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ABSTRACT

There has been increasing interest in the archival literature devoted to the study of

implicit constitutive theories for non-dissipative materials generalizing the classical Green

and Cauchy notions of elasticity, and for the special case of strain limiting models for which

strains remain bounded, even infinitesimal, while stresses can become arbitrarily large. The

first main part of this dissertation addresses the question of strong ellipticity for several

classes of these models. A general approach for studying strong ellipticity for implicit

theories is introduced and it is noted that there is a close connection between the questions

of strong ellipticity and the existence of an equivalent Cauchy elastic formulation. For most

of the models studied to date, it is shown that strong ellipticity holds if the Green-St.Venant

strain is small enough, whereas it fails to hold for large strain. The large strain failure of

strong ellipticity is generally associated with extreme compression.

Note that in the first main part of this dissertation, we study strong ellipticity for explicit

strain-limiting theories of elasticity where the Green-St.Venant strain tensor is defined as a

nonlinear response function of the second Piola-Kirchhoff stress tensor. The approach to

strong ellipticity studied in the first main part of this dissertation requires that the Fréchet

derivative of the response function be invertible as a fourth-order tensor. In the second main

part of this dissertation, a weaker convexity notion is introduced in the case that the Fréchet

derivative of the response function either fails to exist or is not invertible. We generalize the

classical notion of monotonicity to a class of nonlinear strain-limiting models. It is shown

that the generalized monotonicity holds for sufficiently small Green-St.Venant strains and

fails (through demonstration by counterexample) when the small strain constraint is relaxed.
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1. INTRODUCTION

At the beginning of the lectures on ‘‘Calculus of Variations and Applications to Elastic-

ity’’, Wolfgang Reichel introduced convexity in the following way: ‘‘Convexity is truly a

beautiful lady -- but do you also know her beautiful sisters?’’

In this spirit, at Texas A&M Mathematical Physics, Harmonic Analysis, and Differential

Equations Seminar on October 24, 2014, I introduced: ‘‘Convexity is a sweet lady -- but do

you also know her sweet sisters?’’

Answer by implying chain: convexity⇒ polyconvexity⇒ quasiconvexity⇒ rank-one

convexity (or strong ellipticity)⇒ monotonicity. Over the past one and a half years, in our

work [11], [12], the last two sisters (strong ellipticity and monotonicity) have made friends

with Implicit and Strain-Limiting Theories of Elasticity.

A simple view of stress and strain is that stress (S̄ or σ) as force per unit area causes

strain (E or ε) as deformation per unit of the original length (Figure). An interpretation

of strong ellipticity and monotonicity is that an increase in a component of strain (E or ε)

should be accompanied by an increase in a corresponding component of stress (S̄ or σ).

In classical elasticity, stress is a function of strain. In new theories of elasticity [15],

stress and strain are in implicit relation 0 = F(E, S̄), and in strain-limiting relation

E = F(S̄), where F(·) uniformly bounded in norm. In the context of Implicit and

Strain-Limiting Theories of Elasticity, it was shown in our work [11] and [12] that strong

ellipticity and monotonicity hold for sufficiently small strains and fail when the small strain

constraint is relaxed. These results play key roles for stability of numerical approximations

and for modeling waves.

In nonlinear elasticity, we adopt the strong ellipticity condition as our basic constitutive

hypothesis, without endorsing it as the single way to mechanical truth [1].
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All the main results (except Appendix B) in this dissertation have been presented in

published papers, and at conferences and seminars, initiating and motivating from several

collaborations developed during the Ph.D. studies.

In Chapter 2, we study strong ellipticity for implicit and strain-limiting theories of

elasticity.

In Chapter 3, we investigate monotonicity for strain-limiting theories of elasticity.

Chapter 4 contains conclusions for the whole dissertation.

In Appendix A, we will have some comments on hyperelasticity of the main class of

models in Chapter 3.

In Appendix B, we will examine the dynamical significance of the strong ellipticity

condition.

In each Chapter and Appendix, we will introduce specific notation and preliminaries.
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2. STRONG ELLIPTICITY FOR IMPLICIT AND STRAIN-LIMITING THEORIES OF

ELASTICITY*

This Chapter introduces Strong Ellipticity for Implicit and Strain-Limiting Theories of

Elasticity [12].

2.1 Motivation

In a trio of thought provoking papers [15, 18, 17], K. R. Rajagopal urges educators and

researchers in mathematics and mechanics to broaden their traditional constructions for

specifying the constitutive class of material bodies exhibiting elastic-like (non-dissipative)

behavior to the setting of implicit constitutive theories. Among the compelling arguments

offered by Rajagopal for use of implicit theories in elasticity, he emphasizes that they

provide a framework for constructing logically consistent models for elastic-like material

behavior that are both nonlinear and valid for infinitesimal strains. This feature is in marked

contrast to the traditional Cauchy and Green approaches to modeling elasticity for which

the derivation of logically consistent infinitesimal strain theories necessarily leads to linear

models. Rajagopal and a number of co-authors have investigated a variety of implicit

constitutive models of elastic bodies theoretically and numerically [2, 3, 4, 5, 14, 16, 19],

and applied these to fracture [10, 20] and to coupled field applications [5, 6]. However, in

none of these works has the issue of convexity for the various models been discussed.

The intention of this Chapter is to begin to address convexity for implicit elastic

constitutive relations by considering strong ellipticity or rank-one convexity. While strong

ellipticity is weaker than quasi-convexity (and hence also the stronger condition of poly-

∗Part of this chapter is reprinted with kind permission of SAGE Publications, ‘‘On Strong El-
lipticity for Implicit and Strain-Limiting Theories of Elasticity’’ by Tina Mai and Jay R. Wal-
ton, Mathematics and Mechanics of Solids, 20(II):121139, 2015; Special Issues in Honor of
K. R. Rajagopal - Part 2; http://mms.sagepub.com/content/early/2014/07/25/1081286514544254.
DOI:10.1177/1081286514544254. Copyright 2014 by SAGE Publications.
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convexity) and is insufficient to prove existence of solutions to finite elastic boundary

value problems, it is a key condition for stability of numerical approximations and for

physically intuitive wave propagation behavior. In particular, strong ellipticity condition

guarantees the hyperbolicity of an equilibrium dynamical system of partial differential

equations, which means that the system admits the full range of wave-like behavior (see

Appendix B). The traditional definition of strong ellipticity is set within the context of

Cauchy and Green elasticity [1].

While many commonly used Cauchy or Green elastic models satisfy strong ellipticity

for all allowable deformations and some fail to be strongly elliptic for any deformation,

it is more typical that for a given constitutive model, one seeks to identify the class of

deformations for which strong ellipticity holds and gives counterexamples for deformations

for which it fails [9, 22, 23, 21]. In this spirit, after presenting an approach for studying

strong ellipticity for general elastic implicit theories, we focus attention upon various

classes of strain-limiting models. For all of the strain-limiting models considered, we show

that strong ellipticity holds for deformations for which an appropriate strain measure is

small enough in norm. Conversely, for these models we demonstrate that strong ellipticity

fails when the small strain assumption is relaxed.

2.2 Notation and Preliminaries

Consider a deformation f(·) : B −→ f(B) of a material body occupying configu-

rations B and f(B) before and after deformation, respectively. Let u and F denote the

displacement and deformation gradient through

u = x−X , (2.1)

and

F :=
∂f

∂X
. (2.2)
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The left and right Cauchy-Green tensorsB and C are defined by

B = FF T (2.3)

and

C = F TF , (2.4)

respectively, and the Green-St.Venant tensor E is defined by

E =
1

2
(C − I). (2.5)

Let T denote the Cauchy Stress Tensor. Then the first and second Piola-Kirchhoff

Stress Tensors, S and S̄, respectively, are defined by

S := TF−T det(F ), S̄ := F−1S. (2.6)

A material body is said to be Cauchy Elastic if its constitutive class is determined by a

response function of the form:

S = Ŝ(F ). (2.7)

It is said to be Green Elastic (or equivalently Hyperelastic) if the stress response function

is the gradient of a scalar valued potential

Ŝ(F ) = ∂F ŵ(F ). (2.8)

In [15], Rajagopal considered implicit constitutive relations of the form:

0 = F(B,T ) (2.9)

between the Cauchy stress and left Cauchy-Green tensors. He also considered the special

case:

B = F(T ), (2.10)

with special attention given to strain limiting theories for which the constitutive function
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F(·) in (2.10) is assumed to be uniformly bounded in norm. As Rajagopal notes, the form

(2.10) provides a convenient framework for deriving non-linear, infinitesimal strain theories

of the form:

ε = F(T ) (2.11)

in which ε denotes the customary linearized strain tensor

ε :=
1

2

(
∇u+∇uT) . (2.12)

Also, as Rajagopal points out, a rich array of behaviors can be explored by considering the

class of strain-limiting constitutive models of the form:

F(T ) = φ0(T )I + φ1(T )T + φ2(T )T 2, (2.13)

in which I denotes the second-order identity tensor and each φj(T ) is a scalar valued

function with |φ0(T )|, |φ1(T )||T |, and |φ2(T )||T 2| all uniformly bounded functions on

the space of symmetric, second-order tensors.

Recall that isotropy is uniformity in all directions. Examples of isotropic materials

are glass and metals. Recall also that anisotropy is the property of being directionally

dependent. Examples of anisotropic materials are wood, laminated composites, and single

crystal; they are stiffer when loaded along some material directions than others.

With an eye towards studying strong ellipticity for both isotropic and anisotropic

implicit theories, we adopt the following constitutive relations as alternatives to (2.9) and

(2.10)

0 = F(E, S̄) (2.14)

E = F(S̄). (2.15)

The present study focuses on the strain-limiting special case of (2.15) for which the response

function F(·) is uniformly bounded in norm. The analogue to (2.13) for the model (2.15) is
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given by:

F(S̄) = φ0(S̄)I + φ1(S̄)S̄ + φ2(S̄)S̄
2
. (2.16)

One of the classes of models studied in this Chapter (see (2.25), (2.109) and (2.110) below),

and that was motivated by examples considered by Rajagopal, has the form (2.16) with

φ2(·) = 0, φ0(S̄) = φ̂0(S̄ · I) and φ1(S̄) = φ̂1(|S̄|), and for which φ̂0(r) is a bounded,

increasing function for −∞ < r < ∞ that vanishes for r = 0 and rφ̂1(r) is a bounded,

increasing function for 0 < r. These assumptions on the functions are quite natural

since, for example, they give models satisfying intuitive monotonicity properties such as

the Baker-Ericksen inequalities. If these monotonicity constraints on φ0(·) and φ1(·) are

relaxed, one can readily construct models that, for example, predict volume increase under

compressive stress.

The analysis below makes extensive use of the following notational conventions for

performing tensoral manipulations. All tensor spaces are over the standard Euclidean vector

space E3. First-order tensors are denoted by bold, lower-case letters, a, the Euclidean

inner-product two first-order tensors is denoted a · b and its accompanying norm is denoted

|a| :=
√
a · a. Second-order tensors are denoted by bold, upper-case letters, A, and the

space of second-order tensors is equipped with the trace inner-product denoted by,A ·B :=

tr[ATB], where AT is the adjoint (transpose) of A viewed as a linear transformation on

first-order tensors. The Frobenius norm is denoted by |A| :=
√
A ·A, whereas the operator

norm is denoted by ‖A‖ := sup|a|=1 |Aa| withAa denoting the action of the second-order

tensor A on the first-order tensor a. For first-order tensors a and b, a ⊗ b denotes the

rank-one, second-order tensor defined by: a⊗ b c := a(b · c) for all first-order tensors

c. Similarly, given two second-order tensorsA andB,A⊗B denotes the fourth-order,

rank-1 tensor (viewed as a linear transformation on the space of second-order tensors)

defined by: A⊗BC := A(B ·C) for all second-order tensors C.
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Definition of Fréchet derivative [7]: Let X, Y be Banach spaces. Let A be an open

subset of X , and let F be an operator mapping A to Y . The Fréchet derivative of F at

a ∈ A is the bounded linear operator DF (a) : X → Y which satisfies the following

relation

lim
‖h‖→0

‖F (a+ h)− F (a)− DF (a)h‖
‖h‖

= 0 . (2.17)

The limit being required to exist as h→ 0 in any manner.

Remark 1. The Fréchet derivative is a derivative defined on Banach spaces. It is used to

generalize the derivative of a real-valued function of a single real variable to the case of a

vector-valued function of multiple real variables, and to define the functional derivative

used widely in the calculus of variations. Commonly, it is used to generalize the derivative

of a function f : R→ R to the Jacobian of a function f : Rn → Rm.

2.3 Strong Ellipticity - Definitions and General Observations

The classical notion of strong ellipticity in finite elasticity is typically formulated in

the setting of Cauchy and Green elasticity by the requirement that for a given deformation

gradient, F , the following inequality holds [1]:

H · DF Ŝ(F )[H ] > 0 (2.18)

for all non-zero, rank-one tensorsH := a⊗b. In (2.18), DF denotes Fréchet differentiation

with DF Ŝ(F )[H ] denoting the fourth-order tensor DF Ŝ(F )[·] acting on the second-order,

rank-one tensorH . For later convenience, we assume |a| = |b| = 1.

When the strain-energy function ŵ(·) in (2.8) is twice continuously differentiable, the

Strong Ellipticity condition (2.18) reduces to the Strong Legendre-Hadamard condition for

the Euler-Lagrange system of equations in Calculus of Variations.

The constitutive relation (2.14) can be viewed as defining a six-dimensional manifold

in twelve-dimensional Euclidean space. In particular, the graph of (2.14) consists of a
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collection of surface elements defining branches on which S̄ is given as a function of E.

Appealing to the classical implicit function theorem then allows one to derive local (to a

given branch of the graph of (2.14)) expressions for DF Ŝ(F )[·] through implicit Fréchet

differentiation of (2.14).

As a first step in extracting expressions for DF Ŝ(F )[·] from (2.14), implicit Fréchet

differentiation of (2.14) gives

0 = DEF(S̄,E)[Hs] = ∂S̄F(S̄,E)
[
DES̄(E)[Hs]

]
+ ∂EF(S̄,E)[Hs] (2.19)

in whichHs denotes the symmetric part ofH ,Hs := (H +HT)/2. If the fourth-order

tensor ∂S̄F(S̄,E)[·] is invertible (on a suitably restricted subset of second-order tensors),

one can derive from (2.19) the following expression for DES̄(E)[Hs]:

DES̄(E)[Hs] = −(∂S̄F(S̄,E))−1
[
∂EF(S̄,E)[Hs]

]
. (2.20)

We note that a straightforward calculation gives:

DF S̄(E)[H ] = DES̄(E) [DFE[H ]] = DES̄(E)
[
(F TH)s

]
. (2.21)

Combining (2.20) and (2.21), one can derive the following notion of strong ellipticity for

the implicit constitutive relation (2.14):

H · DF Ŝ(F )[H ] = H ·
(
DF

(
F S̄(E)

)
[H ]

)
= H · (HS̄(E) + FDF S̄(E)[H ])

= H · (HS̄(E)) +
(
F TH

)
s
· DES̄(E)

[(
F TH

)
s

]
= H · (HS̄(E))

−
(
F TH

)
s
·
(
∂S̄F(S̄,E)

)−1 [
∂EF(S̄,E)

[
(F TH)s

]]
> 0 . (2.22)

9



Applying (2.22) to the special case (2.15) gives the following requirement for strong

ellipticity:

H · DF Ŝ(F )[H ] = H · (HS̄(E))

−
(
F TH

)
s
·
(
DS̄F(S̄)

)−1 [
(F TH)s

]
> 0, (2.23)

where
(
DS̄F(S̄)

)−1
[·] denotes the inverse of the fourth-order tensor DS̄F(S̄)[·].

Remark 2. For a Cauchy elastic body whose First Piola-Kirchhoff response function Ŝ(·)

is not differentiable at a deformation gradient F , a weaker rank-1 convexity notion is

provided by the monotonicity condition [1]:

(Ŝ(F + αH)− Ŝ(F )) ·H > 0 (2.24)

for all norm-1, rank-1 tensors H = a ⊗ b (with |a| = |b| = 1) and 0 < α ≤ 1. When

the response function Ŝ(·) is differentiable, (2.24) implies a weaker form of (2.18) with

‘‘>’’ replaced by ‘‘≥’’. The monotonicity condition (2.24) for Cauchy elastic bodies can

be readily generalized to the implicit constitutive relation setting (2.14) by applying it

locally on the graph of (2.14). More specifically, (2.24) is applied to a ‘‘local’’ First

Piola-Kirchhoff response function Ŝ(F ) := F S̄(E), where the Second Piola-Kirchhoff

response function S̄(·) is defined locally on a branch of the graph of (2.14). Studying this

generalization of the monotonicity condition (2.24) to implicit constitutive relations of the

form (2.14) will be addressed in Chapter 3.

The following subsections consider various classes of strain-limiting constitutive models

and present results that guarantee strong ellipticity (typically if the tensor E is sufficiently

small in norm). Subsequently, for the same classes of models, counterexamples to strong

ellipticity are constructed (typically for deformations corresponding to sufficiently severe

compression).

