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ABSTRACT 

 

 Cleft palate (CP) is one of the most common birth defects. It may not be life 

threatening but many functions, such as feeding, digestion, speech, middle-ear 

ventilation, hearing, respiration, and facial and dental development, can be disturbed 

because of the structures involved.  These problems can also cause emotional, 

psychosocial, and educational difficulties. It imposes a tremendous health burden and 

often leaves lasting disfigurement. In humans and mice, the secondary palate forms from 

outgrowths of neural crest-derived mesenchyme covered with a double layer of epithelial 

cells. The shelves elevate over the tongue and grow toward each other. The medial edge 

epithelium (MEE) adheres to form the medial epithelial seam (MES). MES cells then 

undergo epithelial to mesenchymal transition (EMT), cell apoptosis or migrate to the 

oral and nasal surfaces to form a mesenchymal cell confluence. 

 This fusion process requires transforming growth factor β3 (TGFβ3), and blocking 

the expression of this protein or its downstream signaling cascade results in CP. 

 Eph receptors tyrosine kinases and their ephrin ligands are responsible for multiple 

developmental events such as adhesion and migration. Binding of ephrins to Ephs on 

opposing cells causes tyrosine kinase activation in the Eph- bearing cells (forward 

signaling), while binding of Ephs can activate intracellular signaling inside ephrin-

bearing cells (reverse signaling). Activation of ephrin reverse signaling in chicken 

palates induces fusion, and it requires phosphatidylinositol-3 kinase (PI3K). Blockage of 

reverse signaling inhibited TGFβ3 induced fusion in the chicken and natural fusion in 
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the mouse palate. Thus, ephrin reverse signaling is necessary to induce palate fusion 

independent of TGFβ3. 

  EMT is orchestrated by a complex network of signaling molecules and it is a 

critical step for palatal fusion. TGFβ family is a multifunctional cytokine that oversees 

and directs all aspects of cell development, differentiation and survival of essentiall cell 

types and tissues. Also, it is a suppressor of cell growth and proliferation particularly in 

tumor cells of epithelial and mesenchymal origins. 

 Ephrin signaling promotes elevation of TGFβ signaling. These findings lead to the 

central hypothesis that the TGFβ and Eph/ephrin pathways cooperate in EMT in palatal 

fusion. Thus, the goal of this research project is to use the palate model system to 

generate cellular responses and changes to study the basic mechanisms that control EMT 

during palatogenesis. 

 Therefore the aims of this work are as follows: a) Determine if Eph and ephrins 

play a role in palatal fusion and b) Establish if ephrin reverse signaling is necessary and 

sufficient to induce EMT in palatal fusion independent of TGFβ. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW* 

 

Orofacial clefts are the most prevalent craniofacial birth defects and the second 

most common birth anomaly (1). Among of all the possible craniofacial defects observed 

in newborns; perhaps the most well-known defect is the Cleft palate (CP) (2). Occurring 

with a frequency of approximately 1 in every 700 births per year in the US, the incidence 

of CP is equal to 475 cleft palates per month or 15 clefts per day (3,4). In other words, 

1% of infants born worldwide (1 million) each year exhibit some form of facial 

dysmorphology, but the most dramatic observation is that in this country alone, a baby is 

born with a facial cleft every hour, of every day of the year (5). 

Clefts of the palate (CP) and the lip (CLP) require a complex multidisciplinary 

treatment and having lifelong implications for affected individuals. In the United States 

of America, $100,000 is the amount estimated to be to rehabilitate a child born with an 

oral cleft.  

The approach of the patient with cleft lip (CL) and palate requires a team that 

should be ideally composed by craniofacial surgeons, otolaryngologists, geneticists, 

anesthesiologists, speech-language pathologists, nutritionists, orthodontists, 

                                                

 

*Reprinted with permission from “Cleft Lip and Palate Genetics and Application in 
Early Embryological Development” by Yu W, Serrano M, Miguel SS, Ruest LB, 
Svoboda KK, 2009, Indian Journal of Plastic Surgery, 42 Suppl, S35-S50, Copyright 
2009 by Indian Journal of Plastic Surgery. 
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prosthodontists, and psychologists, and to be capable of treating even rare facial clefts 

with excellence, neurosurgeons, and ophthalmologists (6). In this manner, it is possible 

to provide long-term follow up through the entire child’s development and achieve all of 

the following treatment goals: facial aesthetic, integrity of the primary and secondary 

palate, normal speech and hearing, class I occlusion with normal masticatory function, 

good dental and periodontal health, and normal psychosocial development (6,7). 

 

Palate Development 

The palatal structures are composed of the cranial neural crest (CNC)-derived 

mesenchyme and pharyngeal ectoderm (8-11). The epithelia that cover the palatal 

shelves are regionally divided into oral, nasal and medial edge epithelia (MEE). The 

nasal and oral epithelia differentiate into pseudostratified and squamous epithelia, 

whereas the MEE is removed from the fusion line (12) (Fig. 1-1). 

The secondary palate originates as an outgrowth of the maxillary prominences at 

approximately embryonic day 11.5 in the mouse (E11.5-m) (Fig. 1-1) and post coital 6 

weeks in humans (p.c.6wk-h). The palate shelves initially grow vertically along the sides 

of the tongue (E13.5-m; p.c.7wk-h) and then rise above the tongue as the latter drops in 

the oral cavity due to the forward and downward growth of the mandible (E14.0-m; 

p.c.8wks-h). With continued growth, the shelves appose at the midline (E14.5-m; 

p.c.10wks-h) and eventually fuse (E15.5-m; p.c.13wk-h) (13). Numerous genes that are 

similar in mice (14) and humans (13,15,16) are expressed (Table 1and 2) during palatal 
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development (12). Some of the cleft palate are also associate with other birth defects 

syndromes (Table 1) while others occur independently (Table 2). 

During fusion, the epithelium covering the tip of the opposing palatal shelves 

adheres, intercalates and thins into a single-layer midline epithelial seam (MES) (10). 

The disintegration of this seam results in the confluence of the palatal mesenchyme. 

Tremendous interest has arisen in the cellular mechanisms underlying MES degradation. 

Epithelial-mesenchymal transition (EMT) is one of the proposed models that regulate the 

medial edge epithelial (MEE) cell fate (10,17-24). However, other mechanisms have 

been proposed, such as apoptosis (25-28), in which all MEE cells are theorized to die 

during fusion (12). Alternatively, it is hypothesized by some researchers that MES cells 

disappear by migrating from the midline towards the nasal and oral epithelia (29,30). 

Other investigators postulate that all events, including apoptosis, migration and EMT, 

may occur (10,27,31). Interestingly, the fusion of the external surface of the bilateral 

maxillary processes with the nasofrontal prominence in the chick is similar to palatal 

fusion (Fig. 1-2) (32). The outer periderm layer dies through apoptosis, and the lateral 

edge epithelium of the intermaxillary segment of the nasofrontal process fuses with the 

medial edge epithelium of the external maxillary process to form a seam that transitions 

to a confluent mesenchyme (Fig. 1-2) (32,33).  

 

Molecular Genetics Behind Cleft Palate  

Much of the general understanding of the genetic control of palate development 

has been derived from mouse genetic studies. This is largely due to the striking 
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similarity between palate development in humans and mice. In addition, the chick is a 

classical experimental embryology model system in which palate morphogenesis has 

been characterized (12,34-37). The understanding of the molecular causes of CP is 

complicated due to the amount of factors that can, when mutated, result in various forms 

of clefting (38). 

TGFβ3 

TGFβ3 is a member of the TGFβ superfamily expressed in the medial edge 

epithelial (MEE) cells before fusion of the palatal shelves. TGFβ3 is required for palatal 

shelf fusion (34,38,39), as evidenced by homozygous TGFβ3 null mice newborns, which 

have a cleft secondary palate. The function for TGFβ3 in palatogenesis relates to 

regulation of the breakdown of epithelial cells that lie between the palatal shelves (40). 

In the TGFβ3-null mice, the palatal shelves appear to approximate and adhere, but the 

epithelial seam remains preventing fusion (38). The TGFβ signaling pathway is initiated 

by ligand-induced heterotetramerization of a type I receptor dimer and a type II receptor 

dimer. Activated type I receptors phosphorylate R-Smads such as Smad2, which then 

partner with the obligate common mediator Smad4 to regulate transcription. Knockdown 

of Smad2 function in palatal explant cultures resulted in a failure of MES degeneration, 

and transgenic overexpression of Smad2 in the palatal epithelium partially rescued palate 

fusion in TGFβ3–/– mice (12,40). TGFβ signaling can activate other intracellular signal 

transduction pathways, including p38 MAPK. The activation of p38 MAPK is elevated 

in the epithelium of the fusing palatal shelves (41). The treatment of K14-Cre; Smad4f/f 

palatal explants with a p38 MAPK inhibitor was able to block TGFβ-dependent 
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expression of the p21 (Cdkn1a) cyclin-dependent kinase inhibitor gene in the MES, 

which correlated with reduced apoptosis and failed MES dissolution. These results 

indicate that Smad- and p38 MAPK-dependent mechanisms are functionally redundant 

during palate fusion (12,41).  

Previous studies had shown that TGFβR3 is expressed in the epithelium and was 

specifically localized to the MEE during palatal shelf fusion in mice (42). Knockdown of 

TGFβr3 with siRNA in a palatal shelf culture model inhibited in vitro palatal shelf 

fusion due to persistence of the palatal epithelium (43,44). Recent findings demonstrated 

a partial rescue of the CP phenotype in Wnt1-Cre; TGFβr2 F/F;TGFβr3+/- mice 

suggesting that TGFβR3 played a pivotal role in maintaining homeostasis of TGFβ 

signaling during palatal vascular and bone development (44,45).  

Ephs and Ephrins 

 Eph/ephrin family members have been demonstrated to control anterior palatal 

shelf outgrowth (46). These signaling molecules have the capacity for bidirectional 

signaling, such that a forward signal can be transduced into the cell in which the Eph 

receptor tyrosine kinase is expressed, and a reverse signal can be transduced into the cell 

in which the ephrin (Efn) is expressed. The Efnb1 gene exhibits a highly restricted 

expression pattern in the anterior palatal mesenchyme during all stages of palatogenesis, 

and Efnb1-null mice and Efnb1+/– heterozygous females exhibit CP accompanied by 

decreased cell proliferation in the anterior palatal mesenchyme (47). Mice carrying a 

series of targeted point mutations that specifically abrogate reverse signaling while 

leaving forward signaling by ephrin B1 intact revealed that reverse signaling is 
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dispensable for palatogenesis (47). This study also showed that ephrin reverse signaling 

using EphB2 is required and sufficient for chicken palate (47). 

Null mutations in the EphB2 and EphB3 receptors, or specific disruption of 

forward signaling through these receptors, also resulted in reduced palatal shelf 

proliferation and CP (48,49). 

PDGF Signaling 

Platelet-derived growth factor (PDGF) and its receptors (PDGFRα and -β) have 

specific roles in promoting tissue-tissue interactions to control cell migration, 

proliferation and survival during embryonic development (50). Deletion of Pdgfrα in the 

neural crest leads to defects in palatal fusion, nasal septation and abnormal development 

of several facial bones and cartilage structures in mouse models. Pdgfc-null neonates 

have a complete cleft of the secondary palate, accompanied by failure of the palatal 

bones to extend across the roof of the oronasal cavity (51). 

Wingless Type (Wnt) Protein Signaling 

Wnt pathway activity is specifically localized to facial epithelia and underlying 

mesenchyme in the lateral nasal, maxillary and mandibular prominences. In neural crest 

mesenchyme, Wnts promote proliferation; thus, promoting the growth of the maxillary 

prominences that come together to form the palate (52). In the facial epithelium, 

expression of multiple Wnts is essential for the fusion of facial prominences (53). Some 

abnormalies are linked to disruptions in various Wnt genes (54). Some perturbations of 

the pathway produce mild to severe facial clefting in various animal models as well as in 

humans (55). Mutation of Wnt9b in mice leads to CLP (54). Abnormal expression of the 
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lipoprotein receptor-related protein 6, Lrp6, a Wnt pathway coreceptor, also results in 

CLP. 

Irf 6 (Interferon Regulatory Factor 6) 

Irf6 is a member of a large family of transcription factors that bind to specific 

DNA sequences and regulate gene expression. In mice, disruption of this gene results in 

clefting (38). In humans, mutations in IRF6 have been shown to cause Van Der Woude 

syndrome and popliteal ptyergium syndrome, two disorders that are characterized by the 

presence of CP. Variations in IRF6 increased the risk for isolated CLP (56). Irf6 Irf6 

mutant mice exhibit a hyper-proliferative oral epithelium that fails to undergo terminal 

differentiation, causing epithelial adhesions that occlude the oral cavity and result in CP 

(57). Taken together, these data suggest Irf6 mutations may result in defective elevation 

of palatine shelves, secondary to inappropriate adhesions with oral epithelium (38). 

VAX1  

VAX1 gene is a member of the Emx/Not gene family and encodes a 

transcriptional regulator with a DNA-binding homeobox domain. Single nucleotide 

polymorphisms in the VAX1 genes were overrepresented in patients with CLP, 

suggesting that variants in VAX1 itself may contribute to development of clefting. 

Mouse knockouts for Vax1 show CP, and this gene was expressed widely in developing 

craniofacial structures (58). Therefore, variants in VAX1 are strong candidates in the 

etiopathogenesis of  CLP. 
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ADAMTS Family Metalloproteases 

Recent studies suggest that extracellular matrix (ECM) proteins participate in the 

regulation of palatal growth. Simultaneous disruption of the genes encoding two 

ADAMTS family metalloproteases, Adamts9 and Adamts20, resulted in CP with defects 

in early outgrowth, elevation and approximation of the palatal shelves (59). These 

secreted metalloproteases bind to the cell surface where they are actively involved in 

pericellular ECM proteolysis. A major substrate for these proteases is versican, a 

proteoglycan with space-filling properties. The cleavage of versican was indeed reduced 

in Adamts9+/–; Adamts20 bt/bt compound mutants. Interestingly, simultaneous disruption 

of versican and Adamts20 function also resulted in reduced palatal cell proliferation 

(59). It is possible that proteolysis of ECM molecules such as versican might produce 

bioactive fragments with growth-promoting activity.  

Fibroblast Growth Factor 10 (Fgf10)  

Fgf10 it is a crucial mesenchymal signal that is required for palatal outgrowth. 

Mice homozygous for a null mutation in either Fgf10 or the gene encoding its receptor, 

fibroblast growth factor receptor 2b (Fgfr2b), exhibited CP with impaired palatal shelf 

outgrowth (60). Expression of Fgf10 mRNA was restricted to the mesenchyme, but 

Fgfr2b mRNA was detected in the overlying epithelium. Fgfr2 function is required 

within the epithelium, mice having a epithelial-specific deletion of Fgfr2 also exhibited 

CP (61). Both epithelial and mesenchymal cell proliferation were reduced in the absence 

of either Fgf10 or Fgfr2b. Thus, suggesting the presence of a factor that signals from the 

epithelium back to the underlying mesenchyme dependent on Fgf10/Fgfr2b signaling.  
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The expression of Fgf10 was also reduced in the palatal mesenchyme of embryos 

lacking mesenchymal Smo, indicating that Shh and Fgf10 function in a positive-

feedback loop that drives the outgrowth of the palatal shelves. 

