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ABSTRACT 
 

 
The ability to catalyze the fission step of endocytosis is critical to many 

biological processes including cell communication and synaptic transmission.  This 

activity must be tightly regulated for cellular homeostasis. Limitations of current 

approaches used for the study of this process, in conjunction with a historical focus on 

neuronal systems that may not generalize to somatic cells, have left the field torn 

between several conflicting models.  Functional redundancy of several key players 

complicate interpretation of in vivo studies, stressing the need for a sensitive in vitro 

approach capable of revealing attenuated activity of tightly regulated machinery.  In this 

document, we introduce Burst Analysis Spectroscopy (BAS) as a simple reagent sparing 

approach for the investigation of vesicle membrane fission. Using BAS, we accurately 

map liposome distributions across several orders of magnitude and observe subtle shifts 

in liposome population as functions of time, temperature, and protein concentration 

using the fission potent ENTH domain of the protein epsin.  We proceed to further 

uncover an unrecognized fission activity of full-length epsin, consistent with a 

mechanism in which membrane fission proceeds as a consequence of amphipathic helix 

insertion into the lipid bilayer.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW* 

Dynamin as the core fission machinery 

The ability of cells to internalize and transport molecular cargo is critical to vital 

cellular processes including cell communication and synaptic transmission.  In order to 

impart specificity to the timing and integrity of fission, proteins specialized to catalyze 

fission and fusion have evolved. In the fission step of endocytosis, the membranous bud 

pinches off from the donor membrane forming a complete and discrete vesicle.  To date, 

much of our understanding of membrane fission has focused on one of the first proteins 

implicated in endocytosis: dynamin.  

 In the 25 years since the implication of the protein dynamin in endocytosis, 

extensive research has focused on illuminating its role in this integral life process.   

Dynamin was initially found as a GTP-dependent regulator of microtubule interactions 

in calf brain 1.  As a consequence of this this historical precedent, much of our current 

understanding of the role of dynamin in membrane fission is based on studies of 

neuronal dynamin. Despite years of research on this topic, the detailed molecular 

mechanism by which dynamin catalyzes fission remains a topic of debate.  

Dynamin is believed to function by using the energy from GTP hydrolysis to 

bring donor membranes into very close proximity, enabling the formation of fission  

____________________________ 
*Parts of this thesis are reproduced with permission, with changes, from Single Particle 

Fluorescenec Burst Analysis of Espin Induced Membrane Fission by Brooks, et al.
PLoS ONE 10, e0119563 (2015). 
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Figure 1. Canonical model for membrane fission.  Dynamin oligomerizes into long spirals along lipid template 

upon GTP addition. Cooperative GTP hydrolysis and subsequent depolymerization results in membrane fission. 

Adapted from 2. 

 

 

intermediates (Figure 1)3.  An important element in this process is the ability of dynamin 

to oligomerize along lipid membranes to generate tube-like extensions called tubules 3.   

This ability can be visualized in vitro by negative staining electron microscopy, 

where dynamin is observed distorting acidic liposomes into long tubules in the presence 

of non-hydrolyzable GTP analogs 3. For years, researchers focused on the formation of 

these intermediates with the assumption that fission cannot proceed in their absence.  

However, advances in techniques utilized to study this process revealed that these long 

tubules are not integral intermediates, but rather a dead end for the fission process 4.  
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Instead, GTP hydrolysis is required for the dynamin depolymerization required for the 

formation of extremely short, transient tubules that precede fission 5.  Despite advances 

in technology, the mechanism by which dynamin facilitates the formation of fission 

intermediates remains a topic of debate.  Moreover, recent findings call the dogmatic 

model of dynamin as the core fission machinery into question. 

Part of the difficulty in deciphering the minimal machinery for fission may stem 

from the historical precedent of neuronal dynamin.   Since its discovery, additional 

dynamin isoforms have been identified that are preferentially expressed in non-neuronal 

tissues 6.  Notably, these isoforms do not behave like neuronal dynamin (dyn1) in fission 

reactions 6.  In fact, the ubiquitously expressed dynamin-2 (dyn2) has dramatically lower 

fission activity than neuronal dynamin.  This suggests that clues for a general 

mechanism of fission may be found through studies of non-neuronal proteins. Lending 

support to this idea is the fact that several fission events occur in the cell that do not 

require a dynamin or dynamin-like protein, as is the case for ER-to-Golgi trafficking, 

which uses COPI and COPII for vesicle formation 7.  

 

Current models for fission 

Several models have been proposed for the mechanism of vesicle fission.  The 

canonical model for fission casts dynamin as a molecular “pinchase”. According to this 

model, dynamin assembles into long spiral oligomers in the presence of lipid substrate 

generating long tube-like extensions called tubules 8 (Figure 1). Upon GTP hydrolysis, a 

conformational change is induced resulting in a significant decrease in the diameter of 
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the underlying lipid tubule. This is thought to bring membranes in close enough 

proximity to facilitate the formation of a hemifusion (or in this case, hemifission) 

intermediate 3.  However, theoretical calculations propose a minimum radius of 3 nm for 

spontaneous fusion 9, while electron cryo-microscopy (Cryo-EM) studies have measured 

the smallest dynamin-induced constriction at 4.5 nm 10.  According to this canonical 

model, dynamin is the core fission machinery. Binding partners including the lipid 

binding proteins amphiphysin and epsin act as accessory proteins, playing roles either in 

recruitment or the initial generation of curvature and pit formation required for dynamin 

binding 11;12.  