10



2.4 Invertibility and Strong Ellipticity

In this section, conditions guaranteeing strong ellipticity are derived for two classes of

strain limiting models generalizing specific examples considered in the literature. More

specifically, we study an isotropic model of the form:

E = F(S̄) := φ0

(
S̄ · I

)
I + φ1

(∣∣S̄∣∣) S̄; (2.25)

and an anisotropic model given by:

E = φ1(|K1/2[S̄]|)K[S̄]. (2.26)

The constitutive functions φ0(r) and rφ1(r) are uniformly bounded and increasing while

φ1(r) is a decreasing function. Also, φ1(r) > 0, while φ0(r) > 0 if r > 0, and φ0(r) < 0 if

r < 0. In (2.26), K1/2[·] denotes the positive-definite, symmetric (as a linear transformation

on Sym, the space of symmetric, second-order tensors) square-root (under composition) of

the classical linear elastic compliance tensor K[·]. Thus, one has K1/2
[
K1/2[S]

]
= K[S]

for all S ∈ Sym.

2.4.1 Invertibility

Prior to investigating strong ellipticity, we address the question of invertibility of the

constitutive relations (2.25) and (2.26), with the first consideration given to (2.25).

One approach to studying the invertibility of the second-order tensoral equation (2.25),

and many more general models, appeals to classical spectral theory for symmetric, second-

order tensors. More specifically, since S̄ is symmetric, by the spectral theorem there exists

an orthonormal basis, denoted by {ai}3
i=1, for the space of first order tensors consisting

entirely of eigenvectors of S̄. It is then obvious from (2.25) that the symmetric tensorE has

the same eigen-basis as S̄. Let {λi}3
i=1 and {γi}3

i=1 denote the corresponding eigen-values

11



of S̄, and E, respectively. Then, we have the following spectral representations:

S̄ =
3∑
i=1

λiai ⊗ ai, E =
3∑
i=1

γiai ⊗ ai, I =
3∑
i=1

ai ⊗ ai. (2.27)

To simplify notation in the following derivations, we introduce three first-order tensors:

γ := (γ1, γ2, γ3)T, λ := (λ1, λ2, λ3)T, 1 := (1, 1, 1)T

and for any first order tensor v, let |v| :=
√
v · v. Substitution of (2.27) into (2.25) gives

3∑
i=1

γiai ⊗ ai = φ0 (λ · 1)

(
3∑
i=1

ai ⊗ ai

)
+ φ1 (|λ|)

(
3∑
i=1

λiai ⊗ ai

)
(2.28)

and hence the equivalent 3× 3 system of algebraic equations

γj = g (λj) := φ0 (λ · 1) + λjφ1 (|λ|) , j = 1, 2, 3. (2.29)

Thus, inverting the tensoral equation (2.25) is equivalent to solving the algebraic system

(2.29) for the eigen-values of S̄, {λi}3
i=1, in terms of the eigen-values of E, {γi}3

i=1.

A second approach to studying the invertibility of the constitutive model (2.25), as

well as other more general models, is based upon the decomposition of a second-order,

symmetric tensor into its deviatoric (trace-less) and trace parts. Specifically, one can

decompose the symmetric tensor S̄ as the sum

S̄ = S̄0 + σ̄I (2.30)

with

σ̄ :=
1

3
(S̄ · I), S̄0 := S̄ − σ̄I. (2.31)

Since S̄0 ·I = 0, (2.30) gives an orthogonal decomposition for S̄ in the space of symmetric,

second-order tensors equipped with the trace inner product. Decomposing E in similar

fashion to (2.30) gives

E = E0 + γ̄I (2.32)

12



with γ̄ := 1
3
(E · I) and E0 := E − γ̄I , one sees that inverting the second-order tensoral

equation (2.25) is equivalent to solving the 2× 2 algebraic system:

|E0| = φ1(r)|S̄0| (2.33)

γ̄ = φ0(3σ̄) + φ1(r)σ̄ (2.34)

with r :=
√

3σ̄2 + |S̄0|2.

Discussing the solvability of the algebraic system (2.33), (2.34) is facilitated by in-

troducing the simplifying notation: x := σ̄, y := |S̄0|. By assumption: φ′1(r) < 0 and

φ1(r) + rφ′1(r) > 0. The system (2.33), (2.34) now takes the form:

|E0| = ψ1(y;x) := yφ1(
√

3x2 + y2) (2.35)

γ̄ = φ0(3x) + xφ1(
√

3x2 + y2). (2.36)

To show that the system (2.35), (2.36) is uniquely solvable for given |E0| and γ̄

(suitably restricted so that E is in the compact range of the constitutive response function

in (2.25)), we first note that for a given x, the right-hand-side of (2.35) is an increasing

function of y > 0 as follows from:

∂yψ1(y;x) = φ1(
√

3x2 + y2) + y2φ
′
1(
√

3x2 + y2)√
3x2 + y2

= φ1(r) + rφ′1(r)− 3x2

r
φ′1(r) > 0.

Solving (2.35) for y gives:

y = ψ−1
1 (|E0|;x). (2.37)

Substitution of (2.37) into (2.36) now gives the single equation for x:

γ̄ = φ0(3x) + xφ1(
√

3x2 + y2) (2.38)

with y given by (2.37). To see that (2.38) is uniquely solvable for x, it suffices to show
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that the right-hand-side is an increasing function of x. By assumption, φ0(3x) is increasing.

So it suffices to show that ψ2(x) := xφ1(
√

3x2 + y2) is also increasing. To that end, a

straightforward calculation gives:

ψ′2(x) =
rφ1(r) (φ1(r) + rφ′1(r))

rφ1(r) + y2φ′1(r)
> 0,

where use has been made of the formula:

d

dx
ψ−1

1 (|E0|;x) =
−3x|y|φ′1(r)

rφ1(r) + y2φ′1(r)
,

which follows from implicit partial-differentiation of (2.35) with respect to x. Indeed, from

(2.35) and (2.37), we have

|E0| = ψ1(ψ−1
1 (|E0|;x);x). (2.39)

Differentiating both sides of (2.39) gives

0 = ψ′1(y;x)
d

dx
ψ−1

1 (|E0|;x) + ∂xψ1(ψ−1
1 (|E0|;x);x) . (2.40)

Thus, by implicit partial-differentiation of (2.35) with respect to x, we get

y′x =
d

dx
ψ−1

1 (|E0|;x) =
−∂x

(
yφ1

(√
3x2 + y2

))
ψ′1

(
yφ1

(√
3x2 + y2

))

=

−3xyφ′1(r)

r

φ1(r) +
φ′1(r)y2

r

=
−3xyφ′1(r)

rφ1(r) + φ′1(r)y2
. (2.41)

Recall that ψ2(x) := xφ1

(√
3x2 + y2

)
, so

ψ′2(x) = φ1(r) + xφ′1(r)

(
6x+ 2yy′x

2r

)
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= φ1(r) + xφ′1(r)

3x+
−3xy2φ′1(r)

rφ1(r) + φ′1(r)y2

r


= φ1(r) + xφ′1(r)

(
3xrφ1(r)

r(rφ1(r) + y2φ′1(r))

)

= φ1(r) +
3x2φ′1(r)φ1(r)

rφ1(r) + y2φ′1(r)

=
rφ2

1(r) + y2φ1(r)φ′1(r) + 3x2φ′1(r)φ1(r)

rφ1(r) + y2φ′1(r)

=
rφ2

1(r) + r2φ1(r)φ′1(r)

rφ1(r) + y2φ′1(r)

=
rφ1(r)(φ1(r) + rφ′1(r))

rφ1(r) + y2φ′1(r)
. (2.42)

Note that r > 0, φ1(r) > 0, (rφ1(r))′ = φ1(r) + rφ′1(r) > 0, φ′1(r) < 0, and r2 =(√
3x2 + y2

)2

> y2. Therefore, in (2.42), the numerator

rφ1(r)(φ1(r) + rφ′1(r)) > 0,

and the denominator

rφ1(r) + y2φ′1(r) > rφ1(r) + r2φ′1(r) = r(φ1(r) + rφ′1(r)) > 0.

Hence, ψ′2(x) > 0.

Thus, one sees that the constitutive relation (2.25) is uniquely invertible provided E

lies within the compact range of the function on the right hand side of (2.25).

Proving invertibility for (2.26) is a simpler task than for (2.25). It is useful to introduce

the linear elasticity tensor E[·] inverse to the compliance tensor K[·]. Therefore, E[K[S]] =

S for all second order tensors S ∈ Sym. The constitutive relation (2.26) is readily inverted

by first applying the operator E1/2[·] to both sides followed by taking the Frobenius norm
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giving:

|E1/2[E]| = ψ1(|K1/2[S̄]|) := φ1(|K1/2[S̄]|)|K1/2[S̄]|. (2.43)

By assumption, ψ1(r) := rφ1(r) is an increasing function so that (2.43) can be solved to

give

|K1/2[S̄]| = ψ−1
1 (|E1/2[E]|)

which upon substitution into (2.26) followed by a second application of the operator E1/2[·]

gives

S̄ = φ̃1(|E1/2[E]|)E[E], (2.44)

where

φ̃1(r) :=
1

φ1(ψ−1
1 (r))

. (2.45)

These arguments show that both strain-limiting models (2.25) and (2.26) have equivalent

Cauchy elastic formulations. In fact, as shown below, they are also Green elastic. This

begs the question: What is gained from the use of the formulations (2.25) and (2.26)? One

advantage of these formulations over the equivalent Cauchy formulations, as argued in

[15, 18, 17], is that they lead to a logically consistent derivation of a nonlinear, infinitesimal

strain theory. Another advantage derives from applications in which classical linearized

elasticity predicts strain singularities, such as fracture, bodies with sharp re-entrant corners

and punch problems with sharp-edged indenters. Studying such problems in the setting

of strain-limiting models of the form (2.25) or (2.26), or their equivalent Cauchy elastic

formulation, prevents singular strains, but leaves open the possibility of singular stresses.

However, as argued in [20], studying the asymptotic behavior of stresses at crack edges or

sharp re-entrant corners in such problems is much more convenient using the formulations

(2.25), (2.26) rather than their equivalent Cauchy elastic forms.
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2.4.1.1 Green Elasticity

Given the Cauchy elastic form (2.44), construct the strain energy potential:

ŵ(E) := w̃(|E1/2[E]|) (2.46)

where

w̃(r) :=

∫
rφ̃1(r) dr.

One can readily show that

∂Eŵ(E) = ∂Ew̃(|E1/2[E]|) = φ̃1(|E1/2[E]|)E[E] = S̄ . (2.47)

The proof of (2.47) is facilitated by appealing to the identity

|E1/2[E]|2 = E[E] ·E, (2.48)

and note that the Fréchet derivative of a continuous linear operator is the same operator.

More specifically,

∂Eŵ(E) ·H = DEw̃(|E1/2[E]|)[H ]

= |E1/2[E]|φ̃1(|E1/2[E]|)[DE

(
(E[E] ·E)1/2

)
[H ]]

=
1

2
φ̃1(|E1/2[E]|)[DE(E[E] ·E)[H ]]

=
1

2
φ̃1(|E1/2[E]|)(E[H ] ·E + E[E] ·H)

=
1

2
φ̃1(|E1/2[E]|)(2E[E] ·H)

= φ̃1(|E1/2[E]|)E[E] ·H . (2.49)

A strain energy function for the model (2.25) is most easily derived by first construct-

ing an associated complementary stress potential and then making use of the Legendre
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transform. More specifically, define the stress potential:

k̂(S̄) := k̃0(S̄ · I) + k̃1(|S̄|) (2.50)

where

k̃0(r) :=

∫
φ0(r) dr, k̃1(r) :=

∫
rφ1(r) dr.

A direct calculation verifies that

E = ∂S̄k̂(S̄) = F(S̄) = φ0(S̄ · I)I + φ1(|S̄|)S̄ (2.51)

as desired. Indeed,

E ·H = ∂S̄k̂(S̄) ·H

= (∂S̄k̃0(S̄ · I)) ·H + (∂S̄k̃1(|S̄|)) ·H

= φ0(S̄ · I)DS̄(S̄ · I)[H ] + φ1(|S̄|)|S̄|DS̄(|S̄|)[H ]

= (φ0(S̄ · I)I + φ1(|S̄|)S̄) ·H . (2.52)

Appealing to the classical Legendre transform, one defines the strain energy function

ŵ(E) := −k̂(S̄) + S̄ ·E (2.53)

with

S̄ = F−1(E) (2.54)

which is guaranteed to exist from the invertibility argument given above. One now readily

verifies from (2.51), (2.53) and (2.54) that:

∂Eŵ(E) = F−1(E) = S̄ . (2.55)

as required. Indeed,

∂Eŵ(E) ·H = DEŵ(E)[H ]
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= DE(−k̂(S̄) + S̄ ·E)[H ]

= −DS̄k̂(S̄)[DES̄[H ]] + (E · DES̄[H ]) + S̄ ·H)

= −∂S̄k̂(S̄) · DES̄[H ] + (E · DES̄[H ]) + S̄ ·H)

= S̄ ·H . (2.56)

2.4.2 Strong Ellipticity

We now proceed to establish conditions under which the models (2.25) and (2.26)

satisfy strong ellipticity, and give counterexamples for which it fails, by making use of

the general approach outlined in Section 2.3. Both of these models have been shown to

have equivalent Green elastic formulations, but while an explicit form for the strain energy

function was constructed for the anisotropic model (2.26), such was not the case for the

isotropic model (2.25) for which only an abstract existence result was established. This fact

suggests that proving strong ellipticity for these two models most naturally proceeds along

somewhat different paths. To illustrate these two lines of argument, consider a general

constitutive model of the form

E = F(S̄). (2.57)

Suppose that (2.57) can be explicitly inverted giving

S̄ = F−1(E). (2.58)

Then the inequality guaranteeing strong ellipticity (2.18) is readily shown to take the form:

0 <H · DF Ŝ(F )[H ] = H · (HS̄) + (F TH)s · DEF−1(E)[(F TH)s]. (2.59)

On the other hand, if (2.57) cannot be explicitly inverted, then one can use the strong ellip-

ticity condition in the form (2.23) which requires constructing the inverse (DS̄F(S̄))−1[·]

of the fourth order tensor DS̄F(S̄)[·]. We illustrate these two approaches by applying
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(2.59) to the anisotropic model (2.26) and applying (2.23) to the isotropic model (2.25).

Consider first the anisotropic model (2.26) written in the equivalent Cauchy elastic

form (2.44). Then using the notation in (2.57), (2.58), a straightforward calculation gives

for every second-order tensorHs ∈ Sym:

DEF−1(E)[Hs] = φ̃1(|E1/2[E])E[Hs] +
φ̃′1(|E1/2[E|)
|E1/2[E]|

E[E]⊗ E[E][Hs] (2.60)

where the tensor product E[E]⊗ E[E][·] is a fourth-order tensor viewed as a linear trans-

formation on Sym. Substitution of (2.60) into (2.59) gives:

H · DF Ŝ(F )[H ] = H · (HS̄) (2.61)

+ φ̃1(|E1/2[E]|)(F TH)s · E[(F TH)s] (2.62)

+
φ̃′1(|E1/2[E]|)
|E1/2[E]|

(
(F TH)s · E[E]

)2
. (2.63)

Proving strong ellipticity requires giving conditions onF and the model (2.26) guaranteeing

the positivity ofH · DF Ŝ(F )[H ] for all rank-one, second-order tensorsH := a⊗ b with

|a| = |b| = 1. The right-hand-side of (2.61) can be re-written in the form:

H · (HS̄) = b · S̄b (2.64)

which need not be positive. On the other hand, both (2.62) and (2.63) are non-negative.

However, for a given F , one can choose a and b so that

(
(F TH)s · E[E]

)2
= (a · (FE[E]b)2 = 0. (2.65)

The constitutive assumptions for the model (2.26) guarantee that the term (2.62) is always

strictly positive for all choices of a and b. In particular, by assumption, E[·] is a positive

definite, self-adjoint linear transformation on Sym. Hence, there exists λ > 0 satisfying

(F TH)s ·E[(F TH)s] > λ (F TH)s ·(F TH)s =
λ

2

(
|F Ta|2 + (a · Fb)2

)
≥ λ

2

(
|F Ta|2

)
.

(2.66)

20



Now make use of the observation: if |F − I| → 0 then |E| → 0 and S̄ → 0. Also, by

assumption on the model (2.26), φ̃1(0) > 0. If follows that one can always choose δ > 0

so that if |F − I| < δ, then (2.62) dominates (2.61) in magnitude for all choices of a and

b. Thus, strong ellipticity holds provided F is restricted to be close enough to the identity

tensor I , which implies that the Green-Lagrange tensor E has small enough norm.

Remark 3. Through a straightforward asymptotic argument, one can readily see that in

the infinitesimal strain limit, the strong ellipticity condition (2.61) -- (2.63) takes the form:

H · DF Ŝ(F )[H ] = H · E[H ] > 0 (2.67)

which is the classical result from the linearized theory of elasticity.