FOXE1 (Forkhead Box Protein E1) 

 FOXE1 is a forkhead containing transcription factor that is involved in 

embryonic pattern formation. The FOXE1 gene is expressed at the point of fusion 

between maxillary and nasal processes during palatogenesis. Positional cloning and 

candidate gene sequencing show a correlation between mutations in FOXE1 and the 

occurrence of CLP (62). FOXE1 is expressed in the secondary palate epithelium of both 

mice and human embryos (63). Mice with a null mutation in FOXE1 have CP (64). 

 

Molecular Signaling Events in Embryonic Palatal Development 

As stated above, CP with or without CL is a complex trait triggered by a 

combination of numerous genes and environmental factors (65,66). The palatal shelf 

development defects will be divided in five categories: failure of palatal shelf formation, 

fusion of the palatal shelf with the tongue or mandible, failure of palatal elevation, 

failure of palatal shelves to meet after elevation, persistence of middle edge epithelium. 

Failure of Palatal Shelf Formation 

The failure of palatal shelf formation is a rare severe defect. Recent studies have 

identified several molecular networks operating between the palatal shelf epithelium and 

mesenchyme during different steps of palatogenenesis. These networks include signaling 

molecules and growth factors such as sonic hedge hog (Shh), members of the 
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transforming growth factor β (TGFβ) super family, including bone morphogenetic 

proteins (Bmps) and TGFβs, fibroblast growth factors and their receptors (FgfR), 

effectors and targets (13,67). Studies addressing the role of Fgf signaling during early 

palatal development by analyzing Fgf10 and FgfR2b mutants found altered cell 

proliferation within both mesenchyme and epithelium in the palatal shelves and 

increased apoptosis within the epithelium. Fgf10 and FgfR2b mutations affected the 

initial development of palatal shelves, and the mouse pups had complete CP (68). By 

signaling via its receptor, FgfR2b, in the palatal shelf epithelium, the mesenchymal 

derived Fgf10 supports epithelial proliferation and survival and also induces the 

expression of Shh within the epithelium. Shh, in turn, signals to the mesenchyme and 

stimulates cell proliferation. In general, the signaling activities are subject to tight 

spatiotemporal control, and, in many instances, too much or too control little is 

detrimental to the developing organ (12).  

This situation is well illustrated in anomalies caused by deregulated hedgehog 

(hh) and Fgf signaling (69,70). While Fgf10/FgfR2b activity plays a crucial role during 

palatogenenesis, it appears to be subject to the tight spatiotemporal regulation shown in 

mice lacking Shox2. Shox2 mutant mice develop a very rare type of CP that may also be 

found in humans (36): the soft palate is intact whereas, the hard palate has a cleft. 

Abnormal proliferation and apoptosis were theorized to be the cause of the cleft. 

Surprisingly, a number of protagonists implicated in palatogenesis, including Msx1, 

Bmp4, Pax9, Lhx8, Osr2, TGFβ3 and Jag 2, were expressed normally (36). In contrast, 

Fgf10 and Fgfr2b were expressed at ectopic sites within the mesenchyme of the Shox2 
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mutant mice (71). These studies emphasize the importance of the precise timing and 

determination of sites of signaling activities necessary for normal development. The 

mutation of activin-βA causes a severe facial primordial development defect, which may 

be responsible for the retardation of palatal shelf development and complete CP. In 

addition, other genes, including Msx1, Lhx8, Shox2 and Osr2, assume important roles in 

the palatal shelf growth. The targeted mutation of these genes in mice generates CP, 

indicating the intrinsic requirement of these factors during palatogenesis (71). 

Fusion of the Palatal Shelf with the Tongue or Mandible 

Under normal conditions, palatal shelves do not fuse with other oral structures. 

However, in mice that do not express Fgf10, the palatal shelf epithelium fuses with the 

tongue and mandible (68). The loss of function mutations of Fgf10 results in anterior 

palatal shelf fusion with the tongue, whereas the middle and posterior palatal shelf 

regions adhere to the mandible, thus preventing the elevation of the palatal shelf (72). 

There is a severe reduction of the expression of Jagged 2, thereby encoding a ligand for 

the Notch family receptors and ectopic TGFβ3 production in the nasal epithelia of these 

mice. The analysis of Jag2 mutant embryos indicates that Jag2-Notch signaling prevents 

inappropriate palatal shelf adhesion to other oral epithelia through the control of oral 

epithelial differentiation. Mutations in TBX22 have been reported in families with X-

linked CP and ankiloglossia (73-75). Tbx22 is expressed in the developing palate and 

tongue in mice, suggesting an important role in regulating tongue and palate 

development. 
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Failure of Palatal Elevation 

Palatal shelf elevation is a rapid movement triggered by both intrinsic forces 

within the palatal shelves proper and by influences from other craniofacial and oral 

structures, including the movement of the tongue, and growth of the cranium and 

mandible (76,77). The role of the extracellular matrix in palatal shelf elevation has been 

supported by some studies and is presently accepted as an important determinant of 

palatal shelf elevation (78,79). Those studies (77) suggested that a progressive 

accumulation of glycosaminoglycans, primarily hyaluronan in the palatal shelves, plays 

a role in their elevation (78,79). Hyaluran is a highly charged glycosaminoglycan that 

retains high amounts of water, forming hydrated gels leading to the expansion of the 

extracellular matrix. Other constituents of the palatal shelves including collagen fibers, 

vascularization, and the epithelial covering; the polarized alignment of the mesenchyme 

cells may also contribute to the intrinsic elevation force of the palatal shelves. Mutations 

of Pax9, Pitx1 or Osr2 can lead to failed palatal shelf elevation and CP defect (80-83). 

The cellular defect is associated with the CNC-derived palatal mesenchyme, suggesting 

the important functions of these transcription factors in regulating the fate of the CNC 

cells during palatogenesis. Early studies attributed a role to the neurotransmitters during 

palatal shelf elevation (77). At present, it is widely accepted that neurotransmitter γ-

aminobutiric acid (GABA) regulates not only neuronal activities but also cell migration, 

survival, proliferation and differentiation of neuronal and non-neuronal cells (84-86). 

Teratological studies in rodents showed that GABA or GABA agonists generate CP by 

inhibiting palatal shelf elevation, whereas GABA antagonists stimulate the process (87). 
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The implication of GABA in palate development was demonstrated by genetic studies of 

mice lacking the β3 subunit of the GABA receptor that developed CP without other 

craniofacial malformations (88). 

Failure of Palatal Shelves to Meet After Elevation 

Fusion of the opposing palatal shelves is an important step, taking place through 

a sequence of events that includes the removal of the flat peridermal cells, contact and 

adhesion of the opposing MEE, which creates the MES. The MES disintegrates and the 

mesenchymal confluence is achieved at the midline (9,10,22). Failure of shelf fusion is 

the most common type of CP defect documented in animal studies. Mutations in Msx1 

and Lhx8 and conditional inactivation of TGFbr2 in CNC cells or Shh in the epithelium 

all result in retarded palatal shelf development (12,68).  

Persistence of Middle Edge Epithelium 

Adhesion of the opposing MEE is an important event in both human and mouse 

embryos (8,15,22,32,89). E-cadherin is expressed in the epithelia covering the 

frontonasal and medial nasal processes as well as during the different stages of palate 

development, including the epithelial islands, remnants of the MES (90-92). Mutations 

of CDH1/E cadherin, which deletes the extracellular cadherin repeat domains required 

for cell-cell adhesion, have recently been associated with CLP in families with 

hereditary diffuse cancer (93). E-cadherins are known to form dimers, indicating that the 

mutant proteins may have trans-dominant negative effects over the normal proteins (93).  

Extensive efforts have been made to elucidate the role of TGFβ3 during palatal 

fusion (94-97). Adhesion of the MEE upon palatal shelf contact is a necessary step for 
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fusion. TGFβ3 is expressed in the MEE before and during fusion, and mediates MEE 

adhesion of the opposing palatal shelves through filopodia. E-cadherin is required for 

fusion, whereas filopodia seem to be crucial for proper alignment and guidance of cell 

sheets that are fated to fuse, but not for fusion itself (98). TGFβ3 is implicated in 

controlling the remodeling of the extracellular matrix through regulation of the 

expression of the matrix metaloproteinases (Mmps) Mmp13, Mmp2 and the tissue 

inhibitor of metalloproteinase-2 (Timp) (99). TGFβ3 signaling functions in the MEE by 

mediating the epithelial-masenchymal interactions leading to tissue changes that regulate 

palatal fusion. For example, EMT of the MES has been proposed as the major 

mechanism underlying the disappearance of the MES to generate mesenchyme 

continuity, thus preventing palatal clefts (22). The establishment of the concept of EMT 

as the prevailing mechanism of MES disappearance leading to studies attributing roles to 

different molecules, including TGFβ3, Lef1, Smad, RhoA, phosphatidylinositol 3-kinase 

(PI-3 kinase), Mmps, Twist and Snail (9,21,100). In TGFβ3 or Egfr mutant mice, there 

is an alteration of the fate of MEE cells (101,102). In TGFβ3 null mutant mice, MEE 

cells fail to undergo apoptosis and remain along the midline, preventing normal fusion.  

 

SUMO Modification of Signaling Pathways in Palatogenesis 

The molecular understanding of NS (nonsyndromic) CLP is further complicated 

when one considers that large differences in penetrance often occur when the same 

mutations are placed on different strains, indicating a potential role for both genetic and 

or environmental modifiers in the pathogenesis of CLP. Several lines of evidence point 
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to the involvement of the small ubiquitin-like modifier (SUMO) posttranslational 

modification machinery (12,103). SUMO proteins are a family of small proteins that are 

covalently attached to and detached from other proteins in cells to modify their function. 

SUMOylation is a post-translational modification involved in various cellular processes, 

such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein 

stability, response to stress, and progression through the cell cycle. A surprisingly 

specific role in orofacial development has been revealed for protein modification by the 

SUMO, which hints at a possible interaction with environmental factors. Small 

ubiquitin-related modifiers belong to the ubiquitin-related protein family, and SUMO 

proteins are ubiquitously expressed throughout the eukaryotic kindom (12,104). SUMO1 

shows strong expression in the edge epithelial of the secondary palate (105). A 

translocation breakpoint interrupting SUMO1 was found in a patient with CLP (12,105). 

The causative nature of the translocation defect has been confirmed in SUMO1-deficient 

mice having a distinct CP phenotype (12,105). Furthermore, it was recently shown that 

mutations in TBX22 have a profound effect on its ability to be sumoylated, which is at 

least partially responsible for its loss of function (12,106). Other SUMO targets include 

Smad4, Msx1, p63, Pax9, Eya1 and FGF signaling (12,103). It seems likely that some of 

these factors may manifest through the disturbance of the SUMO pathway. Destabilizing 

the normal balance of expression and activity for genes such as TBX22, Msx1, SATB2, 

and p63 during early pregnancy is likely to provide a high-risk environment for the 

occurrence of CLP (12). Elucidating the relationship among environmental factors, the 

SUMO pathway, and the networks of craniofacial genes influenced by this 



 

 16 

posttranscriptional modification may be crucial to the understanding of the idiopathic 

forms of orofacial clefts (12).  

 

A-P Gradient of Molecular Signaling in Palatal Development 

Multiple genes are critical for the development of the anterior region of the 

palate. Msx1, Bmp4, Bmp2, Fgf10, and Shox2 have restricted expression patterns in the 

anterior region of the palate (12,68,107). In addition to the differential gene expression 

patterns along the A-P axis of the developing palate, there is also mesenchymal 

heterogeneity between the medial and lateral regions of the palatal shelf. The odd-

skipped related genes Osr1 and Osr2 are expressed in a medial-lateral gradient in the 

palatal shelf. The mutation of the Osr2 gene results in the compromised development of 

the medial aspect of the palatal shelf and retards palatal shelf elevation (12,83,108). The 

expression of Fgfr2 is focused on the medial aspect of the developing palatal shelf, 

suggesting a possible functional significance in regulating its development and elevation.  

An important discovery has been the confirmation of genetic heterogeneity along 

the anterior-posterior and medial-lateral axes of the developing palate (36). This 

heterogeneity may provide a differential regulatory mechanism for the fusion of the 

anterior vs. posterior region of the palate. MEE cells undergo apoptosis at different times 

during palatal fusion. It has been shown that the apoptosis of MEE cells is triggered by 

palatal shelf contact in the anterior region, whereas it is initiated before any contact 

between the opposing shelves in the posterior region (26). This difference may be the 

result of dissimilar molecular signals in the palatal mesenchyme along the 
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anteroposterior axis that instruct different fates to the palatal epithelium (12,109). Recent 

studies have demonstrated that constant and reciprocal interactions between the palatal 

epithelium and the CNC-derived mesenchyme are responsible for setting up this genetic 

heterogeneity along the AP axis and are crucial for normal palatal development and 

fusion (13,68,110). The specific gene expression patterns in the posterior region of the 

palatal mesenchyme are less understood. Fgfr2 is expressed in the epithelium, and the 

CNC-derived mesenchyme is found in the middle and posterior palate. FGF8 signaling 

selectively induces the expression of Pax9 in the posterior region of the palatal 

mesenchyme. The loss of Pax9 results in a palatal shelf development defect and a CP 

(36,81). 

 

Types of Cleft Palate  

CP or CLP may involve both the primary or secondary palate (frequently both 

complete clefts). Those involving the primary palate are associated with clefts of the lip. 

Palatal clefts may also be unilateral or bilateral. Isolated clefts of the secondary palate 

(incomplete clefts) occur in the absence of defects in either the lip or the alveolar 

process. Because palatal fusion occurs in an anterior to posterior direction, clefts of the 

secondary palate may involve only the soft palate or both the soft and hard palates 

together (111). 

Clinically, clefting in the secondary palate extends anteriorly from the uvula to 

varying degrees, often involving the hard palate (112). In complete forms, the cleft can 

affect the entire secondary palate, reaching the incisive foramen, leaving the 
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nasopharynx in direct communication with the oral cavity. Thus, the vomer can be seen 

as a midline structure extending from the base of the skull. While complete and 

incomplete clefts of the palate may be readily apparent on physical exam, other forms 

may also exist with regard to feeding, speech development and ear infections (113). 

 

Epidemiology 

CLP affects with variability across geographic origin, racial and ethnic groups, as 

well as environmental exposures and socio economic status. In general, Asian and 

Amerindian populations have the highest reported birth prevalence rates, often as high as 

1/500, European-derived populations have intermediate prevalence rates at about 1/1000, 

and African-derived populations have the lowest prevalence rates at about 1/2500 

(114,115). These observations suggest the relative contribution of individual 

susceptibility genes may vary across different populations. The frequency of CLP also 

differs by sex and laterality: there is a 2:1 male to female ratio for clefts involving the lip 

and approximately a 1:2 male to female ratio for clefts of the palate only; and there is a 

2:1 ratio of left to right sided clefts among unilateral CL cases (114).  

