n−m) + f (m)g(n−m+1)

) /f (3.66)

The resulting equation is remarkably simple compared with the alternative that

involves solving Eq. (3.64) for ġp and generating the higher order derivatives. From

Eq. (3.60) the two-body acceleration can be expressed in terms of g3 as,

r̈ = − µ
r3
r = −µg3r (3.67)

and the higher order time derivatives can be computed via Leibniz rule as,

r(n+2) = −µ
n∑

m=0

 n

m

 r(m)g(n−m) (3.68)

Combining Eq. (3.61), Eq. (3.66) and Eq. (3.68) yields a coupled recursive algorithm

for generating the time derivatives of the trajectory motion. The algorithm is shown

in Fig. 3.21 and is implemented for solving cases of orbit propagation problems as

demonstrated next.
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Figure 3.21: The Analytic Continuation Algorithm
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3.2.2 Numerical Results

Two examples are presented for the classical/unperturbed two-body problem; (1)

a Low Earth Orbit (LEO) with an eccentricity of e = 0.1 and (2) a High Eccentricity

Orbit (HEO) with e = 0.7. Each set of initial conditions is propagated for 20

complete orbits and the results are compared against the analytical Lagrange/Gibbs

F&G solution. The results are also compared against Matlab adaptive Runge-Kutta

numerical integrator, ode45 and the RKN12(10) algorithm, [89]. For measuring the

accuracy the conservation of energy of the orbit is used and the errors are calculated

from,

εk =

∣∣∣∣Ek − E0

E0

∣∣∣∣ (3.69)

Where, E0 is the total energy evaluated at the initial conditions and Ek is the total

energy at each time step,

Ek =
ṙk · ṙk

2
− µ

rk
(3.70)

The initial conditions for the Low Earth Orbit (LEO) are

r =

[
1.702547136867679 6.353992417071098 0

]T

× 106 m

ṙ =

[
−7.886014053829254 2.113051097224035 0

]T

× 103 m/s

(3.71)

The orbit elements are then calculated as,

a = 7.30904× 106 m

e = 0.1

i = Ω = ω = 0◦

Tp = 6.21872× 103 sec

(3.72)
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Figure 3.22: Total Energy Error, LEO

where a is the semi-major axis, e is the eccentricity, i is the inclination angle, Ω is

the longitude of the ascending node, ω is the argument of periapsis, and Tp is the

orbit period. Eq. (3.60) is numerically integrated with the present Analytic-Cont

algorithm, ode45 and RKN12(10) for 20 complete orbits. The total energy errors

are shown in Fig. 3.22 for RBF-Coll, ode45 and the F&G analytical solution.

Table 3.2 shows a comparison between Analytic-Cont, RKN12(10) and ode45

with the F&G solution as the reference in terms of accuracy, calculated from the

norm of the total energy error vector in Eq. (3.69) and the simulations time in

seconds.

It is shown from Table 3.2 that the Analytic-Cont algorithm is more accurate with

a lower computational cost when compared to the more optimized ode45. RKN12(10)

almost achieved the same accuracy as the analytical F&G but with a significant hit
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Table 3.2: Numerical Results Comparison, LEO

Method No. Steps Deriv Order ‖ε‖ Sim. Time (sec)
F&G, Orbits = 5 125 N/A 3.6× 10−13 N/A
ode45, Orbits = 5 Varies N/A 1.15× 10−5 0.23
RKN12(10), Orbits = 5 Varies N/A 1.5× 10−14 1.06
Analytic-Cont, Orbits = 5 125 10 4.45× 10−7 0.044
F&G, Orbits = 10 250 N/A 3.6× 10−13 N/A
ode45, Orbits = 10 Varies N/A 3.43× 10−5 0.3
RKN12(10), Orbits = 10 Varies N/A 1.21× 10−13 1.76
Analytic-Cont, Orbits = 10 250 10 7.38× 10−7 0.051
F&G, Orbits = 20 500 N/A 6.3× 10−13 N/A
ode45, Orbits = 20 Varies N/A 1.01× 10−4 0.4
RKN12(10), Orbits = 20 Varies N/A 8.57× 10−14 3.99
Analytic-Cont, Orbits = 20 500 10 1.55× 10−6 0.09

on the computational cost. On average the Analytic-Cont is ≈ 35X faster than

RKN12(10) and ≈ 5X faster than ODE45. This can be considered a significant

improvement in the computational cost of the propagator that can have several

applications in on-board orbit calculation algorithms.

The initial conditions for the High Eccentricity Orbit (HEO) are given by

r =

[
2.096434265330419 7.823999192941453 0

]T

× 106 m

ṙ =

[
−8.834757074967362 2.367266023562654 0

]T

× 103 m/s

(3.73)
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With the classical orbit elements,

a = 2.7× 107 m

e = 0.7

i = 0◦

Ω = 45◦

ω = 30◦

Tp = 4.41526× 104 sec

(3.74)

As was done with the LEO case, Eq. (3.60) is numerically integrated with the present

Analytic-Cont algorithm, ode45 and RKN12(10) for 20 orbits. The total energy

errors are shown in Fig. 3.23 for Analytic-Cont, ode45, RKN12(10) and the F&G

analytical solution.

Table 3.3 shows the comparison between Analytic-Cont, ode45, RKN12(10) and

the F&G solution. The comparison is again shown for 5, 10 and 20 orbits.

Table 3.3: Numerical Results Comparison, HEO

Method No. Steps Deriv Order ‖ε‖ Sim. Time (sec)
F&G, Orbits = 5 500 N/A 5.23× 10−12 N/A
ode45, Orbits = 5 Varies N/A 1.65× 10−4 0.28
RKN12(10), Orbits = 5 Varies N/A 3.3× 10−13 2.99
Analytic-Cont, Orbits = 5 500 30 3.73× 10−8 0.34
F&G, Orbits = 10 1000 N/A 7.47× 10−12 N/A
ode45, Orbits = 10 Varies N/A 5.18× 10−4 0.4
RKN12(10), Orbits = 10 Varies N/A 2.06× 10−13 6.47
Analytic-Cont, Orbits = 10 1000 30 1.21× 10−7 0.57
F&G, Orbits = 20 2000 N/A 6.3× 10−13 N/A
ode45, Orbits = 20 Varies N/A 1.5× 10−3 0.5
RKN12(10), Orbits = 20 Varies N/A 7.35× 10−13 11.23
Analytic-Cont, Orbits = 20 2000 30 2.27× 10−7 1.001
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Figure 3.23: Total Energy Error, HEO

As shown from Table 3.3, the optimized adaptive nature of ode45 proved useful

when it comes to the computational cost comparison for 20 orbits. The Analytic-

Cont algorithm however, is still more accurate across all experiments and with ac-

ceptable computational cost with ≈ 10X speed up over RKN12(10). Essentially, the

Analytic-Cont algorithm is a fixed step size numerical integrator. The step size had

to be decreased and the derivative order had to be increased to account for the very

high eccentricity of the orbit to maintain high solution accuracy. By developing an

adaptive Analytic-Cont algorithm the trade-off between the accuracy, the derivative

order and the step size can be explored to further improve the overall computational

cost of the algorithm.

The present Analytic-Cont algorithm is shown to be highly accurate, fast and

very simple to implement for long-term orbit propagation of the classical two-body
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problem. The comparison against Matlab ODE45 and RKN12(10) shows the advan-

tages of the Analytic-Cont algorithm that enables larger step-size with relatively high

solution accuracy while maintaining low computational cost. The case of 20 full HEO

orbits shows the potential of the algorithm for adaptive step size schemes. Gravi-

tational perturbations can also be easily handled with the Analytic-Cont algorithm.

Areas of studies that will be explored in future works.
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4. RADIAL BASIS FUNCTIONS DIRECT TIME-DOMAIN COLLOCATION

APPLIED TO THE INITIAL VALUE PROBLEM∗

In this chapter, we consider Initial Value Problems (IVPs) for strongly nonlin-

ear dynamical systems, and study numerical methods to analyze short as well as

long-term responses. Dynamical systems characterized by a system of second-order

nonlinear ordinary differential equations (ODEs) are recast into a system of nonlin-

ear first order ODEs in mixed variables of positions as well as velocities. For each

discrete-time interval Radial Basis Functions (RBFs) are assumed as trial functions

for the mixed variables in the time domain. A simple collocation method is developed

in the time-domain, with Legendre-Gauss-Lobatto nodes as RBF source points as

well as collocation points. Numerical examples are provided to compare the present

algorithm with explicit as well as implicit methods in terms of accuracy, required size

of time-interval (or step) and computational cost. The algorithm developed in this

chapter is compared against, the second order central difference method, the classical

Runge-Kutta method, the adaptive Runge-Kutta-Fehlberg method, the Newmark-β

and the Hilber-Hughes-Taylor methods. First the highly nonlinear Duffing oscilla-

tor is analyzed and the solutions obtained from all algorithms are compared against

the analytical solution for free oscillation at long times. A Duffing oscillator with

impact forcing function is next solved. Solutions are compared against numerical

solutions from state of the art ODE45 numerical integrator for long times. Finally,

a nonlinear 3-DOF system is presented and results from all algorithms are compared

against ODE45. It is shown that the present RBF-Coll algorithm is very simple, ef-

∗Part of this chapter is reprinted with permission from “A Simple, Fast, and Accurate Time-
Integrator for Strongly Nonlinear Dynamical Systems” by Elgohary, T. A., Dong, L., Junkins, J.
L. and Atluri, S. N., 2014. CMES: Computer Modeling in Engineering & Sciences, Vol. 100, No.
3, pp. 240–275, Copyright [2014] by Tech Science Press.
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ficient and very accurate in obtaining the solution for the nonlinear IVP. Since other

presented methods require a much smaller step size and higher computational cost,

the proposed algorithm is advantageous and has promising applications in solving

nonlinear dynamical systems, [95].

