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ABSTRACT 

 

In today’s highly competitive market with economic, environmental, and social 

challenges, it is imperative that engineers are educated to adapt to the new challenges. 

Engineering education could play a critical role to improve engineering students’ self-

regulated and adaptive skills that are important for their future engineering productivity and 

innovation. To survive and thrive in the fast-changing workplace, today’s students will need 

to become adaptive experts. However, current engineering education practices tend to focus 

too much on the low-level skills required to do specific and routine tasks rather than 

fostering self-regulated and adaptive skills required for innovation.  

Experts are defined in two distinctive characteristics: adaptive experts versus routine 

experts. Adaptive experts acquire the content knowledge parallel to routine experts in the 

field; in addition, they have the ability to effectively and innovatively utilize and extend that 

knowledge. In this dissertation, to determine the “baseline” adaptive expertise among the 

sample population, an adaptive expertise survey (AES) instrument is administered to both 

the practicing engineers and the students. The instrument contains questions defining four 

dimensions of adaptive expertise: multiple perspectives, metacognitive self-assessment, 

goals and beliefs, and epistemology. Participants’ demographics and engineering experience 

were recorded and cross-tabulated with their adaptive expertise characteristics captured in 

the study. In addition this study explored engineering students’ and practicing engineers’ 

adaptive expertise (AE) characteristics as they used a CAD tool. The practicing engineers 

were asked to model a component in a CAD program that they were not familiar with. The 

students were asked to model a stylized familiar component that they brought from home. 
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In both cases, pre and post interviews were conducted to explore how the participants 

approached their tasks and overcame any challenges. Effects of the contextualized activity 

on students’ AE characteristics were investigated.  In general, results indicated that as 

students gain more experience through years their overall AE characteristics were 

developed. In addition, the studies signified that multiple perspectives, goals and beliefs, and 

metacognitive skills are good indicators of developing AE and educators should consider 

promoting those skills in engineering education. 
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NOMENCLATURE 

 

AE  Adaptive Expertise 

AES  Adaptive Expertise Survey 

FA  Factor Analysis 

PBL  Problem Based Learning 
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CHAPTER I  

INTRODUCTION 

 

 

I.1 Overview 

Today in the face of economic, environmental, and social challenges, formal 

education often becomes a gatekeeper to many professions that require specific types of 

skill sets and expertise. In addition, pervasiveness of digital technologies has increased the 

pace at which individuals communicate and exchange information, requiring competence in 

processing multiple forms of information to accomplish tasks that are trans-disciplinary 

including engineering. The ABET Inc., the primary engineering accreditation institution in 

the United States, has determined the most important skill sets for the preparation of 

engineers. These are the ability to identify, formulate, and solve workplace engineering 

problems and to function on multidisciplinary teams. Learning to solve workplace problems 

is an essential learning outcome for any engineering graduate (Jonassen, 2014). Every 

engineer is hired, retained, and rewarded for his or her ability to solve problems. However, 

according to Jonassen, Strobel, and Lee (2006), engineering graduates are ill prepared to 

solve complex, workplace problems. By having diverse learning experiences, students can 

learn to apply skills and knowledge in different contexts; this process is called ‘transfer’ 

(Pellegrino & Hilton, 2012). It is important for schools and colleges to develop skills such as 

transfer of knowledge, problem solving, critical thinking, communication, collaboration, and 

self-management, which are referred to as “21st century skills” (Pellegrino & Hilton, 2012). 

Therefore, today’s higher educational settings should be updated to help students develop 



 2 

these skills.  

In this more swiftly developing era, educating engineers who are able to adapt 

quickly to the new challenges becomes imperative. One way of helping to create diverse 

experiences in engineering education for students is the use of computer-aided design 

(CAD) tools. Therefore, in this dissertation, to be able to scrutinize the AE manifestations 

of engineering students, CAD tools are used as an instrument.  

I.1.1 Engineering Education and Adaptive Expertise 

CAD tools are pervasively used throughout the development process in many 

industries (Field, 2004), and available in multiple platforms (Johnson & Diwakaran, 2011). 

In addition to their primary purpose of generating detailed drawings for use in product 

manufacturing, these tools are now used for numerous other development process activities 

(e.g., packaging, fabrication, and simulations) (Field, 2004). In engineering education, CAD 

tools allow students to use their knowledge and skills to create models and apply their 

adaptability to novel problems. These tools can support students to attain a level of 

expertise if a deeper practical knowledge is taught. CAD tools can greatly enhance 

development efficiency if expert modelers use them (Adler, 1990).  

The goal of CAD instruction should be providing students with the instructive 

resources necessary to make them expert CAD users. However, the current state of CAD 

education is widely viewed as inadequate. Students are not learning the skills they need to 

efficiently and effectively use the modern CAD tools in which their prospective employers 

have invested significantly. Unfortunately, in contrast with the procedural knowledge 

associated with CAD expertise (Lang, et al., 1991), current CAD instruction is focused on 

teaching step by step declarative knowledge that is specific to performing certain tasks in 
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specific software platforms (Hamade, Artail, & Jaber, 2007; Ye, Peng, Chen, & Cai, 2004). 

Feltovich, Prietula, and Ericsson (2006) defined CAD related expertise “amassing 

considerable skills, knowledge, and mechanisms that monitor and control cognitive 

processes to perform a delimited set of tasks efficiently and effectively.” Thus, the skills 

developed may not easily transfer to other tasks or contexts and the skills could easily 

become outdated or not useful if tasks and contexts change. 

One way to increase the likelihood of transfering skills to diverse tasks and contexts 

is to integrate adaptive expertise (AE) skills into engineering curriculum. Understanding the 

factors contributing AE skills and how to teach or improve AE skills is important to 

effectively design engineering instruction. It is also important to scrutinize the role of 

contextual exercises in developing AE characteristics and factors that have an effect on AE 

characteristics of students.  

AE could be defined as capabilities of both being innovative and adaptive to new 

challenges while also having content knowledge associated with expertise (McKenna, 2007). 

Key to expertise is the mastery of concepts that allow for deep understanding of that 

information, transforming it from a set of facts into usable knowledge. Expertise is the 

ability to process information quickly and recognize related solutions to problems in a 

particular skill and/or domain knowledge. Expertise is the accumulation of experience and 

expert people come to solve more complex problems in the field, utilizing relevant prior 

knowledge which is in turn gradually enriched and integrated (Hatano & Inagaki, 1986). 

Hatano and Inagaki (1986) defined two types of expertise to make the distinction clearer: 

“routine expertise” and “adaptive expertise.” Adaptive experts are those who perform 

procedural skills efficiently and understand the meaning of the skills and nature of their 
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object. Routine experts simply learn to perform a skill faster and more accurately, without 

constructing conceptual knowledge, and can even perform a task through automation of the 

procedure. The fluency of finding related solutions to problems only makes students 

“routine” experts for specific problems. However, routine expertise does not mean students 

have flexible knowledge that may be needed to invent ways to solve familiar problems and 

innovative skills to identify new problems (Brophy, Hodge, & Bransford, 2004). AE is the 

term that defines capabilities of both being innovative and adaptive to new challenges while 

also having content knowledge associated with expertise (McKenna, 2007). 

 

I.2 Purpose of the Research 

The main purpose of this dissertation is to explore the differences between novices 

versus expert modeling procedures within the contextual CAD exercises and to evaluate 

ways to promote adaptive expert characteristics in undergraduate engineering education. A 

learning environment informed by the How People Learn framework (Bransford, et al., 

2000) with a particular emphasis on learner- centeredness and contextualized student 

activities is also presented.  

I.2.1 Research Questions 

To be able to make inferences on integrating AE into engineering education, and 

make students enhance their AE skills, it is important to explore the factors that contribute 

to the development of AE skills. To address these issues, in this dissertation, three related 

chapters are presented to answer the three main questions: 

1. Which factors can contribute to the development of AE?  

2. What are the relations between the engineering students’ demographics and 
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their AE characteristics? 

3. How do contextualized activities in CAD modeling affect students’ AE 

characteristics and their modeling attributes? 

First, the literature review section presents the factors contributing to the development 

of AE. The literature review aims to highlight the key characteristics of AE, and to discuss 

how AE can be taught or developed in engineering education. The main questions for this 

part are: 

• Which factors can contribute to the development of AE in higher education?  

• How can higher education be enhanced so that students’ can develop AE 

characteristics? 

The third chapter of the dissertation presents the study describing the 

implementation of an instrument used to measure adaptive expertise at two universities and 

practicing engineers. In one university setting, freshmen and sophomore engineering 

students were surveyed with the instrument; in the other, junior and senior level engineering 

students were surveyed. In addition to the student participants, practicing engineers from 

the industry were surveyed using the instrument. In this study, to measure the respondents’ 

AE characteristics, an AE survey developed by Fisher and Peterson (2001) is used. The AE 

was designed to measure the adaptive expertise characteristics of the students in biomedical 

engineering. The instrument contains questions defining four dimensions: multiple 

perspectives, meta-cognitive self-assessment, goals and beliefs, and epistemology. Through 

the correlation analyses, the relationships among expertise related responses and 

demographic variables were examined. 

This dissertation also includes a qualitative study that scrutinizes the pre and post 
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interviews conducted through a contextualized CAD modeling activity. In this study, 302 

students from two different universities undertook the CAD modeling activity. A control 

group modeled regular textbook objects, while a contextual group used objects they were 

familiar with. In addition, practicing engineers used an unfamiliar CAD platform to 

completed the CAD activity. Effects of the contextualized activity on participants’ AE 

characteristics are investigated.  
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CHAPTER II  

FACTORS CONTRIBUTING TO THE DEVELOPMENT OF ADAPTIVE 

EXPERTISE IN ENGINEERING EDUCATION: A REVIEW OF LITERATURE 

 

 

II. 1 Overview 

 Engineering education research has become a recognized field within the last 

decade. Inquiry into the history of engineering education shows that substantive changes 

have occurred and will continue to occur (Froyd & Lohmann, 2014).  

 Today, educating engineers to be able to invent and solve novel problems is more 

important that before. Engineers need to adapt to the new challenges of current era where 

science and technology are developing swiftly. In addition, people have been increasingly 

reliant or dependent on technologically mediated systems to perform a wide array of tasks 

and there have been increasing demands for the specialization of individual skills and 

expertise (Kozlowski, 1998). Therefore, it is important to understand how to improve 

students’ adaptive expertise (AE) skills so that engineering education can be enhanced in a 

way to train more adaptive engineers who are also experts on their field. This chapter aims 

to highlight the key characteristics of AE, and to discuss how AE can be taught or 

developed in higher education and engineering education. Thus, the main questions guiding 

this literature review are: 

• Which factors can contribute to the development of AE in higher education?  

• How can higher education be enhanced so that students’ can develop AE 

characteristics? 
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II. 2 The Review of Literature  

II.2.1 Expertise 

When people develop expertise in a particular domain, they are more capable of 

thinking critically and effectively about the problems in those areas when compared to their 

novice counterparts. Experts know when to apply a procedure or rule; they predict the 

correctness or outcomes of an action and this capability for self-regulation (including self-

monitoring and self-evaluation) enables them to profit a great deal from learning and 

practice (Hatano & Inagaki, 1986). Chi, Glaser, and Farr (1988) summarized some key 

characteristics of experts: (1) Experts are mainly competent in their own domains. (2) 

Experts are faster than novices at performing the skills on particular domain and they can 

quickly solve problems with little errors. (3) Experts have superior short-term and long-

term memory. (4) Experts see and represent a problem in particular domain at a deeper 

level than novices. (5) While experts try to understand a problem deeply and take their time, 

novices immediately attempt to solve for an unknown. (6) Experts are capable of self-

monitoring their own understandings (pp. 17-20). Expertise is not simply performing 

general abilities like memory and intelligence, in a specific domain. On the other hand, 

expertise is the ability to acquire extensive knowledge, which affects what experts notice and 

how they organize, signify, and interpret information, which in turn, affects their abilities to 

remember, reason, and solve problems (Hatano & Inagaki, 1986). In addition, experts have 

a great capability for anticipation, they are able to approach systems as more global and 

functional representations, and experts have better abstraction abilities (Guerin, Hoc, & 

Mebarki, 2012). Popovic (2004) claims that the level of expertise in product design plays an 
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important role in problem representation. In his study, using a knowledge connection 

model, Popovic suggests that experts and novices differ in how they organize knowledge, 

the amount of information they use, how they access domain-specific knowledge, how they 

apply domain-specific goal strategies.  

II.2.2 Routine vs Adaptive Expertise 

In early representations of expertise, it was assumed that training for problem 

solving would enhance efficiency of decision-making skills (Newell & Simon, 1972). 

However, research soon indicated that effective decision-making skills were restricted by 

problem content and with general skills supporting little transfer across domains (Anderson, 

1993; Gagne, 1977; Hatano & Inagaki, 1986). It was recognized that experts acquire 

extensive and well-organized domain knowledge, and compile procedural rules for 

addressing restricted problems (Anderson, 1993).  

Adaptive expertise was first formally termed and conceptualized by Hatano and 

Inagaki (1986) who distinguished adaptive expertise from routine expertise. Automaticity 

characteristics appear with a well-practiced performance that is predicted on extensive 

practice and experience, which is defined as routine expertise (Hatano & Inagaki, 1986). 

Routine experts can solve large number of problems, they can simply learn to perform a 

skill faster and more accurately, without constructing/enriching their conceptual knowledge 

(Holyoak, 1991). They can solve problems fast, accurate, and fluent of performance, but 

they lack flexibility and adaptability to new problems. Experts who can apply the skills that 

they can also predict the outcomes of those skills and who can solve the problems for the 

novel situations using their knowledge and experiences can be defined as “adaptive experts” 

(Hatano & Inagaki, 1986). Routine experts are very fluent and efficient in applying their 
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skills to the situations where they are proficient and they get used to do but some experts 

may not be able to be as fluent and effective as they are when they face with a novel 

situation. Experts can quickly and effectively adapt to new challenges. Experts with 

conceptual understanding who are able to conceive new procedures when the old ones 

failed are adaptive experts. Lately, et al. (2012) define AE as “higher order problem-solving 

involving knowledge transfer across the disciplines” (p. 217). When novices become 

adaptive experts, they do not only implement practical skills efficiently but also understand 

the implications of the skills (Brophy et al., 2004). For example, a practicing engineer who is 

expert on modeling an object for years in a platform can be very fluent and effective on 

what he has been doing for years. However, if the platform is changed, the work 

responsibility is changed, or novel workplace problems appear and engineer is working 

under stress, she may not be adapt to new situations under new circumstances if she is a 

routine expert rather than an adaptive expert.  

 Engineers are hired, retained, and rewarded for their abilities to solve workplace 

problems. Engineers are important for a nation because to maintain economic success and 

sustain developments in technology, engineering technologies are significant. Therefore, the 

engineers of tomorrow must be prepared for future technological and social changes and 

for being able to attain new knowledge swiftly and apply it to evolving problems (Jonassen, 

Strobel, & Lee, 2006). Like routine experts, adaptive experts are lifetime learners, but unlike 

routine experts, adaptive experts are never fulfilled with their existing levels of 

understanding and attempt not only to work more efficiently but also to work more 

innovatively (Crawford, 2007; Donovan, Bransford, & Pellegrino, 1999). 

To be able to understand adaptive expertise deeper, it is important to understand 
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the key aspects of developing expertise and developing adaptiveness, which are presented 

next. 