 

Environmental Factors and Gene Interactions 

The etiology of CL with or without palate (CLP) is theorized to be a combination 

of factors associated with genes and environment (65,116). The advent of gene targeting 

technology and basic conventional techniques using animal models has led to the 

identification of genes associated with known and unknown etiologic factors. The 
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characterization of the genomic sequences will greatly impact the regulation of gene 

networks and pinpoint any variations in the different stages of craniofacial 

morphogenesis. There is emphasis placed on the different genes associated with the 

classifications of CLP into syndromic (Table 1) and nonsyndromic genes (Table 2). Each 

classification plays a significant role in the understanding of the molecular and genetic 

mechanisms affecting these types of craniofacial defects (66,67,117). In addition to 

known genes, there is strong evidence that several environmental factors (e.g., alcohol 

consumption, tobacco, and anti-convulsants) increase the risk of CLP (118,119). In 

contrast, several studies have shown that folic acid may have a protective effect on CLP 

and neural tube defects (120-124). Data from the National Birth Defect Prevention 

Network have indicated a decrease in neural tube defects from 5/10,000 to less than 

2/10,000 after the fortification of the food supply with folic acid, indicating that this 

vitamin and the proteins that facilitate the uptake and metabolism of folic acid may be 

candidate genes in craniofacial development (122,125-128). 

  Maternal smoking has been associated repeatedly with increased risk of CLP 

analysis supports an overall odds ratio (OR) for having CLP of ~1.3 among offspring of 

mothers who smoke (16). Increased risk from exposure to maternal smoking during the 

peri-conceptual period raises the possibility that genes in certain metabolic pathways can 

play a role in the development of CLP. Markers in GSTT1 (glutathione S-transferase 

theta) or NOS3 (nitric oxide synthase 3) genes appear to influence risk of CLP in the 

presence of maternal smoking (129). The GSTT1 markers are gene deletion variants, 

which suggest deficiencies in detoxification pathways may underlie some of this 
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susceptibility. Smoking has also been associated with a joint risk with variants in the 

IRF6 gene and the same study reported interactions between multivitamins and IRF6 

variants. Some specific teratogen, for example valproic acid have evidence of 

association with CP. Exposure to maternal alcohol consumption has also been suggested 

as a risk factor, but the evidence has been more inconsistent. Studies also suggest that 

drinking patterns (high doses of alcohol in short periods of time) increase risk (130). 

This is supported by variation in the ADH1C alcohol dehydrogenase gene. Nutritional 

factors, such as folate deficiency, have also been suggested to influence risk of CLP, 

based on both observational studies and trials using folate supplementation to prevent 

recurrences of CLP in families. However, the studies of vitamin supplementation with 

folate remain controversial, and recent studies of levels of folate receptor antibodies did 

not find an association with CLP. Furthermore, food fortification programs using folic 

acid have shown detectable decreases in the rates of clefting in some but not all studies. 

In the future, other nutrient and micronutrient studies will need to be studies in otder to 

find evidence of effects. For example, there is data to support roles for zinc deficiency in 

risk of oral clefts in populations in which zinc status is highly compromised, for 

cholesterol deficiency in facial clefting, as well for as multivitamins in general in cleft 

prevention. 

Recent studies found that mothers who ate liver periconceptionally were at a 

decreased risk of having a child with a CLP compared to mothers who did not (131). A 

3-oz portion of pork, beef, or veal liver contains more than 600% of the recommended 
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dietary allowance for vitamins A and B12 and more than 50% for folate, zinc, and 

vitamin B6 (US Department of Agriculture, 2013).  

Besides nutrients and toxins other environmental exposures have been, and 

should continue to be, assessed for possible roles in clefting. These exposures include 

hyperthermia, stress, maternal obesity, occupational exposures, ionizing radiation and 

infection (114,132). 

 

Morbidity  

Researchers hoping to study the genetics of CLP were haunted by reviews stating 

that "babies born with clefts can be treated in their first year of life and understanding 

the genetics contribution to clefts will not change the outcome of these cases” (133). 

Recent work has suggested that this was an underestimation of the consequences of 

being born with facial clefts. Individuals born with clefts have a shorter lifespan, with 

increased risk for all major causes of death, when compared with individuals born 

without clefts. Contributing to these higher mortality rates are probably psychiatric 

disorders and cancer (134). Facial clefts increase the risk of hospitalization for 

psychiatric diseases in adults. Also, an increased occurrence of breast and brain cancer 

among adult females born with oral clefts, and an increased occurrence of primary lung 

cancer among adult males born with oral clefts have been reported (131). 

Psychiatric disorders can be interpreted under the assumption that the 

development of the brain and that of the face are intimately related in both normal and 

pathologic conditions, and suggest that abnormal brain development might accompany 
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an abnormality in facial development. Animal models have shown that forebrain 

development and facial development are linked. Molecular signaling in the forebrain 

regulates the establishment of a signaling center in the face, and thus controls its 

subsequent morphogenesis (135). The molecular dialogue that exists between these 

tissues is essential for patterned outgrowth of the middle and upper face. It appears that 

defects in signaling within the forebrain can lead to a wide variety of craniofacial 

malformations, including CLP (135).  

 

Ossification of the Palate  

Palatal fusion signals the start of the ossification process in the anterior two-

thirds of the palate to form the hard palatal tissues. This process entails the successful 

fusion of the three embryonic structures, namely, the lateral edges of the primary palate 

with the two anterior edges of the secondary palate. This process requires the 

synchronization of shelf movements together with the growth and withdrawal of the 

tongue and the growth of the mandible and head (136). Any form of disruption during 

the formative stages results in a pathological cleft.  

A wide range of studies on craniofacial skeletal maturation has shown that the 

fusion of the palatal shelves along their length to form the mid-palatal (MP) suture 

occurs during the ossification of the maxillae and palatine bones before the mandibular 

condyle develops (36,137,138). Ossification is observed where mesenchymal cells 

condense, the surrounding tissue vascularizes and the cells differentiate into osteoblasts. 

There is a number of growth and differentiation factors involved in this process, such as 
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Bmps, core binding proteins (Cbf), Fgfs, and hh proteins that interact with various 

signaling pathways to regulate the patterning of the undifferentiated mesenchyme. Bmp-

6 and the transcription factor Gli1 are also expressed during intramembranous bone 

formation (139-141). As in the craniofacial sutures, the mid-palatal (MP) and trans-

palatal (TP) suture osteoblasts express TGFβ 1,2 and 3, while the suture cells express 

primarily TGFβ3 (142,143).  

 It has been established that cranial sutures are the growth sites for the 

neurocranium and that the dura mater provides the signaling molecules to regulate suture 

patency (144). The MP and TP sutures have different morphology, so they are not in 

contact with the dura mater. There is an hypothesis, that these facial sutures are growth 

centers (142,143) and that the nasal capsular cartilage produces signaling molecules to 

regulate the fusion of the MP and TP sutures (Fig. 1-3) (143). The nasal cartilage 

maintained the TP sutures as growth sites in experiments on rat palatal organ cultures 

(E20) with or without nasal cartilage. Thus, it was  theorized that the nasal cartilage may 

regulate mid-facial growth (12,143).  

Animal models have been developed to understand the etiology and pathogenesis 

of orofacial clefts and the mechanisms of normal palatal ossification. The application of 

cyclic forces is an effective mechanical stimulus for the regulation of osteogenesis and 

osteoclastogenesis in the sutural growth of neonatal rats (145). The process of tissue 

response and regeneration in the palato-maxillary suture under tensile forces was 

examined histologically and fluorescently. A cyst-like zone appeared in the conjuncture 

of the bony front and the sutural connective tissue at the early stage of sutural expansion 
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with increased proliferating osteoblasts and fibroblasts. New bone was deposited along 

the nasal septum and the front of the cyst until the new bone front formed and the suture 

restored its original morphology (146). 

The approach of utilizing MP suture expansion in mice has provided new 

insights into mechanical stress modulation as an important factor for the skeletal 

remodeling of bones and cartilage. The expansive force across the MP suture promotes 

both bone resorption through the activation of osteoclasts and bone formation through 

the increased proliferation and differentiation of the periosteal cells (147). Similarly, the 

use of orthodontic wire expansion in growing rats showed that secondary cartilage could 

undergo chondrogenic and osteogenic differentiation in the maxillary arch. Interestingly, 

these induced changes were attributed to the alteration of the differentiation pathway of 

progenitor cells from chondroblastic to osteoblastic, in which many sutures temporarily 

form secondary cartilage during early development. Histological observations at days 7, 

10, and 14 indicated that intramembranous bone formation, which is partially recognized 

as mature bone (148), occurred at the boundary between the precartilaginous and 

cartilaginous cell layers where the calcified matrix was positive for osteocalcin antibody. 

The cellular events taking place at the MP suture cartilage in rat models as a result of 

expansion force have been observed as endochondral bone formation at the boundary 

between the maxillary bone and cartilage. Whereas, intramembranous osteogenesis has 

appeared at the internal side of the cartilaginous layer (149). To stimulate new bone 

formation in defective tissues, rat organ cultures with distracted palatal sutures were 

treated with Bmp-7 and Nell-1 for 8 days in vitro. The presence of Nell-1 increased 
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chondrocyte hypertrophy and endochondral bone formation while Bmp-7 enhanced both 

chondrocyte proliferation and differentiation in the distracted palates of 4-week-old male 

rats. This study indicates that Nell-1 was involved in the rapid osteoblast differentiation 

in palate sutures (150). In another study, the application of TGF-β1 during the early 

stages of rat MP expansion induced rapid bone formation at the suture site (151). 

Many research investigations have also explored the importance of distraction 

osteogenesis (DO) since its introduction by Ilizarov in the 1950s. This treatment is a 

special form of bone healing that has applied both basic and clinical research models in 

which well-controlled distraction stresses and subsequent tensile strains within callus 

tissues produce new bone formation at an unusual rate (152). The application of DO to 

craniofacial disorders is being actively investigated for purposes such as midfacial 

advancement, hard palate suture expansion, elongation, and alveolar cleft closure (153-

157). However, a review of studies revealed that no single investigation concerning the 

use of DO has been done to close a hard palate cleft in humans due to the thin layer of 

hard palatine bone. One possible method to supplement existing treatment modes is to 

induce new bone formation and soft tissue migration over the cleft before definitive 

surgery. The technique of DO in which bone is lengthened gradually under tension after 

an osteotomy was utilized in dogs. Through histological analysis of the specimens, the 

results of this trial confirmed that distraction promoted bone healing at the cellular level. 

The appearance of osteoclasts and resorption lacunae signaled the initiation of the 

remodeling process. With time, an increased area of bone surface was covered with 

osteoid. There was evidence of numerous bone-forming osteoblasts interfacing with the 
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surface of nonmineralized bone matrix. The bone surface was extensively double-labeled 

with bone fluorochromes, indicating a high turnover of bone during the healing process. 

By 10-12 weeks, the osteoid formed was almost completely mineralized, as 

demonstrated by the bone occupying the surgically created cleft (157).  

 

Oral and Palatal Musculature and Related Deformities 

Overt CLP encompasses a broad spectrum of defects, ranging from so-called 

microform clefts; thus, unilateral or bilateral clefts of the lip and palate are completed. 

The orbicularis oris (OO) muscle consists of numerous differently oriented strata of 

muscular fibers that surround the orifice of the mouth. At approximately 7 weeks post-

conception (p.c.) in humans, the two maxillary prominences fuse with the medial nasal 

prominence; however, lip fusion is not complete until the epithelial seam disappears 

through EMT and/or apoptosis (136) (Fig. 1-2A-C). By 8 weeks p.c., a dense, 

continuous band of mesenchymal cells corresponding to the future OO muscle can be 

seen, with discernable OO muscle fibers present by 12 weeks. The complete OO muscle 

architecture forms by 16 weeks. Any delay in fusion may result in subepithelial OO 

defects, such as the altered migration of the mesenchymal cells. Subepithelial (non-

visible) defects of the orbicularis oris muscle represent the mildest form of CL, and such 

defects are part of the phenotypic spectrum of CLP. This defect usually is visualized as a 

ridge of tissue, resembling a scar on the upper lip along the philtrum (158).  

Histological studies have demonstrated that such defects spread to the muscle 

fibers of the superior OO muscle. A method using high-resolution ultrasonography was 
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developed to visualize the OO muscle non-invasively (159). Significant differences in 

the defects of the OO are found between in the first-degree relatives of CLP individuals 

and controls. The OO muscle defect detected by ultrasound is consistent with the 

histological examination of cadavers (159). Interestingly, the Bmp4 knockout mouse 

model shows bilateral CL at E14.5, although this condition occurs at a rate of 22% after 

birth (160), suggesting the initial CL is rescued or healed in utero, leaving only the 

subepithelial OO defect. Potential mutations in BMP4 were found in 2 individuals with 

OO defects and none in the controls (161). The strong evidence that OO discontinuities 

are indeed part of the phenotypic spectrum of CLP provides an important clue for the 

clinical recurrence risk estimation for families with members affected with CLP.  

The mildest form of CP is termed a "submucosal cleft palate", which is described 

as a bifid uvula, palatal muscle diastasis, and a notch in the posterior surface of the hard 

palate (162). Defects in the nasopharyngeal anatomy and/or physiology may lead to 

velopharyngeal incompetence (VPI). Although most VPI is caused by CP, the population 

prevalence of VPI due to other causes is estimated to be approximately 2.5% (163). In 

such cases, VPI may be caused by submucosal muscular defects of the levator palatine 

or musculus uvulae. Most of the soft palate muscles are derived from myotome cells, 

which first invade pharyngeal arch 4 and then migrate to the palate, carrying their 

innervations from the vagus nerve. One muscle (tensor veli palatini) is derived from 

myotome cells that first invade arch 1 and are innervated by the trigeminal nerve (164). 

In the mouse, the tensor veli palatine, levator veli palatine, medial pterygoid, and lateral 

pterygoid muscles are identified as myogenic fields as early as gestational day 15. The 
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palatoglossus, palatopharyngeus, and musculus uvula. However, are not clearly visible 

(165). In principle, the presence of these anatomical features in unaffected individuals 

may signify an elevated risk for producing clefts in offspring (166). 

 

Palate Repair 

Today, surgical repair of CL is performed around 2–3 months of age, with CP 

closure performed at 6–12 months (167). The earliest written account of a cleft surgery 

is from ancient China; the annals of the Chin dynasty from 390 AD recount the repair of 

CL in an 18-year-old man. Some of the features of the surgery (cutting and stitching the 

cleft edges) are essentially the same today, although various refinements now give more 

functional and aesthetic results. Surgical treatment of CP was first described in 1817 and 

was followed by many years of refinement of surgical techniques (167).  

The first report of a CP repair is attributed to LeMonnier, who incised the cleft 

edges and placed sutures leading to suppuration and then healing across the defect 

(38,111). Von Langenbeck in 1931 introduced the use of mucoperiosteal flaps to close 

clefts involving the hard palate (38). The most widely used techniques include Von 

Langenbeck’s, the Vaeu-Wardill- Kilner and the two-flap repair described by Bardach 

(38). While many modifications of each exist, the main principles across all CP repairs 

include tension-free closure of the oral and nasal layers, dissection of muscles from the 

posterior edge of the hard palate and construction of a horizontally oriented palatal sling 

to restore normal velar function (38). 
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Repair of the CP begins with an incision along the cleft margin at the junction 

between oral and nasal mucosa. The incision is carried anteriorly along the gingiva, 

allowing elevation of mucoperiosteal flaps off the hard palate (38). The tendon of the 

tensor veli palatini can also be divided medial to the hamulus to facilitate medialization 

of the levator muscle. The nasal mucoperiosteum is then widely mobilized from the 

undersurface of the hard palate. Posteriorly, an intravelar veloplasty is typically 

performed, with separation of the oral, muscle and nasal linings and release of the 

muscles from their abnormal attachment to the posterior edge of the bony palate (38). 

