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ABSTRACT

Radial basis functions have been used to construct meshfree numerical methods

for interpolation and for solving partial differential equations. Recently, a localized

basis of radial basis functions has been developed on the sphere. In this dissertation,

we investigate applying localized kernel bases for interpolation, approximation, and

for novel discretization methods for numerically solving partial differential equations

and integral equations. We investigate methods for partial differential equations

on spheres using newly explored bases constructed from radial basis functions and

associated quadrature methods. We explore applications of radial basis functions to

anisotropic nonlocal diffusion problems and we develop theoretical frameworks for

these methods.
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1. INTRODUCTION AND BACKGROUND

A judicious choice of basis can make all the difference in the success of a numerical

method. We explore and develop numerical methods for applied problems using a

recently developed localized basis of kernel functions. The basis is constructed by

linear combinations of radial basis functions. In many ways, this new basis maintains

the flexible approximation powers of radial basis functions (RBFs) for scattered data

while simultaneously avoiding the downsides of RBF methods. The localized basis

enables interpolation of scattered data on manifolds such as spheres and we explore

developing an analogous basis in Rd. Due to the desirable properties of the basis

for interpolation and approximation, we may consider constructing discretization

spaces for solving partial differential equations and integral equations in a variety of

settings.

We consider the following classical interpolation problem: let Ω ⊂ Rd be a

bounded set and let {xi}Ni=1 = X ⊂ Ω be a set of scattered points (called centers).

Let {yj}Nj=1 be a set of known data values
(
e.g., samples of a function yj = f(xj)

)
.

The interpolation problem seeks an interpolant s : Ω→ R which satisfies s(xj) = yj.

Let πN(Rd) denote the space of polynomials of degree at most N on Rd. In

the case d = 1 with X ⊂ R, the interpolation problem always has a unique in-

terpolant s ∈ πN−1(R). That is, there exists a subspace of functions which always

admits a unique interpolant, regardless of the location of the centers. For d > 1,

the Mairhuber-Curtis theorem demonstrates that it is not possible to fix a subspace

of functions that always admits a unique interpolant regardless of the location of

the data sites [28]. This result implies that the interpolants must be constructed by

taking into account the configuration of the centers. This raises the difficult problem
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of requiring a customized subspace of functions for each different set of centers.

1.1 Radial Basis Functions

One possible solution to the interpolation problem is to use radial basis functions.

In this section, we define radial basis functions and we discuss their applications to

scattered data interpolation, previous work, and other applications of radial basis

functions. Let ϕ(r) : R+ → R be a continuous function and define the function

Φ : Rd → R by Φ(x) = ϕ(‖x‖). We say such a function Φ is radial. Let Ω ⊂ Rd be a

region of interest where we have some given data. Let {xi}Ni=1 = X ⊂ Ω be a finite

set of centers, and define the space

VX = span{Φ(x− xi) : xi ∈ X}.

Given data values {yj}Nj=1, we seek an interpolant in VX which is a linear combination

of translates of Φ. This leads to a system of N equations in N unknowns with

conditions

yj =
N∑
i=1

ciϕ(‖xj − xi‖) for j = 1, . . . , N.

If we let Aij = ϕ(‖xi − xj‖) and let (~c)i = ci and (~y)j = yj, then we seek a solution

to the problem A~c = ~y. We refer to the matrix A as the interpolation matrix. This

leads to the following question: what functions ϕ : R+ → R necessarily generate an

invertible interpolation matrix for any set of centers? This problem remains open,

but the following restricted question is a classical question in analysis: what functions

ϕ generate a positive definite interpolation matrix for all sets of centers? Bochner’s

theorem characterizes all positive semi-definite functions as the Fourier transform of

a non-negative Borel measure. A useful corollary is that a continuous, integrable

function Φ : Rd → R is positive definite if and only if Φ is bounded and its Fourier
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transform is non-negative and non-vanishing. One such example is the Gaussian

ϕ(r) = exp(−αr2) for α > 0 [28].

A more general notion is that of a conditionally positive definite function of order

m. Recall that πm(Rd) is the space of at most degree m polynomials on Rd. We say

that ϕ : R+ → R is conditionally positive definite of order m on Rd if and only if for

any set of scattered centers, the quadratic form

N∑
i=1

N∑
j=1

αiᾱjϕ(‖xi − xj‖)

is positive for any set of scalars {αi}Ni=1 not identically equal to zero that satisfy

N∑
i=1

αip(xi) = 0

for all p ∈ πm−1(Rd). That is, the interpolation matrix is positive definite on a

subspace “orthogonal” to the polynomials. One such example is the thin plate spline

ϕ(r) = r2 log(r), which is conditionally positive definite of order 2 on every Rd.

Interpolating data on a set of centers with a conditionally positive definite function

requires the addition of polynomial constraints to ensure the existence and uniqueness

of an interpolant. Given centers {xj}Nj=1 and data values {yj}Nj=1, the interpolation

problem is to find coefficients {cj}Nj=1 and {bl}mdl=0 such that

yj =
N∑
i=1

ciϕ(‖xj − xi‖) +

md∑
l=0

blpl(xj)

subject to
N∑
i=1

cipl(xi) for 0 ≤ l ≤ md

where {pl}mdl=0 form a basis for πm−1(Rd).
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Radial basis functions have been actively explored for the past several decades.

Hardy’s work with the multiquadric was one of the first explorations of radial basis

functions for interpolation, dating back to work in 1971. Duchon’s investigation of

the thin plate spline used a variational approach of minimizing a semi-norm [5]. The

thin plate spline was found to be the minimizer of a certain energy functional (which

has a physical interpretation as the bending energy of a thin metal plate). Later,

Meinguet pushed forward the use of thin plate spline interpolation for numerical

methods [20, 21, 22].

Radial basis functions are actively being researched for discretization methods

for partial differential equations. They are particularly intriguing because they do

not require a mesh or triangulation and can be used for high dimensional problems.

In 1990, Kansa introduced a radial basis function method for the solution of partial

differential equations [16]. This work, based on the multiquadric RBF, established

the first collocation method for elliptic, parabolic, and hyperbolic partial differen-

tial equations. Future work has explored the application of the Kansa method for

shocks and shallow water wave equations. Engineers have reported success in using

these methods for modeling high order differential equations which often are diffi-

cult for finite element methods. Unfortunately, Kansa’s method does not guarantee

a solution. Hon and Schaback reported an example of a differential operator, ra-

dial basis function, and set of centers which yielded a singular collocation matrix

[15]. Furthermore, no error estimates have been proven for Kansa’s method. In con-

trast to Kansa’s method, the symmetric radial basis function method introduced by

Fasshauer guarantees an invertible collocation matrix and provides error estimates,

but at the cost of requiring basis functions to be twice as smooth as Kansa’s method

[6].

Galerkin methods are of interest because they provide a functional analytic frame-
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work for constructing error estimates. Much work over the past several decades has

yielded a wealth of theory which can be readily applied to produce error estimates

provided the basis of functions being used has known interpolation error estimates.

Since radial basis function methods have known error estimates for certain kernels,

this suggests a Galerkin method using radial basis functions is viable theoretically.

While these have been investigated, due to difficulty with numerically integrating

radial basis functions to construct elements in the stiffness matrix, these methods

have not been pursued as actively as collocation methods. In contrast to Kansa’s

collocation method, Wendland developed error estimates for a Galerkin radial basis

function method for elliptic partial differential equations [27].

Radial basis function (RBF) interpolation offers interpolation of possibly highly

scattered, high dimensional data. Two computational drawbacks associated with

RBF interpolation are the construction of the interpolant and subsequent evaluation

of the interpolant. Given N centers, constructing the interpolant requires inverting

a matrix where the number of rows is O(N). For globally supported RBFs (e.g., the

thin plate splines or Gaussians), the interpolation matrix is dense. The condition

number of the interpolation matrix grows with respect to the minimum distance

between two centers. Therefore, solving for the interpolant on a large set of centers

requires inverting a large, dense, ill-conditioned matrix. The computational cost of

evaluating the interpolant on M points is of order O(MN). Fast multipole methods

have been investigated to reduce the computational complexity of RBF evaluation,

although these methods reduce the accuracy of the interpolant [28].

Radial basis function interpolation has suffered from a so-called trade off prin-

ciple. Consider, for example, the positive definite radial basis function ϕ(r) =

exp(−αr2) for α > 0. The Gaussian RBF is positive definite on any Rd, but for

numerical approximations, the choice of α is problematic. A large value of α results
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in a well-conditioned interpolation matrix, but yields poor approximation of a func-

tion. On the other hand, decreasing α leads to better numerical approximation, but

the condition number grows quickly with the number of centers [28]. There is no

known analytic method for choosing α and some suggest ad hoc methods of guessing

or trial-and-error methods for choosing α. This issue is not unique to the Gaussian;

compactly supported Wendland functions also require a user chosen scale parame-

ter. The thin plate spline does not require a scale parameter and recent work has

demonstrated a “self-scaling” basis which scales automatically with the data density.

1.2 Native Spaces

In this section, we cover background regarding error estimates for radial basis

function interpolation on compact domains in Rn. Error estimates for radial basis

function interpolation have been a subject of investigation for at least two decades.

Most RBF interpolation error estimates take place in the native space, a reproduc-

ing kernel Hilbert space corresponding to the (conditionally) positive definite RBF

kernel. We discuss these spaces and their importance as well as error estimates for

functions not residing in the native space. The error estimates for functions not resid-

ing in the native space is crucial for error estimates on partial differential equations

and for approximation error from interpolation of lower smoothness functions.

Let H denote a Hilbert space of functions on Ω ⊂ Rn. We say that a kernel

Φ : Ω× Ω→ R is a reproducing kernel for H if

• 1: Φ(·, x) ∈ H for all x ∈ Ω.

• 2: f(x) = 〈f,Φ(·, x)〉 for all f ∈ H and all x ∈ Ω.

We say that H is a reproducing kernel Hilbert space and Φ is the reproducing kernel.

An example of a reproducing kernel Hilbert space is W 1
2 (R) with the reproducing
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kernel Φ(·, x) := exp(−1
2
|x−·|). Not all Hilbert spaces are reproducing kernel Hilbert

spaces. It can be shown that a Hilbert space H having a reproducing kernel is equiv-

alent to the point evaluation functionals being continuous. A consequence of this

result is that L2[a, b] does not have a reproducing kernel since the point evaluation

functionals are not continuous.

Positive definite functions naturally relate to reproducing kernel Hilbert spaces.

Given a positive definite function, we can directly construct a Hilbert space on which

the function is a reproducing kernel. Let Φ : Ω × Ω → R be a continuous, positive

definite function We construct a spaceHΦ by considering all finite linear combinations

of Φ(·, x). That is,we define

HΦ := {
N∑
j=1

ajΦ(·, xj) : xj ∈ X and N <∞} (1.1)

We note that this is a space of continuous functions (since Φ is a continuous positive

definite kernel). This space may be equipped with a bilinear form

〈f,Φ(·, y)〉Φ = f(y)

for all f ∈ HΦ and all y ∈ Ω. By taking the completion of this space and appropri-

ately identifying the elements in the completion as continuous functions, we have a

Hilbert space HΦ with a reproducing kernel Φ. The resulting Hilbert space is called

the native space of the kernel Φ, under appropriate interpretation of the elements of

the Hilbert space as continuous functions. See [28] for a more thorough discussion.

In the context of a conditionally positive definite function, the concept of a native

space is significantly more technical. The interested reader is strongly encourage to

consult [28] for a much more thorough and full discussion and exposition on the topic
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of native spaces and reproducing kernel Hilbert spaces, as well as a complete and

rigorous discussion of native spaces for conditionally positive definite functions.

We refer to the Sobolev space on a region Ω, denoted W k
p (Ω) to be the collection

of Lp functions with up to order k Lp weak derivatives. That is,

W k
p (Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for |α| ≤ k}.

The Sobolev space is equipped with the Sobolev norm given by

‖f‖Wk
p (Ω) :=

( ∑
|α|≤k

‖Dαf‖pLp
) 1

p

.

For the case p = 2, which is frequently of interest for our purposes, the Sobolev space

is a Hilbert space. In addition to the Sobolev norm on W k
2 (Ω), we also may use the

Sobolev semi-norm given by

|f |Wk
2 (Ω) :=

( ∑
|α|=k

‖Dαf‖2
L2

) 1
2

.

We define the Beppo-Levi space BL(Rn) to be the space of functions

BL(Rn) := {f ∈ Lp(Rn) : |f |Wk
2 (Rn) <∞}.

The Beppo-Levi space is a semi-Hilbert space when equipped with the above semi-

norm. We note that polynomials of degree less than k are contained within the kernel

of the Beppo-Levi semi-norm.

We refer to the surface splines or thin plate splines of order m, denoted φm :
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Rd → R, to be the functions

φm(‖x‖) :=


‖x‖2m−d d is odd

‖x‖2m−d log(‖x‖) d is even.

These functions are conditionally positive definite of order m. If πm−1(Rd) denotes

the space of degree at most m− 1 degree polynomials on Rd, then the bilinear form

N∑
i,j

aiajφ(‖xi − xj‖) > 0

provided that
∑N

i=1 aip(xi) = 0 for each p ∈ πm−1(Rd). Informally, we may interpret

this as the thin plate splines being positive definite on a subspace “orthogonal” to

the polynomials of degree at most m−1. The interpolation space for these functions

takes the form

S(X) := {
∑
xi∈X

aiφm(· − xi)|
∑
xi∈X

aip(xi) = 0 for all p ∈ πm−1}+ πm−1.

Since the φm are conditionally positive definite, on a set of scattered centers X,

the interpolation problem has a unique solution provided that the set of centers is

unisolvent. We say a set of points X is unisolvent with respect to πm−1(Rd) if the

only polynomial which is zero on all of X is the zero polynomial. We note that this

is a mild condition that should not cause issue (except, possibly in the case of very

few points or points that lie exactly along a plane or line).

1.3 Error Estimates

We first discuss error estimates for radial basis function interpolation. Histor-

ically, these estimates were primarily restricted to functions residing in the native
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space of the kernel. This restriction was suspected to be artificial, as numerical

experiments with functions not smooth enough to reside in the native space (e.g.,

W k
2 (Ω)) would still present predictable convergence rates. Characterizing the con-

vergence rates requires knowledge of the geometry of the centers. Analogous to the

finite element method, where the convergence rate of the scheme depends on the size

of the largest elements (denoted by h), radial basis function interpolation conver-

gence rates depend on the largest gaps in the distribution of the centers (a quantity

aptly also denoted by h). We note that the radial basis function estimates are anal-

ogous to the error estimates typically derived for finite element schemes; typically,

one expects the solution to a function in W k
2 (Ω) to converge at a rate of O(hk) in

the L2 norm. Additionally, one expects the solution to converge at a rate of O(hk−α)

in the Wα
2 (Ω) norm. Such results have been developed for radial basis functions and

we present them below.

The geometry of the data affects the quality of the interpolant in multiple ways.

Informally, if the data is sufficiently “dense” in the domain, we expect the interpolant

to provide a high degree of approximation to a smooth function. Furthermore, the

distribution of the points may affect the quality of the interpolation matrix. If two

centers xi, xj are very close, then the i and j columns of the interpolation matrix

are very “similar”, which causes the condition number of the matrix to be poor.

Therefore, the challenge for scattered data interpolation is to have well-distributed

data that is sufficiently dense, yet does not clump. We mathematically characterize

these ideas with different quantities to represent the geometric properties of the data.

Let X ⊂ Ω be a collection of scattered centers. We define the mesh norm or

fill distance h to be the radius of the largest ball in Ω that does not intersect X.

We define the separation radius q to be half the minimum distance between centers.
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Mathematically,

h := sup
x∈Ω

min
xi∈X
‖x− xi‖ q :=

1

2
inf

xi,xj∈X
‖xi − xj‖. (1.2)

See Figure 1.1 for a visual example of the mesh norm. We define the mesh ratio

ρ := h
q
. Informally, for ρ near one, the centers are nearly uniformly distributed and

large ρ indicates clustering of points. Let {Xh,q} be a collection of sets of centers

indexed by mesh norm h, q. We say the collections of centers are quasi-uniformly

distributed if there exists constants C1, C2 such that

C1q ≤ h ≤ C2q.

Consequently, sup{Xh,q} ρh,q ≤
C2

C1
, which implies the mesh ratio is bounded. Quasi-

uniformly distributed collections of centers allow for theoretically shrinking h to zero

while controlling the distributions of the centers so they do not clump arbitrarily as

h→ 0. This is a fundamental assumption we assume throughout.

Now that we may quantify geometric properties of the centers, we present a

classical radial basis function theorem for interpolation error estimates.

Theorem 1. [28] Suppose that Ω ⊆ Rd is bounded and satisfies an interior cone

condition. Let Φ(x) = (−1)k+1‖x‖2k log(‖x‖) and let f ∈ NΦ(Ω). Let X be a

collection of quasi-uniformly distributed centers and let IXf denote the radial basis

function interpolant constructed using Φ. Then, there exists C > 0 such that for

sufficiently small h,

|Dαf(x)−DαIXf | ≤ Ch
k−|α|
X |f |NΦ(Ω).
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Figure 1.1: The dots represent locations of centers. The quantity h represents the
radius of the largest ball that does not intersect any centers. This quantity measures
how dense the data is in the region of interest.

Analogous results hold for compactly supported Wendland functions. The key

observation in the above theorem is that the function f lies in the native space. This

assumption is highly restrictive, so error estimates for functions not contained in

the native space are of interest. The restriction of error estimates for functions only

residing in the native space was a limiting factor for the theoretical development of

error estimates for methods in partial differential equations. Work by Narcowich,

Ward, and Wendland proved that error estimates can “escape” the native space

for certain radial basis functions [26]. We present an example of such an “escape”

estimate which will prove to be useful for our purposes later.

Theorem 2. Let Ω ⊂ Rd be a compact domain with Lipschitz boundary and satisfy
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an interior cone condition. For sufficiently small h, and f ∈ W k
2 (Ω) for d

2
< k ≤ m,

‖f − IXf‖L2(Ω) ≤ Chk‖f‖Wk
2 (Ω)

where IXf ∈ Wm
2 (Ω) is the thin plate spline interpolant [26].

We briefly remark that the restriction k > d
2

is imperative. If k ≤ d
2
, then f is

not necessarily a continuous function; by the Sobolev embedding theorem, W k
2 (Ω)

are continuous for k > d
2
. Hence interpolation is a questionable operation.

The proof of this theorem relies on a very important lemma that is interesting

in its own right. The so-called “Zeros lemma” relates different Sobolev norms of a

function that has sufficiently many zeros within a region.

Proposition 1. Let Ω ⊂ Rn be a bounded and satisfy an interior cone condition.

Let k be a positive integer with 0 < s ≤ 1, 1 ≤ p, q ≤ ∞ and let m ∈ N satisfy

k > m+ d
p

for p > 1 or k ≥ m+ d for p = 1. Let X be a set with mesh norm h that

is sufficiently small. If u ∈ W k+s
p (Ω) satisfies u|X = 0, then

|u|Wm
q (Ω) ≤ Chk+s−m−d( 1

p
− 1
q

)+ |u|Wk+s
p (Ω).

In particular, for the choice q = p = 2 and s = 0 (i.e., a non-fractional or-

der Sobolev space), we have |u|Wm
2 (Ω) ≤ Chk−m|u|Wk

2 (Ω). As one might suspect, by

noting that a function u and its radial basis function interpolant are zero on the

set of centers, an error estimate for |u − IXu|Wm
2 (Ω) can be derived. Since the thin

plate splines have error estimates which escape the native space and require no scale

parameter, they are of particular interest for numerical methods besides interpola-

tion. We use these approximation powers later for work involving partial differential

equations and nonlocal diffusion. We briefly remark on the approximation powers of
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alternative radial basis functions. The Gaussians and multiquadrics enjoy a spectral

convergence result for functions in their native space [18]. That is, for f ∈ NΦ(Ω),

the native space for the Gaussian kernel,

‖f − IXf‖L∞(Ω) ≤ C exp

(
− c

h

)
‖f‖NΦ(Ω).

For functions in the native space, the interpolant rapidly converges to the function

at an exponential rate. However, the trade off is the small size of the native space.

Elements of the native space for Gaussians and multiquadrics are necessarily analytic,

which is a “small” space. In contrast, the thin plate splines guarantee convergence

to less smooth functions. In particular, it has been shown that error estimates for

functions outside of the native space exist.

Now that we have some understanding of the approximation powers of radial basis

functions, we consider how numerically stable the construction of the interpolant

is. The construction of the interpolant requires the solution of a linear system of

equations, and hence the solution of a matrix equation via some iterative method

or by LU decomposition. The solution of a matrix equation by iterative methods

can be sensitive to noise in the data, which is a guaranteed reality since computers

are involved. The condition number of a matrix measures, roughly, how much small

perturbations in the data affect the solution to a problem. For a matrix A, we define

the condition number κ(A) := ‖A‖ ‖A−1‖. In the lucky case of a symmetric, positive

definite matrix, we know ‖A‖ = sup{λ : λ ∈ σ(A)} where σ(A) is the collection of

eigenvalues of A. Furthermore, ‖A−1‖ is the reciprocal of the minimal eigenvalue of

A. Therefore, we have κ(A) := λmin(A)
λmax(A)

.

Constructing an accurate solution to a linear system of equations is problem-

atic for “very large” condition numbers. Understanding how the condition number
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changes as parameters for a problem are modified is imperative. For the problem

of radial basis function interpolation, the condition number can be characterized in

terms of the separation radius q. (We note that, in the quasi-uniform assumption,

this number can be bounded above and below by the mesh norm h). The depen-

dence on q is perhaps not particularly surprising; as q shrinks, the centers get closer

and closer. Consequently, two columns of the interpolation matrix will be very close

componentwise, which implies the matrix becomes “more and more nearly linearly

dependent”.

We can quickly measure an upper bound on the maximal eigenvalue for kernels.

To approach this problem, the Gershgorin Circle Theorem for eigenvalues provides a

method to approximate upper bounds on the difference between matrix entries and

eigenvalues:

|λ− aii| ≤
∑
i 6=j

ai,j

where ai,j are the (i, j) matrix entries. For an interpolation matrix, ai,j = Φ(xi, xj),

and consequently,

|λmax(A)− Φ(xi, xi)| ≤
∑
i 6=j

|Φ(xi, xj)| ≤ (N − 1)‖Φ(·, ·)‖L∞

Consequently,

|λmax| ≤ N‖Φ(·, ·)‖L∞ ≤ Cq−d‖Φ(·, ·)‖L∞ .

The last inequality follows by a simple bound on the number of centers in a region

Ω ⊂ Rd. A significantly more difficult problem is analyzing lower bounds for the

minimal eigenvalue. We refer the interested reader to [28] for a thorough discussion,

but we present some results here. For the thin plate splines φ(r) = (−1)k+1r2k log(r),

the minimal eigenvalue falls as q2k. Consequently, as q goes to zero, the interpolation
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system may become ill-conditioned. For this reason, constructing an interpolant

on a large set of centers with a small separation radius may be difficult. Solving,

large, dense, ill-conditioned linear systems is a non-trivial computational challenge.

Furthermore, poor condition numbers degrade the performance of iterative methods.

This issue is one of many which motivates our future work with an alternative basis.

We remark briefly on alternative radial basis functions. The compactly supported

Wendland functions also possess an algebraic rate of change in the minimal eigen-

value. On the other hand, the Gaussians suffer from an exponential decrease in

the minimal eigenvalue, which leads to unpleasantly ill-conditioned systems even for

small collections of centers.

1.4 Spherical Basis Functions

The problem of interpolation on Riemannian manifolds is of interest for scientific

applications. In particular, much work has been done in the case of a boundaryless,

compact Riemannian manifold, such as the n-sphere Sn. In the case of Sn, spherical

basis function (SBF) interpolation has been explored and allows for interpolation

of scattered data. Excluding a few special cases for point distributions along pla-

tonic solids, constructing uniformly spaced points along the sphere is not possible.

Methods requiring regular distributions of points are not available. Therefore, inter-

polation methods which allow for scattered data are imperative for spheres.

Given a set of points (centers) distributed along the n-sphere, a spherical basis

function Φ : Sn × Sn → R can be defined by choosing Φ(x, y) = φ(x · y) for φ :

[−1, 1] → R. For each center xj ∈ {xi}Ni=1, the spherical basis function is the

rotation to the point xj, Φj(x) = φ(x · xj). The interpolant is then formed from
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linear combinations of rotations of Φ, given by

s(x) =
N∑
j=1

cjφ(x · xj).

Positive definite spherical basis functions, analogous to positive definite radial basis

functions, yield positive definite interpolation matrices. Conditionally positive defi-

nite kernels, such as the restriction of the thin plate spline to Sn, may also be defined

in a similar fashion. While these methods offer interpolation for highly scattered

data, they suffer the same drawbacks as the radial basis functions on domains in

Rn. In particular, we are interested in the restricted surface splines or polyharmonic

splines

φm(x · y) := (−1)m(1− x · y)m−1 log(1− x · y)

for m ≥ n
2
.

We discuss in detail later partial differential equations on spheres, which neces-

sitates some discussion of background. We focus on the n-sphere with an interest

in differential operators, spherical harmonics, Sobolev spaces, and approximation

spaces on spheres. The sphere Sn is a compact, boundaryless Riemannian manifold.

Let (x1, x2, . . . , xn) be a smooth set of local coordinates. The sphere Sn has a metric

tensor gij and measure dµ =
√

det(gi,j)dx
1dx2 . . . dxn. We are particularly interested

in the case n = 2, which is the usual sphere. In this case, we have the usual local

spherical coordinates (θ, ϕ), where θ is the colatitude and ϕ is the longitude. With
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these local coordinates, the metric tensor takes the form

gij =

1 0

0 sin2(θ)

 .

Differential operators on spheres are of particular interest since we aim to dis-

cretize and solve partial differential equations on the sphere. The covariant derivative

operator, ∇, acts as the usual gradient when operating on functions expressed appro-

priately. The Laplace-Beltrami operator acts as a spherical analogue of the Lapla-

cian. The Laplace-Beltrami operator is defined as ∇∗∇, which in local coordinates

may be expressed as

∆u :=
1√

det(gij)

∑
i,j

∂

∂xi

√
det(gij)g

ij ∂u

∂xi
(1.3)

where gij is the inverse matrix of gij. As usual, we are particularly interested in

the case of S2, which in spherical coordinates leads to the Laplace-Beltrami operator

taking the form

∆u =
1

sin(θ)

∂

∂θ

(
sin(θ)

∂u

∂θ

)
+

1

sin2(θ)

∂2u

∂φ2
. (1.4)

The eigenfunctions of the Laplace-Beltrami play an important role on the sphere

and we make use of them as a basis in our numerical methods. These eigenfunctions,

known as the spherical harmonics, are eigenfunctions of −∆ on Sn with eigenvalues

λ` = `(` + n − 1). The eigenspace corresponding to λ` is spanned by a collection

of orthonormal eigenfunctions denoted by Y`,k where k = 1, . . . , d`. We denote the

eigenspace spanned by {Y`,k}d`k=1 = H`. The space spanned by all eigenfunctions

up to order L will be denoted by ΠL := ⊕L`=0H`. The dimension of the eigenspace
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H` ∼ O(`n−1). Let x, y ∈ Sn and let x · y denote the dot product in Rn+1. Then, the

famous addition formula tells us

d∑̀
k=1

Y`,k(x)Y`,k(y) =
2`+ n− 1

(n− 1)ωn
P

n−1
2

` (x · y)

where ωn is the volume of Sn and P
n−1

2
` is the degree of the ` ultraspherical polynomial

of order n−1
2

. For the case n = 2, these polynomials are the Legendre polynomials.

The space L2(Sn) is the Hilbert space of square integrable functions with respect

to the measure dµ. An orthonormal decomposition of L2 functions is provided by the

spherical harmonics. As a complete orthonormal set, we may expand any f ∈ L2(Sn)

via the formula

f =
∞∑
`=0

d∑̀
k=1

f̂`,kY`,k.

It then follows that the L2 inner product of f, g ∈ L2(Sn) is given by

〈f, g〉L2(Sn) =
∞∑
`=0

d∑̀
k=1

f̂`,kĝ`,k.

In addition to L2(Sn), we require Sobolev spaces on spheres so we may char-

acterize the smoothness of the functions we are working with. This is invaluable

for partial differential equations, as error estimates often depend on some notion of

smoothness. Furthermore, regularity theorems guarantee smoothness properties of

the solution provided some level of smoothness on the data. We define the Sobolev

space of order m to be the collection of functions

Hm := {f ∈ L2(Sn) :
∞∑
`=0

d∑̀
k=1

(1 + λ`)
kf̂ 2
`,k <∞} (1.5)
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which has an inner product given by

〈f, g〉Hk(Sn) :=
∞∑
`=0

d∑̀
k=1

(1 + λ`)
kf̂k,`ĝk,`.

We note that we may also denote Hm by Wm
2 (Sn) to match our notation for Rn.

Fractional order Sobolev spaces extend the definition above. For fractional τ , we

may define Hτ as the space of functions such that ‖(I −∆)
τ
2 f‖L2(Sn) <∞.

We note that the Laplace-Beltrami operator is a self-adjoint operator with respect

to the L2(Sn) inner product and −∆ is positive on the orthogonal complement of a

finite dimensional subspace of spherical harmonics.

1.4.1 Conditionally Positive Definite Kernels on Spheres

A kernel κ is conditionally positive definite with respect to a finite dimensional

subspace Π if, for any set of N distinct centers, the matrix KX :=

(
κ(ξ, η)

)
ξ,η

is

positive definite on the subspace of all vectors a ∈ CN satisfying
∑

ξ∈X aξp(ξ) = 0

for all p ∈ Π.

In the case of the sphere S2, we focus on the finite dimensional subspaces ΠL

of degree at most L spherical harmonic polynomials. By a slight re-indexing of

the {Yl,k}, we may write them as a collection of orthonormal functions {φj}. We

now consider a class of conditionally positive definite kernels that we characterize by

studying their expansion in terms of the orthonormal basis {φj}. Let {κj}∞j=1 ∈ `2(N)

with all but finitely many κj positive. Then, we consider the kernel κ of the form

κ(x, y) :=
∑
j∈N

k(j)φj(x)φ̄j(y). (1.6)

Such a kernel is conditionally positive definite with respect to the space Π :=

span{φj : κj ≤ 0}. Let J denote the set of indices so that κj ≤ 0. To verify condi-
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tionally positive definite, we consider
∑

ξ,η αξκ(ξ, η)ᾱη for some arbitrary collection

of centers X with ξ, η ∈ X and some arbitrary collection of coefficients {αξ}ξ∈Ξ

such that
∑

j∈J αξφj(ξ) = 0. Then, we compute by expanding κ in terms of the

orthonormal basis

∑
ξ,η

αξκ(ξ, η)ᾱη =
∑
j∈N

κj
∑
ξ,η

αξφj(ξ)φj(η)αη =
∑
j /∈J

κj‖αξφj(ξ)‖`2(X) > 0.