An alternative model focuses on the role of amphipathic helix insertion in fission 

catalysis. Amphipathic helices such as those found on the dynamin binding partner epsin 

have been demonstrated to insert into a single leaflet of a membrane bilayer in a process 

known as hydrophobic insertion.  Shallow asymmetrical insertion of these helices is 

traditionally believed to result in the expansion of the donor leaflet, resulting in 

curvature generation 13.  In stark opposition to the canonical model, the hydrophobic 

insertion model for fission asserts that vesicle fission proceeds as a result of membrane 

instability induced by the insertion of these helices into one leaflet of a donor membrane 

14. 

This model is explained by the consideration of an obligate funnel-like fission 

intermediate illustrated in Figure 2.   Researchers concluded using computational 

analyses that shallow hydrophobic insertions into the bilayer are capable of “[expanding] 

the head group region with respect to the bilayer midplane”, culminating in a 
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destabilization of the neck and subsequent fission 14.   Consistent with this model, the 

amphipathic helix-containing protein Sar1 is capable of membrane fission catalysis 7.  

This model casts dynamin as a regulatory protein, possibly required for curvature 

generation.  

Recently, a middle ground has emerged in which these proteins are believed to 

function synergistically, such that amphiphysin dramatically enhances inefficient 

dynamin fission activity 15.  According to this synergistic model, dynamin still serves as 

the core mechanical pinchase required for fission while accessory proteins such as 

amphiphysin and epsin induce curvature and enhance the intrinsic fission activity of 

dynamin. Instead of serving as the core machinery for fission, this model asserts that 

amphipathic helix insertion is important for spatio-temporal regulation for the prevention 

of aberrant fission (Reviewed in 16).  Interestingly, all of these models are consistent 

with the phenotypes observed by knockdowns in vivo 17. As functional redundancy and 

alternative pathways obscure clear phenotypes in vivo, we believe that a simple in vitro 

assay for fission is required to ascribe clear roles to the proteins involved in the fission 

reaction.  
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Figure 2. Hydrophobic insertion favors membrane fission.  According to the predictions of Boucrot et al., 

scaffolding proteins such as amphiphysins (red) stabilize the saddle-shaped neck between two connected membranes, 

while hydrophobic insertions (green wedges) destabilize the neck, facilitating fission. Figure from 14. 
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Limitations of current methods 

While much progress has been made in the identification and mechanism of 

membrane fusion proteins18; 19, the mechanism of membrane fission remains a topic of 

heated debate. Current approaches often rely on ensemble measurements that are prone 

to artifacts due to sample handling.  For example, negative staining electron microscopy 

is often used as a standard for the assessment of liposome fission.  In this technique, 

researchers analyze the size and shape of starting liposomes and compare the products 

following protein addition.  However, not only is interpretation of these images 

complicated by the presence of staining artifacts, but results are confounded by fission 

induced by the mechanical stress of sample preparation, as well 3.  

Membrane tethers pulled from giant unilamellar vesicles have been used to 

address some of the limitations of ensemble methods.  However, these assays are unable 

to provide quantitative measurements of fission efficiency, are time intensive, require 

highly specialized equipment and highly skilled hands, and do not provide many events 

to draw statistically robust conclusions 20.  Supported bilayers with excess membrane 

reservoir (SUPER) templates have been introduced as an alternative approach to 

membrane tethers 21.  These SUPER templates allegedly serve as an easy fluorescence 

based technique that facilitates quantitative, real-time analysis of membrane fission 

events.  However, this technique relies on the quantification of small weak fluorescent 

vesicles in the presence of a highly fluorescent giant unilamelar vesicle (GUV).  As a 

consequence, they are limited in their ability to detect rare fission events that may be 

characteristic of the attenuated fission activity of a tightly regulated machine in the 



8 

absence of effectors. Furthermore, SUPER templates are highly prone to artifacts from 

mechanical shearing 22. Thus, inefficient fission resulting from a tightly regulated 

machine may be perceived as an artifact as it is in the noise of such insensitive 

techniques.   

  In a recent paper, a novel ensemble sedimentation-based fission assay was used 

to demonstrate the potent fission activity of the ENTH domain of the protein epsin 14.  

Unfortunately, this assay can only identify dramatic shifts in liposome populations, is 

protein expensive, and cannot be used to provide valuable kinetic information.  

Membrane fission is a complex and dynamic process that, due to its critical importance 

in biological function, is likely to require a coordinated system of tightly regulated and 

sometimes redundant activity.  Consequently, an extremely sensitive technique capable 

of detecting subtle changes in vesicle populations as a function of time and protein is 

required.  In order to establish such a technique, we chose to focus on the ENTH domain 

of epsin with the intention of recapitulating the authors’ findings with the refined details 

required for this intricate process.  