Closure of the defect is performed in three layers (nasal mucosa, velar muscle and oral 

mucosa), with horizontal reorientation of the levator veli palatini establishing proper 

orientation of the sling. In the region of the hard palate, a two-layer repair is performed, 

with the nasal layer sometimes requiring a vomerine flap (38,111). 

In patients with either clefting of the soft palate or a submucous cleft, a Furlow 

palatoplasty can also be performed. Double opposing z-plasties are fashioned on the 

velum, with release of the levator muscle from the posterior edge of the hard palate. 

Transposition of the flaps yields retropositioning of the muscle to a more medial-lateral 

position (38,168). With this technique, simultaneous palatal lengthening and 

reconstruction of the levator sling is established along with additional narrowing of the 

nasophayngeal aperture (38,169). Velopharyngeal competence allowing development of 

normal speech is one of the most critical outcomes in cleft surgery, and the Furlow 

technique has been associated with some of the lowest rates of persistent velopharyngeal 

insufficiency following primary repair (38,168,170). 
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While techniques for CP repair have become well established, postoperative 

development of oronasal fistulas still remains a significant problem. Reports have noted 

an incidence ranging from 11% to 23%, with the most likely site being the junction of 

the hard and soft palates (38,171). Several retrospective studies have identified the 

extent of cleft to be a significant factor, as patients with bilateral clefts were found to 

have a 2- to 3-fold higher incidence of postoperative fistula development compared with 

unilateral clefts (172). Operator experience has also been shown to play a role (172). 

Recent studies have evaluated the utility of the buccal fat pad as adjunctive tissue for use 

in both primary palatal cleft repair and treatment of postoperative fistulas. Used in a 

pedicled fashion with overlying mucosa, the buccal fat pad has been shown to 

successfully treated wide oroantral and oronasal clefts (38,173). More recently, buccal 

fat has also been employed to cover laterally exposed bone adjacent to gingival mucosa 

following medialization of the mucoperiosteal flaps (174,175). As this was found to re-

epithelialize within 2 weeks, use of the buccal fat pad may result in an eventual 

reduction of palatal scarring, which may limit subsequent growth restriction of the 

maxilla (38). 

Surgical repair of CP is the clinical standard of care. However, recent 

investigations showed the role of GSK-3 in the process. CP resulting from loss of GSK-

3β could be rescued by protein stabilization during a specific window in embryogenesis 

in the mouse model. A mutant mouse carrying alleles for GSK-3 was injected with 

rapamycin to inducibly stabilize GSK-3β during various 2-d windows in embryogenesis 

within the timeline of palate development. This transgenic mouse was engineered to 
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carry alleles for GSK-3β such that without drug addition the unstable FRB* tag would 

necessarily cause protein degradation, and the mouse would exhibit a null mutation 

phenotype. Subsequent histologic analysis revealed that without rapamycin, no GSK- 

β3F/F embryos were able to rescue the CP; however, with rapamycin injection of the 

pregnant dam between E13.5 and E15.0, the majority of conditional GSKβ3F/F mutant 

animals could be partially or completely rescued from their CP in utero. Rescue was not 

seen in other injection windows during palatogenesis, suggesting a critical role for GSK-

3β function in normal palatogenesis between E13.5 and E15.0 in the mouse model 

(176,177). 

GSK-3β has been implicated as a key regulator of a wide variety of 

developmentally important molecular pathways including Wnt, nuclear factor of 

activated T-cells (NFAT), Hedgehog, and insulin signaling. These signaling pathways 

are essential components of many biologic responses and associated diseases, including 

embryonic development and cell fate determination, diabetes, neurodevelopment and 

neurodegeneration, psychiatric disorders, cell cycle regulation and cancer, 

hematopoiesis, and immunity. GSK-3β has not previously been implicated in the 

development of the mammalian palate. However, because it is positioned at the “node” 

of so many significant developmental pathways, analysis of GSK-3β function during 

palatogenesis will likely provide important insight into this common birth defect. 

Because of the “promiscuous” nature of GSK-3β, it has become a potentially important 

therapeutic target. Many potent and selective inhibitors of GSK-3 function are being 

developed by the pharmaceutical industry (178). 
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Although GSK-3β mutations have not been documented to be a cause of human 

orofacial clefting, recent findings suggest it is clinically relevant because of the potential 

to devise methods for improved treatments, including in utero rescue, for human 

orofacial clefting. Investigations of GSK-3β role in palatogenesis promise future clinical 

applicability, because it has the potential to reveal signaling pathways underlying cleft 

formation and lay the groundwork for potentially improved treatments using small 

molecules. 

 

Palatal Tissue Engineering  

The management of CP in patients has improved significantly over 20 years. The 

use of autogenous grafted material is now the standard of care, but tissue engineering is 

an attractive alternative that could greatly reduce the morbidity of surgery and 

potentially enhance the healing process (38). Regarding mucosal repair, cultured 

epithelial grafts, dermal substitutes and a combination of the two, called mucosa 

equivalents, are commonly used to provide extra tissue and aide in wound healing after 

CP repair (38). Cultured epithelial grafts can provide coverage for large areas while 

being derived from only a small biopsy, but they are prone to infection and fail to reduce 

scarring or contraction in full-thickness wounds due to absence of a dermal component 

(179). Such grafts can be either allogenic or autologous. Allogenic grafts have the 

advantage of being readily available but have a low take rate and are generally only used 

for temporary coverage, while autologous grafts take require extra time to culture but 

have a higher take rate (38). Dermal substitutes made from polymers, purified collagen 
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or de-epidermized dermis (DED or AlloDerm) provide additional physical support that is 

often lacking in epithelial grafts. However, some require a secondary procedure to apply 

a split thickness skin graft or cultured epithelia. In recent years, repair of palatal fistulas 

have begun to employ acellularized dermal matrix (AlloDerm) with promising results. 

Using AlloDerm as an interpositional layer between nasal and oral mucoperiosteum has 

significantly reduced fistula recurrence rates (38,180,181). Recent studies have also 

demonstrated the utility of AlloDerm as an adjunctive measure in the primary repair of 

wide clefts (38).  

Cultured mucosa equivalents provide an epithelial and dermal substitute in a one-

step process, which seem to be the optimal replacement for mucosa, since this provides 

material for repair with properties closest to the original tissue. In CP repair, one of the 

major challenges lies in reconstructing the bony hard palatal and alveolar defects. 

Surgical repair with autogenous bone grafts is the current standard of care. Bone is most 

commonly harvested from the iliac crest but can be taken from the rib, tibia, calvarium 

or mandibular symphysis (38). This often requires multiple operations and extensive 

healing time and is associated with high donor site morbidity, including postoperative 

pain, altered sensation, scarring and infection. In addition, bone graft harvest ultimately 

yields a very limited quantity of bone for reconstruction (38,175). 

This bone often does not fully integrate into the host site and can undergo some 

resorption. Bony repair needs to be very strong to support tooth eruption and to 

withstand physical stress from muscles of mastication. There are also allogeneic and 

synthetic materials available for grafting, and while these solve the problem of donor site 
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morbidity, there is still the risk of infection, elicitation of an immune response and 

problems with structural integrity and contour (38). The use of tissue engineering could 

avoid many disadvantages of autogenous grafting, such as donor site morbidity, and 

could potentially decrease the number of surgeries needed while providing improved 

outcomes.  

 

Craniofacial Engineering Using Stem Cells  

Mesenchymal Stem Cells (MSCs) 

The identification of pluripotent MSCs in the bone marrow stroma over 25 years 

ago has led to a variety of research avenues. Capable of differentiating to multiple 

mesodermal lineages, including bone and cartilage, MSCs have become a standard in the 

field of adult stem cell biology and in regenerative medicine (182,183). It is only natural 

that these stem cells would be used in the repair of significant bony defects caused by 

trauma, surgery, or disease. Consistent with this, multiple studies have reported the 

formation of bone tissue both in vitro and in vivo upon the combination of MSCs and 3D 

scaffold supports. In vitro, a wide spectrum of scaffolds are being combined with MSCs, 

including chitosan or gelatin, electrospun collagen nanofibers, honeycomb collagen 

scaffolds, and titanium meshes (184). In animals, the scaffolds and model systems used 

have varied from Hydroxiapatita (HA) ceramics or hydroxyapatite and tricalcium 

phosphates (HA/TCP) constructs for the healing of small bone defects in rodents or 

larger defects in dogs, rabbits, or sheep to complicated biosynthetic composites to silk-

based biomaterials in the healing of segmental femoral defects in nude mice(138). Each 
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of these studies report encouraging results and espouse the use of bone marrow MSCs in 

the repair of bony defects (2,185). 

Adipose-derived Stem Cells (ASC) 

Historically, the adipose compartment has been considered primarily a metabolic 

reservoir of storing, and releasing high-energy substrates. Today, the adipose 

compartment may be a site for an abundant population of stem cells, ASC or adipose-

derived stem cells (2). Like the bone marrow, adipose tissue contains an extensive 

cellular stroma comprised of fibroblastic-like cells termed by Rodbell in 1964 as the 

stromo-vascular fraction or SVF. Further work by Hauner expanded this knowledge and 

postulated that the preadipocytes within the SVF represented a progenitor population, 

though apparently limited to the adipocytic lineage (186). However, in 2001, Zuk et al. 

showed that the SVF fraction isolated from human lipoaspirates in fact contained cells 

with multilineage potential and termed these cells pressed lipoaspirate cells (2). Now 

renamed ASCs, these cells undergo adipogenesis, osteogenesis, chondrogenesis, and 

myogenesis in vitro, suggesting that the SVF fraction of adipose tissue may, in fact, be 

comprised not just of lineage limited preadipocytes but of multipotent stem cells. ASCs 

have also become a hot topic in the world of tissue engineering. Numerous studies have 

begun to explore the osteogenic potential of ASCs in vivo through their combination 

with a wide variety of scaffolding materials. Groups led by Lee and Hicok were the first 

to show that implantation of human ASCs loaded onto polyglycolic scaffolds could 

result in the formation of an osteoid material (2,138,187,188). 
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To improve their ability to form bone, many of these studies treat ASCs with the 

osteogenic growth factor BMP2. Both Peterson and Dragoo were the first to describe the 

engineering of well-formed bone by ASCs in rodents with the help of bone morphogenic 

protein 2 (BMP2) and several MSC studies have shown that this osteogenic factor can be 

used in concert with these stem cells also. Many of these studies claim that increased 

bone formation can be attributed to the presence of BMP2- treated ASCs. However, 

work by Leboy has suggested that BMP2 may not promote osteogenic differentiation of 

human MSCs. Similarly, in patients receiving recombinant BMP2 treatment, the 

regenerative response is several times lower than that previously measured in animal 

studies, suggesting that the response of human cells to BMP2 may not be directly 

comparable to that observed by animal cells. Although several studies have begun to 

combine BMP2 and ASCs, surprisingly, to date, no in-depth in vitro studies have been 

performed to confirm if BMP2 can actually promote ASC osteogenesis (2). 

Scaffolds  

Efficient use of 3D scaffold systems in bone repair is dependent upon their bond-

bonding or bioactive ability. Alhough scaffolds such as Poly lactic glycolic acid (PLGA) 

or Poly lactic acid PLA composites provide the reconstructive surgeon with a 

biodegradable platform for stem cell adhesion and differentiation, their bioactivity can 

be limited. However, studies have suggested that their bioactivity can be strengthened 

through the formation of a layer of hydroxyapatite (HA) at the bone-implant interface 

(2). Several HA materials for use in bone differentiation have been developed within the 

last 20 years and are thought to possess superior in vivo bioactivity. However, much 
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excitement has been generated regarding the osteoinductive capacities of biomimetic 

apatite coatings. Typically created through the immersion of 3D scaffolds in ionic 

solutions with compositions similar to blood plasma called Simulated Body Fluids 

biomimetic apatites are composed of plate-like crystals of calcium phosphate capable of 

coating the entire 3D scaffold architecture (189,190). An improvement on biomimetic 

apatites presented by Wu and colleagues through their development of accelerated 

biomimetic approaches, which have dramatically shorten the time required for coating 

from approximately 2 weeks to 2 days (191). Such convenience may make the 

accelerated biomimetic apatite more attractive for in vivo applications such as bone 

healing. In support of this, accelerated apatite coatings have been shown by Wu and his 

group to promote bone in-growth and differentiation of preosteoblasts and bone marrow 

stem cells and to enhance direct bone to bone contact. Recently, accelerated apatites 

have also been shown to promote the osteogenic capacity of ASCs. In a paper by Cowan 

et al., murine ASCs seeded onto accelerated apatite coated PLGA scaffolds healed 

critical-sized cranial defects without the need for exogenous stimulation such as BMP2 

treatment (192). Although the ASCs used were murine and no further studies using 

human ASCs have been reported, these results remain exciting because they show the 

reconstructive surgeon that methods other than conventional growth factor stimulation 

may be used to induce stem cells to make and heal bone (2). 
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Conclusion 

CLP is caused by many factors, including both genes and environment. Gene 

targeting technology and basic conventional techniques using animal models led to the 

identification of genes associated with known and unknown etiologic factors. However, 

it should be noted that there are other cases where the human gene deficiency was 

identified first and replicated in an animal model. It is also clear from this extensive list 

of possible contributing genes that the molecular and cellular interactions associated 

with CLP are not all understood. Tissue engineering approaches also remain an exciting 

and potentially profitable direction of investigation as the field of regenerative medicine 

advances. 
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CHAPTER II  

EPHRIN REGULATION OF PALATE DEVELOPMENT* 

Synopsis 

Studies of palate development are motivated by the incidence of cleft palate. 

Although, mechanistic studies of palate growth and fusion have focused on growth 

factors such as TGFβ3, recent studies have revealed that the ephrin family of membrane 

bound ligands and their receptors, the Ephs, play central roles in palatal morphogenesis, 

growth, and fusion. In this chapter, the recent findings on the functions of ephrins in 

palatal development will be discussed. 

Introduction  

Ephrin Involvement in Palatal Growth and Fusion 

The Eph family is the largest family of mammalian receptor tyrosine kinases. 

Ephs and their membrane-bound ephrin ligands are responsible for multiple adhesion, 

migration, and boundary forming events throughout development, particularly midline 

fusion events such as urorectal closure (193-195). Binding of ephrins to Ephs on 

opposing cells causes kinase activation in the Eph-bearing cells (forward signaling), 

*Reprinted with permission from “Ephrin Regulation of Palate Development” by M.
Douglas Benson and Maria J. Serrano, 2012, Frontiers of Physiology, v.3, 376, 1-5, 
Copyright 2012 by Benson and Serrano. 
*Reprinted with permission from “Ephrin reverse signaling controls palate fusion via a
PI3 kinase- dependent mechanism” by Symone San Miguel,Maria J. Serrano,Ashneet
2011, Developmental Dynamics, v  240, 357-64 Copyright 2011 John Wiley and 
Sons
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while binding of Ephs can activate intracellular signaling inside ephrin-bearing cells 

(reverse signaling). Ephrin-Bs are transmembrane proteins that have conserved 

intracellular signaling domains while ephrin-As are glycosylphosphatidyl-inositol (GPI)-

linked and use co-receptors to signal. Ephrin-As preferentially bind to the EphA subclass 

of receptors, while ephrin-Bs bind to EphBs, although there is physiologically relevant 

binding across classes, most notably between EphA4 and all three B ephrins. 