4.1 Methods for Solving the IVP

A second-order nonlinear dynamic system can be generally recast into a system

of first-order ODEs as:
ẋ1 = g1(x1,x2,f , t) ≡ x2

ẋ2 = g2(x1,x2,f , t)

, t0 ≤ t ≤ tF (4.1)

which can be simply rewritten as:

ẋ = g(x,f , t), t0 ≤ t ≤ tF (4.2)

where x is the vector of mixed variables, x ≡ [x1,x2]T, ẋ1 = x2, f is the force

applied to the system. For a specified set of initial conditions x0 at t = t0, and

being given the force function f(t), the initial value problem (IVP) of Eq. (4.2) can

be numerically integrated and solved by various explicit and implicit methods of

numerical integration.

In explicit methods, the future unknown state is directly expressed in terms of

the currently-known system state with an explicit formula. The simplest explicit

method is the forward Euler-method:

x(t+ ∆t) = x(t) + ∆tg (x(t),f(t), t) (4.3)
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which is a first-order Taylor series expansion in the time domain.

Another explicit method, the second order central difference method presented

in [96–98], is widely used for transient finite element analyses of large scale nonlinear

structures, such as crash simulation of automobiles. In this method, the velocity x2

is firstly evaluated at t+ ∆t
2

, and then x1 is obtained at t+ ∆t:

x2(t+
∆t

2
) = x2(t− ∆t

2
) + ∆tg2(x(t),f(t), t)

x1(t+ ∆t) = x1(t) + ∆tx2(t+
∆t

2
)

(4.4)

The Runge-Kutta, RK, family of methods can be considered as the most widely

used explicit methods for numerical integration of general dynamical systems. The

first order RK method is simply the forward Euler-method given in Eq. (4.3). The

classical or the 4th-order RK method, which evaluates the solution in 4 steps, is the

most commonly used among various RK methods. In [85], adaptive step-size 4th-

order RK methods are developed and are now known as the Runge-Kutta-Fehlberg,

RKF, methods. Several higher order adaptive RKF methods, [86], are widely used

for very-high accuracy applications such as orbit propagation problems, see [90,92].

Implicit methods put the currently-known state and the unknown future state in

a set of linear or nonlinear algebraic equations, by solving which the future state can

be obtained. Backward Euler-Method is an illustration of this concept:

x(t+ ∆t) = x(t) + ∆tg(x(t+ ∆t),f(t+ ∆t), t+ ∆t) (4.5)

In [99], Newmark introduced the Newmark-β method based on the extended mean

value theorem, which is among the most widely-used implicit methods for the nu-
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merically evaluating the dynamical response of engineering structures,

x1(t+ ∆t) = x(t) + ∆tx2(t) +
1

2
∆t2 [(1− 2β) g(x(t),f(t), t)

+2βg(x(t+ ∆t),f(t+ ∆t), t+ ∆t)]

x2(t+ ∆t) = x2(t) + ∆t [(1− γ)g(x(t),f(t), t)

+γg(x(t+ ∆t),f(t+ ∆t), t+ ∆t)]

(4.6)

Typical values for γ and β are γ = 1/2 and β = 1/4.

What is considered as a generalization of the Newmark-β method is introduced

in the Hilber-Hughes-Taylor or HHT -α method, [100]:

x1(t+ ∆t) = x(t) + ∆tx2(t) +
1

2
∆t2 [(1− 2β) g(x(t),f(t), t) + 2βa(α)]

x2(t+ ∆t) = x2(t) + ∆t [(1− γ)g(x(t),f(t), t) + γa(α)]

a(α) = (1 + α)g(x(t+ ∆t),f(t+ ∆t), t+ ∆t)− αg(x(t),f(t), t)

(4.7)

where, γ = 1−2α
2

, β =
(

1−α
2

)2
and α ∈ [−1

3
, 0].

For all the above mentioned explicit and implicit methods, the size of time-steps

plays an important role for the accuracy of computational results. Generally speak-

ing, numerical stability is not guaranteed for explicit methods, thus a much smaller

time step is necessary for explicit methods to obtain an accurate solution. On the

other hand, because an implicit method requires the solution of set of linear/nonlinear

algebra equations in each time step, the computational burden/time of implicit meth-

ods in each time step is much higher than explicit methods. A comprehensive review

of such methods with applications in computational structural dynamics is presented

in [101,102].

Besides all of the above-mentioned widely-used numerical integrators, Eq. (4.2)
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as a set of first order ODEs can be numerically solved by a wide spectrum of compu-

tational methods, see [103]. These methods in the time domain, such as collocation,

finite volume, Galerkin, MLPG, are all essentially branches from the same tree, using

the concept of weighted-residual weak-forms, and with different trial and test func-

tions, see [104]. Among these methods, collocation is one of the simplest and the

most efficient ones. In [105], a collocation method with harmonic trial functions was

developed for studying the periodic responses of nonlinear Duffing oscillators and

aeroelastic systems. Modified Chebyshev-Picard Iteration, MCPI, methods have

been recently introduced for orbit propagation and general initial value problems

in [93, 94, 106]. The algorithm uses Chebyshev polynomials as basis functions and

uses Picard iteration to solve the set of NAEs produced after after discretization.

The method is extensively implemented for orbit propagation problems, [107, 108],

handling higher degrees of perturbations and low to high eccentricity orbits. The

algorithm as presented in [109] is shown in Fig. 4.1.

In this study, the REB-Coll algorithm is further recast as a general time-domain

step-wise numerical integrator, to numerically integrate the IVP in Eq. (4.2) for

arbitrary nonlinear systems. The algorithm is compared against the central differ-

ence Explicit method, the classical Runge-Kutta, RK4, method, the Newmwark -β

method, the HHT -α method and the MCPI method in terms of accuracy, step size

and computational time, using various free-vibration, forced vibration, impact load

problems of single-DOF as well as coupled multi-DOF Duffing oscillators. These

numerical examples clearly show the advantages of the present RBF-Coll algorithm

which enables a much larger time step, and produces high solution accuracy while

maintaining a relatively low computational cost.
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Figure IV.4: MCPI Iterations for Solution of Initial Problems.

108

Figure 4.1: MCPI Algorithm for Solving the IVP
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4.2 Radial Basis Functions & Collocation Time Integrator

Radial Basis Functions (RBFs) are real-valued functions with values depending

on the distance from a source point, φ(x,xc) = φ(‖x− xc‖) = φ(r). Some of the

commonly used types for RBFs are as follows, [110]:

φ(r) = e−(cr)2 Gaussian

φ(r) =
1

1 + (cr)2
Inverse quadratic

φ(r) =
√

1 + (cr)2 Multiquadric

φ(r) =
1√

1 + (cr)2
Inverse multiquadric

(4.8)

where c > 0 is a shaping parameter.

In this work, the trial functions are expressed as a linear combination of Gaussian

functions, with N Legendre-Gauss-Lobatto (LGL) nodes (tj, j = 1, . . . , N) as the

source points. We adopt these nodes because they concentrate nodal density near

the end of the approximation interval in a way that is known to reduce Runge’s

phenomenon effect of large oscillatory errors near the boundary. The results we

present here do not require us to restrict attention only to the LGL nodes. The LGL

nodes can be obtained from solving the differential equation,

(
1− τ 2

j

)
ṗN(τj) = 0 (4.9)

Where, pN(τ) are the well known Legendre polynomials orthogonal to the weight
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function w(τ) = 1 on the interval τ ∈ [−1, 1] and satisfy the recursion,

p0(τ) = 1

p1(τ) = x

pi+1 =

(
2i+ 1

i+ 1

)
τpi(τ)−

(
i

i+ 1

)
pi−1(τ), i = 1, 2, . . .

(4.10)

The solution of (4.9) produces the node distribution −1 = τ0 < τ1 < . . . < τN = 1.

The solution is generally obtained by numerical algorithms. [111]. By the simple

mapping in (4.11), τ = [−1, . . . , 1] is transformed into t = [t0, . . . , tF ] to obtain the

LGL nodes for an arbitrary time interval:

t =
tF − t0

2
τ +

tF + t0
2

(4.11)

In the currently-developed RBF-Coll numerical integrator, the time domain of

interest, for long-time responses, is divided into a set of time steps [or time intervals]

with t0, t1, t2, . . . , tF , with ti = ti−1 + ∆t. For each time step or interval ti−1 ≤ t ≤ ti,

the trial functions in the time-domain are expressed as a liner combination of Radial

Basis Functions. In this study, Gaussian functions are used because of its simplicity.

The source points of RBFs, for one attractive choice, are located at N Legendre-

Gauss-Lobatto (LGL) nodes within each time step, i.e. t1i = ti−1, t
2
i , t

3
i . . . , t

N
i = ti,

where the subscript denotes the time step, and the superscript denotes the number

of LGL nodes.

The state of the dynamical system at each LGL node can therefore be expressed

in terms of the undetermined coefficients of RBF basis functions :

x(tji ) =
N∑
k=1

φ(tji , t
k
i )ak, i = 1, . . . , N (4.12)
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In matrix-vector form Eq. (4.12) can be rewritten as,

X = ΦA (4.13)

where Φ represents the matrix of basis functions, A is the vector of undetermined

coefficients, and X is the vector of unknown states at each LGL node. The time-

differentiation of Eq. (4.13) can be then expressed as,

Ẋ = Φ̇A (4.14)

Hence, combining Eq. (4.13) and Eq. (4.14), Ẋ is related to X by,

Ẋ = DX, D ≡ Φ̇Φ−1 (4.15)

where, D is called the derivative matrix, which is numerically evaluated from the

RBF basis functions and their time-derivatives evaluated at the LGL nodes.

With the derivative matrix being defined, and with xi−1 = x̂i−1 being known

from the previous time step, we collocate Eq. (4.2) at t2i , t
3
i , . . . , t

N
i , and collocate the

initial condition at t1i , leading to the following set of discretized equations:

x1
i − x̂i−1 = 0

Dxj − g(xj,f , tj) = 0, j = 2, 3, . . . , N

(4.16)

The algorithm as presented above is very simple and easy to implement. The set

of nonlinear algebraic equations is solved with the classical Newton’s method in this

study, whereas other Jacobian-inverse-free methods can also be applied as in [22,29,

112]. By solving Eq. (4.16), the unknown states at each LGL node, as well as the
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unknown state at the end of this time interval or step (xi) are obtained. In this way,

the states at each time step within the entire time history, i.e. t0, t1, t2, . . . , tF can

be numerically evaluated by applying the above numerical algorithm in a sequential

procedure.