To demonstrate the loss of strong ellipticity for the model (2.26), it suffices to show

the existence of deformation gradients F and unit vectors a and b for which the quadratic

form in (2.61), (2.62), (2.63) is negative. To that end, consider compressive deformations

and stresses in the form

F = γI and S̄ = σI (2.68)

with 0 < γ < 1 and σ < 0. For this choice of F , E = ξI with ξ := (γ2 − 1)/2. We note

that

−1

2
< ξ < 0. (2.69)

Substitution of (2.68) into (2.61), (2.62), (2.63) gives:.

H · DF Ŝ[H ] = σ + φ̃1(|ξ|ε)γ2(Hs · E[Hs]) +
φ̃′1(|E1/2[E]|)
|E1/2[E]|

(γξ)2 (H · E[I])2 (2.70)

with ε := |E1/2[I]| > 0, and with ξ and σ related through the constitutive relation (2.26) by

ξ = σφ1(|σ|κ) (2.71)

in which κ := |K1/2[I]| > 0.

The first term on the right hand side of (2.70) is negative while the second and third
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terms are non-negative. Also, by assumption

lim
r→∞

ψ1(r) := lim
r→∞

rφ1(r) =
1

β
<∞ (2.72)

for some β > 0 from which it follows that

|ξ| < 1

βκ
. (2.73)

To construct the desired counterexample to strong ellipticity, we first choose a and b so

thatH · E[I] = 0 making the third term on the right hand side of (2.70) vanish. The idea

now is to choose γ2 << 1 and σ < 0 so that the second term on the right hand side of

(2.70) is smaller than |σ|, thereby making the right hand side of (2.70) negative. Toward

that goal, note that from the fact that φ̃1(r) is increasing and (2.73), the second term on the

right hand side of (2.70) satisfies the bound

φ̃1(|ξ|ε)γ2(Hs · E[Hs]) < γ2φ̃1(ε/2)Λ (2.74)

where Λ is an upper bound for the quadratic formN · E[N ] over all norm-1, second order

tensorsN . Notice that as γ → 0, ξ → −1/2. Moreover, from (2.71) it follows that

|σ| = ψ−1
1 (|ξ|κ)

κ
. (2.75)

Also, if β < 2/κ, that is, the strain limit is not too small, then σ < ξ < 0. Therefore, one

can choose γ << 1 so that the right hand side of (2.74) satisfies

σ < −γ2φ̃1(ε/2)Λ (2.76)

and hence that (2.70) is negative thereby violating strong ellipticity.

The model (2.25) exhibits similar strong ellipticity behavior as (2.26), namely strong

ellipticity holds for deformation gradients sufficiently near the identity (small strains) but

fails if strains are not so severely limited. However, because there is not, in general, a

closed-form expression for the inverse constitutive relation to (2.25), the method of proof
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of these strong ellipticity results given below is based upon (2.23) rather than (2.59) as was

done above for the anisotropic model (2.26). This requires investigating the invertibility of

the fourth order tensor DS̄E
(
S̄
)

= DS̄F
(
S̄
)
. Note first that

DS̄

(∣∣S̄∣∣) [H ] = DS̄

(
S̄ · S̄

) 1
2 [H ] =

1

2

(
S̄ · S̄

)− 1
2 DS̄

(
S̄ · S̄

)
[H ] =

H · S̄∣∣S̄∣∣ . (2.77)

Let

A :=
S̄

|S̄|
, andB :=

I

|I|
, (2.78)

so that

|A| = |B| = 1, (2.79)

and let I denote the fourth order identity tensor. Fréchet differentiation of the right hand

side of (2.25) gives:

DS̄F
(
S̄
) [(
F TH

)
s

]
= φ′0

(
S̄ · I

) (
DS̄

(
S̄ · I

) [(
F TH

)
s

])
I

+ φ′1
(∣∣S̄∣∣) (DS̄

(∣∣S̄∣∣) [(F TH
)

s

])
S̄

+ φ1
(∣∣S̄∣∣) (DS̄S̄

[(
F TH

)
s

])
= φ′0

(
S̄ · I

) ((
F TH

)
s · I

)
I

+ φ′1
(∣∣S̄∣∣)((F TH

)
s · S̄∣∣S̄∣∣

)
S̄

+ φ1
(∣∣S̄∣∣) (F TH

)
s

=
(
3φ′0

(
S̄ · I

)
(B ⊗B) +

∣∣S̄∣∣φ′1 (∣∣S̄∣∣) (A⊗A)

+ φ1
(∣∣S̄∣∣) I) [(F TH

)
s

]
. (2.80)
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Define

α̃ =

∣∣S̄∣∣φ′1 (∣∣S̄∣∣)
φ1
(∣∣S̄∣∣) , β̃ =

3φ′0
(
S̄ · I

)
φ1
(∣∣S̄∣∣) , (2.81)

and note that α̃ < 0 and β̃ > 0. Then the right hand side of (2.80) becomes

φ1

(∣∣S̄∣∣) (β̃B ⊗B + α̃A⊗A+ I
) [(

F TH
)

s

]
. (2.82)

At issue is the invertibility of the fourth order tensor

L := β̃B ⊗B + α̃A⊗A+ I, (2.83)

viewed as an operator on Sym, the six-dimensional vector space of symmetric, second-

order tensors. As is obvious from (2.83), L is self-adjoint, and hence its invertibility can

be studied by appealing to spectral theory: L is invertible if and only if its spectrum does

not contain zero. The spectrum of L is readily determined by constructing an eigen-basis.

To that end, we note that the tensor products B ⊗ B and A ⊗ A are rank-one tensors

over Sym. Thus, an orthonormal eigen-basis for L consists of the union of an orthonormal

basis for Span{A,B} and an orthonormal basis for {A,B}⊥. The construction of an

orthonormal basis for Span{A,B} requires the consideration of cases: A ⊥ B,A = ±B

or 0 < A ·B < 1.

Case 1: A ⊥ B.

For this case, one can take for the spectral expansion of L

L = (1 + α̃)A⊗A+ (1 + β̃)B ⊗B + (I−A⊗A−B ⊗B). (2.84)

We note that

φ1

(∣∣S̄∣∣) (1 + α̃) = φ1

(∣∣S̄∣∣)+
∣∣S̄∣∣φ′1 (∣∣S̄∣∣) > 0, (2.85)

and

φ1

(∣∣S̄∣∣) (1 + β̃
)

= φ1

(∣∣S̄∣∣)+ 3φ′0
(
S̄ · I

)
> 0, (2.86)
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and hence that L is invertible, and

L−1 =
1

1 + α̃
A⊗A+

1

1 + β̃
B ⊗B + (I−A⊗A−B ⊗B) . (2.87)

Case 2: A = ±B.

In this case,A⊗A = B ⊗B giving the spectral expansion:

L = (α̃ + β̃)A⊗A+ (I−A⊗A). (2.88)

Noting that

β̃ + α̃ + 1 =
3φ′0

(
S̄ · I

)
+ φ1

(∣∣S̄∣∣)+
∣∣S̄∣∣φ′1 (∣∣S̄∣∣)

φ1

(∣∣S̄∣∣) > 0 , (2.89)

we see that for this case also, L is invertible with

L−1 =
1

β̃ + α̃ + 1
A⊗A+ (I−A⊗A) . (2.90)

Case 3: 0 < |A ·B| < 1.

Let

T := α̃A⊗A+ β̃B ⊗B, (2.91)

then the eigenvectors of T lie in span{A,B}. Therefore, if V is an eigenvector of T with

associated eigenvalue λ, then V must satisfy

V = γ1A+ γ2B,

in which γ1γ2 6= 0, and

λ = β̃ (1 + δ(A ·B)) , (2.92)

with

δ :=
γ1

γ2

. (2.93)
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One readily shows that δ must satisfy

δ2 +

(
1 +

∣∣∣∣ α̃β̃
∣∣∣∣)

A ·B
δ +

∣∣∣∣ α̃β̃
∣∣∣∣ = 0 . (2.94)

The two roots, δ1,2, of (2.94) are both positive ifA ·B < 0 and both negative ifA ·B > 0.

In either case, it follows that one can number the associated eigenvalues λ1,2 in order that

they satisfy:

λ1,2 = β̃ (1 + δ1,2(A ·B))
>

<
0. (2.95)

Letting Ṽ 1,2 denote the normalized eigenvectors corresponding to δ1,2, one concludes that

the fourth-order tensor L[·] has the spectral expansion:

L =
(

(λ1 + 1)Ṽ 1 ⊗ Ṽ 1 + (λ2 + 1)Ṽ 2 ⊗ Ṽ 2 +
(
I− Ṽ 1 ⊗ Ṽ 1 − Ṽ 2 ⊗ Ṽ 2

))
.

(2.96)

From (2.95), it follows that the eigenvalue λ1 + 1 > 0. However, in general, the eigenvalue

λ2 + 1 can be positive, negative or zero. Thus, the fourth-order tensor (2.96) need not be

invertible on Sym, and if λ2 +1 = 0, one can always choose a, b and F so that (F TH)s is

not orthogonal to V 2, and hence not in the subspace on which (2.96) is invertible. However,

we make use of the observation: if |S̄| → 0 then |E| → 0 and |F − I| → 0, so α̃→ 0 and

β̃ → 3φ′0(0)/φ1(0) > 0. One then concludes that 1 + λ2 > 0 if |S̄| and |E| are sufficiently

small, and hence L−1 can be expressed through the spectral expansion:

L−1 =
1

λ1 + 1
Ṽ 1 ⊗ Ṽ 1 +

1

λ2 + 1
Ṽ 2 ⊗ Ṽ 2 +

(
I− Ṽ 1 ⊗ Ṽ 1 − Ṽ 2 ⊗ Ṽ 2

)
(2.97)

or in the equivalent form:

L−1 = I− λ1

λ1 + 1
Ṽ 1 ⊗ Ṽ 1 −

λ2

λ2 + 1
Ṽ 2 ⊗ Ṽ 2. (2.98)

We consider next strong ellipticity for the model (2.25), making use of the above three

cases for the specific form the fourth-order tensor L−1[·] takes.
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Case 1: A ⊥ B.

Combining (2.23) and (2.87), one obtains:

H · DF Ŝ(F )[H ] = H · (HS̄(E)) +
(
F TH

)
s · DES̄(E)

[(
F TH

)
s

]
(2.99)

= b ·
(
S̄b
)

(2.100)

+
(∣∣ (F TH

)
s

∣∣2
− β̃

1 + β̃

(
F TH

)
s · (B ⊗B)

[(
F TH

)
s

]
(2.101)

− α̃

1 + α̃

(
F TH

)
s · (A⊗A)

[(
F TH

)
s

]) 1

φ1

(∣∣S̄∣∣) . (2.102)

Note that∣∣ (F TH
)

s · (B ⊗B)
[(
F TH

)
s

] ∣∣ =
∣∣(B ⊗B) ·

((
F TH

)
s ⊗
(
F TH

)
s

) ∣∣
≤

∣∣ (F TH
)

s

∣∣2. (2.103)

Therefore,

∣∣ (F TH
)

s

∣∣2 − β̃

1 + β̃

(
F TH

)
s · (B ⊗B)

[(
F TH

)
s

]
≥
(

1

1 + β̃

) ∣∣ (F TH
)

s

∣∣2.
(2.104)

The key observation to make is that as S̄ → 0, then: E → 0, |F − I| → 0, α̃ → 0

and β̃ → 3φ′0(0)/φ1(0) > 0. It follows that for sufficiently small stresses and strains, the

right-hand-side of (2.99) is positive for all rank-one tensorsH , and hence strong ellipticity

holds.

Case 2: A = ±B.

Combining (2.23) and (2.90) gives:

H · DF Ŝ(F )[H ] = b ·
(
S̄b
)

27



+
1

φ1

(∣∣S̄∣∣) (∣∣ (F TH
)

s

∣∣2
− α̃ + β̃

1 + α̃ + β̃

(
F TH

)
s · (B ⊗B)

[(
F TH

)
s

])
. (2.105)

Appealing to the inequalities (2.103) and (2.104), we see by the same argument used in

Case 1, that for sufficiently small stresses and strains, the right-hand-side of (2.105) is

positive for all rank-one tensorsH , as required for strong ellipticity.

Case 3: 0 < |A ·B| < 1.

Substitution of (2.98) into (2.23) gives:

H · DF Ŝ(F )[H ] = b ·
(
S̄b
)

+
1

φ1

(∣∣S̄∣∣) (∣∣ (F TH
)

s

∣∣2
− λ1

1 + λ1

(
Ṽ 1 ·

(
F TH

)
s

)2

− λ2

1 + λ2

(
Ṽ 2 ·

(
F TH

)
s

)2
)

(2.106)

≥ b ·
(
S̄b
)

+
1

φ1

(∣∣S̄∣∣)
(∣∣ (F TH

)
s

∣∣2 − λ1

1 + λ1

(
Ṽ 1 ·

(
F TH

)
s

)2
)

(2.107)

≥ b ·
(
S̄b
)

+
1

φ1

(∣∣S̄∣∣) (1 + λ1)

∣∣ (F TH
)

s

∣∣2 , (2.108)

in which (2.107) follows from (2.95) and (2.108) makes use of:(
Ṽ 1 ·

(
F TH

)
s

)2

≤
∣∣ (F TH

)
s

∣∣2.
Now the argument of Case 1 applies to conclude that for sufficiently small stress and strain,

the first term on the right-hand-side of (2.108) can be made arbitrarily small in magnitude

while the second term has a strictly positive lower bound for all rank-one tensorsH thereby

proving strong ellipticity.
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2.5 Examples

We examine in this section examples inspired by models studied by Rajagopal and

co-authors [10, 20, 16]. Consider first the model (2.25) with

φ0(r) := α0

(
1− exp

(
−β0r

1 + δ0|r|

))
(2.109)

and

φ1(r) :=
α1

1 + β1r
, (2.110)

where α0, β0, δ0, α1, and β1 are positive constants. Then one immediately verifies that:

φ1(r) is a positive, decreasing function while rφ1(r) is a bounded, increasing function;

φ0(r) is a bounded, increasing function that is positive for r > 0 and negative for r < 0. The

results in the previous section apply to conclude that this model satisfies strong ellipticity

provided the sum of the upper bounds on φ0(r) and rφ1(r) are small enough. Of interest in

this section is deriving explicit conditions under which the model (2.25), (2.109), (2.110)

loses strong ellipticity.

We take

S̄ = µI, (2.111)

and

F = γI, (2.112)

where µ and γ are constants with γ2 << 1. Then

E =
1

2

(
γ2 − 1

)
I = φ0(3µ)I + φ1

(√
3|µ|

)
µI, (2.113)

i.e.

1

2

(
γ2 − 1

)
= φ0(3µ) + µφ1

(√
3|µ|

)
= α0

(
1− exp

(
−3β0µ

1 + 3δ0|µ|

))
+

α1µ

1 +
√

3β1|µ|
. (2.114)
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From (2.109), we note that φ0(r) > 0 when r > 0, and φ0(r) < 0 when r < 0. By (2.114),

we must have µ < 0 (because if µ > 0 then both terms on the right hand side of (2.114) are

positive, which contradicts to the hypothesis γ2 << 1).

Define

A =
S̄

|S̄|
, andB =

I

|I|
(2.115)

and note that

|A| = |B| = 1, andA⊗A = B ⊗B. (2.116)

Let I denote the fourth order identity tensor.

A lengthy but straightforward calculation gives:

DS̄F(S̄)
[(
F TH

)
s

]
=
((

3φ′0(3µ) +
√

3|µ|φ′1
(√

3|µ|
))
B ⊗B

) [(
F TH

)
s

]
+
(
φ1

(√
3|µ|

)
I
) [(

F TH
)

s

]
. (2.117)

Let

K := φ1

(√
3|µ|

)
, (2.118)

L := 3φ′0(3µ) +
√

3|µ|φ′1
(√

3|µ|
)
, (2.119)

and note that K > 0 and K + L > 0. We then have the spectral decomposition

DS̄F(S̄)
[(
F TH

)
s

]
= K

((
L

K
+ 1
)

(B ⊗B) + (I−B ⊗B)

)[(
F TH

)
s

]
.

(2.120)

Hence,

DES̄(E)
[(
F TH

)
s

]
=
(
DS̄F(S̄)

)−1 [(
F TH

)
s

]
=

1
K

((
K

L+K

)
B ⊗B + (I−B ⊗B)

)[(
F TH

)
s

]
.

(2.121)
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Since |H| = 1, it follows that

H · DF Ŝ(F )[H ] = H · (HS̄(E)) +
(
F TH

)
s · DES̄(E)

[(
F TH

)
s

]
= µ+ γ2Hs ·

(
DS̄F(S̄)

)−1
[Hs]

= µ+
γ2

K

((
−L

L+K

)
(Hs ·B)2 +Hs ·Hs

)

= µ+
γ2

K

((
−L

L+K

)
(a · b)2

3
+

1 + (a · b)2

2

)
. (2.122)

Notice that as µ→ −∞, the right-hand-side of (2.114) converges to:

−ξ∞ := −α0

(
exp

(
β0

δ0

)
− 1

)
− α1√

3β1

. (2.123)

Thus, provided ξ > 1/2 in (2.123), as γ → 0, then µ tends to a finite, negative limit and K

is bounded away from zero. Hence, provided ξ > 1/2, the right-hand-side of (2.114) can

be made negative by taking γ small enough.