 

Epsin as a fission catalyst 

 Epsin is a 94 kDa protein identified in screens for binding partners of α-adaptin and 

Eps15, both clathrin coat associated proteins involved in clathrin-mediated endocytosis 

in neurons 23;12. Epsin is generally believed to function in cargo selection and bud site 

nucleation through direct interactions with Eps15, the clathrin adaptor protein, AP-2, 

endocytic cargo and with clathrin itself (reviewed in 24). At the amino terminus of epsin 
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is the highly conserved, ~140 amino-acid ENTH domain shared with other endocytic 

proteins, including AP180/CALM 25. This domain contains an N-terminal amphipathic 

helix (the H0 helix), which is known to insert into the outer-leaflet of membranes in a 

PtdIns(4,5)P2-dependent fashion 26.  Membrane insertion of the H0 helix is thought to 

facilitate membrane curvature and tubulation prior to fission.  

  Recently, it was suggested that insertion of the ENTH H0 helix into a lipid 

bilayer could directly facilitate fission 14. This work reported potent fission activity when 

liposomes were mixed with the isolated ENTH domain, though full-length epsin did not 

appear to possess fission activity.  However, the conclusion of these results has been 

called into question 15.  Concerns exist that the observed ENTH-mediated fission activity 

are artifacts of high concentrations of a non-native protein domain interacting non-

specifically with liposomes to form micelles.  The controversy surrounding this recent 

dogma-shattering finding exemplifies the need for a simple, protein inexpensive method 

that allows for quantitative analysis of the fission process. 

 

Burst Analysis Spectroscopy: A novel approach for the study of vesicle fission 

 Unlike current methods for the study of fission, Burst Analysis Spectroscopy 

(BAS) is a reagent sparing single particle technique that is well suited to the 

investigation of vesicle fission. Unlike sedimentation, BAS permits the mapping of the 

full distribution of liposomes in a sample.  Unlike methods such as fluorescence 

correlation spectroscopy (FCS), BAS does not rely on diffusion and thus is not limited to 

a narrow range of particle brightness distribution. BAS differs from diffusion-limited 
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approaches such as FCS in the utilization of a moving stage.  For BAS analysis, a 

sample scan rate is chosen that greatly exceeds the rate of transit due to free diffusion of 

a particle.  The BAS analysis is a recursive analysis in which the largest bursts are 

attributed to the brightest particles passing through the center of the excitation beam.  

The analysis corrects for the position of a fluorescent particle within the excitation beam 

as described in 27. Consequently, it is possible to track both the disappearance of large 

material and the concomitant appearance of intermediate and small material across 

several orders of magnitude.  BAS facilitates the mapping of subtle shifts in population, 

allowing us to observe changes as a function of time and protein concentration.  This can 

prove invaluable in the identification of key players of the fission reaction, permitting 

the visualization of attenuated fission activity in the absence of regulatory factors.   

 

Goal of thesis research 

The goal of this thesis is to introduce burst analysis spectroscopy as a novel, 

single particle assay for the investigation of membrane fission. Using BAS, we were able 

to accurately map liposome distributions across several orders of magnitude without 

many of the sample-handling artifacts that confound traditional techniques.  
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CHAPTER II 

ESTABLISHING BAS AS SINGLE PARTICLE ASSAY FOR VESICLE FISSION 

 

 The ability to distinguish between several proposed models for fission is 

hindered in part by the current techniques used to investigate this process. We have 

developed a single-particle, free-solution membrane fission assay based on BAS that 

avoids the artifacts of surface-tethered fusion assays and provides a large number of 

events for statistically robust conclusions. To establish this assay, we have analyzed 

changes in liposome populations as a function of time, temperature, and protein 

concentration using the fission potent ENTH domain from the protein Epsin.  This is the 

first fission assay that facilitates the analysis of kinetics on a minute timescale.  Using 

this kinetic information, we ultimately hope to further probe the mechanisms of these 

reactions. In this chapter we aim to introduce BAS as a rapid and reagent sparing method 

to screen for the function of proteins involved in the fission process.  

 

Methods 

Protein expression and purification.  The epsin ENTH domain (residues 1-164) 

from Rattus norvegicus was cloned into the NarI and SacI sites of the pPROEX HTb 

vector.  For purification, His6-ENTH (hereafter ENTH) transformed BL21 cells were  

used to inoculate 2 L Terrific Broth cultures at a 1:500 dilution. Cells were grown at 

37°C, to A600 = 0.45. Cultures were incubated at 18 °C and induced at A600 = 0.6 with 

400 µM IPTG. Cells were harvested by sedimentation after incubation at 18 °C for 16 
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hr.  Cell pellets were lysed in Ni-NTA Buffer A (20 mM Tris pH 8, 500 mM NaCl, 20 

mM imidazole, 5 mM β-mercaptoethanol) using a pre-chilled microfluidizer (Watts 

Fluidair, Inc., Kittery, ME).  Lysates were clarified at 4 °C, by centrifugation for 45 min 

at 100,000 xg. The supernatant fraction was loaded over a Ni-NTA column (Qiagen) 

equilibrated in Ni-NTA Buffer A, and eluted with 20% Ni-NTA Buffer B (20mM Tris 

pH 8, 500 mM NaCl, 500 mM Imidazole, 5 mM β-mercaptoethanol).  The His6 tag was 

cleaved with His6-tEV protease during dialysis against Ni-NTA Buffer A at 4 °C.  The 