II.2.3 Factors That Contribute to Developing Expertise 

Hatano and Oura (2003) summarized expert characteristics and how expertise can 

be developed; (1) Experts acquire rich and well-structured domain knowledge consist of 

segments ready to use, (2) gaining expertise requires experience in solving problems in the 

domain, with deliberate practice often requiring effortful persistence and delay of 

gratification, (3) knowledge and skills attainment is complemented by person’s interest, 

values, and identity, (4) gaining expertise is assisted by other people and artifacts (unlike in 

social learning novices are not expected to solve problems all by themselves, (5) expertise 

occurs in the process of generating the goal outcomes of the activity, (6) expertise in each 

domain takes time because there are a large number of domains in which people can gain 

expertise.  

In addition, there are some other key aspects that support developing expertise. 

Motivation, self-regulation, using relevant knowledge, and transfer of that knowledge are 

key aspects to develop expertise (Fazey, Fazey, & Fazey, 2005; Hatano & Inagaki, 1986; 

Newton, 1993; Zimmerman, 1989).  

Motivation. Learning can be defined as the acquisition of information that causes a 

change in behavior that result from experience (Donovan et al., 1999). Because learning 

requires conscious and thoughtful effort, motivation is significant for learning (Newton, 

1993) and it is one of the factors that foster learning because individuals pursue goals to 

increase their competence with motivation. These learning goals differ across individuals 

based on their self-concepts (Dweck & Leggett, 1988) as well as extrinsic and intrinsic 
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motivation. Extrinsic motivation refers to doing something for external rewards while 

intrinsic motivation refers to doing something for its inherent interest or pleasure (Bohlin, 

Durwin, & Reese-Weber, 2009). According to the cognitive theories of motivation; 

changing an individual’s cognition is also changing the motivation and so the learning. 

Those cognitions can be listed as expectations for success, valuing of learning tasks, goals, 

beliefs about the ability, and expectations of successes and also failures (Bohlin et al., 2009). 

Learning complex tasks requires focused attention and cognitive effort. In addition, 

metacognitive and self-regulatory skills entail the capability to manage motivation (Kanfer & 

Ackerman, 1989). 

People have different expectations of success so that the motivation for learning is 

also different. Those expectations depends on many different factors like past experiences, 

values, beliefs, and developmental and cultural differences. Learner’s goals and beliefs are 

the views that they have concerning their learning goals (Fisher & Peterson, 2001). Goals 

set up individuals’ display of responding, motivation, and learning. These goals are nurtured 

by individuals' self-conceptions that identify individual differences in beliefs and values that 

appear to generate individual differences in behavior like learning (Dweck & Leggett, 1988). 

Elliot (2005) reviews the history of achievement goal that focuses on achievement and 

motivation. According to the review, achievement goal construct was established in 1970s 

and since then researches and developments on motivation and achievement has been a hot 

topic and continuous to create significant research across disciplines.  Achievement goal 

construct proposed that achievement situations are constructed and engaged through 

motivation, which is characterized as beliefs on success, effort, and ability (Elliot, 2005).   

Effective management of the learning process enhances self-efficacy allowing the 
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individual to tackle difficult tasks and to continue when facing the novel challenges as well 

as to maintain motivation under challenging performance conditions (Bandura, 1991; Gist 

& Mitchell, 1992; Newton, 1993).  

Self-regulated learning strategies. Zimmerman (1989) defines self-regulated 

learners as “metacognitively, motivationally, and behaviorally active participants in their 

own learning process and direct their own efforts to acquire knowledge and skill rather than 

relying on teachers, parents, or other agents of instruction” (p. 329). Encouragement of 

active learning strategies is a key factor for the development of adaptive expertise (Smith, 

Ford, & Kozlowski, 1997). Adaptive experts have metacognitive and self-regulatory skills 

(Kozlowski, 1998). According to Zimmerman (1989), to describe a person as a self-

regulated learner, learning must involve the use of specified strategies to achieve academic 

goals. Self-regulated learners set their learning goals, attempt to benefit from their 

educational experiences, monitor their progress, make regulations in their efforts, and 

establish new, more challenging goals as they accomplish earlier ones (Miller & Brickman, 

2004). Practicing what is learned contributes to retention of learning and facilitates future 

learning opportunities Fazey et al. (2005) emphasized that individuals can learn more 

efficiently when they use their prior knowledge and experiences through self-regulated 

learning strategies such as planning, monitoring, and reviewing.  

New developments in the science of learning highlight the significance for people to 

be able to take control of their own learning (i.e., self-regulated learning). People can 

recognize when they understand or when they need more information so that they can learn 

more effectively (Bransford et al., 2000; Zimmerman, 1989). Metacognition is another 

important aspect of effective learning. Flavell (1979) defines metacognition as executive-
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level processes requiring knowledge, awareness, and control of cognitive activity involved in 

goal attainment. Metacognition refers to people’s abilities to predict their performances, and 

self-monitor, self-evaluate, and self-regulate their own understandings on various tasks 

(Brerardi-Coletta, et al., 1995). In their conference paper, Fisher and Peterson (2001) stated 

that “Individuals with high levels of metacognition frequently question their own 

understanding of a situation, and are able to recognize areas were their knowledge may be 

incomplete or insufficient” (p. 4). Experts have strong metacognitive skills that they can 

monitor their problem solving, question limitations in their knowledge, and elude simple 

interpretations of a problem. Pellegrino and Hilton (2012) define metacognition as the 

ability to reflect on one’s own learning and make adjustments accordingly that also enhances 

deeper learning. 

Relevant knowledge. The ability to learn how to recognize meaningful segments 

of information with learning experiences enhances expertise.  For an expert, knowing more 

means having more conceptual segments of information among a lot of information and 

expert knows the efficient method to retrieve related part of the information –relevant 

knowledge- to apply those to solve problems (Chi, 2006; Pellegrino & Hilton, 2012).  

What makes experts different from novices is their ability to perceive patterns in 

their knowledge that they can easily organize and integrate structures of knowledge (Glaser, 

1992). Among a vast variety of knowledge relevant to a particular area, experts know to find 

what is relevant and they organize around big ideas rather than memorizing, recalling, and 

manipulating equations to solve a problem (Bransford et al., 2000). Therefore, to be an 

expert in an area, it is important to be able to organize the knowledge available and before 

finding a solution quickly without comprehending, it is important to understand and 
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interpret it deeply on which variety of prior knowledge, skills, beliefs, and concepts play 

important role. Although experts’ fluent and useful retrieval of knowledge seems like faster 

than novices’ retrieval of knowledge, the effortful attempt of experts to understand 

problems rather than to jump immediately to solution strategies may take more time than 

novices (Bransford et al., 2000; Guerin et al., 2012). Hence, being fast in solving problems 

does not directly mean being an expert unless the solution is relevant, efficient, and have 

little errors. 

Deeper learning and transfer of knowledge. Developing expertise in an area of 

knowledge requires time and practice. In addition, learners need feedback to guide and 

optimize practice activities so that with strong interpersonal skills they can understand and 

apply such feedback (Pellegrino & Hilton, 2012). This can also be called deeper learning 

that should be the primary goal for teaching in every level of education, where students can 

succeed in solving new problems and adapting to new situations.  

Recently, educators promote “deep learning” that is defined as the process through 

which an individual becomes capable of taking what was learned in one situation and 

applying it to new situations (i.e., transfer). Transfer of learning is a critical element of 

adaptive expertise (Kalyuga, 2009). Without the ability to correctly apply knowledge within 

situations, there is little development of expertise, especially, no adaptive expertise (Paletz et 

al., 2013). Deeper learning is the process of developing expertise, which acquires stable, 

transferable knowledge that can be applied to new situations. Through deeper learning, the 

individual develops expertise in a particular domain of knowledge and/or performance. 

Pellegrino and Hilton (2012) define deeper learning also as innovation, creativity, and 

creative problem solving that help students develop transferable knowledge. This 
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transferable knowledge can be applied to solve new problems or respond effectively to new 

situations.  

II.2.4 Factors That Contribute to Development of Adaptiveness 

Adaptiveness can be developed in students leading to positive outcomes in learning 

and achievement. More adaptive students will become more successful practicing engineers 

(Fisher & Peterson, 2001). The key aspects for developing expertise mentioned above - 

motivation, self-regulation, using relevant knowledge, and transfer of that knowledge- are 

the key aspects of developing adaptiveness as well. Therefore, to develop AE 

characteristics, all of those attributes are important. Nevertheless, there are some more 

specific characteristics that differentiate “adaptive expertise” from “expertise.” These 

characteristics are discussed in the following part.  

Innovation. Adaptiveness allows students to identify and solve novel problems. It 

eventually leads to students’ depth of knowledge and habits of mind providing them success 

in their career and enable them to be innovators in their field (Brophy et al., 2004). 

McKenna (2007) defines innovation as a process of generating new knowledge and ideas 

that are useful for achieving a novel and appropriate goal where new knowledge can 

improve previous ideas or find new directions for approaching one’s goal. Innovation also 

relates to inquiry and self-regulating skills that is necessary to identify and grasp a problem, 

to identify what further knowledge is necessary, and to create ideas and control existing 

knowledge to acquire relevant knowledge (McKenna, 2007).  

According to Schwartz, Bransford, and Sears (2005), adaptive expertise emerges 

from a balance between efficient use of knowledge and the innovation skills associated with 

accessing prior knowledge, and generating new ideas and new knowledge. The dimension of 
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innovation includes many attributes connected with design and complex problem solving 

activities that an innovative attitude requires a level of determination and motivation to go 

beyond the routine (McKenna et al., 2006). In engineering education, designing and 

modeling courses can be thought as a natural setting for applying innovative activities where 

students design, model, create, and present their products. Innovation is the aspect that 

differentiates adaptive experts from the routine experts.  

Efficiency. While routine experts are efficient only, adaptive experts have both 

efficiency and innovative characteristics (Brophy et al., 2004). McKenna (2007) defines 

efficiency as one’s ability to fluently apply knowledge and skills. To be an adaptive expert, 

the ability to innovate and being efficient should be developed together (Schwartz et al., 

2005). 

 Schwartz et al. (2005) presented a two by two efficiency and innovation matrix 

(Figure 1) to characterize adaptive expertise. 

 

 

Figure 1  
Four-quadrant model to characterize adaptive expertise (Schwartz et al., 2005) 
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FIGURE 1 

FOUR CONTENT-PROCESS QUADRANTS (ADAPTED FROM COPPOLA AND 

DANIELS [20]). 
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FIGURE 2 

EXPERT AND UNENGAGED QUADRANTS (ADAPTED FROM COPPOLA AND 

DANIELS [20]). 

 

The interesting quadrants are the upper left (high 

content, low process) and lower right (low content, high 

process). What are the characteristics of learners in each of 

these quadrants and what are the tradeoffs that faculty might 

make in focusing their courses to achieve learning in either 

of these quadrants? Learners in the high-content, low-

process quadrant, have notable strengths: at a point in time, 

they have real expertise; they often get really good grades; 

they are well prepared for graduate school; they are more 

motivated and compliant; they appear smart and answer 

straightforward questions; they perform well on some 

standardized tests; they often build self confidence; they are 

well poised to solve a variety or problems; and they might 

make connections. Along with these strengths, they may 

have weaknesses: an inability to respond to change; a lack of 

flexibility; knowledge, but not knowing why they know; a 

lack of a big picture; a loss of original thought; a loss of 

skepticism; an inability to engage in moral reasoning; and an 

inability to translate their knowledge into application. 

Learners in the remaining quadrant also have notable 

strengths: they bring critical thinking into new problems; 

they probably asks a lot of questions in new situation; they 

are creative thinkers; they seek out and can identify relevant 

content (but they have to seek it because they do not know 

it); they are able to make connections; they are well prepared 

for law school; and they could be department head for any 

discipline. Again, together with these strengths, they may 

have weaknesses: abilities to fake it; tendencies to be 

careless  with  details;;  there  is  lag  time  to  get  “skilled”;;  there  
will be more mistakes (at least initially) without knowledge 

of history content; inability to perform well on content-

oriented activities (e.g., tests); and they could end up in over 

their head. Broadly speaking, strengths of learners in one of 

these two quadrants are mirrors of the weaknesses of 

learners in the other quadrant and vice versa. In an attempt 

to capture strengths and weaknesses of learners in these two 

quadrants, Coppola and Daniels offer two mnemonic labels 

for the two quadrants (see Figure 3). 
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FIGURE 3 

MNEMONICS FOR THE FOUR QUADRANTS (ADAPTED FROM COPPOLA AND 

DANIELS [20]). 

ADAPTIVE EXPERTISE 

Coppola   and  Daniels’   two-by-two matrix is very similar to 

the two-by-two matrix that Schwartz, Bransford, and Sears 

use to characterize adaptive expertise [21]. Similar to the 

Coppola and Daniels matrix, the matrix by Schwartz and 

others has two dimensions: efficiency (related to content) 

and innovation (related to process) (see Figure 4). 
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FIGURE 4 

FOUR QUADRANT MODEL TO CHARACTERIZE ADAPTIVE EXPERTISE 

(ADAPTED FROM SCHWARTZ, LIN, BROPHY, & BRANSFORD [21]). 

 

Comparing Figures 3 and 4, it can be seen that two sets 

of researchers, with different backgrounds and starting at 

different points in posing questions about student learning, 

have constructed very similar characterizations of student 

learning goals. Therefore, it might be productive to inquire 

more deeply into additional questions that might be posed 

using the two-dimensional content/efficiency and 

process/innovation framework. One of these questions might 

be posed in the following way: If the desired end point of 
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To explain the efficiency scale, Schwartz et al. (2005) provide examples: If a doctor 

is a routine expert who frequently performs a particular type of surgery, she can diagnose 

and treat a new patient quickly and effectively. To solve a problem, those who are high in 

efficiency can rapidly retrieve appropriate knowledge and effectively apply that knowledge 

and skills. The other scale in the matrix is innovation, which signifies taking risks and 

preferring challenges rather than being efficient and safe. Innovative person thinks deeply 

and creatively to solve a problem. For example, skilled musicians avoid well-learned 

routines so that he could move to a new level of playing ability. 

 McKenna et al. (2006) reevaluated the efficiency and innovation matrix (Figure 1) to 

examine an “optimal adaptability corridor” (OAC), the function of which is to confirm that 

innovation and efficiency develop together. Figure 2 represents the balance between 

efficiency and innovation.  

 

Figure 2  
Adaptive expertise as a balance between two dimensions for learning and assessment: 

efficiency and innovation (McKenna et al., 2006) 
 

The balance between two characteristics of AE is significant to develop instruction 

cause AE provides a useful way of framing the target for engineering education, in 
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Hatano and Oura explain that the majority of studies on 
expertise “have shown that experts, who have had many years 
of problem-solving experiences in a given domain, can solve 
familiar types of problems quickly and accurately, but often 
fail to go beyond procedural efficiency” [3, p. 28]. 
 
In contrast, an adaptive expert is one who can go beyond 
procedural efficiency and “can be characterized by their 
flexibility, innovative, and creative competencies within the 
domain” [3, p. 28]. The concept of adaptive expertise presents 
an interesting challenge to the education community. 
Specifically, if we recognize that the characteristics of 
adaptive expertise are desired attributes, how might we 
structure a learning environment to help one develop these 
characteristics? 
 
In order to help address this question Schwartz et al. present a 
model for thinking about the benefits of combining instruction 
to focus on elements of routine and adaptive expertise. Figure 
1 [1] presents two dimensions of learning in instruction and 
assessment: innovation and efficiency. Those who are high in 
efficiency can rapidly retrieve and effectively apply 
appropriate knowledge and skills to solve a problem. One 
example they provide of a routine expert is a doctor who 
frequently performs a particular type of surgery. Form an 
efficiency perspective, she can diagnose and treat a new 
patient quickly and effectively. 
 