4.3 Optimal Selection of the Shape Parameter

The free shape parameter c appearing in most radial basis functions, Eq. (4.8),

has a significant effect on the conditioning of the matrix of basis functions, Φ. The

best convergence accuracy is obtained when c is very small, c→ 0 and the nodal den-

sity is separated by about c/2. However, this leads, for large N , to an ill-conditioned

matrix and consequently corruption of the accuracy by arithmetic errors. To over-

come such poor conditioning problem, Fornberg et al. introduced two methods to

stably compute solutions as c→ 0; (1) the Contour-Padé method and (2) the RBF-

QR method, [113–115]. Those methods are shown to successfully overcome the ill-

conditioning of the basis functions matrix for relatively large number of basis func-

tions and to accurately compute the solution at very small values of c. Nonetheless,

for finite precision arithmetic and a particular inversion algorithm, it is still shown

that an optimal value of c exists that would result in the most accurate solution.

An algorithm for finding the optimal value of the shape parameter was introduced

based on the leave-one-out cross validation (LOOCV) algorithm, [116]. The method

minimizes a cost function defined by the norm of the error vector evaluated from the

difference between the data point and the interpolant to a reduced data set obtained

by removing the point and the corresponding data value. Hence, for a system given

by,

Ax = b (4.17)
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The error vector to be minimized is given by,

ei =
xi

A−1
ii

(4.18)

The method is extended to encompass radial basis functions used in pseudo-spectral

methods applied to partial differential equations. [117] An algorithm based on the

LOOCV is developed and implemented to obtain the optimal shape parameter for the

best conditioning of the derivative matrix D with direct implementation in Matlab.

[117,118] The derivative matrix expression in Eq. (4.15), can be rewritten as,

ΦDT = Φ̇T (4.19)

which has the same form of the general linear system in Eq. (4.17) leading to the

evaluation of the error matrix as,

Eij =
DT
ij

Φ−1
ii

(4.20)

Following the work of Fasshauer, the LOOCV algorithm is used to find the opti-

mal value of the shape parameter to evaluate the derivative matrix D at each time

interval. The algorithm is very simple and can be implemented as follows, [116,117].

The minimization presented in the algorithm can be then simply performed via

Matlab built-in function fminbnd, [117,118]. It is noted that for the best results one

could combine the Contour-Padé method or the RBF-QR method with the shape

parameter optimization algorithm. This approach will be pursued in future studies.
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Algorithm 1 Algorithm for finding optimal shape parameter c

Initial guess of c
Evaluate Φ
Evaluate Φ̇
D = Φ̇Φ−1

Error Matrix = DT/Diag[Φ−1]
Find c to Min ‖Error Matrix‖

4.4 Numerical Results

In this section numerical experiments are presented for three cases of nonlinear

dynamical systems, namely: the highly nonlinear unforced single Duffing oscillator, a

single Duffing oscillator subjected to an impact load, and a 3-Degree-of-Freedom (3-

DOF) coupled nonlinear Duffing oscillator system subjected to a harmonic load. For

each case, the present RBF-Collocation, RBF-Coll, algorithm is compared against

the 4th order Runge-Kutta (RK4 ), the Explicit method, [96, 98], the Newmark -

β method, [99] and the HHT -α method, [100]. A table is presented to show the

time step ∆t , the Root-Mean-Square (RMS) error of the position state and the

computation time for each case. Plots of the error time history normalized by the

response amplitude, Eq. (4.21), are also presented for each case to demonstrate the

accuracy of each algorithm. Furthermore, the analytical solution and the solutions

obtained by various numerical methods are plotted to highlight the magnitudes of

the errors for each algorithm.

∆x(t) ≡
∥∥∥∥x(t)Ana − x(t)Num

Amp [x(t)Ana]

∥∥∥∥ (4.21)

For each method, two numerical cases are presented. The first, denoted by the super-

script 1, uses the same ∆t as the RBF-Coll algorithm, for all the other algorithms.
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This establishes a baseline for comparing solution accuracy and computational time

of all algorithms. The second, denoted by the superscript 2, explores the ability of

each algorithm to achieve/maintain higher accuracy by decreasing ∆t. As expected,

and also shown, all methods will require reducing the step size to achieve a higher

solution accuracy except for the RBF-Coll method, which can maintain the solution

accuracy by increasing the number of collocation points without decreasing the step

size.

4.4.1 Free Vibration of Highly Nonlinear Duffing Oscillator

The unforced Duffing oscillator is described by,

ẍ+ ω2
nx+ ηx3 = 0 0 ≤ t ≤ tF

x(0) = x0 ẋ(0) = ẋ0

(4.22)

For a high hardening nonlinearity η ≥ 1, Jacobi-elliptic functions provide an analyt-

ical solution for Eq. (4.22), [119], as,

x(t) = Xcn
(
ωt+ θ, k2

)
(4.23)

where, cn is the the Jacobi-elliptic function, ω the frequency, k the modulus, X the

amplitude, and θ the phase angle of the function. The reader is referred to [119] for

the detailed expression of each parameter in Eq. (4.23).

For the parameters values shown in Table 4.1, the analytical solution is compared

against MATLAB ODE45, Explicit method, RK4, Newmark -β, HHT -α, MCPI and

the present RBF-Coll algorithm. For ODE45 1 and ODE45 2 the tolerances are

set to 10−6 and 10−9, respectively. For MCPI 1 and MCPI 2 the order and the

number of sample points are 8 and 16, respectively. For RBF-Coll 1, the number of
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collocation points N = 7 and shaping parameter c = 0.77 . For RBF-Coll 2, N = 35

and c = (N − 1)/4∆t . Table 4.2 shows the step size, the positions state, x1(t),

RMS error and the computation time for all the tested methods. Figure 4.2 through

Fig. 4.13 show the normalized state error time history for each method, Fig. 4.14

and Fig. 4.15 show the normalized state error time history for the present RBF-

Coll algorithm and finally Fig. 4.16 show the comparison of computations results by

various methods in the last period of the freely vibrating duffing oscillator.

Table 4.1: Parameters for the Freely-Vibrating Duffing System, [95]

Parameter Value
t0 0
tF 500
x1(0) 1
x2(0) 0
ωn 1
η 1
Period, P 4.77
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Table 4.2: Comparison of Numerical Methods, Freely Vibrating Highly Nonlinear
Duffing Oscillator

Method ∆t (sec) Position RMS Error Simulation Time (sec)

ODE45 1 Variable 1.18× 10−4 0.48

ODE45 2 Variable 1.14× 10−6 1.37

Explicit 1 P/10 0.1 0.006

Explicit 2 P/500 1.5× 10−3 0.2

RK4 1 P/10 0.86 0.03

RK4 2 P/250 5× 10−6 0.56

Newmark-β 1 P/10 0.998 3.62

Newmark-β 2 P/500 3.1× 10−3 147

HHT-α 1 P/10 0.841 3.53

HHT-α 2 P/500 4.4× 10−3 149.1

MCPI 1 P/10 2.1× 10−8 0.16

MCPI 2 P/2 8.5× 10−8 0.08

RBF-Coll 1 P/10 3.5× 10−6 0.32

RBF-Coll 2 P 1.8× 10−6 0.19
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Figure 4.2: Normalized State Error Time History, ODE45 1, [95]
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Figure 4.3: Normalized State Error Time History, ODE45 2, [95]
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Figure 4.4: Normalized Position Error Time History, Explicit Method 1, [95]
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Figure 4.5: Normalized Position Error Time History, Explicit Method 2, [95]
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Figure 4.6: Normalized State Error Time History, RK4 1, [95]
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Figure 4.7: Normalized State Error Time History, RK4 2, [95]
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Figure 4.8: Normalized State Error Time History, Newmark-β 1, [95]
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Figure 4.9: Normalized State Error Time History, Newmark-β 2, [95]
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Figure 4.10: Normalized State Error Time History, HHTα 1, [95]
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Figure 4.11: Normalized State Error Time History, HHTα 2, [95]
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Figure 4.12: Normalized State Error Time History, MCPI 1
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Figure 4.13: Normalized State Error Time History, MCPI 2
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Figure 4.14: Normalized State Error Time History, RBF-Coll 1, [95]
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Figure 4.15: Normalized State Error Time History, RBF-Coll 2, [95]
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Figure 4.16: Solution Comparison Last Period of Integration, [95]

Given the nonlinear oscillator period shown in Table 4.2, the numerical inte-

gration is performed for slightly above a total of 100 cycles. Clearly, all the other

presented numerical methods requires a much smaller step size to achieve an accept-

able accuracy, whereas the RBF-Coll algorithm can maintain high accuracy with a

very large step size as demonstrated in Table 4.2, Fig. 4.14 and Fig. 4.14. It should

also be noted that Explicit, Newmark -β, and HHT -α methods perform reasonably

well for a short term, but accuracy is gradually lost in the long term even if a very

tiny time step is used. The MCPI method also shows very high accuracy while

maintaining a relatively low computational cost. However, numerical experiments

reveal a limitation on increasing the time-step as the solution diverges for values of

∆t > P/2 even with the order and the number of sample points are increased to 500.
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4.4.2 Highly Nonlinear Duffing Oscillator with Impact Loading

An impact triangular forcing function is applied to the Duffing oscillator in

Eq. (4.22) as,

ẍ+ ω2
nx+ ηx3 = f(t) 0 ≤ t ≤ tF

x(0) = x0 ẋ(0) = ẋ0

f(t) =

 a t 0 ≤ t ≤ t1/2

a(1− t) t1/2 < t ≤ t1

(4.24)

where t1 defines the time interval of the applied impact force.

For the parameters shown in Table 4.3, MATLAB ODE45 is used to obtain the

numerical solution which, in the absence of an analytical solution, is treated as the

reference solution for Eq. (4.24).