His6 tag and His6-tEV were removed using the Ni-NTA column equilibrated in Ni-NTA 

Buffer A. ENTH-containing fractions were concentrated to 500 µL and diluted into 

Source S Buffer A (20 mM Tris pH 7.4, 2 mM DTT).  Further purification of ENTH was 

achieved using a linear gradient from 0-100% Source S Buffer B (20 mM Tris pH 7.4, 2 

mM NaCl, 2 mM DTT ) over a Source S column.  Pure ENTH was buffer exchanged to 

20 mM Tris pH 7.4, 150 mM KCl, 2 mM DTT and snap frozen in liquid nitrogen for 

storage at -80 °C. Full-length rat epsin was cloned into the SgfI and NotI sites of the 

PEX-N-His6-GST vector.  His6-GST-epsin (hereafter epsin) transformed BL21 DE3 

cells were used to inoculate 2L LB cultures at a 1:500 dilution.  Cells were grown at 37 

°C, induced at A600 = 0.6 with 400 uM IPTG and harvested after 4 hrs. Full-length rat 

epsin was cloned into the pEX-N-His6-GST vector (Origine) for expression in E. coli 

BL21[DE3] and purification by the same affinity chromatography and proteolytic 

cleavage protocol, followed by high-resolution ion exchange chromatography on a Mono 

Q column to separate full-length epsin from degradation products.   
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Liposome Peparation.  Liposomes were prepared as previously described, with 

minor modifications 14. Briefly, brain lipid extracts from Avanti (cat. 131101P) and 

Sigma (cat. B-1502) were mixed 1:1, with 5% PtdIns(4,5)P2 (Avanti, cat. 840046C) and 

0.03% acyl-chain, Ω−carbon labeled TopFluor-PtdEth (Avanti, cat. 810282C).  Lipids 

dried under a stream of argon and vacuum dessicated to remove residual solvents were 

suspended, with freezing and thawing, to 1 mg/ml in liposome buffer (20 mM HEPES 

pH 7.4, 200 mM NaCl) and extruded through polycarbonate filters with the indicated 

diameters with 11 passes in a mini extruder (Avanti), followed by 10 passes through a 

high-pressure manifold extruder (Northern Lipids), and used within 6 hr.  Liposomes 

used at later times no longer respond to addition of ENTH domain or epsin, presumably 

due to loss of liposome binding upon PtdIns(4,5)P2 hydrolysis. Liposome integrity was 

verified in a separate experiment (not shown), by including a luminal dye, Alexa647 

carboxylate, during extrusion and observing coincidence of TopFluor-PE and Alexa647 

bursts by BAS. 

Liposome fission assay by BAS. Liposomes diluted to 0.01 mg/mL in liposome 

buffer were mixed with ENTH domain, or full-length epsin, at the concentrations 

indicated, and 10 µL of the each sample was spotted onto a BSA-blocked glass coverslip 

held in a custom cassette.  The coverslip cassette was clamped to a high-precision, 

computer controlled, 2-axis translation stage connected to a customized microscope 

system, and data were collected as previously described (27;28). Efficient fission of large 

(~ 200 nm) liposomes into small (20-30 nm) liposomes should result in a large (100 to 

200-fold) increase in object concentration, read out as fluorescent bursts with amplitudes 
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proportional to the object sizes. From a starting sample of 50-100 pM large liposomes, 

this increase in object number will violate the single-particle concentration limit (< 500 

pM) required for BAS. Additionally, due to limited knowledge of the instrument point 

spread function, an individual BAS measurement can only quantitatively probe an 

approximately 100-fold range in object intensity for a single, uniformly labeled 

species 27. The fission of large liposomes into much smaller ones leads to a highly 

inverted population dominated by smaller particles. In this case, the resolving power of 

BAS deteriorates for the low intensity events, due to the high species concentrations that 

no longer permit single particle detection.  Therefore, to accurately examine liposome 

populations produced during fission, we developed an enhanced measurement protocol 

that permits BAS histograms to be constructed over an arbitrarily large range of object 

sizes. In brief, standard BAS data are collected on a series of systematic dilutions of each 

reaction sample, followed by analytical reconstruction of the overall population 

distribution through simultaneous fitting of the object cumulative distributions across the 

dilution series. Our standard BAS analysis fitting routines 27 have been modified to 

accommodate this expanded data analysis strategy. The fitting and programmatic details 

will be published elsewhere.   