 
Figure 1: Adaptive expertise as a balance between two 
dimensions for learning and assessment: efficiency and 
innovation. 
 
In contrast, the innovation scale represents a willingness to 
move away from being efficient and to challenge the status 
quo. The willingness to resist making assumptions in order to 
think deeply and creatively about a problem or situation is a 
characteristic associated with innovation. For example, 
Schwartz et al. describe the skilled musician who needed 
break free of well-learned routines so he could move to a new 
level of playing ability [1]. 
 
For those of us focused on designing instruction we are faced 
with the challenge of how to balance efficiency and innovation 
in the academic environment. Arguably, traditional 
engineering education has focused almost exclusively on the 
efficiency scale. As an alternative, adaptive expertise provides 

a useful way of framing the target for engineering education, 
in particular design education. 
 
We revisit Fig. 1 to discuss what Schwartz et al. have termed 
an “optimal adaptability corridor” (OAC). The function of the 
OAC is to ensure that innovation and efficiency develop 
together [1]. We acknowledge the value of the OAC for 
reminding educators of the importance of these two 
dimensions and as a framework for gauging our instructional 
experiences. However, as other researchers have noted, we 
emphasize that there are possibly many different trajectories 
one might take to navigate to the goal of reaching adaptive 
expertise.  Specifically, we do not intend to indicate that the 
path is linear or proceeds at steady pace (as could be 
interpreted by the roughly 45 degree path in Figure 1). Open 
questions remain about how to balance the two dimensions 
when providing instruction. Furthermore, it is unclear to what 
extent students regress and advance as they move along to 
path to adaptive expertise. 
 
The following sections provide an overview of our design 
curriculum in IDEA and discuss aspects of our approach to 
design education that aims to foster the development of 
adaptive expertise. 
  
INTERDISCIPLINARY DESIGN IN THE INSTITUTE 
FOR DESIGN ENGINEERING AND APPLICATIONS  
At Northwestern University we established the Institute for 
Design Engineering and Applications (IDEA) within the 
engineering school to integrate interdisciplinary design 
throughout the curriculum. IDEA offers several design courses 
where students work in teams to develop design solutions to 
real projects for actual clients. Students interact with clients, 
product users, experts, instructors, and teammates throughout 
the design process and are required to convey design ideas to 
multiple audiences [6, 7]. In
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We follow a collaborative and iterative process such that our 
curriculum conveys that the design process: 

�� is needs-driven (in contrast to specification-driven or 
hypothesis-driven). 

�� is about converting intellectual capital into products 
and processes that meet societal needs.  

�� encompasses many phases, and we provide students 
experiences from design conception to production. 

 
The design projects we offer in IDEA fall into three basic 
categories: faculty-initiated, student-initiated, and client-
initiated. Examples of each of these categories of projects are 
given in Table 1. 
 
Table 1: Examples of design projects underway in IDEA. 
 

Project 
Type 

Project 
Name 

Goal of 
Project 

Relevance of 
Project 

Faculty-
Initiated 

 
Infant Feeder 
for HIV+ 
Mothers

Design a milk 
feeding 
apparatus that 
will allow a 

Every year, 
219,000 new 
infections 
result from 
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particular design education that focused almost exclusively on the efficiency scale 

(McKenna et al., 2006). Although that there are possibly many different trajectories one of 

which might take to navigate to the goal of reaching adaptive expertise, McKenna et al. 

(2006) acknowledged the importance of the OAC reminding educators of the prominence 

of efficiency and innovation and as a framework for assessing the instructional experiences.  

  Paletz et al. (2013) stated that innovation without efficiency runs the risk of being 

out-of-touch, unaccepted, or too slow to be of use; efficiency without innovation can be 

acceptable but may not evolve the domain as needed. Therefore, students should be 

encouraged to grow and develop these two dimensions simultaneously. According to 

McKenna et al. (2006), traditional engineering education has focused almost exclusively on 

the efficiency scale. Attaining innovation requires not only a combination of social, 

motivational, and environmental conditions but also learning how to transfer the right 

knowledge in the right way at the right time (Paletz et al., 2013).  

Experiences. Students’ experiences play an important role in their capabilities for 

effective learning, on building knowledge and skills for adaptiveness, and on being more 

innovative (Martin et al., 2006). According to Fazey et al. (2005), to develop adaptive 

expertise; individuals need to have diverse experiences and be able to reflect on their 

experiences, and they need to seek out opportunities to look situations from different 

perspectives. Therefore, students should be encouraged to be vulnerable to the possibility 

of changing their current way of thinking. These opportunities can be offered students in 

different ways. Because Computer Aided Design (CAD) tools are one of the most pervasive 

tools used in engineering education and in the field, these tools can support students to 

develop AE throughout their education. Kalyuga (2009) stated that students with sufficient 
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levels of experience in a domain are able to adapt the learning environment themselves by 

selecting their own learning tasks or methods, making those students motivated and gaining 

self-regulated skills.  

II.2.5 AE in the Context of Higher Education 

Adaptive expertise has relevance across a variety of disciplines, including medicine, 

engineering, business, and education (Bell et al., 2012). Therefore, it can be beneficial to 

scrutinize and understand how AE can be developed through higher education in general to 

be able to make inferences for developing AE in engineering education. 

First of all, Hatano and Inagaki (1986) projected three learning environment factors 

that contribute to the development of adaptive expertise. First, learners must encounter 

variability such that they should apply a procedure with variations. This way, students can 

learn how to meet changing demands by applying their knowledge flexible in different 

contexts (Hatano & Inagaki, 1986; Hatano & Oura, 2003). Second, students should be able 

to use risky adaptive strategies rather than using safe usual ones. In addition, according to 

Hatano and Inagaki (1986), active participation in learning process and working 

collaboratively can be effective on developing adaptive expertise.  

Developing adaptive expertise is not a quick process. Bransford (2007) suggested it 

might be more difficult to teach how to be adaptive to a routine expert who is set in his 

ways. However, it is likely possible for individuals to exhibit both routine and adaptive 

expertise simultaneously. Therefore, it is important to help learners understand themselves 

as thinkers, problem solvers, and lifelong learners. Understanding how to foster 

development of adaptive expertise is an essential implementation for promoting progression 

in learners. Although most researchers consider adaptive expertise as a step after mastery of 
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content knowledge (Kalyuga, 2009; Martin et al., 2006; McKenna, 2007; Walker et al., 2006) 

associated with routine expertise, some researchers in the field think adaptive expertise can 

and should develop alongside routine expertise (Brophy et al., 2004; Crawford, 2007). 

Therefore, while learners master in content knowledge, they can possibly develop the 

cognitive and metacognitive skills that complement adaptive expertise (De Arment, Reed, & 

Wetzel, 2013).  

Jonassen et al. (2006) discussed some implications for engineering education to 

increase students’ ability of being more adaptive. These implications are briefly explained 

here: (1) Students should be prepared for future learning situations, in school or out, which 

comprises the ability to solve problems and to learn independently and collaboratively 

because in engineering contexts, the need for continuous, lifelong learning has been always 

becoming greater. (2) For preparing engineering students to become better problem solvers, 

integrating problem-based learning to courses is also important that it will replace traditional 

courses with integrated, interdisciplinary sets of complex problems, where learning is self-

monitored and self-directed; students must decide what knowledge they need to construct 

in order to solve the problems. (3) To make students more capable to understand nature of 

workplace problems in their learning experiences, complex and ill-structured problems 

should be integrated. (4) In addition, engaging students in solving as many different kinds of 

problems as possible also make them be able to find an optimal solution within determined 

constraints. (5) As it is important for engineers to be able to function on multi-disciplinary 

teams and teamwork, collaborative learning should be an important part of engineering 

classrooms.  

According to Kozlowski (1998), to be able to encourage students to develop 
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adaptiveness, critical learning outcomes (i.e., learning strategies, metacognitive and self- 

regulatory skills, knowledge structure, efficacy, and motivational skills) are required. Because 

experts’ knowledge is organized around important ideas or concepts and experts acquire the 

necessary segment of knowledge, higher education curricula should also be organized in 

ways that lead to conceptual understanding. It is important to cover the facts and big ideas 

before moving to the next topic rather than giving a little time to develop important, 

organizing ideas (Bransford et al., 2000). Before that, the learning goals and a model of how 

learning is expected should be determined clearly even before higher education as early as 

for elementary education. Therefore, students can be prepared to think critically and how to 

attain necessary knowledge through years by gaining experience before coming to 

university. According to Bransford et al. (2000), one way to develop expertise in students is 

to assign them real-world problems relating the concepts and formulas with real life use and 

if the instruction is well designed on this students can learn when, where, and why to use 

the knowledge they are learning.  

On one hand developing declarative domain knowledge and enhancing practice on 

solving domain related problems are mainly the results of training routine experts. On the 

other hand, for enhancing more complex problem solving abilities, realistic problems may 

be given to students so that transfer is conceptualized as the reproduction of skills across 

environments, from training to the performance context (Kozlowski, 1998). For the 

development of metacognitive and self-regulation skills, increased levels of learner control 

over sequencing of learning task and selecting an appropriate level of objective specificity 

are essential conditions (Kalyuga, 2009). Moreover, connecting topics with students’ 

personal lives and interests, and engaging students in collaborative problem solving, and 
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emphasizing the importance of developed knowledge and skills students motivate children 

for deeper learning (Pellegrino & Hilton, 2012). In their book, Pellegrino and Hilton (2012) 

list recommendations for promoting deeper learning and expertise some of which are 

summarized as follows: 

• Curriculum and instructional programs should be designed to include research 

based teaching methods; for example, elaboration, questioning, and explanation 

should be integrated, learners should be engaged in challenging tasks with the 

guidance and feedback, and students should be supported to learn with examples 

like step by step modeling procedures that they can carry out a procedure to solve a 

problem. 

• Modeling and feedback techniques that highlight the processes of thinking rather 

than focusing exclusively on the products of thinking should be integrated into 

education.  

• Problem-solving and metacognitive skills should be taught within a specific subject 

area rather than as a stand-alone course. 

• Proficiency cannot be gained without time, effort, motivation, and illuminating 

feedback. Hence, sustained instruction and effort are essential to develop expertise 

in problem solving and metacognition.  

While all these suggestions are to develop students’ expertise, they do not clearly 

delineate or target routine expertise and adaptive expertise. The distinction between these 

types of expertise has implications for defining learning outcomes and designing instruction 

therefore, instructional goals need to be clear about which type of expertise is the final 
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outcome (Brophy et al., 2004).  

According to Kalyuga (2009), training for adaptive and flexible expertise necessitates 

developing advanced forms of generalized knowledge and skills that are applicable to a 

greater variety of situations. Learning environments that provide more freedom for 

structuring students’ learning tasks support students with advanced metacognitive and self-

regulation skills. In this way, learner-controlled settings could be effective both in 

developing domain knowledge and skills, and in improving learner’s metacognitive and self-

regulation skills as indispensible attributes of adaptive expertise (Kalyuga, 2009).  

To explore how problem-based learning may offer a time-efficient approach to 

developing adaptive expertise in engineering education, Froyd (2011) presented a 

conference paper that compared two by two process-content matrix adapted from Coppola 

and Daniels (1996) and two-by-two, innovation-efficiency matrix used to characterize 

adaptive expertise adapted from Schwartz et al. (2005). Coppola and Daniels (1996) worked 

about goals for learning chemistry and they proposed that in order to devote precious class 

time to issues of process, students would end up not knowing as much. They meant that 

you couldn’t just teach “thinking” without also having something to think about. Therefore, 

process is contextualized by the content. They suggested that content and process were two 

different dimensions for characterizing learning outcomes assuming that learning along each 

dimension can be characterized as either high or low, a two-by-two matrix can be 

constructed (Figure 3). 
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Figure 3  
Expert and unengaged quadrants (Coppola & Daniels, 1996) 

 

Froyd (2011) presented a conference paper that reviewed and showed how Coppola 

and Daniels’ two-by-two matrix is very similar to the two-by-two matrix that Schwartz et al. 

(2005) use to characterize adaptive expertise (Figure 1). Both matrixes presents two 

dimensions: efficiency -related to content- and innovation -related to process- and it can be 

seen that two sets of researchers, with different backgrounds and starting at different points 

in posing questions about student learning, have constructed very similar characterizations 

of student learning goals. Figure 4 presents both to make visualize them easier.  

 

Figure 4  
Process-content matrix (Coppola & Daniels, 1996) and innovation-efficiency matrix 

(Schwartz et al., 2005) 
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FIGURE 2 

EXPERT AND UNENGAGED QUADRANTS (ADAPTED FROM COPPOLA AND 

DANIELS [20]). 

 

The interesting quadrants are the upper left (high 

content, low process) and lower right (low content, high 

process). What are the characteristics of learners in each of 

these quadrants and what are the tradeoffs that faculty might 

make in focusing their courses to achieve learning in either 

of these quadrants? Learners in the high-content, low-

process quadrant, have notable strengths: at a point in time, 

they have real expertise; they often get really good grades; 

they are well prepared for graduate school; they are more 

motivated and compliant; they appear smart and answer 

straightforward questions; they perform well on some 

standardized tests; they often build self confidence; they are 

well poised to solve a variety or problems; and they might 

make connections. Along with these strengths, they may 

have weaknesses: an inability to respond to change; a lack of 

flexibility; knowledge, but not knowing why they know; a 

lack of a big picture; a loss of original thought; a loss of 

skepticism; an inability to engage in moral reasoning; and an 

inability to translate their knowledge into application. 

Learners in the remaining quadrant also have notable 

strengths: they bring critical thinking into new problems; 

they probably asks a lot of questions in new situation; they 

are creative thinkers; they seek out and can identify relevant 

content (but they have to seek it because they do not know 

it); they are able to make connections; they are well prepared 

for law school; and they could be department head for any 

discipline. Again, together with these strengths, they may 

have weaknesses: abilities to fake it; tendencies to be 

careless  with  details;;  there  is  lag  time  to  get  “skilled”;;  there  
will be more mistakes (at least initially) without knowledge 

of history content; inability to perform well on content-

oriented activities (e.g., tests); and they could end up in over 

their head. Broadly speaking, strengths of learners in one of 

these two quadrants are mirrors of the weaknesses of 

learners in the other quadrant and vice versa. In an attempt 

to capture strengths and weaknesses of learners in these two 

quadrants, Coppola and Daniels offer two mnemonic labels 

for the two quadrants (see Figure 3). 
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the two-by-two matrix that Schwartz, Bransford, and Sears 

use to characterize adaptive expertise [21]. Similar to the 

Coppola and Daniels matrix, the matrix by Schwartz and 

others has two dimensions: efficiency (related to content) 

and innovation (related to process) (see Figure 4). 
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Comparing Figures 3 and 4, it can be seen that two sets 

of researchers, with different backgrounds and starting at 

different points in posing questions about student learning, 

have constructed very similar characterizations of student 

learning goals. Therefore, it might be productive to inquire 

more deeply into additional questions that might be posed 

using the two-dimensional content/efficiency and 

process/innovation framework. One of these questions might 

be posed in the following way: If the desired end point of 
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The main questions that Froyd (2011) asked were: If the desired end point of 

student development in engineering curricula is the adaptive expert quadrant (expert 

quadrant in the Coppola and Daniels’ framework), what trajectories of student development 

would be superior to others? And what characterizes more efficient -in terms of time- 

trajectories to reach adaptive expertise? To address these questions in his study, instead of 

indicating only high and low values, Froyd (2011) used two continuous paths assuming that 

both the content/efficiency and process/innovation dimensions have real numbers in the 

two-dimensional space, in which one end point is where a student begins an undergraduate 

engineering curriculum and the other end point where she ends (Figure 5).  