We consider next the model (in dimensionless form):

E =
S̄

1 + β |S̄|
(2.124)

that was studied by Rajagopal and co-authors in the setting of anti-plane shear, infinites-

imal deformations [10, 20]. Here, (2.124) is considered for finite strain, simple shear

deformations of the form:

F = I + γ e1 ⊗ e2 (2.125)

where γ is a scalar, and e1 and e2 are orthogonal unit vectors. For deformations of the form

(2.125), one easily shows that the spectrum of E is {γλ1,2, 0} with

λ1,2 :=
1

4

(
γ ±

√
4 + γ2

)
. (2.126)

We note that λ1λ2 = −1/4, and hence E has one negative eigenvalue.
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The constitutive relation (2.124) can be readily inverted to give:

S̄ =
E

1− β |E|
=: ψ(|E|)E. (2.127)

It follows that the quadratic form (2.59) takes the form:

H · DF Ŝ(F )[H ] = (b · S̄b) + ψ(|E)|(F TH)s|2

+ ψ(|E|)2

(
(F TH)s ·E)2 β

|E|

)

= ψ(|E|)
(
(b ·Eb) + |(F TH)s|2

)
(2.128)

+ ψ(|E|)2

(
(F TH)s ·E)2 β

|E|

)
. (2.129)

We now record a few useful facts. First, note that ifH := a⊗ b, then

|(F TH)s|2 =
1

2

(
|F Ta|2 + (b · F Ta)2

)
. (2.130)

Moreover, one readily shows that:

|F Ta|2 = (a · FF Ta) = 1 + 2(a ·Da) (2.131)

where

D :=
1

2
(FF T − I). (2.132)

Note also thatD and E have the same spectrum.

We first show that the model (2.124) is strongly elliptic for simple shear deforma-

tions of the form (2.125) provided |γ| << 1. To that end, note that |E| = |D| =

(|γ|/2)
√

2 + γ2 → 0 as γ → 0. Making use of (2.130) and (2.131), one sees that

H · DFS(F )[H ] ≥ ψ(|E|)
(

1

2
+ (b ·Eb) + (a ·Da)

)
. (2.133)

Thus, there exists γ0 > 0 so that (2.133) is positive for all unit vectors a and b provided

|γ| < γ0 proving strong ellipticity.
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We now demonstrate the loss of strong ellipticity for β small enough. Note, from

(2.124) it follows that 1/β is the upper-bound on |E|, so that taking β small, raises the

limiting strain upper-bound. The violation of strong ellipticity will be demonstrated by

finding unit vectors a and b, and scalar γ so that the sum of (2.128) and (2.129) is negative.

To that end, express a and b as:

a = α1e1 + α2e2, b = β1e1 + β2e2 (2.134)

with

α2
1 + α2

2 = β2
1 + β2

2 = 1. (2.135)

Then (2.128) can be rewritten as:

ψ(|E|)
(
(b ·Eb) + |(F TH)s|2

)
=
ψ(|E|)

2
(1 + g(γ;α1, β1)) (2.136)

in which

g(γ;α1, β1) := A

(
γ +

B

A

)2

+ C − B2

A
(2.137)

with

A(α1, β1) = 1.0 + 2α2
1 − β2

1 − α2
1β

2
1 (2.138)

B(α1, β1) = α1(2.0− β2
1)
√

1.0− α2
1 + β1(1.0 + α2

1)
√

1.0− β2
1 (2.139)

C(α1, β1) =

(
α1β1 +

√
(1.0− α2

1)(1.0− β2
1)

)2

. (2.140)

Indeed, we have

E =
1

2
(F TF − I) =

1

2
((I + γe2 ⊗ e1)(I + γe1 ⊗ e2)− I)

=
1

2
(γ(e1 ⊗ e2 + e2 ⊗ e1) + γ2e2 ⊗ e2) . (2.141)
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Now,

b ·Eb =
1

2
(β1e1 + β2e2) · (γ(e1 ⊗ e2 + e2 ⊗ e1) + γ2e2 ⊗ e2)(β1e1 + β2e2)

=
1

2
(β1e1 + β2e2) · (γβ2e1 + γβ1e2 + γ2β2e2)

=
1

2
(2γβ1β2 + γ2β2

2)

=
1

2

(
2γβ1

√
1− β2

1 + γ2(1− β2
1)

)
. (2.142)

Next,

F TH = (I + γe2 ⊗ e1)((α1e1 + α2e2)⊗ (β1e1 + β2e2))

= (I + γe2 ⊗ e1)(α1β1e1 ⊗ e1 + α1β2e1 ⊗ e2 + α2β1e2 ⊗ e1 + α2β2e2 ⊗ e2)

= α1β1e1 ⊗ e1 + α1β2e1 ⊗ e2 + α2β1e2 ⊗ e1 + α2β2e2 ⊗ e2

+ γα1β1e2 ⊗ e1 + γα1β2e2 ⊗ e2

= α1β1e1 ⊗ e1 + α1β2e1 ⊗ e2

+ (α2β1 + γα1β1)e2 ⊗ e1 + (α2β2 + γα1β2)e2 ⊗ e2 . (2.143)

Thus,

|(F TH)s|2 = (F TH)s · (F TH)s

=
1

4
(α1β1e1 ⊗ e1 + α1β2e1 ⊗ e2

+ (α2β1 + γα1β1)e2 ⊗ e1 + (α2β2 + γα1β2)e2 ⊗ e2

+ α1β1e1 ⊗ e1 + α1β2e2 ⊗ e1

+ (α2β1 + γα1β1)e1 ⊗ e2 + (α2β2 + γα1β2)e2 ⊗ e2)
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· (α1β1e1 ⊗ e1 + α1β2e1 ⊗ e2

+ (α2β1 + γα1β1)e2 ⊗ e1 + (α2β2 + γα1β2)e2 ⊗ e2

+ α1β1e1 ⊗ e1 + α1β2e2 ⊗ e1

+ (α2β1 + γα1β1)e1 ⊗ e2 + (α2β2 + γα1β2)e2 ⊗ e2)

=
1

4
(2α1β1e1 ⊗ e1 + (α1β2 + α2β1 + γα1β1)e1 ⊗ e2

+ (α1β2 + α2β1 + γα1β1)e2 ⊗ e1 + 2β2(α2 + γα1)e2 ⊗ e2)

· (2α1β1e1 ⊗ e1 + (α1β2 + α2β1 + γα1β1)e1 ⊗ e2

+ (α1β2 + α2β1 + γα1β1)e2 ⊗ e1 + 2β2(α2 + γα1)e2 ⊗ e2)

=
1

4

(
4α2

1β
2
1 + 2(α1β2 + α2β1 + γα1β1)2 + 4β2

2(α2 + γα1)2
)

=
1

2

(
2α2

1β
2
1 + (α2

1β
2
2 + α2

2β
2
1 + γ2α2

1β
2
1)

+ 2(α1α2β1β2 + γα2
1β1β2 + γα1α2β

2
1)

+ 2β2
2(α2

2 + 2γα1α2 + γ2α2
1)
)
. (2.144)

Now,

b ·Eb+ |(F TH)s|2 =
1

2

(
2α2

1β
2
1 + α2

1(1− β2
1) + (1− α2

1)β2
1 + γ2α2

1β
2
1

+ 2α1β1

√
1− α2

1

√
1− β2

1 + 2γα2
1β1

√
1− β2

1 + 2γα1β
2
1

√
1− α2

1

+ 2(1− β2
1)(1− α2

1 + 2γα1

√
1− α2

1 + γ2α2
1)

+ 2γβ1

√
1− β2

1 + γ2(1− β2
1)

)

=
1

2

(
2α2

1β
2
1 + α2

1 − α2
1β

2
1 + β2

1 − α2
1β

2
1 + γ2α2

1β
2
1
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+ 2α1β1

√
1− α2

1

√
1− β2

1 + 2γα2
1β1

√
1− β2

1 + 2γα1β
2
1

√
1− α2

1

+ 2(1− β2
1)(1− α2

1 + 2γα1

√
1− α2

1 + γ2α2
1)

+ 2− 2α2
1 + 4γα1

√
1− α2

1 + 2γ2α2
1

− 2β2
1 + 2α2

1β
2
1 − 4γα1β

2
1

√
1− α2

1 − 2γ2α2
1β

2
1

+ 2γβ1

√
1− β2

1 + γ2 − γ2β2
1

)

=
1

2

(
2 + 2α2

1β
2
1 − α2

1 − β2
1 − γ2α2

1β
2
1 + 2α1β1

√
1− α2

1

√
1− β2

1

+ 2γα2
1β1

√
1− β2

1 − 2γα1β
2
1

√
1− α2

1 + 4γα1

√
1− α2

1

+ 2γ2α2
1 + 2γβ1

√
1− β2

1 + γ2 − γ2β2
1

)

=
1

2

(
−γ2α2

1β
2
1 + 2γα2

1β1

√
1− β2

1 − 2γα1β
2
1

√
1− α2

1 + 4γα1

√
1− α2

1

+ 2γ2α2
1 + 2γβ1

√
1− β2

1 + γ2 − γ2β2
1

+ 2 + 2α2
1β

2
1 − α2

1 − β2
1 + 2α1β1

√
1− α2

1

√
1− β2

1

)

=
1

2

(
1 +

(
α1β1 +

√
(1− α2

1)(1− β2
1)

)2

+ γ2(−α2
1β

2
1 + 2α2

1 + 1− β2
1)

+ 2γ(α2
1β1

√
1− β2

1 − α1β
2
1

√
1− α2

1 + 2α1

√
1− α2

1 + β1

√
1− β2

1

)

=
1

2

(
1 + A

(
γ +

B

A

)2

+ C − B2

A

)
. (2.145)
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From (2.137), it follows that the minimum value of g(γ;α1, β1) is given by

g(γm;α1, β1) = C − B2

A
(2.146)

where

γm := −B
A
. (2.147)

By direct calculation, one easily sees that (2.146) can take values less than -1. For example,

letting α1 = 0.5 and β1 = 0.87 gives g(γm; 0.5, 0.87) = −1.34 with γm = −1.94. Sub-

stituting these values into (2.136) gives a negative result. Next, ones observes that for γ

fixed, ψ(|E|)→ 1.0 and β/|E| → 0 as β → 0, that is, as the upper bound on strains grows

to infinity. It follows that (2.129) can be made arbitrarily small while (2.128) remains

negative and uniformly bounded away from zero making the sum of (2.128) and (2.129)

negative, thereby violating strong ellipticity.

2.6 Conclusions

This Chapter investigates the question of strong ellipticity (rank-1 convexity) for

implicit constitutive and strain-limiting models of elastic-like (non-dissipative) material

bodies. A general strategy is suggested for addressing the question for general implicit

theories which is then applied to a variety of strain-limiting models inspired by examples

considered recently by Rajagopal and a number of co-authors. It is shown for the classes

of models studied herein, that strong ellipticity holds in the small strain limit and that it

fails if strains can become sufficiently large. Failure of strong ellipticity was shown to

occur for both purely compressive and simple shear deformations. It should be noted that

most of the emphasis of Rajagopal and co-authors in strain-limiting theories of elastic

material behavior has been directed to the infinitesimal strain setting because it provides

a logically consistent means of deriving nonlinear, infinitesimal strain models from the

corresponding finite strain formulation. As shown herein, it is in the small strain limit
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that strong ellipticity is guaranteed to hold for the strain-limiting models considered by

Rajagopal and co-authors.

The present contribution should be viewed as a small early step in an extended program

to study mathematical properties of implicit constitutive theories in elasticity. Emphasis

here has been directed to a few relatively simple classes of strain-limiting models explored

by Rajagopal and various co-authors. Of particular interest is extending the exploration of

strong ellipticity, invertibility and equivalent Green elastic formulations begun herein to

strain-limiting models with stronger nonlinearity of the form:

E = F(S̄) := φ0(S̄)I + φ1(S̄)S̄ + φ2(S̄)S̄
2 (2.148)

in which φj(·), j = 1, 2, 3 are scalar-valued functions. For this class of models, it is easy

to produce physically meaningful examples for which (2.148) does not have a globally

equivalent Cauchy elastic formulation, that is, the graph of the relation (2.148) is not also

the graph of a constitutive relation of the form

S̄ = F−1(E). (2.149)

Moreover, the class of models (2.148) also gives rise to examples for which the locally

defined (that is, from a branch of the graph of (2.148)) response function Ŝ(F ) is not

differentiable, so that the relevant rank-one convexity notion to consider is not (2.18), but

rather the more general monotonicity condition (2.24). These issues will be addressed in

Chapter 3.
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3. MONOTONICITY FOR STRAIN-LIMITING THEORIES OF ELASTICITY*

This Chapter introduces Monotonicity for Strain-Limiting Theories of Elasticity [11].

3.1 Motivation

As we discussed in Chapter 2, in [12], the strain-limiting models have the Green-

St.Venant strain written as a nonlinear response function of the second Piola-Kirchhoff

stress, and it was assumed that the nonlinear response function has the Fréchet derivative

invertible as a fourth-order tensor. However, in some important classes of models intro-

duced by Rajagopal and co-authors, this invertibility condition fails. We investigate here

the more general notion of monotonicity for such strain-limiting models.

The study of strong ellipticity in nonlinear elasticity typically involves determining, for

a particular constitutive relation, classes of deformation gradients for which strong ellipticity

holds and conversely classes of deformation gradients for which it fails [9, 13, 21, 22, 23].

Of particular interest in this context is the work of Merodio and Ogden [13]. For the class

of strain limiting constitutive models considered herein, monotonicity is investigated for

several classes of deformations including pure compression and simple shear. We show

that monotonicity holds for deformations with (a suitable) strain having sufficiently small

norm; whereas, counterexamples are constructed to demonstrate the failure of mononicity

for appropriately chosen deformations.

3.2 Notation and Preliminaries

In this Chapter, we adopt the same notation and preliminaries from Chapter 2, and

introduce some new ones. For a Cauchy Elastic body whose First Piola-Kirchhoff response

∗Part of this chapter is reprinted with kind permission of Springer Science+Business Media, ‘‘On Monotonicity
for Strain-Limiting Theories of Elasticity’’ by Tina Mai and Jay R. Walton, in press Journal of Elasticity.
Published online before print October 09, 2014; http://link.springer.com/article/10.1007/s10659-014-9503-4.
DOI: 10.1007/s10659-014-9503-4. Copyright 2014 by Springer Science+Business Media Dordrecht.
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function Ŝ(·) is not differentiable at some deformation gradient F , we consider a weaker

rank-1 convexity notion provided by the monotonicity condition [1]:

(Ŝ(F + αH)− Ŝ(F )) ·H > 0 (3.1)

for all rank-1 tensorsH = a⊗ b (with |a| = |b| = 1) and 0 < α ≤ 1 such that

det(F + αH) > 0. (3.2)

In case the response function Ŝ(·) is differentiable, a weaker form of (2.18) is derived from

(2.24) with ‘‘>’’ replaced by ‘‘≥’’.

Let us recall from Chapter 2 that an interesting special class of strain-limiting constitu-

tive relations introduced by Rajagopal and co-authors in [17, 18, 19] has the form:

F(T ) = φ0(T )I + φ1(T )T + φ2(T )T 2, (3.3)

where I denotes the second-order identity tensor and each φj(T ) is a scalar valued function

of the isotropic invariants of T with |φ0(T )|, |φ1(T )||T |, and |φ2(T )||T 2| all uniformly

bounded functions on Sym, the space of symmetric, second-order tensors. Strong ellipticity

was investigated in [12] for models inspired by (3.3) for the special case of φ2(·) = 0. The

case of φ2(·) 6= 0 is more difficult and is the subject of the present Chapter.

In the direction of studying strong ellipticity and relaxing the assumption of isotropy,

we considered in [12] the following constitutive relations as substitutions for (2.9) and

(2.10)

0 = F(E, S̄) (3.4)

E = F(S̄). (3.5)

The current study focuses on the special case of (2.15) in which the response function F(·)

is uniformly bounded in norm. Appealing to the classical Cayley-Hamilton theorem, the
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response function F(S̄) has the general representation:

F(S̄) = φ0(S̄)I + φ1(S̄)S̄ + φ2(S̄)S̄
2
, (3.6)

where the coefficient functions φj(·) are scalar valued, and in the strain limiting case, they

satisfy the additional assumption that |φ0(S̄)|, |φ1(S̄)||S̄| and |φ2(S̄)||S̄2| are uniformly

bounded. To date, in the various applications, analyses and numerical simulations of strain

limiting models of the form (3.3) or (3.6) that have appeared in the literature, attention has

been limited to the special case in which φ2(·) is identically zero. This is due primarily

to two considerations, the first being that when φ2(·) is non-zero, analysis of (3.3) or

(3.6) encounters significant added complexity, and the second being that even with φ2(·)

identically zero, the models still exhibit a rich array of behaviors such as non-linear stress-

strain response even in the infinitesimal strain regime.

An important issue with models of the form (3.6) is invertibility of the response function.