As we know, conditionally positive definite kernels give rise to unique interpolants

provided additional constraints from some finite dimensional subspace Π are in-

cluded. Using a kernel of the form Equation (1.6), an interpolant to a function f is

constructed by

IXf(·) =
∑
ξ∈X

aξκ(·, ξ) +
∑
j∈J

bjφj(·)

where we know
∑

ξ∈X aξφj(ξ) = 0 for all j ∈ J . Constructing the interpolant to the

function f by data samples {f(ξ)}ξ∈X follows by solving a matrix problem of the

form KX P

P T 0


a
c

 =

f
0

 (1.7)

where (KX)ξ,η = κ(ξ, η) and (Φ)ξ,j := φj(ξ). As we know, this matrix system is

invertible since κ is a conditionally positive definite kernel with respect to Π. Fur-

thermore, the interpolant can be viewed from an alternative, variational perspective.

The interpolant is a minimizer of a certain variational problem involving a semi-norm

induced by the coefficients.
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We define the native space inner product corresponding to κ by

〈f, g〉κ =

〈∑
j∈N

f̂jφj,
∑
j∈N

ĝjφj

〉
k

:=
∑
j /∈J

f̂(j)ĝ(j)

κj
(1.8)

where f̂j denotes the Fourier coefficient of f with respect to the orthonormal basis

{φj}. We note that this is certainly a semi -inner product and not a true inner prod-

uct. Consider, for example, applying the above semi-inner product to functions in

Π; the semi-inner product yields zero since the sum runs over j /∈ J . The semi-inner

product induces a semi-norm in the usual way by |f |2k = 〈f, f〉k. The interpolant

constructed by solving (1.7) minimizes the semi-norm | · |k.
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2. LAGRANGE FUNCTIONS

Radial basis functions present numerous advantages for numerical methods, such

as impressive interpolation and approximation powers. Well-understood convergence

rates for interpolation as well as characterizations of the stability of interpolation

matrices support the notion that, theoretically, radial basis functions may be potent

tools for developing numerical methods for problems involving scattered, irregular

data. However, difficulties arise in the implementation of the methods. Solving ill-

conditioned, dense linear systems can be a non-trivial computational burden. We

present methods that enable one to maintain all the benefits of radial basis func-

tions while simultaneously reducing the computational overhead. To achieve this,

we change from the basis of translates of a kernel Φ(‖x− y‖) to a basis of functions

which interpolate one at a single point and zero elsewhere. These functions we refer

to as Lagrange functions (others may refer to these as cardinal functions).

Lagrange functions and local Lagrange functions are the primary objects of inter-

est for constructing numerical methods. The choice of basis can impact the efficacy of

a numerical method, and we demonstrate that the local Lagrange functions perform

admirably. In this chapter, we discuss in detail Lagrange functions and local La-

grange functions. We provide background information necessary to understand their

theoretical properties and we provide some numerical experiments demonstrating the

theoretical properties.

2.1 Lagrange Functions on Spheres

We begin our discussion of Lagrange functions by focusing on Lagrange functions

on the n−sphere, Sn. The manifold Sn has numerous advantageous properties, most

notably that it is a manifold without boundary. This fortunately reduces numerous
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theoretical difficulties which arise during the case of bounded subsets of Rn. In

particular, we note that the boundary is a nuisance ubiquitous throughout the field

of numerical methods. By working on a manifold without boundary, we avoid many

of these issues.

We start by considering a set of quasi-uniformly distributed centers X ⊂ Sn. We

restrict our focus to the surface splines of order m defined by

φm(x, y) := (1− x · y)m−1 log(1− x · y).

We know this is a conditionally positive definite spherical basis function with respect

to the space Πm(Sn). The approximation space VX is defined to be the collection of

acceptable linear combinations of rotations of φm(x · xj) plus polynomials of up to a

certain degree. That is,

VX := {
∑
xj∈X

ajφm(x · xj) + Πm :
N∑
j=1

ajp(xj) = 0 ∀ p ∈ Πm}.

We consider changing from this basis of rotations of φ(x · xj) to a basis which

is highly localized spatially. Let xj ∈ X and consider constructing the interpolant,

denoted χj, that takes a value of one at xj and zero elsewhere. That is, χj(xi) = δi,j

where δi,j = 0 if i 6= j and 1 if i = j. We know that for any collection of unisolvent

centers, there always exists a unique interpolant to any data condition on the centers,

so we know χj must exist in VX . To construct this function, we enforce for each
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ξ ∈ X,

χj(ξ) =
N∑
i=1

αi,jΦ(xi, ξ) +
m∑
`=0

d∑̀
k=1

β`,k,jY`,k(ξ),

0 =
N∑
i=1

αi,jp(xi) for all p ∈ Πm.

Consequently, enforcing this condition requires the solution of a linear system of

size O(N). By quasi-uniformity, we know that q ∼ C 1
Nd , and as N grows, the

condition number gets progressively worse with a decrease of the minimal eigenvalue

algebraically in terms of q. Consequently, the construction of the Lagrange function

requires solving a large, dense, possibly ill-conditioned linear system of equations.

Furthermore, to construct the full basis, N such systems must be solved. The reader

may be very suspicious of any possible numerical use or practical application of such a

basis; this skepticism is warranted, and indeed, we do not suggest the use of this basis

for application necessarily. We later present a computationally friendly basis which

preserves many of the properties of the Lagrange basis. However, before we discuss

this basis, we present background information required which we take advantage of

for our purposes later.

We begin our discussion of results on Lagrange functions on spheres by presenting

estimates on their norms. To do so, interpolation error estimates for spherical basis

functions are used, which are based on the powerful “Zeros Lemma” for Riemannian

manifolds. The first observation is that the Lagrange functions, for various quasi-

uniform sets, are pointwise bounded above. This prevents the possibility of the

Lagrange functions “spiking” up too high or low off of the centers as the mesh norm

h gets small. Indeed, the bound depends on the mesh ratio, which is bounded under

the quasi-uniform assumption.
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Lemma 1. The Lagrange functions are uniformly bounded by constants independent

of h or q.

We next note a remarkable property of the Lagrange functions on the sphere:

they are highly spatially localized. Indeed, the Lagrange function centered at a point

xj exponentially decays with respect to the distance from the center xj. One may

erroneously view this as unsurprising; χj certainly is zero on all of the centers except

one, so it being small may not seem surprising. However, functions that interpolate

zero throughout might still posses wild oscillations between the centers. Apparently,

the Lagrange functions for thin plate splines do not. Furthermore, this is surprising

because of the structure of a thin plate spline; these functions grow with distance

and are categorically not localized spatially in any way. However, the correct linear

combinations of thin plate splines plus the appropriate polynomial apparently results

in a highly localized function.

Proposition 2. [13][Proposition 4.5] Suppose that m > d
2

and κm is a polyharmonic

kernel on Sn. There exist positive constants h0, ν, and C independent of h and q so

that for any set of quasiuniform centers X with mesh ratio ρ and sufficiently small

mesh norm h, the Lagrange function centered at ξ ∈ X satisfies

|χξ(x)| ≤ Cρm−
d
2 exp

(
− ν

h
d(x, ξ)

)
.

This argument was developed in [13] and also in [10]. The argument is based off

of a trick showing that the bulk of the Sobolev semi-norm of the Lagrange function

was contained in a thin annulus about the center. This “bulk chasing” argument

was inspired by a similar result due to Matveev, which he used for working with Dm

splines on Rn [19]. For more general manifolds, the decay results can be extended

but with a modification that the decay is not in terms of just d(x, ξ), but in terms
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Figure 2.1: A Lagrange function constructed from 625 centers has been evaluated at
5041 points. The distance from the center of the Lagrange function to the evaluation
point versus the log of the absolute value of the evaluation of the Lagrange function
at the point is plotted. A clear, exponential decay is visible.

of min
(
d(x, ξ), rM

)
where rM denotes the injectivity radius of the manifold. The

argument for the decay largely takes place in the tangent space, which converts

the problem from a problem on manifolds to a problem in Rn, which is where the

injectivity radius factors in.

In addition to the spatial decay of the Lagrange functions, they also exhibit a

special Hölder continuity type of estimate.

Proposition 3. [12] Under the assumptions of Proposition 2, for any 0 < ε ≤ 1,

there exists a constant C depending on the mesh ratio, the order m of the basis

function κm, and ε, so that

|χj(x)− χj(y)| ≤ C

(
d(x, y)

q

)ε
.
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These results suggest the basis behaves well: the basis functions are spatially

localized with predictable continuity patterns. These results enable one to begin

proving results about the stability of the basis. The first result that we present from

[13] is one that studies the Lebesgue constant of the basis.

The Lebesgue constant corresponding to the collection X of centers is defined to

be L(X) := supx∈Sn
∑

ξ∈X |χξ(x)|. This quantity measures the stability of the inter-

polation process. If this quantity grows without bound as h → 0 for quasi-uniform

sets, the interpolation operation becomes increasingly unstable. Consequently, the

coefficients for the interpolant can grow without bound, as may happen with the case

of using the basis of translates {κ(·, ξ)}. The Lebesgue constant depends fundamen-

tally on the choice of basis; alternative bases for the same approximation space may

lead to different results. Therefore, establishing a uniformly bounded Lebesgue con-

stant independent of mesh norm suggests the Lagrange bases provide stable methods

for interpolation even as the mesh norm becomes quite small.

This should be contrasted with the case of other interpolation methods, such as

interpolation via spherical harmonic polynomials. This method is indeed unstable

[13]. It can be shown that spherical harmonic polynomial interpolation suffers from

a Lebesgue constant that grows as L
d−1

2 where L is the highest degree of spherical

harmonic used. On the real line, equidistant nodes yield an exponentially growing

Lebesgue constant, which suggests interpolation can become problematic.

Proposition 4. [13] Under the assumptions of Proposition 2, the Lebesgue constant

is bounded by a constant depending only on the kernel, the mesh ratio ρ, and the

manifold.

A bounded Lebesgue constant provides a wonderful result which suggests that

interpolation with the SBFs we employ is a near best approximation in L∞. In
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general, given a finite dimensional subspace of continuous functions, it does not

follow that using these functions to interpolate data provides in any way optimal

approximation. Polynomial interpolation can wildly oscillate yielding diverging L∞

error. However, as a result of a bounded Lebesgue constant, an interpolation scheme

yields near optimal approximation. Let IXf denote the interpolant and VX the

approximation space using the centers X and a kernel κm with bounded Lebesgue

constant. Then, given any other function g in the approximation space, we know

IXg = g, and we can bound

‖f − IXf‖L∞ = ‖f − g + g − IXf‖L∞ = ‖f − g + IX(f − g)‖L∞

≤ ‖f − g‖L∞ + ‖IX(f − g)‖L∞

= (1 + L)dist(f, VX) = (1 + L) inf
g∈VX
‖f − g‖L∞ .

What this suggests is that interpolation is near optimal in the L∞ norm. This

result is analogous to, for example, Cea’s lemma, which states the Galerkin solution

to a bilinear problem is near optimal in the Hilbert space norm of choice. This

invaluable result is often the first step in an error estimate for a discretization method

for partial differential equations.

Combining techniques from the exponential decay of the Lagrange functions as

well as the bounded Lebesgue constant properties led to the development of norm

inequalities that enable one to bound the so-called “condition numbers” of the La-

grange functions. Let {vξ}ξ∈X be a basis for an approximation space. We define the

condition numbers to be the values C1,p, C2,p so that

C1,p‖{aξ}‖`p(X) ≤ ‖
∑
ξ∈X

aξvξ‖Lp ≤ C2,p‖{aξ}‖`p(X).
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The constants depend in some way upon the basis and upon p. Having condition

number bounds of this form suggests the basis is Lp stable. That is, the Lp norm

of the interpolant is comparable to the `p norm of the coefficients. Besides being

useful for theoretical purposes, understanding the Lp condition numbers enables one

to make estimates for condition numbers of matrices arising from the discretization

of partial differential equations and integral equations.

Proposition 5. [7] Let X be a quasi-uniformly distributed set of centers. There

exist constants c1 and c2 depending only on m, the order of the SBF, and ρ, the mesh

ratio, so that for sufficiently small mesh norm h, the Lagrange functions satisfy the

condition number estimates

c1q
d
p‖{aj}‖`p(X) ≤ ‖

∑
ξ∈X

aξχξ‖Lp(Sd) ≤ c2q
d
p‖a‖`p(X).

To be clear, this result is not limited to merely one collection of centers X; this

holds as we shrink h, q → 0, provided the sets of centers satisfy the quasi-uniformity

assumptions (that is, C1 ≤ hX
qX
≤ C2 for some fixed C1 and C2 independent of X).

An immediate consequence of this statement is that the Lp norm of a single Lagrange

function is on the order of q
d
p .

Proposition 6. [7] Let X be a set of quasi-uniformly scattered centers in Sn and

let χξ, χη denote Lagrange functions for the points ξ, η ∈ X. Assume the ap-

proximation space is generated by a conditionally positive definite kernel κ(·, ξ) =∑
j∈N κjϕj(·)ϕj(ξ). The Lagrange function χξ has expansion

χξ(·) :=
∑
η∈X

Aη,ξκ(·, η) + pξ

where Aξ,η := 〈χξ, χη〉k.
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Figure 2.2: A Lagrange function centered at a point ξ constructed from 625 centers
has its coefficients Aξ,η displayed. A clear, exponential decay with respect to the
distance d(ξ, η) is visible.

As a consequence of this, it has been demonstrated that the Lagrange function

coefficients decay exponentially. The result follows by a type of Cauchy-Schwarz

inequality that was presented in [7].

Proposition 7. [7] Let X be a quasi-uniformly distributed set of centers on the

sphere Sn with sufficiently small mesh norm h. Then, the coefficients of the Lagrange

function χξ satisfy

|Aη,ξ| ≤ Cq1−m exp

(
− ν d(ξ, η)

h

)
. (2.1)

The significance of Proposition 7 is that the Lagrange functions are not solely

localized spatially. The Lagrange functions, in the words of the authors of [7], have
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a “small footprint” in the kernel basis. While each Lagrange function is a linear

combination of all rotations of the kernel κ(·, η), apparently only kernels centered

near ξ contribute significantly to the total value of the Lagrange function. The

exponential decay forces the coefficients Aξ,η to be small for d(ξ, η) large enough.

This is highly suggestive of the idea that perhaps the Lagrange functions can be

constructed in a way that takes advantage of this spatial locality while not reducing

the approximation power of the functions.

The last major property we mention is the ability to switch between to relate

different order Sobolev norms of linear combinations of basis functions. These are

often referred to as Bernstein estimates. Let VX be the space generated by the

restricted surface splines (we sometimes refer to them as thin plate splines) ϕs(t) =

(−1)s+1(1− t)s log(1− t).

Proposition 8. [24] Let g ∈ VX which is generated by the thin plate spline for a

quasi-uniform set of centers X ⊂ Sn. Then, there exists a constant C independent

of q, h such that

‖g‖Wk
2 (Sn) ≤ Cq−k‖g‖L2(Sn).

This result can be extend to handle Lp spaces instead, but our primary focus is

on L2.

We close this section by summarizing the key points developed by different au-

thors over several years. The Lagrange functions of conditionally positive definite

functions on manifolds are highly spatially localized as well as localized in the sense

that the coefficients decay rapidly. The basis is inherently stable with a bounded

Lebesgue constant as well as computable upper and lower condition number bounds.

The Lp norm of a linear combination of Lagrange functions is comparable directly

to the `p norm of the sequence of coefficients, with a factor of q
d
p to be included.
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Finally, switching between Sobolev norms induces a penalty of q−k, where k is the

difference between the order of the Sobolev spaces.

2.2 Local Lagrange Functions

We discuss results in this section regarding the development of a highly spatially

localized, “small-footprint” basis. By small-footprint, we mean each basis element is

constructed from few kernels, relative to the total number of kernels. The local basis

retains many of the advantages of the full Lagrange basis discussed in Section 2.1.

In particular, they decay quickly away from their center, are Lp stable, and provide

near optimal approximation.

While the full Lagrange basis enjoys numerous theoretical advantages, the com-

putational difficulty of assembling the Lagrange functions impedes their use in appli-

cation. Developing a basis of functions which approximates the Lagrange functions

has been a topic of some interest. Previous efforts have considered ad hoc methods

of constructing Lagrange functions using few centers clustered around a center, but

there was no strategy for choosing the number of centers nor for how the number of

centers chosen should change as the mesh norm decreased. The results in [13] and

[14] suggested that the Lagrange functions were highly localized spatially. Indeed,

Proposition 2 suggests the Lagrange function is nearly zero for far away points. That

the coefficients also decay exponentially, as shown in Proposition 7, suggested that

a function that mimics the properties of the Lagrange function could be constructed

that only requires a small number of kernels, rather than being a linear combination

of every kernel. In [7], these ideas are explored and a full theory has been developed

for a localized collection of Lagrange functions, referred to as local Lagrange func-

tions; provable, theoretically supported bounds for the number of centers required

for the construction of each local basis function are presented.
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We begin by presenting the algorithm for the construction of the local Lagrange

functions. We then discuss their theoretical properties. We encourage the interested

reader to read [7] for a thorough and detailed account of the theoretical properties.

Let X ⊂ S2 be a collection of quasi-uniformly scattered centers with mesh norm h and

separation radius q. We focus on the thin plate spline kernel κm(t) = (−1)m−1(1 −

t)m · log(1− t), which is a conditionally positive definite function with respect to the

space Πm of at most degree m spherical harmonics. The (full) Lagrange function at

the point ξ ∈ X is χξ(·) =
∑

η aξ,ηκ(·, η) +
∑L

k=1 bk,ξψk(·), which is constructed by

solving an interpolation problem with the data χξ(η) = δξ,η. As we’ve mentioned

before, this requires solving a system of size O(N) for each Lagrange function, where

N is the cardinality of X. The local Lagrange function will be constructed in a

similar fashion, but with fewer points.

Let r > 0 be a fixed number. Let Υ(ξ) := {η ∈ X : d(ξ, η) < r}. Υ(ξ) is

the collection of the nearest neighbors of ξ in the set X. Let Kξ denote the matrix

Kξ(η, ζ) := κ(η, ζ) for η, ζ ∈ Υ(ξ) and let Ψξ denote the matrix Ψξ(η, k) = ψk(η) for

η ∈ Υ(ξ) and ψk ∈ Πm.

We define the local Lagrange function centered at ξ, denoted χ̂ξ to be the unique

function that interpolates 1 at ξ and 0 at η 6= ξ ∈ Υ(ξ) in the space VΥ(ξ). That is,

χ̂ξ(·) :=
∑
η∈Υ(ξ)

aη,ξκ(·, η) +
L∑
k=0

bk,ξψk(·),

subject to
∑
η∈Υ(ξ

aη,ξp(η) = 0 for each p ∈ Πm.

(2.2)
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To solve for aη,ξ and bk,ξ, we solve the linear system

Kξ Ψξ

ΨT
ξ 0


a
b

 =

δη,ξ
0

 . (2.3)

Notice that the local Lagrange function is constructed only using kernels centered

in Υ(ξ). We may estimate the number of kernels in this set using the radius r chosen

for Υ(ξ) and the quasi-uniformity of the set of centers X. On the sphere Sd, for

some constant Cd, the ball µ
(
B(ξ, r)

)
= Cdr

d. Since Υ(η) ⊂ B(ξ, r), we know

B(η, q) ⊂ B(ξ, r + q) for each η. Furthermore, B(η, q) ∩ B(ζ, q) = 0 for η, ζ ∈ Υ(ξ).

Consequently,

µ

( ⋃
η∈Υ(ξ)

B(η, q)

)
≤ µ

(
B(ξ, r + q)

)

and consequently,

#Υ(ξ)Cdq
d ≤ Cd(r + q)d

Assume q < r, and consequently, q + r < 2r. We then have the estimate

#Υ(ξ) ≤ 2d
(
r

q

)d
. (2.4)

Furthermore, we may bound the total number of centers, N = #X by observing that

Sn = ∪ξ∈XB(ξ, h). For, if x ∈ Sn, then d(ξ, x) ≤ h by the definition of h. Therefore,

it follows that

µ(Sd) ≤
∑
ξ∈X

µ
(
B(ξ, h)

)
= CdNh

d,

so we see that N ∼ h−d. As a consequence of these results, if we choose r =
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Kh| log(h)| for some fixed positive K > 0 in the definition of Υ(ξ), we find

#Υ(ξ) ≤ 2d
(
h

q
| log(h)|

)d
≤
(
2ρd log(N)

)d
. (2.5)

Since the mesh ratio ρ is bounded for quasi-uniformly distributed sets of centers, we

have #Υ(ξ) scales as M log(N)d where N is the number of centers. The significance

of this result is that the size of the system to be solved for the assembly of a single

local Lagrange function in Equation (2.3) is on the order of O
(

log(N)d
)
. In contrast,

constructing a single full Lagrange function requires solving a system of size O(N).

We remark briefly on the computational and practical aspects of the local Lagrange

functions to contrast them with the full Lagrange functions. From a computational

standpoint, the local Lagrange function assembly is now practical. A log scaling

of the number of centers in Υ(ξ) implies that the linear systems to be solved are

relatively small. Furthermore, the storage required for the local Lagrange functions

is far smaller. Each Lagrange function requires storing the vector Aξ := (aξ,η) which

is also of size O
(

log(N)d
)

as opposed to storing O(N) entries for the full Lagrange

function. While this may seem insignificant at first, there are N total vectors for

each ξ to be stored. Consequently, storing all the full Lagrange function coefficients

requires O(N2) rather than O
(
N log(N)d

)
for all of the local Lagrange functions.

In addition to significant savings, the local Lagrange functions may be constructed

in parallel. This is a significant difference that reduces the cost of constructing all of

them. While each function only requires solving a small linear system on the order

of O
(

log(N)d
)
, there are still N functions in total to be constructed. This remains

a significant computational burden to construct. Taking advantage of the embar-

rassingly parallel nature of the local Lagrange assembly routine enables significant

savings. Experiments in Python have demonstrated the construction of the local
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Lagrange functions benefits from employing simple parallelism by distributing the

assembly tasks among multiple processing cores.

We now consider the theoretical properties of the local Lagrange functions and

discuss how well they compare with the full Lagrange basis. We consider their

use for interpolation and for pre-conditioning problems. By their construction, the

local Lagrange functions enjoy many of the properties the full Lagrange functions

do. They exhibit Lp stability as well as spatial localization, although the decay is

algebraic rather than exponential [7]. Most importantly, the local Lagrange functions

provide near optimal L∞ approximation [7]. That is, the difference between using

a local Lagrange function or a full Lagrange function is negligible in the sup norm.

However, a caveat for all of these statements is that the number of points for each

local Lagrange function must be chosen correctly. Simply choosing a few nearest

neighbors is inadequate; choosing all nearest neighbors within a distance Kh| log(h)|

is the appropriate scalable choice, with appropriate choice of K. Choosing too few

points will yield a fast assembly, but unpredictable behavior of the local Lagrange

function.

Proposition 9. [7][Proposition 6.5] Let κm be a thin plate spline of order m on the

sphere S2 and let X ⊂ S2 be a collection of quasi-uniformly scattered centers. Let

K > 0 be chosen so that K > 4m−2+2µ
ν

and let Υ(ξ) := B(ξ,Kh| log(h)|)∩X. Let χ̂ξ

denote the local Lagrange function centered at ξ. Let J = Kν − 4m+ 2 + 2µ. Then,

‖χξ − χ̂ξ‖L∞ ≤ ChJ (2.6)

|χ̂ξ(x)| ≤ C
(
1 + d(ξ, x)\h

)−J
. (2.7)

If J > 2, then the basis is Lp stable. There exists positive constants C1 and C2 so
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that

C1q
2
p‖a‖`p(X) ≤ ‖

∑
ξ

χ̂ξ‖Lp(S2) ≤ C2q
2
p‖a‖`p(x). (2.8)

The significance of Proposition 9 is that it implies the local Lagrange basis main-

tains the advantages of the full Lagrange basis while being computationally tractable.

Since only small systems need to be solved, the local Lagrange functions can be as-

sembled practically (and in parallel). They are Lp stable and the difference between

the full and local Lagrange function can be tuned by the parameter K, which is

related to the radius of the ball used in the construction of the point set Υ(ξ).

The local Lagrange functions may be used directly in the form of quasi-interpolation.

We define the quasi-interpolant of a continuous function f , denoted QXf , by sam-

pling the function on the centers and using these values as weights for the local

Lagrange functions. That is,

QXf(·) =
∑
ξ∈X

f(ξ)χ̂ξ(·).

The quasi-interpolant is not a true interpolant: the χ̂ξ(η) 6= δξ,η for all η ∈ X;

rather, χ̂ξ(η) = δξ,η for η ∈ Υ(ξ). However, we may demonstrate that the error is

quite negligible relative to the full Lagrange interpolant IXf . We note

|f(x)−QXf(x)| ≤ |f(x)− IXf(x) + |QX(f)− IX(f)|

and consequently, to guarantee that QXf approximates f well, the error for Qx(f)−
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IX(f) must be controlled. We see that

|QXf(x)− IXf(x)| =
∣∣∣∣∑

ξ

f(ξ)
(
χξ(x)− χ̂ξ(x)

)∣∣∣∣
≤ ‖f‖L∞

∑
ξ

‖χξ − χ̂ξ‖L∞

≤ Cq−2‖f‖L∞hKν−4m+2+2µ = ChKν−4m+2µ‖f‖L∞

where we applied the L∞ error estimate from Proposition 9, noted that the cardinality

of X is bounded above by Cq−2 on S2, and used quasi-uniformity to eliminate an

h2q−2 term. As a consequence of this result, we may choose K large enough to

guarantee that Kν − 4m+ 2µ > 2m which guarantees optimal order approximation

for functions f ∈ C2m(Sn). That is, by choosing K large enough, the convergence

order of the quasi-interpolant is the same as the full Lagrange interpolant. This

suggests that there is no significant loss in approximation by choosing the local

Lagrange functions over the full Lagrange basis. The local Lagrange functions inherit

the stability of the basis as well as the near best L∞ approximation order, provided

the radius parameter K is chosen sufficiently large in the definition of Υ(ξ).

The local Lagrange functions also provide a preconditioner for spherical basis

function interpolation. The full Lagrange function interpolant, IXf , may be written

in terms of the local Lagrange functions by solving for the coefficients âξ in the

equation

IXf :=
∑
ξ

aξκ(·, ξ) +
∑
k

bkψk =
∑
ξ

âξχ̂ξ.

The objective is to construct the full Lagrange interpolant by solving for the vector

of coefficients a and b. Solving for these coefficients requires solving a O(N) size

linear system, where N is the number of centers in X.
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Let AΥ and CΥ stand for the matrices storing the local Lagrange coefficients

where AΥ(ξ, η) = aξ,η and CΥ(k, η) = bk,η, where the columns of AΥ and CΥ are

found by solving Equation (2.3) for each ξ. Then, since IXf =
∑

ξ âχ̂ξ interpolates

a function f on the centers of X, we have

(
KX Ψ

)AΥ

CΥ

 â = f |X (2.9)

where KX(ξ, η) = κ(ξ, η) for ξ, η ∈ X and ΨX(η, k) = ψk(η) for η ∈ X and for each

spherical harmonic ψk ∈ Πm. Therefore, we have that

(
a c

)T
=

AΥ

CΥ

 â. (2.10)

In this sense, the local Lagrange functions act as a right-preconditioner on the

system (2.9). Consequently, the system in (2.9) can be solved for the coefficient vector

â first. Then, the coefficients a and c may be computed by the matrix multiplication

in (2.10). See Section 7 of [7] for details and numerical experiments. The numerical

experiments considered in [7] suggest that solving (2.9) can be solved by GMRES

efficiently. Using very few centers per local Lagrange function, the preconditioned

system was solved via GMRES with few iterations independent of the total size of the

system. This suggests the local Lagrange functions provide a highly efficient method

for determining the full Lagrange function interpolant by an efficient, theoretically

verifiable preconditioner.

2.3 Pointwise Convergence of Interpolants and Quasi-interpolants

We present here results which demonstrate pointwise convergence of the inter-

polant to arbitrary continuous functions. This differs greatly from previously men-
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tioned error estimates, which always assume a level of smoothness in the functions.

Here, as long as continuity is available, we are able to demonstrate convergence.

Theorem 3. Let f be a continuous function on Sn and let {Xh} be a collection

of quasi-uniformly distributed centers. Then, as h converges to zero, IXh converges

pointwise to f .

Proof. Fix h and and fix x ∈ Sn. Let {χi} be a set of Lagrange functions centered

at xi respectively. Let IXf be the interpolant to f constructed from the Lagrange

functions. We demonstrate that |f(x)− IXf(x)| ∼ max
(
ω(f,Kh log(h), hνk

)
, where

ω(f,R) is the modulus of continuity of f with radius R. Consequently, as h → 0,

IXf converges pointwise to f .

We invoke several facts regarding Lagrange functions. First, we know
∑N

i=1 χi(x) =

1 for all x ∈ Sn and the Lagrange functions decay exponentially. Let Kh :=

Kh| log(h)| and let Bx = {xi ∈ X : ‖xi − x‖ ≤ Kh}.

|f(x)− IXf(x)| = |f(x)−
N∑
i=1

f(xi)χi(x)| =
∣∣∣∣ N∑
i=1

(
fx)− f(xi)

)
χi(x)

∣∣∣∣
≤
∑
xi∈Bx

|f(xi)− f(x)| |χi(x)|︸ ︷︷ ︸
I

+
∑
x/∈Bx

|f(xi)− f(x)| |χi(x)|︸ ︷︷ ︸
II

.