Heat maps.  In order to better visualize the information obscured by BAS 

histograms, we provide an alternative “heat map” figure.  Plots representing the spread 

of liposome products as a function of time or concentration are shown as a “heat 

maps”:  a stack of rows, one experiment per row, with increasing brightness 

corresponding to an increased fractional intensity of each bin (group of burst events of a 
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given size). To convert the number of burst events in each bin to fractional intensity, we 

normalized the object intensities as follows: 

 
              (1)      

 
where Ii is the intensity of each bin, Ci is the concentration of objects in each bin, and the 

denominator represents the total fluorescence of all bins (the sum of intensity in a row) 

for a given sample. 

 

 
 
Results and discussion 
    
  BAS is sensitive to changes in liposome size and concentration.  In order to 

calibrate our BAS measurements of membrane fission, we first examined a series of 

liposome standards created with different diameters.  Liposomes were extruded to 200 

nm, 100 nm, and 50 nm and then examined by BAS.  Single-particle burst data for these 

samples display the expected dependence of burst size on liposome size (Figure 3a). The 

fluorescence intensity of these membrane labeled liposomes is expected to be 

proportional to their surface area; thus, the mean intensity of the 200 nm versus 100 nm, 

as well as the 100 nm versus the 50 nm liposomes should differ by ~ 4-fold and the 200 

nm and 50 nm should differ by ~ 16-fold. As shown in Figure 3b, the BAS histograms of 

each liposome sample display distributions with mean intensity differences consistent 

with the expected values.  Additionally, the dispersion in liposome sizes measured by 
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BAS is consistent with the expected variation for liposomes created by extrusion, 

specified as ± 25% CV (coefficient of variation; Northern Lipids specifications). As 

shown in Figure 3b, the observed size variation in liposomes appears to be between 35-

50 % CV, based on Monte Carlo simulations of particle distributions in which the 

particle brightness is assumed to be proportional to surface area.  While the observed 

liposome variation is somewhat larger than expected, several factors likely broaden the 

observed intensity distribution, including a small fraction of multi-lamellar objects (30) 

and the discreet distribution of dye molecules between objects of the same absolute size. 

As a complementary measurement, we examined each liposome sample by FCS (Figure 

3c).  FCS provides information on hydrodynamic radius based on measurement of the 

average diffusion time of fluorescent objects as they diffuse in and out of the excitation 

beam. However, diffusion time increases linearly with particle radius and so is not as 

sensitive a measure of liposome size as fluorescence intensity, which increases with the 

square of the radius. Additionally, FCS is dependent on particle surface hydrophobicity 

so that the hydrodynamic radius can be converted to an effective size only with 

knowledge of this surface-solvent interaction. Therefore, we use FCS here primarily as 

an indicator of a difference in average population hydrodynamic radius. Consistent with 

the BAS measurements, the mean diffusion time for each liposome sample decreases as 

the extrusion filter pore diameter decreases (Figure 3c). 

  Membrane fission activity of the Epsin ENTH domain. We next examined the 

ability of BAS to detect products of ENTH domain-mediated fission. Samples of large  
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Figure 3.  BAS assay distinguishes liposomes of different sizes. The size distribution of 200 nm, 100 nm and 50 nm 

fluorescent liposomes was examined by FCS and BAS. (a) Fluorescent burst data of TopFluor-labeled Folch 

liposomes extruded to 200 nm (green), 100 nm (purple) and 50 nm (cyan). (b) BAS histograms generated from the 

burst data in (a). Fraction of total events is the concentration of each bin divided by the total concentration, for each 

sample. Dashed lines show theoretical diameter distributions (35% CV, dash; 50% CV, dot) derived from Monte Carlo 

simulated intensity data in which fluorescence brightness was set proportional to particle surface area.  The resulting 

simulated intensity distributions were analyzed with BAS analysis code. (c) FCS profiles of 200 nm, 100 nm, and 50 

nm liposomes.  The data shown is representative of two experimental replicates. 
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liposomes (either 400 nm or 200 nm) were mixed with purified ENTH domain and then 

examined by BAS after 40 min incubation at 37 °C.  We anticipated fission to be 

detectable as a shift from a small number of large fluorescence bursts to a larger number 

(high concentration) of much smaller bursts.  As shown in Figure 4 a-d, the expected 

changes are observed upon addition of the ENTH domain to either 400 nm, or 200 nm 

liposomes. Importantly, the total fluorescence intensity of the sample before and after 

ENTH addition changed by no more 10-15% (data not shown), demonstrating that the 

observed disappearance of the large bursts was not caused by a loss of the starting 

liposomes, but rather by their conversion into a high concentration of smaller objects. 

  The extent of fission of the 200 nm liposomes was quantified by BAS analysis of 

the raw burst data. The resulting BAS histograms display a dramatic shift from a low 

concentration of large liposomes to an increased concentration of small ones (Figure 4e).  