Over the years, a number of genetically modified Eph and ephrin alleles have 

been created in mice to both track expression of these molecules and to examine the 

roles of forward and reverse signaling in developmental processes. In addition to 

traditional gene knockouts, several LacZ knock-in alleles have been generated. In these, 

either the entire protein or just the cytoplasmic domain of the Eph or ephrin-B in 

question is replaced with a bacterial beta-galactosidase moiety that can be visualized in 

tissue by incubation with X-gal to produce a blue precipitate. The chimeric alleles are 

especially useful because they lack intracellular signaling ability while retaining activity 

as ligands from their extracellular domains. Thus, they can be used to separate forward 

and reverse ephrin signaling pathways. 

The first evidence that ephrins play a role in palate development came with the 

linkage ephrin-B1 mutations to craniofrontonasal syndrome in humans, of which CP is a 

prominent feature (196,197). At the same time, Davy, et al. reported that deletion of 

ephrin-B1 in cranial neural crest cells in mice caused craniofacial deformities, including 

CP (198). The fact that these defects resulted from cell-autonomous ephrin-B1 deletion 

suggested that ephrin-B1 reverse signaling is important for palate formation. Five years 
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later, Risley et al. reported that forward signaling through the combination of EphB2 and 

EphB3 is necessary for growth of palatal mesenchyme (49). These authors used EphB2 

LacZ/LacZ; EphB3-/- compound mutant mice to create forward signaling double knockout 

mice (EphB3 signaling is removed while EphB2 forward signaling is removed and 

reverse signaling is still intact). These mice had CP from stunted palatal shelf growth, 

while EphB2 and EphB3 single mutants alone did not. Shortly after the Risley study, 

Bush et al. found that forward signaling from ephrin-B1 in palate mesenchyme was 

required for mesenchymal proliferation through a mechanism requiring MAPK/ERK 

activation. Without ephrin-B1, mice displayed CP because the shelves failed to grow to 

midline (46). These data together suggest that Ephs B2 and B3 function as the receptors 

for ephrin-B1 in palate mesenchyme. The EphB2 kinase was recently shown to increase 

proliferation in intestinal cypts through stimulation of Cyclin-D1 levels downstream of 

Abl activation (199). 

When palatal shelves from EphB2 LacZ/LacZ; EphB3 -/- compound mutants were 

placed in contact with each other in culture, they adhered to form an MES and fused 

normally (49). This demonstrated that EphB2 and EphB3 forward signaling are not 

required for fusion, and that reverse signaling from EphB3 alone is not critical for 

fusion, although the extracellular domain of EphB2 was still able to act as a ligand for 

reverse signaling in these mice. 

In embryonic palate, the expression of Ephs and ephrins was examined using  

LacZ indicator mouse lines. A summary of these expression patterns in fusing palate 

combined with those for Ephs and ephrins in the published literature is presented in 
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(Figure 2-1). Ephrin-B2 and EphB2 were found to express specifically in the MES 

immediately prior to and during its degradation. This suggested that ephrin signaling 

contributes to palatal EMT and fusion.  

A group of researchers had reported a study in which 26% of mice homozygous 

for the ephrin-B2LacZ allele had CP (200). In these experiments only a minority of these 

embryos had CP, suggests that other Eph and ephrin family members contribute to 

reverse signaling at the midline and remain unaccounted for. This is not surprising, as 

Eph/ephrin mediated developmental processes are frequently under redundant control by 

multiple family members, including in palate, as noted above. Interestingly, the study by 

Dravis et al. also showed ephrin-B2 expression in the mesenchyme before its re-

localization to the MEE at the time of fusion, suggesting that ephrin-B2 plays a role in 

palatal shelf growth alongside ephrin-B. 

They also showed EphB3 expression in the MEE at fusion, implicating it in the 

fusion process. These data emphasize the likely involvement of multiple Eph and ephrin 

family members in both phases of palatal development. 

If ephrin-B1 is expressed in the palatal mesenchyme, and ephrin-B2 in the 

epithelium, how might these two molecules combine to mediate MES degradation and 

fusion? One possible answer may be found in recent studies on the role of ephrin 

signaling in cancer cell migration. (201). Astin et al., demostrated that prostate cancer 

cells are prodded along in their migration through fibroblasts by the activation of 

EphB3/EphB4 forward signaling in response to ephrin-B2 ligand from the surrounding 

fibroblasts (201). This forward signal activates Cdc42 within the cancer cells to 
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eliminate contact inhibition and increase their invasiveness. It may be that a similar 

mechanism is at work in palatal MEE cell migration through the ephrin-B1-expressing 

mesenchyme. Whereas reverse signaling in MEE cells initiated by contact with Ephs 

(acting as ligands in reverse signaling) on the opposing shelf MEE begins the process of 

EMT, mesenchymal ephrin-B1 (acting as ligand) activates forward signaling in the 

former epithelial cells to continue their migration and complete MES degradation. 

Ephrin-B1 may also provide a signal to the migrating former MEE cells that causes their 

eventual apoptosis, as B ephrin forward signaling is known to cause apoptosis in other 

systems (202). 

Ephrin Signaling in Palatal EMT and Fusion 

Ephrin reverse signaling was found in the chicken palate and it was sufficient to 

cause palatal fusion without the presence of TGFβ3, and that TGFβ3 cannot cause 

fusion without the ephrin signal. Yet there is clearly a question of signaling level. The 

fact that chicken palates cultured without TGFβ3 will not fuse unless exogenous 

EphB2/Fc is added, and that TGFβ3 knockout mouse palates do not normally fuse, 

indicates that the level of ephrin reverse signal naturally present in palatal tissue is not 

enough to overcome a lack of TGFβ signaling. The TGFβ3 and ephrin pathways must 

interact in one of two ways. The first possibility is that TGFβ3 activates expression of 

ephrins and/or Ephs in palate tissue to reach a threshold level required to activate fusion. 

In this model, ephrins are genetically and mechanistically downstream of TGFβ3. The 

second is that the two act in parallel, but intersect such that the TGFβ3-activated signals 

add to those elicited by ephrin activation to reach the level necessary to cause MES 
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degradation. The ephrin signal must still be preeminent; however, as elevated ephrin 

stimulation obviated the need for TGFβ3 in the palate fusion assay, while addition of 

exogenous TGFβ3 did not compensate for a lack of ephrin signal. The activity of 

phosphatidylinositol 3-kinase (PI3K) is required for TGFβ3 stimulation of fusion (203) 

and a recent study discovered that the same is true for ephrin reverse signaling as palates 

stimulated in culture with EphB2/Fc did not fuse in the presence of the PI3K inhibitor 

LY294002. 

The data on ephrin-B2 expression supports the EMT model of palatal fusion in 

that the cells of the ephrin- B2-positive MES was observed in the act of dispersing into 

palatal mesenchyme during fusion. Epithelial cells have a polarized, inflexible 

morphology maintained by specific networks of intermediate filaments, cell-cell 

junctions, and adhesions to the extracellular matrix. The transition to a more fibroblastic, 

motile phenotype such as is observed in the palatal MES, requires the dismantling of 

these networks in favor of a more fluid cytoskeletal arrangement and more plastic cell-

cell contacts. Cytokeratin intermediate filaments disappear in favor of vimentin; laminin-

1 content in the extracellular matrix decreases as fibronectin increases, and E-cadherin 

based adherins junctions are replaced by N-cadherin based cell-cell contacts (204,205). 

These changes in expression are governed by a set of transcription factors such as 

Twist1 and Snail, both of which are regulators of EMT during gastrulation and palate 

development (14,204,206). Thus, EMT involves a reorganization of the cytoskeleton and 

a major shift in gene expression.  
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So, how do ephrins contribute to these events? Part of the answer is found in the 

EMT that is required for metastasis of epithelia-derived tumors (207). In certain settings, 

repulsion between Ephs and ephrins serves to keep potentially cancerous cells within 

their niche, such as in the colon, where ephrins keep intestinal crypt stem cells from 

migrating to the luminal ends of villi to form tumors (199,208). In instances such as 

these, Ephs appear to function as tumor suppressors. In many other cases; however, 

ephrins are upregulated in cancers, and their expression is associated with increased 

EMT and metastasis of malignancies. As mentioned above, the study by Astin et al. 

demonstrated that ephrin reverse signaling enables the loss of contact inhibition seen in 

prostate cancer cells and promotes their migration past normal fibroblasts (201). A novel 

finding of PI3K involvement in ephrin reverse signaling provides a connection to this 

migration mechanism. PI3K signals to Akt, which activates the mTor complex, leading 

to migration of cancer cells. This pathway is frequently activated in malignancies, and 

inhibition of the mTor complex proteins Raptor and Rictor retards cancer cell 

invasiveness and suppresses the EMT required for metastasis (209). This mechanism 

may control the EMT and migration of epithelial cells during palatal fusion (Figure 2-2). 

The PI3K/Akt/mTor system also connects to transcriptional activation associated 

with cancer EMT. The mTor kinase phosphorylates the signal transducer and activator of 

transcription 3 (Stat3) on Ser727, and thereby activates a transcriptional program of 

growth and invasiveness (210,211). Stat3 activation is frequently associated with 

carcinoma invasiveness and poor prognosis (212). Active Stat3 upregulates Twist1 and 

Snail, which in turn suppress E-cadherin expression (206,213). Svoboda et al. 
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demonstrated that Twist1 regulates palatal fusion (214). Thus, PI3K potentially connects 

ephrin-B reverse signaling to an EMT-associated gene expression program in palate. 

Phosporylated ephrin-B1 was also reported to bind directly to Stat3 in embryos 

and tumor cells, suggesting that direct recruitment of this transcription factor to the 

cytoplasmic domain of ephrin-Bs contributes to its activation (215). In addition to being 

a transcriptional activator, the ephrin-B1 cytodomain has been shown to bind the 

transcriptional repressor Groucho/TLE (216). Though the significance of this binding to 

EMT is unknown, Groucho has been reported to repress transcription downstream of 

TGFβ signaling, thus providing another potential cross-interaction with the TGFβ3 

system in palate (217). 

 

Conclusion  

The study of ephrins in palate development is still in its beginnings. It is now 

known that ephrin forward signaling is necessary for early palatal shelf growth, and that 

ephrin reverse signaling is required for fusion of those shelves. But some important 

questions still remain: (1) which Ephs and ephrins control fusion? (2) what are the 

specific downstream effectors of Ephs and ephrins in palatal mesenchyme and 

epithelium? (3) how do TGFβ3 and ephrin signaling pathways intersect? and (4) what 

elements of the transcriptional program in palatal EMT are controlled by ephrin 

signaling? 
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The large collection of molecular and genetic tools available for studying ephrins 

in development makes it certain that efforts to answer these questions will accelerate in 

the coming years, and this will benefit both the fields of craniofacial biology and cancer. 
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CHAPTER III 

EPRHIN REVERSE SIGNALING CONTROLS PALATE FUSION PI3 KINASE 

DEPENDENT MECHANISM* 

 

Synopsis 

Secondary palate fusion requires adhesion and epithelial to mesenchymal 

transition (EMT) of the epithelial layers on opposing palate shelves. This EMT requires 

transforming growth factor β3 (TGFβ3), and its failure results in cleft palate. Ephrins, 

and their receptors the Ephs, are responsible for migration, adhesion, and midline closure 

events throughout development, and both can act as signal transducing receptors in these 

processes (termed "reverse" and "forward" signaling, respectively). Activation of ephrin 

reverse signaling in chicken palates was found to induce fusion in the absence of 

TGFβ3, and that PI3K inhibition abrogated this effect. Further, blockage of reverse 

signaling inhibited TGFβ3-induced fusion in the chicken and natural fusion in the 

mouse. Thus, ephrin reverse signaling is necessary and sufficient to induce palate fusion 

independent of TGFβ3 (218). The data in this chapter describe a novel role for ephrins in 

palate morphogenesis, and a previously unknown mechanism of ephrin signaling. 

 

                                                

 

*Reprinted with permission from “Ephrin reverse signaling controls palate fusion via a 
PI3 kinase- dependent mechanism” by Symone San Miguel,Maria J. Serrano,Ashneet 
Sachar,Mark Henkemeyer,Kathy K. H. Svoboda,M and Douglas Benson, 2011, 
Developmental Dynamics, v.240, 2, 357-364, Copyright 2011 by Wiley-Liss, Inc. 
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Introduction  

 The molecular mechanisms that control mammalian palate development are 

poorly understood. In the mouse, the mesenchymal extrusions of tissue that will 

ultimately form the hard palate elevate over the tongue starting at E11.5. By E14.5, they 

have grown to meet at the midline, at which time the layers of epithelium on the 

opposing shelves adhere (219). Current evidence indicates that these cells then undergo 

epithelial to mesenchymal transition (EMT) and apoptosis to achieve a fused palate of 

confluent mesenchyme, and both these aspects of the fusion process require the action of 

transforming growth factor beta 3 (TGFβ3) (220,221). Kang and Svoboda showed that 

PI3 kinase signaling is required for fusion (222). And recently, Xu et al. demonstrated 

that both Smad4 and p38 MAP kinase act downstream of TGFβ to cause palate fusion, 

although either alone appeared dispensable (41,218). 

 Early migration of embryonic neural crest cells that form the mouse palate 

require the action ephrin-B1, and its cognate Eph receptors (218,223). The Ephs are the 

largest family of receptor tyrosine kinases (RTKs), and are subdivided into A and B 

groups based on their preferential binding to the glycosylphosphatidyl inositol-linked A 

ephrin or the transmembrane B ephrin ligands, although binding can be promiscuous 

across classes (218,224). Ephrins are unique among RTK ligands in that they can also 

act as receptors, with the Eph acting as ligand, a process called “reverse signaling” 

(194,218). In humans, ephrin-B1 mutations are associated with syndromes that include 

CP (225-227), highlighting a likely conserved role for ephrin signaling in palate 

development. Recent work by Risley, et al. reported a role for EphB forward signaling in 
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the proliferation of palate shelf mesenchyme prior to midline apposition (49,218). This 

study was closely followed by a report from Bush and Soriano (2010) showing that 

ephrin- B1 forward signaling controls NCC-derived mesenchyme proliferation through 

the mitogen-activated protein kinase (MAPK) pathway (218). These findings are 

consistent with known roles for EphB forward signaling in progenitor proliferation in 

other systems, such as the hippocampus and the intestine (208,228). Both the Risley et 

al. (2009) and the Bush and Soriano (2010) studies showed evidence of Eph and ephrin 

in palate at a stage when the shelves begin to undergo EMT and fuse (218).  