We first discuss term I. We note that since each xi ∈ Bx, |f(xi) − f(x)| ≤

ω(f,Kh). Furthermore, by Proposition 4, we know
∑N

i=1 |χi(x)| ≤ C is bounded

independent of h or q. Consequently,

∑
xi∈Bx

|f(xi)− f(x)| |χi(x)| ≤ ω(f,Kh)
N∑
i=1

|χi(x)| ≤ Cω(f,Kh).
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For term II, we may invoke the exponential decay of the Lagrange functions. By

Proposition 2, we have |χi(x)| ≤ C exp

(
− ν d(x,xi)

h

)
. Since d(x, xi) ≥ Kh log(h), we

have |χi(x)| ≤ hνK . Furthermore, we estimate the cardinality of the set X ∩ Bc
x ∼

Cq−d. Therefore, we have

∑
xi /∈Bx

|f(x)− f(xi)| |χi(x)| ≤
∑
xi /∈Bx

sup
x,xi

|f(x)− f(xi)| |χi(x)|

≤ 2‖f‖L∞
∑
xi /∈Bx

|χi(x)|

≤ 2‖f‖L∞q−dhνK ≤ ChνK−d‖f‖L∞ .

Putting this all together, we find

|f(x)− IXf(x)| ≤ C(ω(f,Kh) + hνK−d‖f‖L∞).

Therefore, as h→ 0, the interpolant converges pointwise to f .

Corollary 1. Let f be a continuous function on Sn and let {Xh} be a collection of

quasi-uniformly distributed centers. Assume the local Lagrange functions are con-

structed using all points within a ball of radius Kh| log(h)| for appropriately large K.

Then, as h→ 0, the quasi-interpolant ÎXf converges pointwise to f .

Proof. This follows as a direct corollary of Section 2.3 and properties of the local

Lagrange functions. Fix h and a point x ∈ X. Let IXf denote the Lagrange function

interpolant and let ÎXf denote the local Lagrange quasi-interpolant. Then,

|f(x)− ÎXf(x)| = |f(x)− IXf(x)|+ |IXf(x)− ÎXf(x)|.

We argue that |IXf(x)−ÎXf(x)| converges to zero. Recall that the local Lagrange
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function satisfies the assumption |χ̂ξ(x)−χξ(x)| ≤ ChJ where the value of J depends

on K and may be tuned by increasing K. Therefore,

|IXf(x)− ÎXf(x)| =
∣∣∣∣∑

ξ

f(ξ)
(
χξ(x)− χ̂ξ(x)

)∣∣∣∣
≤ ‖f‖L∞

∑
ξ

sup
x∈Sn
|χξ(x)− χ̂ξ(x)|

≤ C‖f‖L∞q−nhJ ≤ C‖f‖L∞hJ−n.

Consequently, we have |IXf(x)− ÎXf(x)| ≤ ChJ−n. By choosing K larger, if neces-

sary, we may guarantee J − n > 0, and hence the pointwise difference between the

quasi-interpolant and the interpolant decreases as O(hJ−n). Applying this observa-

tion along with the pointwise convergence of IXf(x) to f(x) yields the result.
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3. LAGRANGE FUNCTION QUADRATURE

We discuss a novel quadrature method for manifolds. Given data samples of

a function on a manifold, a difficult problem is approximating the integral of the

function over the manifold. A robust numerical quadrature method must be capable

of approximating an integral provided scattered data samples of a function. That

is, given data centers, the quadrature weights must be constructed corresponding to

the locations of the given data points. Relying on quadrature routines that assume

specific locations of the centers is not acceptable: the method must be capable of

handling possibly scattered, irregularly spaced data. Lagrange functions of certain

spherical basis functions may be used to construct a quadrature routine for scattered

data that yields provable error estimates for smooth data.

The absence of implementable, practical quadrature routines for radial basis func-

tions has impeded the application of radial (spherical) basis functions for solving

partial differential equations via weak formulations. Galerkin methods which rely

on the weak formulation require the ability to compute integrals efficiently. Gen-

erating quadrature routines for spherical basis functions and radial basis functions

enables one to practically implement a numerical Galerkin method using radial ba-

sis functions. This should be contrasted with the traditional radial basis function

approach for partial differential equations, which is typically to use a collocation

method. These “strong-form” methods often suffer from a dearth of theoretical jus-

tification, although they often perform quite admirably in practice. Most notably,

theoretical error estimates for many radial basis function collocation methods lack

error estimates.
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3.1 The Quadrature Routine on Spheres

Let X ⊂ Sn be a quasi-uniformly distributed set of centers and let {χξ}ξ∈X

be a collection of Lagrange functions corresponding to a kernel κ(·, ·), such as the

restricted surface spline φs(t) := (−1)s+1(1 − t)s log(1 − t). Our objective is to

construct a collection of quadrature weights {wξ}ξ∈X so that, given a collection of

data samples {f(ξ)}ξ∈X for a function f , we may approximate the integral of f by

∫
Sn
f(x) dµ(x) ≈ QX(f) :=

∑
ξ∈X

f(ξ)wξ.

The approach, first presented in [8], is to construct the quadrature weights using

the Lagrange functions. Let VX = span{χξ}ξ∈X denote the approximation space

generated by the conditionally positive definite kernel κ with respect to the finite

dimensional subspace of continuous functions Π = span{ψk}Lk=1. For example, on Sn

with κ generated by the thin plate splines, Π could be the span of the first degree m

spherical harmonic polynomials. Let Ψξ,k = ψk(ξ) and let Aξ,η = κ(ξ, η) as usual.

We first note that integrating kernels on Sn is invariant under rotation.

Lemma 2. [8] The integral J(y) :=
∫
Sn κ(x, y)dµ(x) is independent of y.

As a consequence of Lemma 2, the integral of κ(·, ξ) is independent of ξ. We

define the following quantities:


J0 =

∫
Sn κ(x, ξ)dµ(x),

Jk =
∫
Sn ψk(x)dµ(x) for k = 1, . . . , L,

J = (J1, . . . , JL).

Consider an arbitrary s =
∑

ξ∈X s(ξ)χξ(·) ∈ VX . We may decompose s in the basis
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of rotations of κ plus an appropriate polynomial from Π by

s(·) :=
∑
ξ∈X

aξκ(·, ξ) +
L∑
k=1

bkψk(·).

Let a and b denote the vectors consisting, respectively, of the values aξ and bξ. We

see that the integral of s satisfies

∫
Sn
s(x)dµ(x) =

∑
ξ∈X

s(ξ)

∫
Sn
χξ(x)dµ(x) :=

∑
ξ

s(ξ)cξ (3.1)

where we have defined cξ :=
∫
Sn χξ(x)dµ(x). Let c denote the vector of the cξ values;

consequently,
∫
Sn s(x)dµ(x) := cT s|X . Next, observe that the vectors a and b are the

solution to the problem

A Ψ

Ψ 0


︸ ︷︷ ︸

A

a
b

 =

s
0

 . (3.2)

Now, we repeat the computation from Equation (3.1), but this time in the basis of

rotations of κ. We compute

cT s|X =
∑
ξ

aξ

∫
Sn
κ(x, ξ)dµ(x)︸ ︷︷ ︸

J0

+
L∑
k=1

bk

∫
Sn
ψk(x)dµ(x)︸ ︷︷ ︸

Jk

. (3.3)

Note that since A is self-adjoint, so is A−1. Furthermore, by applying Equation (3.2),
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we find

cT s|X =

(
J01

T JT
)a

b


=

(
J01

T JT
)

A−1

s|X
0


=

(
A−1

J01

J

)T
s|X

0

 .

Consequently, we identify that the vector c is obtained via

c
d

 = A−1

J01

J

 .

What this implies is that the values of cξ are formed by the usual interpolation

matrix, albeit with a slightly modified right hand side. Now, choose s := χξ and

note that χξ|X := δξ,η. Therefore, we get exactly that s|XcT = cξ, and by (3.3), we

see that

cξ =

∫
Sn
χξ(x)dµ(x). (3.4)

We may bound cξ above by the L1 norm of χξ by noting that

|cξ| =
∣∣∣∣ ∫

Sn
χξ(x)dµ(x)

∣∣∣∣ ≤ ‖χξ‖L1(Sn).

Putting these ideas together, we arrive at the quadrature construction result derived

in [8]. We list here only the result for Sn, although this may be generalized to other
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manifolds.

Proposition 10. [8] Let κ be a conditionally positive definite kernel with respect to

Π on Sn and suppose that c and d are vectors which are the solutions to the problem

A Ψ

Ψ 0


c
d

 =

J01

J

 .

Then, for any s(x) ∈ VX ,

∫
Sn
s(x)dµ(x) =

∑
ξ∈X

cξs(ξ).

As a result of this, we may define the Lagrange Function Quadrature Rule.

Definition 1. Let X be a collection of scattered centers on Sn, let κ be an ap-

propriate conditionally positive definite kernel (e.g., the thin plate spline), and let

f be a continuous function on Sn. We define the quadrature rule QVX (f) which

approximates

QVX (f) :=
∑
ξ

f(ξ)cξ ≈
∫
Sn
f(x)dµ(x)

where the cξ are defined in (3.4).

Now that we have a quadrature routine, we discuss the construction of the quadra-

ture weights. While (3.4) tells us the weights may be computed by integrating a

Lagrange function χξ, we emphasize that this is not the method one should use for

the assembly of the weights. First, this necessitates the construction of the Lagrange

function as a pre-processing step. This is a computationally intense task which

should be avoided if possible. Furthermore, each weight requires the integral of the

Lagrange function to be computed. This means each weight requires a highly accu-
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rate quadrature of the Lagrange function, which is rather circular since our objective

is to obtain the weights in the first place. Instead, the weights should be constructed

by solving the linear system of equations in Proposition 10.

In the event of a positive definite kernel, the quadrature weights are constructed

by directly solving the interpolation problem for the constant function f(x) := 1
J0

.

Our focus is on the case of conditionally positive definite functions with respect to

some space Π. We need to construct the values c. First, we split c into two orthogonal

pieces c = c|| + c⊥ where c|| is the orthogonal projection of c onto the range of Ψ.

Let P := Ψ(ΨTΨ)−1ΨT be the orthogonal projection onto the range of Ψ. We know

by Proposition 10 that J = ΨT c, and consequently, c|| = Pc = Ψ(ΨTΨ)−1J . This

is simply matrix multiplication, and consequently we have c||. We may attempt to

solve for c⊥ now. First, since Pc⊥ = 0, we have ΨT c⊥ = 0. We know

Ac+ Ψd = J01

and consequently, by splitting c into its orthogonal components, we arrive at

Ac⊥ + Ψd = J01− Ac|| = J01− AΨ(ΨTΨ)−1J

and we further have the constraint ΨT c⊥ = 0. Consequently, we may solve for c⊥ by

solving the interpolation problem

 A Ψ

ΨT 0


c⊥
d

 =

J01− AΨ(ΨTΨ)J

0

 .

See [8] for more details as well as a discussion of how to solve for c⊥ only without the

need to solve for d. This system may be pre-conditioned using the local Lagrange
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functions as discussed in Section 2.2.

We note that the quadrature formula perfectly reproduces the integrals for func-

tions in the space VX . We now aim to study how the quadrature error varies with the

space VX . As usual, we consider quasi-uniformly distributed sets X with mesh norm

h := hX . Then, we may derive the following quadrature error estimate immediately.

Lemma 3. [8]Let X be a quasi-uniformly distributed set of centers and let κm be

a polyharmonic kernel with respect to the space Π of continuous functions on Sn.

Then, for f ∈ W k
2 (Sn) where n

2
< k ≤ m,

∣∣∣∣ ∫
Sn
f(x)dµ(x)−QVX (f)

∣∣∣∣ ≤ Chk‖f‖Wk
2 (Ω).

Proof.

∣∣∣∣ ∫
Sn
f(x)dµ(x)−QVX (f)

∣∣∣∣ =

∣∣∣∣ ∫
Sn
f(x)dµ(x)−

∑
ξ

f(ξ)cξ

∣∣∣∣
=

∣∣∣∣ ∫
Sn
f(x)dµ(x)−

∑
ξ

f(ξ)

∫
Sn
χξ(x)dµ(x)

∣∣∣∣
=

∣∣∣∣ ∫
Sn

(
f(x)−

∑
ξ

f(ξ)χξ(x)
)
dµ(x)

∣∣∣∣.
We see that this is simply the L1 error between f and its interpolant in VX , IXf =∑

ξ f(ξ)χξ. Applying the error estimates as usual yields the result. Alternatively,

an application of Cauchy-Schwarz yields a constant multiple of the L2 error, and

the usual L2 error estimate may be applied which yields an order hk convergence

rate.

An optimal error estimate is presented for functions in C2m in [8]. By applying

the “intermediate doubling trick” from [25], we extend that result to handle values
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Figure 3.1: The function f(θ) = cos(θ) exp(cos(θ)) is integrated on the sphere nu-
merically with icosahedral nodes ranging from 2562 nodes to 163842 nodes. The
quadrature error decays at a rate of O(h4).

between m and 2m.

Lemma 4. Under the same assumptions as Lemma 3, consider f ∈ W k
2 (Sn) for

n
2
< k ≤ 2m. Then,

∣∣∣∣ ∫
Sn
f(x)dµ(x)−QVX((f)

∣∣∣∣ ≤ Chk‖f‖Wk
2 (Ω).

Proof. The proof follows in an identical fashion as Lemma 3 with the application of

the improved error estimate [25].
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4. NONLOCAL DIFFUSION

The purpose of this section is to introduce a meshfree method for the solution of

an anisotropic nonlocal diffusion equation. We take advantage of a recently developed

approximation and interpolation scheme to construct an approximation space to dis-

cretize the weak form of a nonlocal diffusion problem. We present a new quadrature

method unique to the discretization that provides a method to generate a sparse

stiffness matrix. Evaluating the entries in the stiffness matrix follows by pointwise

evaluations of a kernel and multiplication by quadrature weights. Computing entries

in the stiffness matrix for a piecewise polynomial finite element discretization is a

non-trivial computational challenge currently. For a problem in Rn, evaluating the

stiffness matrix entries requires 2n-iterated integrals over partial element volumes.

The paper [1] studied radial basis function methods for the discretization of the non-

local diffusion equation by employing the use of a localized basis and an associated

quadrature routine. The new approach we present here reduces the computational

difficulty of both the construction of the quadrature weights and the evaluation of the

solution on a set of points. The method we previously developed in [1] was primarily

to study whether or not we could employ radial basis function techniques to nonlocal

diffusion problems. Having established that, we pursued a superior computational

method along with a goal of placing the method on a more sound theoretical basis.

The approach we present here maintains the same benefits of the radial basis func-

tion method in [1] without the need to solve large, dense linear systems. In addition

to the computational improvements, we now consider anisotropic nonlocal diffusion

equations and we demonstrate that both the continuum and discrete problems are

well-posed. The first approach we describe here is joint work with Lehoucq.
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4.1 Nonlocal Vector Calculus

We present background material and topics from the nonlocal vector calculus

required to define the nonlocal diffusion equation. The nonlocal vector calculus

provides nonlocal analogues of classical operators such as the gradient, divergence,

and curl operators. The nonlocal vector calculus was developed in [9].

Let ν(x,y), α(x,y) : Rn ×Rn → Rk where α is an anti-symmetric mapping, i.e.,

α(x,y) = −α(y,x). The nonlocal divergence operator D acts on ν by

(
Dν
)
(x) :=

∫
Rn

(
ν(x,y) + ν(y,x)

)
· α(x,y) dy.

The adjoint operator D∗ acts on u(x) : Rn → R pointwise by

D∗(u)(x,y) = −
(
u(y)− u(x)

)
α(x,y) for x,y ∈ Rn,

where D∗u : Rn × Rn → Rk. We remark that L may be considered a nonlocal

analogue of the classical Laplacian. Section 4.2.1 discusses the relationship between

nonlocal operators and differential operators in more detail.

For an open subset Ω ⊂ Rn, we define the interaction domain

ΩI := {y ∈ Rn\Ω : α(x,y) 6= 0 for some x ∈ Ω}. (4.1)

Given functions f : Ω→ R and g : ΩI → R, we want to solve the weak formulation

of the steady-state nonlocal diffusion problem


Lu = f on Ω,

u = g on ΩI ,

(4.2)
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where Θ(x,y) is a second-order tensor satisfying Θ = ΘT , and the nonlocal diffusion

operator is defined to be

Lu(x) = 2

∫
Ω∪ΩI

(
u(y)− u(x)

)
α(x,y) ·

(
Θ(x,y) · α(x,y)

)
dy , x ∈ Ω . (4.3)

The nonlocal diffusion model places conditions over a positive measure volume,

which we refer to as a volume constraint. This should be contrasted with a partial

differential equation, which places constraints on a measure zero boundary. The

volume constraint is sufficient to guarantee that the weak formulation of (4.2) is

well-posed, provided certain conditions on the kernel. For the case of integrable

kernels, [3] demonstrates that (4.2) is well-posed on the constrained energy space

L2
c(Ω ∪ ΩI) = {u ∈ L2(Ω ∪ ΩI) : u|ΩI = 0 a.e.}.

Let s ∈ [0, 1
2
] and consider nonlocal operators L that map Hs(Ω∪ΩI) to its dual

space
(
or L2

c(Ω ∪ ΩI) to L2
c(Ω ∪ ΩI)

)
. Imposing boundary conditions on ∂Ω rather

than volume constraints on Ω ∪ ΩI is not possible. For s ∈ [0, 1
2
] trace operators do

not exist, and hence imposing u|∂Ω = g is not well defined. The nonlocal diffusion

problem is well-posed with the addition of a volume constraint, even for s ∈ [0, 1
2
],

provided certain conditions on the kernel. Let u ∈ L2(Ω∪ΩI) and let γε := α ·Θ · α

be a radial kernel with support radius, or horizon, ε. Under general conditions, as

ε→ 0, the solution uε of (4.2) converges to the solution of


∇ ·C∇u = f on Ω

u = g on ∂Ω ,

(4.4)

where C is a diffusion tensor. For details, further exposition on nonlocal operators

and comparisons between classical and nonlocal diffusion operators, as well as addi-

tional theory, the interested reader would be wise to consult [3, Section 3 pp.674-678].
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The aforementioned paper also discusses comparisons between nonlocal calculus and

the usual vector calculus in far more detail than we present here. The recent paper

[4] explores the connections between nonlocal problems of the form (4.4) with a Neu-

mann boundary condition and a smoothed particle hydrodynamic approximation.

We now begin by demonstrating that the solution u of the nonlocal diffusion

equation (4.2) is the minimizer of a variational problem, the weak formulation of

(4.2). Let Ω ⊂ Rn be an open region and let ΩI be the corresponding interaction

domain as defined in (4.1). The energy functional is defined to be

E(u; f) :=
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u)(x,y) ·
(
Θ(x,y) · D∗(u)(x,y)

)
dx dy

−
∫

Ω

f(x)u(x) dx

where f is a given function defined on Ω. Let g(x) denote a function defined on ΩI

and let Ec(u; g) denote the constraint functional

Ec(u; g) :=

∫
ΩI

(
u(x)− g(x)

)2
dx. (4.5)

We are interested in the constrained minimization problem of finding u such that

minE(u; f) subject to Ec(u; g) = 0.

The constraint functional enforces a nonlocal Dirichlet volume constraint, which may

be viewed as a nonlocal analogue to Dirichlet boundary conditions for differential

equations. By choosing appropriate test functions v that satisfy Ec(v; 0) = 0, the
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necessary conditions for the minimization problem are found to be

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u)(x,y) ·
(
Θ(x,y) · D∗(v)(x,y)

)
dy dx =

∫
Ω

f(x)v(x) dx. (4.6)

To relate (4.6) to (4.2), we make use of a nonlocal analogue of Green’s first identity.

Define the interaction operator N (ν) : Rn → R by

N (ν)(x) := −
∫

Ω∪ΩI

(
ν(x,y) + ν(y,x)

)
· α(x,y) dy for x ∈ ΩI .

The nonlocal Green’s first identity is

∫
Ω

vD
(
Θ · D∗u

)
dx−

∫
Ω∪ΩI

∫
Ω∪ΩI

(
D∗v

)
·
(
Θ · D∗u

)
dy dx =

∫
ΩI

vN
(
Θ ·D∗u

)
dx. (4.7)

We apply (4.7) to (4.6) and we note that v = 0 in ΩI by definition of the test

functions to obtain

∫
Ω

v(x)D
(
Θ · D∗u

)
(x) dx =

∫
Ω

f(x)v(x) dx. (4.8)

Since this holds for arbitrary test function v, the minimizer u satisfies

−Lu = DΘ · D∗u = f on Ω,

u = g on ΩI .

4.2 Discretization of the Variational Problem

Let Ω ⊂ Rn be an open region and let ΩI denote the interaction domain corre-

sponding to Ω, as defined in (4.1). Let u, v ∈ L2(Ω∪ΩI), f ∈ L2(Ω), and g ∈ L2(ΩI).
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The nonlocal bilinear form a(·, ·) is defined to be

a(u, v) :=
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u)(x,y) ·
(
Θ(x,y) · D∗(u)(x,y)

)
dy dx. (4.9)

The nonlocal bilinear form acts as a semi-inner product on the space L2(Ω∪ΩI) and

the semi-inner product induces a semi-norm |||u||| =
√
a(u, u) on L2(Ω∪ΩI), which is

equivalent to the L2(Ω∪ΩI) norm for functions restricted to the constrained energy

space

L2
c(Ω ∪ ΩI) := {u ∈ L2(Ω ∪ ΩI) : |||u||| <∞ and u|ΩI = 0 a.e.}.

The problem we aim to solve is to find u ∈ L2
c(Ω ∪ ΩI) such that for all v ∈

L2
c(Ω ∪ ΩI),

a(u, v) =

∫
Ω

f(x)v(x) dx. (4.10)

To show that the problem is well-posed, the bilinear form must be coercive and

bounded in the Hilbert space L2
c(Ω∪ΩI), and the linear functional must be continuous

with respect to the same Hilbert space; the Lax-Milgram theorem implies then that

the problem (4.10) is well-posed. These theoretical properties for the forms appearing

in (4.10) have been verified in [3, Lemma 4.7], which implies that the anisotropic

nonlocal diffusion problem is well-posed on the space L2
c(Ω ∪ ΩI). The problem

can be discretized by introducing a finite-dimensional subspace Vh = span{φi}Ni=1 ⊂

L2
c(Ω ∪ ΩI). The corresponding discrete problem seeks uh =

∑N
i=1 ciφi ∈ Vh such

that for all vh ∈ Vh,

a(uh, vh) =

∫
Ω

f(x)vh(x) dx.

By choosing vh = φi for each i = 1, . . . , N , a linear system of equations for the

coefficients of uh can be created. The linear system Ac = b produced by these
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choices of vh has entries given by

Ai,j = a(φi, φj) bi =

∫
Ω

f(x)φi(x) dx. (4.11)

Our goal is to choose a basis that produces a well-conditioned, sparse stiffness matrix.

In 4.5, we present a discretization using a localized basis of radial basis functions that

has numerous computational benefits. We also introduce another method that makes

use of Lagrange multipliers to enforce any type of volume constraint.

4.2.1 Classical Differential Operators as Limits of Nonlocal Operators

We now discuss relationships between nonlocal operators and classical differential

operators. Let u, v ∈ L2(Ω∪ΩI) and let γε := α ·Θ ·α be a radial kernel with support

radius ε. Under general conditions, the nonlocal operator (4.3) converges to a second

order elliptic operator, see, e.g., [3] and the references provided. We provide an

example of a nonlocal limit that justifies the interpretation of the nonlocal operator

as a nonlocal analogue of the Laplacian [3]. Define (Cε)i,j :=
∫
Bε(0)

γε(‖x‖)xixj dx

for i, j = 1, . . . , n. Recall that γε(‖x‖) is compactly supported on a ball of radius ε.

It can be shown [3] that the compact support of γε implies that

lim
ε→0

∫
Ω∪ΩI

∫
Ω∪ΩI

(
u(y)−u(x)

)(
v(y)−v(x)

)
γ(‖x−y‖) dy dx =

∫
Ω

∇v(x)·
(
C·∇u(x)

)
dx.

4.3 Lagrange Functions and Local Lagrange Functions

We discuss a recently investigated localized basis that may be used for interpola-

tion and approximation using linear combinations of thin plate splines in this section.

Let X ⊂ Ω be a set of N quasi-uniformly distributed centers and let ϕ(r) denote the

surface spline of order m. For each xi ∈ X, there exists a unique interpolant χi that
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satisfies χi(xj) = δi,j; see Chapter 2 for theoretical properties of this basis on spheres.

Identically to the case of the sphere, we refer to the basis {χi(x)}Ni=1 as the Lagrange

basis and χi as the Lagrange function centered at xi. The Lagrange basis allows the

interpolant to a continuous function f to be written as a linear combination of the

basis elements as IXf =
∑N

i=1 f(xi)χi(x). The χi functions are constructed by solv-

ing the (N +nL)× (N +nL) linear system described in Chapter 2 for each χi, where

nL denotes the number of basis elements in the polynomial space Πm corresponding

to the kernel ϕ. The assembly of the Lagrange functions is a computational issue

that has limited the exploration and use of Lagrange functions. Our previous work

explored the use of Lagrange functions for discretizing nonlocal diffusion problems

[1].

Rather than work directly with the computationally inefficient Lagrange func-

tions, we discuss the construction of a basis that offers nearly identical properties,

but is constructed far more efficiently; we refer to these functions as local Lagrange

functions. The discretization we later introduce for the solution of nonlocal dif-

fusion problems in Section 4.5 uses local Lagrange functions for compact domains

Ω ⊂ Rn. Let X ⊂ Ω be a quasi-uniformly distributed collection of scattered cen-

ters with mesh norm h and separation radius q and let K > 0 be a fixed constant.

The method for constructing local Lagrange functions we discuss requires additional

centers outside of the domain Ω to produce a a larger set of points Ξ ⊃ X. Let

Ω̃ = {x ∈ Rn : d(x,Ω) ≤ Kh| log(h)|}. A set of centers Ξ can be constructed

such that Ξ ∩ Ω = X and Ξ has mesh norm h in Ω̃. For each xi ∈ X, let

Υi = {y ∈ Ξ : d(xi,y) ≤ Kh| log(h)|}. We define the local Lagrange function
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centered at xi to be the function bi, which has the form

bi(x) =
∑
y∈Υi

αη,iϕ(‖x− y‖) +

nL∑
l=1

βl,ipl(x) (4.12)

and the coefficients are constructed by solving

Si P

P T 0


αi
βi

 =

ei
0

 (4.13)

where Si(y, z) = ϕ(‖y − z‖) for y, z ∈ Υi, P (y, l) = pl(y) and ei(y) = δ(xi,y).

The cardinality of Υi can be estimated by using the separation radius q and a volume

estimate. Applying quasi-uniformity and noting that every center is separated by at

least q, we estimate

#|Υi| ≤
µ
(
B(xi, Kh| log(h)|)

)
µ
(
B(xi, q)

) ∼ Knhn

Cqn
| log(h)|n ≤ C̃ρn| log(N)|n.

For quasi-uniformly distributed sets of centers, h
q

:= ρ is bounded above and be-

low by fixed constants. Therefore, constructing a local Lagrange function requires

solving linear systems of size O
(

log(N)n
)

as opposed to O(N) for the full Lagrange

functions. We demonstrate that the local Lagrange functions provide approxima-

tion rates analogous to known approximation rates for globally supported Lagrange

functions.

Lemma 5. Let n
2
< k ≤ m and let Ω ∪ ΩI ⊂ Rn. Let f ∈ W k

2 (Ω ∪ ΩI) be a

compactly supported function such that f |ΩI = 0. Then, for sufficiently large K, the

quasi-interpolant ĨX(f) =
∑N

i=1 f(xi)bi satisfies

‖f − ĨXf‖L2(Ω) ≤ Chk‖f‖Wk
2 (Ω).
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Proof. We assume the set of centers Ξ ⊂ Ω ∪ ΩI with X := Ξ ∩ Ω. Let χi be the

Lagrange functions centered at xi and bi denote the local Lagrange function centered

at xi. Then,

‖u−
N∑
i=1

u(xi)bi‖L2(Ω∪ΩI) ≤ ‖u−
N∑
i=1

u(xi)χi‖L2(Ω∪ΩI)

+ ‖
N∑
i=1

u(xi)(χi − bi)‖L2(Ω∪ΩI).

We note that
∑N

i=1 u(xi)χi is the Lagrange function interpolant to u using the set of

centers in Ξ ⊂ Ω∪ΩI , and hence we may apply radial basis function error estimates

on Ω ∪ ΩI to find

‖u−
N∑
i=1

u(xi)χi‖L2(Ω∪ΩI) ≤ Chk‖u‖Wk
2 (Ω∪ΩI).

Next, we apply Theorem 4.10 [11] to bound ‖bξ − χξ‖L2(Ω∪ΩI). Noting that

N ≤ Cq−d for quasi-uniformly distributed sets and applying the Sobolev embed-

ding theorem to bound ‖u‖L∞(Ω∪ΩI) ≤ C‖u‖Wk
2 (Ω∪ΩI), we compute

‖
n∑
i=1

u(xi)(bi − χi)‖L2(Ω∪ΩI) ≤ Cq−n‖ui‖`2(N) sup
i
‖bi − χi‖L2(Ω∪ΩI)

≤ q−2n‖u‖L∞(Ω∪ΩI)h
Kν\2−4m+2n−2τ−1

≤ ChKν\2−4m−2τ−1‖u‖Wk
2 (Ω∪ΩI).

Therefore, for sufficiently large K, the exponent on the h term is at least as large as

k. Combining the two inequalities yields the result.

We refer to the Lagrange function at xi as the full or global Lagrange function to
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contrast it with the local Lagrange function at xi, which is constructed using only

points in a neighborhood of xi. The paper [7] introduces a theoretical framework

for local Lagrange functions, where decay properties, quasi-interpolation convergence

rates, and preconditioners were studied. The local Lagrange basis may be assembled

in parallel by solving small (relative to the number of centers) linear systems. Both

the parallel advantages as well as the requirement to only solve small linear systems

stands in stark contrast with previous radial basis function methods that necessitate

solving large, dense linear systems. We make use of recent work in [11], which has

extended theoretical properties of the local Lagrange basis to compact domains in

Rn.

4.4 Local Lagrange Quadrature

We introduce a quadrature method for compactly supported functions in Ω that

is essential for the implementation of the Galerkin method we introduce later for the

assembly of the stiffness matrix for the nonlocal diffusion discretization in Section 4.5.

Let f ∈ W β
2 (Ω) be compactly supported in Ω and let X ⊂ Ω be a collection of N

centers. Let χi(x) be a globally supported Lagrange function centered at xi ∈ X

and let bi be a local Lagrange function centered at xi. We define the quadrature

weight at xi to be wi =
∫

Ω
χi(x) dx and the Lagrange function quadrature rule to be

QX(f) =
∑N

i=1 f(xi)wi. Similarly, we define the local quadrature weight at xi to be

ŵi =
∫

Ω
bi(x) dx and the local quadrature method Q̂X(f) =

∑N
i=1 f(xi)ŵi. As we

expect, the quadrature error decreases as the mesh norm decreases analogous to the

convergence rates observed on the sphere.