Even when φ2(·) is identically zero, one can readily construct strain-limiting models in

the class (3.6) for which F(·) is not uniquely invertible, giving rise to stress-mediated

bifurcations. However, for the analyses in [12], [20] and [8], attention was restricted to

cases in which F(·) is uniquely invertible. When φ2(·) is not identically zero, a set-valued

inverse of (3.6) is the rule unless the third term in (3.6) is strongly dominated by the first

two terms. Moreover, even when (3.6) is uniquely invertible, its Fréchet derivative need not

be (when viewed as a linear transformation on the space of second-order tensors), thwarting

attempts to generalize the approach utilized in [12] for studying strong ellipticity for (3.6)

when φ2(·) is identically zero to the case when it is not. The primary purpose of the present

contribution is to show that the approach taken in [12] for studying strong ellipticity for

(3.6) when φ2(·) is identically zero can be generalized to the case φ2(·) not identically zero

by consideration of the weaker notion of convexity, monotonicity, that does not require

Fréchet differentiability of F(·).
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As mentioned above, an important feature of the class of models (3.6) is their ability

to capture a nonlinear stress-strain response even in the infinitesimal strain limit. It is

important to point out that the infinitesimal strain limit of (3.6) need not be a limiting strain

theory. However, when it is, it provides an appealing framework in which to study brittle

fracture as illustrated in [20] and [8]. These studies adopted a special case of (3.6) in which

φ0(·) and φ2(·) both vanish identically and

E = φ1(S̄)S̄ = φ̃(|S̄|)S̄ =
S̄

1 + β|S̄|
. (3.7)

In [12], it was shown that this model is hyperelastic and strongly elliptic in the small strain

regime. It was also shown that strong ellipticity fails if the small strain assumption is

relaxed. Moreover, through asymptotic arguments, it was demonstrated in [20] and [8]

that stress as well as strain is controlled in the neighborhood of a crack tip. Additionally,

recent direct numerical simulations support these asymptotic predictions and illustrate how

the use of such strain limiting models in numerical simulations of brittle fracture obviate

the need for extensive mesh refinement near a crack tip, or the introduction of cohesive

or process zone crack tip models. These numerical simulations also show that the linearly

elastic solution is recovered outside of a small neighborhood of a crack tip and globally as

β → 0 .

It is straightforward to adapt the analyses in [20], [8] and [12] to more general models

of the form E = φ(|S̄|)S̄ with φ(r) bounded, nonnegative and decreasing for r > 0,

and satisfying rφ(r) ≤ M < ∞ uniformly for 0 < r < ∞, along with mild smoothness

assumptions. However, the analysis in these works was restricted to the simple model (3.7)

to avoid unnecessary complication that might obscure the essence of the arguments.

In the spirit of these past investigations, the present contribution focusses on the sub-

class of (3.6) taking the form:

F(S̄) = φ1(|S̄|)S̄ + φ2(|S̄|2)S̄
2
, (3.8)
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in which

φ1(r) :=
α1

1 + β1r
, (3.9)

φ2(r) :=
α2

1 + β2r
, (3.10)

where α1, α2, β1 and β2 are nonnegative constants. In order for the model (3.8)...(3.10)

to be strain limiting, β1 and β2 are assumed to be strictly positive, and stability demands

that α1 also be strictly positive. However, both α2 positive and negative lead to physically

relevant models. In the analysis to follow, it will be assumed that the response function

(3.8)...(3.10) is uniquely invertible, which can be guaranteed provided the function rφ2(r)

is dominated by the function rφ1(r), in a sense to be made precise below. When such

is the case, the convexity analysis presented below is valid for α2 positive, negative and

zero. Therefore, without loss of generality, we assume that α2 is nonnegative. When the

function rφ2(r) is not suitably dominated by the function rφ1(r) and the response function

(3.8)...(3.10) has a multi-valued inverse, then one must take account of the sign of α2 in

investigations of convexity. This results in a more delicate analysis that will be the topic

of a future contribution. Also, we note that a necessary condition for the model (3.8) to

correspond to a hyperelastic material response is for the coefficient function φ2(r) to be

identically constant. In particular, no strain limiting model of the form (3.8) with φ2(r) not

identically zero can be hyperelastic. In the appendix, we provide a brief discussion of this

issue. Finally, through nondimensionalization, we can set α1 = 1.

The following notations are used for the rest of this Chapter. We denote by Hs the

symmetric part of H , Hs := (H +HT)/2, for any second-order tensor H . We notice

and also introduce new notations as follows:

DS̄

(∣∣S̄∣∣) [H ] = DS̄

(
S̄ · S̄

) 1
2 [H ] =

1

2

(
S̄ · S̄

)− 1
2 DS̄

(
S̄ · S̄

)
[H ] =

H · S̄∣∣S̄∣∣ . (3.11)

43



Let

A :=
S̄∣∣S̄∣∣ , B :=

S̄
2∣∣∣S̄2
∣∣∣ , and P :=

I

|I|
, (3.12)

so that

|A| = |B| = |P | = 1, (3.13)

and let I denote the fourth-order identity tensor.

3.3 Monotonicity - General Observation

As shown in [12], strong ellipticity for the class of strain-limiting models (2.15) requires:

H · DF Ŝ(F )[H ] = H · (HS̄(E))

−
(
F TH

)
s
·
(
DS̄F(S̄)

)−1 [
(F TH)s

]
> 0 (3.14)

where
(
DS̄F(S̄)

)−1
[·] denotes the inverse of the fourth-order tensor DS̄F(S̄)[·].

When the fourth-order tensor
(
DS̄F(S̄)

)
[·] is not invertible, as will be shown to be the

case for the models (3.6), we investigate monotonicity as a substitute for strong ellipticity.

When (2.15) is uniquely invertible, we make use of an equivalent form of monotonicity

(2.24):

(F̃ S̃ − F S̄) ·H > 0, (3.15)

where

F̃ = F + αH , (3.16)

Ŝ(F ) = F ̂̄S(E) = F S̄, (3.17)

and

Ŝ(F + αH) = F̃ ̂̄S(Ẽ) = F̃ S̃, (3.18)

for all rank-1 tensors H = a ⊗ b (with |a| = |b| = 1) and 0 < α ≤ 1. Note that when

E, S̄ satisfy (2.15), so do Ẽ, S̃.
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3.4 Compression and Dilation

Consider a model of the form (3.8) with

F = γI, (3.19)

γ is a positive scalar. Compression and dilation correspond to 0 < γ < 1 and 1 < γ,

respectively. Then, the Green-St.Venant strain is

E =
1

2
(γ2 − 1)I, (3.20)

and from the constitutive relation (3.8), the stress has the form

S̄ = σ̄I, (3.21)

where σ̄ is a constant. Now, (3.8) becomes

1

2
(γ2 − 1) = g(σ̄) :=

σ̄

1 +
√

3β1|σ̄|
+

α2σ̄
2

1 + 3β2σ̄2
. (3.22)

We note that letting γ → 0+ in (3.22) imposes a lower bound on compressive stresses

σ̄ < 0 while letting σ̄ →∞ imposes an upper bound on dilatational strains γ > 1.

3.4.1 Invertibility

In this section, we investigate the questions of unique invertibility of the response

function (3.8) and its Fréchet derivative (viewed as a linear transformation on the space

of symmetric second-order tensors) for the special cases of pure compression and dilation.

We show that (3.8) is uniquely invertible for dilation but can fail to be for compression

except for sufficiently small strains. It is also shown that even when (3.8) is uniquely

invertible, its Fréchet derivative need not be. As noted above, when this is the case, the

approach to strong ellipticity utilized in [12] cannot be applied to (3.8) which motivates our

consideration of monotonicity in the following section.
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From (3.22), a straightforward calculation gives:

g′(σ̄) =
1

(1 +
√

3β1|σ̄|)2
+

2α2σ̄

(1 + 3β2σ̄2)2
. (3.23)

Since α2 ≥ 0, it follows that if σ̄ > 0 (dilation), then g′(σ̄) > 0, and thus (3.8) is uniquely

invertible under dilation. In case σ̄ < 0 (compression), we show below that there exists an

interval of σ̄ < 0 in which g′(σ̄) > 0, i.e. (3.8) is uniquely invertible.

We now consider the invertibility of the fourth-order tensor
(
DS̄F(S̄)

)
[·] for models

of the form (3.8). With the notations A,B,P as defined in (3.12) and (3.13), Fréchet

differentiation of the right hand side of (3.8) gives:

DS̄

(
F
(
S̄
)) [(

F TH
)

s

]
= DS̄

(
φ1

(∣∣S̄∣∣) S̄ + φ2

(∣∣S̄∣∣2) S̄2
) [(

F TH
)

s

]
= φ′1

(∣∣S̄∣∣) (DS̄

(∣∣S̄∣∣) [(F TH
)

s

])
S̄ + φ1

(∣∣S̄∣∣)DS̄S̄
[(
F TH

)
s

]
+ φ′2

(∣∣S̄∣∣2)(DS̄

(∣∣S̄∣∣2) [(F TH
)

s

])
S̄

2

+ φ2

(∣∣S̄∣∣2)DS̄

(
S̄

2
) [(

F TH
)

s

]
= φ′1

(∣∣S̄∣∣) ((F TH
)

s · S̄
)∣∣S̄∣∣ S̄ + φ1

(∣∣S̄∣∣) (I [(F TH
)

s

])
+ φ′2

(∣∣S̄∣∣2) (2S̄ · (F TH
)

s

)
S̄

2

+ φ2

(∣∣S̄∣∣2) ((F TH
)
s
S̄ + S̄

(
F TH

)
s

)
=

((
−β1

∣∣S̄∣∣(
1 + β1

∣∣S̄∣∣)2

)
(A⊗A) +

1

1 + β1

∣∣S̄∣∣I
+

−2α2β2

∣∣∣S̄2
∣∣∣ ∣∣S̄∣∣(

1 + β2

∣∣S̄∣∣2)2

 (B ⊗A)

[(F TH
)

s

]

+

(
α2

1 + β2

∣∣S̄∣∣2
)((

F TH
)
s
S̄ + S̄

(
F TH

)
s

)
. (3.24)
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In the case of compression, again with the notation P as defined in (3.12) and (3.13), we

have

DS̄

(
F
(
S̄
)) [(

F TH
)

s

]
= (K(P ⊗ P ) + L(I))

[(
F TH

)
s

]
, (3.25)

where

L =
1

1 +
√

3β1|σ̄|
+

2α2σ̄

1 + 3β2σ̄2
, (3.26)

K =
−β1

√
3 |σ̄|

(1 +
√

3β1|σ̄|)2
+
−6α2β2|σ̄|3

(1 + 3β2σ̄2)2
. (3.27)

We now show that the fourth-order tensor DS̄

(
F
(
S̄
))

[·] on the left hand side of (3.25) is

not invertible. If σ̄ > 0, then L > 0. However, when α2 = 3, β1 = 1, β2 = 4, it follows

that at

σ̄0 =
−α2 −

√
α2

2 − (3β2 − 2
√

3α2β1)

3β2 − 2
√

3α2β1

= −3.5572 < 0 , (3.28)

L = 0 as an eigenvalue of DS̄

(
F
(
S̄
))

[·]. Therefore, DS̄

(
F
(
S̄
))

[·] is not invertible.

From (3.22), we have g(σ̄) ≥ −1/2. We note that g(σ̄0) = −0.2484 > −1/2, and g′(σ̄0) =

0.0186 > 0. Thus, (3.8) is uniquely invertible in some interval of σ̄ < 0 centered at σ̄0 by

continuity of g′(σ̄). In conclusion, the fourth-order tensor DS̄

(
F
(
S̄
))

[·] on the left hand

side of (3.25) is not invertible in an interval of σ̄ < 0 centered at σ̄0 even though the model

(3.8) itself is uniquely invertible in that interval of σ̄ < 0.

3.4.2 Monotonicity

As shown in the previous subsection, the model (3.8), even when it has an equivalent

Cauchy elastic formulation, can lack sufficient regularity to support strong ellipticity (as

defined in [12]). For that reason, we now investigate the weaker convexity condition of

monotonicity in the form (3.15). We first consider the case γ = 1, then use a continuity

argument to generalize for all γ near 1.

47



When γ = 1, we have F = I , and thus:

E =
1

2
(F TF − I) = 0. (3.29)

From (3.8), it follows that S̄ = 0, and σ̄ = 0. Under the conditions H = a ⊗ b (with

|a| = |b| = 1) and 0 < α ≤ 1, we consider three cases: a = b, a ⊥ b, or 0 < |a · b| < 1.

Case 1: a = b. Then,

F̃ = F + αH = I + α(a⊗ a). (3.30)

Now,

det(I + α(a⊗ a)) = det((α + 1)(a⊗ a) + (I − a⊗ a)) > 0, (3.31)

as (α + 1) > 0. Hence, the condition (3.2) holds. Next,

Ẽ =
1

2
(F̃

T
F̃ − I) = (α +

α2

2
)a⊗ a . (3.32)

From the constitutive relation (3.8), it follows that

S̃ = σ̃(a⊗ a), (3.33)

where σ̃ is a scalar. We also deduce that |S̃| = |σ̃|. Then, the constitutive relation

Ẽ = φ1(|S̃|)S̃ + φ2(|S̃|2)S̃
2

(3.34)

becomes

α +
α2

2
= g(σ̃) := φ1(σ̃)σ̃ + φ2(σ̃2)σ̃2 . (3.35)

Since the left hand side of (3.35) is always positive, it follows that σ̃ > 0. Then, g′(σ̃) > 0

by an argument as for (3.23), and thus (3.34) is uniquely invertible.

Now, the left hand side of (3.15) becomes

(F̃ S̃ − F S̄) · (a⊗ a) = ((I + α(a⊗ a))(σ̃(a⊗ a))) · (a⊗ a)
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= (1 + α)σ̃ > 0 (3.36)

because σ̃ > 0, and then monotonicity also holds for all γ belonging to an interval centered

at γ = 1 by continuity, given α in (0, 1].

Remark 4. In this case for (3.8), the monotonicity condition (3.36) implies the invertibility

condition, but the reverse statement does not hold.

Case 2: a ⊥ b. We have

F̃ = I + α(a⊗ b), (3.37)

and note that det(I + α(a⊗ b)) > 0 for α sufficiently near 0. Next,

Ẽ =
1

2
(F̃

T
F̃ − I) =

1

2
(α(a⊗ b+ b⊗ a) + α2(b⊗ b)) . (3.38)

The eigenvectors of Ẽ associated with the nonzero eigenvalues of Ẽ then have the following

form

v = η1a+ η2b, (3.39)

corresponding to eigenvalues

λ =
1

2
αδ , (3.40)

where η1η2 6= 0, and

δ :=
η2

η1

. (3.41)

One can easily verify that δ must satisfy

δ2 − αδ − 1 = 0, (3.42)

and thus have the specific form

δ1,2 =
α±
√
α2 + 4

2
, (3.43)
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in which δ1 > 0, δ2 < 0. Correspondingly,

λ1,2 =
1

4
α
(
α±
√
α2 + 4

)
, (3.44)

and λ1 > 0, λ2 < 0. Let

δ1 =
η2

η1

, δ2 =
η′2
η′1
. (3.45)

Without loss of generality, we can choose η1 = 1, η′1 = 1. Denote by ṽ1,2 the normalized

eigenvectors associated with λ1,2, and note that ṽ1 ⊥ ṽ2. Let ṽ3 be an orthonormal vector

to {ṽ1, ṽ2}, we then have the spectral decompositions

Ẽ = λ1(ṽ1 ⊗ ṽ1) + λ2(ṽ2 ⊗ ṽ2), (3.46)

and from the constitutive relation (3.8),

S̃ = c1(ṽ1 ⊗ ṽ1) + c2(ṽ2 ⊗ ṽ2), (3.47)

S̃
2

= c2
1(ṽ1 ⊗ ṽ1) + c2

2(ṽ2 ⊗ ṽ2), (3.48)

where c1, c2 are scalars. Since

Ẽ = φ1(|S̃|)S̃ + φ2(|S̃|2)S̃
2
, (3.49)

we deduce that

λ1 = φ1(|S̃|)c1 + φ2(|S̃|2)c2
1, (3.50)

λ2 = φ1(|S̃|)c2 + φ2(|S̃|2)c2
2. (3.51)

Equivalently,

λ1 =
1

4
α
(
α +
√
α2 + 4

)
=

c1

1 + β1

√
c2

1 + c2
2

+
α2c

2
1

1 + β2(c2
1 + c2

2)
, (3.52)

λ2 =
1

4
α
(
α−
√
α2 + 4

)
=

c2

1 + β1

√
c2

1 + c2
2

+
α2c

2
2

1 + β2(c2
1 + c2

2)
. (3.53)

It follows that c1 > 0, c2 < 0.
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We now investigate the invertibility of (3.52) and (3.53). Fixing c2 in (3.52), then

λ1 = g(c1; c2) :=
c1

1 + β1

√
c2

1 + c2
2

+
α2c

2
1

1 + β2(c2
1 + c2

2)
. (3.54)