Risley et al. (2009) reported Ephs B2 and B3 and all three B ephrins in mouse 

palate epithelium and mesenchyme at E14.5, and Bush and Soriano (2010) showed 

ephrin-B1 at the same stage, only in the mesenchyme.  Ephs and ephrins direct midline 

adhesion and fusion events in other developmental processes, such as urethral closure 

and urorectal septation (195,218). Thus, the question is whether they play a similar role 

in palate fusion. Here, in this chapter it is documented that the expression of B Ephs and 

ephrins in pre-fusion palate epithelium and the requirement for ephrin reverse signaling 

in palate fusion. The findings describe a novel role for ephrins in craniofacial 

development and point to a unknown mechanism of ephrin reverse signaling (218). 

 

Experimental Procedure 

Chemicals 

TGFβ3 was obtained from Invitrogen (Carlsbad, CA). LY294002 PI3K inhibitor 

was from Cell Signaling Technology (Danvers, MA). EphB2 ectodomain was from 
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R&D Systems (Minneapolis, MN). IgG Fc protein was from Calbiochem (EMD 

Chemicals, Gibbstown, NJ) (229). Ephrin-B2 ectodomain fused to human Fc was 

produced by cloning a PCR product encompassing the extracellular portion of the coding 

sequence for murine ephrin-B2 into pFUSE-hIgG1e3-Fc2 (InvivoGen, San Diego, CA). 

The resulting plasmid was transfected into CHO-K1 cells (ATCC). Fusion protein was 

collected from conditioned supernatant by protein A chromatography and analyzed by 

Western blot with anti-Fc antibody (Jackson Immunoresearch). Detailed cloning and 

purification protocols available upon request. Fc clustering was accomplished with the 

same anti-Fc antibody (218). 

Embryonic Palate Culture 

Chicken palate culture was performed as previously described (203). Briefly, 

palate shelves were dissected from eight day old chicken embryos and placed nasal side 

down on nucleopore polycarbonate membranes and cultured with in BGJb medium 

(InvivoGen, San Diego, CA) for 72 h in 37oC with 5% CO2. Medium was replaced 

every 24 h with fresh treatments. TGFβ3 was used at 50 ng/ml. EphB2, ephrin-B2, and 

control IgG Fc proteins were used at 5 ng/ml. EphA4/Fc was used at 20 ng/ml (218). 

IgG Fc was added at 20 ng/ml when used as control for EphA4/Fc. LY294002 was used 

at 10 µM. To cluster Fc proteins, protein was mixed with anti-Fc in a 4 to 1 w/w ratio as 

a 50x or 100x stock and incubated at 22C for 1 h or overnight at 4C (218,230). 

Histological Analysis 

Cultured palates were fixed in 4% formaldehyde/phosphate buffered saline for 2 

days. They were then stabilized in low melting point agarose and processed for paraffin 
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embedding. Serial 6 mm sections were collected in the coronal orientation from anterior 

to posterior. Sections were stained with hematoxylin and eosin (H&E) and photographed 

on a light microscope with a digital camera (229). Every twentieth section was scored 

for fusion by at least two independent, blinded observers using the previously described 

scale (Kang and Svoboda, 2002) (203):  1=non-fusion with no adhesion, 2=non-fusion 

with some apparent adhesion, 3=partial adhesion with some disintegration of MEE 

layers, 4=complete fusion with some traces of MEE cells or seam remaining, 

5=complete fusion with no evidence of MEE cells or seam visible (229). 

 

Results 

Eph and Ephrin Expression in Fusing Palate Epithelium 

 The expression of beta-galactosidase (βgal) was examined in mouse embryos 

that were genetically engineered to express a chimeric ephrin-B2 allele in which the 

intracellular domain was replaced by a βgal moiety (218,231). At E14.5, ephrin-B2/βgal 

specifically was found in the palate epithelial cells, many of which had begun to migrate 

inward to mix with mesenchymal cells in the interior of the shelf (Figure 3-1A). This 

migration parallels the previously documented movement of fluorescently labeled 

epithelial cells during the EMT process that leads to fusion (192,218,232) and validates 

ephrin-B2 as a marker for palate epithelium. It was also noted βgal expression in the 

same layer in the EphB2/LacZ mouse, in which the lacZ gene replaces the EphB2 allele 

(218,233) (Figure 3-1B). These data suggested that Eph/ephrin forward and/or reverse 

signaling in the epithelial layers may play a role in palate adhesion and fusion (229). 
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Activation of ephrin reverse signaling causes palate fusion 

To examine the role of ephrins in palate fusion, It was employed a well 

established ex vivo chicken palate culture system. The chicken palate does not naturally 

fuse, unlike the mouse palate. However, the palate shelves will fuse if placed in contact 

and given exogenous TGFβ3 (234). In this respect, the functional difference between 

mouse and chicken is that the mouse palate makes its own TGFβ3 (218,235); anti-TGF 

antibodies will block mouse palate fusion (40,218). Thus, the chicken system allows to 

examine ephrin signaling apart from TGFβ3 simply by adding or withholding this factor. 

To stimulate Eph forward signaling, purified recombinant ephrin-B2 extracellular 

domain fused to human Fc was used. In order for this protein to be biologically active, it 

must be artificially clustered by the addition of anti-Fc antibody to stimulate the receptor 

aggregation that is required to initiate intracellular signaling (218,230). The protein was 

applied, with or without TGFβ3, to palate shelves placed in contact for 72 h. The tissues 

were fixed and evaluated them histologically for fusion using the previously published 

one to five scale for mean fusion score (MFS) (203). Palates treated with IgG Fc as a 

negative control did not fuse (MFS=2.2±0.20), while those treated with TGFβ3+IgG Fc 

fused as expected (MFS=3.6±0.20; Figure 3-2). In comparison, palates treated with 

clustered ephrin-B2/Fc exhibited mildly increased partial fusion (MFS=2.6±0.23)(218). 

 More dramatic results were observed when the palates were treated with 

clustered EphB2/Fc recombinant protein to activate reverse signaling through 

endogenous ephrin-Bs. Clustered EphB2/Fc gave an MFS of 3.4±0.24, essentially 

equivalent to TGFβ3 treatment. When applied without clustering, Eph and ephrin Fc 
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proteins serve as effective blocking reagents because they bind to their target ligands and 

receptors without activating biological signaling, thus acting as competitive inhibitors 

(218,236). This strategy was employed by adding unclustered EphA4/Fc to palate 

cultures. EphA4 binds to all A and B ephrins and so serves as a good pan-ephrin blocker 

(237). This treatment effectively blocked palate shelf fusion, even in the presence of 

TGFβ3 (MFS=2.1±0.13; Figure 3-2). Thus, these data indicate that ephrin reverse 

signaling is required for palate fusion and is genetically downstream of TGFβ3 (218). 

 If this role of ephrins in fusion is conserved in mammals, then it would expect 

that inhibiting ephrin action in mouse palate would prevent the naturally occurring 

fusion normally observed in culture (218). To test this prediction, unclustered EphA4/Fc 

to E14.5 mouse palate culture was applied, and observed the same effect as in the 

chicken:  an inhibition of palate fusion (MFS=2.55±0.12 vs 4.26±0.08) (Figure 3-3. 

Interestingly, it was observed in the mouse that fused areas were interspersed with non-

fused areas along the length of touching epithelium. Nevertheless, the data clearly 

demonstrate that the requirement for ephrin signaling is conserved between chicken and 

mouse (218). 

Ephrin-Dependent Fusion is PI3 Kinase Dependent 

 The palatal culture evidence indicated that ephrin signaling in palate fusion acts 

downstream of the receptor for TGFβ3. As noted above, previous work showed that 

TGFβ3-induction of fusion requires active PI3K, as PI3K inhibition abrogates or delays 

fusion (218). This would appear to place a required TGFβ3 effector downstream of 

ephrin signaling. Therefore it was tested whether ephrin reverse signaling also acts 
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through PI3K. Chicken palates cultured in the presence of the PI3K inhibitor LY and 

either TGFβ3 or clustered Eph-B2 failed to fuse over the test period (Figure 3-4). Thus, 

it can be concluded that ephrin reverse signaling acts through the PI3K pathway to cause 

fusion (218). 

 

Discussion  

Collectively, this study shows that ephrin reverse signaling is both required and 

sufficient for chicken palate fusion, and that PI3K is part of this signaling mechanism. 

As the stimulating and blocking reagents used here are not specific to a single Eph or 

ephrin member, we are not able to identify the individual ephrin that mediates fusion, or 

even whether t is a single or multiple ephrins (218). We do not know from our own 

experiments the expression of the remaining B ephrin, ephrin-B1, in the fusing palate. 

Our expression data for EB2 and EphB2 conflict with those of Risley et al., which 

reported all three B ephrins and EphB2 in both epithelium and mesenchyme at e14.5 

(49).  Although ephrin-Bs are more likely candidates for receptors of the EphB2 used in 

experiments (193,194,218). EphB2 is activated by at least one ephrin-A ligand (238). 

The initial expression evidence does suggest ephrin-B2 as the most likely candidate due 

to its presence in the midline epithelium at the time of palate contact. As mentioned, the 

observed migration of ephrin-B2/LacZ expressing cells into the mesenchyme during 

fusion parallels that seen in MEE cells labeled with vital dyes (239), and defines ephrin-

B2 as a marker of these cells (218). 
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Another important question is how the signaling pathways of TGFβRs and 

ephrins intersect within cells of the fusing palate. Up to now, study of signal 

transduction in palate fusion has focused on events downstream of TGFβ3, as this was 

thought the chief requisite growth factor for EMT and fusion (218,221,240). The chicken 

palate findings show that ephrin signaling is downstream, or at least independent of, 

TGFβR signaling in that it was possible to dispense with the TGFβ3 treatment. It is now 

know that the PI3K mechanism is a point of intersection, but the up-and downstream 

details of the interaction are unknown (Figure 3-5) The action of the transcription factors 

Twist1 and Snail were shown by Yu et al. to mediate at least a substantial part of 

TGFβ3’s fusion-promoting activity, as RNAi against these genes’ mRNAs partially 

inhibited fusion (218,241). It will remain to be seen whether ephrin reverse signals 

impact these factors as well. 

The EphA4/Fc blocking experiments demonstrated that the ephrin requirement is 

conserved between mouse and chick (218). However, previous data suggests that ephrins 

may not be sufficient in the mouse. Blocking antibodies against TGFβ3 inhibit mouse 

palate fusion, and genetic ablation of TGFβ3 in mice yields cleft secondary palate 

(34,40,220,235). This suggests that endogenous ephrin signals are not sufficient to 

compensate for loss of TGFβ3 (218). Thus, there may be a difference in the hierarchical 

roles of TGFβ3 versus ephrins between the two species. Alternatively, ephrin expression 

in the palate epithelium may be under the control of TGFβ3 such that loss of the TGFβ3 

signal eliminates the endogenous ephrin signal as well (218). 
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The findings in this study have broader implications for ephrin biology beyond 

the example of palate fusion. Ephs are known to mediate EMT in other processes, such 

as cancer metastasis, and although PI3K signaling was implicated in Eph/ephrin systems, 

it was in the forward direction, downstream of the Eph RTKs (199,218). There is a 

report of PI3K being required for in vitro ephrin induced proliferation in an endothelial 

cell line via reverse signaling (242), but this work is the first evidence of reverse 

signaling mediating a biologically critical developmental EMT event via PI3K. Although 

PI3K is associated with cell motility, and ephrin reverse signaling is associated with cell 

migrations, this pathway has not been connected with the known signaling elements of 

the ephrin-B cytoplasmic domain (218). 

The cytoplasmic domains of B class ephrins contain conserved tyrosines that are 

phosphorylated upon stimulation to form SH2-binding domains that bind the adaptor 

Grb4 (218,243), although it is possible they may bind other SH2 domain proteins in 

different contexts. Grb4 complexes with other factors such as the GTPase activating 

protein 1 (GIT1) and Glutamate receptor interacting protein 1 (GRIP1) in the case of 

synapse formation (218,244,245). B ephrins also have a C-terminal PDZ-binding 

domain, which is required for a number of biological functions (47,246). Binding of SH2 

proteins in the PI3K pathway to ephrin-B2 is certainly plausible, but not yet 

demonstrated. A-class ephrins, on the other hand, do not have cytoplasmic domains. 

Still, they can participate in reverse signaling via a co-receptor (218,247,248). Of course, 

it is also possible that the reverse signal does not directly activate PI3K, but promotes is 
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action indirectly (218). This finding therefore encourages increased investigation along a 

new direction of ephrin signaling. 

The ongoing studies will focus on identification and regulation of the specific 

Eph and ephrin molecules involved in palate fusion, the signal transduction pathways 

downstream of those ephrins, and their intersection with TGFβR-mediated pathways 

(38,218). 
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CHAPTER IV 

EPHRIN REVERSE SIGNALING MEDIATES PALATAL FUSION AND 

EPITHELIAL-TO-MESENCHYMAL TRANSITION INDEPENDENTLY OF TGFβ3 

 

Synopsis 

The mammalian secondary palate forms from shelves of epithelia-covered 

mesenchyme that meet at midline and fuse. Failure of the midline epithelial seam (MES) 

to degrade blocks fusion and causes cleft palate. It was previously thought that 

transforming growth factor β3 (TGFβ3) is required to initiate fusion. Members of the 

Eph tyrosine kinase receptor family and their membrane-bound ligands, the ephrins, are 

expressed on the MES. It was discovered that activation of ephrin reverse signaling 

(where the ephrin acts as a receptor and transduces signals from its cytodomain) was 

sufficient to cause fusion in cultured mouse palates and epithelial-to-mesenchymal 

transition (EMT) in palatal epithelial cells, even in the absence of TGFβ3 signaling. In 

this chapter, cultured mouse palates in the presence of either a blocking antibody against 

TGFβ3 or an inhibitor of the TGFβrI serine/threonine receptor kinase were shown. 

Fusion was abolished by both treatments, but was significantly rescued by the addition 

of EphB2/Fc recombinant protein to activate ephrin reverse signaling. Cultured palate 

epithelial cells traded their expression of epithelial cell markers for that of mesenchymal 

cells after treatment with EphB2/Fc and became motile. They concurrently increased 

their expression of the EMT-associated transcription factors Snail, Sip1, and Twist1. The 
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data confirm that ephrins direct palatal fusion in mammals and activate a gene 

expression program not previously associated with reverse signaling. 

 

Introduction  

The secondary palate in humans and mice forms from shelves of mesenchyme 

covered by epithelium. These shelves grow out bilaterally from the internal surfaces of 

the maxillary processes, elongate on each side of the tongue and become horizontal 

above the tongue as it descends (249,250). As soon as the opposing shelves reach each 

other, the lateral surfaces of the medial edge epithelia (MEE) cells form the medial 

epithelial seam (MES) (249,251). Complete disintegration of the MES is essential to 

form a confluent structure, and failure of palatal fusion causes CP, one of the most 

common birth defects (252). Thus, understanding the mechanism of fusion is an 

important goal of craniofacial biology. 