Lemma 6. Let f ∈ W β
2 (Ω) be compactly supported for n

2
< β ≤ m. Then, for

sufficiently large K, ∣∣∣∣ ∫
Ω

f(x)− Q̂Xf

∣∣∣∣ ≤ Chβ‖f‖Wβ
2 (Ω).
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Proof. The result follows by the Cauchy-Schwarz inequality along with Lemma 5.

∣∣∣∣ ∫
Ω

f(x) dx− Q̂X(f)

∣∣∣∣ =

∣∣∣∣ ∫
Ω

f(x) dx−
N∑
i=1

f(xi)ŵi

∣∣∣∣
≤
∫

Ω

|f(x)−
N∑
i=1

f(xi)bi(x)| dx ≤
√
µ(Ω)‖f − ÎXf‖L2(Ω)

≤ C
√
µ(Ω)hβ‖f‖Wβ

2 (Ω).

The Lagrange function quadrature weights can be constructed without assembling

all of the Lagrange functions. Let ϕ(r) denote the surface spline of order m on Rn.

For a set of centers X ⊂ Ω, the Lagrange function quadrature weights are the solution

to the linear system of equations

 T P

P T 0


w
d

 =

ν
η

 (4.14)

where Ti,j = ϕ(‖xi − xj‖), Pi,l = pl(xi), νi =
∫

Ω
ϕ(‖x − xi‖) dx, ηl =

∫
Ω
pl(x) dx

and wi is the quadrature weight at xi. This requires solving a dense, symmetric

linear system, where the size of the system grows as O(N). In the case of the sphere,

the system (4.14) can be preconditioned by using the local Lagrange functions as

described in [8]. We present an alternative method of producing quadrature weights

by using the local Lagrange functions directly. These weights may be assembled by

taking advantage of GPU to compute many of the necessary integrals quickly and in

parallel. This enables rapid assembly of the quadrature weights.

The local quadrature weights are constructed by computing the integrals of the
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translates ϕ(‖x− xi‖). Recall that by equation (4.12)

bi(x) =
∑
y∈Υi

αy,xiϕ(‖x− y‖) +

nL∑
l=1

βl,ipl(x)

and consequently,

ŵi =
∑
y∈Υi

αy,xi

∫
Ω

ϕ(‖x− y‖) dx+

nL∑
l=1

βl,i

∫
Ω

pl(x) dx. (4.15)

The construction of the local quadrature weights does not require the solution of a

large linear system, in contrast to the quadrature method introduced in [1]. However,

(4.15) does require that the local Lagrange function coefficients are computed before

the weights can be constructed. After constructing the local Lagrange functions, the

weights can be assembled in parallel.

4.5 Galerkin Radial Basis Function Method

We propose a new method for the discretization of the nonlocal diffusion problem

by using local Lagrange functions to be a local Lagrange Galerkin method. The local

Lagrange quadrature method of Section 4.4 enables rapid assembly of the stiffness

matrix entries. Applying the local Lagrange quadrature produces a sparse stiffness

matrix, where the sparsity pattern of the stiffness matrix is determined by the horizon

ε of the kernel. The quadrature formula for the entries only requires a pointwise

evaluation of the kernel and multiplication by the quadrature weights. This is in

contrast to a piecewise polynomial finite element method for a Ω ⊂ Rn which requires

the evaluation of 2n-iterated integrals over partial element volumes. The resulting

quadrature problem is a nontrivial computational challenge. Such issues relating

to evaluating numerical integrals over partial element volumes do not arise in the

Galerkin radial basis function method.

64



We previously explored a Galerkin radial basis function method using full La-

grange functions and an associated Lagrange function quadrature rule [1]. The ma-

jor difference between the method of [1] and the method we have described is in the

discretization space and the assembly of the quadrature weights. Assembling the

quadrature weights using the full Lagrange functions necessitates the solution of a

single large, dense linear system where the number of rows grows as O(N) where N is

the number of basis functions in the discretization. Evaluating the solution requires

the solution of yet another dense linear system of size O(N). The local Lagrange

function method we have discussed here requires solving small linear systems of size

O
(

log(N)n
)

for centers in Rn in contrast to large linear systems in the full Lagrange

function method.

4.5.1 Local Lagrange Discretization

Let Ω be an open region in Rn and ΩI be the corresponding interaction domain.

Let X ⊂ Ω∪ΩI be a set of quasi-uniformly scattered centers with mesh norm h. An

extended set of centers X ′ ⊃ X can be constructed such that X ′∩
(
Ω∪ΩI

)
= X and

h(X ′) = h, and supx′∈X′,xi∈X ‖x
′ − xi‖ ≤ Kh| log(h)| for a fixed user chosen integer

K > 0. For each xi ∈ X, we construct bi, the local Lagrange function centered at

xi. Let Vh = span{bi : xi ∈ Ω}. The space Vh 6⊂ L2
c(Ω ∪ ΩI) because the local

Lagrange functions in Vh are necessarily nonzero in ΩI ; however, they are provably

small in ΩI . We now seek to augment the space Vh to construct a discretization

space that is conforming. We replace bi with b̃i = bi1Ω, where 1Ω is an indicator

function for Ω. Since the space Ṽh is conforming with respect to the bilinear form a

from Equation (4.9), there exists uh ∈ Ṽh such that a(uh, vh) =
∫

Ω
f(x)vh(x) dx for

all vh ∈ Ṽh. We establish an error estimate that demonstrates how the smoothness

of the solution affects the convergence rate. The interpolation error estimates for
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the local Lagrange functions for interpolation match the approximation error for the

Galerkin solution.

Proposition 11. Let u ∈ W k
2 (Ω) for k > n

2
be the solution to the nonlocal problem

(4.10). Let uh be the discrete solution from the restricted local Lagrange method.

Then, for sufficiently small h and for sufficiently large K,

‖u− uh‖L2(Ω∪ΩI) ≤ Chk‖u‖Wk
2 (Ω∪ΩI) (4.16)

Proof. By the Lax-Milgram theorem, the discrete solution uh satisfies ‖u−uh‖L2(Ω∪ΩI) ≤

C infvh∈Uh ‖u− vh‖L2(Ω∪ΩI). By setting vh =
∑N

i=1 u(xi)b̃i, we have

‖u− uh‖L2(Ω∪ΩI) ≤ C‖u−
N∑
i=1

u(xi)b̃i‖L2(Ω∪ΩI) = C‖u−
N∑
i=1

u(xi)bi‖L2(Ω)

≤ C‖u−
N∑
i=1

u(xi)bi‖L2(Ω∪ΩI).

Since u ∈ L2
c(Ω ∪ ΩI) it is compactly supported and hence we may apply Lemma 5

to compute

‖u− uh‖L2(Ω∪ΩI) ≤ Chk‖u‖Wk
2 (Ω∪ΩI).

Let Ai,j := a(b̃i, b̃j) denote the stiffness matrix generated by applying the bilinear

form to the local Lagrange functions in Ṽh, we demonstrate that the condition number

is bounded independent of the mesh norm h or the separation radius q.

Lemma 7. The condition number of the discrete stiffness matrix A is bounded above

by a constant independent of h and q.
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Proof. Let A denote the N ×N symmetric stiffness matrix and let c ∈ RN . Then,

〈Ac, c〉 =
N∑
i=1

( N∑
j=1

Ai,jci)cj

)
= a

( N∑
i=1

cib̃i,

N∑
j=1

cj b̃j

)
.

By the coercivity of the bilinear form and since
∑N

i=1 cib̃i ∈ L2
c(Ω ∪ΩI), there exists

λ1, λ2 such that

λ1‖
N∑
i=1

cib̃i‖L2(Ω∪ΩI) ≤ a

( N∑
i=1

cib̃i,
N∑
j=1

cj b̃j

)
≤ λ2‖

N∑
i=1

cj b̃j‖L2(Ω∪ΩI).

It follows that since b̃i = 0 on ΩI and b̃i|Ω = bi,

λ1‖
N∑
i=1

cib̃i‖L2(Ω∪ΩI) = λ1‖
N∑
i=1

cibi‖L2(Ω).

By [11, Proposition 5.3] and [11, Theorem 4.12], there exists CΩ and CΩ∪ΩI indepen-

dent of h and q such that

CΩq
n‖c‖`2(N) ≤ ‖

N∑
i=1

cibi‖L2(Ω) ‖
N∑
i=1

cibi‖L2(Ω∪ΩI) ≤ CΩ∪ΩIq
n‖c‖`2(N).

Then, we bound

cond(A) ≤ λmax(A)

λmin(A)
≤ CΩ∪ΩIλ2

CΩλ1

.

4.5.1.1 Assembling the stiffness matrix by quadrature

Assembling the stiffness matrix requires evaluation of 2n iterated integrals for

problems on Rn. We introduce a practical method to assemble the elements of the

stiffness matrix by taking advantage of the local Lagrange quadrature. We form
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the discrete stiffness matrix by evaluating a(b̃i, b̃j) for each xi,xj ∈ X ∩ Ω. The

integrals are evaluated by applying the local Lagrange quadrature rule introduced in

Section 4.4. The stiffness matrix Ai,j = a(b̃i, b̃j) is approximated by

Ai,j ≈ 2δi,jŵi

∫
Ω∪ΩI

γ(x,xi) dx− 2ŵiŵjγ(xi,xj). (4.17)

The integral involving γ(x,xi) may be computed analytically for some kernels or by

any form of quadrature. We compute the values for the source term bi from (4.30)

by applying the Lagrange function quadrature rule to approximate

bi ≈ f(xi)ŵi1Ω(xi). (4.18)

A crucial detail that may be overlooked above is that applying the quadrature

rule produces a sparse stiffness matrix. The entries Ai,j are zero for centers such that

‖xi−xj‖ ≥ ε due to the compact support of γ. The support horizon ε of the kernel

γ and the mesh norm of the centers h determines the number of nonzero entries per

row. If the local Lagrange quadrature method is not used, the stiffness matrix is

dense due to the nonzero values the local Lagrange functions assume throughout Ω.

We can prove that the density of nonzero elements in the stiffness matrix is bounded

independent of h, q; if this were not the case, then for small mesh norm values h,

the sparsity could deteriorate for smaller mesh norm values. If this occurred, the

problem could degenerate into a dense system; this is fortunately not the case.

Lemma 8. Let {X}h,q be a collection of quasi-uniformly distributed centers in Rn.

Then, the ratio of the number of nonzero entries per row to the total number of

columns is bounded independent of h, q.

Proof. Fix X := Xh,q and fix xi ∈ X. Recall that ‖xi − xj‖ ≥ ε, Ai,j = 0 by
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(4.17). Let Ni = {xj : ‖xj − xi‖ ≤ ε}. Let Cn denote the constant so that a ball of

radius r has volume Cnr
n. The number of nonzero entries on row i is the same as

the cardinality of Ni, which we compute by estimating the number of centers in Ni.

We bound the cardinality of Ni, denoted #Ni, above by noting that every center is

separated by at least q, so

Cn
(
#Ni

)
qn = ∪xj∈Niµ(B(xi, q)) ≥ µ

(
Bε(xi)

)
= Cnε

n

which implies #Ni ≤ εnq−n. The density per row is computed by #Ni
N
≤ εnq−n

N
. We

bound N by noting that we may cover Ω with balls of radius h by Ω ⊂ ∪xj∈XB(xj, h).

Consequently, µ(Ω) ≤ NCnh
n, which implies N ≥ µ(Ω)

Cnhn
. Therefore,

Ni

N
≤ εnq−n

µ(Ω)C−nn h−n
=
Cnε

n

µ(Ω)

hn

qn
.

The result follows by recalling that the quasi-uniformity assumption bounds the mesh

ratio h
q
.

Let ũh denote the solution to the discretized linear system assembled by quadra-

ture from (4.17) and (4.18). Let uh denote the solution to the the problem a(uh, vh) =∫
Ω
f(x)vh(x) dx) as described in Section 4.5.1. We desire an estimate that predicts

the convergence rate of ũh to u in terms of h, as in Proposition 11. However, this re-

quires a thorough analysis of the affect of quadrature on the solution to the resulting

linear system of equations. By applying the triangle inequality and Proposition 11,

we may estimate

‖u− ũh‖L2 ≤ ‖u− uh‖+ ‖uh − ũh‖L2 ≤ Chk‖u‖Wk
2

+ ‖uh − ũh‖L2 .
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Both uh and ũh are linear combinations of local Lagrange functions with coeffi-

cients {αi}Ni=1 and {α̃i}Ni=1 respectively. In the numerical experiments we present

in Section 4.6, we only produce the coefficients {α̃i}Ni=1 since we apply quadrature

to assemble the linear system of equations. The error between uh and ũh may be

quantified by

‖uh − ũh‖L2 = ‖
N∑
i=1

(αi − α̃i)bi‖L2 ≤ Cqn‖αi − α̃i‖`2(N).

We do not currently have an estimate to bound ‖αi − α̃i‖`2(N). Despite the lack

of theoretical justification, we demonstrate in Section 4.6 that the discrete solution

produced by solving the linear system assembled by using quadrature follows an

estimate of the form in Proposition 11. These results suggest ‖u − ũh‖L2 ∼ ‖u −

uh‖L2 ≤ Chk‖u‖Wk
2
. One possible method to solve this issue is to introduce a larger

set of centers Y to use as quadrature nodes. The disadvantage to this method is that

the quadrature evaluations will require more than a single point evaluation which

removes one of the advantages of the one point quadrature method we use.

4.6 Numerical Results

We present numerical results for experiments using the local Lagrange function

method we discussed in Section 4.5. The topics we address are local Lagrange func-

tion construction, L2 error computations, and condition number computations. We

validate the theoretical prediction for L2 convergence and condition numbers with

observed results from numerical experiments. We study two dimensional problems

of the form (4.10) with a radial kernel Φ and two different anisotropy functions κ;

see Section 4.6.1 and Section 4.6.2. As required by the method, we only solve prob-

lems with zero Dirichlet volume constraints. The testing domains are Ω ∪ ΩI where
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Ω = (0, 1) × (0, 1) and ΩI = [−1
4
, 5

4
] × [−1

4
, 5

4
]\Ω. The computational results we

present here are computed in MATLAB and the condition numbers of the sparse

stiffness matrices are approximated by the condest function, since the matrices are

in sparse format. If the matrices are in full format, the cond or rcond commands

may be used to compute the condition number or reciprocal condition number, re-

spectively. The sparse linear system is solved with either directly or with an iterative

method. For a direct solution, MATLAB’s backslash operator is used, or by conju-

gate gradient with a specified tolerance of 10−9 for an iterative method. The number

of iterations required for convergence to the specified tolerance with conjugate gra-

dient was independent of the mesh norm h. This is not particularly surprising since

the matrices are well-conditioned with condition numbers independent of the mesh

norm h. We briefly remark here that if we instead force ε→ 0, the condition number

decays with ε.

The local Lagrange functions are computed using the surface spline ϕ(r) =

r2 log(r). To ensure the local Lagrange functions provide sufficient quasi-interpolation,

we choose more points than may be necessary; each local Lagrange function is con-

structed using approximately 11 log(N)2 nearest neighbor centers, where N is the

total number of centers in Ω ∪ ΩI . The stiffness matrix for the nonlocal problem

only requires Lagrange functions centered in Ω; however, the surface splines centered

in ΩI are required for the construction of the local Lagrange functions. See Sec-

tion 4.3 for a discussion on the construction method and the need for points outside

of Ω.

We choose a kernel γ(x,y) =
(
κ(x) + κ(y)

)
Φ(‖x − y‖) with fixed horizon ε;

the function κ provides spatial variation which makes the problem anisotropic. We

choose a solution u ∈ L2
c(Ω ∪ ΩI) is chosen for each numerical experiment and

manufacture the source function f by computing Lu(xi) = f(xi) for each center
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xi. The values of f(xi) are computed by using large numbers of tensor products

of Gauss-Legendre nodes to approximate the integral in Equation (4.3); the large

number of quadrature nodes used is to guarantee that the value of f at each center

is as accurate as possible; errors in this step are independent of the discretization

method and merely errors in the manufacturing step.

The experiments are aimed at evaluating the L2 convergence of the discrete so-

lution by constructing sets of uniformly spaced centers and sets of scattered centers

with various mesh norms. Uniformly spaced collections of centers Xh are constructed

using uniformly spaced centers with spacing h = .04, .02, .014, .008, and .006. To

study the effect of non-uniform, irregular sets of centers, collections of scattered

centers X̃h are constructed by modifying centers in Xh by a random perturbation

of magnitude at most 2h
15

. For all of the Xh and X̃h, Local Lagrange functions are

constructed to build the discretization space. The convergence of the discrete so-

lution uh to the solution u is evaluated by plotting the log of the L2 norm of the

error ‖uh − u‖L2(Ω∪ΩI) against the log of the mesh norm h and viewing a best fit

line of the data. By our theoretical predictions in Proposition 11, We expect for

u ∈ W k
2 (Ω ∪ ΩI) that ‖u− uh‖L2(Ω) ≤ Chk‖u‖Wk

2 (Ω).

4.6.1 Linear Anisotropy Experiment

We choose solution a sinusoidal, continuous function u and a kernel γ with a

linear anisotropy function κ and radial function Φ given by



u(x) = sin(2πx1) sin(2πx2)1Ω(x)

κ(x) = 1 + x1 + x2

Φ(‖x− y‖) = exp

(
− 1

1− 1
ε2
‖x−y‖2

) (4.19)
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Figure 4.1: The log of h versus the log of the L2 error for the linear anisotropic
experiment with functions given by (4.19) is displayed.

and we discretize (4.10) with local Lagrange functions.

The observed L2 convergence rates with respect to the mesh norm h for the uni-

formly spaced and scattered centers experiments are provided in Figure 4.1. Table 4.1

displays the condition numbers of the stiffness matrices for each experiment. As we

expect from our theoretical predictions, the observed condition numbers of the stiff-

ness matrices are invariant under decreases in the mesh norm h. This numerically

validates the claims that the method produces well-conditioned matrices, even for

large sets of centers.
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4.6.2 Exponential Anisotropy Experiment

We choose solution a u and a kernel γ with an exponential anisotropy function κ

and radial function Φ given by



u(x) =

(
x1(x1 − 1)

) 3
2
(
x2(x2 − 1)

) 3
2

1Ω(x)

κ2(x) = exp(x1 + x2)

Φ(‖x− y‖) = exp

(
− 1

1− 1
ε2
‖x−y‖2

) (4.20)

and we discretize (4.10) with local Lagrange functions.

Figure 4.2 provides the L2 convergence plots for the experiments involving u2

and κ2. The L2 error rate matches the expected convergence rate predicted by

Proposition 11. We observe a convergence rate of O(h2) in both the uniformly

spaced centers and the scattered centers experiments, which matches our expectation.

Table 4.1 displays the condition numbers for the discrete stiffness matrices of various

values for h; once again, the condition numbers of the discrete stiffness matrices do

not increase as the mesh norm decreases, which matches the prediction in Lemma 7.

Consequently, as we vary the anisotropy functions, the stiffness matrices still adhere

to a fixed condition number (although the number varies depending on the anisotropy

function, it is independent of the mesh norm).

4.6.2.1 Vanishing Nonlocality

We present numerical results as part of an investigation of the effects of shrinking

the horizon ε, which is the radius of support of the kernel γ. The solution of the

nonlocal problem converges to the solution of (4.4) as ε decreases under appropriate

conditions on the kernel and anisotropy function. We are focused on anisotropic
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Figure 4.2: The log of h versus the log of the L2 error for the exponential anisotropy
experiment with functions given by (4.20) is displayed.

Table 4.1: The mesh norm h, number of rows n of the stiffness matrix, and the esti-
mated condition number for the stiffness matrix with the linear anisotropy (4.19) and
the exponential anisotropy (4.20). The condition numbers of the stiffness matrices
does not increase as h decreases.

Approximate Condition Number

h n Linear Exponential
2.83e-2 625 58 89
1.41e-2 2500 59 90
9.9e-3 5041 59 90
5.7e-3 15625 60 92
4.2e-3 27889 60 92
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kernels of the form

γε(x,y) =
1

ε3
(
κ(x) + κ(y)

)
Φ(

1

ε
‖x− y‖), (4.21)

where Φ(1
ε
‖x‖) is a compactly supported radial function with support radius ε; the ε

value determines the horizon of the nonlocal operator. We study the idea of approx-

imating the solution to an anisotropic differential equation by solving an anisotropic

nonlocal problem with sufficiently small horizon ε. Ideally, as ε decreases to zero, the

the discrete solution to the anisotropic nonlocal problem should be near the solu-

tion to the differential equation. The numerical experiments we present demonstrate

that the discrete solution to the anisotropic nonlocal problem indeed converges to

the solution of the anisotropic differential equation.

To analytically study the relationship between nonlocal operators and differential

operators, we employ a Taylor series expansion argument. We relate the differential

operator D to a nonlocal operator that approximates D in the small horizon limit.

We assume that κ, u : R → R are smooth functions for the analysis we employ.

Fix x ∈ Ω and apply a Taylor series expansion in a ball Bε(x) to obtain for some

ζ, η ∈ Bε(x)

u(y)− u(x) = u′(x)(y − x) +
1

2
u′′(x)(y − x)2 +

1

6
u′′(ζ)(y − x)3

κ(x) + κ(y) = 2κ(x) + κ′(x)(y − x) + κ′′(x)(y − x)2 +
1

6
κ′′(η)(y − x)3.

Let Lε denote the nonlocal operator with kernel γε. Then, for smooth u, it follows
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that

Lεu(x) =
1

ε3
(
2u′(x)κ(x)

∫ ε

−ε
zΦ

(
1

ε
|z|
)
dz + u′(x)κ′(x)

∫ ε

−ε
zΦ

(
1

ε
|z|
)
dz
)

+
1

ε3
(
2u′′(x)κ(x)

∫ ε

−ε
z2Φ

(
1

ε
|z|
)
dz + u′′(x)κ′(x)

∫ ε

−ε
z3Φ

(
1

ε
|z|
)
dz + ...

)
where we have truncated the expression to exclude any of the (y− x)3 terms. These

terms will be of an order that is vanishingly small relative to other terms later, so

we exclude them now. The zΦ(1
ε
|z|) integrals vanish due to the fact that zΦ(1

ε
|z|) is

an odd function. We also exclude any integrals involving z3 since

1

ε3

∫ ε

−ε
z3Φ

(
1

ε
|z|
)
≤ 1

2
ε‖Φ‖L∞(Ω),

which is O(ε). After eliminating these terms, we find

Lεu(x) ≈ 2
(
u′(x)k′(x) + u′′(x)k(x)

) ∫ ε

−ε
z2Φ

(
|z|
ε

)
dz

= 2
(
u′(x)k′(x) + u′′(x)k(x)

) ∫ 1

−1

τ 2Φ(|τ |)dτ.

Consequently, as ε decreases to zero, it follows that

Lεu(x)→ ρ
(
u′(x)k′(x) + u′′(x)k(x)

)
ρ := 2

∫ 1

−1

τ 2Φ(|τ |) dτ

We numerically study a discretization method by using Lagrange functions to

form an approximation space to solve the problem Lεuε = f for anisotropic nonlocal

operators. Let u denote the solution to Du = f for the differential operator D and

let h be the mesh norm corresponding to the set of centers X used to construct the
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Lagrange functions. We solve Lεuε = f by discretizing the problem with Lagrange

functions to construct an approximate solution uε,h, where the ε is varied to a suffi-

ciently small quantity to find sufficient accuracy. Our experiments provide evidence

that as ε→ 0, ‖u− uε,h‖L2(Ω∪ΩI) ∼ O(ε2).

For our experiments, we consider the radial kernel

Φ

(
1

ε
‖x‖
)

=

(
1− 1

ε2
‖x‖2

)
1‖x‖<ε(x)

for the nonlocal operator and we consider two separate anisotropy functions κ(x, y).

A linear anisotropic function of the form κ1(x, y) = 1 + x + y is used for the

first experiment and the second experiment uses an exponential anisotropy function

κ2(x, y) = exp(x + y). The kernel γε is defined as in (4.21) for each of the different

choices of κ. For these experiments, we are not interested in exploring mesh norm

convergence; the mesh norm h = .000075 is fixed for the experiments and we instead

consider a range of ε values .075, .0625, .05, .04, and .035. With these mesh norm

values, we construct a grid of uniformly spaced centers on [0, 1] and we discretize the

problem Lεuε = f with Lagrange functions constructed using the uniformly spaced

centers. The discrete solution uε,h is computed as described in Section 4.5.

We choose

u(x) =
(
1− cos(2πx)

)
1[0,1](x) (4.22)

and we analytically compute Du = f , where D is the differential operator that Lε
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converges to. We compute,

f(x) =


−2π

(
sin(2πx) + 2π(1 + x) cos(2πx)

)
for κ1

− exp(x)
(
2π sin(2πx) + 4π2 cos(2πx)

)
for κ2

In contrast to the experiments in Section 4.6.1 and Section 4.6.2, we do not vary

the source function f or the mesh norm h. Rather, we vary ε to analyze how the

discrete solution to the nonlocal problem relates to the solution to the differential

equation as ε shrinks. We manufacture f by applying the differential operator D

to the chosen solution u to construct Du = f , where u is the fixed function (4.22).

Figure 4.3 provides evidence that for both κ1 and κ2, the L2 error ‖u − uε,h‖L2[0,1]

converges at about O(ε2). This observation matches the error we expect from the

Taylor series analysis we used previously. As a consequence of these experiments, the

results suggest it is possible to approximate the solution to an anisotropic differen-

tial equation by discretizing and solving an anisotropic nonlocal volume constrained

equation. Whether this is computationally advantageous or not is another question

entirely, but it is nonetheless an interesting experiment. Indeed, if further work

demonstrates that the nonlocal problem is easier to discretize and solve, then the

methods discussed here provide a new avenue of investigation for solution methods

for anisotropic differential equations.

4.6.3 Quadrature Experiment

We present a numerical experiment for the proposed local Lagrange quadrature

method introduced in Section 4.4. The tests are computed on the set Ω ∪ ΩI where

Ω = (0, 1) × (0, 1) and ΩI = [−1
4
, 5

4
] × [−1

4
, 5

4
]\Ω. Let X ⊂ Ω ∪ ΩI be a collection
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(a) κ(x, y) = exp(x+ y)
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(b) κ(x, y) = 1 + x+ y

Figure 4.3: The log of ε vs. the log of the L2 error of the discrete solution uε,h is
plotted. As ε goes to zero, we observe ε2 convergence.

of scattered centers and let ŵi denote the quadrature weight centered at the point

xi ∈ X. We choose a function u : Ω∪ΩI → R and we investigate how the quadrature

error, given by

∣∣∣∣ ∫
Ω∪ΩI

u(x) dx−
∑
xi∈X

u(xi)ŵi

∣∣∣∣, (4.23)

varies as we decrease the mesh norm. We expect the quadrature error to decrease as

O(hk) by Lemma 6 depending on the smoothness of the function u. We choose the

function

u(x) =
(
x1(1− x1)

)2(
x2(1− x2)

)2
1Ω(x) (4.24)

and we consider various sets of centers with mesh norms h = .04, .02, .014, .008, and

.006. Figure 4.4 shows the results for an experiment using the polynomial function

(4.24), which exhibits a convergence rate of h2.5.
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Figure 4.4: The log of the quadrature error (4.23) versus the log of the mesh norm
h is displayed for the function (4.24).

4.7 Error Analysis

The purpose of this section is to provide two quadrature error estimates relevant

to the quadrature method used for the nonlocal diffusion problem.

4.7.1 Two Quadrature Error Estimates

Let f ∈ W k
2 (Ω ∪ ΩI) be a given function and let X be a collection of centers

in Ω ∪ ΩI . Let {χi} be a set of full Lagrange functions where χi is centered at

xi (i.e., χi(xj) = δi,j). Let {wi} be the corresponding set of quadrature weights.

For the conforming Local Lagrange method for nonlocal diffusion, we must compute

integrals, which we approximate using the Lagrange function quadrature method:

∫
Ω

f(x)χi(x) dx ≈
∑
xj∈X

f(xj)χi(xj)︸ ︷︷ ︸
δi,j

wj = f(xi)wi.

81



Analysis is required in order to quantify the quadrature error

Ei :=

∣∣∣∣ ∫
Ω

f(x)χi(x) dx− f(xi)wi

∣∣∣∣.
Lemma 9. Let X ⊂ Ω ⊂ Rn have mesh norm h and separation radius q. Let

f ∈ W k
2 (Ω) and let χi ∈ Wm

2 (Ω) with n
2
< k ≤ m. Then,

Ei ≤ Cq
n
2 ‖f‖Wk

2 (Ω)

Proof. This result follows by applying by applying the interpolation error estimates

and a Bernstein estimate. We know for a function g ∈ W k
2 the quadrature error is

O(hk‖g‖Wk
2 (Ω)) by the interpolation error estimates. Therefore, the product fχi ∈

W k
2 (Ω) and we have

Ei ≤ Chk‖fχi‖Wk
2 (Ω).

This looks promising (order k approximation) but the right hand side has dependence

on χi which we must remove. We estimate

‖fχi‖Wk
2 (Ω) ≤ ‖f‖Wk

2 (Ω)‖χi‖Wk
2 (Ω) (4.25)

and by estimates from, for example, [11], it follows that

‖χi‖Wk
2 (Ω) ≤ Cq

n
2
−m. (4.26)
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Applying (4.26) to (4.25) enables us to predict

Ei ≤ Chk‖fχi‖Wk
2 (Ω)

≤ Chkq
n
2
−k‖f‖Wk

2 (Ω)

≤ Ch
n
2 ‖f‖Wk

2 (Ω)

where we have used the quasi-uniformity assumption that there exists fixed constants

such that C1 ≤ h
q
≤ C2.

The result Lemma 9 is undesirable. We may slightly strengthen the result from

h
n
2 approximation to hn.

Lemma 10. Under the same assumptions as in Lemma 9, we may show that

Ei ≤ Chnω(f,Kh log(h)) + Chk‖f‖L∞

We begin by rewriting the error as the integral of differences of Lagrange func-

tions. We are using the fact here that
∑
χi = 1.

Proof.