Table 4.3: Forced Duffing System Paramaters Values, [95]

Parameter Value
t0 0
t1 1
tF 500
x1(0) 0
x2(0) 0
ωn 1
η 1
a 2

In order to capture the effect of the impact forcing function, the dynamical system

in Eq. (4.24) is solved in two intervals defined by t0 ≤ t ≤ t1 and t1 ≤ t ≤ tF . The

ODE45 (reference) solution is obtained by setting the tolerances in the numerical

solver to the lowest possible values, 10−13. For RBF-Coll 1 the number of collocation

116



points N = 7 and the shaping parameter c = 2.5. And for RBF-Coll 2, N = 35

and c = (N − 1)/4∆t. Table 4.4 shows the comparison of step size, accuracy and

computation time for various numerical methods. Figure 4.17 and Fig. 4.18 show the

normalized state error time history for Explicit 1 and Explicit 2, respectively. Errors

associated with RK4 1,2 are shown in Fig. 4.19 and Fig. 4.20. Newmark -β 1,2 results

are presented in Fig. 4.21 and Fig. 4.22. HHT -α 1,2 results are presented in Fig. 4.23

and Fig. 4.24. Results for MCPI 1 and MCPI 2 are shown in Fig. 4.25 and Fig. 4.26,

respectively with the order and the number of sample points equal 6 for MCPI 1

and 10 for MCPI 2. Figure 4.27 and Fig. 4.28 show the normalized state error time

history for the present RBF-Coll algorithm and finally, Fig. 4.29 shows the reference

solution and solutions from Method 1 for the last 5 sec. of integration.

Similar to the results obtained in the previous section, the present RBF-Coll

algorithm is shown to maintain the high solution accuracy and the low computational

cost when compared to the other existing numerical methods by varying the step

size and the number of collocation points. By comparing the results from Method

1 and Method 2, it can be seen that the step size is the major contributor to the

computational cost associated with each method. In that sense RBF-Coll is superior

to all other methods with the exception of MCPI as there is no need to take smaller

steps in order to achieve higher solution accuracy. Thus, RBF-Coll may be a useful

method to study a periodic and chaotic responses in nonlinear dynamical systems.
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Table 4.4: Comparison of Numerical Methods, Forced Duffing Oscillator

Method ∆t1 (sec) ∆t2 (sec) Position RMS Error Simulation Time (sec)

ODE45 Variable Variable N/A 4.85

Explicit 1 0.1 0.5 0.41 0.01

Explicit 2 0.005 0.006 0.0025 0.18

RK4 1 0.1 0.5 0.399 0.03

RK4 2 0.05 0.03 2.88× 10−6 0.32

Newmark-β 1 0.1 0.5 0.457 3.6

Newmark-β 2 0.05 0.03 1.46× 10−2 49.25

HHT-α 1 0.1 0.5 0.405 3.51

HHT-α 2 0.05 0.03 2.41× 10−2 49.2

MCPI 1 0.1 0.5 1.5× 10−6 0.18

MCPI 2 0.5 2 2.5× 10−6 0.071

RBF-Coll 1 0.1 0.5 1.19× 10−6 0.31

RBF-Coll 2 0.5 6 7.98× 10−7 0.14
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Figure 4.17: Normalized Position Error Time History, Explicit Method 1, [95]
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Figure 4.18: Normalized Position Error Time History, Explicit Method 2, [95]
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Figure 4.19: Normalized State Error Time History, RK4 1, [95]
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Figure 4.20: Normalized State Error Time History, RK4 2, [95]
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Figure 4.21: Normalized State Error Time History, Newmark-β 1, [95]

0 50 100 150 200 250 300 350 400 450 500
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

t (sec )

 

 

∆x1( t )

∆x2( t )

Figure 4.22: Normalized State Error Time History, Newmark-β 2, [95]
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Figure 4.23: Normalized State Error Time History, HHT-α 1, [95]
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Figure 4.24: Normalized State Error Time History, HHT-α 2, [95]
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Figure 4.25: Normalized State Error Time History, MCPI 1
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Figure 4.26: Normalized State Error Time History, MCPI 2
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Figure 4.27: Normalized State Error Time History, RBF-Coll 1, [95]
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Figure 4.28: Normalized State Error Time History, RBF-Coll 2, [95]
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Figure 4.29: Solution Comparison, Last 5 sec. of Integration, [95]
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4.4.3 Multi-DOF Highly Nonlinear Duffing Oscillator

The 3-DOF coupled nonlinear system shown in Fig. 4.30 is analyzed in this sec-

tion.

m1 m2 m3

k2, l2k1, l1

c1c1

k3, l3

c2c2 c3c3 c4c4

k4, l4

x2x1 x3

F (t)

Figure 4.30: 3-DOF Nonlinear System, [95]

With F (t) = F cos Ωt, the set of 3 coupled ODEs for this nonlinear system are,

m1ẍ1 + c1x1 + k1x1 + l1x
3
1 + k2(x1 − x2) + c2(ẋ1 − ẋ2) + l2(x1 − x2)3 = 0

m2ẍ2 − c2(ẋ2 − ẋ2)− k2(x1 − x2)− l2(x1 − x2)3 + c3(ẋ2 − ẋ3)

+ k3(x2 − x3) + l3(x2 − x3)3 = F cos Ωt

m3ẍ3 − c3(ẋ2 − ẋ3)− k3(x2 − x3)− l3(x2 − x3)3 + c4ẋ3 + k4x3 + l4x
3
3 = 0

(4.25)

The parameters selected for the 3 DOF system are given in Table 4.5. The reference

solution for this coupled nonlinear system, as in the previous section, is obtained

with MATLAB ODE45 and shwon in Fig. 4.31. The comparison between various

numerical integrators is given in Table 4.6. For RBF-Coll 1, the number of collocation

points N = 7 and the shaping parameter c = 0.35 and for RBF-Coll 2, N = 35 and

c = 0.39. Figure 4.32 through Fig. 4.49 show the normalized state error time history

for Explicit 1,2, RK4 1,2, Newmark -β 1,2, HHT -α 1,2 and MCPI 1,2. For MCPI 1 the
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Table 4.5: Paramaters for the 3-DOF Coupled System, [95]

Parameter Value
t0 0
tF 200
x0 0
m1 2
m2 1
m3 0.5
c1 0
c2 0.05
c3 0
c4 0
k1 2
k2 1
k3 0.5
k4 0
l1 0.2
l2 0
l3 0
l4 0
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x1( t )
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Figure 4.31: Dynamical response of the 3-DOF System, [95]
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order and the number of sample points used are both 6 and for MCPI 2 12. The

RBF-Coll normalized state error time history is shown in Fig. 4.50 through Fig. 4.53.

Finally, Fig. 4.54, Fig. 4.55 and Fig. 4.56 show the reference solution and Method 1

solutions for the last 10 sec. of integration for the three position states, x1(t), x2(t)

and x3(t), respectively.

Table 4.6: Comparison of Numerical Methods, 3-DOF System

Method ∆t (sec) x1(t) RMS Error Simulation Time (sec)

ODE45 Variable N/A 1.64

Explicit 1 0.625 0.131 0.034

Explicit 2 0.00625 1.44× 10−5 2.49

RK4 1 0.625 4.6× 10−3 0.017

RK4 2 0.0625 5.1× 10−7 0.1

Newmark-β 1 0.625 6.64× 10−2 1.42

Newmark-β 2 0.0625 1.2× 10−3 12.76

HHT-α 1 0.625 7.6× 10−2 1.42

HHT-α 2 0.0625 1.5× 10−3 13.15

MCPI 1 0.625 5.8× 10−9 0.18

MCPI 2 4 2.75× 10−9 0.082

RBF-Coll 1 0.625 2.01× 10−8 0.282

RBF-Coll 2 20 4.5× 10−9 0.095
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Figure 4.32: Normalized Position Error Time History, Explicit Method 1, [95]
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Figure 4.33: Normalized Position Error Time History, Explicit Method 2, [95]
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Figure 4.34: Normalized Position Error Time History, RK4 1, [95]
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Figure 4.35: Normalized Velocity Error Time History, RK4 1, [95]
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Figure 4.36: Normalized Position Error Time History, RK4 2, [95]
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∆ ẋ2( t )
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Figure 4.37: Normalized Velocity Error Time History, RK4 2, [95]
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Figure 4.38: Normalized Position Error Time History, Newmark -β 1, [95]
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Figure 4.39: Normalized Velocity Error Time History, Newmark -β 1, [95]
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Figure 4.40: Normalized Position Error Time History, Newmark -β 2, [95]
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Figure 4.41: Normalized Velocity Error Time History, Newmark -β 2, [95]
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Figure 4.42: Normalized Position Error Time History, HHT -α 1, [95]
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Figure 4.43: Normalized Velocity Error Time History, HHT -α 1, [95]
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Figure 4.44: Normalized Position Error Time History, HHT -α 2, [95]
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Figure 4.45: Normalized Velocity Error Time History, HHT -α 2, [95]
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Figure 4.46: Normalized Position Error Time History, MCPI 1
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Figure 4.47: Normalized Velocity Error Time History, MCPI 1
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Figure 4.48: Normalized Position Error Time History, MCPI 2
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Figure 4.49: Normalized Velocity Error Time History, MCPI 2
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Figure 4.50: Normalized Position Error Time History, RBF-Coll 1, [95]
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Figure 4.51: Normalized Velocity Error Time History, RBF-Coll 1, [95]
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Figure 4.52: Normalized Position Error Time History, RBF-Coll 2, [95]
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Figure 4.53: Normalized Velocity Error Time History, RBF-Coll 2, [95]
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Figure 4.54: Solution Comparison for x1(t), 190 ≤ t ≤ 200, [95]
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Figure 4.55: Solution Comparison for x2(t), 190 ≤ t ≤ 200, [95]
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Figure 4.56: Solution Comparison for x3(t), 190 ≤ t ≤ 200, [95]

As in the previous two sections the present RBF-Coll algorithm has the best

combination of accuracy and computational cost which allows the user to take a

larger time step and maintain a very high solution accuracy. MCPI algorithm shows

very comparable results to RBF-Coll, however, the conducted numerical experiments

are not able to increase the step size beyond the shown value for MCPI 2. In

general, the computational cost of RBF-Coll is very comparable to the fastest, and

as a consequence least accurate methods, which gives the algorithm a significant

competitive advantage among various numerical integrators of general dynamical

systems.