 Palatal fusion has been thought to require Transforming Growth Factor β-3 

(TGFβ3) because TGFβ3 knockout mice, as well as naturally TGFβ3-null avian systems, 

display CP, and treatment of either with exogenous TGFβ3 rescues palatal fusion 

(234,253,254). Genetic and phamacological studies have shown that the TGFβ3 signal, 

acting through serine/threonine kinase TGFβ receptors (TGFβr) on MEE cells, activates 

Smad, p38 mitogen-activated protein kinase (MAPK) and phosphotidyl inositol 3 kinase 

(PI3K) pathways in palate epithelium (255,256). Fusion requires PI3K and either (but 

not necessarily both) the Smad or p38 pathways (255). However, the mechanism of MES 

degradation is still in question. Numerous studies suggest that the epithelial cells 
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undergo epithelial-to-mesenchymal transition (EMT), apoptosis, or both (thoroughly 

reviewed in (250). Recent work on cultured primary MEE cells indicates that TGFβ3 

causes these cells to shift gene expression patterns away from epithelial markers to 

fibroblastic ones, while assuming a migratory phenotype (the definition of EMT). They 

then initiate caspase-dependent apoptosis. This entire process occurs in culture over the 

same 72 h time frame as does fusion in the mouse embryo, consistent with a mechanism 

that is reflective of the actual process in vivo (257). 

 It was recently reported a role for ephrin signaling in palatal fusion. The Ephs are 

the largest family of receptor tyrosine kinases. They are classified as A or B based on 

sequence homology and on their binding preference for the transmembrane B ephrin or 

the glysosyl phosphotidyl inositol linked A ephrin ligands (258). Eph-ephrin systems 

control a number of contact-dependent processes in development, including cell 

migration, boundary formation, and proliferation (198,259,260). Ephs function as 

traditional receptor tyrosine kinases when bound by their ephrin ligands, but they can 

also act as ligands that activate signaling downstream of the ephrin, which assumes the 

role of receptor in what is called "reverse signaling" (261). EphB and ephrin-B 

expression was reported in the MEE during fusion, and that ephrin-B reverse signaling 

was found to be required for palate fusion in mice and is sufficient to cause fusion in 

chicken palates without TGFβ3 (218). This finding was supported by a report of CP in 

ephrin-B2 reverse signaling-deficient mutant mice (200). Interestingly, it was discovered 

that the ephrin reverse signal passes through PI3K, a signaling pathway not previously 

associated with reverse signaling (218). 
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 It was found that activation of reverse signaling in mouse palates is sufficient to 

cause fusion independently of TGFβr, and that the ephrin signal activates an EMT-like 

program in palatal epithelial cells. This data describe a role for ephrins in craniofacial 

development, and help to clarify their role in palatal fusion. 

 

Experimental Procedure 

Chemicals and Reagents 

Anti-TGFβ3 was obtained from R&D Systems (Minneapolis, MN). The TGFβrI 

Kinase Inhibitor VI (SB431542) was from Calbiochem (EMD Millipore Cat#616465) 

(Billerica, MA). EphB2 ectodomain Fc fusion protein was from R&D Systems (Cat 

#467-B2) (Minneapolis, MN). IgG Fc protein was from Calbiochem (EMD Millipore 

Cat #401104) (Billerica, MA). Exogenous recombinant TGFβ3 (R&D systems, CA). For 

Immunofluorescence, primary antibodies used (and their source) included the following: 

E-Cadherin, Desmoplakin and Plakoglobin (kindly provided by Dr. James Wahl, 

University of Nebraska Medical Center), Vimentin (Sigma-Aldrich, MO), Fibronectin 

(Abcam, MA), ZO-1 (Invitrogen, CA), All antibodies and inhibitors were used at the 

concentration and time point recommended by the respective manufacturer/provider 

(262). 

Embryonic Palate Culture 

Mouse palate culture was performed as previously described (204,218,256). In 

brief: Palatal shelves were dissected from E13.5 CD1 mouse embryos and placed nasal 

side down on polycarbonate membranes (Nucleopore Corp.) with their medial edges in 
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contact. The tissues were cultured with BGJb medium (Gibco) for 72 hrs (214). Medium 

was replaced every 24 hr with fresh treatments. Anti-TGFβ3 was used at concentration 

of 10µM. TGFβrI Kinase Inhibitor VI (SB431542) was used at a concentration of 25 

µM. Based on the initial dose-response experiments (not shown), this was the 

concentration of kinase inhibitor that abolished MES degradation in cultured palates 

while showing no signs of altered cell morphology. EphB2/Fc and control IgG Fc 

proteins were used at 5 µg /ml, as in previously published studies. Fc proteins were 

clustered by mixing with anti-human Fc in a 4 to 1 w/w ratio and incubated at 22ºC for 1 

hr or overnight at 4ºC. This treatment allows the soluble Fc proteins to mimic the 

clustering that occurs on cell membranes and is required to initiate biologically relevant 

signaling.  

Histological Analysis 

Cultured palates were fixed in 4% formaldehyde/phosphate buffered saline, 

stabilized in low melting point agarose, and processed for paraffin embedding. Serial 6-

µm sections were collected in the coronal orientation from anterior to posterior 

(30,218,232). Sections were stained with hematoxylin and eosin (H&E) and scored for 

fusion by at least two independent blinded observers using the previously described 

scale as follows (256):  A score of 5 denotes complete fusion with no epithelia persisting 

in the midline. A score of 4 means epithelial triangle or islands remained, but they are 

less than 1/3 the total width of the palatal shelf interface(214). A score of 3 signifies 

mesenchymal confluence was achieved in places, but over 1/3 or less of the palatal shelf 

interface, with large epithelial islands or triangles remaining. A score of 2 means that a 
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continuous epithelial seam persisted in the midline. Palatal shelves that were not 

touching each other in the midline received a score of 1. 

Statistical Analysis 

Palate Culture Experiments: All palate fusion experiments were performed at 

least three times for a total n=12 to 18 for each treatment group. Fusion scores reported 

are the mean ± standard error of the mean (SEM) of the pooled scores across all 

experiments. Statistical analyses were made using SPSS software. Mean Fusion Scores 

were analyzed using Kruskal–Wallis test with the Mann-Whitney U test used to analyze 

specific sample pairs for significant differences. Differences in fusion score between 

groups with p<0.01 were considered to be statistically significant. The statistical power 

of the samples in experiments was evaluated by G*POWER software (Version 3.1). The 

power with respect to the seriousness of types I and type II errors rate was calculated 

with the settings type I error, α = 0.01 and type II error, β=0.05. It was expected that the 

power analysis under these settings and with a sample size large enough would yield a 

statistically significant effect.  

Palate Culture Experiments: Data from at least three replicates for each 

parameter were evaluated and analyzed for significance by SPSS 14.0. The treatment 

groups included TGFβ3, EphB2/Fc and the control groups (IgG Fc). The observation 

times were collapsed due to the convenience of the study, and one-way ANOVA was 

conducted. The significance level was set as 0.05. AP-value of ≤0.05 was considered 

significant. The one-way ANOVA indicated that the values differ significantly across the 

treatment groups. Bonferroni post-hoc comparisons of the treatment groups indicated 
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that the negative control control group significantly differ from each other (P≤0.005). 

The comparison of each treatment group (time and dose) showed EphB2/Fc treatments 

groups also differed significantly from the negative control groups (P≤0.005). 

Culture of Isolated Primary MEE Cells 

The following four experiments were designed and discussed at Baylor College 

of Dentistry, in the Department of Biomedical Sciences. However, these were done as 

collaboration with Jingpeng Liu at the University of Nebraska Medical Center. 

Embryonic MEE cell culture was performed as previously described (249,257,263,264). 

The single cell thick periderm covering on each shelf was removed by incubating the 

shelves with Proteinase K for 1hr at 37oC. The shelves were then cultured at 37oC for 12 

hrs to allow brief adherence to the corresponding opposite shelf (adhered). Adhered 

shelves in organ culture were then cut close to the seam to ensure limited or no 

mesenchymal tissues attached to isolated seam (265). The shelves were then separated 

and treated with Dispase II for 30 min to allow the primary MES cells to separate from 

the underlying basement membrane so that epithelial cells could be collected without 

any mesenchymal contamination. Cells were then cultured in flasks and harvested at the 

exponential growth stage (∼80% confluence) before any exogenous treatment began 

(265). 

Scratch-Wound Assay 

The Scratch Wound Assay was conducted as previously described (263). MES 

cells were grown to 80% confluency in 6-well culture plates, and a uniform straight line 

scratch was made with a sterile pipette tip (249). Scratches in EphB2/Fc (2, 5 and 10 
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µg/mL) treated and IgG Fc (control) wells were examined for 48h. The migration of 

cells (or gap filling) was monitored every 12h with phase contrast microscopy where 

cells were morphologically assessed for the migratory phenotype (249). 

Cell Motility Assay 

The Cell Motility Assay was conducted reported (263). 8 µm pore size Transwell 

migration chambers of a 6-well plate (BD BioCoat, MA) were used for migration 

analyses. 5×105 MES cells were seeded in the presence of 5mg/mL EphB2/Fc in 8µm 

pore size Transwell migration upper chambers of a 6-well plate. Treated and control (Ig 

Fc) MES cells were allowed to migrate through the filter toward media containing serum 

(10%) for 24 to 48 hours at 37 °C. Cells that did not migrate through the filter were 

removed with a cotton swab from inside the upper chamber. Each filter was fixed in 4% 

Paraformaldehyde for 10 minutes, washed three times, each time for five minutes with 

1x PBS, placed in Hematoxylin stain (Dako, Mayer’s hematoxylin) for 20 minutes, 

rinsed with water, and placed in bluing reagent (alkaline solution such as a weak 

ammonia solution, 0.08% in water) until the stain turned blue. Subsequently, the filters 

were washed again using deionized water. Migrating MES cells on the lower side of the 

filter were randomly counted at 10 areas per field by phase-contrast microscopy. The 

mean of the 10 areas was determined and is represented in the bar graph in Fig. 4B 

Immunohistochemistry, Immunofluorescence, and Immunobloting 

The MES cells and embryonic palates from 14.0 to 16.5 dpc underwent 

Immunohistochemistry, Immunofluorescence and Immunoblotting techniques as 

described previously (249,257,263,264). For protein expression of MES cells by western 
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blot, the cells were grown to confluency in 10% FBS and serum starved in 1% FBS for 

24 h, followed by treatment with TGFβ3 (2 and 5 ng/ mL) and EphB2 ( 2 and 5µg/mL) 

in 1.0% FBS DMEM for 0–24 h for total protein extraction. For total proteins, the 

nuclear extraction kit from Chemicon total protein Extraction Kit (Millipore) was used 

as done previously (257,264). The concentration of the total proteins was obtained with 

the Genesys 10 UV scanner (Thermoscientific) at 595 nm. The 25µg of protein extract 

was electrophoresed on a 10% denaturing gel and transferred onto a nitrocellulose 

membrane. The membranes were blocked with gelatin, washed with PBS-Tween, 

incubated with the EphB2 (Source) and TGFβ3 (R&D Systems) antibodies and reacted 

with anti-goat (1:1000) and anti-rabbit (1:2000) secondary antibodies (Cell Signaling). 

The bands were then visualized by using an odyssey scanner (Li-Cor). Intensity of the 

band was measured using the Carestream Molecular Imaging Software version 5.3.1 

(Rochester). To perform a t-test analysis of mean intensity measurements, an ROI 

analysis was done from the data to Microsoft Excel software from the exported “.txt” 

files. Data points for all samples are paired by spatial arrangement on gel and compared 

pairwise to minimize the impact of subtle background artifacts on image analysis. For 

protein expression on embryonic palates, 8µm sections of 14.5 dpc palates from WT and 

TGFβ3 knockout mice underwent Immunohistochemitsry as well as MES cells 

underwent Immunofluorescence as described previously (257,263,266). 

Immunofluorescence secondary antibodies were obtained from: Rhodamine, 1:100 

(Invitrogen) and FITC, 1:200 (Jackson ImmunoResearch).  
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Gene Expression 

As described previously, (267,268) RNA from MEE cells treated with clustered 

EphB2/Fc (1, 2, or 5 µg/ml) for 48 h, was harvested using the RNeasy Mini Kit (Qiagen, 

CA) according to the manufacturer’s instructions. RNA integrity was assessed using 

formaldehyde gels in1XTAE buffer, and RNA purity and concentration were determined 

by the 260/280 ratio on a Nanodrop 2000C (Thermoscientific, MA). The Ct values were 

exported into a Microsoft Excel Spreadsheet and analysed according to the ΔCt system. 

The –ΔΔCt (Snail, Sip1, Twist and E-Cadherin/vs IgG Fc control) values were plotted to 

show the genes that are up or downregulated in fold/s increase.  

The sequences of primers were obtained from the Invitrogen online PCR primer 

design site, and were synthesized at the Molecular Biology Core Facility, UNMC. 

 

Mouse Snail   5’- TGAGGTACAACAGACTATGCAATAGTTC -3’  

   5’- CCTGCTGAGGCATGGTTACA -3’  

Mouse Twist   5’- TCCGCGTCCCACTAGCA -3’  

   5’- TTCTCTGGAAACAATGACATCTAGGT -3’  

Mouse Sip1   5’- TTGTGCCCATCACGAAAAAG -3’  

   5’- GTGCACAGTTTGACAATTTAATTGAA -3’  

Mouse E-cadherin,  5′-AAGTGACCGATGATGATGCC-3′ 

   5′-CTTCTCTGTCCATCTCAGCG-3′. 

 

Gene expression was determined by normalization with the control gene, 

GAPDH. Each RT-PCR experiment was performed in triplicate. 
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Results 

Ephrin Reverse Signaling Mediates Palatal Fusion Independently of TGFβ3. 

 It was previously reported that exogenous ephrin activation causes fusion in 

chicken palates without the need for TGFβ3 (218). The questions then arises on whether 

the same is true of mouse palates if the TGFβ signal is romoved. This question can be 

answered in two ways using the mouse palate culture system. These experiments were 

preformed by placing embryonic mouse palatal shelves in contact on a support, and 

observing MES degradation and fusion over 72 h. After histological processing, each 

palate was scored for fusion on a one to five scale to generate a mean fusion score 

(MFS) for anterior, middle, and posterior regions, as detailed above. First, a set of 

embryonic mouse palates was cultured in the presence of a blocking antibody against 

TGFβ3 with or without clustered EphB2/Fc protein to activate ephrin-B reverse 

signaling (preclustering with anti-Fc is necessary to induce signaling). Secondly, another 

set with a chemical inhibitor of the TGFβr kinase (SB 431542) was cultured, again with 

or without EphB2/Fc. Control palates in the anti-TGFβ3 experiment fused normally over 

the three-day time window of these experiments, although fusion was on average 

incomplete in the posterior region (MFS±SEM= 4.5±0.08 for anterior, 4.6±0.09 for 

middle and 3.0±0.24 for posterior regions; Fig.4-1). Antibody treatment abolished MES 

degradation and palatal fusion (MFS=1.4±0.08 anterior, 2.0±0.10 middle, and 1.3±0.23 

posterior; Fig. 4-1A) such that the epithelial layers in the MES remained almost entirely 

intact (Fig. 1B). Kinase inhibitor treatments had the same effect of abrogating fusion 

(MFS= 1.2±0.13 anterior, 1.7±0.20 middle, and 1.1±0.11 posterior with SB 431542 vs. 
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MFS= 3.5±0.17 anterior, 4.7±0.22 middle and 3.4±0.10 posterior for untreated controls; 

Fig. 1B and D). In both cases, addition of recombinant EphB2/Fc restored wide spread, 

though not complete, seam degradation and largely rescued fusion (MFS= 2.6±0.17 

anterior, 3.9±0.11 middle, 2.6±0.08 posterior for anti-TGFβ3+EphB2, and 

MFS=1.9±0.08 anterior, 3.8±0.11 middle, 3.0±0.20 posterior for SB 431542+EphB2; 

Fig. 4-1A and C). Thus, although fusion was not restored to control levels, these data 

demonstrate that exogenous activation of ephrin reverse signaling is capable of causing 

MES degradation and palatal fusion in the absence of a TGFβ signal. 