Ei =

∣∣∣∣ ∫
Ω

f(x)χi(x) dx− f(xi)wi

∣∣∣∣ =

∣∣∣∣ ∫
Ω

f(x)χi(x) dx− f(xi)

∫
Ω

χi(x) dx

∣∣∣∣
=

∣∣∣∣ ∫
Ω

(
f(x)− f(xi)

)
χi(x) dx

∣∣∣∣
Let K > 0 be a fixed integer and let h denote the mesh norm of X. Let B := {x ∈

Ω : ‖x − xi‖ ≤ Kh| log(h)|} and let Bc := Ω\B. We split the region of integration

into two pieces, B and Bc, and use different approximations on each piece of the
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integral. That is,

Ei =

∣∣∣∣ ∫
B

(
f(x)− f(xi)

)
χi(x) dx+

∫
Bc

(
f(x)− f(xi)

)
χi(x) dx

∣∣∣∣.
We first consider the integral over B. Recall that the modulus of continuity

ω(f,R) := sup‖x−y‖≤R |f(x) − f(y)| and ω(f,R) → 0 as R → 0. Furthermore, it

has been shown that the L1 norm of χi is of order qn ∼ hn. With these pieces of

information, we compute

∣∣∣∣ ∫
B

(
f(x)− f(xi)

)
χi(x) dx

∣∣∣∣ ≤ ∫
B

|f(x)− f(xi)||χi(x)| dx

≤ ω(f,Kh| log(h)|)
∫
B

|χi(x)| dx

≤ Cω(f,Kh| log(h)|)hn

Now we consider the integral over Bc. Here we invoke the exponential decay of

the Lagrange functions. It has been shown in [11] that

|χi(x)| ≤ C exp(−ν
h
d(x, xi))

Consequently, supx∈Bc |χi(x)| ≤ ChKν . Therefore, we have

∫
Bc
|
(
f(x)− f(xi)

)
||χi(x)| dx ≤ 2‖f‖L∞(Ω)h

Kν

∫
Bc
dx

≤ 2‖f‖L∞(Ω)µ(Ω)hKν

where µ(Ω) is the volume of the region of integration. Combining the two integral

estimates on B and Bc yields the result. If desired, we could replace the ‖f‖L∞

by bounding it above by ‖f‖Wk
2 (Ω). K can be chosen to be larger than n (we had
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freedom to choose it) and ν > 0 is a constant.

Lemma 10 provides at least hn convergence, which is an improvement over Lemma 9

which yielded just an h
n
2 . However, we should note the hn is multiplied by an

ω(f,Kh| log(h)|), a term which decreases to zero. A further refined estimate would

require some control on how ω(f,R) decays. We note that we suspect this error

estimate is still pessimistic.

This quadrature error problem is an open problem in radial basis functions which

needs to be addressed. The results appear exceedingly pessimistic, especially for

products χiχj. However, in practice, the quadrature performs quite well. We study

one additional example of a quadrature error estimate by making use of Taylor series.

Lemma 11. Let f ∈ Cm(Ω) (f has m continuous derivatives) and Ω ⊂ R. Then,

the quadrature error is on the order of h
3
2 .

Proof. Let xi ∈ X be a center, let K > 0 be a fixed (chosen) integer and let Kh :=

Kh| log(h)|. We need to estimate

∣∣∣∣ ∫
Ω

f(x)χi(x) dx− f(xi)

∫
Ω

χi(x) dx

∣∣∣∣ =

∣∣∣∣ ∫
Ω

(
f(x)− f(xi)

)
χi(x) dx

∣∣∣∣.
We expand f into a Taylor series about xi to obtain

f(x) = f(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi)(x− xi)2 + · · ·+ 1

m!
fm(y)(x− y).

Therefore, it follows that

f(x)− f(xi) = f ′(x)(x− xi) +
1

2
f ′′(xi)(x− xi)2 + · · ·+ 1

m!
fm(y)(x− y).

Let B := {x ∈ Ω : ‖x − xi‖ ≤ Kh} and Bc := Ω\B. Then, we split the error into
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two integrals over B and Bc respectively

∣∣∣∣ ∫
Ω

(
f(x)− f(xi)

)
χi(x)

∣∣∣∣ ≤ ∣∣∣∣ ∫
B

(
f(x)− f(xi)

)
χi(x) dx

∣∣∣∣
+

∣∣∣∣ ∫
Bc

(
f(x)− f(xi)

)
χi(x) dx

∣∣∣∣.
As in the proof of Lemma 10, we may bound the integral over Bc using the expo-

nential decay of the Lagrange function to find

∣∣∣∣ ∫
Bc

(
f(x)− f(xi)

)
χi(x) dx

∣∣∣∣ ≤ ChKν‖f‖L∞ .

The new approach focuses on the integral over the ball B. We assume h is sufficiently

small so that the Taylor expansion on B is valid, and we compute on B that

|f(x)− f(xi)| = |f ′(xi)(x− xi) + · · ·+ f (m)(y)

m!
(x− y)m|.

We apply the triangle inequality to get a term involving a polynomial |(x−xi)kχi(x)|

for k = 1, . . . ,m. We note that since the integral is over B, |x − y| ≤ 2Kh for all

x, y ∈ B. Therefore, we compute, for example,

∫
B

|(x− xi)k||χi(x)| dx ≤ sup
x
|(x− xi)k|

∫
B

χi(x) dx

≤ C(Kh)
khn ∼ O(hk+n| log(h)|)

where we invoked the fact that the L1 norm of χi is on the order of hn. Therefore,

the error is O(Khh
n) = O(hn+1| log(h)|). Since we are in R, n = 1, and therefore we

have O(h2| log(h)|).

86



4.7.2 Local Lagrange Quadrature Error Estimates

The estimates in Lemma 9 and Lemma 10 both use the full Lagrange functions

rather than the local Lagrange functions. We may extend the lemmas to get ana-

logues of both Lemma 9 and Lemma 10 for the local Lagrange functions.

Lemma 12. Under the same assumptions as in Lemma 9 with χ̂i denoting the local

Lagrange functions, we have

∣∣∣∣ ∫
Ω

f(x)χ̂i(x) dx− f(xi)ŵi

∣∣∣∣ ≤ Chn‖f‖Wk
2 (Ω).

Proof. We begin by adding and subtracting terms within |
∫

Ω
f(x)χ̂i(x) dx−f(xi)ŵi|.

We add and subtract,
∫

Ω
f(x)χi(x) dx and f(xi)wi. Therefore, we have

∣∣∣∣ ∫
Ω

f(x)χ̂i(x) dx− f(xi)ŵi

∣∣∣∣ ≤ ∣∣∣∣ ∫
Ω

f(x)
(
χ̂i(x)− χi(x)

)
dx

∣∣∣∣
+

∣∣∣∣ ∫
Ω

(
f(x)− f(xi)

)
χi(x) dx

∣∣∣∣
+

∣∣∣∣f(xi)

∫
Ω

(χi(x)− χ̂i(x) dx

∣∣∣∣.
We have broken up the local Lagrange quadrature error into three pieces: an error

between the integrals of f times a Lagrange function vs. a local Lagrange function,

the quadrature error using the full Lagrange function, and the difference between

the local Lagrange quadrature weight and the full Lagrange quadrature.

We apply Corollary 4.11 [11] to bound ‖χi− χ̂i‖L2 ≤ ChJ for a J > 0. The value

of J can be increased by increasing the number of centers used in the local Lagrange

function construction.

∣∣∣∣ ∫
Ω

f(x)
(
χ̂i(x)− χi(x)

)
dx

∣∣∣∣ ≤ ‖f‖L2(Ω)‖χ̂i − χi‖L2(Ω) ≤ ChJ‖f‖L2(Ω).
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The next term we estimate is the quadrature error for the full Lagrange function,

which we may apply Lemma 9 to find

∣∣∣∣ ∫
Ω

(
f(x)− f(xi)

)
χi(x) dx

∣∣∣∣ ≤ Ch
n
2 ‖f‖Wk

2 (Ω).

The last term we estimate controls the error between the quadrature weight from the

full Lagrange function and the quadrature weight from the local Lagrange function.

We have

∣∣∣∣f(xi)

(∫
Ω

χi(x)− χ̂i(x) dx

)∣∣∣∣ ≤ sup |f(xi)|
∫

Ω

‖χi(x)− χ̂i(x) dx

≤ ‖f‖L∞(Ω)‖χi − χ̂i‖L1(Ω)

≤ ChJ‖f‖L∞(Ω).

Therefore, we have bounded the local Lagrange quadrature error above by

∣∣∣∣ ∫
Ω

f(x)χi(x) dx− f(x)ŵi

∣∣∣∣ ≤ C

(
hJ
(
‖f‖L2(Ω) + ‖f‖L∞(Ω))

)
+ h

n
2 ‖f‖Wk

2 (Ω)

)

We may choose J by tuning the value K used in the construction of the local

Lagrange functions so that J > n
2
. Therefore, we have the quadrature error is

O(h
n
2 ).

Corollary 2. The estimate in Lemma 10 is valid for local Lagrange functions as well,

provided sufficiently many centers are used in the construction of the local Lagrange

function

Proof. The proof is identical to Lemma 12 but we invoke Lemma 10 in the proof

rather than Lemma 9. For J > n, the result holds.
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4.7.3 The Quadrature Error for Solutions to Nonlocal Diffusion Problems

We address the difficulty associated with getting an error estimate for the discrete

solution we construct to the nonlocal diffusion problem. Let u ∈ W k
2 (Ω∪ΩI) denote

the solution which we aim to approximate. Let uh, which is a linear combination of

local Lagrange functions, denote the approximate solution that would be constructed

if there were no quadrature error. This is not an interpolant; this would be the

result of solving a linear system of equations where the matrices and vectors are

constructed without quadrature error. The error estimate we derived currently shows

that ‖u− uh‖ ∼ O(hk). As we know, this is inadequate because we do not construct

uh. Rather, we construct ũh, which is also a linear combination of local Lagrange

functions like uh, by solving a linear system of equations. The matrices and vectors

for the solution ũh are constructed by solving Ãũ = b̃ where Ã and b̃ are the arrays

assembled by employing the one point quadrature methods. What we want is the

following:

Conjecture 1. ‖u− ũh‖L2 ≤ Chk‖u‖Wk
2

This is significantly different from the current estimate, as this takes into account

quadrature error. Numerically, we have strong evidence for this conjecture. One

obvious approach is to simply apply the triangle equality, which yields

‖u− ũh‖L2 = ‖u− uh + uh − ũh‖L2

≤ ‖u− uh‖L2 + ‖uh − ũh‖L2

≤ Chk‖u‖Wk
2

+ ‖uh − ũh‖L2︸ ︷︷ ︸
?

It does not follow from either of Lemma 9 or Lemma 10 that ‖uh − ũh‖L2 ≤

Chk‖u‖Wk
2

unfortunately. It doesn’t even follow that the error is O(hn) (where recall
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that n is the spatial dimension). The reason is because the error ‖uh − ũh‖L2 is not

a direct quadrature error. Let uh =
∑
aiχi and ũh =

∑
ãiχi. Then,

‖uh − ũh‖L2 = ‖
∑

(ai − ãiχi‖L2

≤ Cqn‖{ai − ãi}‖`2

The coefficients {ãi} are computed by building the matrix equations using equations

the quadrature methods and solving the resulting linear systems. The coefficients

{ai} are the coefficients that we would get if we constructed the linear system of

equations without any quadrature error and then solved the system of equations.

Therefore, problem of comparing uh and ũh is the following: first we build a linear

system of equations, which has error built into it because we use quadrature, then we

solve that linear system of equations to get ũh. A simple quadrature error estimate

of the form given in either Lemma 9 or Lemma 10 is unfortunately insufficient; we

either need a more sophisticated analysis on the quadrature errors in the matrices and

we must understand how the solution of the linear system of equations is affected

by this perturbation in the matrix, or we need a Strang’s lemma. There is an

“obvious” alternative. We simply could mimic the technique used in the elliptic

partial differential equations solution method and introduce a dense set of quadrature

nodes Y with mesh norm hY . Then, the framework used for the theory of quadrature

error in the elliptic PDE method could be applied and we could derive comparable

numerical results. We do not do this for one specific reason: introducing a larger

point set Y destroys the advantage of one point quadrature for off diagonal entries

that the method currently has.
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4.7.4 An Alternative Nonlocal Diffusion Method

In the previous sections, we investigated a discretization of an anisotropic nonlocal

diffusion problem with Dirichlet volume constraints by constructing a basis of local

Lagrange functions. Since the discretization space was non-conforming with respect

to the Hilbert space used for the variational formulation of the problem, a modified

discretization space was constructed by enforcing the Dirichlet volume constraint on

the local Lagrange functions. The method has proven to be effective in numerous

ways. The method is conforming, it produces a sparse, symmetric, positive definite

matrix. It can be assembled with ease on a CUDA GPU and inverted quickly with

conjugate gradient, also on a GPU. Furthermore, the number of iterations required

for inversion is independent of the mesh norm.

However, the previous method suffers from a severe drawback. Despite being

simply inelegant, it is restricted to only work for Dirichlet volume constraints that

are zero in the interaction domain. Neumann or Robin volume constraints were not

explored and the basis would not reproduce functions with nonzero Dirichlet volume

constraints. We present here a method that is capable of handling any volume

constraint. The method employs the same concepts of local Lagrange functions and

local Lagrange quadrature, although it does not require arbitrarily forcing the basis

functions to be zero on the interaction domain. The drawback to the new method

we present here is the method is non-conforming. This does not seem to impact the

quality of the solution. The solution is enforced by means of Lagrange multipliers.

The work we present here is joint work with Lehoucq, Narcowich, and Ward.

We study an alternative variational form that imposes volume constraints by

Lagrange multipliers. We introduce an alternative variational form because the dis-

cretization spaces we propose are not contained in the constrained energy space.
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This results in a non-conforming method; Lagrange multipliers provide a method

to approximate the Dirichlet volume constraint. For functions u ∈ L2(Ω ∪ ΩI) and

λ ∈ L2(ΩI), define the form B : L2(Ω ∪ ΩI)× L2(ΩI)→ R

B(u, λ) =

∫
ΩI

λ(y)u(y) dy.

Consider the following problem: find u ∈ L2(Ω ∪ ΩI) and λ ∈ L2(ΩI) such that

a(u, v)+B(v, λ) =

∫
Ω

v(x)b(x) dx for all u ∈ L2(Ω ∪ ΩI)

B(u,w) =

∫
ΩI

w(y)g(y) dy for all w ∈ L2(ΩI).

(4.27)

Lemma 13. There exists positive constants α0, β0 such that

|a(u, v)| ≤ α0‖u‖U‖v‖U for all u, v ∈ U

B(u, q) ≤ β0‖u‖U‖q‖Π for all u ∈ U , q ∈ Π

Proof. By the assumptions on the kernel,

|a(u, v)| = 1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

(
u(x)− u(y)

)(
v(x)− v(y)

)(
κ(x) + κ(y)

)
Φ(‖x− y‖) dy dx

≤ 2‖κ‖L∞(Ω∪ΩI)

(
2

∣∣∣∣ ∫
Ω∪ΩI

u(x)v(x)

∫
Ω∪ΩI

Φ(‖x− y‖) dy dx
∣∣∣∣

+ 2

∣∣∣∣ ∫
Ω∪ΩI

u(x)

∫
Ω∪ΩI

v(y)Φ(‖x− y‖) dy dx
∣∣∣∣)

≤ 4‖κ‖L∞(Ω∪ΩI)(γ2 + γ3)‖u‖L2(Ω∪ΩI)‖v‖L2(Ω∪ΩI)

The form B is bounded by applying the Cauchy-Schwarz inequality

B(u, q) =

∫
ΩI

u(x)q(x) dx ≤ ‖u‖L2(ΩI)‖q‖L2(ΩI) ≤ ‖u‖L2(Ω∪ΩI)‖q‖L2(ΩI).
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We now verify that the anisotropic problem is well-posed. Let U := L2(Ω ∪ ΩI),

Π := L2(ΩI) and Z := {u ∈ U : B(u, q) = 0 for all q ∈ Π}.

Lemma 14. There exists a constant β > 0 such that

β‖q‖Π ≤ sup
u∈U

B(u, q)

‖u‖U
.

Proof. Fix q ∈ L2(ΩI) and choose u such that u|ΩI = q almost everywhere and

u|Ω = 0. Then,

B(u, q) =

∫
ΩI

u(x)q(x) dx =

∫
ΩI

q(x)2 dx

and ‖u‖U = ‖u‖L2(Ω∪ΩI) = ‖q‖L2(ΩI). Therefore, we have (with β = 1),

‖q‖Π = ‖q‖Π
‖q‖Π

‖q‖Π

=
B(u, q)

‖u‖U
≤ sup

u∈U

B(u, q)

‖u‖U
.

The bilinear form a is coercive when restricted to the space Z. The coercivity

of the bilinear form on Z, the boundendess of a and b, and the inf-sup condition

together implies that the problem (4.28) is well-posed [2].

We introduce finite dimensional discretization spaces Uh = span{φi}Ni=1 ⊂ L2(Ω∪

ΩI) and Λh = span{ψk}NIk=1 ⊂ L2(ΩI). The discrete problem is to find uh =∑N
i=1 αiφi ∈ Uh and λh =

∑NI
k=1 βkψk ∈ Λh such that

a(uh, vh)+B(vh, λh) =

∫
Ω

vh(x)b(x) dx for all vh ∈ Uh

B(uh, wh) = 0 for all wh ∈ Λh.

(4.28)
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This results in a linear system of equations

 A B

BT 0


α
β

 =

b
0

 (4.29)

where αi = αi,βk = βk, and the entries in the matrices above are

Ai,j = a(φi, φj), Bi,k = B(φi, ψk), bi =

∫
Ω

φib dx. (4.30)

We introduce the space Zh = {vh ∈ Vh :
∫

ΩI
vhbi = 0 for all bi ∈ Λh}. Our

goal is to verify that the bilinear form a is coercive on Zh and that the spaces Vh

and Λh satisfy a discrete inf-sup condition. That is, we need to argue there exists

α0 independent of h, q such that a(zh, zh) ≥ α0‖zh‖2
L2(Ω∪ΩI) and that there exists a

β > 0 independent of h, q such that

β‖wh‖L2(ΩI) ≤ sup
vh∈Vh

B(vh, wh)

‖vh‖L2(Ω∪ΩI)

holds for all wh ∈ Λh.

Proposition 12. Let X be a quasi-uniformly distributed set of centers and Vh =

span{bξ : ξ ∈ X} and Λh = span{bη : η ∈ X ∩ Ω}. Then, there exists a constant β

independent of h, q such that

β ≤ inf
wh∈Λh

sup
vh∈Vh

B(vh, wh)

‖wh‖L2(ΩI)‖vh‖L2(Ω∪ΩI)

.

Proof. We begin by fixing wh =
∑

η∈X∩Ωwηbη ∈ Λh ⊂ Vh. Since wh ∈ Vh, we may

bound

B(wh, wh)

‖wh‖L2(Ω∪ΩI)

≤ sup
vh∈Vh

B(vh, wh)

‖vh‖L2(Ω∪ΩI)

.
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Recall that B(wh, wh) =
∫

ΩI
wh(y)wh(y) dy = ‖wh‖2

L2(ΩI). If we show there exists a

C > 0 independent of h, q such that C‖wh‖L2(Ω∪ΩI) ≤ ‖wh‖L2(ΩI), the result follows.

We apply [11, Theorem 6.2] to bound ‖wh‖L2(ΩI) ≥ CΩIq
d
2‖~w‖`2 . Furthermore, there

exists a constant CΩ∪ΩI such that ‖wh‖L2(Ω∪ΩI ≤ CΩ∪ΩIq
d
2‖~w‖`2 by [11, Theorem

4.12]. Therefore, we may set C :=
CΩI

CΩ∪ΩI
.

A discrete coercivity result may be attained assuming that h is sufficiently small.

Theorem 4. Assume that for 0 < h < h0 that distL2(ΩI)(1,Πh) ≤ ε|ΩI |
1
2 for some

constant 0 < t ≤ 1 and ε ≤ (1−t)√ρ
1+
√

1−ρ . If uh ∈ Zh, then,

a(uh, uh) ≥
tρλδd+2

1 +
√

1− ρ
‖uh‖2

L2(Ω).

The constants λ and δ may be found in [23].

As a consequence of Proposition 12 and Theorem 4, it follows that the discretized

problem is well-posed.

Proposition 13. Let Vh,Πh, Zh, h0 all be as defined above. For h < h0, there exists

unique functions uh ∈ Vh and ph ∈ Πh that solve

a(uh, vh)+B(vh, λh) =

∫
Ω

vh(x)b(x) dx for all vh ∈ Uh

B(uh, wh) = 0 for all wh ∈ Λh.

(4.31)
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5. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS ON SPHERES

The objective of this chapter is to introduce a Galerkin method for the solution

of elliptic partial differential equations on manifolds. In particular, we study heat

conduction on the sphere S2 in an inhomogeneous, anisotropic medium. That is, the

equation we aim to discretize and solve is

Lu = −div(a · ∇u) + bu = f (5.1)

where div is the divergence operator and ∇ is the covariant derivative operator on

the sphere, a is a rank two symmetric, positive definite tensor, and f ∈ W k
2 (S2) for

some k ≥ 0. Most of the content of this section, as well as additional theory on the

use of local Lagrange functions, may be found in [25]. The work presented here is

joint work with Narcowich and Ward.

The primary tool for the discretization will be the surface splines κm(x, y) :=

(−1)m(1− x · y)m−1 log(1− x · y). The conditionally positive definite surface spline

has a reproducing kernel Hilbert space equivalent to the Sobolev space Wm
2 (S2).

Solving partial differential equations on spheres with spherical basis functions it

not a new idea. However, introducing a meshfree Galerkin method with spherical

basis functions along with a practical quadrature routine is novel. Previous methods

relying on SBFs have relied on collocation schemes. For example, see [17].

We may expand (5.1) as

Lu = − 1√
det(gij)

∑
i,j

∂

∂xi

√
det(gij)a

ij(x)
∂u

∂xj
+ b(x)u = f

We place appropriate assumptions on the data in (5.1). We assume that b(x) ∈
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C∞(S2) and that a is a positive definite rank 2 tensor such that there exists positive

constants c1, c2 such that

c1

∑
i,j

gij(x)vivj ≤
∑
i,j

aij(x) ≤ c2

∑
i,j

gij(x)vivj (5.2)

for any vectors v ∈ Tx(S2), the tangent space of x. We further assume that there

exists a constant b1 ≥ b0 > 0 such that b0 ≤ b(x) ≤ b1. In the event we choose a = g,

then the problem reduces to

Lu = −∆u+ bu = f.

In the event that a 6= g has spatial variation, we refer to this as the anisotropic

problem.

To solve (5.1), we place the problem into weak form as the first step. We begin by

multiplying (5.1) by a test function v ∈ W 1
2 (S2) and integrating by parts to place the

equation into weak form. We define the bilinear form a(u, v) and the linear function

`(v) operating on u, v ∈ W 1
2 (S2) by

a(u, v) := 〈Lu, v〉L2(S2)

∫
S2

aij(x)
∑
i,j

∂u

∂xi

∂v

∂xj
+ b(x)u(x) dµ(x),

`(v) :=

∫
S2

f(x)v(x) dµ(x).

(5.3)

We trust the reader will not confuse a(u, v), the bilinear form, with the similar

nomenclature aij for the rank two tensor. We may now formally state the problem

we aim to discretize and solve. Let a(·, ·) and `(·) be as defined in (5.3). We seek
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u ∈ W 1
2 (S2) so that for every v ∈ W 1

2 (S2),

a(u, v) = `(v). (5.4)

We need to guarantee that a unique solution exists for this problem. This follows

by an application of the famous Lax-Milgram Lemma. To apply the Lax-Milgram

lemma, the bilinear form a(u, v) must be coercive and bounded and the linear func-

tion `(v) must be bounded. We recall that we say a bilinear form a : H ×H → R is

coercive on a Hilbert space H if a(u, u) ≥ α‖u‖2
H for some positive α.

Proposition 14. Let a and ` denote the bilinear form and linear functional, re-

spectively, defined in (5.3). Then, a is coercive and bounded on W 1
2 (S2) and ` is a

bounded linear functional on W 1
2 (S2).

Proof. Recall the assumption that were placed upon aij and b(x). We know there

exists c1, c2 relating gij and aij and that there exists 0 < b0 ≤ b(x) ≤ b1. Therefore,

we may bound the bilinear form above and below

min(c1, b0)‖u‖2
W 1

2 (S2) ≤
∫
S2

c1

∑
i,j

gij
∂u

∂xi

∂u

∂xj
+ b0u

2(x) dµ(x) ≤ a(u, v),

max(c2, b1)‖u‖W 1
2 (S2) ≥

∫
S2

c2

∑
i,j

gij
∂u

∂xi

∂u

∂xj
+ b1u

2(x) dµ(x) ≥ a(u, v).

Consequently, the bilinear form is coercive, and actually defines an inner product

equivalent to the W 1
2 (S2) inner product.

Lemma 15. Let `(v) denote the linear functional `(v) is continuous in the W 1
2 (S2)

norm.
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Proof. This result follows by a quick application of the Cauchy-Schwarz inequality.

We see

`(v) =

∫
S2

f(x)v(x) dµ(x) ≤ ‖f‖L2(S2)‖v‖L2(S2) ≤ ‖f‖L2(S2)‖v‖W 1
2 (S2).

As a consequence of (14) and (15), we may apply the Lax-Milgram lemma to

conclude that there exists a unique u ∈ W 1
2 (S2) such that a(u, v) = `(v) for all

v ∈ W 1
2 (S2). Consequently, a solution exists and is unique and we may pursue a

discretization of the problem to approximate the solution u. We note a regularity

condition that is due to the ellipticity of the differential operator.

Proposition 15. [25] Let L be the differential operator as described in (5.1) along

with our assumptions on the tensor aij and the function b. Then, if u is any

distributional solution to the problem Lu = f , where f ∈ W s
2 (S2) for s ≥ 0,

then for any t < s − 1, there exists a constant Ct so that u ∈ W s+2
2 (S2) and

‖u‖W s+2
2
≤ Ct(‖u‖W s

2
+ ‖u‖W t

2
). Furthermore, ‖u‖W s+2

2 (S2) ≤ C‖Lu‖W s
2 (S2).

This regularity result guarantees the amount of smoothness u will posses. Intu-

itively, u should have at least two more derivatives than f , which is exactly what the

regularity result confirms. Such results are not surprising and known due to the C∞

coefficients in (5.1) and since the operator L is elliptic.

As a result of the properties of the bilinear form, we may note a corollary of the

regularity proposition that enables us to enhance our error estimates later.

Corollary 3. Let Vh ⊂ W 1
2 (S2) be a closed subspace. Let uh denote the Galerkin

solution to the problem a(uh, vh) = `(vh) for all vh ∈ Vh. Let w denote the solution
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to the problem Lw = u − uh and let wh denote the corresponding Galerkin solution

in vh. Then,

‖u− uh‖2
L2 ≤M‖u− uh‖W 1

2 (S2)‖v − vh‖W 1
2 (S2).

Proof. We first note that the bilinear form a was constructed by integration by parts

of 〈Lu, v〉L2(S2) := a(u, v). Then, we use this to evaluate

a(w, u− uh) = 〈Lw, u− uh〉L2(S2) = ‖u− uh‖2
L2(S2).

We note that since uh is the Galerkin solution corresponding to u, Galerkin orthogo-

nality implies that a(wh, u−uh) = 0. Applying the Galerkin orthogonality, additivity

of the bilinear form and boundedness of the bilinear form, we evaluate

‖u− uh‖2
L2(S2) = a(w, u− uh) = a(w − wh, u− uh)

≤M‖w − wh‖W 1
2 (S2)‖u− uh‖W 1

2 (S2).

5.1 Error Estimates with Spherical Basis Functions

We employ spherical basis functions for the discretization method we develop to

approximate the solution to the problem Lu = f . Consider a spherical basis function

φ on S2 that is either positive definite or conditionally positive definite. Let X be a

collection of quasi-uniformly scattered centers on S2 and let

VX := Vφ,X =

{∑
ξ∈X

aξφ(·, ξ) :
∑
ξ

aξp(ξ) = 0 for all p ∈ Π

}
+ Π
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where Π is the space of continuous functions corresponding to the conditionally

positive definite kernel φ. For this section, we assume Π is the span of spherical

harmonics up to a fixed degree L (not to be confused with the differential operator

L). We place some restrictions on the behavior of the kernel to guarantee that we

may employ known interpolation error estimates. Let τ > 1 and assume that there

exists positive constants c, C so that the Fourier coefficients of φ satisfy

c(1 + λ`)
−τ ≤ φ̂` ≤ C(1 + λ`)

−τ for all ` ≥ L+ 1 (5.5)

where L is the degree of the highest order spherical harmonic in Π.

Let Hk := W k
2 (S2) for shorthand. In the weak formulation, the Hilbert space we

search in is H1. For sufficient τ > 1, the space VX ⊂ H1, and consequently we may

considered the discretized following discretized problem: Find uX ∈ VX such that

for all vX ∈ VX

a(uX , vX) = `(vX).

Since VX ⊂ H1, the discretization is conforming, and consequently an application

of Lax-Milgram once again guarantees such a solution exists. We refer to the so-

lution uX as the discrete solution in contrast to the solution (or exact solution) u.

Furthermore, we know by Cea’s Lemma that the discrete solution is a near-optimal

approximation to u in the discretization space VX . That is,

‖u− uX‖H1 ≤ C inf
vX∈VX

‖u− vX‖H1 .

Consequently, by choosing the interpolant IXu ∈ VX , it follows that

‖u− uX‖H1 ≤ C‖u− IXu‖H1 .
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By identical reasoning, for the problem Lw = u−uX , we know the Galerkin solution

wX ∈ VX satisfies

‖w − wX‖H1 ≤ C‖w − IXw‖H1 .

Regarding the regularity of each solution, if the data f ∈ Hs, then by the regularity

result Proposition 15, it follows that u ∈ Hs+2. For τ > 1, the interpolant IXu is

in the space Hτ+α for α < τ − 1. As a result, the difference u − IXu ∈ Hσ where

σ = min(s + 2, τ + α). We may once again apply elliptic regularity Proposition 15

to the problem Lw = u− IXu to find that since u− IXu ∈ Hσ, w ∈ Hσ+2.

We consider the kernel φ = κm, the restricted surface spline that is in the Sobolev

space Wm
2 (S2). Let χξ denote the Lagrange function centered at ξ constructed by

linear combinations of κm(·, η) plus an appropriate polynomial from Πm, the space of

degree m spherical polynomials. The space VX is the space we employ to discretize

the problem (5.1). With these regularity results combined with the approximation

powers of the discretization spaces, we may derive error estimates for the problem.