Next,

∂c1g(c1; c2) =
1(

1 + β1

√
c2

1 + c2
2

)2 +
β1c

2
2√

c2
1 + c2

2

(
1 + β1

√
c2

1 + c2
2

)2

+
2α2c1(1 + β2c

2
2)

(1 + β2(c2
1 + c2

2))2
. (3.55)

Letting α→ 0 in (3.52) leads to c1 → 0. With c1 = 0, we have

∂c1g(0; c2) =
1

1 + β|c2|
> 0 , (3.56)

and thus (3.54) is uniquely solvable for all α near 0 by continuity. Within such an interval

of α, let

c1 = g−1(λ1; c2) := h(c2;λ1). (3.57)

A substitution of (3.57) into (3.53) gives

λ2 = k(c2;λ1) :=
c2

1 + β1

√
c2

1 + c2
2

+
α2c

2
2

1 + β2(c2
1 + c2

2)
, (3.58)

in which c1 = h(c2;λ1) is a function of c2 as in (3.57). We now note that

∂c2h(c2;λ1) = ∂c2g
−1(λ1; c2)

=
−∂c2g(g−1(λ1; c2); c2)

∂c1g(g−1(λ1; c2); c2)

=

β1c1c2√
c2

1 + c2
2

(
1 +

√
c2

1 + c2
2

)2 +
2α2β2c

2
1c2(

1 + β2(c2
1 + c2

2)
)2

∂c1g(c1; c2)
. (3.59)
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Therefore,

∂c2k(c2;λ1) =

√
c2

1 + c2
2 + β1c1(c1 − c2∂c2h(c2;λ1))√

c2
1 + c2

2

(
1 + β1

√
c2

1 + c2
2

)2

+
2α2c2(1 + β2c

2
1 − β2c1c2∂c2h(c2;λ1))

(1 + β2(c2
1 + c2

2))
2

=
1(

1 + β1

√
c2

1 + c2
2

)2

+

β1c1

 c1(
1 + β1

√
c2

1 + c2
2

)2 +
2α2c

2
1(

1 + β2(c2
1 + c2

2)
)2


√
c2

1 + c2
2

(
1 + β1

√
c2

1 + c2
2

)2

∂c1g(c1; c2)

+

2α2c2

(
(1 + β2c

2
1)
√
c2

1 + c2
2 + β1c

2
2

)
√
c2

1 + c2
2

(
1 + β1

√
c2

1 + c2
2

)2 (
1 + β2(c2

1 + c2
2)
)2
∂c1g(c1; c2)

+
4α2

2c1c2(1 + β2c
2
1 + β2c

2
2)(

1 + β2(c2
1 + c2

2)
)2
∂c1g(c1; c2)

. (3.60)

When α→ 0 in both (3.50) and (3.51), we get c1 → 0, c2 → 0, which makes ∂c2k(c2;λ1)

in (3.60) positive. Hence, by a continuity argument, (3.58) is uniquely solvable, leading to

(3.49) uniquely invertible in an interval of α near 0.

Now, the left hand side of the monotonicity condition (3.15) becomes

(F̃ S̃ − F S̄) · (a⊗ b) = ((I + α(a⊗ b))(c1(ṽ1 ⊗ ṽ1) + c2(ṽ2 ⊗ ṽ2))) · (a⊗ b)

= c1(a · ṽ1)(b · ṽ1) + c2(a · ṽ2)(b · ṽ2) + αc1(b · ṽ1)2 + αc2(b · ṽ2)2

=
c1

|v1|2
η1η2 +

c2

|v2|2
η′1η
′
2 +

αc1

|v1|2
η2

2 +
αc2

|v2|2
η′22
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=
c1η2

1 + η2
2

+
c2η
′
2

1 + η′22
+
αc1η

2
2

1 + η2
2

+
αc2η

′2
2

1 + η′22
. (3.61)

Dividing the right hand side of (3.61) by α, then letting α→ 0, we have c1 → 0, c2 → 0

by the uniqueness of solution of the system (3.52) and (3.53); also, η2 → 1, η′2 → −1, and

thus

J := lim
α→0

c1

2α
+
(
− lim

α→0

c2

2α

)
. (3.62)

Let

m1 = lim
α→0

c1

2α
> 0 .

Then, there exists α0 > 0 such that

c1

2α
>
m1

2

for all α in the interval (0, α0). This result holds for γ = 1, so it must hold for an interval

of γ by continuity of the given model (3.8). More specifically, there exist m̃1 > 0 and

γ0 > 0 such that
c1

2α
> m̃1 > 0

for all |γ − 1| < γ0. Applying this argument again to the second summand of J shows that

J is uniformly bounded below by a positive constant. In summary, αJ is positive, and thus

the right hand side of (3.61) is also positive so that monotonicity holds for the given model

(3.8) in an interval of α sufficiently near 0, and in an interval of γ centered at γ = 1.

Case 3: 0 < |a · b| < 1. We still have

F̃ = I + α(a⊗ b), (3.63)

and det(I + α(a⊗ b)) > 0 for all α sufficiently near 0. Similar to Case 2,

Ẽ =
1

2
(F̃

T
F̃ − I) =

1

2
(α(a⊗ b+ b⊗ a) + α2(b⊗ b)) . (3.64)
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The eigenvectors of Ẽ corresponding to the nonzero eigenvalues of Ẽ then have the

following form

v = η1a+ η2b, (3.65)

associated with eigenvalues

λ =
1

2
α(a · b+ δ) , (3.66)

where η1η2 6= 0, and

δ :=
η2

η1

. (3.67)

One can readily show that δ must satisfy

δ2 − αδ − 1− α(a · b) = 0, (3.68)

and thus have specific form

δ1,2 =
α±

√
α2 + 4α(a · b) + 4

2
, (3.69)

in which δ1 > 0, δ2 < 0. Correspondingly,

λ1,2 =
1

4
α
(

2(a · b) + α±
√
α2 + 4α(a · b) + 4

)
. (3.70)

Since

λ1λ2 =
1

16
α2
(
4(a · b)2 − 4

)
< 0 , (3.71)

it follows that λ1 > 0, λ2 < 0. Let

δ1 =
η2

η1

, δ2 =
η′2
η′1
. (3.72)

The constitutive relation

Ẽ = φ1(|S̃|)S̃ + φ2(|S̃|2)S̃
2

(3.73)

is then uniquely invertible in an interval of α near 0 by a similar continuity argument to

Case 2.
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Without loss of generality, we assume that η1 = η′1 = 1. Using the same notations and

argument as in Case 2, we deduce the expression for the left hand side of the monotonicity

condition (3.15) as follows:

(F̃ S̃ − F S̄) · (a⊗ b) = ((I + α(a⊗ b))(c1(ṽ1 ⊗ ṽ1) + c2(ṽ2 ⊗ ṽ2))) · (a⊗ b)

= c1(a · ṽ1)(b · ṽ1) + c2(a · ṽ2)(b · ṽ2) + αc1(b · ṽ1)2 + αc2(b · ṽ2)2

=
c1

|v1|2
(η1 + η2(a · b))(η1(a · b) + η2)

+
c2

|v2|2
(η′1 + η′2(a · b))(η′1(a · b) + η′2)

+
αc1

|v1|2
(η1 + η2(a · b))2 +

αc2

|v2|2
(η′1 + η′2(a · b))2 . (3.74)

We now apply the same argument as in Case 2. Dividing the right hand side of (3.74) by

α, then letting α→ 0, we get c1 → 0, c2 → 0 by the uniqueness of solution of the system

(3.52) and (3.53); also η2 → 1, η′2 → −1, and thus

R :=
(

lim
α→0

c1

2α

)
(1 + a · b)2 +

(
− lim

α→0

c2

2α

)
(1− a · b)2 ,

Since 0 < |a · b| < 1, it follows that (1 + a · b) 6= 0, and (1 − a · b) 6= 0. With this

hypothesis, in R, the first summand is uniformly bounded below by a positive constant

(involving a · b), and the second summand is also uniformly bounded below by a positive

constant (involving a · b). Therefore, αR is positive, and thus the right hand side of (3.74)

is positive also, leading to monotonicity holds for the given model (3.8) in an interval of α

near 0, and in an interval of γ centered at γ = 1.

In summary, given α2 nonnegative, monotonicity holds for the given model (3.8), in an

interval of α which is the intersection of the three intervals of α near 0 in the above three

cases, and in an interval of γ centered at γ = 1 which is also the intersection of the three

intervals of γ in the above three cases.
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3.5 Simple Shear

Now (3.8) is considered for simple shear deformations of the form:

F = I + γe1 ⊗ e2, (3.75)

in which, γ is a scalar satisfying detF > 0, and e1, e2 are orthonormal vectors. Then, the

corresponding Green-St.Venant strain is

E =
1

2
γ(e1 ⊗ e2 + e2 ⊗ e1 + γe2 ⊗ e2). (3.76)

It follows that the eigenvalues of E are λ1,2, 0 with

λ1,2 =
1

4
γ
(
γ ±

√
γ2 + 4

)
, (3.77)

and note that λ1 > 0, λ2 < 0. We denote by ũ1,2 the normalized eigenvectors correponding

to the nonzero eigenvalues of E. The strain then has the following form

E = λ1ũ1 ⊗ ũ1 + λ2ũ2 ⊗ ũ2, (3.78)

and from the constitutive relation (3.8), the stress is

S̄ = c1ũ1 ⊗ ũ1 + c2ũ2 ⊗ ũ2, (3.79)

where c1, c2 are eigenvalues of S̄. From the constitutive equation (3.8), we get

λ1 = φ1(|S̄|)c1 + φ2(|S̄|2)c2
1, (3.80)

λ2 = φ1(|S̄|)c2 + φ2(|S̄|2)c2
2. (3.81)

Equivalently,

λ1 =
1

4
γ
(
γ +

√
γ2 + 4

)
=

c1

1 + β1

√
c2

1 + c2
2

+
α2c

2
1

1 + β2(c2
1 + c2

2)
, (3.82)

λ2 =
1

4
γ
(
γ −

√
γ2 + 4

)
=

c2

1 + β1

√
c2

1 + c2
2

+
α2c

2
2

1 + β2(c2
1 + c2

2)
, (3.83)
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where α2, β1, and β2 are non-negative constants.

3.5.1 Invertibility

By a similar continuity argument to the system (3.52) and (3.53), we deduce that for

the system (3.82) and (3.83), the model (3.8) is uniquely invertible within an interval of γ

centered at γ = 0. Indeed, fixing c2 in the equation (3.82), then

λ1 = g(c1; c2) :=
c1

1 + β1

√
c2

1 + c2
2

+
α2c

2
1

1 + β2(c2
1 + c2

2)
. (3.84)

Next,

∂c1g(c1; c2) =
1(

1 + β1

√
c2

1 + c2
2

)2 +
β1c

2
2√

c2
1 + c2

2

(
1 + β1

√
c2

1 + c2
2

)2

+
2α2c1(1 + β2c

2
2)

(1 + β2(c2
1 + c2

2))2
. (3.85)

Letting γ → 0 in (3.82) leads to c1 → 0. When c1 = 0

∂c1g(0; c2) =
1

1 + β|c2|
> 0 . (3.86)

Thus, (3.84) is uniquely solvable in an interval of γ sufficiently close to 0. Within such an

interval of γ, let

c1 = g−1(λ1; c2) := h(c2;λ1). (3.87)

A substitution of (3.87) into (3.83) gives

λ2 = k(c2;λ1) :=
c2

1 + β1

√
c2

1 + c2
2

+
α2c

2
2

1 + β2(c2
1 + c2

2)
, (3.88)

in which c1 = h(c2;λ1) is a function of c2 as in (3.87). When γ → 0 in (3.82) and (3.83),

we get c1 → 0, c2 → 0, which make ∂c2k(c2;λ1) positive, and (3.88) uniquely solvable,

thus (3.8) is uniquely invertible in an interval of γ centered at γ = 0.

We next investigate the invertibility of the fourth-order tensor
(
DS̄F(S̄)

)
[·] for the
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class of models (3.8). Consider the case a = b ⊥ {e1, e2}. Then,

(
F TH

)
s

= ((I + γe2 ⊗ e1)(a⊗ a))s = a⊗ a. (3.89)

When c1 = c2, we have S̄2
= S̄, |S̄| =

√
2. With the notations of A,B as defined in

(3.12) and (3.13), the Fréchet derivative of (3.8) has the following expression:

DS̄

(
F
(
S̄
)) [(

F TH
)

s

]
= DS̄

(
φ1

(∣∣S̄∣∣) S̄ + φ2

(∣∣S̄∣∣2) S̄2
) [(

F TH
)

s

]
= φ′1

(∣∣S̄∣∣) (DS̄

(∣∣S̄∣∣) [(F TH
)

s

])
S̄ + φ1

(∣∣S̄∣∣)DS̄S̄
[(
F TH

)
s

]
+ φ′2

(∣∣S̄∣∣2)(DS̄

(∣∣S̄∣∣2) [(F TH
)

s

])
S̄

2

+ φ2

(∣∣S̄∣∣2)DS̄

(
S̄

2
) [(

F TH
)

s

]
=

((
−β1

∣∣S̄∣∣(
1 + β1

∣∣S̄∣∣)2

)
(A⊗A) +

1

1 + β1

∣∣S̄∣∣I
+

−2α2β2

∣∣∣S̄2
∣∣∣ ∣∣S̄∣∣(

1 + β2

∣∣S̄∣∣2)2

 (A⊗A)

+
α2

1 + β2

∣∣S̄∣∣2 I
)[(

F TH
)

s

]
= (K(A⊗A) + L(I))

[(
F TH

)
s

]
. (3.90)

Let

L :=
α2

1 + 2β2

+
1

1 +
√

2β2

> 0 , (3.91)

K := −
√

2β1

(1 +
√

2β1)2
− 4α2β2

(1 + 2β2)2
. (3.92)

When β1 = β2 = 1, and α2 = 9/(3 + 2
√

2), we have K + L = 0. Hence, the fourth-order

tensor
(
DS̄F(S̄)

)
[·] in (3.90) is not invertible, although the given model (3.8) is uniquely

invertible for all γ in a neighborhood of γ = 0.
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3.5.2 Monotonicity

Similar to the previous Section, we study monotonicity of (3.8) for γ = 0, then we

generalize for all γ near 0 by a continuity argument. Since H = a ⊗ b, we consider

several cases according to positions of vectors a, b and e1, e2: a = b ⊥ {e1, e2}; a =

b and ∠(a, {e1, e2}) = θ, 0 ≤ θ < π/2; and 0 < |a · b| < 1.

Case 1: a = b ⊥ {e1, e2}. Then,

F̃ = I + γ(e1 ⊗ e2) + α(a⊗ a). (3.93)

Also note that det(I + γ(e1⊗e2) +α(a⊗a)) > 0. The Green-St.Venant strain associated

with F̃ has the form

Ẽ =
1

2

(
F̃

T
F̃ − I

)
=

1

2
(γ(e1 ⊗ e2 + e2 ⊗ e1) + γ2(e2 ⊗ e2) + (α2 + 2α)(a⊗ a)) . (3.94)

Let

W :=
1

2
(γ(e1 ⊗ e2 + e2 ⊗ e1) + γ2(e2 ⊗ e2)) , (3.95)

The eigenvectors corresponding to nonzero eigenvalues λ ofW have the form:

v = η1e1 + η2e2, (3.96)

in which, η1η2 6= 0. By a similar argument to Case 1, we get

λ =
1

2
γδ , (3.97)

where

δ :=
η2

η1

, (3.98)

and

δ1,2 =
γ ±

√
γ2 + 4

2
. (3.99)
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Correspondingly,

λ1,2 =
1

4
γ(γ ±

√
γ2 + 4) . (3.100)

Note that δ1 > 0, δ2 < 0, and λ1 > 0, λ2 < 0. Denote by ṽ1,2 the normalized eigenvectors

associated with λ1,2, and note that ṽ1 ⊥ ṽ2, a is orthonormal to {ṽ1, ṽ2}, we then have the

spectral decompositions

W = λ1(ṽ1 ⊗ ṽ1) + λ2(ṽ2 ⊗ ṽ2), (3.101)

Ẽ = λ1(ṽ1 ⊗ ṽ1) + λ2(ṽ2 ⊗ ṽ2) +

(
α2

2
+ α

)
(a⊗ a) , (3.102)

and by (3.8),

S̃ = d1(ṽ1 ⊗ ṽ1) + d2(ṽ2 ⊗ ṽ2) + d3(a⊗ a), (3.103)

and

S̃
2

= d2
1(ṽ1 ⊗ ṽ1) + d2

2(ṽ2 ⊗ ṽ2) + d2
3(a⊗ a), (3.104)

where d1, d2, d3 are scalars as eigenvalues of S̃. The constitutive equation (3.8) leads to

λ1 =
1

4
γ
(
γ +

√
γ2 + 4

)
=

d1

1 + β1

√
d2

1 + d2
2 + d2

3

+
α2d

2
1

1 + β2(d2
1 + d2

2 + d2
3)
, (3.105)

λ2 =
1

4
γ
(
γ −

√
γ2 + 4

)
=

d2

1 + β1

√
d2

1 + d2
2 + d2

3

+
α2d

2
2

1 + β2(d2
1 + d2

2 + d2
3)
, (3.106)

and
α2

2
+ α =

d3

1 + β1

√
d2

1 + d2
2 + d2

3

+
α2d

2
3

1 + β2(d2
1 + d2

2 + d2
3)
. (3.107)

It follows that d1 > 0, d2 < 0, and d3 > 0 (as α > 0).