 

 

Figure 5  
Student development via two different paths: content emphasis first and process emphasis 

first (Froyd, 2011) 
 

The first kind of path is the content emphasis first where students develop mastery 

with respect to the content/efficiency dimension first. Then, after their content/efficiency 
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student development in engineering curricula is the adaptive 
expert quadrant (expert quadrant in the Coppola and 
Daniels’   framework),   what   trajectories   of   student  
development would be superior to others? 

STUDENT DEVELOPMENT TRAJECTORIES 

To address this question, the restriction that both the 
content/efficiency and process/innovation dimensions have 
only high and low values has to be removed. Instead, values 
for both of these dimensions will be assumed to be real 
numbers. In this case, characterizations of student 
development can be oversimplified and describes as 
continuous paths in the characterized as a trajectory in the 
two-dimensional space, in which one end point is where a 
student begins an undergraduate engineering curriculum and 
the other end point where she/he ends. Now, a question 
about the paths can be posed: What characterizes more 
efficient (in terms of time) trajectories to reach adaptive 
expertise? 

Definitive answers to this question are far from being 
determined. However, two very different kinds of paths can 
be described. The first kind of path is where students 
develop mastery with respect to the content/efficiency 
dimension first (content emphasis first). Then, after their 
content/efficiency expertise has reached a high level, they 
invest time and resources in developing process/innovation 
expertise. Students following the second kind of first 
develop mastery with respect to the process/innovation 
dimension first (process emphasis first). Then, after their 
process/innovation expertise has reached a high level, they 
invest time and resources in developing content/efficiency 
expertise. Thinking about pure implementation of the second 
kind of path may summon to mind an assertion by Coppola 
and  Daniels:  “Process  is  contextualized  by  the  content—you 
cannot   just   teach  “thinking”  without  also  having something 
to   think   about!”   If   this   assertion   is   accepted   as   true,   then  
developing process/innovation expertise cannot happen in a 
vacuum; there must be content underlying teaching and 
learning with respect to process/innovation development. As 
a result, learning with respect to the content/efficiency 
dimension cannot be at a very low level while 
process/innovation development is being emphasized; 
however, primary emphasis in learning activities during the 
first part of the second kind of path is process/innovation. 
The second kind of trajectory is reminiscent of Bransford 
and   Schwartz’s   characterization   of   Preparing   for   Future  
Learning [22]. These two kinds of trajectories are shown in 
Figure 5. 

First, note that traditional design of engineering 
curricula and engineering courses tend to emphasize 
trajectories of student development that resemble the content 
emphasis first path shown in Figure 5. Problem-based 
learning and other situation-anchored approaches to design 
of learning experiences tend to emphasize trajectories that 
remember process emphasis first path shown in Figure 5. If 
student development trajectories are limited to these two 
kinds of trajectories, another oversimplification, then the 

question for this section can be reduced to a simple 
comparison: Which kind of trajectory (content emphasis first 
or process emphasis first) is traversed by students more 
rapidly to reach an end goal of adaptive expertise? 

 
FIGURE 5 

STUDENT DEVELOPMENT VIA TWO DIFFERENT PATHS: CONTENT EMPHASIS 
FIRST AND PROCESS EMPHASIS FIRST. 

 
At least one study examined research questions related 

to this question about trajectories of student development 
[23]. In this study, ninth-grade students received instruction 
about   mean   deviation.   For   one   set   of   students   (“tell-and-
practice”   set),   “the   teacher   introduced   grading   on   a   curve  
and then told the students a procedure for marking deviation 
regions on a histogram to compare scores (Appendix B). 
Students  practiced  on  a  new  data  set  for  comparing  grades”  
[23]. For the second  set  (invention  set),  “the  students  did  not  
receive the introduction to grading on a curve, and the 
students tried to invent a way to determine whether a long 
jump  or  pole  vault  competitor  had  broken  their  sport’s  prior  
world record by a greater relative amount. Students worked 
in small groups. There were no class presentations, no 
sharing of solutions, and the students did not receive any 
feedback   on   their   inventions”   [23].   After   the   instructional  
interventions, subsets of the tell-and-practice-set and the 
invention set took a post-test with a worked example related 
to the subject of the post test and other subsets took the post-
test with no resource. Of the four different groups with 
results from the post-test, only one group demonstrated 
significantly improved performance:  the group that received 
the   invention   intervention.   That   is,   “the   students   who  
invented their own methods for standardizing data learned 
from a worked example embedded in the test and 
spontaneously transferred this learning to solve a novel 
problem, even more so than students who had been told and 
had practiced a specific visual technique for standardizing 
data”  [23]. 

Unfortunately, the author is not aware of other studies 
that would provide evidence to clarify answers to the 
question about time-efficient, student-development 
trajectories that lead toward adaptive expertise.  However, 
there are several teaching approaches that are closely related 



 27 

expertise has reached a high level, they invest time and resources in developing 

process/innovation expertise. The second path is the process emphasis first path. They first 

develop mastery with respect to the process/innovation dimension first. Then, after their 

process/innovation expertise has reached a high level, they invest time and resources in 

developing content/efficiency expertise. According to Froyd (2011), traditional design of 

engineering curricula and engineering courses tend to emphasize trajectories of student 

development that resemble the content emphasis first path. Second path that emphasizes 

innovation more should be taken into consideration to implement into engineering 

education. However, pure implementation of the second path is unreasonable because as 

Coppola and Daniels (1996) claimed “Process is contextualized by the content—you cannot 

just teach “thinking” without also having something to think about.” Therefore, learning 

regarding the content/efficiency dimension cannot be at a very low level while 

process/innovation development is being emphasized (Froyd, 2011).  

II.2.6 Problem-Based Learning in Engineering Education 

In most undergraduate classes, students learn to solve textbook problems that are 

constrained and well structured, with known solution paths and convergent answers. 

 Outside of classrooms, Jonassen et al. (2006) claim that workplace problems are 

more likely to be ill structured and unpredictable because they possess conflicting goals, 

multiple solution methods, unanticipated problems, and distributed knowledge. Cross 

(2004) identifies specific behaviors that distinguish the nature of expert performance in 

design. He synthesized that expert designers appear to spend substantial time and attention 

on defining the problem. Cross (2004) also explains that expert designers are solution 

focused and take effort to structure the problem appropriately. Therefore, learning to solve 
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classroom problems does not effectively prepare engineering graduates to solve workplace 

problems, which is an important part of being an adaptive expert. According to Jonassen 

(2014), engineering educators must adopt new pedagogies to encourage their graduates 

become effective engineers. Because engineering students learn to solve problems that are 

unlikely to transfer to workplace problem solving and to achieve this goal, problem based 

learning (PBL) can be a preferable method of teaching in engineering classroom.  

PBL instruction is a part of constructivism as a cognitivist approach (Prince & 

Felder, 2006). All versions of cognitive theory including constructivism state that 

“knowing” consists of having mental models that have been created and stored in the 

learner's long-term memory as a function of interacting with the environment (Bartlett, 

1932). These models were deemed essential to reasoning and problem solving in any expert 

practice. Constructivism adheres to the mechanisms of creating and storing mental models, 

but with the learner in control (Bartlett, 1932; Dewey, 1916; Glasersfeld, 1989; Piaget, 

1973). Unlike novices, experts deploy these models to analyze, design, interpret, diagnose, 

and predict (Kolmos & Graaff, 2014). PBL in approach concerns the learning process of 

working with problems, which involves identification, analysis, and solution and it can be 

real-life/authentic, and practical problems (Kolmos & Graaff, 2014) that will support 

engineering students’ to be better prepared for the field.  

As stated, PBL is a part of cognitivist approach that learners explore their own 

understanding and they explore during the learning process (Prince & Felder, 2006). 

Newstetter and Svinicki (2014) presented design principles for cognitivist instruction which 

are also significant aspects of developing AE:  

• A focus on making connections with the learner's prior knowledge. 
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• Taking advantage of prior knowledge and experience of the learner. 

• Aiming for deep processing of information (learning with understanding) 

rather than passive dependence on surface features. 

• Involving the learner actively. 

• Developing metacognitive knowledge that allows students to control their 

own learning. 

 

II. 3 Conclusion 

Adaptive skills are fully developed and refined in the performance environment that 

is a learner-centered environment, and curriculum and instruction must reflect such 

approaches if students are to develop adaptive skills. Learner centered instruction is self-

reflective, where learners monitor their understanding and learn to adjust strategies for 

learning (Hung, Jonassen, & Liu, 2008). Therefore, it may be beneficial to shift more 

training to the performance context and students centered approaches such as PBL that 

aims to enhance learning by requiring learners to solve problems. Unfortunately, a few 

engineering programs have implemented PBL throughout their curriculum (Jonassen, 2014). 

Engineers are hired, retained, and rewarded for solving problems, problems that are unlike 

the well-structured problems that they learn to solve in most engineering education 

programs but workplace problems are ill structured. Engineers regularly solve combinations 

of decision-making problems, troubleshooting problems, and most commonly design 

problems. To help engineering students learn to solve workplace problems in order to 

become more effective and innovative engineers, some form of PBL may be implemented 
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to curriculum.  

 For the development of AE, encouraging students’ involvement is required so that 

their motivation and self-regulation skills are enhanced. Alternative techniques can be based 

on the learner-controlled actions that give the students control over the tasks they want to 

study or practice that is essential characteristic for the development of learner metacognitive 

and self-regulation skills (Kalyuga, 2009). However, because it is difficult to eliminate the 

system control, it can be a good choice to create a combination of system and learner 

control or vary the level of learner control as expertise and self-regulation skills develop for 

creating the ideal learning environment to develop AE. This kind of learning environment 

would be more flexible as well. According to Bransford (2007), knowledge and its 

organization is important for flexibility and self-exploring how to organize knowledge can 

help people use their knowledge in ways that support flexibility.  

It can also be interfered from the literature that learners should experience courses 

of inquiry and innovation that include challenges and struggles. This can help learners make 

their experiences explicit and help them improve their innovations by connecting them to 

expert knowledge (Schwartz et al., 2005).  Innovation might also be achieved through 

dynamic transfer whereby a number of interactions with the problem-solving environment 

may lead one to transfer prior knowledge to the new condition. Through these interactions 

with and influences of the environment, a coordination of previously learned concepts is 

eventually constructed that deliver one to an innovation (McKenna, 2014).  

II.3.1 Limitations and Future Directions 

 After reviewing the literature, open questions still remain about how to balance the 

dimensions contributing development of AE when providing instruction to engineering 
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students. And what kind of activities can be provided to advance students’ AE 

characteristics? However, through the literature, it is understood that promoting learning in 

ways that better prepare students for future learning with problem based learning and 

related approaches may be a good way to develop AE characteristics.  

In the literature, applying the adaptive expertise framework for instructional or 

research purposes is the lack of specificity for what might characterize “efficiency” and 

“innovation” that are the key elements of AE. According to (McKenna, 2014), the lack of 

specificity raises challenges with regard to developing metrics such that one might measure 

AE, or even be able to recognize it when it occurs. It is difficult to develop instruments to 

detect the phenomena or to know how to structure experiences in order to develop AE. 

Hence, more studies are required to clarify how engineering education should be shaped to 

enhance students’ AE characteristics.  

In addition, for future studies it can be recommended that the engineering faculty 

should also be directed in a way to develop AE for both themselves and their students.  

Engineering educators should also evaluate their current classroom activities in terms of 

learning theories and have the tools to develop new designs for developing AE in their 

students. Moreover, because classroom instruction most often derives from one's 

conception of how students learn, the goal for future research may be to work on how 

engineering faculty can be assisted to be more reflective about their own theory of learning. 

A more ambitious suggestion can be to provide engineering faculty and researchers with 

tools for thinking about, identifying, and designing educational research studies on 

development of classroom activities for enhancing AE. 

  



 32 

CHAPTER III  

THE RELATIONSHIPS BETWEEN ADAPTIVE EXPERTISE DIMENSIONS 

AND STUDENTS’ DEMOGRAPHIC CHARACTERISTICS 

 

 

III.1 Introduction 

To be an adaptive expert, learning experiences should promote being innovative and 

efficient to grow and develop simultaneously (Schwartz et al., 2005). Adaptive experts tend 

to be more open to investigate, to use their metacognitive and self-regulation skills, and to 

hold more advanced personal epistemologies. These characteristics make the adaptive 

experts flexible, innovative, and creative especially in novel situations (Hatano & Oura, 

2003). Engineering is a field that is continually changing, so, it is important to train adaptive 

expert engineers to prepare them for this swiftly developing industry. Therefore, identifying 

the AE characteristics of engineering students will help to make suggestions to enhance the 

quality of  Computer Aided Design (CAD) education. 

 This work describes the implementation of an instrument used to measure adaptive 

expertise characteristics of the students in two courses at two universities and practicing 

engineers. The instrument contains questions defining four dimensions: “multiple 

perspectives, meta-cognitive self-assessment, goals and beliefs, and epistemology.” In one 

university setting, freshmen and sophomore engineering students were surveyed with the 

instrument; in the other, junior and senior level engineering students are surveyed. In 

addition to the student participants, practicing engineers from industry are surveyed. 

Participants’ demographic characteristics data were collected. These data are used to 
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examine the relationships among participants’ expertise related responses and demographic 

variables. The observed differences between students’ and engineers’ responses to the 

survey items are reported. In general, results indicated that practicing engineers revealed 

more adaptive expertise characteristics than students. In addition, senior students revealed 

more adaptive expertise characteristics than their freshmen counterparts. 

In their conference paper, Fisher and Peterson (2001) identified four main concepts 

-multiple perspectives, metacognition, goals and beliefs, and epistemology- that form the 

basis of adaptive expertise. They developed a survey to measure these qualities of 

adaptiveness in targeted engineering students. This study aims to use this adaptive expertise 

survey (AES) developed by Fisher and Peterson (2001) to interpret the students’ AE 

characteristics. In addition, the purpose of the work is to explore the relations between 

students’ demographics and AE characteristics. 

III.1.1 Four Dimensions of Adaptive Expertise 

Personal epistemology. Adaptive experts frequently hold more sophisticated 

personal epistemology (Fisher & Peterson, 2001). Personal epistemology research explains it 

as the beliefs and theories that individuals hold about knowledge and knowing (Hofer, 

2004). In other words, epistemology is a metacognitive process. It is one’s beliefs on 

knowledge and attitudes towards the nature of the knowledge in the field and its generation. 

Adaptive experts believe that the knowledge in their field is dynamic in nature and it is 

subject to change as needed. They view the domain knowledge as not static or fixed, but 

dynamic and subject to change (Hatano & Inagaki, 1986). These characteristics of adaptive 

experts allow individuals to be more flexible to adapt the novel situations and to inquire or 

generate new knowledge instantaneously. Flexibility is an important aspect of being an 
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adaptive expert (Brophy et al., 2004). However, it is not an easy characteristic that experts 

can have with practice only. In a study (Mercier & Higgins, 2013) to examine whether 

collaborative a multi- touch classroom supported the development of mathematical 

adaptive expertise, and specifically aspects of fluency and flexibility, when compared to a 

similar, individual task. In this study, a task for a multi- touch classroom that aimed to 

support both fluency and flexibility was developed. According to the results, all students 

increased in fluency after completing these activities, while students who used collaborative 

class also increased in flexibility. Mercier and Higgins (2013) concluded that while fluency 

could be developed with practice, designing activities that support the development of 

flexibility was more difficult.  