Lemma 16. Let τ > n
2

(for Sn or τ > 1 for S2). Let X be a collection of scattered

centers with mesh norm h. Let w be the solution to the problem Lw = u − IXu.

Then,

‖w − wX‖H1 ≤ Ch2‖u− IXu‖H3 .

Proof. We know w ∈ Hσ+2 where σ = min(s + 2, τ + α) for τ > n
2

and α < τ − n
2
.

Then, as a result, σ > 1, so σ + 2 > 3. Therefore, w ∈ H3. As a result, we may

apply the interpolation error estimates for the kernel φ, which allows us to estimate

‖w − Ixw‖H1 ≤ Ch2‖w‖H3 .
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Furthermore, by the regularity result Proposition 15, it follows

‖w‖H3 ≤ C‖Lw‖H1 = C‖u− IXu‖H1 .

We focus on the specific case of n = 2 since the sphere S2 is our primary manifold

of interest. For general Sn, the key replacements are that τ > n
2

and α < τ − n
2
.

Theorem 5. Let n = 2 and let Lu = f for f ∈ Hs and s ≥ 0. Let uX denote the

Galerkin solution to the problem Lu = f in the space VX constructed from scattered

centers with mesh norm h and a kernel φ that satisfies (5.5). Then,

‖u− uX‖L2 ≤


Chs+2‖u‖Hs+2 for s ≤ 2τ − 2

Ch2τ‖u‖H2τ for 2τ − 2 < s

(5.6)

Proof. The interpolation error estimates derived in [25] (Proposition A.3) show that

on Sn, if τ > n
2

and n
2
< µ ≤ 2τ , and β ≤ min(µ, τ), then

‖u− IXu‖Hβ ≤ Chµ−β‖u‖Hµ . (5.7)

In the context of our problem, u ∈ Hs+2 where s ≥ 0. The highest order approxi-

mation power possible is 2τ , which occurs in the event 2τ < s+ 2, and consequently,

the two cases to consider are s ≤ 2τ − 2 and s > 2τ − 2.

By Cea’s Lemma, it follows that

‖u− uX‖H1 ≤ C‖u− IXu‖H1 .

We apply the interpolation error estimates to approximate the convergence order of
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u − IXu in the H1 norm. In the language of the interpolation error estimate (5.7),

β = 1, and we see

‖u− IXu‖H1 ≤


Chs+1‖u‖Hs+1 for s ≤ 2τ − 2,

Ch2τ−1‖u‖H2τ for s > 2τ − 2.

(5.8)

To recover L2 error estimates, we need to apply the Nitsche trick to recover an

additional order of h. By Corollary 3,

‖u− uX‖2
L2 ≤ ‖w − IXw‖H1‖u− IXu‖H1 .

By applying Lemma 16, we may replace the w − IXw norm by

‖u− uX‖2
L2 ≤ Ch2‖u− IXu‖2

H1

which implies that

‖u− uX‖L2 ≤ Ch‖u− IXu‖H1 .

Finally, we may apply (5.8) to acquire the approximation error rates

‖u− IXu‖L2 ≤


Chs+2‖u‖Hs+1 for s ≤ 2τ − 2

Ch2τ‖u‖H2τ for s > 2τ − 2.

(5.9)

The error estimate we derived is under the assumption that the stiffness matrix

is assembled precisely with no quadrature error. The issue of quadrature is technical

and difficult and we study this problem in a later section. The assumptions on the
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kernel are given that the kernel is (conditionally) positive definite and the conditions

in (5.5). We remark that our particular interest is in the surface spline φm(x, y) :=

(−1)m(1− x · y)m−1 log(1− x · y).

5.2 Stiffness Matrix in the Lagrange Basis

The error estimates derived in Section 5.1 are valid for many kernels. While

the theoretical error estimates in Theorem 5 are valid for a diverse set of kernels,

the choice of kernel has impact in the practical implementation of the method. A

numerically suitable, robust basis that is easy to assemble, is well-conditioned, and

preferably sparse is highly desired. Optimizing these conditions requires a choice of

a basis in the discretization space, VX . We explore the use of the Lagrange basis for

a basis for the discretization space.

The kernels we consider are the surface splines φm for m ≥ 2 on the sphere S2.

These spaces satisfy the error estimates in Theorem 5 and also are known to have

a robust, exponentially decaying Lagrange basis. Chapter 2 provides the theoretical

properties of this basis on the sphere. In particular, the basis is highly localized

spatially and has a “small-footprint” in the sense that the number of kernels with

non-negligible coefficients is on the order of O
(

log(N)2
)
. The basis can be approxi-

mated very well by the alternative basis of local Lagrange functions, as described in

Section 2.2.

Let Vm,X := Vφm,X be the discretization space generated by φm and the appro-

priate spherical polynomials. We choose for the basis the collection of Lagrange

functions, Vm,X = span{χξ : ξ ∈ X} that satisfy χξ(η) = δξ,η. The Galerkin solution

to the problem a(uX , vX) = `(vX) for all vX ∈ VX can be expressed in terms of the

basis as uX :=
∑

ξ∈X uξχξ. Substituting this into (5.4) along with the choice vX = χη
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for each η ∈ X yields the linear system of equations

∑
ξ

uξa(χξ, χη) = `(χη).

We identify

Aξ,η := a(χξ, χη) =

∫
S2

aij(x)∇χξ · ∇χη + b(x)χξχη dµ(x),

fη := `(χη) =

∫
S2

f(x)χη(x) dµ(x).

(5.10)

Letting uξ := uξ, the linear system of equations we aim to solve are

Au = f . (5.11)

We refer to A as the stiffness matrix. The choice of basis affects the properties of

the stiffness matrix. We show that our choice of basis offers many benefits, but the

assembly of the matrix is non-trivial. Evaluating the inner products in (5.10) requires

a quadrature routine, which we discuss later. Without an effective, implementable

quadrature routine, the use of spherical basis functions may not be a practical choice.

We begin our exploration of the properties of the stiffness matrix by studying

the condition number of the stiffness matrix. Recall that the condition number,

κ(A) := κ2(A) = ‖A‖2 · ‖A−1‖2. We note that A is real and self-adjoint, since

Aξ,η = a(χξ, χη) = a(χη, χξ) = Aη,ξ. Since the bilinear form defines an inner product,

A is a Gram-matrix for the basis {χξ}ξ∈X in the a(·, ·) inner product and consequently

A is positive definite. Therefore, κ(A) = λmax(A)
λmin(A)

.

We first establish a bound on λmin(A) := λ1. We estimate the eigenvalue by

considering the quadratic form 〈Ac, c〉 with ‖c‖`2 = 1. The minimum and maximum

values of the quadratic form correspond to the minimal and maximal eigenvalues of
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A, respectively. Let N denote the cardinality of the set of centers X. We compute

〈Ac, c〉 =
N∑
i=1

(Ac)ici

=
N∑
i=1

( N∑
j=1

Ai,jcj
)
ci

=
N∑
i=1

(
a(χi, χη)cj

)
ci

= a

( N∑
i=1

ciχi,
N∑
i=1

cjχj

)
.

Let v :=
∑N

i=1 ciχi. Then, λmin(A) = min a(v, v). We note that a(v, v) := 〈Lv, v〉L2(S2),

and consequently,

λmin(L)‖v‖2
L2(S2) ≤ 〈Ac, c〉

Since λmin(L) is independent of the choice of discretization (and positive), this is

a fixed constant. We need only estimate ‖v‖L2(S2) in terms of the coefficients. We

know by Proposition 5 that we may bound

‖v‖2
L2(S2) ≥ Cq2‖c‖`2(N).

Consequently, we may estimate the lower eigenvalue of λmin(A) by

λmin(A) = min
‖c‖=1
〈Ac, c〉 ≥ λmin(L)q2‖c‖2

`2(N) = Cλmin(L)q2. (5.12)

We investigate the upper bound in a similar fashion, although we require a Bernstein

inequality to relate ‖Lv‖L2 to ‖v‖L2 . We may not proceed as before and claim

〈Ac, c〉 ≤ λmax(L)‖v‖2
L2 since there exists no maximal eigenvalue of the differential
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operator L. Instead, we apply Cauchy-Schwarz and use the Bernstein inequality (8)

to compute

λmax(A) = max
‖c‖=1
〈Ac, c〉 ≤ max

‖c‖
〈Lv, v〉L2

≤ max
‖c‖=1

‖Lv‖L2‖v‖L2 ≤ max
‖c‖=1

Cq−2‖v‖2
L2

≤ max
‖c‖=1

Cq−2q2‖c‖`2(N)

(5.13)

and we therefore may conclude that the maximal eigenvalue λmax(A) is bounded

above by a constant independent of h or q.

Theorem 6. Let A denote the stiffness matrix assembled using the basis {χξ : ξ ∈

X} for a quasi-uniformly distributed set of centers X with separation radius q that

is sufficiently small. Then, the condition number of the stiffness matrix is bounded

above by

κ2(A) ≤ Cq−2

for some positive constant C independent of the mesh norm h or q.

Proof. Since A is a symmetric, positive definite matrix, we know the condition num-

ber is bounded above by the ratio of the maximal and minimal eigenvalues. By (5.12)

and (5.13), we compute

κ2(A) =
λmax(A)

λmin(A)
≤ C

1

q2λmin(L)
.

In addition to being stable, the stiffness matrix has banded properties and is

essentially sparse. While each entry in the stiffness matrix is nonzero, and hence

the matrix is dense, most off-diagonal entries are negligible in value. The stiffness
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matrix entry Aξ,η = a(χξ, χη) satisfies a decay property so that as d(ξ, η) increases,

the value of Aχξ,χη decays exponentially. This mimics the spatial decay properties

of the Lagrange functions.

Proposition 16. Let A denote the stiffness matrix. For sufficiently small h, the

entries in A decay as

Aξ,η ≤ Ch−2 exp
(
− ν

h
dist(ξ, η)

)
.

Proof. We take advantage of the decay of the Lagrange functions, as well as the

decay of the covariant derivatives of Lagrange functions. We know

Aξ,η =

∫
S2

∑
i,j

aij∇χξ · ∇χη + b(x)χξχη dµ(x).

We may bound the integrand above by noting

∣∣∣∣∑
i,j

aij∇χξ∇χη + b(x)χξχη

∣∣∣∣ ≤ C|∇χξ| |∇χη|+ ‖b‖L∞|χξ‖|χη|

We then note that, by the exponential decay, we know

|χξ(x)χη(x)| ≤ C exp(−ν
h

dist(ξ, x)) exp(−ν
h

dist(η, x))

≤ C exp(−ν
h

dist(χ, η))

where we took advantage of the fact that by the triangle inequality, dist(x, η) +

dist(ξ, x) ≥ dist(ξ, η). Similarly, the decay of the covariant derivatives of Lagrange
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functions follows with an additional q−1 power, and we consequently have

C|∇χξ| |∇χη|+ ‖b‖L∞ |χξ‖|χη| ≤ (Cq−2 + 1) exp(−ν
h

dist(ξ, η))

≤ C̃h−2 exp(−ν
h

dist(ξ, η))

where we have used the quasi-uniformity to flip from q to h and adjusted the constant

appropriately.

A consequence of Proposition 16 is that the stiffness matrix entries off of the di-

agonal decay exponentially fast. This is very advantageous, since the stiffness matrix

is dense. However, exponential decay off of the diagonal suggests very few terms will

have non-negligible value. Indeed, by choosing a ball of radius r = Kh| log(h)|, we

see that for η /∈ B(ξ, r),

Aξ,η ≤ Ch−2 exp(−ν
h

dist(ξ, η)) ≤ Ch−2hKν

and consequently, for Kν − 2 sufficiently small, the stiffness matrix entries will be

very small. Consequently, we may choose a cutoff radius for appropriate K and zero

out entries in the stiffness matrix beyond this point. This produces a sparse matrix

with comparable condition number and comparable accuracy for the construction

of the Galerkin solution. Furthermore, from a practical standpoint, the stiffness

matrix assembly may be greatly accelerated: only a few entries must be computed

for each row. This greatly reduces the cost of assembly and makes the method more

advantageous from a computational view.

110



5.3 Quadrature

The theoretical properties of the discretization method of Section 5.1 suggest

that the use of the spherical basis functions, and in particular, Lagrange functions,

produces a stable stiffness matrix with optimal approximation power. While the the-

oretical properties of the stiffness matrix A are excellent, a practical issue of concern

is the assembly of the stiffness matrix numerically. Evaluating a single entry in the

matrix requires computing non-trivial integrals of covariant derivatives of functions.

Providing a practical numerical quadrature routine is imperative for an efficient im-

plementation. An efficient quadrature routine is not sufficient; the qualities of the

stiffness matrix must be preserved even when assembled with numerical quadrature.

We propose a quadrature routine using an additional, separate set of centers,

distinct from the collection of centers used to construct the discretization space. We

let X refer to the collection of centers used to build the approximation space, VX ,

as in Section 5.1. We let Y denote the collection of centers, which we refer to as

quadrature nodes. The space VX is constructed by a kernel φm, while the space VY

is constructed by a possibly different order kernel, φM . There is no need to enforce

M = m, and no advantage exists in choosing M > m. Since lower M values result

in better conditioned linear systems for interpolation (and hence, quadrature weight

construction), choosing a lower value of M is recommended.

For the analysis and discussion in this section, we make an additional assumption

on the tensor aij. While we previously enforced Equation (5.2), we now add the

additional constraint that there exists a function a ∈ C∞(S2) such that aij(x) =

a(x)gij(x).

Let hX and hY denote the mesh norms of X and Y , respectively. We assume

hY ≤ hX and qY ≤ qX . Let {χξ}ξ∈X be the set of Lagrange functions. We refer
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to the stiffness matrix A assembled with no numerical quadrature error (i.e., as in

Section 5.1) as the continuous stiffness matrix. The continuous stiffness matrix is

assembled entrywise by

Aξ,η =

∫
S2

a(x)∇χξ · ∇χη dx+

∫
S2

b(x)χξ(x)χη(x) dµ(x). (5.14)

Let {wz}z∈Y denote the quadrature weights associated with the set of centers Y .

The quadrature weights enable perfect reproduction formulas for functions in VY as

well as polynomials in the space ΠM corresponding to the kernel φm. However, it is

possible that some of the computed weights may be negative in the case of highly

scattered data sets Y . For quasi-uniformly distributed nodes, this is not likely the

case and a reasonable assumption is that

wz ≥ Ch2
Y (5.15)

for each z ∈ Y . All numerical experiments use quadrature nodes satisfying (5.15).

On the other hand, regardless of whether (5.15) holds or not, we do know there exists

a positive constant so that

|wz| ≤ Ch2
Y .

This holds as a result of (5). Since wz =
∫
S2 χz(x) dµ(x) for each z ∈ Y , we apply

(5) to compute

|wz| ≤ ‖χz‖L1(S2) ≤ Cq2 = Cρ−2h2.

We apply quadrature to (5.14) to construct a discrete stiffness matrix

Ãξ,η =
∑
z∈Y

a(z)∇χξ · ∇χη(z)wz +
∑
z∈Y

b(z)χξ(z)χη(z)wz. (5.16)
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The right hand side vector for the continuous case and for the discrete case are given

by, respectively,

bξ =

∫
S2

f(x)χξ(x) dx b̃ξ =
∑
z∈Y

f(z)χξ(z)wz. (5.17)

Our objective is to present an approach to estimating the effects of using quadra-

ture to evaluate the vectors and matrices for the problem. The results presented here

were an initial attempt; for a detailed and superior analysis that takes into account

banding the matrices and local Lagrange functions, see [25].

In the continuous case, we solve the problem Aa = b, and represent the solution

uh =
∑

ξ∈X aξχξ(x). The discrete solution vector is computed by solving Ãã = b̃, and

the discrete solution ũh =
∑

ξ∈X ãξχξ. We may compute the L2 norm error between

these functions by noting that

‖uh − ũh‖L2 = ‖
∑
ξ∈X

(aξ − ãξ)χξ‖L2

≤ Cq
d
2‖aξ − ãξ‖`2(X)

Let u denote the exact solution to the PDE. Combining the previous error estimate

on uh and ũh, we find

‖u− ũh‖L2 ≤ ‖u− uh‖L2 + ‖uh − ũh‖L2 ≤ ChkX‖u‖Wk
2

+ Cq
d
2‖aξ − ãξ‖`2(X).

If we can estimate the `2 error above, then we can argue the discrete solution is no

worse than the continuous solution. Furthermore, by properly tuning hY , qY , we can

ensure optimal order convergence.
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Lemma 17. Let Ã = A+ ∆A, ã = a+ ∆a, and b̃ = b+ ∆b. Then,

‖∆a‖ ≤ ‖(A+ ∆A)−1‖(‖∆Aa‖+ ‖∆b‖).

We note that Aa− Ãã = b− b̃ = −∆b. We then algebraically manipulate

Aa− Ãã = Aa− (A+ ∆A)(a+ ∆a)

= Aa− Aa− A∆a− (∆A)a− (∆A)(∆a)

= −(A+ ∆A)(∆a)− (∆A)a

Solving for ∆a yields

−(A+ ∆A)(∆a) = (∆A)a−∆b

‖∆a‖ = ‖(A+ ∆A)−1
(
(∆A)a−∆b

)
‖

‖∆a‖ ≤ ‖(A+ ∆A)−1‖ (‖(∆A)a‖+ ‖∆b‖)

We have three quantities to estimate: ‖∆b‖, which we estimate using L2 norms,

‖(A + ∆A)−1‖, which we estimate using the reciprocal of the lowest eigenvalue of

Ã, and ‖(∆A)a‖, which we estimate using computed error estimates, row sums, and

flipping from ‖a‖ to ‖u‖ to ‖f‖.

Lemma 18. Let f ∈ W k
2 (S2) for k > d

2
. Then,

‖∆b‖ ≤ ChkY q
−k
X ‖f‖Wk

2
.
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Proof. For fixed ξ, we have

∣∣bξ − b̃ξ∣∣ =

∣∣∣∣ ∫
S2

f(x)χξ(x) dx−
∑
z∈Y

f(z)χξ(z)

∣∣∣∣
≤ ChkY ‖fχξ‖Wk

2

For k > d
2
, W k

2 is an algebra and ‖fχξ‖Wk
2
≤ ‖f‖Wk

2
‖χξ‖Wk

2
. We estimate ‖χξ‖Wk

2
≤

Cq
d
2
−k by comparing it to a worse interpolant, where the C is independent of X or

Y . Consequently, we have

∣∣bξ − b̃ξ| ≤ ChkY q
d
2
−k

X ‖f‖Wk
2
. (5.18)

We finish by computing ‖∆b‖ as follows

‖∆b‖ =

√∑
ξ∈Ξ

∣∣bξ − b̃ξ∣∣2 ≤ ChkY q
d
2
−kq−

d
2‖f‖Wk

2

which follows by noting
∑

ξ∈Ξ 1 ≤ Cq−d.

Lemma 19. Let a ∈ C∞ and b ∈ C∞. Then, we have

∣∣∣∣ ∫
S2

a(x)χξ(x)χη(x) dx−
∑
z∈Y

a(z)χξ(z)χη(z)wz

∣∣∣∣ ≤ ChmY q
d
2
−m

X .

Proof. Since a ∈ C∞ and χξ ∈ Wm
2 , we have aχξχη ∈ Wm

2 . Consequently, the

quadrature error is

∣∣∣∣ ∫
S2

a(x)χξ(x)χη(x) dx−QY (aχξχη)

∣∣∣∣ ≤ ChmY ‖aχξχη‖Wm
2
.
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We estimate ‖aχξχη‖ by Theorem B.1 of [25] which asserts

‖aχξχη‖Wm
2
≤ C(‖a‖L∞‖χξχη‖Wm

2
+ ‖a‖Wm

2
‖χξχη‖L∞).

We may absorb the ‖a‖L∞ and ‖a‖Wm
2

into the constant C. By the boundedness of

the Lebesgue constant, we know that ‖χξ‖L∞ is bounded independent of q, h, ξ, so

this term may also be absorbed into the constant. We apply Theorem B.1 again to

estimate ‖χξχη‖Wm
2

and estimate ‖χξ‖Wm
2
≤ Cq

d
2
−m

X to get

‖χξχη‖Wm
2
≤ C(‖χξ‖L∞‖χη‖Wm

2
+ ‖χξ‖Wm

2
‖χη‖L∞)

≤ Cq
d
2
−m

X .

Combining these estimates with the quadrature error estimate yields the desired

result.

Lemma 20. Let b ∈ C∞. Then,

∣∣∣∣ ∫
S2

b(x)∇χξ · ∇χη(x) dx−QY (b∇χξ · ∇χη)
∣∣∣∣ ≤ Chm−1

Y q
d
2
−m−1

X .

Proof. We proceed similarly by applying the quadrature error estimates and noting

that b∇χξ · ∇χη ∈ Wm−1
2 . Then, we have

∣∣∣∣ ∫
Sd
b(x)∇χξ · ∇χη dx−

∑
z∈Y

b(z)∇χξ · ∇χη(z)

∣∣∣∣ ≤ Chm−1
Y ‖b∇χξ · ∇χη‖Wm−1

2
.

We estimate this norm by applying Theorem B.1 to get

‖b∇χξ · ∇χη‖Wm−1
2
≤ C

(
‖b‖L∞‖∇χξ · ∇χη‖Wm−1

2
+ ‖b‖Wm−1

2
‖∇χξ · ∇χη‖L∞

)
.
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We may absorb the ‖b‖L∞ and ‖b‖Wm−1
2

terms into the constant since they are inde-

pendent of q, h. We bound

‖∇χξ · ∇χη‖L∞ ≤ sup
x∈Sd
|∇χξ(x)| |∇χη(x)|

≤ Cq−2
X exp(− ν

hX
(d(x, ξ) + d(x, η)))

≤ Cq−2
X exp(− ν

hX
d(ξ, η)).

We apply Corollary B.3 from [25] next to estimate

‖∇χξ · ∇χη‖Wm−1
2
≤ C

(
(‖χξ‖Wm

2
+ ‖χη‖Wm

2
)(‖∇χξ‖L∞ + ‖∇χη‖L∞)

)
≤ Cq

d
2
−m

X q−1
X = Cq

d
2
−m−1

X .

Combining this with previous estimates yields the result.

Lemma 21. |Ãξ,η| ≤ Cq−2
X exp(−ν d(ξ,η)

hX
).

Proof. This follows by noting that (and dropping the non-gradient terms)

Ãξ,η :=
∑
z∈Y

a(z)∇χξ · ∇χη(z) + b(z)χξ(z)χη(z)

≤ ‖a‖L∞‖∇χξ · ∇χη(z)‖L∞
∑
z∈Y

wz︸ ︷︷ ︸
C(d)

≤ Cq−2
X ‖a‖L∞C(d) exp(−ν d(ξ, η)

hX
)

Corollary 4. |∆Aξ,η| ≤ Cq−2
X exp(−ν d(ξ,η)

hX
).

Proof. This follows because the entries in both A and Ã decay exponentially, and
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hence the difference is bounded above by the larger of the two exponential decays.

Lemma 22. ‖∆A‖ ≤ Chm−1
Y q

d
2
−m−1

X .

Proof. We first note that ‖∆A‖ ≤
√
‖∆A‖1‖∆A‖∞, where ‖∆A‖1 = supξ

∑
η |Aξ,η|.

Fix ξ. Let Ωk = {η : Γ2kqx ≤ d(ξ, η) ≤ Γ2k+1qx}.

∑
η

|∆Aξ,η| =
∑

η∈B(ξ,Γqx)

|∆Aξ,η|︸ ︷︷ ︸
I

+

Nq∑
k=1

∑
η∈Ωk

|∆Aξ,η|︸ ︷︷ ︸
II

.

We estimate I by noting that there are Cq−dX Γgdx = CΓd centers in B(ξ, γqx), and

the quadrature error yields |∆Aξ,η| ≤ Chm−1
Y q

d
2
−m−1

x . Consequently,

I ≤ CΓdhm−1
Y q

d
2
−m−1

X .

We note the dependence on Γ. Our strategy will be to show that II can be made

arbitrarily small, given appropriately chosen Γ, and hence the error will be dominated

by the hm−1
Y q

d
2
−m−1

X .

We first note that #Ωk ≤ C(2k+1Γ)d and for each η ∈ Ωk, |∆Aξ,η| ≤ Cq−2
X exp(−νΓ2k).

Consequently,

II :=

Nq∑
k=0

∑
η∈Ωk

|∆Aξ,η|

≤ Cq−2
X

Nq∑
k=0

(2k+1Γ)d exp(−νΓ2k).

We note that 2k+1d ≤ 2d+12k(d+1). Therefore, we have

II ≤ Cq−2
X

1

Γ

Nq∑
k=0

(2kΓ)d+1 exp(−νΓ2k).
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By Lemma 3.9 of [12], we may choose Γ such that this term is smaller than Chm−1
Y q

d
2
−m+1

X Γd.

However, Γ does depend on hY , qX . In particular, we choose Γ such that exp(−ν Γ
2
) ≤

hm−1
Y q

d
2
−m+1

X . Informally, Γ does not need to increase very much relative to a decrease

in hY , as a modest increase in Γ results in a large drop in exp(−ν Γ
2
).

We now aim to prove a “discrete” Bernstein theorem. This result was of interest

during the study of the error regarding quadrature error. We present the statement

of the result, then prove it after a few preliminary results.

Proposition 17. Let X be a set of centers with mesh norm and separation radius

hX , qX respectively and Y a set of centers with mesh norm and separation radius

hY , qY respectively. Let u =
∑

ξ∈X uξχξ and let {wz}z∈Y denote the set of quadrature

nodes corresponding to Y . Then, or appropriate conditions on hY ,

∑
z∈Y

wz|∇u(z)|2 ≤ Cq−2
X ‖u||

2
L2 .

Lemma 23. Under the same assumptions of Proposition 17,

|
∑
z∈Y

wz|∇u(z)|2 −
∫
|∇u(x)|2 dx| ≤ ChkY ‖|∇u|2‖Wk

2
.

Proof. This follows by applying quadrature error estimates with the appropriate

choice of k.

Lemma 24.

‖|∇u|2‖Wk
2
≤ C‖u‖Wk+1

2
‖‖∇u‖L∞
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Proof. This follows by applying Corollary B.3 from [25].

Proof. We now may attempt to prove the discrete Bernstein estimate. We estimate∑
z∈Y wz|∇u(z)|2 by

∑
z∈Y

wz|∇u(z)|2 ≤
∫
S2

|∇u(z)|2 dz +

∣∣∣∣ ∫
S2

|∇u(z)|2 dz −
∑
z∈Y

wz|∇u(z)|2
∣∣∣∣

Applying the Bernstein estimate yields

∫
S2

|∇u(z)|2 dz ≤ Cq−2
X ‖u‖

2
L2

and applying Lemma 23 yields

∑
z∈Y

wz|∇u(z)|2 ≤ C1q
−2
X ‖u‖

2
L2 + C2h

k
Y ‖‖∇u|2‖Wk .

We now bound the latter term by arguing that for all sufficiently small hY ,

C2h
k
Y ‖|∇u|2‖Wk

2
≤ 1

2
C1q

−2
X ‖u‖

2
L2 .

We apply Lemma 24 and then estimate each norm separately. First, ‖u‖Wk+1
2
≤

Cq−k−1
X ‖u‖L2 and ‖∇u‖L∞ ≤ Cq−1

X ‖u‖L∞ . By applying the Nikolskii inequality, we

have ‖u‖L∞ ≤ Cq−
d
2‖u‖L2 . Consequently, we find

‖|∇u|2‖L2 ≤ 2q−k−1
X q

− d
2
−1

X ‖u‖2
L2 . (5.19)

Therefore, we have

∑
z∈Y

wz|∇u(z)|2 ≤ Chk−1
Y q

−k− d
2

X q−2
X ‖u‖

2
L2 .
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By choosing hY small enough to ensure that Chk−1
Y q

−k− d
2

X ≤ 1
2
C1, we are done.

5.3.1 Numerical Experiments

In this section, we discuss numerical results of various experiments that explore

the computational properties of the Galerkin method. We consider different differ-

ential operators, explore the effects of the quadrature node density on the L2 error of

the discrete solution, and compute condition numbers for the discrete stiffness ma-

trix. We also demonstrate that local Lagrange functions, as discussed in [7], provide

a computationally less expensive approximation space and yield comparable error

and condition numbers as the approximation space generated by the Lagrange func-

tions. We choose the spherical basis function φ3(t) = (1− t)2 log(1− t) to construct

the approximation space and φ2(t) = (1−t) log(1−t) for the quadrature weights. We

use the minimum energy points for the centers X used in the approximation space

Vφ3,X . For the quadrature nodes, we use the icosahedral nodes and quasi-minimum

energy points. For each experiment, the L2 error is computed by evaluating the

discrete solution on a set of evaluation points E and applying the Lagrange function

quadrature rule. The set E is 62500 quasi-minimum energy points, which is used for

each experiment independent of X and Y . Let NX and NY denote the number of

points in X and Y respectively. We approximate hY by 1√
NY

.

We first consider the problem −∆u + u = f with u = exp(cos(θ)) and f =

exp(cos(θ))(cos2(θ) + 2z cos(θ)). In the second and third columns of Table 5.1 we

display the relative L2 errors of the discrete solution for two separate experiments.

To obtain the discrete stiffness matrix, we first fixed 961 centers for X and varied the

number of quadrature points used in Y The quadrature points are icosahedral nodes

with between 2, 562 points to 92, 162 points. We theoretically expect the L2 error
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to be O(| log(hY )|2h4
Y ). In fact, the numerically observed error is O(| log(hY )|2h5.2

Y ).

The experiment was repeated with NX = 3721 minimum energy nodes and using

the same Y . This time, ignoring the NY = 2562 outlier, | log(hY )|h5.5
Y is observed,

indicating that improvement in the theoretical errors rates is possible. The Lagrange

basis was used for these two sets.

Next, we treated the problem −div(a ·∇u) + u = f for the case in which a =

a(θ, φ)g, where g is the metric tensor for S2 and a(θ, φ) = 1 − 1
2

cos(θ). We again

chose u = exp(cos(θ)), which results in the right hand side being f =
(
− 1

2
(cos3(θ) +

cos2(θ)− 5 cos(θ) + 1) + 1
)

exp(cos(θ)).