We now investigate the invertibility of the system (3.105), (3.106), and (3.107). Fixing

d2 and d3 in (3.105), then this equation is uniquely solvable within an interval of γ centered

at γ = 0 by a similar continuity argument to the Invertibility Section. The solution of

(3.105) gives d1 as a function of d2 and d3, namely d1 = k(d2;λ1, d3). Then we substitute

this d1 into (3.106), while fixing d3. Again, (3.106) is uniquely solvable for all γ belonging
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to an interval centered at γ = 0. The solution of (3.106) derives d2 as a function of d3,

say d2 = h(d3;λ1, λ2). A substitution of this d2 into (3.107) gives an equation of d3 only,

namely
α2

2
+ α = l(d3;λ1, λ2) .

This equation of d3 has a unique solution for an interval of α near 0, and for an interval of

α2 near 0. Indeed, taking partial derivative of the function l(d3;λ1, λ2) with respect to d3

then letting α2 → 0 gives

∂d3l(d3;λ1, λ2) =
1(

1 + β1

√
d2

1 + d2
2 + d2

3

)
− β1d3(d1∂d3k(h(d3;λ1, λ2);λ1, d3) + d2∂d3h(d3;λ1, λ2) + d3)√

d2
1 + d2

2 + d2
3

(
1 + β1

√
d2

1 + d2
2 + d2

3

)2

=

√
d2

1 + d2
2 + d2

3 + β1(d2
1 + d2

2)√
d2

1 + d2
2 + d2

3

(
1 + β1

√
d2

1 + d2
2 + d2

3

)2

− β1d3(∂d3k(h(d3;λ1, λ2);λ1, d3) + d2∂d3h(d3;λ1, λ2))√
d2

1 + d2
2 + d2

3

(
1 + β1

√
d2

1 + d2
2 + d2

3

)2 . (3.108)

Note that d3 > 0 as α > 0 in (3.107). Letting α → 0, it follows that d3 → 0 in (3.108),

and thus ∂d3l(d3;λ1, λ2) > 0, i.e. (3.107) is uniquely invertible. By continuity, (3.107)

is invertible in an interval of α near 0, and in an interval of α2 near 0. In summary, by

continuity, the system (3.105), (3.106), and (3.107) is uniquely solvable in an interval of γ

centered at γ = 0, in an interval of α near 0, and in an interval of α2 near 0.

To investigate monotonicity, consider the left hand side of (3.15):

(F̃ S̃ − F S̄) · (a⊗ a) = ((I + γe1 ⊗ e2 + αa⊗ a)(d1ṽ1 ⊗ ṽ1 + d2ṽ2 ⊗ ṽ2 + d3a⊗ a)

−(I + γe1 ⊗ e2)(c1ũ1 ⊗ ũ1 + c2ũ2 ⊗ ũ2)) · (a⊗ a)

= (d1(ṽ1 ⊗ ṽ1) + d2(ṽ2 ⊗ ṽ2) + (d3 + αd3)(a⊗ a)) · (a⊗ a)
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+ (−c1(ũ1 ⊗ ũ1)− c2(ũ2 ⊗ ũ2)) · (a⊗ a)

= d3 + αd3 = (1 + α)d3. (3.109)

This expression is positive because d3 > 0, for all γ belonging to an interval centered at

γ = 0, for an interval of α near 0, and for an interval of α2 near 0.

Remark 5. The model (3.8) in this case has the monotonicity condition (3.109) implying

the invertibility condition, but the inverse statement does not hold generally.

Case 2: a = b and ∠(a, {e1, e2}) = θ, 0 ≤ θ < π/2. Let e3 be an orthonormal vector to

e1 and e2. Then,

a = a1e1 + a2e2 + a3e3, (3.110)

where a1, a2, a3 are scalars. We have

F̃ = I + γ(e1 ⊗ e2) + α(a⊗ a), (3.111)

and det(I + γ(e1 ⊗ e2) + α(a⊗ a)) > 0 within an interval of γ centered at γ = 0 and α

is sufficiently near 0. Now,

Ẽ =
1

2

(
F̃

T
F̃ − I

)
=

1

2
(γ(e1 ⊗ e2 + e2 ⊗ e1 + γ(e2 ⊗ e2)) + γαa1(a⊗ e2 + e2 ⊗ a))

+
1

2
(α2 + 2α)(a⊗ a) . (3.112)

Let {ṽi}3
i=1 be an orthonormal eigenbasis for R3 corresponding to nonzero eigenvalues ξ

of Ẽ, where ṽ has the form

ṽ = τ1e1 + τ2e2 + τ3e3. (3.113)
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We then have the spectral decompositions

Ẽ = ξ1(ṽ1 ⊗ ṽ1) + ξ2(ṽ2 ⊗ ṽ2) + ξ3(ṽ3 ⊗ ṽ3) , (3.114)

and from the constitutive relation (3.8),

S̃ = d1(ṽ1 ⊗ ṽ1) + d2(ṽ2 ⊗ ṽ2) + d3(ṽ3 ⊗ ṽ3), (3.115)

S̃
2

= d2
1(ṽ1 ⊗ ṽ1) + d2

2(ṽ2 ⊗ ṽ2) + d2
3(ṽ3 ⊗ ṽ3), (3.116)

where d1, d2, d3 are scalars as eigenvalues of S̃.

The constitutive equation (3.8) is then equivalent to

ξ1 = φ1(|S̃|)d1 + φ2(|S̃|2)d2
1, (3.117)

ξ2 = φ1(|S̃|)d2 + φ2(|S̃|2)d2
2, (3.118)

ξ3 = φ1(|S̃|)d3 + φ2(|S̃|2)d2
3, (3.119)

Now, note that when letting γ → 0, we have

Ẽ =
1

2
(α2 + 2α)(a⊗ a) , (3.120)

with the following eigenvalues of Ẽ: ξ1 = 0, ξ2 = 0, ξ3 = (α2 + 2α)/2 > 0. By similar

continuity argument to Case 1, there exist an interval of γ centered at γ = 0, an interval

of α near 0, and an interval of α2 near 0, in which the system (3.117), (3.118) is uniquely

solvable for d1, d2 as functions of d3. A substitution of these d1, d2 into (3.119), where

ξ3 keeps its positive sign, gives unique solution for d3 > 0, and thus the system (3.117),

(3.118), (3.119) is uniquely solvable.

Finally, consider the left hand side of monotonicity condition (3.15)

(F̃ S̃ − F S̄) · (a⊗ b) = (1 + α)(d1(a · ṽ1)2 + d2(a · ṽ2)2 + d3(a · ṽ3)2)

− (c1(a⊗ ũ1)2 + c2(a⊗ ũ2)2). (3.121)
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Note that letting γ → 0 it follows that c1, c2, d1, d2 all approach 0, which makes (3.121)

become

(F̃ S̃ − F S̄) · (a⊗ b) = (1 + α)d3(a · ṽ3)2, (3.122)

which is positive because d3 > 0, and (a · ṽ3) 6= 0). Thus, by continuity, monotonicity

holds for the given model (3.8) in an interval of γ centered at γ = 0, in an interval of α

near 0, and in an interval of α2 near 0.

Case 3: 0 < |a · b| < 1. Let e3 be an orthonormal vector to e1 and e2. We then have

a = a1e1 + a2e2 + a3e3, (3.123)

b = b1e1 + b2e2 + b3e3, (3.124)

where ai, bi are scalars, i = 1, 2, 3. Now,

F̃ = I + γ(e1 ⊗ e2) + α(a⊗ b), (3.125)

and det(I + γ(e1 ⊗ e2) + α(a⊗ b)) > 0 within an interval of γ centered at γ = 0, and in

an interval of α near 0. The strain corresponding to F̃ is

Ẽ =
1

2

(
F̃

T
F̃ − I

)
=

1

2
(γ(e1 ⊗ e2 + e2 ⊗ e1 + γ(e2 ⊗ e2)) + γα(a · e1)(b⊗ e2 + e2 ⊗ b))

+
1

2
(α(a⊗ b+ b⊗ a) + α2(b⊗ b)) . (3.126)

Let {ṽi}3
i=1 be an orthonormal eigenbasis for R3 associated with the nonzero eigenvalues ξ

of Ẽ, of the form

ṽ = τ1e1 + τ2e2 + τ3e3. (3.127)

We then have the spectral decompositions

Ẽ = ξ1(ṽ1 ⊗ ṽ1) + ξ2(ṽ2 ⊗ ṽ2) + ξ3(ṽ3 ⊗ ṽ3), (3.128)
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and by the constitutive relation (3.8),

S̃ = d1(ṽ1 ⊗ ṽ1) + d2(ṽ2 ⊗ ṽ2) + d3(ṽ3 ⊗ ṽ3), (3.129)

S̃
2

= d2
1(ṽ1 ⊗ ṽ1) + d2

2(ṽ2 ⊗ ṽ2) + d2
3(ṽ3 ⊗ ṽ3), (3.130)

where d1, d2, d3 are scalars. From the constitutive equation (3.8), we get

ξ1 =
d1

1 + β1

√
d2

1 + d2
2 + d2

3

+
α2d

2
1

1 + β2(d2
1 + d2

2 + d2
3)
, (3.131)

ξ2 =
d2

1 + β1

√
d2

1 + d2
2 + d2

3

+
α2d

2
2

1 + β2(d2
1 + d2

2 + d2
3)
, (3.132)

and

ξ3 =
d3

1 + β1

√
d2

1 + d2
2 + d2

3

+
α2d

2
3

1 + β2(d2
1 + d2

2 + d2
3)
. (3.133)

Letting γ → 0 gives

Ẽ =
1

2
(α(a⊗ b+ b⊗ a) + α2(b⊗ b)), (3.134)

which is the same as Ẽ in Case 3 of the Compression Section. Thus, when letting γ → 0,

we have

ξ1 =
1

4
α
(

2(a · b) + α +
√
α2 + 4α(a · b) + 4

)
> 0 , (3.135)

ξ1 =
1

4
α
(

2(a · b) + α−
√
α2 + 4α(a · b) + 4

)
< 0 , (3.136)

ξ3 = 0. (3.137)

Hence, there exists an interval of γ centered at γ = 0 in which each of the values ξ1, ξ2

keeps the same sign and ξ3 approaches 0, and thus, by a similar continuity argument to

Case 1, the system (3.131), (3.132), (3.133) is uniquely solvable in an interval of α near 0,

and in an interval of α2 near 0.

Toward the study of monotonicity, we consider again the strain Ẽ when γ = 0. We
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thus have

Ẽ =
1

2
(α(a⊗ b+ b⊗ a) + α2(b⊗ b)) , (3.138)

with orthonormal eigenvectors

ṽ1 =
1√

ν2
1 + ν2

2

(ν1a+ ν2b) , (3.139)

ṽ2 =
1√

ν ′21 + ν ′22
(ν ′1a+ ν ′2b) . (3.140)

The associated eigenvalues of Ẽ are

ξ1,2 =
1

2
α(a · b+ ρ1,2) , (3.141)

where

ρ1 =
ν2

ν1

, ρ2 =
ν ′2
ν ′1
. (3.142)

Without loss of generality, we can take ν1 = ν ′1 = 1. Then

ν2 = ρ1 =
α +

√
α2 + 4α(a · b) + 4

2
, ν ′2 = ρ2 =

α−
√
α2 + 4α(a · b) + 4

2
. (3.143)

We now note from (3.82), (3.83) that

lim
γ→0

c1 = 0, lim
γ→0

c2 = 0, lim
γ→0

c1

γ
=

1

2
, lim
γ→0

c2

γ
= −1

2
. (3.144)

Writing α as α = γβ, when γ → 0, from (3.143), we have

ν2 = 1, ν ′2 = −1. (3.145)

Thus, from (3.131), (3.132), (3.133), and (3.135), (3.136), (3.137), letting γ → 0 leads to

lim
γ→0

d1 = 0, lim
γ→0

d2 = 0, lim
γ→0

d3 = 0, (3.146)

and

lim
γ→0

d1

γ
=
β

2
(a · b+ 1) , lim

γ→0

d2

γ
=
β

2
(a · b− 1) , lim

γ→0

d3

γ
= 0 . (3.147)
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We next consider the left hand side of (3.15)

(F̃ S̃ − F S̄) · (a⊗ b) = d1(a · ṽ1)(b · ṽ1) + d2(a · ṽ2)(b · ṽ2) + d3(a · ṽ3)(b · ṽ3)

+ γd1(e2 · ṽ1)(e1 · a)(ṽ1 · b) + γd2(e2 · ṽ2)(e1 · a)(ṽ2 · b)

+ γd3(e2 · ṽ3)(e1 · a)(ṽ3 · b)

+ γβd1(b · ṽ1)2 + γβd2(b · ṽ2)2 + γβd3(b · ṽ3)2

− c1(ũ1 · a)(ũ1 · b)− c2(ũ2 · a)(ũ2 · b)

− γc1(e1 · ũ1)(e1 · a)(ũ1 · b)

− γc2(e2 · ũ2)(e1 · a)(ũ2 · b). (3.148)

Dividing (3.148) by γ, then letting γ → 0, we get

(F̃ S̃ − F S̄) · (a⊗ b) =

(
lim
γ→0

d1

γ

)
1

2(1 + a · b)
(1 + a · b)2

+

(
lim
γ→0

d2

γ

)
1

2(1− a · b)
(1− a · b)(a · b− 1)

−
(

lim
γ→0

c1

γ

)
(ũ1 · a)(ũ1 · b)−

(
lim
γ→0

c2

γ

)
(ũ2 · a)(ũ2 · b)

=

(
β(a · b+ 1)

2

)(
(a · b+ 1)

2

)

+

(
β(a · b− 1)

2

)(
(a · b− 1)

2

)

− 1

2
(ũ1 · a)(ũ1 · b) +

1

2
(ũ2 · a)(ũ2 · b)

>
β

2
(1 + (a · b)2)− 1

>
β

2
− 1 . (3.149)
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Monotonicity holds provided β > 2, i.e. 0 < γ < 1/2, in an interval of α near 0, and in an

interval of α2 near 0.

In conclusion, monotonicity holds for the model (3.8) in an interval of γ centered at

γ = 0, in an interval of α near 0, and in an interval of α2 near 0, resulting from intersecting

all the three intervals of γ, the three intervals of α, and the three interval of α2, respectively,

in the three cases above.

3.5.3 Counterexample

We construct a counterexample demonstrating the failure of monotonicity for the given

model (3.8). Consider Case 3 of Simple Shear. Taking α2 = 0, this choice of α2 is based

on the fact that in each of equations (3.82), (3.83), and (3.131), (3.132), (3.133), the linear

term dominates the quadratic term. Note that |a| = |b| = 1, thus from (3.123) and (3.124),

|a3| =
√

1− a2
1 − a2

2, |b3| =
√

1− b2
1 − b2

2. (3.150)

Now, from (3.82) and (3.83), it follows that√
λ2

1 + λ2
2 =

√
c2

1 + c2
2

1 + β1

√
c2

1 + c2
2

, (3.151)

and
c2

c1

=
λ2

λ1

. (3.152)

Hence, √
c2

1 + c2
2 =

√
λ2

1 + λ2
2

1− β1

√
λ2

1 + λ2
2

, (3.153)

and

c1 =

√
λ2

1 + λ2
2

1− β1

√
λ2

1 + λ2
2

√1 +

(
λ2

λ1

)2
−1

, (3.154)

c2 =
λ2

λ1

c1 . (3.155)
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Similarly, from (3.131), (3.132), (3.133), we have

d1 = (sgnξ1)

√
ξ2

1 + ξ2
2 + ξ2

3

1− β1

√
ξ2

1 + ξ2
2 + ξ2

3

√1 +

(
ξ2

ξ1

)2

+

(
ξ3

ξ1

)2
−1

, (3.156)

d2 =
ξ2

ξ1

d1, d3 =
ξ3

ξ1

d1 . (3.157)

Here, ũ1, ũ2 are two orthonormal eigenvectors corresponding to two nonzero eigenvalues

λ1, λ2 of E in (3.78). Also, ṽ1, ṽ2, ṽ3 are three orthonormal eigenvectors corresponding to

three eigenvalues ξ1, ξ2, ξ3 of Ẽ in (3.128).

Finally, we choose α = 0.1, β1 = 0.2, γ = −2.5, a1 = 0.5, a2 = 0.1, b1 = 0.6,

b2 = 0.2. Here, γ = −2.5 belongs to the range of the respond function (3.8). Furthermore,

by Matlab computation (including finding eigenvalues and eigenvectors process), the right

hand side of (3.148) equals −0.1198, leading to the failure of monotonicity of the model

(3.8).