141



4.5 Summary

The present RBF-Coll algorithm is shown to be highly accurate, fast and very

simple to implement for various types of dynamical systems. Comparing the al-

gorithm versus several implicit and explicit numerical integration methods clearly

shows the advantages of such an algorithm that enables larger time step, high so-

lution accuracy while maintaining a relatively low computational cost. RBF-Coll

combination of accuracy and computational cost is superior to all presented classical

algorithms. Furthermore, when compared with MCPI, RBF-Coll is achieving com-

parable accuracy at almost the same computational cost. The RBF-Coll algorithm is

generally better suited for adaptation schemes as there is no need to meet orthogonal-

ity conditions which relax the requirements on the node distribution. The algorithm

is shown to accurately and simply handle short and long periods of time integration,

single and multi degrees of freedom system and periodic and finally transient and

periodic solutions. RBF-Coll algorithm can have a significant potential in handling

various types of dynamical systems governed by second or higher order differential

equations. Applications of algorithm are, but not limited to, orbit propagation in

celestial mechanics, dynamic buckling problems and optimal control and two-point

boundary value problems. Areas of study that will be explored in future works.

It must be noted that the RBF-Coll algorithm can be considered as an implicit

Runge-Kutta algorithm where radial basis functions are used instead of Legendre or

Chebyshev polynomials as developed in [120–122]. The Legendre and/or Chebyshev

basis functions limit the usage of the nodal distribution to Gauss-quadrature dis-

tribution to meet orthogonality conditions for the basis functions and avoid a rank

deficient basis functions matrix. Radial basis functions do not need to meet orthog-

onality conditions and while LGL node distribution has been used in this work the
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selection of the number of nodes, their concentration and distribution is a topic to

be explored in future studies to develop an adaptive self-tuning algorithm to handle

general nonlinear dynamical systems.
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5. RADIAL BASIS FUNCTIONS DIRECT TIME-DOMAIN COLLOCATION

APPLIED TO ILL-POSED PROBLEMS∗

In this chapter, the RBF-Coll algorithm used earlier for the Initial Value Problem

(IVP) is used to address ill-posed time-domain inverse problems for dynamical sys-

tems with split boundary conditions and unknown controllers. The duffing optimal

control problem with various prescribed initial and final conditions, as well as the

orbital transfer Lambert’s problem are solved by the proposed RBF-Coll method as

examples. It is shown that this method is very simple, efficient and very accurate in

obtaining the solutions, with an arbitrary solution as the initial guess. Since other

methods such as the shooting method and the pseudo-spectral method can be un-

stable and requires a close initial guess, the proposed method is advantageous and

have promising applications in optimal control and celestial mechanics, [123].

5.1 Introduction

As previously introduced, a second-order system of nonlinear ordinary differential

equations (ODEs) can, in general, be recast as a system of first-order ODEs as,

ẋ = g (x,f , t) , t0 ≤ t ≤ tF (5.1)

where x is the vector of mixed variables, x ≡ [x1,x2]T, ẋ1 = x2, f is the force

applied to the system and t is the time with t0 and tF the initial and final time,

respectively. For a specified set of initial conditions x0 and being given the force

function f(t), the initial value problem (IVP) of Eq. (5.1) is well-posed and the

∗Part of this chapter is reprinted with permission from “Time Domain Inverse Problems in
Nonlinear Systems Using Collocation & Radial Basis Functions” by Elgohary, T. A., Dong, L.,
Junkins, J. L. and Atluri, S. N., 2014. CMES: Computer Modeling in Engineering & Sciences, Vol.
100, No. 1, pp. 59–84, Copyright [2014] by Tech Science Press.
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solution methodologies are well understood, [95]. On the other hand, the inverse

problem requiring the solution of the unknown initial conditions, given a prescribed

final state, is considered ill-posed. In that sense, Eq. (5.1) is ill-posed in case of split

boundary conditions when both x1(t0) and x1(tF ) are prescribed; or when x1(t0)

and x2(tF ) are both prescribed; or when x2(t0) and x1(tF ) are both prescribed; or

when x2(t0) and x2(tF ) are both prescribed; or when f(t) is an unknown function

to be solved for.

For the majority of applications, f(t) can not be arbitrary and a minimization

scheme is introduced to meet a set of engineering requirements. Among those class of

problems is the given-time-interval optimal control problem found in several classical

works, [2, 124]. The problem is generally given as,

Min: J = φ(x(t0),x(tF ), t0, tF ) +

∫ tF

t0

L(x,f , t)dt

Subject to: ẋ = g(x,f , t), t0 ≤ t ≤ tF

(5.2)

where the objective is to minimize a prescribed performance index J along the tra-

jectory of the system dynamics given by g(x,f , t). The methodology to obtain the

solution for the optimal control force in Eq. (5.2) is presented in several text books,

see [2], [124] and/or [125], based on the calculus of variations, by using Lagrange

multipliers to obtain the augmented performance index, Ja:

Ja = φ(x(t0),x(tF ), t0, tF ) +

∫ tF

t0

{L(x,f , t) + λT [g(x,f , t)− ẋ]} dt (5.3)

The scalar Hamiltonian function is then defined as,

H = L(x,f , t) + λTg(x,f , t) (5.4)
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and the augmented performance index can then be re-written as follows after inte-

gration by parts,

Ja = φ(x(t0),x(tF ), t0, tF )− λTx(tF ) + λTx(t0) +

∫ tF

t0

(
H + λ̇Tx

)
dt (5.5)

The variation of the augmented performance index, δJa, is then expressed in terms

of the variations of x, λ, and f :

δJa = (φx − λT) δx(tF ) + (φx + λT) δx(t0)− x(tF )Tδλ+ x(t0)T δλ

+

∫ tF

t0

[(
Hx + λ̇T

)
δx+

(
Hλδλ+ xTδλ̇

)
+Hfδf

]
= (φx − λT) δx(tF ) + (φx + λT) δx(t0)

+

∫ tF

t0

[(
Hx + λ̇T

)
δx+ (Hλ − ẋT) δλ+Hfδf

]
dt

(5.6)

where ( )∗ = ∂()
∂∗ . The stationarity of Eq. (5.5) necessitates vanishing of

∫ tF
t0

[(Hx +

λ̇T)δx+(Hλ−ẋT)δλ+Hfδf ]dt, leading to the following 3 Euler-Lagrange equations:

ẋ =
∂H

∂λT
= g(x,f , t)

−λ̇ =
∂H

∂x
=

[
∂g

∂x

]T

λ+
∂L

∂x

0 =
∂H

∂f
=
∂L

∂f
+

[
∂g

∂f

]T

λ

(5.7)

And depending on what are prescribed for the states of x(t0) and x(tF ), some com-

plementary boundary conditions at t0 and tF can be obtained from the vanishing of

(φx − λT)δx(tF ) + λTδx(t0), as is listed in detail in Table 5.1.

Several solution techniques exist for such problems. The shooting method, see

[126], is one of the most widely used approaches in the optimal control literature.

Starting with an initial guess for the unknown initial conditions, the system of equa-
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Table 5.1: Boundary Conditions for Various Cases of Ill-posed Problems, [123]

Prescribed boundary conditions Complementary boundary conditions
Full final state prescribed, x(tF ) λ(t0) = 0
x1(t0) and x1(tF ) prescribed −λT

2 (t0) = φx2|t0 , λT
2 (tF ) = φx2|tF

x1(t0) and x2(tF ) prescribed −λT
2 (t0) = φx2|t0 , λT

1 (tF ) = φx1|tF
x2(t0) and x1(tF ) prescribed −λT

1 (t0) = φx1|t0 , λT
2 (tF ) = φx2|tF

x2(t0) and x2(tF ) prescribed −λT
1 (t0) = φx1|t0 , λT

1 (tF ) = φx1|tF

tions is integrated and matched with the terminal conditions. By examining the

sensitivity, the initial guess is iteratively updated until an acceptable tolerance is

achieved at the terminal boundary. The main disadvantage of the shooting method

is that a good initial guess is generally required to achieve convergence, which in

turn requires the user to have a deep insight of the physical and the mathematical

properties of the problem, [127]. More recently, Modified Chebyshev Picard Itera-

tion (MCPI) has been used to address two-point boundary value problems without

resorting to the shooting method, [106,128].

By using different trial and test functions, Eq. (5.7) lends itself to a wide spec-

trum of solution methodologies, [103], such as collocation, finite volume, Galerkin,

MLPG, etc. In [104] a comprehensive review of various computational methods is

presented and used to solve well-posed and ill-posed problems of a fourth order ODE

describing a beam on an elastic foundation. In [28, 105], a collocation method with

harmonic trial function was developed for studying the nonlinear responses of aeroe-

lastic system. In this study, a simple collocation method is developed, with radial

basis functions as trial functions, to tackle various time-domain inverse problems

in nonlinear systems. Detailed formulations and numerical examples are presented

next.
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5.2 Direct Collocation and Radial Basis Functions

One direct collocation method in optimal control is the pseudo-spectral method.

It transforms the set of nonlinear ODEs into a nonlinear programming problem

(NLP) by using global polynomials and collocating at Gauss quadrature nodes. The

methods were successfully implemented in NASA missions for the International Space

Station (ISS), [129], and the space telescope TRACE, [130]. Legendre or Chebyshev

polynomials were used as trial functions in [131–134]. Three types of collocations

points in the time domain are mostly used: Legendre-Gauss (LG) points, Legendre-

Gauss-Radau (LGR) points and Legendre-Gauss-Lobatto (LGL) points. In [135],

the effect of collocation points on the accuracy of solutions was tested based on a

first-order dynamical system. In [136], radial basis functions (RBFs) were also used

as trial functions in a pseudo-spectral frame work. But the solution of the NLP

turned out to be very sensitive to the initial guess, and it generally requires one to

analytically solve a low order system and provide the solution as the initial guess for

the NLP.