We also consider the possibility of using a local Lagrange basis to discretize the

PDE. In this case, the approximation space is VX = span{χlocξ : ξ ∈ X}, where

the χlocξ functions are constructed using only kernels φ(·, η) such that dist(ξ, η) ≤

7hX | log(hX)|. See [7] for a detailed description of the theoretical properties of this

basis. The χlocξ ’s may be constructed in parallel by solving a small linear system. This

reduces computational complexity associated with assembling the αξ,η coefficients.

By appropriately tuning the number of kernels used per Lagrange function, the local

Lagrange function can be made to satisfy ‖χξ − χlocξ ‖L∞ ∼ h2m
X , where m is the

smoothness of the kernel φ. For the anisotropic problem, the fifth and sixth columns

in Table 5.1 display the results of the experiment using the local Lagrange bias. For

NX = 961, each local Lagrange function is constructed using about 423 centers and

for NX = 3721, each local Lagrange function is constructed using around 776 centers,

where the number of centers used per kernel is chosen to be all centers with distance

at most 7hX | log(hX)| from the center. The computed L2 errors from using the local

basis versus the full basis are negligible. Since the local bases offer comparable L2

error while being computationally simpler, they offer no drawbacks when compared

to the full basis and certainly are a good choice for the doing the discretization step.
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The results of the two experiments are plotted in Figure 5.1(a) and Figure 5.1(b).

A third experiment was conducted keeping Y with fixed and varying X. The

result is displayed in Figure 5.1(c). In this experiment, the error increases with

decreasing hX . This is counterintuitive, but in complete agreement with the theory.

What this illustrates is that the dominant term in the L2 error comes from quadra-

ture. This is no surprise and is a well-known phenomenon in Galerkin methods.

The condition number of the discrete stiffness matrix is dependent primarily on

the separation radius of the centers, qX . We theoretically predicted the condition

number to beO(q−2
X ), which we validated numerically. See Figure 5.1(d). In addition,

the theory predicts that changing the quadrature nodes should not significantly alter

the condition number of the stiffness matrix. Again, this result was validated.
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−∆u+ u = f −div(a ·∇u) + u = f
Lagrange Basis Local Lagrange Basis

NY NX = 961 NX = 3721 NY NX = 961 NX = 3721
2562 7.86e-5 2.19e-2 2500 8.00e-5 2.10e-2
10242 2.22e-6 3.76e-5 10000 2.46e-6 3.23e-5
23042 3.34e-7 3.83e-6 22500 3.02e-7 4.78e-6
40962 8.96e-8 9.32e-7 40000 7.80e-8 1.04e-6
92162 1.50e-8 1.27e-7 90000 1.10e-8 1.49e-7

Table 5.1: Both −∆u + u = f and −div(a · ∇u) + u = f were numerically solved
using minimum energy point sets for X and icosahedral point sets for Y . The L2

error for all cases was O(| log(hY )|2h5+
Y ). Here, hY = N

−1/2
Y . For the first equation,

a Lagrange basis was used, and, for the second, a local Lagrange basis [25].
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Figure 5.1: In (a) and (b), semi-log plots of the errors (adjusted by removing log
factors) for −∆u+u = f and −div(a ·∇u)+u = f are shown. The minimum energy
points were used for X and icosahedral points were used for Y . In (c), a loglog plot
of the L2 error vs. hX is plotted. For this experiment, the number of quadrature
points is fixed and the number of centers used for the approximation space varies.
In (d), the log of the condition number for the stiffness matrix for −∆u + u = f is
plotted [25].
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6. RESTRICTED LAGRANGE FUNCTIONS

We present results regarding subsets of Lagrange functions on compact domains

in Rn. Numerical experiments suggested that, away from the boundary, Lagrange

functions in Rn for thin plate splines behaved analogously as Lagrange functions on

the sphere. Numerical evidence suggests localized spatial behavior and the Lagrange

functions have a “small-footprint”, i.e., only few kernels contribute significantly to

each Lagrange function. This suggested that by making appropriate or simple as-

sumptions, results from the sphere may translate over to Euclidean domains.

However, due to the existence of a boundary, where the Lagrange functions do not

behave as they do on the sphere, some choice must be made to handle the boundary.

Two obvious options exist: add additional points outside of the domain or restrict

and study only Lagrange functions centered sufficiently in the interior of the domain.

Both ideas roughly work on the same concept: we are pushing the boundary “away”

so the Lagrange functions behave like they do on spheres. If you add additional

points, effectively, the boundary has now been pushed out. If you restrict and only

use Lagrange functions on the interior, the boundary is now “far away” from your

Lagrange functions.

We focus on the choice of studying Lagrange functions centered sufficiently far

from the boundary of the domain. This choice was not arbitrary and was spurred by

application. The nonlocal diffusion problem of Chapter 4 works in a region where

there are effectively two boundaries: an interior boundary on Ω and an exterior

boundary outside of Ω ∪ ΩI . For zero Dirichlet volume constraints, we assume ev-

erything in ΩI is uniformly zero. It is therefore reasonable to work with Lagrange

functions centered only in Ω. Consequently, we may place centers all throughout
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Ω ∪ ΩI , but only the Lagrange functions in Ω contribute. Therefore, we do not

require additional centers outside of the domain of interest, we just need Lagrange

functions centered in Ω. However, by viewing the problem slightly differently, it may

occur to the reader that there is no difference between considering Ω the problem

domain and ΩI is where additional centers are added.

Before we begin, we note that these results are not a full theory and were only

the beginning. A full and complete theory has been developed by others; see [11] for

an excellent complete theory of Lagrange and local Lagrange functions on Euclidean

domains. The viewpoint taken in [11] is to add centers outside of the domain, rather

than restrict to a subset of Lagrange functions away from the boundary. We note

that we have taken advantage of the results of [11] for our nonlocal diffusion work.

Serendipitously, much of the technical work for the results we present here have

been developed during previous investigations of Lagrange function properties on

spheres. With very simple and small modifications, and additional assumptions, we

may replicate results from [13] and [12] by taking advantage of their proof techniques.

The results for Lagrange functions on manifolds worked by shifting from the manifold

to the tangent plane, which effectively made the problem Euclidean. However, on

manifolds, a technical restriction was placed that controlled decay: the radius of

injectivity. For our purposes, the radius of injectivity is mirrored as the distance

from the center of the Lagrange function to the boundary. After that distance is

reached, the decay of the function stops. This matches the result for manifolds.

Let Ω ⊂ Rd and let Ξ be a collection of centers with mesh norm h and separation

radius q. Recall that for an open set U ⊂ Rd, we define the mth Sobolev seminorm:

|f |Wm
2 (U) :=

( ∑
|β|=m

∫
U

|Dβf(x)|2 dx
) 1

2

.
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Also recall that the thin plate spline interpolant to a function f satisfies |IXf |Wm
2 (Rd) ≤

|u|Wm
2 (Rd) for all u that satisfy u|X = f |X .

We require the following lemma that enables us to relate sums of seminorms of

order less than m to the order m Sobolev seminorm.

Lemma 25. [Zeros Lemma [13]] Let X = {x1, ..., xn} ⊂ B(x, r) have mesh norm

h = h(X,B(x, r)) satisfy h ≤ h0r where h0 = 1
32m2 . Assume that m > d

2
. Then,

there is a constant Cm,d,2 > 0 such that

(∑
k≤m

r2(k−m)|u|2Wk
p (B(x,r))

) 1
2

≤ Cm,d,2|u|Wm
2 (B(x,r)) (6.1)

holds for all u ∈ Wm
2 (B(x, r)) vanishing on X. In addition, we have that

|u|L∞(B(x,r)) ≤ Cm,d,2r
m− d

2 |u|Wm
2 (B(x,r)). (6.2)

Our interest is in studying the properties of Lagrange functions centered suffi-

ciently far from the boundary. Let ξ be a center in the interior of Ω with r0 :=

r0(ξ) = d(∂Ω, ξ) > 0. We denote χξ by χ. We begin by studying a very useful

lemma that uses a technique developed by Matveev. Lemma 26 below follows by

slight modification to Lemma 4.3 of [13] and [10] Lemma 4.1.

Lemma 26. If Ξ has mesh norm h < h0 min(1, 1
3
r0). Then, there exists ε ∈ (0, 1)

such that for 1 < t < r0h0

3h
,

|χ|m,Bc(ξ,3t h
h0

) ≤ ε|χ|m,Bc(ξ,3(t−1) h
h0

).

Proof. We mimic the proof from [13] Lemma 4.3 and [10] Lemma 4.1. We present

the proof in multiple steps.
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Step 1: We build a C∞ cutoff function which is zero on B(ξ, (3t− 1) h
h0

). and is

1 on B(ξ, (3t− 2) h
h0

). We define

φ(α) = σ(
h0

h
d(α, ξ)− 3(t− 1))

where σ(T ) is 1 for T < 1 and zero for T > 2. We verify now that φ has the

desired property: choose α ∈ B(ξ, (3t − 2) h
h0

). Then, d(α, ξ) ≤ (3t − 2) h
h0

, and so

d(α, ξ)−3(t−1) ≤ 3t−2−(3(t−1)) = 1, so σ(α) = 1. For the case d(α, ξ) > (3t−1) h
h0

,

we have d(α, ξ)− 3(t− 1) ≥ (3t− 1)− 3(t− 1) = 2, and hence σ(α) = 0. The cutoff

φ is nonconstant on an annulus B(ξ, (3t− 1) h
h0

)\B(ξ, (3t− 2) h
h0

).

Let A(α, t, r) denote the annulus B(α, tr)\B(α, (t − 1)r). Let B1 denote the

region where φ equals one, i.e.,

B1 = B

(
ξ, (3t− 2)

h

h0

)

and let Bc
1 denote its complement. We let A1 denote the annulus on which φ is

nonconstant

A1 = A

(
ξ, 3t− 1,

h

h0

)
and we note that the support of φ is A1 ∪B1.

By the variational property of χ, the Sobolev seminorm of χ is less than that

of φχ, since φχ|Ξ = χ|Ξ. Furthermore, since φ has compact support, its Sobolev

seminorm is determined by its values on A1 ∪B1. That is, we have

|χ|2m ≤ |φχ|2m = |φχ|2m,B1
+ |φχ|2m,A1

= |χ|2m,B1
+ |φχ|2m,A1

,

where we used the fact that φχ = χ on B1. Therefore, by subtracting |χ|2m,B1
, we can
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bound the Sobolev seminorm of χ outside of B1 by the norm of φχ on the annulus

A1. That is,

|χ|2m,Bc1 ≤ |φχ|
2
m,A1

.

Our goal is to estimate the Sobolev norm of φχ on this annulus. We proceed

in two stages. First, we apply the Leibniz rule to bound the Sobolev norm on the

annulus by seminorms of χ, and then we use a lemma by breaking up the annulus

into balls of a certain radius.

Estimate 1: We first try to estimate |φχ|2m,A1
by the Sobolev norm of χ on A1.

We first need an estimate on the value of the derivative of φ. We note that

|Dαφ(x)| = |Dασ

(
h0

h
d(ξ, α)− 3(t− 1)

)
| ≤

(
h0

h

)α
|Dασ|∞ = C(α)

(
h

h0

)−α
.

By applying the product rule, we compute,

|φχ|2m,A1
=
∑
|α|=m

∫
A1

m!

α!
|Dα(φχ)|2 dx

=
∑
|α|=m

∫
A1

m!

α!

∣∣∣∣∑
β≤α

(
α

β

)
DβχDα−βφ

∣∣∣∣2 dx
≤ C

∑
α≤m

∑
β≤α

∫
A1

∣∣∣∣Dβχ(x)Dα−βφ(x)

∣∣∣∣2 dx.
We now use our estimate on Dα−βφ(x) to leave only derivatives of χ inside the

above expression:

|φχ|2m,A1
≤ C

∑
|α|≤m

∑
β≤α

(
h

h0

)2(|β|−|α|) ∫
A1

|Dβχ(x)|2 dx.

Now, for each k ≤ m, we can combine the |β| = k terms to form W k
2 (A1) seminorms,
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which yields

|φχ|2m,A1
≤ C

∑
k≤m

(
h

h0

)2(k−m)

|χ|Wk
2 (A1).

Estimate 2: We want to apply Lemma 25, so we decompose the annulus into a

sequence of balls (Bj)j∈J with the conditions that

1. Each ball is of radius h
h0

.

2. Each ball has its center in A1, so Bj ⊂ A2 with

A2 := A(ξ, t, 3
h

h0

).

3. Every x ∈ A2 is in at most Nd balls of Bj, with Nd depending only on the

spatial dimension and not on t or h.

Notice that h
h0

= r satisfies the condition of Lemma 25 on each ball Bj, since the

mesh norm on the ball is at most h. Therefore, we can relate the W k
2 seminorm on

the ball to the Wm
2 seminorms on the ball. Then, by summing over the seminorms of

each ball, we can relate this sum of seminorms to a seminorm on the large annulus

A2.

∑
k≤m

(
h

h0

)2(k−m)

|χ|2Wk
2 (A1) ≤

∑
k≤m

∑
j∈J

(
h

h0

)2(k−m)

|χ|2Wk
2 (Bj)

≤ C
∑
j∈J

|χ|2Wm
2 (Bj)

≤ C|χ|2Wm
2 (A2).
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Therefore, we have shown |φχ|2Wm
2 (A1) ≤ |χ|2Wm

2 (A2). So far, we have shown that

|χ|2Wm
2 (Bc1) ≤ |φχ|2Wm

2 (A1) ≤ C|χ|2Wm
2 (A2).

That is, the seminorm of χ outside of a ball is bounded above by the seminorm

on just an annulus. We now relate this to the complements of concentric balls.

Recall that B1 = B(ξ, (3t − 2) h
h0

), and B1 ⊂ B(ξ, 3t h
h0

) := B+, and hence (B+)c ⊂

Bc
1. Therefore, we bound the seminorms on the complements of these balls. By

setting B− = B(ξ, 3(t − 1) h
h0

), we note that A(ξ, t, 3 h
h0

) = (B−)c\(B+)c. With this

information, we know

|χ|2Wm
2 ((B+)C) ≤ |χ|

2
Wm

2 (Bc1)

≤ K|χ|2Wm
2 (A2)

≤ K(|χ|2Wm
2 ((B−)c) − |χ|2Wm

2 ((B+)c)

Algebraic manipulation of this expression yields

(K + 1)|χ|2
Wm

2 (B(ξ,3t h
h0

))
≤ K|χ|2

Wm
2 (B(ξ,3(t−1) h

h0
))
.

Dividing by K + 1 and taking square roots yields (with ε =
√

K
K+1

)

|χ|
Wm

2 (B

(
ξ,3t h

h0

)
)

≤ ε|χ|
Wm

2 (B

(
ξ,3(t−1) h

h0

)
)

.

One of the key tricks to the above lemma was being able to apply the Zeros

lemma Lemma 25. We note that the ball must be contained within Ω, which forces
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us to relate t to r0 in the above lemma. If the ball in consideration goes outside of

Ω, then there are no centers in that region; consequently, the mesh norm of the ball,

hB, grows larger than h. Therefore, we would not be able to apply the Zeros lemma.

Therefore, the restriction we place that relates the radius of the ball to the distance

to the boundary, r0, is required.

Our next step is to establish an exponential decay result for Sobolev seminorms

on complements of balls of a chosen radius T . We note that, as is the theme present

in this section, the decay is limited until the distance to the boundary r0 is reached.

Corollary 5. There is a constant ν > 0 such that if Ξ has mesh norm h <

h0 min(1, r0
3

), then for T0 ≤ T < r0,

|χ|Wm
2 (Bc(ξ,T )) ≤ Cq

d
2
−m exp

(
− ν T

h

)
.

Proof. Set T = 3t h
h0

= 3n h
h0

+ r with 0 ≤ r < 3 h
h0

, where n represents the number

of times we may iterate the Lemma 26. Then,

|χ|m,Bc(ξ,T ) ≤ ε|χ|Wm
2 (Bc(ξ,3(t−1) h

h0
)). (6.3)

By redefining t′ = t−1, we may iterate the lemma exactly n times, and we note that

n > t− 1. Furthermore, t = h0

3
T
h

. Therefore,

|χ|m,Bc(ξ,T ) ≤ εn|χ|Wm
2 (Bc(ξ,3(t−n)))

≤ 1

ε
εt|χ|Wm

2 (Rd)

≤ 1

ε

(
ε
h0
3

)T
h |χ|Wm

2 (Rd).
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By setting ν = |h0

3
log(ε)|, we get

|χ|Wm
2 (B(ξ,T )) ≤ C exp

(
− ν T

h

)
|χ|Wm

2 (Rd).

Our last step is to approximate the seminorm of χ. Recall that in the Sobolev

seminorm, χ has minimal norm of all functions vanishing on Ξ. Therefore, if we

compare it with the cutoff function σ(x−ξ
q

), which vanishes on Ξ, but takes value 1

at ξ, we know

|χ|Wm
2 (Rd) ≤

∣∣∣∣σ( · − ξq
)∣∣∣∣

Wm
2 (Rd)

.

By the chain rule, we may compare this with the Sobolev seminorm of q
d
2
−m|σ|Wm

2 (Rd).

The Sobolev seminorm of σ is independent of q, h,X, and is some constant. There-

fore, we have

|χ|Wm
2 (Bc(ξ,T )) ≤ Cq

d
2
−m exp

(
− ν T

h

)
.

We next aim to establish a pointwise spatial decay result for a Lagrange function

centered at ξ, a center in the interior of Ω. We maintain the assumption that r0(ξ) :=

r0 = d(ξ, ∂Ω) > 0. Furthermore, r0 depends on ξ, and hence each ξ will have a

different region of decay. This distinction is imperative: each Lagrange function will

be different, and no statement is being made about Lagrange functions such that

d(ξ, ∂Ω) = 0. On the other hand, for points ξ centered such that d(ξ, ∂Ω) > 0, given

h sufficiently small, a decay can still be demonstrated. The spatial decay result is

inspired heavily by [13] Proposition 4.5 and [10] Proposition 4.5.

Theorem 7. Let χξ (henceforth denoted as χ) be centered at ξ with d(ξ, ∂Ω) = r0 >
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0. If Ξ has mesh norm h < h0 min(1, r0
2

), then for each x ∈ Ω:

|χ(x)| ≤


C exp(−ν d(x,ξ)

h
) d(x, ξ) < r0

C exp(−ν r0
h

) d(x, ξ) ≥ r0.

(6.4)

Proof. We remind the reader that this result is only being shown for x ∈ Ω. We

split the estimate into three pieces. We first estimate a bound independent of h

or q for nearby points d(x, ξ) < h
h0

. Then, we estimate for points with distance

h
h0
< d(x, ξ) < r0. Lastly, we handle x ∈ Ω such that d(x, ξ) ≥ r0.

Nearby Points: Let d(x, ξ) < h
h0

. Note that the ball B(x, 2 h
h0

) ⊂ Ω, and hence

its mesh norm is bounded above by 2h. Therefore, one can apply Lemma 25. By

(6.2), we have

|χ(x)| ≤ C

(
h

h0

)m− d
2

|χ|Wm
2 (B(x,2 h

h0
)).

We may bound the Sobolev seminorm contained above by q
d
2
−m as remarked earlier,

which yields a bound |χ(x)| ≤ C
(
h
q

)m− d
2 . Let C1 = C exp( ν

h0
). We note that since

d(x, ξ) < h
h0

, we may bound

|χ(x)| ≤ C1

(
h

q

)m− d
2

exp

(
− ν

h0

)
≤ C1

(
h

q

)m− d
2

exp

(
− ν d(x, ξ)

h

)
.

We note that this is only being done on the nearby points such that d(ξ, x) < h
h0

,

and the ν term should be independent of h, q, and X.

Intermediate Points: Let h
h0

< d(x, ξ) < r0. Then, by applying (6.2) to

the ball B(x, h
h0

), we have |χ(x)| ≤ Chm−
d
2 |χ|Wm

2 (B(x, h
h0

)). Let T = d(x, ξ). Then,

B(x, h
h0

) ⊂ Bc(ξ, T − h
h0

). Then, with T ′ = T − h
h0

, we may apply Corollary 5 which
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yields

|χ(x)| ≤ C

(
h

q

)m− d
2

exp(−ν T
′

h
)

≤ C

(
h

q

)m− d
2

exp

(
ν

h0

)
exp

(
− ν T

h

)
= C1

(
h

q

)m− d
2

exp

(
− ν d(x, ξ)

h

)
.

Distant Points: Assume d(x, ξ) > r0, (but recall that x ∈ Ω). Then, the ball

B(x, h
h0

) ⊂ Bc(ξ, r0 − h
h0

). Hence, |χ|Wm
2 (B(x, h

h0
)) ≤ |χ|Wm

2 (Bc(ξ,r0− h
h0

)). Furthermore,

B(x, h
h0

) satisfies r mesh norm at most 2h. Therefore, we can apply (6.2) to get

|χ(x)| ≤ C

(
h

h0

)m− d
2

|χ|Wm
2 (B(x, h

h0
)).

As in the previous case, we begin estimating again:

|χ(x)| ≤ C

(
h

h0

)m− d
2

|χ|Wm
2 (B(x, h

h0
))

≤ C

(
h

h0

)m− d
2

|χ|Wm
2 (Bc(ξ,r0− h

h0
))

≤ C

(
h

q

)m− d
2

exp

(
− ν

r0 − h
h0

h

)
≤ C1

(
h

q

)m− d
2

exp

(
− ν r0

h

)
.

We have so far demonstrated that a Lagrange function centered in the interior

of Ω exponentially decays, at least in a ball of radius r0, which is analogous to a

decay result on the sphere. Now that we have some form of decay results, we aim to
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translate results from the sphere on the Lebesgue constant, stability of the Lagrange

basis, and decay of the coefficients to Rn. As we have seen, for Lagrange functions

on the boundary, there is no hope of translating decay ideas, and hence unlikely the

other results follow. However, an approach to consider is a ’restricted’ version of the

above results. Let Ω ⊂ Ω̃. By choosing all centers ξ such that d(ξ, ∂Ω̃) > R0 for

some fixed R0, perhaps we can translate some results. We note in particular that

the above decay result is afflicted by its dependency on r0(ξ), the distance from ξ

to the boundary of Ω. However, by using the assumption of a minimal such R0, we

know Lagrange functions decay to at lowest exp(−ν R0

h
).

We note the similarity to the case of manifolds with a radius of injectivity rM. In

the case we consider here, r0(ξ) acts as a replacement for rM for each ξ. By restricting

to a set of Lagrange functions within Ω with a guaranteed distance d(ξ, ∂Ω̃) = R0,

we effectively replace rM with R0. We proceed by doing exactly that in our following

computations. The next result is analogous to [13] Theorem 4.6, and we make parallel

use of their techniques to verify the result for our situation.

Proposition 18. Let Ω ⊂ Ω̃ satisfy B(x,R0) ⊂ Ω̃ for all x ∈ Ω. Let Ξ be a set of

centers with mesh norm h defined in Ω̃. Let Ξ′ = Ξ∩Ω. Let LΩ,Ω̃,X = sup
x∈Ω̃

∑
ξ∈Ξ′

|χξ(x)|.

Then, L is bounded independent of h and q.

Proof. We emphasize that we are only using Lagrange functions centered in Ω, which

satisfy a minimal decay of the form

|χξ(x)| ≤


C exp(−ν d(x,ξ)

h
) d(x, ξ) < R0

C exp(−ν R0

h
) d(x, ξ) ≥ R0

where R0 is the radius such that B(ξ, R0) ⊂ Ω̃ for all ξ ∈ Ω.
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Fix x ∈ Ω. We need to estimate
∑

ξ∈Ξ′ |χξ(x)|. We estimate this quantity by

decomposing the summation into a set of nearby Lagrange functions and distant

Lagrange functions. Let Υx = B(x,R0) ∩X. Then

∑
d(ξ,x)<R0

|χξ(x)|︸ ︷︷ ︸
I

+
∑

d(ξ,x)≥R0

|χξ(x)|︸ ︷︷ ︸
II

.

Estimate on II: We make the unrefined estimate of

|χξ(x)| ≤ C exp

(
− νR0

h

)

for each ξ. We note that this is a worst possible estimate, as many of these functions

likely decay far better (we are not taking into account r0(ξ)). Regardless, we may

then estimate how many such centers are contained within this region. The number

of centers is bounded above by Cµ(Ω∩B(x,R0)c)·q−d. By invoking quasi-uniformity,

q−d = ρdh−d. Then, we note

∑
d(ξ,x)≥R0

|χξ(x)| ≤ Cρdh−d exp(−νR0

h
).

We note that the function x−d exp(−α 1
x
) is bounded above independent of x. This

follows because the function f(x) = x−d exp(−a
x
) has a critical point at x = a

d
with

max value f(x′) = (a
d
)−d exp(−d) for x > 0. On the interval (0, x′) the function is

increasing, but bounded above by f(x′).

Estimating I: We estimate entries in I by breaking up the sum into annuli and

using the exponential decay.

First, consider the ball B(x, h). On this ball the area is bounded above by hd,

and the number of centers in this region can be bounded by the product of the area
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of the region times q−d. This yields ρd centers on B(x, h). For any ξ ∈ B(x, h), we

can at worst say

|χξ(x)| ≤ Cρm−
d
2 exp

(
− ν d(x, ξ)

h

)
≤ Cρm−

d
2 .

Therefore, on on the set B(x, h), we estimate:

∑
ξ∈B(x,h)

|χξ(x)| ≤ Cρm−
d
2ρd

which is bounded independent of h or q (by invoking quasi-uniformity of the centers).

Next, we decompose B(x,R0) = B(x, h) ∪ (∪Nn=1An) where An is the annulus

An = B(x, (n+ 1)h)\B(x, nh).

We estimate the number of centers on An to be q−d(n + 1)hd = ρd(n + 1). On this

annulus, we know a minimal distance of d(x, ξ) ≥ nh, and hence

|χξ(x)| ≤ C exp(−ν nh
h

) = C exp(−νn).

Therefore, we compute

∑
ξ∈An

|χξ(x)| ≤ Cρd(n+ 1) exp(−νn).

Then, summing over each annulus, we compute

∑
ξ∈B(x,R0

|χξ(x)| ≤
N∑
n=1

C(n+ 1) exp(−νn) ≤ K.
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for some fixed constant K independent of h, q. Therefore, our estimate on I and II

are both bounded, and we achieve the desired result.

We reiterate the similarity to the sphere: by adding enough points (the set Ω̃),

and choosing sufficiently small h, we are guaranteed decay for all interior Lagrange

functions. In particular, we now see that the ideas from the sphere translate almost

directly. The next direction will be to seek L2 stability of the Lagrange basis. That

is, we seek to show that for a sequence of scalars αi and Lagrange functions contained

in Ω (with some minimal guaranteed distance d(ξ, ∂Ω̃) = R0) that there exists C1, C2

such that

C1q
d
2‖{α}ni=1‖`2 ≤ ‖

∑
ξ∈Ω

αξχξ‖L2(Ω) ≤ C2q
d
2‖{α}ni=1‖`2 .

We first study continuity properties of the Lagrange functions. We make use of

a continuity result from [12] that was invaluable for many proofs on manifolds. The

next lemma is Lemma 7.1 of [12].

Lemma 27. Let ε > 0, m > d
2

+ ε, r > 0, and suppose the finite set of points Ξ ⊂

B(0, r) is sufficiently dense so that h := maxx∈B(0,r) dist(x,Ξ) ≤ h0r. Then, there

is a constant so that every f ∈ Wm
2 (B(0, r)) which vanishes on Ξ and y ∈ B(0, r)

satisfy

|f(y)− f(0)| ≤ C‖y‖ε|rm−
d
2
−ε
( ∑
|α|=m

∫
B(0,r)

|Dαf(x)|2 dx
) 1

2

.

Corollary 6. Let ε > 0, m > d
2

+ ε, r > 0, and suppose the finite set of points

Ξ ⊂ B(x, r) is sufficiently dense so that h := maxy∈B(x,r) dist(y,Ξ) ≤ h0r. Then,

there is a constant so that every f ∈ Wm
2 (B(x, r)) and y ∈ B(x, r) satisfy

|f(y)− f(x)| ≤ C‖y‖ε|rm−
d
2
−ε
( ∑
|α|=m

∫
B(x,r)

|Dαf(z)|2 dz
) 1

2

.
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Proof. For fixed x, we define u : B(0, r)→ R by u(z − x) = f(z).

Proposition 19. Let 0 < ε ≤ 1, R0 > 0, and let Ω ⊂ Ω̃ ⊂ Rd satisfy B(x,R0) ⊂ Ω̃

for all x ∈ Ω. For m > d
2

+ ε , there is a constant C depending only on m,R0,Ω, Ω̃, ρ

such that

|χξ(x)− χξ(y)| ≤ C

[
‖x− y‖

q

]ε
.

Proof. Consider x, y ∈ Ω̃. We first start by considering pairs x, y such that d(x, y) ≤

h. By the exponential decay result, we know for 0 ≤ T < R0, ‖χ‖Wm
2 (Bc(ξ,T )) ≤

Cq
d
2
−m exp(−ν T

h
). For the case T ≥ R0, we replace T in the previous equation with

R0.

Nearby Points: Consider points x such that d(x, ξ) ≤ h
h0

. We apply Corollary 6

with r = 2h
h0

to see that

|χξ(x)− χξ(y)| ≤ C‖x− y‖ε
(
h

h0

)m−ε− d
2

|χξ|Wm
2 (B(x, 2h

h0
)).

We may bound the seminorm by |χξ|Wm
2 (B(x, 2h

h0
)) ≤ Cq

d
2
−m, which yields the bound

|χξ(x)− χξ(y)| ≤ C‖x− y‖εhm−ε−
d
2 q

d
2
−m = C‖x− y‖ε

(
h

q

)m−ε− d
2

q−ε.

For quasi-uniformly distributed sets of centers, the ratio h
q

= ρ is bounded indepen-

dent of h and q, and hence the result follows for the nearby points.

Intermediate Points: Consider points x such that h
h0
≤ ‖x − ξ‖ ≤ R0. Note

that B(x, h
h0

) ⊂ Bc(ξ, T − h
h0

). Then, by applying Corollary 6 on B(x, h
h0

), we
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compute

|χξ(x)− χξ(y)| ≤ Chm−ε−
d
2‖x− y‖ε|χξ|Wm

2 (B(x, h
h0

))

≤ Chm−ε−
d
2‖x− y‖ε|χξ|Wm

2 (Bc(ξ,T− h
h0

))

≤ Chm−ε−
d
2‖x− y‖εqm−

d
2 exp(−ν T

h
)

≤ C‖x− y‖εq−ε exp(−ν T
h

).

where we applied quasi-uniformity to relate h−ε ∼ q−ε and used Corollary 5.