Metacognition. Metacognition is an important factor of adaptive expertise (Hatano 

& Inagaki, 1986). The learner engages in self-monitoring and organization through 

“metacognition” that should be thought of as self-regulatory executive functioning that 

keeps the learning process flowing smoothly (Atkinson & Briggs, 1983). Students with 

metacognitive skills can successfully monitor their own understandings and they can 

recognize that their knowledge may be incomplete in some situations (Donovan, Bransford, 

& Pellegrino, 1999; Fisher & Peterson, 2001). In addition, being able to identify when 

additional information is required for understanding, whether new information was 

consistent with what students already knew, and what correlations could be drawn that 

would improve their understanding are all metacognitive characteristics (Hatano & Inagaki, 

1986). Metacognition plays a role in adaptive experts’ ability to self-assess and judge when 

their current levels of understanding are not sufficient (Bransford et al., 2000). 

Metacognitive self-assessment is the ability to know when to select an efficient or an 
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innovative procedure (Crawford, 2007). Metacognitive practice allows for learning to occur 

during the course of problem solving as well while as learners actively engage with and 

assess their own thinking and understanding. 

It is also important for a student to be confident on what she is doing. Confidence 

is one of the important characteristics of adaptive expertise that confidence supports 

creating novel but safe and attractive products (Walker et al., 2006).  

Goals and beliefs. The students having concerns for their learning have some goals 

and beliefs for their learning and development. Therefore, they view challenges as learning 

opportunities and they seek out for those opportunities (Fisher & Peterson, 2001). Those 

students also have some self-regulation strategies that are also characteristics of adaptive 

expertise. Self-regulation strategies help identifying goals to generate ideas or improve an 

existing idea (McKenna, 2007). Adaptive experts also display the ability to transfer their 

knowledge, skills, beliefs, and attitudes to new situations. Pandy, Petrosino, Austin, and Barr 

(2004) define three important aspects of adaptive expertise as; (1) factual knowledge, which 

is a student’s ability to retain key facts and principles, (2) conceptual knowledge, which is a 

student’s ability to comprehend the underlying principles of the material taught as well as 

his or her quantitative skills, and (3) transfer, which is a student’s ability to extend his or her 

knowledge to novel and unfamiliar situations.  

Multiple perspectives. For being an adaptive expert, it is also important for 

students to have multiple perspectives that they should be able to look from different 

perspectives and should be able to use more than one way to analyze or solve problems 

(Fisher & Peterson, 2001). In addition, with a fluent and flexible use of knowledge a student 

will be able to identify and expand on creative ideas that are important part of adaptive 
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expertise (Brophy et al., 2004). Martin et al. (2006) suggest that if people experience 

substantial opportunities to engage in activities that promote the development of both 

knowledge and innovation, they can progress along a path to develop adaptive expertise. 

Innovation is the ability to consider a problem from multiple perspectives and ability to 

escape from routine approaches (Walker et al., 2006). Hatano and Inagaki (1986) thought 

that certain individual characteristics, like curiosity, may also influence the development of 

adaptive expertise. Confirming this, Bell et al. (2012) claim that students who are to become 

adaptive experts must retain motivation to solve problems through innovative ways. 

Innovation is one aspect of adaptive expertise, and it regulates skills necessary to identify 

what prior knowledge is needed to generate new ideas (McKenna, 2007). In an engineering 

education context, innovation is the ability to stop and consider a problem from multiple 

perspectives rather than barring on a more immediate and smaller set of possibilities 

(Walker et al., 2006). To be an adaptive expert, efficiency should accompany to innovation. 

Efficiency is a combination of consistency and accuracy, which is one other dimensions of 

adaptive expertise (Brophy et al., 2004; Walker et al., 2006). McKenna (2007) defines 

efficiency as one’s ability to fluently apply knowledge and skills. To meet novel challenges 

or problems of practice, adaptive experts respond flexibly to variable contexts, know how 

to constructively consider and account for multiple perspectives and potential solutions. 

Furthermore, they can modify their existing procedural skills or create new procedures 

(Hatano & Oura, 2003).  
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III.2 Methods 

III.2.1 Participants and Data Collection 

 The data has been collected through a National Science Foundation Project for 

three years from two campuses. The AES has been applied to 479 students at Two 

Southern US Campuses. In addition, 23 practicing engineers completed the survey. AES 

included demographic questions and a 42 items, 6-point AE Likert-scale (Fisher & 

Peterson, 2001). A sample student form including demographic questions and the AE 

survey items is in the Appendix-A. The number of participants who completed the surveys 

and their demographic information are summarized in Table 1. 

 

Table 1 
Number of participants and their demographics 

  Sex Age Major Work exp.  Research 
exp. 

First 
generat. Rank 

 N  M F 18-22 23-30 30
+ 

Mech. 
Eng. Other Yes No Yes No Yes No Fr. So. Jn. Sn. 

CampusI  259 235 24 120 30 7 259 0 109 150 136 123 NA NA 0 0 63 195 

CampusII  220 183 37 67 35 3 215 3 46 174 57 163 74 146 118 40 22 40 

       Highest degree Years in service       

       BS Other <5 >5, <10 = >10       

Engineers 23 23 0 0 1 22 23 0 1 4 18       

Total 502 441 61 187 66 32      Total 118 40 85 235 

 

III.3 Analyses and Results 

III.3.1 Reliability of the Scale 

The reliability of the scale was computed with Cronbach’s alphas. The Cronbach’s 

alpha of the survey was computed 0.83 (N=419), which indicates that the survey was a 
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reliable instrument. “Metacognitive self-assessment” dimension had the highest reliability 

coefficient (α=0.75) while “Goals and beliefs” dimension had the lowest reliability 

coefficient (α=0.56). “Multiple perspectives” (α=0.69) and “Epistemology” (α=0.61) sub-

dimensions were acceptably reliable as well. 

III.3.2 ANOVA  

Relations between Survey Dimensions and Participants’ Characteristics. To 

examine the relationships between the sub-dimensions of the scale and participants’ 

characteristics (e.g., school, rank, years of experience, employment experience, etc.), F-tests 

(ANOVA) were run. Here the statistically significant results were reported only.  

Differences with respect to experiences. When we compare students who have employment 

experience and who have not, it was observed that students who had any technical 

employment and research experience related to engineering (e.g., machines shops, labs, 

project tasks, etc.) (N=193, M=4.48, SD=.59) had more “metacognitive self assessment” 

sub-dimension score in AES than students who didn’t (N=286, M=4.30, SD=.61, F(1, 

477)=9.955, p=.002). Experienced students (N=193, M=16.74, SD=1.52) had more overall 

sub-dimensions score than inexperienced ones as well (N=286, M=16.34, SD=1.62, F(1, 

477)=7.390, p=.007). For the professional work experience, students who had a 

professional work experience related to engineering (e.g., internship, co-op, etc.) (N=155, 

M=4.45, SD=.57) had more “metacognitive self assessment” sub-dimension score in AES 

than students who didn’t (N=324, M=4.33, SD=.63, F(1, 477)=4.223, p=.04). Experienced 

students’ (N=155, M=4.04, SD=.56) “multiple perspectives” sub-dimension score was also 

higher than inexperienced ones (N=324, M=3.91, SD=.57, F(1, 477)=5.302, p=.022) and 

experienced students (N=155, M=4.38, SD=.61)  had more “epistemology” sub-dimension 
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score in AES than students who didn’t have that experience as well (N=324, M=4.26, 

SD=.53, F(1, 477)=4.843, p=.028). Overall, students who had work experience (N=155, 

M=16.74, SD=1.66) had higher total dimensions score in AES than inexperienced students 

(N=324, M=16.39, SD=1.55, F(1, 477)=5.022, p=.025). 

Differences with respect to rank. When the relationship between students rank and their 

AES scores was scrutinized, it was observed that seniors (N=235, M=4.05, SD=.56) had 

more “multiple perspectives” sub-dimension score in AES than freshmen (N=118, 

M=3.80, SD=.51, F(3, 474)=5.763, p=.001). Senior students (N=235, M=4.40, SD=.54)  

had more “epistemology” sub-dimension score in AES than freshmen (N=118, M=4.15, 

SD=.56, F(3, 474)=6.497, p=.002). Similarly, seniors (N=235, M=16.78, SD=1.58) had 

more overall sub-dimension scores in AES than freshmen (N=118, M=16.10, SD=1.47, 

F(3, 474)=5.416, p=.002). 

Differences with respect to school. When two campuses and practicing engineers were 

compared, analyses indicate that engineers (N=23, M=4.28, SD=.46) had more “multiple 

perspectives” sub-dimension scores than Campus II students who are mostly freshmen 

(N=220, M=3.88, SD=.58, F(2, 499)=6.869, p=.006). Campus I students who are mostly 

seniors (N=259, M=4.01, SD=.56) had more “multiple perspectives” sub-dimension scores 

than Campus II students who are mostly freshmen (N=220, M=3.88, SD=.58, F(2, 

499)=6.869, p=.047) as well. In addition, Campus I students (N=259, M=4.44, SD=.51) had 

more “epistemology” sub-dimension score than Campus II students (N=220, M=4.13, 

SD=.57, F(2, 499)=20.123, p=.000) and practicing engineers (N=23, M=4.43, SD=.49)  also 

had more “epistemology” sub-dimension score than Campus II students (N=220, M=4.13, 

SD=.57, F(2, 499)=20.123, p=.038). Similar pattern was observed for the overall sub-
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dimension score in AES. Campus I students (N=259, M=16.68, SD=1.54) had more overall 

sub-dimension score in AES than Campus II students (N=220, M=16.30, SD=1.63, F(2, 

499)=6.606, p=.031). Engineers who work for the industry (N=23, M=17.34, SD=1.22) had 

more overall score than Campus II students (N=220, M=16.30, SD=1.63, F(2, 499)=6.606, 

p=.011) as well. 

 

III.4 Discussion and Conclusion 

According to the results of statistical analyses, students who have technical 

employment and research experience related to engineering have more metacognitive self-

assessment and overall dimensions score than inexperienced students. In addition, students 

who have a professional work experience like internships have more metacognitive self-

assessment, multiple perspectives, epistemology, and overall sub-dimensions scores than 

students who don’t have professional experience. It is observed that for the goals and 

beliefs dimensions having any research or professional experience did not show any 

statistically significant difference. This result can be explained through the definition of 

goals and beliefs manifestation of AE. As Fisher and Peterson (2001) explained in their 

conference paper, through their learning development the students can have some concerns 

on their learning and they have lots of goals and beliefs. In addition, they see all the 

challenges as a new learning opportunity. If the result of this work can be an evidence of 

that, we can claim that with the increasing work and research experience, students’ goals 

and beliefs characteristics might not be affected because they are less likely to have more 

concerns about their learning goals when they gain more experience.  

When we analyze the data to see if students’ AES scores are different with respect 
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to their ranks, as expected, when the students were more experienced through years their 

AE characteristics were enhanced. These results indicate that senior students only have 

higher “multiple perspectives,” “epistemology,” and overall dimension scores than 

freshmen.  

A similar conclusion is also evident when the two campuses are compared. In 

Campus I, most students were seniors, while in Campus II the students were mostly 

freshmen and sophomores. For all the observed statistically significant differences, Campus 

I students and practicing engineers have higher “multiple perspectives,” “epistemology,” 

and overall sub-dimensions scores than Campus II students. These results indicate that over 

time through their engineering education, students gain more AE characteristics in general. 

In their study on the development of AE, Paletz et al. (2013) also claimed that AE 

characteristics are significantly increased over time. Martin, Petrosino, Rivale, and Diller 

(2006), examined development of adaptive expertise in the context of a bio-transport course 

in biomedical engineering. They scrutinized change in pre or post data on an adaptive 

beliefs survey regarding performance on adaptive expertise exams outcomes. Those exams 

had three types of problems: knowledge, innovation, and adaptive expertise where adaptive 

expertise items required students to transfer existing knowledge to a novel problem that was 

not directly taught in the course. They used the adaptive expertise survey including items 

concerning four constructs of adaptive expertise (i.e., multiple perspectives, metacognition, 

goals and beliefs, and epistemology) derived from Fisher and Peterson (2001). Students 

completed the survey during the first and last weeks of class and improvement over time 

was examined. According to the results of their study, Martin et al. (2006) observed that 

knowledge, innovation, and adaptive expertise improved from Exam 1 to Exam 3. Adaptive 
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expertise survey scores remained stable across the course, but students who had higher 

scores on exam 1 had higher scores on the ore-survey as well. Students who had lower 

scores on pre-survey revealed the greatest improvement on the adaptive expertise items 

from Exam 1 to Exam 3 emphasizing the potential for development of adaptiveness. In 

addition, Walker et al. (2006) investigated the concept of AE in the context of an 

introductory engineering science course and a senior design course in biomedical 

engineering. They used a design scenario approach (McMartin, McKenna, & Youseffi, 2000) 

to evaluate students’ responses to an open-ended problem. Based on students’ responses 

they evaluated the quality of strategies, the quality of students’ questions, and confidence. 

Moreover, they categorized the quality of strategies as the efficiency dimension of AE and 

the quality of students’ questions as the innovation dimension. Their findings suggest that 

fourth-year students devised more efficient and innovative solutions than first-year students 

and over time all students became more confident in their approach. 

II.4.1 Limitations and Future Directions 

Although these results revealed as significant, the number of participated engineers 

(N= 23) are relatively low. Therefore, to be able to make a more precise conclusion to 

compare students and engineers, future work is required with a higher number of engineer 

participants that may allow for matching of sample characteristics between students and 

engineers and for more representative samples. These results can shed light on to research 

conducted to enhance CAD curriculum to develop AE in engineering education. These 

findings show that metacognitive self-assessment and epistemology skills are good 

indicators of developing adaptive expertise and the educators should consider promoting 

these skills in CAD education. 
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Here in this study, significant results are presented, though development of AE in 

engineering education is a relatively new research topic. Therefore, more work including 

longitudinal studies is required to be able to make claims about development (i.e., growth or 

change) of AE. Future research can unpack what other characteristics contribute developing 

AE and what kind of exercises and practices will enhance students’ AE characteristics.  
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CHAPTER IV  

ADAPTIVE EXPERTISE DEVELOPMENT IN ENGINEERING EDUCATION 

THROUGH CONTEXTUAL MODELING ACTIVITIES IN COMPUTER 

AIDED DESIGN TOOLS 

 

 

IV.1 Introduction 

Educating engineers to attain self-regulation and mindfulness skills (including 

metacognitive self-assessment and epistemology skills) has become a necessity if we want 

our engineers to practice their profession with adaptive expertise. To achieve this goal, 

engineering education must integrate practice and mastery of self-regulation and 

mindfulness skills (including metacognitive self-assessment and epistemology skills) in 

engineering curriculum and instruction. In a study to examine engineering design learning 

(Atman, Kilgore, & McKenna, 2008), it was claimed that students did not always put their 

design knowledge into practice. In other words, there was a lack of transfer of knowledge or 

application of skills. Phase (2005) suggests a better alignment of engineering curricula and 

the nature of academic experiences with the challenges and opportunities graduates will face 

in the workplace. Jonassen (2014) suggest that a student-centered approach where students 

are prepared for real-life engineering problems should be integrated into the engineering 

curriculum. 