In this work, the two-point boundary value problem for an optimal controller is

solved using direct collocation and RBFs without resorting to the pseudo-spectral

methods. Using radial basis functions as the trial functions, direct collocation at

the LGL nodes lead to a system of nonlinear algebraic equations (NAEs), which are

solved using the classical Newton’s method. Based on a large number of numerical

examples for various time-domain inverse problems, it is shown that the proposed

method is very simple, very accurate and insensitive to the initial guess of the un-

known states. The detailed formulations are given as follows.
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5.2.1 The Legendre-Gauss-Lobatto (LGL) Nodes

The well known Legendre polynomials are orthogonal to the weight function

w(τ) = 1 on the interval τ ∈ [−1, 1] and satisfy the recursion,

p0(τ) = 1

p1(τ) = x

pi+1 =

(
2i+ 1

i+ 1

)
τpi(τ)−

(
i

i+ 1

)
pi−1(τ), i = 1, 2, . . .

(5.8)

The LGL nodes can then be obtained from solving the differential equation,

(
1− τ 2

j

)
ṗN(τj) = 0 (5.9)

which produces the node distribution −1 = τ0 < τ1 < . . . < τN = 1. The solution of

the LGL nodes is generally obtained by numerical algorithms such as in [111]. By a

simple mapping in Eq. (5.10), τ = [−1, . . . , 1] is transformed into t = [t0, . . . , tF ] to

obtain the LGL nodes for an arbitrary time interval:

t =
tF − t0

2
τ +

tF + t0
2

(5.10)

5.2.2 Radial Basis Functions and Collocation

Radial Basis Functions (RBFs) are real-valued functions with values depending

on the distance from a source point, φ(x,xc) = φ(‖x− xc‖) = φ(r). Some of the
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commonly used types for RBFs are as follows, [110]:

φ(r) = e−(cr)2 Guassian

φ(r) = 1
1+(cr)2

Inverse quadratic

φ(r) =
√

1 + (cr)2 Multiquadric

φ(r) = 1√
1+(cr)2

Inverse multiquadric

(5.11)

where c > 0 is a shaping parameter.

In this study, the trial functions are expressed as a liner combination of Gaussian

functions, with N LGL nodes (tj, j = 1, . . . , N) as the source points. And the

collocation is also performed at the N LGL nodes, leading to:

x(ti) =
N∑
j=0

φ(ti, tj)aj, i = 1, . . . , N (5.12)

In matrix-vector form Eq. (5.12) can be rewritten as,

X = ΦA (5.13)

where Φ represents the matrix of basis functions, A is the vector of undetermined

coefficients, and X is the vector of unknown states at each LGL node. The time-

differentiation of Eq. (5.13) can be then expressed as,

Ẋ = Φ̇A (5.14)

Hence, combining Eq. (5.13) and Eq. (5.14), Ẋ is related to X by,

Ẋ = DX, D ≡ Φ̇Φ−1 (5.15)
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where, D is called the derivative matrix, which is generated from the RBFs and their

time-derivatives evaluated at the LGL nodes.

Similarly, the co-state functions and its time-derivatives can also be expressed

using the same Gaussian functions, leading to:

Λ̇ = DΛ, (5.16)

where Λ represents the unknown co-states at at each of the LGL nodes.

Using this formulation the state/co-state equations in Eq. (5.7) and the boundary

conditions in Table 5.1 are discretized and transformed into a set of NAEs that can

be handled by classical numerical iterative solvers such as Newton’s method or by

recently-developed Jacobian inverse free methods, [29, 112, 137]. In this study the

classical Newton’s method is utilized and other Jacobian inverse free NAEs solvers

are to be explored in future studies.

5.3 The Duffing Optimal Control Problem

The duffing equation has been in the literature for almost a century, [119], with

a wide range of applications in science and engineering from a nonlinear spring-mass

system in mechanics to fault signal detection, [138], and structures design, [139]. The

control of a duffing oscillator has a seminal significance to the control problems of

nonlinear dynamic responses of structures such as beams, plates, and shells. The

duffing oscillator is governed by the following second-order nonlinear ODE:

ẍ+ ω2
nx+ βx3 = f, 0 ≤ t ≤ T (5.17)
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which can be re-written as a system of 2 first-order ODE equations:

ẋ1 = x2

ẋ2 = −ω2
nx1 − βx3

1 + f

(5.18)

where ωn is the natural frequency and β describes the nonlinearity of the system.

With x1(0), x2(0) and f(t) being given the problem is well-posed, whereas the ill-

posed problem arises from the prescribed: (1) x1(T ), x2(T ); (2) x1(0), x1(T ); (3)

x1(0), x2(T ); (4) x2(0), x1(T ); (5) x2(0), x2(T ), with the unknown forcing function f .

In order to satisfy those boundary conditions the force function f is to be obtained

subject to a simple performance index :

φ(x(tF ), tF ) =
1

2
[x− xF ]T S [x− xF ]

L(x,f , t) =
1

2

∫ T

0

f 2dt

(5.19)

Hence,

J =
1

2
[x− xF ]T S [x− xF ] +

1

2

∫ T

0

f 2dt (5.20)

where, x = [x1, x2]T, S > 0 is assumed diagonal for simplicity, S ≡ diag [s11, s22],

xF = [x1F , x2F ]T is the desired final state at the specified final time T . The Hamil-

tonian can then be expressed as,

H =
1

2
f 2 + λ1x2 + λ2

(
−ω2

nx1 − βx3
1 + f

)
(5.21)

where, λ1 and λ2 are the Lagrange multipliers or the system co-states. The necessary

conditions that relates the co-states to the controller and minimizes the cost function
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are derived from Eq. (5.7) as,

−λ̇1 =
∂H

∂x1

⇒ λ̇1 = λ2

(
ω2
n + 3βx2

1

)
−λ̇2 =

∂H

∂x2

⇒ λ̇2 = −λ1

∂H

∂f
= 0⇒ f = −λ2

(5.22)

where different boundary conditions can also be derived following Table 5.1. In

this study, several ill-posed problems of the duffing oscillator are considered: the free

final state case, the fixed final state case, and the partially prescribed initial and final

states. A simple extension to prescribed periodic solution case is also demonstrated.

All these cases are discussed in detail in the following subsections, and are solved by

the proposed simple RBF collocation method.

5.3.1 Free Final State Optimal Control Problem

With prescribed initial conditions x(0) = [x10, x20]T, the objective is to find the

optimal forcing function that minimizes the performance index in Eq. (5.20). From

Eq. (5.6) the boundary conditions imposed on the system of ODEs in Eq. (5.22) are,

x1(0) = x10, x2(0) = x20

λ1(T ) = s11(x1(T )− x1F ), λ2(T ) = s22(x2(T )− x2F )

(5.23)

where x1F , x2F are the desired final states. Combining Eq. (5.23) with Eq. (5.22) and

Eq. (5.18) yields the system of ordinary differential equations with split boundary
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conditions for the free final state optimal control problem as,

ẋ1 = x2

ẋ2 = −ω2
nx1 − βx3

1 − λ2

x1(0), x2(0) specified

λ̇1 = λ2 (ω2
n + 3βx2

1)

λ̇2 = −λ1


λ1(T ) = s11(x1(T )− x1F )

λ2(T ) = s22(x2(T )− x2F )

(5.24)

Applying RBFs collocation to the system of ODEs in Eq. (5.24) the total time is

divided into N LGL nodes and the system of 4N nonlinear algebraic equations is

obtained as,

R1
1 = x1

1 − x10 = 0

Ri
1 = Dxi1 − xi2 = 0

R1
2 = x1

2 − x20 = 0

Ri
2 = Dxi2 + ω2

nx
i
1 + β(xi1)3 + λi2 = 0

Rj
3 = Dλj1 − λj2[ω2

n + 3β(xj1)2] = 0

RN
3 = λN1 − s11(xN1 − x1F ) = 0

Rj
4 = Dλj2 + λj1 = 0

RN
4 = λN2 − s22(xN2 − x2F ) = 0

(5.25)

where, i = 2, . . . , N , j = 1, . . . , N − 1. This formulation accommodates the collo-

cation of the boundary conditions without producing an over-determined system of

equations, [140]. The set of 4N nonlinear algebraic equations in Eq. (5.25) can then

be solved by the classical Newton’s method to obtain the values of the states and

the co-states at the collocation nodes.
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5.3.2 Fixed Final State Optimal Control Problem

For this case both the initial and final conditions are prescribed and the optimal

forcing function is to be solved for to minimize the general performance index in

Eq. (5.20). The split boundary condition are then given by,

x(0) = x0, x(T ) = xF (5.26)

Applying the necessary conditions in Eq. (5.7), the optimal control problem can then

be formulated as,

ẋ1 = x2

ẋ2 = −ω2
nx1 − βx3

1 − λ2

x1(0), x2(0), x1(T ), x2(T ) specified

λ̇1 = λ2 (ω2
n + 3βx2

1)

λ̇2 = −λ1

λ1, λ2 free

(5.27)

As in Eq. (5.25), the system of 4N nonlinear algebraic equations is constructed as,

Ri
1 = Dxi1 − xi2 = 0

R1
2 = x1

1 − x10 = 0

Rj
2 = Dxj2 + ω2

nx
j
1 + β(x3

1)j + λj2 = 0

RN
2 = xN1 − x1F = 0

R1
3 = x1

2 − x20 = 0

Rj
3 = Dλj1 − λj2(ω2

n + 3β(x2
1)j = 0

RN
3 = xN2 − x2F = 0

Ri
4 = Dλi2 + λi1 = 0

(5.28)
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where, i = 1 . . . , N , j = 2, . . . , N − 1. In this way, there are 4N nonlinear algebraic

equations for 4N unknowns.

5.3.3 Partially Prescribed Initial and Final States

Three additional cases of partially prescribed boundary conditions are formulated

in this section. The first case prescribes the initial and final position, x1(0), x1(T ).