Distant Points: Consider x such that ‖x − ξ‖ ≥ R0. We repeat the previous

method by noting that B(x, h
h0

) ⊂ Bc(ξ, R0 − h
h0

). This leads to

|χξ(x)− χξ(y)| ≤ Chm−ε−
d
2‖x− y‖ε|χξ|Wm

2 (Bc(ξ,R0− h
h0

))

≤ Chm−ε−
d
2‖x− y‖εq

d
2
−m exp(−νR0

h
)

≤ Cq−ε‖x− y‖ε exp(−νR0

h
)

We now consider the case d(x, y) > h. Let M = supd(x,y)>h |χξ(x) − χξ(y)|. We

note that M ≤ 2 supx |χξ(x)| ≤ 2LΩ,Ω̃. which is bounded independent of h, q. Then,

we let C̃ = max(C, M
ρε

). Then, for points d(x, y) > h, we have

|χξ(x)− χξ(y)| ≤M ≤M
|x− y|ε

hε

≤M
q−ε

hεq−ε
|x− y|ε

≤ M

ρε
q−ε|x− y|ε ≤ C̃q−ε|x− y|ε.

So far, our work is focused on studying subsets of Lagrange functions centered
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sufficiently far from the boundary. For shorthand, we say that a subset Ω ⊂ Ω̃ is r

embedded if and only if for each x ∈ Ω, B(x, r) ⊂ Ω̃.

Corollary 7. Let Ω be R0 embedded in Ω and let Ξ = X ∩Ω. Then, for each ξ ∈ Ξ,

there exists C such that

|∇χξ(x)| ≤


Cq−1 exp(−ν d(x,ξ)

h
d(x, ξ) ≤ R0)

Cq−1 exp(−ν R0

h
) d(x, ξ) ≥ R0

Proof. The directional derivative in the direction ~t with ‖~t‖ = 1 is computed by

D~tχξ(x) = lim
τ→0

χξ(x+ τ~t)− χξ(x)

τ
.

For d(x, y) ≤ h, we know

|χξ(x)− χξ(y)| ≤ Cq−1‖x− y‖ exp

(
− ν d(x, ξ)

h

)
.

By setting y = x+ τ~t, we have

|χξ(x+ τ~t)− χξ(x)| ≤ Cq−1τ exp

(
− ν τ

h

)
,

and hence by dividing by τ , we have

∣∣∣∣χξ(x)− χξ(x+ τ~t)

τ

∣∣∣∣ ≤ Cq−1 exp(−ν d(x, ξ)

h
).

Since this holds for all τ ≤ h, we have

|D~tχξ(x)| ≤ Cq−1 exp

(
− ν d(x, ξ)

h

)
.
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By noting that D~t(x) = ∇χ(x) · ~t, we may bound ‖∇χ(x)‖ by choosing ~t = ∇χ(x)
‖∇χ(x)‖ ,

we see

D~t(x) =
∇χ(x) · ∇χ(x)

‖∇χ(x)‖
≤ Cq−1 exp

(
− ν d(x, ξ)

h

)
.

In particular, we can get partial derivative decay estimates. By choosing ~t = ei, the

unit vector, we get |∂χξ
∂xi

(x)| ≤ Cq−1 exp(−ν d(x,ξ)
h

).

Our next objective is to establish the equivalence of the Lp norm of a linear

combination of Lagrange functions with the `p norm of the sequence of coefficients on

the linear combination. We require an upper and lower estimate. The upper estimate

we may prove by using operator interpolation techniques and the boundedness of the

restricted Lebesgue constant.

Lemma 28. Let X be a collection of quasi-uniformly scattered centers in Ω̃ and let

Ω ⊂ Ω̃ such that B(x,R0) ⊂ Ω̃ for all x ∈ Ω. Let s =
∑

ξ∈Ω αξχξ. Then

‖s‖L∞(Ω̃) ≤ C‖α‖`∞ .

Proof. We note that for any x ∈ Ω

|s(x)| = |
∑
ξ∈Ω

αξχξ(x)| ≤
∑
ξ∈Ω

|αξ| |χξ(x)|

≤ ‖α‖`∞
∑
ξ∈Ω

|χξ(x)| ≤ LΩ,Ω̃‖α‖`∞ .

We note that the restricted Lebesgue constant LΩ,Ω̃ is bounded for fixed R0 indepen-

dent of h and q. The result only holds for linear combinations of Lagrange functions

centered within Ω.

Lemma 29. Under the same assumptions as Lemma 28, for any ξ ∈ Ω, there exists
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constant C independent of h, q such that

∫
Ω̃

|χξ(x)|dx ≤ Cqd.

Proof. We use the same argument as Proposition 18. We decompose Ω̃ into B(ξ, R0)

and Bc(ξ, R0). On Bc(ξ, R0), we note that |χξ(x)| ≤ C exp(−ν R0

h
), and hence

∫
Bc(ξ,R0)

|χξ(x)|dx ≤ µ(Ω̃ ∩Bc(ξ, R0)) exp(−νR0

h
).

We note that for sufficiently small h, this will be smaller than hd always (due to the

exp(−ν R0

h
). This depends on R0 and must be factored into the assumptions.

We next decompose B(ξ, R0) into B(ξ, h) and a union of annuli of outer radius

(n+ 1)h and inner radius nh. On B(ξ, h), we apply the simple bound (independent

of ξ, h) |χξ(x)| ≤ C, where C is independent of ξ, h, q from the decay estimates in

the decay theorem. This yields an estimate

∫
B(ξ,h)

|χξ(x)| dx ≤ Chd ∼ Cqd.

Let An = B(ξ, (n+ 1)h)\B(ξ, nh). Then, we estimate

∫
An∩Ω

|χξ(x)| dx ≤ C exp(−ν nh
h

)µ(An)

≤ Cqd
(
(n+ 1)d − nd

)
exp(−νn).

We next argue that this sum is bounded independent of h, q. The sum of the terms(
(n+ 1)d−nd

)
exp(−νn) is bounded above by the infinite sum of those terms, which

is finite. Consequently, summing the integrals over the annuli An yields a value Cqd

for some constant C. Combining the sums over the annuli and the sums on Bc(ξ, R0)
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yields a value on the order of qd. The result does require h to be sufficiently small

relative to R0 to guarantee that the exp
(
− ν R0

h

)
is sufficiently small.

Proposition 20. For sufficiently small h (which depends on R0), there exists a

constant C so that any s =
∑

ξ∈Ω aξχξ satisfies the upper bound

‖s‖Lp(Ω̃) ≤ Cq
d
p‖{αξ}‖`p .

Proof. Consider the operator T ({αξ}) =
∑

ξ∈Ω αξχξ. From (28), we have

‖
∑
ξ∈Ω

αξχξ‖L∞(Ω̃) = ‖T{αξ}‖L∞(Ω̃) ≤ LΩ,Ω̃‖{αξ}‖`∞

and from (29)

‖
∑
ξ∈Ω

αξχξ‖L1(Ω̃) = ‖T{αξ}‖L1(Ω̃) ≤ Cqd‖{αξ}‖`1 .

By applying operator interpolation, it follows that

‖
∑
ξ∈Ω

αξχξ‖Lp(Ω̃) = ‖T{αξ}‖Lp(Ω̃) ≤ (Cqd)
1
pL

1− 1
p

Ω,Ω̃
‖{αξ}‖`p = Cq

d
p‖{αξ}‖`p .

We now begin the lower bound estimate. This proof is modeled after the one

given in Proposition 3.7 and Lemma 3.8 of [12]. Given a ball B(ξ, r) ⊂ Ω̃ ⊂ Rd, let

Cd denote the constant such that vol(B(ξ, r)) = Cdr
d.

Consider the set Ωk(ξ) = {ζ ∈ Ξ : Γ2kq ≤ d(ξ, ζ) ≤ Γ2k+1q}. We want to

estimate the number of centers in this region. By quasi-uniformity, the number of

centers in Ω is bounded above by vol(Ω)
Cdqd

. In particular, given a subset A ⊂ Ω, the
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maximum number of centers in A is vol(A)
Cdqd

. Therefore, given an annulus centered at

ξ with inner radius Γq2k and outer radius Γ2k+1q, the maximum number of centers

in this region is

vol(A)

Cdqd
= C−1

d q−d[CdΓ
d2dk+dqd − CdΓd2dkqd] = 2kdΓd,

which is independent of q.

Proposition 21. Let R0 > 0 and let Ω ⊂ Ω̃ be such that B(x,R0) ⊂ Ω̃ for each

x ∈ Ω. Let X ⊂ Ω̃ with a set of centers with sufficiently small mesh norm h and let

Ξ = X ∩ Ω. Then, there exists C1 depending not on h or q (but on R0) such that

C1q
d
p‖{αξ}‖`p ≤ ‖

∑
ξ∈Ξ

αξχξ‖Lp(Ω̃).

Proof. We follow the strategy in [12] with minor modifications. We estimate the Lp

norm of the function by integrating over a union of disjoint balls {B(ξ, γq) : ξ ∈ X}.

For γ ≤ 1, these balls are necessarily disjoint by the definition of the separation

radius. We compute

‖
∑
ξ∈Ξ

αξχξ‖pLp(Ω̃)
=

∫
Ω̃

∣∣∣∣∑
ξ∈Ξ

αξχξ

∣∣∣∣p dx ≥∑
ξ∈Ξ

∫
B(ξ,γq)

∣∣∣∣∑
ζ∈Ξ

αζχζ

∣∣∣∣p dx
Let γ ≤ 1, Γ ≥ 1 and let q ≤ R0

Γ
and let ξ ∈ Ξ. We decompose

∫
B(ξ,γq)

∣∣∣∣∑
ξ 6=ζ

αζχζ(x)

∣∣∣∣p dx ≤ Iξ + IIξ + IIIξ
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where we define

Iξ := 3p−1

∫
B(ξ,γq)

|
∑

0<d(ζ,ξ)≤Γq

αζχζ(x)|p dx,

IIξ := 3p−1

∫
B(ξ,γq)

|
∑

Γq<d(ζ,ξ)≤R0

αζχζ(x)|p dx,

IIIξ := 3p−1

∫
B(ξ,γq)

|
∑

d(ζ,ξ)>R0

αζχζ(x)|p dx.

We require γq ≤ R0 to ensure B(ξ, γq) ⊂ Ω̃. This will be imposed later by choosing

appropriately small γ and an upper bound q0 on q.

By choosing sufficiently small γ, we may apply Proposition 19 which implies there

exists a γ such that |χξ(x)| ≥ 2
3

on B(ξ, γq) for all ξ ∈ Ξ ⊂ Ω (where we note this C

depends on R0 and ρ, but not just on q or h). For fixed ξ ∈ Ξ, it follows that

∫
B(ξ,γq)

|χξ(x)|p dx ≥ C
2p

3p
(γq)d. (6.5)

We use the diagonal dominance argument in [12]. We have

∑
ξ∈Ξ

∫
B(ξ,γq)

|
∑
ζ∈Ξ

αζχζ(x)|p dx ≥
∑
ξ∈Ξ

(
21−p

∫
B(ξ,γq)

|αξχξ(x)|p dx−
∫
B(ξ,γq)

|
∑
ζ 6=ξ

αζχζ(x)|p dx
)
.

By applying (6.5), we have

‖s‖pp ≥
∑
ξ∈Ξ

(
Cd

2

3p
|αξ|p −

∫
B(ξ,γq)

|
∑
ζ 6=ξ

αζχζ(x)|p dx
)
.

Our objective is to bound the second term by the first term. We argue that for

sufficiently small γ, the second term can necessarily be smaller than half the term
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2
3p
Cd(γq)

d. If this is possible, then we have the bound

‖s‖pp ≥
Cd
3p

(γq)d‖{αξ}‖p`p .

Lemma 30. For p ≥ 1, |
∑n

j=1 aj|p ≤ np−1
∑n

j=1 |aj|p.

Proof. We introduce the auxiliary sequence bj = 1 for each j = 1, . . . , n and apply

Holder’s inequality with 1
q

= 1− 1
p

n∑
j=1

ajbj ≤ (
n∑
j=1

|aj|p)
1
p
( n∑
j=1

bqj
) 1
q

= n1− 1
p
( n∑
j=1

|aj|p)
) 1
p

Taking both sides to the power of p yields the result.

Lemma 31. For p ≥ 1, |
∑n

j=1 aj|p ≤
∑n

j=1 2j(p−1)|aj|p.

Proof. Let b1 = a1 and b2 =
∑n

j=2 aj. We apply Lemma 30 to |
∑2

k=1 bk|p. Then, we

have

|a1 +
n∑
j=2

aj|p ≤ 2p−1(|a1|p + |
n∑
j=2

aj|p).

Now, define b1 = a2 and b2 =
∑n

j=3 aj and apply the result again. each iteration

yields an additional 2p−1 term. Iterating this n− 1 times yields the result.

Lemma 32. Let Ξ ⊂ Ω be a set of centers with separation radius q. Let x ∈ Ω and

B(x,R) ⊂ Ω with R > q. Then,

|#Ξ ∩B(x,R)| ≤ 2d
Rd

qd
.
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Proof. Let N = |#Ξ ∩ B(x,R)|. By the definition of the separation radius, if ξ, η ∈

Ξ ∩ B(x,R), then B(ξ, q) ∩ B(η, q) = ∅. Consequently, if we consider the inflated

ball B(x, 2R), then B(ξ, q) ⊂ B(x, 2R) since R ≥ q. Then, we have

∪ξ∈Ξ∩B(x,R)B(ξ, q) ⊂ B(x, 2R)

which implies

vol(∪ξ∈Ξ∩B(x,R)B(ξ, q)) = CdNq
d ≤ vol(B(x, 2R)) = Cd2

dRd.

Therefore, N ≤ 2d R
d

qd
.

Lemma 33. There exists q0 and R such that

∑
ξ∈Ξ

∫
B(ξ,γq)

∣∣∣∣∑
ζ 6=ξ

αζχζ(x)|p dx
∣∣∣∣ ≤ Cd

3p
(γq)d

∑
ξ∈Ξ

|αξ|p

holds for all 1 ≤ p <∞ whenever q < q0 and γ < R.

Proof. We use the strategy developed in [12]. Let γ ≤ 1 and q ≤ R0

Γ
and ξ ∈ Ξ ⊂ Ω.

Let ∫
B(ξ,γq)

|
∑
ζ 6=ξ

αζχζ(x)|p dx ≤ (Iξ + IIξ + IIIξ),

where (applying Lemma 30 with n = 3) we denote

Iξ := 3p−1

∫
B(ξ,γq)

|
∑

0<d(ζ,ξ)≤Γq

αζχζ(x)|p dx,

IIξ := 3p−1

∫
B(ξ,γq)

|
∑

Γq<d(ζ,ξ)≤R0

αζχζ(x)|p dx,

IIIξ := 3p−1

∫
B(ξ,γq)

|
∑

d(ζ,ξ)>R0

αζχζ(x)|p dx.
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Step 1: Estimating IIξ.

We define

Ωk := {ζ ∈ Ξ : Γ2kq ≤ d(ξ, ζ) ≤ Γ2k+1q}, k = 0, 1, . . . , Nq.

By definition of we are considering points such that Γq ≤ d(ζ, ξ) ≤ R0. So, 2NqΓq ∼

R0. So, Nq ∼ log(R0

Γq
). We apply Lemma 31 to compute

|
∑
IIξ

αζχζ(x)|p =

Nq∑
k=1

∑
ζ∈Ωk

αζχζ(x)|p

≤
Nq∑
k=1

2k(p−1)|
∑
ζ∈Ωk

αζχζ(x)|p.

We define Mk =
∫
B(ξ,γq)

|
∑

ζ∈Ωk
αζχζ(x)|p dx and we have

Iξ :≤ 3p−1

Nq∑
k=0

2(p−1)(k+1)Mk. (6.6)

We first need to estimate Mk, then we need to bound the sum over the Mk terms.

Let Nk denote the number of centers in Ωk. We apply Lemma 30 with n = Nk and

compute

Mk ≤ Np−1
k

∑
ζ∈Ωk

∫
B(ξ,γq)

|αζχζ(x)|p dx

≤ Np−1
k max

ζ∈Ωk
‖χζ‖pL∞(B(ξ,γq))Cd(γq)

d
∑
ζ∈Ωk

|αζ |p.

We estimate Nk by applying Lemma 32

Nk = 2d
Γd2(k+1)dqd

qd
= 2d(Γ2k+1)d
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points in it. We estimate the L∞ norm by applying Theorem 7. Since d(ξ, ζ) ≥ Γ2kq,

for any x ∈ B(ξ, γq), we have d(ζ, x) ≥ Γ2kq − γq. Consequently, we estimate

|χζ(x)| ≤ C exp

(
− ν d(ζ, x)

h

)
≤ C exp

(
− νΓ2kq − γq

h

)
≤ C exp

(
− ν

ρ
Γ2k
)

exp

(
ν

ρ
γ

)
≤ C exp

(
− ν

ρ
Γ2k
)

exp

(
ν

ρ

)
.

In the above computation, we applied the assumption γ ≤ 1. We absorb the exp(ν
ρ
)

into the constant C; this is allowed by quasi-uniformity (ν should not depend on h

or q). With these estimates, we may bound Mk by

Mk ≤ (2d(Γ2k+1)d)p−1Cp exp(pν ′) exp(−ν ′pΓ2k)Cd(γq)
d
∑
ζ∈Ωk

|αζ |p

where we define ν ′ := ν
ρ
. Then, by applying (6.6), we have

IIξ ≤ 3p−1

Nq∑
k=0

2(p−1)(k+1)Mk.

Note that

2(p−1)(k+1)(2d(k+1))p−1 = 2(d+1)(p−1)2k(d+1)(p−1)

and denote K := 3C2d2d+1. By summing over ξ and pulling out all of the powers of
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two not depending on k, we bound

∑
ξ∈Ξ

IIξ ≤ 3p−1

Nq∑
k=0

2(p−1)(k+1)Mk

≤ CKp−1Cd(γq)
d

Nq∑
k=0

(2k(d+1)Γd)p−1 exp(−ν ′Γ2k)
∑
ξ∈Ξ

∑
ζ∈Ωk(ξ)

|αζ |p.

We need an upper bound on
∑

ξ∈Ξ

∑
ζ∈Ωk(ξ) |αζ |p. We note that we can count the

number of times αζ appears. That is, we need to total the number of times ζ

appears in each ΩK(ξ) for each ξ ∈ Ξ. That is, we seek #{ξ : ζ ∈ Ωk(ξ)} = #{ξ :

Γ2kq ≤ d(ζ, ξ) ≤ Γ2k+1d}, which can be bounded above by #Ωk(ζ) = 2d2k+1Γd.

Furthermore, we note that 2(k+1)d ≤ 2k(d+1)2d+1, which allows us to bound

∑
ξ∈Ξ

∑
ζ∈Ωk(ξ)

|αζ |p ≤ 2d+12k(d+1)Γd2d
∑
ξ∈Ξ

|αξ|p =
2d(k+1)Γd

3C
K
∑
ξ∈Ξ

|αξ|p.

Applying this to the upper bound for
∑
IIξ, we compute:

∑
ξ∈Ξ

IIξ ≤ CKp−1Cd(γq)
d

Nq∑
k=0

2k(d+1)Γd)p−1 exp(−ν ′Γ2k)(2d(2k+1Γ)d
∑
ξ∈Ξ

|αξ|p

≤ 1

3
KpCd(γq)

d

Nq∑
k=0

(2k)(d+1)pΓd(p−1)Γd exp(−ν ′pΓ2k)
∑
ξ∈Ξ

|αξ|p

≤ Cd
3
Kp (γq)d

Γp

Nq∑
k=0

(2kΓ)(d+1)p exp(−ν ′pΓ2k)
∑
ξ∈Ξ

|αξ|p.

Let f(x) = (xΓ)(d+1)p−1 exp(−ν ′pΓx). After factoring, we see

Nq∑
k=0

(2kΓ)(d+1)p exp(−ν ′pΓ2k) =

Nq∑
k=0

2kΓ(2kΓ)(d+1)p−1 exp(−ν ′pΓ2k) = Γ

Nq∑
k=0

2kf(2k).

By the Cauchy condensation test, we may bound
∑∞

k=0 2kf(2k) ≤ 2
∑∞

k=1 f(k), pro-
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vided that f(n) is a positive, non-increasing sequence. For sufficiently large Γ, this

is true. Now, we focus on estimating the summation 2
∑∞

k=1 f(k). By the integral

comparison test,

2Γ
∞∑
k=1

f(k) ≤ 2Γf(1) + 2Γ

∫ ∞
1

(rΓ)(d+1)p−1 exp(−ν ′prΓ) dr

≤ 2Γ(d+1)p exp(−ν ′pΓ) + 2

∫ ∞
Γ

τ (d+1)p−1 exp(−ν ′pτ) dτ.

Applying this to our estimate for
∑

ξ∈Ξ IIξ, we find

∑
ξ∈Ξ

IIξ ≤
Cd
3
Kp (Γdp exp(−ν ′pΓ) +

2

Γp

∫ ∞
Γ

τ (d+1)p−1 exp(−ν ′pτ) dτ︸ ︷︷ ︸
G(Γ)

(γq)d‖αξ‖p`p .

If we can find a Γ0 such that for all Γ > Γ0, G(Γ) is sufficiently small, then we can

make
∑

ξ∈Ξ IIξ as small as possible. By Lemma 34, such a choice can be made. We

now have chosen Γ, and for the remainder of the proof, it is fixed.

Step 2: Estimating IIIξ.

Let ΩR0(ξ) = {ζ : d(ξ, ζ) ≥ R0}. We first estimate

IIIξ ≤ 3p−1#ΩR0(ξ)
∑
ζ

∫
B(ξ,γq)

|αζχζ(x)|p dx

≤ 3p−1(#ΩR0(ξ))p−1 max
ζ∈ΩR0

(ξ)
‖χζ‖pL∞(B(ξ,γq))(γq)

d
∑

ζ∈ΩR0
(ξ)

|αζ |p

We note that ∪ξ∈ΞB(ξ, q) ⊂ Ω̃ is a disjoint union of balls, and hence we may

estimate #ΩR0(ξ) ≤ vol(Ω)
Cdqd

. On B(ξ, γq), we apply the exponential decay, and note
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that d(ζ, x) ≥ d(ζ, ξ)− γq ≥ R0 − γq.

|χζ(x)| ≤ C exp

(
− ν d(ζ, x)

h

)
≤ C exp

(
− νR0

h
+
ν

ρ
γ

)
= C exp

(
ν

ρ

)
exp

(
− νR0

ρ

)
.

We absorb the exp(ν
ρ
) into the C term (which may slightly increase C) to obtain the

estimate on |χζ(x)|. Let ν ′ = ν
ρ

once again, and we now compute

IIIξ ≤ 3p−1

(
vol(Ω̃)

Cdqd

)p−1

Cp exp(−νpR0

q
)(γq)d

∑
ζ∈ΩR0

(ξ)

|αζ |p

≤ C1CdK
p−1q−d(p−1) exp(−νpR0

q
)(γq)d

∑
ζ∈ΩR0

(ξ)

|αζ |p

where K := 3C1vol(Ω̃)
Cd

. We now sum over ξ ∈ Ξ and once again estimate how many

times |αζ |p is over counted. We note that this is the same as #ΩR0(ξ) ≤ vol(Ω̃)
Cdqd

.

Therefore, we have

∑
ξ∈Ξ

IIIξ ≤ C1CdK
p−1q−d(p−1) exp(−νpR0

q
)(γq)d

∑
ξ∈Ξ

∑
ζ∈ΩR0

(ξ)

|αζ |p

≤ C1CdK
p−1q−d(p−1) exp(−νpR0

q
)(γq)d

vol(Ω̃)

Cdqd

∑
ξ∈Ξ

|αξ|p

≤ Cd
3
Kpq−dp exp(−νpR0

q
)(γq)d

∑
ξ∈Ξ

|αξ|p.

We aim to make this term arbitarily small, which we may control with the q−dp exp(−νpR0

q
)

term. We impose a condition that q ≤ q0, where q0 ≤ R0

Γ
is small enough to ensure

that q−d exp(−ν R0

q
) is sufficiently small.

Step 3: Estimating Iξ: At this point, we consider Γ to be known and fixed, and

q ≤ q0, as established in Step 2. We consider, for fixed ξ, the set Ωξ = {ζ : d(ξ, ζ) ≤

155



Γq}. For ζ 6= χ, χζ(ξ) = 0, and for any x ∈ B(ξ, γq), we have by Proposition 19

|χζ(x)| = |χζ(x)− χζ(ξ)| ≤ C

(
d(x, ξ)

q

)ε
≤ Cγε.

We then estimate the cardinality of {ζ : d(ξ, ζ) ≤ Γq} to be bounded above by

2dCd(Γq)d

Cdqd
= (2Γ)d. We apply Lemma 30 to Iξ to obtain

Iξ ≤ 3p−1(2dΓd)p−1
∑

0<d(ζ,ξ)≤Γq

∫
B(ξ,γq)

|αζ |p|χζ |p dx

≤ 3p−1(2dΓd)p−1(Cγε)pCd(γq)
d

∑
0<d(ζ,ξ)≤Γq

|αζ |p dx.

We now sum over ξ ∈ Ξ and note that we may over-estimate the number of times

αξ appears by 2dΓd, which yields

∑
ξ∈Ξ

Iξ ≤ 3p−1Cd2
dpΓdpCpγεp(γq)d‖αξ‖p`p .

Since q ≤ q0 and Γ is fixed and chosen, we may choose γ small enough to shrink this

term as small as required.

Lemma 34 (Lemma 3.9 of [12]). Let ν > 0, d ≥ 1. For every ε > 0, there exists a

Γ0 ≥ d+1
ν

(depending on ν, d, ε) so that for Γ ≥ Γ0 and for all p ∈ [1,∞),

max
(
Γdp exp(−νpΓ),

2

Γp

∫ ∞
Γ

r(d+1)p−1 exp(−νpr) dr
)
≤ εp.

Proof. See [12] for the proof.

Corollary 8. Let Ω be R0 embedded subset of Ω, and let X ⊂ Ω̃ be a finite set

of centers with mesh norm h and separation radius q and let Ξ = X ∩ Ω. For
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1 ≤ p ≤ q ≤ ∞,

‖
∑
ξ∈Ξ

αξχξ‖Lq(Ω̃) ≤ Cq−d( 1
p
− 1
q

)‖
∑
ξ∈Ξ

αξχξ‖Lp(Ω̃)

Proof. We know by Proposition 21 that there exists c1, c2 independent of q such that

for all 1 ≤ p ≤ ∞,

c1q
d
p‖{αξ}‖`p ≤ ‖

∑
ξ∈Ξ

αξχξ‖Lp(Ω̃) ≤ c2q
d
p‖{αξ}‖`p .

Since p ≤ q, ‖{αξ}‖`q ≤ ‖{αξ}‖`p , and hence we have

‖
∑

αξχξ‖Lq ≤ c2q
d
q ‖{αξ}‖`q

≤ c2q
d
q ‖{αξ}‖`p

≤ c2q
d
q c−1

1 q−
d
p‖
∑
ξ∈Ξ

αξχξ‖Lp

The approach we are taking here is to assume we have some Ω ⊂ Ω̃ with scattered

centers X ⊂ Ω̃, and we focus only on Lagrange functions centered at points in

Ξ = X ∩ Ω. The distance R0 is pivotal to all of the arguments above and the

restricted Lebesgue constant and condition numbers of the Lp stability depend on

R0, as well as the exponential decay. On the other hand, we could start with a set Ω,

and add additional points outside to define a region Ω̃. By tailoring the number of

points we add, we can then choose the R0, which determines how well the functions

decay. We need to then ask the question: given a mesh norm, what should R0 be?

157



Given a fixed h0, for any h < h0, by choosing R0 = Kh0| log(h0)|, we have

|χξ(x)| ≤ C exp(−νR0

h
) = C exp(−ν h0| log(h0)|

h
) ≤ ChνK0 .

The problem is that to create Ω̃ given a mesh norm h in Ω, we must add sufficiently

many points into Ω̃ to guarantee a mesh norm of h (which is required by all the

above).
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7. SUMMARY AND CONCLUSIONS

In this dissertation, we focused on the theory and application of a localized basis

constructed from radial basis functions. We developed numerical methods for solv-

ing partial differential equations on manifolds and for integral equations arising from

nonlocal diffusion on Euclidean domains. We developed implementable methods and

studied their computational properties. The experimental results matched theoret-

ical estimates for the different methods and suggested the computational methods

we developed provide novel approaches to solving numerous applied problems.

The method we developed for nonlocal diffusion on compact Euclidean domains

provides an innovative approach to solving a challenging problem. This work, joint

with Rich Lehoucq, is the result of summer research supported by Sandia National

Laboratories. We used recently developed results to produce a local Lagrange func-

tion discretization for a variational formulation of the nonlocal diffusion problem. A

unique quadrature method was designed that works for the local Lagrange basis and

provides a fast assembly of a sparse stiffness matrix. Theoretical estimates verified

that the condition number of the matrix is bounded independent of the mesh norm

and that the resulting matrix is sparse, provided that the cutoff local Lagrange func-

tion and the corresponding quadrature method are used. A separate method using

local Lagrange functions was developed jointly with Lehoucq, Narcowich and Ward.

The well-posedness of the Lagrange multiplier variational formulation is proven by

a combination of a discrete inf-sup condition and a coercivity result. Possible future

work includes addressing the error resulting from quadrature.

The new method for solving partial differential equations on manifolds extends

the growing collection of literature exploring new methods of discretizing problems
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by radial basis functions. The work, joint with Narcowich and Ward, uses the highly

localized Lagrange and local Lagrange bases. A previously developed quadrature

method yields an implementable assembly routine for stiffness matrices. The effects

of quadrature on the L2 error of the solution are studied. There is potential for

future work to improve this method. The assembly of the stiffness matrix can likely

be accelerated by using the massive parallelism offered by graphics processing units.

Furthermore, only few centers contribute significantly to the matrix due to the expo-

nential decay of the elements in the stiffness matrix. Consequently, the matrix can

be made sparse by setting many entries in the stiffness matrix to be zero dependent

on the positions of the respective centers.

There is much potential for radial basis function in many areas of numerical

analysis and for applications. Taking advantage of parallelism in these methods as

well as exploring the properties of new, efficient bases of radial basis functions is

potentially a very fruitful area. We hope the results discussed in this dissertation

are just the beginning of many future radial basis function techniques using local

Lagrange functions.
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