The smallest products of the fission process (Figure 4e, inset) increase by over 100-fold 

relative to the staring concentration of 200 nm liposomes, consistent with the number of 

small liposomes expected from efficient fission of the starting 200 nm liposomes into ~ 

20 nm products.  A similar scaling argument predicts that the mean burst size of a 20 nm 

product liposome should be ~ 100-fold smaller than the mean burst size of a starting 200 

nm liposome, assuming that segregation of the fluorescent label is not biased by the 

process of fission.  As shown in Figure 4e, the relative difference in mean burst size for 

the staring and product liposomes is consistent with the product liposomes being ~ 20 

nm in size. The product liposome distribution is most consistent with an approximately 
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Figure 4.  BAS analysis of liposomes vesiculated by the ENTH domain of epsin. Fluorescent burst data for 400 

nm-diameter, TopFluor-labeled, (5%) PtdInsP(4,5)P2 Folch liposomes 380 incubated at 37 °C for 40 min before (a) 

and after addition of 2 µM ENTH (b).  Fluorescent burst data for Single particle analysis of membrane fission                                    

17200 nm-diameter liposomes incubated at 37 °C for 40 min before (c) and after addition of 2 µM ENTH (d). (e) BAS 

histograms generated from starting 200 nm liposomes before (red) and after addition of ENTH (blue; insets indicate 

resolution of small particles in a 10-fold dilution of the same reaction). (f) FCS profiles of liposomes extruded to 100 

nm (green), 50 nm (cyan) and the end products (purple) of the fission reaction of 200 nm liposomes from (d).  The 

data shown is representative of three experimental replicates. The data shown is representative of 3 experimental 

replicates. 
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30% CV (20 nm ± 6 nm), based on comparison of the intensity variation in the smallest 

product liposomes with simulated particle populations created at different size variations 

(10-50% CV; see Figure 3b for an example). Examination of samples by FCS is also 

consistent with efficient membrane fission.  Liposomes mixed with the ENTH domain 

show a dramatic shift in average diffusion time to values substantially less than that 

observed for 50 nm liposomes (Figure 4f).  Taken together, these observations are 

consistent with the generation of ~ 20 nm vesicles by the ENTH domain, as previously 

observed by electron microscopy 14. 

  The ENTH domain acts on the timescale of minutes.  The sensitivity of BAS 

permits changes in the liposome population as a function of time to be mapped with far 

greater accuracy than achieved previously. After 20 min at 23 °C, a significant shift in 

the vesicle population size distribution is observed. However, some large vesicles remain 

(Figure 5a, b).  By 60 min, the largest vesicles are observed rarely, and the 

disappearance of large vesicles is concurrent with the appearance of smaller ones over 

the full 100-minute time course. The fission activity of the ENTH domain is enhanced at 

37 °C (Figures 5c, d), with the largest vesicles observed rarely at 20 min. At 37 °C, the 

reaction appears to be complete by 80 min, consistent with the 100 min time point at 23 

°C.   

  In order to more fully illustrate the changes in liposome populations as a function 

of time, we normalized the fractional intensity of each BAS intensity bin and re-plotted 

the data as a heat map (see methods; Figure 5c).  While the large starting liposomes at 

time zero form a bright peak on the right end of the plot, at later time points, the 
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fractional fluorescence is distributed between small and medium products.  These 

eventually populate a bright peak of small liposomes at the top (left), plus a lower 

concentration of broadly distributed medium-sized liposomes.  Whether these 

intermediate-sized liposomes are static end products or the result of additional liposome 

dynamics is unknown, but they persist regardless of protein concentration or time.  

Notably, the rate at which the largest liposome population disappears does not appear to 

be detectably different at 23 °C and 37 °C.  This observation is likely due to the small 

fractional change in intensity that occurs when 20 nm liposomes split from the much 

larger 200 nm liposome objects.  The resulting 1-2% change in fluorescence intensity is 

not detectable in this assay, given the difference in the rate of fission at the two 

temperatures.   However, the smallest products reach their maximum concentration at ~ 

30 min at 37 °C and ~ 60 min at 23 °C, indicating a ~ 2-fold increased rate at 37 °C. 

  Fission activity of the ENTH domain is dose-dependent.  Next, we looked for a 

dose-dependent change in fission activity of the ENTH domain. In order to maximize the 

sensitivity of observable changes in the liposome size-distribution, we chose an early 

time point in the fission reaction (20 min at 37 °C) and focused on the disappearance of 

large liposomes and appearance of intermediate-sized products (without the dilutions 

required to resolve small products). Using this approach, we were able to measure  

fission activity at concentrations as low as 500 nM ENTH domain (Figures 6a,b). At this 

early time point, the fission activity increases as a function of protein concentration up to 

10 mM (Figure 6a, b). 
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Figure 5.  Kinetics of liposome fission are temperature dependent. (a) Histograms of BAS analyzed 200 nm-

diameter, TopFluor-labeled, (5%) PtdInsP(4,5)P2  Folch liposomes (red) and products of ENTH incubation at 23 °C 

for 20 (blue), 60 (green), and 100 min (purple) after addition of 2 µM ENTH.  At each time point, an aliquot was 

removed and placed on ice, and measurements were started within 1-2 min.  Inset indicates resolution of small 

particles in a 10-fold dilution of each reaction. (b) Heat map representation of the fractional intensity for each reaction 

shown in  (a).  (c) BAS histograms generated from starting liposomes (red) and products of ENTH incubation at 37 °C 

for 20 (blue), 60 (green), and 80 min (purple) after addition of 2 µM ENTH. (d) Heat-map representation of the 