 With advancements in educational and learning sciences research, today’s higher 

educational settings could be informed by such research to help students develop 

transferable knowledge and skills (Salomon & Perkins, 1998). Building on 30 years of 
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learning sciences research, the How People Learn (HPL) framework presents the 

foundation for effective teaching, with relevant applications to higher education (Bransford 

et al., 2000). Key components of the framework focus on the characteristics of learners, the 

acquisition and transfer of knowledge, and the critical role of environments.  Brophy et al. 

(2004) defines the interaction of efficient and innovative uses of knowledge as Adaptive 

Expertise (AE). Hence, it is important to understand what contributes to AE skills and what 

kind of activities can be integrated properly to improve AE skills so that students can 

transfer their knowledge to novel situations in a creative, innovative, and efficient way. 

Consequently, more adaptive and effective engineers can be prepared for industry. To 

promote the development of AE within higher education, it is necessary to consider what is 

known about learning and teaching. The key thing is to understand the malleable and less 

malleable factors contributing to AE skills and how to teach or improve AE skills. In 

addition, scrutinizing potential factors that have an effect on AE characteristics of students, 

such as rank differences, gender differences, and differences in experience on the field is 

needed. Moreover, different exercises in the classroom may have some effect on students’ 

AE manifestation. This study tries to understand if those factors make any differences on 

AE behaviors of students.  

IV.1.2 Purpose of the Study 

 This study attempts to understand students’ AE characteristics while using a 

Computer Aided Design (CAD) tool through examining a contextualized activity. CAD 

tools are used in this work as a tool because effective use of CAD software creating diverse 

experiences in engineering education is required. CAD tools are pervasively used 

throughout the development process in many industries (Field, 2004). Consequently, today’s 
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engineering students will go into such a professional field where CAD tools are ubiquitous 

and available in multiple platforms (Johnson & Diwakaran, 2011). CAD tools are the tools 

where students use their knowledge and skills to create models and apply their adaptability 

to novel problems. In addition, educators often claim that design is at the core of 

engineering (Dym et al., 2005). Therefore, these tools can support students to attain a level 

of expertise if a deeper practical knowledge is taught.  

This study scrutinizes which AE characteristics are revealed during the pre and post 

exercise interviews; these results are compared to with a survey that tabulates students’ AES 

scores. In addition, the effect of differences in AE manifestation between students 

completed different CAD activities is assessed. In addition the developmental or academic-

year status of student (e.g., freshman versus upperclassmen) is assessed. A comparison 

between practicing engineers and students is also presented.  

 Understanding how engineering students approach design problems in both stylized 

exercises and contextual exercises will help researchers and educators develop CAD 

education in particular and engineering education in general. This work will also provide 

insight for educators to understand what kind of exercise aspects affect the manifestation of 

AE characteristics in students.  

 

IV.2 Literature Review 

IV.2.1 Contextual Learner-Centered Exercises 

 Computers and related technologies improved our ability to communicate and 

accomplish complicated tasks. This doesn’t mean that students will develop advanced 

cognitive skills and desired attitudes by simply using the technology as the way experts use 
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them.With the support of educational learning theories, computer technologies can improve 

students’ ability to learn more efficiently. Therefore it is important to consider learning 

theories while designing engineering curriculum. Newstetter and Svinicki (2014) state that 

designing learning environments without a learning theory is similar to designing a bridge 

without mechanical laws and principles. In both cases, the goal is unlikely to be 

accomplished; the learner fails to change in desired ways and the bridge collapses.  

Students learn more effectively when the discourse of the activity they engage in has 

a personal meaning to them (Bransford, et. al., 2000). In this section of this dissertation, it is 

referred to the kinds of learning activities that include a learner perspective as 

contextualized learning activities. The CAD exercise presented here is designed through 

considering these principles. In a CAD instructional context, a contextualized activity can 

include designing a product that has direct connections to the students’ daily life activities or 

with their personal interest. 

Learning science research has documented the positive impact of learner-centered 

instructional strategies and contextual exercises on students’ cognitive and affective 

domains (Bransford, Brown, & Cocking, 2000). Bransford, Brown, and Cocking (2000) 

claimed that an ideal learning environment includes characteristics of knowledge, learner, 

assessment, and community centeredness (also known as How People Learn framework). 

Learner-centered characteristic highlights discovering students’ prior knowledge and interest 

and constructing the learning activity that properly addresses students’ content 

understanding trajectory and personal interest. In current higher education settings engaging 

students in real life challenges is not a pervasively used method. Curriculum and instruction 

designed to nurture adaptive expertise characteristics by engaging students in real-life 
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problem can provide an important model of successful learning (Bransford et al., 2000). 

Hatano and Oura (2003) noted “while basic schools cannot make students real experts, they 

can place students on a trajectory towards expertise or prepare them for future learning” (p. 

28). Harris and Cullen also noted the need to integrate more self-learning into the 

engineering curriculum (Harris & Cullen, 2009). 

IV.2.2 Adaptive Expertise 

Adaptive Expertise is the term that defines capabilities of both being innovative and 

adaptive to new challenges while also having content knowledge associated with expertise 

(McKenna, 2007). Key to expertise is the mastery of concepts that allow for deep 

understanding of that information, transforming it from a set of facts into usable 

knowledge. The ability to process information quickly and recognize related solutions to 

problems in a particular area and/or domain of knowledge is known as expertise. Expert 

people come to solve more and more complex problems in the field, utilizing relevant prior 

knowledge which is in turn gradually enriched and integrated (Hatano & Inagaki, 1986). 

Hatano and Inagaki (1986) defined two types of expertise to make the distinction clearer: 

“routine expertise” and “adaptive expertise.” Adaptive experts are those who perform 

procedural skills efficiently and understand the meaning of the skills and nature of their 

object. Routine experts simply learn to perform a skill faster and more accurately, without 

constructing conceptual knowledge, and can even perform a task through automation of the 

procedure. The fluency of finding related solutions to problems only makes students 

“routine” experts for specific problems. However, routine expertise does not mean students 

have flexible knowledge that may be needed to invent ways to solve familiar problems and 

innovative skills to identify new problems (Brophy et al., 2004). While the development of 
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routine expertise is valuable for usual settings, novel problem solving based on innovative 

aspects of the learning context and learners’ characteristics is necessary for efficient 

instruction. AE is the term that defines capabilities of both being innovative and adaptive to 

new challenges while also having content knowledge associated with expertise (McKenna, 

2007).  

IV.2.3 Aspects of Adaptive Expertise  

There is some evidence that the CAD tools that engineers use influence their ability 

to solve engineering problems creatively; this is important to engineers (Robertson & 

Rachliffe, 2009; Robertson, Walther, & Rachliffe, 2007). Creativity is one of the important 

aspects of adaptive expertise (Fisher & Peterson, 2001). Through an extensive literature 

review, Fisher and Peterson (2001), have identified four primary aspects of adaptive 

expertise: (a) multiple perspectives which is ability to recognize situations where creativity is 

possible, (b) metacognitive self-assessment referring to the learners’ use of diverse 

techniques to self-assess and monitor his/her own understanding and performance, (c) 

goals and beliefs defining the views that students have concerning their learning goals and 

the nature of expertise, and (d) epistemology referring to how individuals perceive the 

nature of knowledge.  

“Multiple perspectives” signifies the willingness of students to use a variety of 

representations and approaches when working on a problem (Hatano & Inagaki, 1986). 

This means students who have multiple perspective characteristics know that there may be 

more than one way to analyze, approach, and solve problems. In addition, they are open the 

new information and apply this information to the situations where creativity is possible 

(Fisher & Peterson, 2001). These students can act flexibly to novel situations. Flexible use 
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of knowledge and efficiency are also a part of adaptive expertise (Brophy et al., 2004). 

Efficiency is one’s ability to fluently apply knowledge and skills (McKenna, 2007).  

Consistency and accuracy are components of the efficiency that is defined as ability to 

devise appropriate strategies for addressing a problem (Walker et al., 2006). Innovation can 

also be defined as a part of multiple perspectives. That is to say, innovation is the ability to 

consider a problem from multiple perspectives and the ability to escape from routine 

approaches (Walker et al., 2006). Innovation is one aspect of AE and regulates the skills 

necessary to identify what prior knowledge is needed to generate new ideas (McKenna, 

2007). 

“Metacognitive self-assessment” is one of the important characteristics of being an expert 

that experts can monitor their problem solving, question limitations in their knowledge, and 

avoid simple interpretations of a problem (Pellegrino & Hilton, 2012). People who have 

metacognitive self-assessment ability can use various techniques to self-asses and monitor 

personal understanding and performance. They can use different representations and 

methods to solve a problem and can question their own understanding. In addition, they 

can recognize areas where their knowledge is incomplete (Fisher & Peterson, 2001). Besides 

being aware of what they know and what they do not, people who have the metacognitive 

self-assessment characteristics have confidence in solving challenging problems.  The level 

of confidence is one of the dimensions of adaptive problem solving which supports creating 

novel but safe and attractive products (Walker et al., 2006). Donovan et al. (1999) 

interpreted that a “metacognitive” approach to teaching can help students learn to take 

charge of their own learning by defining learning goals and monitoring their progress in 

achieving them. 
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“Goals and Beliefs” defines the views that students have concerning their learning 

goals. Self-regulation strategies as a part of AE, helps identify goals to generate ideas or 

improve an existing idea (McKenna, 2007). Pellegrino and Hilton (2012) argued that beliefs 

about learning are an essential component of transferable knowledge and beliefs and 

motivation support deeper learning. In addition, students who have goals and beliefs for 

their learning view challenges as an opportunity for growth and are able to proceed in the 

face of uncertainty (Fisher & Peterson, 2001). In addition, student beliefs about learning, 

motivation, and metacognition are all dimensions of the self-regulated learning focusing on 

setting goals and working to achieve them (Pellegrino & Hilton, 2012). According to 

Kalyuga (2009), increased levels of learner control over learning tasks and selecting their 

learning goals are considered as an important condition for the development of 

metacognitive and self-regulation skills. 

“Epistemology” is a metacognitive process; it is one’s beliefs on knowledge, and 

attitudes towards the nature of the knowledge in the field, and its generation (Hofer, 2004). 

Students who demonstrate the epistemology attribute, perceive knowledge as an evolving 

entity rather than static; they realize the need to continually practice knowledge (Fisher & 

Peterson, 2001). Fisher and Peterson (2001) also state that these students appreciate that 

others with different backgrounds can provide useful insights and contributions to their 

work. 

These aspects of AE are also included in the description of 21th century skills that 

includes critical thinking, problem solving, communication, collaboration, creativity and 

innovation. Pellegrino and Hilton (2012) define 21th century skills as knowledge that can be 

transferred or applied in new situations and 21th century competencies as knowing how, 
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why, and when to apply those skills and knowledge to solve challenging problems. In order 

for students to develop these skills, it is important to create learning environments that 

support the development of cognitive, intrapersonal, and interpersonal competencies as a 

part of adaptive expertise.  

In addition, the four aspects - multiple perspectives, metacognitive self assessment, 

goals and beliefs, and epistemology - highlighted by Fisher and Peterson (2001) are 

important pieces for deeper learning, helping students develop transferable knowledge that 

can be applied to solve new problems or respond effectively to new situations. Deeper 

learning occurs when the learner is able to transfer what was learned to new situations 

(Pellegrino & Hilton, 2012). The How People Learn Framework (Donovan et al., 1999) 

emphasizes the importance of knowledge transfer, in that it allows the student to apply 

what was learned in new situations and to learn related information more quickly. 

According to Rogoff and Gardner (1984), scaffolding within a contextual learning activity 

was affective in guiding the transfer of knowledge and skills from more familiar contexts, so 

assisting the learner to make connections within the context of the activity. Contextual 

Learning is based on a constructivist theory of teaching and learning that argues that 

humans generate knowledge and meaning from an interaction between their experiences 

and their ideas (Piaget, 1970). According to contextual learning theory, learning occurs only 

when students process new information or knowledge in such a way that it makes sense to 

them in their own frames of reference (their own inner worlds of memory and experiences) 

(Schung, 2012). Contextualized or stimulated learning could be used to encourage learners 

to adapt different levels of uncertainty, and to make decisions about adaptive plans and 

responses through the use of diverse reasonable scenarios (Bell et al., 2012). McLellan 
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(1996) defines contextual activity by using the term situated activity where situated learning 

is promoting the ability to look for, recognize, evaluate, and use information resources 

productively.  

Therefore, CAD activities introducing students to new challenges with contextual 

exercises rather than stylistic textbook exercises can be used to test if a student can 

effectively transfer what was learned to the new situation. Moreover, introducing students 

to new challenges in CAD modeling can help scrutinize CAD tools in terms of their 

capability of enhancing students’ adaptive expertise characteristics.  

 

IV.3 Methods 

IV.3.1 Participants and Data Collection 

 Data were collected over three years from different groups of students each 

semester. 395 students who enrolled in the CAD courses in the two campuses in Southern 

US completed an adaptive expertise survey (AES). The survey comprised demographic 

questions and a 42 items, 6-point Likert- scale (Fisher & Peterson, 2001). 302 of these 

students also participated in the CAD modeling activities in which students were divided 

into two groups. An experimental group completed the contextualized activity and the 

control group completed a traditional stylized CAD activity. For the contextualized activity, 

the goal was to give students a novel activity that they have never done before. An attempt 

was made to create a new challenge for students where they could apply their existing 

knowledge. Students were asked to bring a familiar object, that they used daily to the CAD 

lab and to model that object in the CAD software. Figure 6 is an apple cutter that student 

use it daily. Therefore s/he selected this object and modeled for the contextual exercise.  
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Figure 6  
An object selected for contextualized CAD exercise 

 

 In the control group, students were asked to model a stylized textbook object like a 

machine part that was available in their textbooks. The control group was also divided into 

two groups. The first group of students was given 2D drawings while the other group was 

asked to use 3D models of stylized object to model in CAD. Figure 7 indicates the 2D 

drawing, 3D print and drawing the object in CAD for control exercise; this object was 

based on an example found in Toogood and Zecher (2011). 
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Figure 7  
Object for the textbook CAD exercise 

  

 Students were given an hour to model the objects in the CAD software. In addition 

to those students, 21 engineers who had been working in industry and had done CAD 

modeling as a significant part of their professional responsibilities at the time the data 

collected also completed the AES. And as a challenge and novel problem, 15 of those 

engineers were also asked to model an object in a CAD platform on which they had little or 

no familiarity.  The screen capture software Camtasia was used to record the screens as the 

students and engineers modeled. Each participant was interviewed before and after their 

modeling activities. Interview questions are presented in Appendix B. Each interview lasted 

around 8-12 minutes (total pre and post). In Table 2, the number of participants and the 

activities they completed are summarized. All participants completed the AES. 
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Table 2  

Number of participants and the activities they completed 

 # of students in 
Campus I 

(Fall 11- Spring 14) 

# of students in 
Campus II 

(Fall 11- Spring 14) 

# of engineers Total 

AES 
 

214 181 21 416 

Contextualized 
CAD modeling 

67 77 15 159 

Traditional 
CAD modeling 

108 50  158 

 

 

 Pre and post interviews were analyzed to identify student attributes and 

manifestations of adaptive expertise in the contextualized and stylized CAD modeling 

activities. The interviews was designed considering the four AE dimensions –multiple 

perspectives, metacognitive self-assessment, goals and beliefs, and epistemology- 

summarized by Fisher and Peterson (2001). Questions in the interview protocols aimed to 

capture students’ AE characteristics. During both pre and post interviews, participants were 

asked questions to understand if they knew what they were actually doing and if they were 

aware of their own knowledge necessary for the activity they were conducting. This is a part 

of metacognitive self-assessment aspect of AE. In addition students self-confidence levels 

are assessed in both pre-post interviews. Walker et al. (2006) claimed that self-confidence an 

important aspect of AE. In addition, other questions are asked to understand if participant 

are open to novel innovative problem solving strategies, and other open-ended questions to 

acquire AE manifestations from their responses.  
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 By using both AES data and interview data, the correlations between students’ AES 

scores and AE manifestations during their pre and post interviews were assessed. Students’ 

AES scores were compared with their pre and post interview responses. This study allows 

for the summary of some particular aspects that may contribute to developing AE in 

engineering students. 