The second case prescribes the initial position and final velocity, x1(0), x2(T ). Finally,

the third case prescribes the initial velocity and final position, x2(0), x1(T ). For

each of the three cases the split boundary conditions are derived from Eq. (5.6)

to formulate the ill-posed system of first-order ODEs that is parameterized with

RBFs collocation and solved with classical Newton’s method. For the first case, the

ill-posed set of ODEs is given by,

ẋ1 = x2

ẋ2 = −ω2
nx1 − βx3

1 − λ2

x1(0), x1(T ) specified

λ̇1 = λ2 (ω2
n + 3βx2

1)

λ̇2 = −λ1

λ2(0) = 0, λ2(T ) = s22(x2(T )− x2F )

(5.29)

For the second case where initial position and final velocity are prescribed, the set

of first-order ODEs with split boundary conditions is given by,

ẋ1 = x2

ẋ2 = −ω2
nx1 − βx3

1 − λ2

x1(0), x2(T ) specified

λ̇1 = λ2 (ω2
n + 3βx2

1)

λ̇2 = −λ1

λ2(0) = 0, λ1(T ) = s11(x1(T )− x1F )

(5.30)
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Finally, for the case where initial velocity and final position are prescribed, the

following equations are obtained,

ẋ1 = x2

ẋ2 = −ω2
nx1 − βx3

1 − λ2

x2(0), x1(T ) specified

λ̇1 = λ2 (ω2
n + 3βx2

1)

λ̇2 = −λ1

λ1(0) = 0, λ2(T ) = s22(x2(T )− x2F )

(5.31)

For each of these three cases, a collocation scheme which is similar to Eq. (5.25) and

Eq. (5.28) is used. The only difference is that the boundary conditions at t0 and tF

are changed to those in Eq. (5.29), Eq. (5.30), and Eq. (5.31).

5.3.4 Prescribed Harmonic Steady State Achieved by an Optimal Controller

In this case, with a given initial position and velocity, the duffing oscillator is

required to achieve a steady harmonic state after a time interval T :

x̂(t) = a1 cos(ωt) + a2cos(3ωt) + a3 cos(
1

3
ωt) (5.32)

where, the frequency, ω, and the amplitudes, a1, a2, a3, are specified, and the same

performance index of Eq. (5.19) is considered.

From Eq. (5.17), one can see that the controller is defined after T :

f = ¨̂x+ ω2
nx̂+ βx̂3, t ≥ T (5.33)

And the solution of the controller between 0 ≤ t ≤ T is entirely equivalent to solve
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the fixed final state optimal control problem, with the following fixed final states:

x1F = a1 cos(ωT ) + a2 cos(3ωT ) + a3 cos(
1

3
ωT )

x2F = −
[
a1ω sin(ωT ) + 3a2ω sin(3ωT ) +

1

3
a3ω sin(

1

3
ωT )

] (5.34)

Thus, the same solution procedure given in Eq. (5.28) is used at here, with RBF as

trial functions, and LGL nodes as collocation points.

5.3.5 Numerical Results

Numerical experiments are conducted for each case of the Duffing optimal control

problem in section 3.1-3.4. Table 5.2 shows the parameters used for the numerical

simulations. For each case, 40 LGL nodes within the time interval are used as

the RBF source points and collocation points, i.e. N = 40. And c = N−1
4T

is

used for all the examples. the states and the controller resulting from the solution

of the NAEs are plotted. And then the obtained initial conditions are fed into

a standard numerical integrator, MATLAB ODE45. The differences between the

solution by collocation and the integrator are plotted at each collocation point, i.e.

∆x = xRBF − xODE.

Table 5.2: Duffing Optimal Control Problem Parameters, [123]

Parameter Value
Natural frequency, ωn 1 rad/s
Nonlinearity coefficient, β ≥ 0.9

Initial conditions, x0

[
0 0

]T
Final conditions, xF

[
5 2

]T
Harmonic response amplitudes a1 = 1.5, a2 = 2, a3 = 3
Harmonic response frequency ω = 3 rad/s
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For the first case with the free final conditions and β = 0.9, Fig. 5.1 shows

the states and the controller time history. Figure 5.2 and Fig. 5.3 show the errors

between the semi-analytic solution obtained by RBFs collocation and the numerical

integrator at each collocation point for the states and the co-states, respectively. As

shown from the plots, the errors are in the order of ≈ 10−7 for both the states and

the co-states.
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Figure 5.1: States and Controller, Duffing Free Final State, [123]

The results for the fixed final state case with β = 0.9 are shown in Fig. 5.4 for

the states and the controller time history. Figure 5.5 and Fig. 5.5 show the errors

in the states and the co-states. Similar to the free final state case the errors in the

states and co-states are very small. It is also worth noting that the shooting method

implemented at β ≥ 0.9 will diverge with the arbitrary initial guess used for the

159



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−3

−2

−1

0

1

2

3

x 10
−7

t (sec )

 

 

∆x1( t )
∆x2( t )

Figure 5.2: States Errors, Duffing Free Final State, [123]
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Figure 5.3: Co-states Errors, Duffing Free Final State, [123]
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RBFs collocation solution.
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Figure 5.4: States and Controller, Duffing Fixed Final State, [123]

Fig. 5.7, Fig. 5.8 and Fig. 5.8 show the results for the first case of partially

prescribed boundary conditions with x1(0) = x10 and x1(T ) = x1F . In that case,

β = 0.94. Results for the second case of partial boundary conditions are shown

in Fig. 5.10, Fig. 5.11 and Fig. 5.12 with x1(0) = x10 and x2(T ) = x2F . Similar

to the previous case, the same value for the nonlinearity coefficient is chosen. The

third case of partial boundary conditions is given by x2(0) = x20 and x1(T ) = x1F

with β = 0.97. Numerical results for this case are shown in Fig. 5.13, Fig. 5.14 and

Fig. 5.15.

Finally, for the case of a prescribed harmonic steady state with β = 0.9, the

results are shown in Fig. 5.16, whereas the errors in the states and the co-states at
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Figure 5.5: States Errors, Duffing Fixed Final State, [123]
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Figure 5.6: Co-states Errors, Duffing Fixed Final State, [123]
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Figure 5.7: States and Controller, Duffing Prescribed Initial and Final Position, [123]
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Figure 5.8: States Errors, Duffing Prescribed Initial and Final Position, [123]
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Figure 5.9: Co-states Errors, Duffing Prescribed Initial and Final Position, [123]
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Figure 5.10: States and Controller, Duffing Prescribed Initial Position and Final
Velocity, [123]
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Figure 5.11: States Errors, Prescribed Initial Position and Final Velocity, [123]
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Figure 5.12: Co-states Errors, Prescribed Initial Position and Final Velocity, [123]
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Figure 5.13: States and Controller, Duffing Prescribed Initial Velocity and Final
Position, [123]
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Figure 5.14: States Errors, Prescribed Initial Velocity and Final Position, [123]
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Figure 5.15: Co-states Errors, Prescribed Initial Velocity and Final Position, [123]

each collocation point are shown in Fig. 5.17 and Fig. 5.18, respectively, which is in

the order of 10−7.

As a summary for all the presented results, Table 5.3 shows the errors between

the prescribed boundary conditioned and the ones obtained from solving the set

of nonlinear algebraic equations. It is shown that the discretization of the fixed

time-interval optimal control problem using RBFs as trial functions, and simple

collocation at the LGL nodes, has demonstrated its high accuracy for all cases of

boundary conditions explored in this study.
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Figure 5.16: States and Controller, Duffing Prescribed Harmonic State, [123]
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Figure 5.17: States and Controller, Duffing Prescribed Harmonic State, [123]
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Figure 5.18: States Errors, Duffing Prescribed Harmonic State, [123]

Table 5.3: Errors in Boundary Conditions, [123]

Cases of different BCs Error at t0 Error at tF

Free final state

 1× 10−22

4.2× 10−22


 0

2.2× 10−16


Fixed final state

9.9× 10−18

0


1.9× 10−17

0


Prescribed Initial and final position

3.8× 10−17

6.8× 10−19


 0

1.1× 10−16


Prescribed initial position and final Velocity

 6× 10−19

1.4× 10−19


0

0


Prescribed Initial Velocity and final Position

3.2× 10−17

3× 10−17


 0

2.2× 10−16


Harmonic steady state

4.3× 10−19

1.4× 10−18


0

0


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5.4 Orbital Transfer Two-Point Boundary Value Problem

Another classical problem in celestial mechanics is the two-point boundary value

problem of orbital transfer. This problem is known as Lambert’s problem after

Johann Heinrich Lambert (1728–1779) who was the first to state and to solve the

problem. The objective is to find the transfer orbit that connects two points in space

given a flight time. Figure 5.19 illustrates the geometry of Lambert’s problem with

t0

rrr0

vvv0
tF

rrrF

vvvF

Figure 5.19: Illustration of the Orbital Transfer Problem, [123]

t0, r0 the initial time and position, tF , rF the desired final time and position, v0 the

initial velocity to be solved for that would generate the transfer orbit and vF the

terminal velocity at the desired position.

The dynamics of the unperturbed relative two-body problem is obtained from
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Newton’s famous universal gravitational law as,

r̈ =
−µ
r3
r (5.35)

where, r =

[
x y z

]T

is the position vector in the inertial frame, µ is the Earth

gravitational parameter µ ≈ 3.986× 1014 m3s−2 and r =
√
x2 + y2 + z2.

Solving the unperturbed Lambert’s problem analytically was discussed in detail

in [83]. The solution developed still has a singularity for transfer angles of ±180◦.

In [84], a numerical iterative method is introduced to handle both singularities and

gravitational perturbations in Lambert’s problem. The method is essentially a shoot-

ing algorithm where a sufficiently good initial guess for the initial velocity is needed

to improve convergence. Generally, the initial guess for the velocity vector is obtained

such that the target position is reached but not necessarily in the required transfer

time. The present solution based on RBFs collocation starts with an arbitrary initial

guess, and can readily handle any perturbations to provide a semi-analytic solution

for the transfer orbit problem.