fractional intensity for each reaction shown in (c). Additional time points are shown for increased resolution. The 

effect of incubating liposomes in the absence of the ENTH domain for 60 min at 37 °C or 100 min at 23 °C is shown 

as an additional row, above the respective heat maps.  The data shown for the experiments conducted at 23 °C is 

representative of four experimental replicates.  The data shown for experiments conducted at 37° C is representative of 

three experimental replicates. 
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  Fission activity of full-length epsin.  While the results of these and previous 

studies 14 indicate potent membrane fission activity for the epsin ENTH domain, it 

remained possible that the activity we observed is an artifact of the truncation and not a 

function of the full-length epsin protein. We reasoned that if epsin has latent membrane 

fission activity, then we might uncover that activity using the high sensitivity of BAS 

and conditions that maximize fission activity for the ENTH domain. Using this 

approach, we observed dose-dependent liposome fission activity at epsin concentrations 

as low as 1 µM, albeit with significantly slower rates than observed for the ENTH 

domain (Figures 7a, b). To compensate for the slower rates, dose-dependence of epsin 

activity was measured at a 40 min time point and compared to the earlier 20 min time 

point used for the ENTH domain (Figure 6).   

  Despite the kinetic differences, the distribution of liposome products is 

remarkably similar and converges to the same size end products after a 90 min 

incubation. These results suggest that both the ENTH domain and the full-length epsin 

protein employ the same membrane-fission mechanism (Figure 7c). Using BAS, we 

observed time-resolved liposome membrane fission in free solution, induced by the 

potent epsin ENTH domain. These results agree with those of a previous study that 

demonstrated that the ENTH domain of Epsin is necessary and sufficient for endocytic 

vesicle membrane fission using a novel sedimentation assay and in vivo analysis 14. 

Recently, concerns were raised regarding the physiological significance of the fission 

activity observed in that study, specifically citing the small size of the liposomes (200  
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Figure 6.  Dose dependence of ENTH-mediated vesiculation. (a) BAS histograms of 200 nm-diameter, TopFluor-

labeled, (5%) PtdInsP(4,5)P2Folch liposomes before (red) and after incubation at 37 °C for 20 min with 500 nM 

(blue), 1 µM (green), 5µM (purple), and 10 µM (cyan) ENTH. (b) Heat-map representation of the fractional intensity 

for each reaction shown in (a). The data shown is representative of three experimental replicates. 
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nm diameter), the high protein concentration (10 µM), and the likelihood that the 

products, rather than vesicular in nature, are micellar 15.  

  The high sensitivity of BAS allowed us to address these concerns:  (i) fission 

activity was observed at sub-micromolar protein concentration, (ii) fission activity does 

not depend on the curvature of starting liposomes, as those of 400 nm diameter worked 

as well as smaller ones and (iii) the products are consistent with 20 nm vesicles, as 

observed previously 14. 

  Furthermore, the high sensitivity of BAS allowed us to uncover attenuated 

membrane fission activity in experiments with the full-length epsin protein. Attenuation 

may suggest an inhibited conformation for full-length epsin, as has been suggested for 

syndapin, another protein involved in formation of vesicles at the recycling endosome 29.  

Intermolecular interactions have also been observed to cause auto-inhibition, in the case 

of endophilin A1, a curvature-inducing endocytic protein that also contains an N-

terminal amphipathic helix 30. 
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Figure 7.  Full-length epsin has vesicle fission activity. (a)BAS histograms of 200 nm-diameter, TopFluor-labeled, 

(5%) PtdInsP(4,5)P2Folch liposomes before (red) and after incubation at 37 °C for 40 min with 1 µM (green), 5 µM 

(purple), and 10 µM (blue) full-length epsin. (b)Heat-map representation of the fractional intensity for each reaction 

(Figure 7, Continued) shown in (a).  (c) Comparison of ENTH and epsin activity. BAS histograms of starting 

liposomes (red), and liposomes incubated at 37 °C for 90 min with 2 µM ENTH (blue) or full-length epsin (green). 

The data shown is representative of three experimental replicates. 
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CHAPTER III 

SUMMARY AND FUTURE DIRECTIONS 

 

Despite its central importance to the regulation of many cellular functions, the 

minimal machinery of vesicle fission remains a topic of debate. Integral protein 

machinery sometimes posses overlapping function as a sort of failsafe, complicating the 

interpretation of in vivo data.  For example, related BAR domains may possess 

overlapping function with amphiphysin (AMPH-1) in C. elegans, convoluting 

interpretation of knockdown experiments 17.  This exemplifies the need for a simple in 

vitro assay for fission to ascribe clear roles to proteins in the fission. Here, we establish 

BAS as a highly sensitive, reagent sparing approach for the analysis of single particle 

dynamics of membrane fission reactions in free solution.  Using BAS, we demonstrate 

that insertion of an amphipathic helix is sufficient to drive vesicle fission at 

physiologically relevant ENTH concentrations, as well as with full-length epsin.  