 

IV.4 Analyses and Results 

 The recorded interviews were transcribed verbatim. The transcriptions were read 

several times. According to the literature and the four dimensions (Fisher & Peterson, 2001) 

defined, students’ responses were categorized. For the analysis of interviews constant 

comparative approach (Glaser & Strauss, 1967)) was used. In this approach, the responses 

are categorized and sub categories are created from those categories. The process in general, 

reduces the data into small set of themes that characterizes the process being studied. After 

the categories were determined with the selective coding method (Creswell, 2007), the 

transcriptions were coded and the number of selected responses was compared with the 

students’ AES scores to see if there was a correlation and if there was some group 

differences in manifestation of AE in pre and post interviews.   

IV.4.1 Relationship Between Students’ AES Scores and Manifestation of AE 

Behavior in Interviews 

 Here only statistically significant and meaningful results are reported.   

The variables for the analyses are, pre interview data, post interview data, and four sub-

dimensions of the AES: multiple perspectives, metacognitive self-assessment, goals and 

beliefs, and epistemology (Fisher & Peterson, 2001). 
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  To determine the significant correlations between AES survey results and AE 

manifestations during pre/post interview of CAD modeling activities, two sample t-tests 

analyses were conducted using IBM SPSS Statistics 22. For the AES and pre/post 

interviews of the CAD modeling exercises, students’ (N=233) “goals and beliefs” sub-

dimension of AES scores and “goals and beliefs” manifestation in pre-interview were 

significantly correlated (r(231)=.146, p<.05). During the pre-interview, students’ (N=233) 

overall sub-dimension of AES scores and overall manifestation of AE behavior were 

significantly correlated as well (r(231)=.132, p<.05). When post interviews were scrutinized, 

it was observed that students’ (N=233) “multiple perspectives” sub-dimension of AES 

scores and “multiple perspectives” manifestation were significantly correlated (r(231)=.186, 

p<.05). 

The students’ (N=233) overall sub-dimension of AES scores and overall 

manifestation of AE behavior in post-interview were significantly correlated as well 

(r(231)=.165, p<.05). When overall pre and post interviews total responses were compared 

with the AES scores, results indicate that students’ (N=233) total “multiple perspectives” 

manifestation during interviews were significantly correlated with total “multiple 

perspectives” sub-dimension score of AES (r(231)=.110, p<.05). In addition, overall 

manifestation of adaptive expertise is significantly correlated with overall total AES scores 

(r(231)=.156, p<.05) 

Group differences. To determine if there were significant differences between 

groups, one-way ANOVA was conducted using IBM SPSS Statistics 22. For the CAD 

modeling pre and post interview analyses, the effect of the CAD exercise (contextualized 

and control CAD modeling activities) was tested, Gender effects, grade-level effects 
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(sophomore, junior, and senior level), campus, and experience (e.g., student vs. engineer 

status) effects on AE manifestations were also assessed.  

Contextualized and control CAD differences: One-way ANOVA test results show that 

students who used a 2D textbook drawing to create a model in CAD platform (N=92, 

M=1.28, SD=1.19) had more “metacognitive self assessment” manifestation than students 

who created a model of a 3D familiar object in CAD platform (N=110, M=.86, SD=.80, 

F(2, 228)=4.758, p=.009) through the pre-interview. For the post interview; the group who 

used 3D textbook object (N=29, M=1.00, SD=1.04) had more “multiple perspectives” 

manifestation than the group of students who used a 2D drawing (N=92, M=.57, SD=.76, 

F(2, 228)=3.679, p=.029 

When assessing the total AE manifestations for both pre and post interviews, 

ANOVA tests indicated that the students who created a model of 3D textbook object in the 

CAD platform (N=29, M=8.52, SD=4.26) had more overall manifestation of AE behavior 

than the students who used a 3D familiar object to model in CAD (N=110, M=5.81, 

SD=2.93, F(2, 228)= 6.193, p=.002) and the students who used a 2D drawing (N=92, 

M=6.24, SD=4.29, F(2, 228)=6.193, p=.016). The students who used the 3D textbook 

object (N=29, M=2.38, SD=1.70) also had more “multiple perspectives” than the students 

who used a 3D familiar object to model in CAD (N=110, M=1.57, SD=1.31, F(2, 228)= 

3.468, p=.043). In addition, the students who created a model of 3D textbook object in 

CAD (N=29, M=3.69, SD=1.83) had more “goals and beliefs” manifestation than the 

students who modeled a 3D object familiar to them (N=110, M=1.89, SD=1.84, F(2, 228)= 

10.153, p=.000) and the students who used a 2D drawing  (N=92, M=2.05, SD=2.09, F(2, 

228)= 10.153, p=.001). 
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Grade-level differences: ANOVAs were conducted to examine whether there were 

grade-level (e.g., sophomore, junior, and senior levels) differences in AE manifestations for 

both pre and post interviews. Results indicated that senior students (N=103, M=2.62, 

SD=2.11) had more “goals and beliefs” manifestation of adaptive expertise behavior than 

first-year students or freshmen (N=56, M=1.21, SD=1.69, F(3, 227)=8.405, p=.000). 

Furthermore, senior students (N=103, M=7.15, SD=4.13) had more overall manifestation 

of adaptive expertise behavior than first-year students or freshmen (N=56, M=4.70, 

SD=2.77, F(3, 227)=7.956, p=.001) and sophomores (N=21, M=4.62, SD=2.31, F(3, 

227)=7.956, p=.039). Additionally, juniors (N=51, M=7.14, SD=3.75) had more overall 

manifestation of adaptive expertise behavior than freshmen (N=56, M=4.70, SD=2.77, F(3, 

227)=7.956, p=.008). Juniors (N=51, M=2.65, SD=1.87) had more “goals and beliefs” 

manifestation of adaptive expertise behavior than freshmen (N=56, M=1.21, SD=1.69, F(3, 

227)=8.405, p=.003) as well. 

Campus and experiential differences: The two university campuses and student vs. 

engineer status on AE manifestations during pre and post interviews of CAD modeling 

activities were also compared. Results from one-way ANOVAs show that, during the pre-

interview, the engineers who have greater professional experience and work in industry 

(N=14, M=1.79, SD=1.42) had more “metacognitive self assessment” manifestations of 

adaptive expertise behavior than Campus II students who are mostly freshmen (N=92, 

M=.92, SD=.92, F(2, 242)=4.594, p=.014). Engineers (N=14, M=1.43, SD=1.16) had more 

“multiple perspectives” manifestation than Campus II students (N=92, M=.54, SD=.69, 

F(2, 242)=7.729, p=.001) and Campus I students (N=139, M=.72, SD=.82, F(2, 

242)=7.729, p=.007) during the post-interview as well. Furthermore, engineers (N=14, 
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M=3.21, SD=1.97) had more overall manifestation of adaptive expertise than Campus II 

students (N=92, M=1.67, SD=1.35, F(2, 242)= 10.165, p=.006). 

 Total AE manifestations in both pre and post interviews are also compared. Results 

indicated that in general, Campus I students (who are mostly seniors) and engineers had 

more AE manifestation than Campus II students who are mostly freshmen. In fact, Campus 

I students (N=139, M=7.23, SD=4.05) had more overall manifestation of adaptive expertise 

behavior than Campus II students (N=92, M=4.95, SD=2.84, F(2, 242)=11.468, p=.000). 

Campus I students (N=139, M=1.89, SD=1.67) also had more “multiple perspectives” 

manifestation of adaptive expertise behavior than Campus II students (N=92, M=1.36, 

SD=1.29, F(2, 242)=3.492, p=.033). In addition, Campus I students (N=139, M=2.71, 

SD=2.03) had more “goals and beliefs” manifestation than Campus II students (N=92, 

M=1.38, SD=1.73, F(2, 242)=16.255, p=.000). Engineers also (N=14, M=2.79, SD=1.81) 

had more “multiple perspectives” manifestation than Campus II students (N=92, M=1.49, 

SD=1.21, F(2, 242)=6.370, p=.006). 

 

IV.5 Discussion and Conclusion 

It was expected that participants’ AES scores would match with their reported AE 

characteristics in the interviews. Between the four sub-dimensions of AES, during pre-

interview, students’ “goals and beliefs” sub-dimension and “goals and beliefs” manifestation 

as well as overall sub-dimensions scores in AES and in interviews are significantly 

correlated. For the post interview, students’ “multiple perspective” sub-dimension and 

“multiple perspectives” manifestation were significantly correlated. The overall scores in 

AES and interviews are also significantly correlated. When overall pre and post interviews 
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total responses are compared with the AES scores, results indicate that students’ total 

“multiple perspectives” manifestation during interviews are significantly correlated with 

total “multiple perspectives” sub-dimension score of AES. In addition, overall 

manifestation of adaptive expertise is significantly correlated with overall total AES scores.  

The multiple perspectives characteristic is defined as openness to new information 

and novel ways to solve problems by recognizing opportunities for creativity (Fisher & 

Peterson, 2001). More importantly, the students’ overall sub-dimension of AES scores and 

overall manifestation of AE behavior in interviews are significantly correlated as was 

expected expecting. It can be concluded that, participants AES responses were consistent 

with their interview responses. 

One-way ANOVA was used to see if the groups were different from each other in 

terms of the AE manifestation during the interviews.  

For the differences between students who used different objects to model (3D 

textbook object, 2D textbook drawing, and 3D familiar object), it was expected that when 

students were given a novel challenge that they had not completed previously, they would 

respond to interview questions differently by means of the AE manifestation. Results 

indicated that in general, the students who used a 3D printed textbook object to create a 

model in CAD had more AE manifestations than other groups.  

Indeed, through the pre interview, exceptionally, students with 2D textbook 

drawing had more “metacognitive self assessment” manifestation than students with a 

familiar 3D object. Here, it can be inferred that 3D objects were more challenging for 

students because they regularly worked with 2D drawings in the class. Although effortful 

problem solving in unfamiliar new situations requires metacognitive skills (Kalyuga, 2009), 
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in this study it was observed that students who used 2D drawings expressed more of their 

metacognitive self-assessment skills comfortably before they start drawing. For the post 

interview; 3D textbook object students had more “multiple perspectives,” “goals and 

beliefs,” and more overall manifestation of AE behavior than students with 2D drawing. 

For the post interview, students were interviewed after their exercise and it can be 

interpreted that because 3D drawings were more challenging for students, they might 

comment more on their performance and might expressed more AE manifestations. In 

general and unexpectedly, for both pre and post interviews, results indicated that students 

with 3D textbook object had more overall manifestation of AE behavior than students with 

a 3D familiar object to model in CAD.  

For the students, using a familiar object was a novel, more challenging situation. It 

was proposed that a novel problem would make students express more AE manifestation 

during the interviews, however it did not. The reason why students worked with familiar 

objects revealed less AE manifestation may be the students underestimated the complexity 

of modeling a familiar object and they might believe that this process would be easier than 

they expected. They might realize that their modeling plans did not work out like they 

assumed. Thus, during the interviews they did express less AE manifestation.  

In addition, an assessment of any differences between students of different rank was 

undertaken. For both pre and post interviews, seniors have more “goals and beliefs” and 

more overall manifestation of adaptive expertise than freshmen. The two campuses and the 

engineers were also compared by means of their AE manifestations during pre and post 

interviews of CAD modeling activities. Engineers have more multiple perspectives and 

overall manifestations of adaptive expertise than Campus II and Campus I students. Here, it 
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can be concluded that when the two campuses are compared, in campus I, most students 

were seniors while in campus II, the students were mostly freshmen and sophomores; for 

all the observed statistically significant differences, students in campus I reported higher AE 

scores than the students in campus II. As expected, students were more experienced with 

the modeling practice and their AE characteristics were enhanced. The same conclusion is 

also evident when the two campuses and engineers are compared. Engineers conveyed 

more multiple perspectives AE characteristics in interviews than students in both campuses. 

This was also an expected result. In 2001 Fisher and Peterson, also found a similar patterns 

in their study. According to their findings, levels of adaptive expertise from freshmen to 

seniors to faculty increased monotonically. In addition, the average adaptive expertise score 

of the engineering faculty was higher than that of the engineering freshmen. In another 

related work that used a design scenario to assess how undergraduates approach novel 

design challenges, Walker et al. (2006) concluded that fourth-year students created more 

efficient and innovative solutions than did first-year students. Fourth-year students were 

also more confident in their problem-solving abilities. Over time all students became more 

innovative and more confident as was observed in this study as well. As expected, much of 

the increase in innovation for beginning students emerged related to their experience and 

greater understanding of context.  

In this study, only the multiple perspectives characteristic of AE was significantly 

higher in engineers, here it can be concluded that with experience their multiple perspective 

characteristic was enhanced. For the engineers’ part, there was a limitation that although 

these results were significant, the number of engineers (N= 14) was relatively low. Future 

work with an increased number of engineers should generate more precise and clear results.  
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These results provide insights to research conducted to enhance CAD instruction. 

These findings show that multiple perspectives, goals and beliefs, and metacognitive skills 

are good indicators of developing adaptive expertise and that educator should consider 

promoting those skills in CAD education. 

These findings confirm the importance of practice for developing AE through 

engineering education by enhancing regular CAD exercises in the classroom. According to 

Kalyuga (2009) instructing for adaptive and flexible expertise requires developing advanced 

forms skills that are applicable to a greater variety of situations. Integrating novel and 

challenging problems to classroom exercises will encourage students be more flexible, and 

adaptive. In a study on assessing AE, Pandy et al. (2004) find that challenge-based 

instruction can accelerate the trajectory of novice to expert development. With non-routine 

and creative exercises in classroom, essential attributes of adaptive expertise can be 

developed (Kalyuga, 2009). New challenges provide learners with additional contexts and 

develop their innovation skills which are necessary to manage the novel problems they will 

face after graduation, and potentially identify opportunities for new discovers (Brophy et al., 

2004). In another study on the development of AE, Martin et al. (2006) claim that educators 

can and do help students develop adaptive expertise, even when students do not necessarily 

show such qualities initially. This can be achieved by using well-informed teaching methods 

that require students to engage in complex problem solving. Learning experiences that 

reflect both knowledge and novelty can increase the chances that people will develop 

adaptive expertise in their fields of interest (Martin et al., 2006) 

This study contributes to the literature as follows: (1) the results point to the 

importance of exploring the role of contextualized exercise on students’ expressions of AE 
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manifestations; (2) it was observed that substituting a routine exercise with a challenging 

one made a difference in students’ AE behaviors; (3) the results provide evidence that AE is 

developed through the years and increases with experience.  