As a first order system of equations the unperturbed two-body problem is written

as,

ẋ1 = x2

ẋ2 =
−µ
r3
x1

ẏ1 = y2

ẏ2 =
−µ
r3
y1

ż1 = z2

ż2 =
−µ
r3
z1

(5.36)

The RBFs collocation can then be applied to Eq. (5.36) to produce a set of 6N
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nonlinear algebraic equations where N is the number of LGL collocation nodes:

Ri
1 = Dxi1 − xi2 = 0

Ri
2 = Dyi1 − yi2 = 0

Ri
3 = Dzi1 − zi2 = 0

R1
4 = x1

1 − x10 = 0

Rj
4 = Dxj2 +

µ

rj
xj1 = 0

RN
4 = xN1 − x1F = 0

R1
5 = y1

1 − y10 = 0

Rj
5 = Dyj2 +

µ

rj
yj1 = 0

RN
5 = yN1 − y1F = 0

R1
6 = z1

1 − z10 = 0

Rj
6 = Dzj2 +

µ

rj
zj1 = 0

RN
6 = zN1 − z1F = 0

(5.37)

where, i = 1, . . . , N and j = 2, . . . , N − 1 which produces a system of 6N equations

in 6N unknowns. As a numerical example an orbit is examined with initial and final

position given by,

r0 =

[
2.87 5.19 2.85

]T

× 106 m

rF =

[
2.09 7.82 0

]T

× 106 m

(5.38)

The transfer time is chosen to be tF = 0.05 days or tF = 4.32 × 103 seconds. The

number of LGL nodes is set as, N = 47, with the shaping parameter, c = N+3
4T

. The

set of nonlinear algebraic equations in Eq. (5.37) is solved with an arbitrary initial

guess. And the resulting orbit is compared against the closed form Lagrange/Gibbs
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(F& G) solution, [83,84], considering the initial position and velocity vector obtained

from the RBFs collocation method. The resulting position and velocity are compared

in Fig. 5.20 and Fig. 5.21, respectively.
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Figure 5.20: Transfer Orbit Position Propagation, [123]

The errors of the initial and the terminal boundary conditions are compared as

in Table 5.3 in Table 5.4. The initial conditions obtained by the RBF collocation

method drives the object to the desired final position with millimeter accuracy. This

approach using RBFs collocation thus is quite advantageous compared to previous

analytical and numerical methods of solving the Lambert’s problem because of the

ease of extension to accommodate perturbations. It can be extended in future to

address perturbations and obtain what is known as pork-chop plots for the selection

of launch and arrival times while minimizing fuel or some other specified parameters.
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Figure 5.21: Transfer Orbit Velocity Propagation, [123]

Table 5.4: Errors in Boundary Conditions, [123]

Initial Boundary Error Terminal Boundary Error
0
0
0

 m


9.610−3

16.3× 10−3

10.2× 10−3

 m
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5.5 Summary

The present simple collocation scheme based on radial basis functions and LGL

collocation points is proven to be very accurate and efficient in solving time domain

inverse problems. Starting with the Duffing OCP, all the cases considered achieved

very high accuracy in the initial and final conditions. The solution is insensitive to

the initial guess and does not require any insight into the physics of the problem.

Several extensions are possible for the OCP to include intermediate boundary con-

ditions or inequality constraints along the trajectory. The orbital transfer problem

based on the same formulation achieved millimeter accuracy when compared to the

analytical Lagrange/Gibbs F&G solution. Unlike the shooting method which re-

quires the problem to be solved first for an arbitrary time and the solution to fed

in as the initial guess, the RBFs collocation approach started at an arbitrary set of

initial conditions and achieved very high accuracy in determining the transfer orbit.

It has to be noted that the case presented in this work is for a fraction of an orbit,

however, the RBF-Coll algorithm can be developed to address the multiple orbit

problems and consequently provide pork-chop plots for launch and arrival times for

mission design which will be explored in future studies. For all the cases consid-

ered in this work, the generated set of NAEs are solved with the classical Newton’s

method whereas several Jacobian inverse free methods exist and can be explored in

future studies, [29, 112,137].
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6. DISCUSSION AND CONCLUSION

In summary, several research thrusts have been presented in this work. The

diversity of problems presented and their applications can be correlated under so-

lution methodologies for nonlinear systems in mechanics. In structural mechanics,

the Scalar Homotopy Methods are applied to the solution of post-buckling and limit

load problems of plane frames considering geometrical nonlinearities. Nodal dis-

placements of the equilibrium state are iteratively solved for, without inverting the

Jacobian (tangent stiffness) matrix and without using complex arc-Length methods.

This simple method thus saves computational time and avoids the problematic be-

havior of the Newton’s method when the Jacobian matrix is singular. The simple

Williams’ toggle is presented however, extension to general finite element analyses

of space frames, plates, shells and elastic-plastic solids can be considered.

On the other hand, an analytic approach is adopted to address the problem of

a flexible rotating spacecraft. Analytic transfer functions for the system frequency

response are developed. The fact that nontrivial problems can be solved by these

methods, using distributed parameter models, does not appear to be widely appre-

ciated. These special case models and control design methods serve important roles

in evaluating the applicability and validity of the approximations implicit in more

generally applicable spatial discretization methods. Several other boundary condi-

tions and constitutive assumptions can be applied and the analogous steps to those

presented can be followed in order to obtain the analytical distributed parameter so-

lution. By utilizing the full transfer function solution provided by the GSS approach

any control problem design in the frequency domain can be addressed. A case study

is constructed for the gain selection of a Lyapunov stable control law. By looking
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at the frequency response and changing the gains an acceptable performance was

achieved driving the structure from a stationary initial state to a target state while

suppressing the beam vibrations. The GSS approach can be considered a platform

through which distributed parameters models can be addressed. Moreover, the pre-

sented control problem has potential for several extensions. Optimization was not

considered in this work whereas several techniques exists for optimization in the fre-

quency domain based on Parseval’s theorem. In general the GSS solution provides

a general framework for any control scheme in the frequency domain. This is shown

to be a very powerful tool. When it is possible to use discretization and truncation-

free distributed parameter model transfer function solutions provided by the GSS

approach, any control problem design in the frequency domain can be addressed

rigorously.

In the fields of geodesy and celestial mechanics, two analytic methods are intro-

duced. The Earth-Centered Earth-Fixed (ECEF) to geodetic coordinate transfor-

mation is examined with a non-iterative expansion based approach inspired by the

Earth’s perturbed geometry, where the expansion parameter is the ratio of the Earth

semi-major axis and semi-minor axis subtracted from 1. The expansion is carried out

to second, third, and fourth orders with numerical examples to compare the accu-

racy at each order of expansion. Significant improvement in accuracy is demonstrated

as the order of expansion is increased, and at fourth order, millimeter accuracy is

achieved in height and 1011 degree error in latitude. Those errors at such low orders

of the expansion are proof of the effectiveness of the method and its potential in

solving such a highly nonlinear transformation non-iteratively. The method can be

further streamlined for timing studies, but in general it is a clean straightforward

approach to the coordinate transformation problem that utilizes a physical perturba-

tion parameter and that proved to be very accurate and efficient. Orbit propagation
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of the two-body problem is studied via the Analytic-Cont algorithm. The algorithm

is shown to be highly accurate, fast and very simple to implement for short as well

as long-term orbit propagation problems. The comparison against Matlab ODE45

and RKN12(10) shows the advantages of the Analytic-Cont algorithm that enables

larger step-size with relatively high solution accuracy while maintaining low compu-

tational cost. The case of 20 full HEO orbits shows the potential of the algorithm for

adaptive step size schemes. Gravitational perturbations can also be easily handled

with the Analytic-Cont algorithm and will be explored in future works.

The RBF-Coll algorithm is applied to Lambert’s problem and successfully achieved

millimeter accuracy when compared to the analytical Lagrange/Gibbs F&G solution.

Unlike the shooting method which requires the problem to be solved first for an ar-

bitrary time and the solution to fed in as the initial guess, the RBF-Coll approach

started at an arbitrary set of initial conditions and achieved very high accuracy in

determining the transfer orbit. The numerical example presented here addresses the

orbital transfer problem for a fraction of an orbit whereas, the multiple orbit problem

and the consequent development of pork-chop plots for launch and arrival times for

mission design will be explored in future works. The algorithm also has potential

applicability in reachability problems in rendezvous and relative motion problems.

For general highly nonlinear dynamical systems, the RBF-Coll algorithm is shown

to be highly accurate, fast and very simple to implement for various types of IVPs.

Comparing the algorithm versus several implicit and explicit numerical integration

methods clearly shows the advantages of such an algorithm that enables larger time

step, high solution accuracy while maintaining a relatively low computational cost.

The algorithm is shown to accurately and simply handle short and long periods of

time integration, single and multi degrees of freedom systems and periodic and finally

transient and periodic solutions. RBF-Coll algorithm can have a significant potential
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in handling various types of dynamical systems governed by second or higher order

differential equations. Areas of study that will be explored in future works.

The RBF-Coll algorithm is also applied to general nonlinear time domain in-

verse problems. Starting with the Duffing OCP, all the cases considered achieved

very high accuracy in the initial and final conditions. The solution is insensitive to

the initial guess and does not require any insight into the physics of the problem.

Several extensions are possible for the utilization of the RBF-Coll method in orbit

propagation in celestial mechanics, dynamic buckling problems and optimal control

and two-point boundary value problems with intermediate boundary conditions or

inequality constraints along the trajectory.

Finally, while the RBF-Coll method has been implemented with the LGL node,

this is but one good choice of nodes which typically reduces the Runge effects. Also,

the sharpness of the exponential basis functions were held constant over each approx-

imation interval. However, particular dynamical systems may have very non-uniform

nonlinearity, so it seems one area of future investigation should be the investigation

of methods to adaptively locate nodes and select the sharpness of the basis func-

tions. It is possible that these ideas should be pursued using redundant nodes and

least squares approximation (in lieu of strict collocation) so that the residuals at all

nodes can be used to guide the location and sharpness of the basis functions added

to achieve recursive refinement (area recommended for further study).
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