3.6 General Models

For the model (3.8), consider a class of deformation gradients having the form

F = I + γŨ , (3.158)

where γ is a scalar, Ũ is a fixed, constant displacement gradient. Thus,

E =
1

2
(γ(Ũ

T
+ Ũ) + γ2Ũ

T
Ũ) . (3.159)

Denote by {ei}3
i=1 an orthonormal basis for R3 consisting entirely of eigenvectors of E,

and {λi}3
i=1 the associated eigenvalues of E, i.e.

Eei = λiei, (3.160)

for i = 1, 2, 3. We then have the spectral decompositions of strain

E = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, (3.161)
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and stress (by constitutive equation (3.8))

S̄ = c1e1 ⊗ e1 + c2e2 ⊗ e2 + c3e3 ⊗ e3, (3.162)

where {ci}3
i=1 are scalars as eigenvalues of S̄. It follows from the constitutive relation (3.8)

that

λ1 =
c1

1 + β1

√
c2

1 + c2
2

+
α2c

2
1

1 + β2(c2
1 + c2

2)
, (3.163)

λ2 =
c2

1 + β1

√
c2

1 + c2
2

+
α2c

2
2

1 + β2(c2
1 + c2

2)
, (3.164)

where α2, β1, and β2 are non-negative constants.

3.6.1 Invertibility

From previous two Sections, we first note that the constitutive relation (3.8) is not

always uniquely invertible. Second, in an interval of γ centered at γ = 0 the system (3.163)

and (3.164) is uniquely solvable by similar argument in Simple Shear Section (because

each of the eigenvalues of E is a multiple of γ), thus (3.8) is uniquely invertible. However,

also through two previous Sections, even when the constitutive relation (3.8) is invertible

uniquely, the invertibility of the fourth-order tensor
(
DS̄F(S̄)

)
[·] for the models (3.8) is

not always guaranteed. Thus, it is reasonable to investigate monotonicity instead of strong

ellipticity for the present general models.

3.6.2 Monotonicity

We first have

F̃ = I + γŨ + α(a⊗ b). (3.165)

Note that det(I+γŨ+αa⊗b) > 0 with γ in a neighborhood of γ = 0 and α is sufficiently

near 0. The strain associated with F̃ is

Ẽ =
1

2

(
F̃

T
F̃ − I

)
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=
1

2
γ
(
Ũ + Ũ

T
+ Ũ

T
Ũ + α

((
Ũ
T
a
)
⊗ b+ b⊗

(
Ũ
T
a
)))

+
1

2
(α(a⊗ b+ b⊗ a) + α2(b⊗ b)) . (3.166)

Denote by {ṽi}3
i=1 an orthonormal eigenbasis for R3 corresponding to the eigenvalues

{ξi}3
i=1 of Ẽ. Then,

Ẽ = ξ1(ṽ1 ⊗ ṽ1) + ξ2(ṽ2 ⊗ ṽ2) + ξ3(ṽ3 ⊗ ṽ3), (3.167)

and from the constitutive relation (3.8),

S̃ = d1(ṽ1 ⊗ ṽ1) + d2(ṽ2 ⊗ ṽ2) + d3(ṽ3 ⊗ ṽ3), (3.168)

S̃
2

= d2
1(ṽ1 ⊗ ṽ1) + d2

2(ṽ2 ⊗ ṽ2) + d2
3(ṽ3 ⊗ ṽ3), (3.169)

where d1, d2, d3 are scalars as eigenvalues of S̃. It follows by a similar continuity argument

to Case 3 of Simple Shear Section that

Ẽ = φ1(|S̃|)S̃ + φ2(|S̃|2)S̃
2

(3.170)

is uniquely invertible in an interval of γ centered at γ = 0, in an interval of α near 0, and in

an interval of α2 near 0.

For monotonicity, we analyze the left hand side of (3.15) as follows

(F̃ S̃ − F S̄) · (a⊗ b) = d1(a · ṽ1)(b · ṽ1) + d2(a · ṽ2)(b · ṽ2) + d3(a · ṽ3)(b · ṽ3)

+ γd1((Ũv1) · a)(v1 · b) + γd2((Ũv2) · a)(v2 · b)

+ γd3((Ũv3) · a)(v3 · b)

+ γβd1(b · ṽ1)2 + γβd2(b · ṽ2)2 + γβd3(b · ṽ3)2

− c1(ẽ1 · a)(ẽ1 · b)− c2(ẽ2 · a)(ẽ2 · b)− c3(ẽ3 · a)(ẽ3 · b))

− γc1((Ũe1) · a)(e1 · b)− γc2((Ũe2) · a)(e2 · b)
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− γc3((Ũe3) · a)(e3 · b). (3.171)

Since each of the eigenvalues of E is a multiple of γ, we rewrite them as the forms

λ1 = γµ1(γ), λ2 = γµ2(γ), λ3 = γµ3(γ). (3.172)

Dividing (3.171) by γ, then letting γ → 0, we get

(F̃ S̃ − F S̄) · (a⊗ b) =

(
lim
γ→0

d1

γ

)
1

2(1 + a · b)
(1 + a · b)2

+

(
lim
γ→0

d2

γ

)
1

2(1− a · b)
(1− a · b)(a · b− 1)

−
(

lim
γ→0

c1

γ

)
(ẽ1 · a)(ẽ1 · b)−

(
lim
γ→0

c2

γ

)
(ẽ2 · a)(ẽ2 · b)

−
(

lim
γ→0

c3

γ

)
(ẽ3 · a)(ẽ3 · b)

=

(
β(a · b+ 1)

2

)(
(a · b+ 1)

2

)

+

(
β(a · b− 1)

2

)(
(a · b− 1)

2

)

− (lim
γ→0

µ1(γ))(ẽ1 · a)(ẽ1 · b)− (lim
γ→0

µ2(γ))(ẽ2 · a)(ẽ2 · b)

− (lim
γ→0

µ3(γ))(ẽ3 · a)(ẽ3 · b)

>
β

2
(1 + (a · b)2)− (| lim

γ→0
µ1(γ)|+ | lim

γ→0
µ2(γ)|+ | lim

γ→0
µ3(γ)|)

>
β

2
− (| lim

γ→0
µ1(γ)|+ | lim

γ→0
µ2(γ)|+ | lim

γ→0
µ3(γ)|) . (3.173)

Therefore, monotonicity of the model (3.8) holds provided

β > 2(| lim
γ→0

µ1(γ)|+ | lim
γ→0

µ2(γ)|+ | lim
γ→0

µ3(γ)|) , (3.174)
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i.e.,

0 < γ < 1/(2(| lim
γ→0

µ1(γ)|+ | lim
γ→0

µ2(γ)|+ | lim
γ→0

µ3(γ)|)) . (3.175)

In summary, by continuity, in an interval of γ centered at γ = 0, in an interval of α

near 0, and in an interval of α2 near 0, monotonicity holds for the model (3.8).

3.7 Conclusions

The monotonicity we have studied in this Chapter is for a class of nonlinear strain-

limiting models of elastic-like (non-dissipative) material bodies in the form

E = φ1(|S̄|)S̄ + φ2(|S̄|2)S̄
2
, (3.176)

with

φ1(r) :=
1

1 + β1r
, (3.177)

φ2(r) :=
α2

1 + β2r
, (3.178)

where α2 is a constant, and β1, β2 are non-negative constants. In this class of models, it can

happen that the Fréchet derivative of the response function is not invertible as a fourth-order

tensor even when the response function itself is uniquely invertible. The notion of strong

ellipticity introduced in [12] is then no longer valid, leading to the introduction in this

Chapter the monotonicity as a weaker convexity notion. For the class of models studied

herein, it is shown that monotonicity holds for strains with sufficiently small norms, and

fails (by constructed counterexample) when strain is large enough. These results are similar

to the conditions on strain for strong ellipticity of implicit constitutive and strain-limiting

models investigated in [12]. As we noted in the Compression Section and the Simple

Shear Section, the monotonicity condition implies the invertibility of the considered class

of models in some cases, but the reverse statement does not hold generally, that is the

invertibility of this class of models does not guarantee the monotoncity. This observation
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emphasizes the independence between the invertibility notion and the monotonicity notion.

As another note, in this Chapter, we restricted the study of monotonicity to the case when

(3.176) is uniquely invertible at least for sufficiently small strain. In a future study, we

will focus on a more general case when the inverse of (3.176) is a multivalued map, and

investigate strong ellipticity as well as monotonicity on each branch of the graph of (3.176),

i.e. where (3.176) is uniquely invertible. This issue has not been investigated in neither this

Chapter nor Chapter 2.

Regarding hyperelasticity, as noted above and demonstrated in the following Appendix

A, the class of models (3.8) does not arise as the gradient of a potential unless the function

φ2(|S̄|2) is identically constant, and hence not strain limiting unless that constant is zero.

However, a natural modification of (3.8) does produce hyperelastic models. Indeed, if the

second term on the right-hand-side of (3.8) is replaced by

F2(S̄) := φ2(det(S̄))S̄
−1
, (3.179)

it is shown in the following Appendix A that one can readily construct a potential for F2(S̄)

in (3.179). Studying convexity for strain limiting models including a response function of

the form (3.179) is beyond the scope of the dissertation and will be addressed in a future

investigation.
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4. CONCLUSIONS

We have investigated the question of strong ellipticity (rank-1 convexity) for implicit

constitutive and strain-limiting models, and monotonicity for strain-limiting models of

elastic-like (non-dissipative) material bodies. It was shown in our work [11] and [12] that

strong ellipticity and monotonicity hold for sufficiently small strains and fail when the

small strain constraint is relaxed. The dissertation should be viewed as small early steps in

studying mathematical properties of the recently established theory of implicit constitutive

relations in elasticity [15]. Being new and simple, the theory can be used to characterize a

large spectrum of materials so that one can describe a wide range of material behavior. It

also leads to new classes of interesting math problems.

We close with a real world application of the study of this dissertation. We wish to

mention an example in biology about blast wave as the pressure and flow generated from an

explosive core. Exposure to blast wave may result in brain injury and related neurological

impairments. We hope our research in the context of implicit and strain-limiting theories of

elasticity has a contribution to the study of the mechanism of blast wave and helmet design.

For a broad view, in a brain as the Universe, nonlinear elasticity finds its many applications,

from blast wave to music wave. In the Universe as a giant brain, nonlinear elasticity has

applications in almost everywhere, everything, from safe aircraft to safe buildings.
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APPENDIX A

COMMENTS ON HYPERELASTICITY

The issue at hand concerns under what conditions the response function in (3.8) arises

as the tensoral gradient of a scalar potential, that is:

F(S̄) = ∂S̄ξ(S̄) (A.1)

with ξ(·) being a real-valued function defined on Sym, the space of symmetric, second-

order tensors. The gradient operator ∂S̄ in (A.1) is defined through the Riesz Representation

Theorem. More specifically, ∂S̄ξ(S̄) is defined to be the uniquely defined second-order

tensor for which

∂S̄ξ(S̄) ·H = DS̄ξ(S̄)[H ]

holds for all symmetric tensorsH where DS̄ denotes Fréchet differentiation. A well known

necessary condition for (A.1) to hold is that the Fréchet derivative of the response function

F(·) define a symmetric fourth-order tensor on Sym, that is,

H1 ·DS̄F(S̄)[H2] = H2 ·DS̄F(S̄)[H1] (A.2)

for all symmetric second-order tensorsH1 andH2. Re-writing (3.8) as F(S̄) = F1(S̄) +

F2(S̄) with F1(S̄) := φ1(|S̄|)S̄ and F2(S̄) := φ2(|S̄|2)S̄
2, we note first that in [12], it

was shown that the first term on the right-hand-side of (3.8) corresponds to a hyperelastic

response function. However, Fréchet differentiation of F2(S̄) gives:

DS̄F2(S̄)[H ] = φ2(|S̄|)(S̄H +HS̄) + 2(S̄ ·H)φ
′

2(|S̄|)S̄2

for allH in Sym from which it follows that:

H1 ·DS̄F2(S̄)[H2] = φ2(|S̄|)S̄ ·(H1H2+H2H1)+2φ
′

2(|S̄|)(H1 ·S̄
2
)(H2 ·S̄). (A.3)
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While the first term on the right-hand-side of (A.3) is symmetric inH1 andH2, the second

term is clearly not unless φ′
2(·) vanishes identically.

Finally, concerning hyperelasticity for response functions of the form (3.179), it is

straight forward to verify that:

φ2(det(S̄))S̄
−1

= ∂S̄ξ2(det(S̄))

where

ξ2(r) :=

∫
φ2(r)

dr

r
.
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APPENDIX B

DYNAMICAL SIGNIFICANCE OF THE STRONG ELLIPTICITY CONDITION

This Appendix is based on our several discussions and [1].

Consider a displacement equation of motion (built on the basis of the balance of

momentum):

ρü = DivŜ(∇u), (B.1)

Let us now examine the dynamical significance of the strong ellipticity condition by

classifying the type of (B.1) as a system of partial differential equations from the view point

of wave propagation. Since such classifications are purely local, we study the behavior

of a solution u for (X, t) near (X0, t0) by studying the linearization of (B.1) about an

equilibrium state with constant deformation F for a homogeneous elastic body occupying

all space E3 with constitutive function F → Ŝ(F , X0) and constant density ρ.

For linearization purpose, consider a solution of (B.1) written in the form

u(X, t) = u0(X0, t0) + δw(X, t), (B.2)

where δ: small amplitude, X: material point, x: position point, b0: body force. From (B.2)

and (B.1), we have

ρδẅ(X, t) = ρü(X, t)− ρü0(X0, t0)

= ρü(X, t)

= DivŜ(∇u). (B.3)

A substitution of (B.2) into (B.3) with a note that the gradient operator ∇ is linear gives

ρδẅ(X, t) = DivŜ(∇u0(X0) + δ∇w(X, t)), (B.4)
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where we denote Ŝ(∇u0(X0)) := Ŝ(∇u0(X0, t0), X0), and ∇u0(X0) := ∇u0(X0, t0).

Now, using Taylor expansion for Ŝ(·) about ∇u0(X0) in (B.4), and note that the

operator Div is linear, we get

ρδẅ(X, t) = Div(Ŝ(∇u0(X0)) + DŜ(∇u0(X0))[δ∇w])

= DivŜ(∇u0(X0)) + Div(DŜ(∇u0(X0))[δ∇w]). (B.5)

From (B.5), we have

ρẅ(X, t) = Div(DŜ(∇u0(X0))[∇w])

= Div(E0[∇w]), (B.6)

where

E0[∇w] = DŜ(∇u0(X0)). (B.7)

We seek solution of (B.6) in the form of plane traveling waves in the direction ξ with speed

c, i.e., solutions of the form

w(X, t) = φ(X · ξ − ct)a, (B.8)

in which, a: amplitude, |ξ| = 1. Then

∇Xw(X, t) = φ(X · ξ − ct)∇Xa+ a⊗∇Xφ(X · ξ − ct)

= φ′(X · ξ − ct)(a⊗ ξ). (B.9)

From (B.6) and (B.8), we have

ρc2φ′′(X · ξ − ct)a = Div((φ′(X · ξ − ct))(E0[a⊗ ξ]))

= (E0[a⊗ ξ])(∇Xφ
′(X · ξ − ct))

= (E0[a⊗ ξ])(φ′′(X · ξ − ct))ξ . (B.10)
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For a given ξ, this equation has a nontrivial solution φ′′(X · ξ − ct), i.e. (B.6) admits a

traveling wave in direction ξ if and only if the acoustic tensor A0 (where ρc2a = A0a =

E0[a⊗ ξ]ξ) has a positive eigenvalue c2ρ, which satisfies

det(A0 − c2ρI) = 0 . (B.11)

We note that

a · (A0a) = a · E0[a⊗ ξ]ξ

= (a⊗ ξ) · E0[a⊗ ξ], (B.12)

E0 is called elastic tensor, and A0 is called acoustic tensor.

Now, E0 is strong elliptic if and only if H · E0[H ] > 0 ∀H = a ⊗ ξ, a 6= 0, ξ 6= 0,

if and only if (a ⊗ ξ) · E0[a ⊗ ξ] > 0, if and only if a · E0[a ⊗ ξ]ξ > 0, if and only if

a · A0a > 0, if and only if A0 positive definite for each direction ξ.

The right hand side of (B.6) is said to be elliptic at any solution for which there is a

positive solution c2ρ to (B.11). The strong ellipticity condition ensures that A0, which

is not necessarily symmetric, is positive definite. Thus, there is a positive eigenvalue

c2ρ with a corresponding eigenvector φ′′(X · ξ − ct) = ξ. Hence, the strong ellipticity

condition ensures the existence of longitudinal traveling wave. Equation (B.6) is hyperbolic

if and only if for each ξ, all the eigenvalues of (B.10) are positive and if the corresponding

eigenvectors span the Euclidean space E3. The strong ellipticity condition ensures the

positivity of the eigenvalues. If A0 is symmetric for all ξ (so, by Spectral Theorem, there

is an orthonormal basis for E3 consisting entirely of eigenvectors of A0), then the strong

ellipticity condition also ensures the hyperbolicity of (B.6), which means that it admits the

full range of wave-like behavior. (It can be shown that A0 is symmetric for all F and ξ if

and only if the material is hyperelastic. [1])

83