IV.5.1 Limitations and Future Directions 

The findings presented here are initial steps in understanding AE in context of 

CAD design activities. More study is required to entirely understand what kind of activities 

will better increase students’ adaptive expertise characteristics through their education. 

Future work should include equal numbers of male and female students as well as equal 

numbers of students and engineers to better understand these differences.  
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CHAPTER V  

SUMMARY AND CONCLUSION 

 

 

V.1 Summary 

This dissertation aims to investigate the CAD expertise through ‘routine’ versus 

‘adaptive’ expert features, and to evaluate ways to encourage adaptive expert characteristics 

in undergraduate engineering education. To address those issues three main questions are 

answered in four main chapters first of which was the introduction chapter.  

 The second chapter was a literature review aiming to present, “Which factors can 

contribute to the development of AE?” This chapter presented the factors contributing to 

the development of AE. Key characteristics of AE were highlighted. According to the 

related literature, four main factors -motivation, self-regulation strategies, relevant 

knowledge, and deeper learning and transfer of knowledge- contribute to develop expertise. 

Furthermore, to be able to develop adaptiveness besides expertise, innovation, efficiency 

and experiences are the key characteristics. To develop those skills through higher 

education, environments where students are engaged in the activities that they solve real life 

problems, and they face with novel challenges should be provided so that they can be 

motivated and develop self-regulation strategies. In addition, a problem-based instruction 

may be supportive on developing AE characteristics of engineering students. 

Chapter III investigated if engineering students’ demographic characteristics are 

related to their observable AE characteristics. The implementation of an instrument used to 

measure AE was presented. The AE survey was developed by Fisher and Peterson (2001) 
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for measuring the adaptive expertise in biomedical engineering students. The instrument 

contains questions defining four dimensions: multiple perspectives, meta-cognitive self-

assessment, goals and beliefs, and epistemology. According to the results of statistical 

analyses, students who have technical employment and research experience related to 

engineering (e.g., machines shops, labs, project tasks, etc.) more metacognitive self-

assessment and overall dimensions score than inexperienced students. In addition, students 

who have a professional work experience related to engineering (e.g., internship, co-op, etc.) 

have more metacognitive self-assessment, multiple perspectives, epistemology, and overall 

sub-dimensions scores than students who don’t have professional experience. It is observed 

that for the goals and beliefs dimensions having any research or professional experience did 

not show any statistically significant difference. In addition, when students’ rank was 

compared it was observed that that senior students have higher “multiple perspectives,” 

“epistemology” and overall dimension scores than freshmen. A similar conclusion was also 

evident when the two campuses are compared. In Campus I, most students were seniors, 

while in Campus II the students were mostly freshmen and sophomores. For all the 

observed statistically significant differences, Campus I students and practicing engineers 

have higher multiple perspectives, epistemology, and overall sub-dimensions scores than 

Campus II students. 

In Chapter IV, results of contextualized CAD activities were presented. Pre and 

post interviews conducted through the modeling activities were scrutinized. According to 

the results of that study, students’ “goals and beliefs” sub-dimension and “goals and beliefs” 

manifestation as well as overall sub-dimensions scores in AES and in interviews are 

significantly correlated. For the post interview, students’ “multiple perspective” sub-
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dimension and “multiple perspectives” manifestation were significantly correlated. The 

overall scores in AES and interviews are also significantly correlated. When overall pre and 

post interviews total responses are compared with the AES scores, results indicate that 

students’ total “multiple perspectives” manifestation during interviews are significantly 

correlated with total “multiple perspectives” sub-dimension score of AES. Most 

importantly, as expected, overall manifestation of adaptive expertise is significantly 

correlated with overall total AES scores. Moreover, in general, students who used a 3D 

printed textbook object to create a model in CAD had more AE manifestations than other 

groups who modeled 2D drawings or 3D familiar daily used objects. In addition, for both 

pre and post interviews, seniors have more “goals and beliefs” and more overall 

manifestation of AE than freshmen. The two campuses and the engineers were also 

compared by means of their AE manifestations during pre and post interviews of CAD 

modeling activities. Engineers have more multiple perspectives and overall manifestations 

of adaptive expertise than students. 

 

V.2 Conclusion 

In conclusion of these studies, it was observed that as students gain more 

experience through years their overall AE characteristics were developed as well. It was also 

evident when practicing engineers and students were compared that overtime individuals 

gain more AE characteristics in general. As expected, much of the increase in innovation 

and efficiency of approaching the novel problems is related to their experience and greater 

understanding of context. These outcomes confirm the importance of practice to improve 

AE through engineering education by enriching regular CAD exercises in the classroom. 
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Kalyuga (2009) emphasized the significance of integrating advanced skills that are applicable 

for various situations into the engineering curriculum to develop AE skills. Integrating 

novel, challenging and contextual problems to classroom exercises will encourage students 

be more flexible, and adaptive. Pandy et al. (2004) assessed AE in their study and found that 

challenge-based instruction can accelerate the trajectory of novice to expert development. 

With non-routine and creative exercises in classroom, essential attributes of AE can be 

developed (Kalyuga, 2009). New challenges provide learners with additional contexts and 

develop their innovation skills which are necessary to manage the novel problems they will 

face after graduation, and potentially identify opportunities for new discovers (Brophy et al., 

2004). Learning experiences that reflect both knowledge and novelty can increase the 

chances that people will develop AE in their fields of interest (Martin et al., 2006). In 

addition, through the light of literature, it can be suggested that engineering training should 

promote learning with a problem based or related approaches that emphasizes students’ 

efforts to solve complex problems. In this approach, the problem should be authentic 

which means that it should reflect a real life problem that an expert on the field can handle 

(Koschmann et al., 1996). In problem based learning, the instruction begins with the 

presentation of problem and then students realize that they lack information and skills that 

they need to find a solution. In this way, students are motivated and engage in self-

regulation strategies to meet their needs so that the activity turns out to be under students’ 

control which makes learning meaningful (Donovan et al., 1999). 

V.2.1 Limitations and Future Directions 

With the review of literature and the conducted studies, there are still questions that 

might not be answered precisely because development of AE in engineering education is a 
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relatively new topic in the literature. Therefore, more work is required to be able to make 

definite claims about development of AE. Future research can unpack what other 

characteristics contribute to developing AE and what kind of exercises and practices will 

enhance students’ AE characteristics. Open questions still remain about how to balance the 

dimensions contributing development of AE when providing instruction to engineering 

students.  

In brief, this study can provide insights to research conducted to enhance 

engineering education that can support development of AE. These findings in the 

dissertation show that multiple perspectives, goals and beliefs, and metacognitive skills are 

good indicators of developing AE and educators should consider promoting those skills in 

engineering education. Wineburg (1998) defines adaptive expertise as: “the ability to apply, 

adapt, and otherwise stretch knowledge so that it addresses new situations - often situations 

in which key knowledge is lacking.” Preferably, the expertise characteristics that students 

improve through their undergraduate education should be adaptive in nature and be 

extendable to engineering practices in general.  

While AE related research studies in engineering education and this dissertation 

have presented findings with respect to developing aspects of AE within engineering, there 

should be more in-depth future studies specifying the nature of efficiency and innovation. 

In addition, some researchers (Ericsson et al., 2006; Ericsson & Lehmann, 1996) have 

suggested that on average it takes approximately ten years of deliberate practice, along with 

the accumulation of experience to develop recognized levels of expertise. If this time frame 

is taken into consideration in the development of AE, this dissertation and most studies in 

the literature focus mostly on relatively brief snap shots in time to observe development of 
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AE. Therefore, in the future, the literature would benefit from studies that examine AE 

from a more longitudinal perspective. Examining adaptive expertise over a more extended 

period of time could yield useful insights. Moreover, the important aspects of development 

of AE that are presented (such as innovation, efficiency, experiences, multiple perspectives, 

metacognitive self-assessment, goals and beliefs, and epistemology) has been studied less in 

the literature. Therefore, several new research directions could be conducted that examine 

the role of these personal characteristics of AE. It is also important to note that engineering 

design activity almost always involves working in teams. Therefore, the collaborative nature 

of engineering practices should be taken into consideration while scrutinizing how AE can 

be developed, in contrast to just focusing on an individual's path to AE. McKenna (2014) 

suggests that future area of research could involve investigating how the adaptive expertise 

framework might be applied to groups, organizations, or collections of individuals such that 

the unit of analysis is the group, not the individual. 

V.2.2 Significance of the Research 

To sum up, this study contributes to the literature as follows: (1) the results point to 

the importance of exploring the role of contextualized exercise on students’ expressions of 

AE manifestations; (2) it was observed that substituting a routine exercise with a challenging 

one made a difference in students’ AE behaviors; (3) the results provide evidence that AE is 

developed through the years and increases with experience; (4) currently the literature is lack 

of such a comprehensive empirical based CAD modeling study to identify expert modeling 

procedures across CAD platforms; (5) this work can make a significant contribution to 

engineering instruction by emphasizing that learner centered problem based contextualized 
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exercises are significant to develop students’ AE characteristics through their undergraduate 

education.  
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APPENDIX A 

 

Adaptive Expertise Related to Computer Aided Design (CAD) 
Student Survey 

 
 
Thank you for participating in this study.  
 
This survey includes two sections. Section I asks for your demographic information. Section 
II includes some opinion and attitude questions towards the characteristics of adaptive 
expertise.  Section II items are to explore your personal views and experiences. Your 
responses to this survey will remain confidential and will not be shared with anyone other 
than the researchers.  
 
Section I: Demographic Questionnaire 
Please answer the below questions by checking the appropriate boxes or filling in the 
necessary field: 
 

1 
Name – Last Name (write in)  

 

2 Sex (check)  Male          Female 

3 Age (write in) 
       

4 Rank/ level in college (check)    Freshman        Sophomore        Junior      

  Senior 

5 Major (write in)  
6 Have you had a professional work 

experience related to engineering 
(e.g., internship, co-op, etc.)?  

    Yes                    No 

7 Have you had any technical 
employment and research 
experience related to engineering 
(e.g., machines shops, labs, project 
tasks, etc.) 

     Yes                   No 

 
Section II: Adaptive Expertise Questionnaire  
In this section, please read each item carefully and indicate your position by circling one of the numbers in the 
6 point scale as 1 (s trongly  disagree) ,  2 (disagree) ,  3 (s l ight ly  disagree) ,  4 (s l ight ly  agree) ,  
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5 (agree) ,  and 6 (s trongly  agree) .  Note that number 6 on the right designates the highest agreement 
and number 1 on the left designates the lowest agreement with the item. 
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  1 2 3 4 5 6 
1. I create several models of an engineering problem to see 

which one I like best. 1 2 3 4 5 6 
2. As I learn, I question my understanding of the new 

information. 1 2 3 4 5 6 
3. I feel uncomfortable when I cannot solve difficult problems. 1 2 3 4 5 6 
4. Knowledge that exists today may be replaced with a new 

understanding tomorrow 1 2 3 4 5 6 
5. Usually there is one correct method in which to represent a 

problem. 1 2 3 4 5 6 
6. I often try to monitor my understanding of the problem. 1 2 3 4 5 6 
7. I am afraid to try tasks that I do not think I will do well. 1 2 3 4 5 6 
8. Most knowledge that exists in the world today will not 

change. 1 2 3 4 5 6 
9. When I consider a problem, I like to see how many different 

ways I can look at it. 1 2 3 4 5 6 
10. As a student, I cannot evaluate my own understanding of new 

material. 1 2 3 4 5 6 
11. Although I hate to admit it, I would rather do well in a class 

than learn a lot. 1 2 3 4 5 6 
12. Scientists are always revising their view of the world around 

them. 1 2 3 4 5 6 
13. I tend to focus on a particular model in which to solve a 

problem. 1 2 3 4 5 6 
14. I rarely monitor my own understanding while learning 

something new. 1 2 3 4 5 6 
15. One can increase their level of expertise in any area if they are 

willing to try. 1 2 3 4 5 6 
16. Facts that are taught to me in class must be true. 1 2 3 4 5 6 
17. I am open to changing my mind when confronted with an 

alternative viewpoint. 1 2 3 4 5 6 
18. When I know the material, I can recognize areas where my 

understanding is incomplete 1 2 3 4 5 6 
19. Expertise can be developed through hard work. 1 2 3 4 5 6 
20. Existing knowledge in the world seldom changes. 1 2 3 4 5 6 
21. I rarely consider other ideas after I have found the best 

answer. 1 2 3 4 5 6 
22. I have difficulty in determining how well I understand a topic. 

1 2 3 4 5 6 
23. To become an expert in engineering, you must have an innate 

talent for engineering. 1 2 3 4 5 6 

24. Challenge stimulates me. 1 2 3 4 5 6 
25. I find additional ideas burdensome after I have found a way to 

solve the problem. 1 2 3 4 5 6 
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26. I monitor my performance on a task. 1 2 3 4 5 6 
27. Experts in engineering are born with a natural talent for their 

field. 1 2 3 4 5 6 

28. Scientific theory slowly develops as ideas are analyzed and 
debated. 1 2 3 4 5 6 

29. For a new situation, I consider a variety of approaches until 
one emerges superior. 1 2 3 4 5 6 

30. As I work, I ask myself how I am doing and seek out 
appropriate feedback. 1 2 3 4 5 6 

31. Experts are born, not made. 1 2 3 4 5 6 

32. Even if frustrated when working on a difficult problem, I can 
push on. 1 2 3 4 5 6 

33. Scientific knowledge is developed by a community of 
researchers. 1 2 3 4 5 6 

34. I solve all related problems in the same manner. 1 2 3 4 5 6 

35. Poorly completing a project is not a sign of a lack of 
intelligence. 1 2 3 4 5 6 

36. When I solve a new problem, I always try to use the same 
approach. 1 2 3 4 5 6 

37. Scientific knowledge is discovered by individuals. 1 2 3 4 5 6 

38. When I struggle, I wonder if I have the intelligence to succeed 
in engineering. 1 2 3 4 5 6 

39. There is one best way to approach a problem. 1 2 3 4 5 6 
40. I seldom evaluate my performance on a task. 

1 2 3 4 5 6 
41. I feel uncomfortable when unsure if I am doing a problem the 

right way. 1 2 3 4 5 6 
42. Progress in science is due mainly to the work of sole 

individuals. 1 2 3 4 5 6 

 
Thank you for your time ☺ 
Please re turn the forms to the researchers .  
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APPENDIX B 

 

Interview Questions for the Adaptive Expertise/ 

Contextualized Exercises in CAD 

 

Pre-interview Questions  

1. What are the things you consider first when you are asked to model an object?  

a. Why? 

2. What challenges have you previously encountered in the modeling process?  

a. If you run into that challenge today, how do you plan on overcoming it?  

3. Do you have any strategies for modeling the object today? 

a. If so, which strategies do you anticipate using?  

4. Are you familiar with the object you are going to model today?  

5. If you are familiar with the object you are modeling or if you use it often in your 

daily life, would it be easier for you to model it?  

a. Why, why not?  

6. How important is it to know about the object you are going to model?  

7.   How confident are you in this modeling process? 

(1: not confident    6:very very confident) 

1 2 3 4 5 6 

 

Post-interview Questions 
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1. Were things you considered before you began modeling the object, helpful to you in 

the process?  

a. How and why?  

2. What challenges did you encounter during the modeling process?  

3. How did you overcome these challenges?  

4. Was your knowledge of the object or being familiar with it, helpful to you in your 

modeling process?  

a. How and why?  

5. How confident are you in your model?  

6. (1: not confident    6:very very confident) 

1 2 3 4 5 6 
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APPENDIX C 

 