Until recently, amphipathic helix insertion was proposed primarily as a means of 

inducing membrane curvature, similar to the insertion of cone-shaped lipids in one 

leaflet of the membrane.  More recently, studies introduce an alternative role in which 

amphipathic helices act as fission catalysts.  In contrast to the canonical model in which 

dynamin serves as the core fission machinery, our findings support a model in which  

insertion of these helices instigates fission instead.  These findings are consistent with a 

number of pathways that involve fission independent of any dynamin-like protein. One 

such pathway is that of influenza viral budding, which relies on the amphipathic helix of 
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the ion channel M2 to induce fission 34.  Other examples include COPI and COPII 

coated vesicles which have been shown to use the amphipathic helices on Arf and Sar1, 

respectively 31;7.   In this study we lend support this hydrophobic insertion model for 

fission using a minimal system, demonstrating that insertion of an amphipathic helix is 

sufficient to drive vesicle fission even at physiologically relevant protein concentrations.   

Using BAS, we demonstrate that both the ENTH domain and full-length epsin 

protein are sufficient for membrane fission.  However, even at high protein 

concentration and 37 °C, the fastest reactions we observed proceeded on a timescale of 

minutes to tens of minutes.  This suggests that other factors are required to increase the 

fission activity to physiologically significant rates, on the order of seconds to tens of 

seconds 32. Notably, the results of recent studies indicated a reciprocal requirement for 

the amphipathic-helix containing amphiphysin and partner protein, dynamin, in order to 

stimulate membrane fission 15; 33. Our results using BAS reopen the question of how 

membrane fission is induced, not only in endocytosis, but also, how transport carriers 

and vesicles are released at other locations in the cell, where dynamin does not appear to 

play a role.  Our findings also raise others questions:  how is epsin regulated, and what 

stimulates epsin-induced membrane fission?  Finally, our findings indicate that BAS 

offers a highly sensitive approach to follow single particle dynamics of a membrane 

fission reactions in free-solution, for identification of membrane fission agents and 

characterization of the mechanism of membrane fission regulation. 

Having established BAS as a viable assay for the investigation of membrane 

vesicle fission, we will utilize this technique in conjunction with a model protein system 



29 

in an effort to define the role of dynamin and dynamin-like proteins in this central 

process.  To this end, our lab began collaboration with the Grant lab at Rutgers 

University, Department of Biochemistry.  The Grant lab studies the endocytic recycling 

system in C. elegans. This system is simplified by the existence of only one dynamin-

like protein, receptor mediated endocytosis protein-1, or RME-1.  RME-1 is a dynamin 

structural homolog that is ubiquitously expressed in worm cells, eliminating any concern 

of neuron-specific activity 34. Like dynamin, RME-1 also has the ability to tubulate 

acidic liposomes in vitro.  RME-1 is believed to function in conjunction with its binding 

partner AMPH-1 to catalyze vesicle fission at the recycling endosome 17. Lending 

support to a conserved mechanism of fission utilizing dynamin and dynamin-like 

proteins, AMPH-1 was initially implicated in endocytosis through its interaction with 

neuronal dynamin 35. Our intention is to use this simplified system in conjunction with 

BAS to investigate the presumption that is RME-1 that acts as the core machinery, with 

the amphipathic helix-containing AMPH-1 playing a regulatory role in the fission 

reaction at the recycling endosome.  

Consistent with our previous findings with both the ENTH domain and epsin, our 

preliminary results suggest that the amphipathic helix containing protein AMPH-1 is 

capable of inducing fission of phosphatidylserine (PS) liposomes (Figure 8).  To our 

surprise, this activity is ATP dependent, suggesting a previously unobserved ATPase 

activity of AMPH-1.  In stark opposition to the current dogma, our results suggest that 

RME-1 may play a regulatory role in the fission reaction, inhibiting AMPH-1 mediated 

fission (data not shown). It is worth noting that AMPH-1 mediated fission is 
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Figure 8. Amphiphysin has vesicle fission activity. (a) BAS histograms of 400 nm-diameter, Rhodamine labeled 

phosphatidylserine liposomes before (red) and after incubation at 21°C for 1 min with 10 µM amphiphysin (green), 

and 10 µM amphiphysin plus 2 mM ATP (blue). (b)Heat-map representation of the fractional intensity for each 

reaction shown in (a). 
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significantly attenuated compared to that of the ENTH domain.  This is important for 

two reasons.  First, this is indicative of the highly regulated fission activity that would be 

necessary to prevent aberrant fission in a cellular context.  Second, it is unlikely that this 

activity would be decipherable using an alterative, less sensitive technique such as 

sedimentation.  Taken together our findings suggest a conserved mechanism for fission 

in which amphipathic-helix containing proteins serve as the core machinery, with 

dynamin and dynamin-like proteins functioning as regulators.   Future research will 

focus on characterizing the roles of the proteins in our minimal system using more 

physiologically relevant lipid composition, as well as characterizing the novel ATPase 

activity of AMPH-1 and its resultant effects on the modulation of fission.  Taken 

together, our results present BAS as an extremely promising technique for the 

investigation of fission.   By expanding our studies beyond RME-1 and AMPH-1, BAS 

will be instrumental in the identification of novel factors involved in this fundamental 

life process. 
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