 Results indicated that ephrins are downstream of TGFβ3 in palatal fusion, and so 

the possibility that TGFβ3 may simply activate Eph expression in the MEE to cause the 

fusion signal was investigated. Because it is known that EphB2, at least, is capable of 

acting as a ligand to induce fusion, its expression in the palatal MEE in the absence of 

TGFβ3 was examined. As shown in Figure 4-2A, EphB2 protein expression levels were 

found in the palates of TGFβ3 knock out mice were comparable to those in wild type 

mice. Further, primary palatal MEE cells was cultured in the presence of either TGFβ3 

or clustered EphB2/Fc, and found that TGFβ3 did not appreciably increase EphB2 levels 

on Western blot, nor did EphB2 increase TGFβ3 protein (Fig. 2B). Therefore, it can be 

concluded that it is likely not the role of TGFβ3 in fusion to simply induce Eph 

expression and thereby initiate fusion. 

 It was previously found that MEE cells in fusing palates show signs of epithelial 

to mesenchymal transition (EMT), and that TGFβ3 added to MEE cells in culture causes 

EMT-like phenotypic changes, cell migration, and gene expression (218,257). The 
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behavior of these cells after activation of the ephrin reverse signal was examined to 

investigate the mechanism of ephrin function in fusion. MEE cells grown to confluence 

exhibit the hallmarks of epithelial cells:  tightly packed, cuboidal cells joined in a sheet 

by desmosomes and tight junctions. E-cadherin, desmoplakin, and plakoglobin are 

among the proteins that are conspicuously and highly expressed in these epithelia-

specific junctions. After 24 h of exposure to clustered EphB2/Fc, the expression of these 

proteins was markedly diminished, and by 48 h, largely disappeared (Fig. 3A). At the 

same time, fibronectin and vimentin, both fibroblast markers, rapidly increased on the 

cell surface (Fig. 3B). EphB2/Fc-treated cells also lost their tight packing over this time 

and assumed a looser, mesenchymal shape (Fig. 3A and B). 

 At the same time as these cells were changing their cell junction compositions 

and morphology, they became more motile. A scratch-wound assay on monolayers of 

MEE cells was performed to be treated with EphB2/Fc or control Fc. Fig. 4A shows that 

substantial numbers of EphB2/Fc treated cells moved into the cleared scratch area over a 

48 h period, whereas control cells moved very little. By 48 h of treatment, it was 

observed a six-fold increase in motile cell number in EphB2/Fc cultures over that 

observed in controls (Fig. 4B). It can be concluded that activation of ephrin reverse 

signaling in MEE cells causes them to assume a mesenchymal phenotype. 

 The EMT that was observed requires a shift in gene expression, and so the levels 

of some key transcription factors were examined to be associated with gene expression 

profile changes in EMT. Both the basic helix-loop-helix (bHLH) transcription factor 

Snail and the Smad-interacting protein 1 (Sip1) are upregulated during developmental 
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EMT and have been shown to repress E-cadherin expression (249). It was recently 

shown that the EMT-associated bHLH factor Twist1 is also upregulated during palatal 

fusion and plays a role in MES degradation (204,269,270). Therefore it can be quantified 

the mRNA levels of these three genes in MEE cells after 48 h of EphB2/Fc treatment 

using real-time PCR. Snail mRNA doubled at the 5 µg/ml dose of EphB2/Fc used for 

palate and MEE culture experiments, and Sip1 increased more than 5-fold versus 

control. Although Twist1 mRNA increased only 30%, the change was significant and 

reproducible (Fig. 5). At the same time, E-cadherin mRNA was reduced 60% compared 

to control. This result is consistent with a role for ephrin reverse signaling in activation 

of the EMT gene expression program in MEE cells. 

 

Discussion 

 It was previously showed that ephrin reverse signaling is required for mouse 

palatal fusion (218). Here it can be shown that it is sufficient to cause fusion in the 

absence of TGFβ3, a growth factor that was previously considered indispensible for 

fusion. Further, it can be proved that the ephrin signal causes EMT in palatal epithelial 

cells. These findings are significant for three reasons. First, the fact that ephrins cause 

EMT in palatal epithelial cells adds significance to the argument that palatal fusion 

proceeds through an EMT mechanism. Second, the discovery that ephrin signaling 

during fusion is separate from, and can supersede, TGFβ3 shifts the focus of intracellular 

signaling away from purely those pathway intermediates affiliated with the TGFβr 

serine/threonine kinase receptor. Third, the association of ephrin reverse signaling with 
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EMT reveals a previously unknown role for ephrins in activation of a gene expression 

program. 

 There are two prevailing theories of the mechanism of MES degradation in 

palatal fusion. One argues that the MEE cells proceed through EMT to achieve 

mesenchymal confluence in the palate (232,234,270-273). The other says that these cells 

are removed by apoptosis to allow the mesenchyme to join (274-276). Both of these 

views have been supported with strong evidence. Recent data suggest that these theories 

are not mutually exclusive. Ahmed, et al. reported that MEE cells in culture exposed to 

TGFβ3 undergo EMT, with appropriate changes in morphology and gene expression, 

followed by apoptosis (257). Their studies are consistent with genetic evidence from 

mouse studies of palatogenesis. Jin and Ding showed that Apaf1 knockout mice, while 

deficient in apoptosis, developed fused palates, indicating that fusion does not rely on 

apoptosis alone. However, histological examination revealed that the triangles of 

epithelial cells normally found at the oral and nasal edges of fusing palates persisted in 

Apaf1 knockouts, whereas they eventually disappear in wild type animals (277). These 

same triangles were observed by Ahmed and coworkers in cultured palates treated with a 

caspase inhibitor. Thus, it would seem that both EMT and apoptosis combine to remove 

the MEE cells and complete palatal fusion. This finding that EphB2 treatment both 

induces fusion and initiates EMT in MEE cells independently of TGFβ3 reinforces the 

view that EMT is a part of the fusion mechanism. Ephrin-B signaling has been shown to 

induce apoptosis in other systems (278,279), and it will be interesting to discover in the 

ongoing studies if it does so in the palate. EphB2 treatments did not completely rescue 
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fusion in TGFβ-blocked palates, and this observation could be explained by an 

insufficiency of ephrin reverse signaling to activate a specific part of the fusion program, 

such as an apoptotic activity that removes remaining MEE cells. Alternatively, it could 

be that there is a TGFβr-specific signal (e.g:  one that is Smad-associated) that, while not 

formally required for fusion, combines with the ephrin signal to complete fusion in the 

observed time window. 

 The B ephrin cytodomain contains docking sites for a number of signaling 

proteins. Conserved tyrosines can be phosphorylated and function as SH2 domain 

binding sites (233,280). The SH2/SH3 adaptor protein Grb4/Nckß was shown to bind to 

activated ephrin-B1 and signal the disassembly of actin cytoskeletal elements (243). The 

C-terminal end also carries a PDZ domain binding motif (281). Any of these signaling 

motifs may participate in signaling fusion in the palate. However, the Henkemeyer group 

demonstrated that mutation in mice of all known conserved ephrin-B2 tyrosines and the 

PDZ binding domain does not produce CP, even though homozygous deletion of the 

entire cytodomain in ephrin-B2/LacZ mice does (200). This means that ephrin-B2 

contains an as yet unidentified signaling domain that is crucial for palatal seam 

degradation. Previously published work shows that PI3K signaling is required for 

ephrin-mediated fusion (218). This pathway has not previously been associated with 

reverse signaling and represents uncharted territory in the ephrin field. Efforts are 

focused on identification of the ephrin-B domain responsible for the PI3K signal and its 

binding proteins. 
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 PI3K phosphorylates Akt, which in turn activates mTor complexes to induce cell 

migration (282). Activation of mTor is associated with carcinoma EMT and metastasis, 

and so the connection of ephrin-Bs to PI3K provides an explanation for why Eph/ephrin 

signal activation is so often associated with tumor metastases. The PI3K/Akt/mTor axis 

also connects to the EMT transcriptional program. The mTor kinase phosphorylates the 

transcriptional activator Stat3 (210,211), which in turn activates expression of Twist1 

and Snail as part of the EMT transcriptional program (213,283), and both Twist1 and 

Snail are important for palatal fusion (204,284). Although ephrin-B reverse signaling 

was previously shown to associate with both Stat3 and the Groucho repressor of Stat3 

(215,216), very little is known about the potential for reverse signaling to access a gene 

expression program. The connection of ephrin-B signals to the PI3K pathway in 

previous work showed that a connection to transcriptional activation in EMT is 

plausible. The data presented here indicate that such a connection exists and is functional 

during the developmental process of palatal fusion. It also implies that the same 

connection functions in cases of metastatic EMT, and suggests that ephrin-mediated 

pathways may be valid targets for cancer therapies. The ongoing efforts will identify the 

cytoplasmic and nuclear intermediates that connect ephrins to EMT. 
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CHAPTER IV 

DISCUSSION 

 

Palatogenesis is a very important event during craniofacial development. The 

stages of palatal development traditionally have been defined by the position of the 

palatal shelves in the oral cavity and the level of union at the midline (77). The palatal 

shelves develop from the maxillary prominence of the first branchial arch and initially 

grow vertically along the lateral sides of the developing tongue. At the precise stage of 

embryonic development, the palatal shelves are remodeled to become reoriented to a 

horizontal position above the tongue, and the medial edges of epithelial cells of the two 

palatal shelves meet at the midline. The medial edge epithelia (MEE) of the two opposite 

palatal shelves that arise from the maxillary processes join to form a two- layered medial 

epithelial seam (MES) (77). Then, the epithelial seam disappears and the palate 

mesenchyme becomes confluent. These steps are tightly regulated; failure of palatal 

shelf growth, elevation, adhesion, mesenchymal differentiation and fusion can cause CP 

(67). 

Formation of the medial epithelial seam (MES) by palatal shelf fusion is a crucial 

step of palate development. Complete disintegration of the MES is the final essential 

phase of palatal confluency with the surrounding mesenchymal cells (285).  

The cellular mechanism underlying seam degeneration and the fate of MES cells 

has long been the focus of the field for years. Three major models have been proposed 

for seam degeneration: EMT, migration and apoptosis (22,286). 
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EMT consists of the entire series of events involved in the transition of epithelial 

to mesenchymal cell characteristics (287,288). During EMT, epithelial genes are 

repressed, which allows properties of mesenchymal cells to be activated (288).  

Epithelial and mesenchymal cells have their own unique characteristics and morphology. 

Epithelial cells can be arranged in a single layer, or they can form layers of cells that are 

in close contact with neighboring cells connected by tight junctions, adherent junctions, 

and desmosomes (289). E-Cadherin is the most common adherent protein, while 

occludin, claudins, and zonula occludens (ZO1) are important components of tight 

junctions (290). Desmosomes provide additional strength for intercellular adhesion and 

are structurally similar to adherent junctions. Desmoplakin, plakophilin, and plakoglobin 

are the common desmosomal proteins. All these junctional proteins help epithelial cells 

to remain in a regimented structure (291) and during EMT, these proteins are lost to 

promote significant changes in epithelial cell structure and behavior by changing their 

functional and phenotypic characteristics and acquiring mesenchymal characteristics. 

For almost two decades, it has been understood that MEE degradation and palatal 

fusion requires TGFβ3, a potent inducer of EMT. In mammalian palates, which normally 

fuse on their own, this factor is produced by the palatal tissue itself (34,235), and genetic 

removal of TGFβ3 results in CP. Chicken palates, which do not normally fuse, can be 

induced to fuse by adding exogenous TGFβ3 (234). 

The main purpose of this research project was to investigate a new set of proteins 

involved in palatal fusion, the Eph and ephrins. The first evidence that ephrins play a 

role in palate development came with the linkage of ephrin-B1 mutations to 
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craniofrontonasal syndrome in humans, of which CP is a prominent feature (226). At the 

same time, it was reported that deletion of ephrin-B1 in cranial neural crest cells in mice 

caused craniofacial deformities, including CP (223). The fact that these defects resulted 

from cell-autonomous ephrin-B1 deletion suggested that ephrin-B1 reverse signaling is 

important for palate formation. 

The expression of Ephs and ephrins in embryonic palate was analyzed, using 

LacZ indicator mouse lines (Figure 3-1). It was found that ephrin-B2 and EphB2 were 

expressed specifically in the MES immediately prior to and during its degradation (229). 

Also, EphB2 was expressed in the palatal MEE in the absence of TGFβ3. EphB2 protein 

expression levels in the palates of TGFβ3 knock out mice were comparable to those in 

wild type mice (Figure 4-3). This suggested that ephrin signaling contributes to palatal 

EMT and fusion. 

Also, it was found that fusion of the chicken palates occurred by adding 

EphB2/Fc, even without adding the TGFβ3 that is normally required for fusion. This 

confirmed that EphB2 can indeed act to induce fusion. Furthermore, it was demonstrated 

that ephrin-B reverse signaling is necessary for palate fusion when the unclustered 

EphA4/Fc protein was added. EphA4/Fc promiscuously binds all B-ephrins without 

activating signaling acting as competitive inhibitor, blocking fusion even in the presence 

of TGFβ3.  

TGFβ3 requires the activity of phosphatidylinositol 3-kinase (PI3K) for fusion 

(203), and the same is true for ephrin reverse signaling, as palates stimulated in culture 

with EphB2/Fc did not fuse in the presence of the PI3K inhibitor LY294002. The 
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chicken palate findings show that ephrin signaling is downstream, or at least independent 

of TGFβR signaling. The EphA4/Fc-blocking experiments demonstrated that the ephrin 

requirement is conserved between mouse and chick. However, blocking antibodies 

against TGFβ3 inhibit mouse palate fusion, and genetic ablation of TGFβ3 in mice 

yields cleft secondary palate (34,40,235,265). Thus, endogenous ephrin signals are not 

sufficient to compensate for loss of TGFβ3.  

In the final set of experiments, two chemical inhibitors were used: anti-TGFβ3 

and the TGFβr kinase inhibitor (SB 431542) with or without EphB2/Fc. SB 431542 is a 

strong and selective inhibitor of TGF-β superfamily type I a receptor-like kinase (ALK) 

receptors. Inhibition of TGF-β signaling is known to induce the repression of epithelial 

fate. The results were consistent in both experiments, control palates in these 

experiments fused normally over the three-day time window, although fusion was 

incomplete in the posterior region. The groups treated with the anti-TGFβ3 antibodies  

and SB 431542 abolished MES degradation and palatal fusion such that the epithelial 

layers in the MES remained almost entirely intact. In both treatment groups, addition of 

recombinant EphB2/Fc restored widespread, but not complete, seam degradation and 

largely rescued fusion (Figure 4-1 and Figure 4-2). These data demonstrated that 

exogenous activation of ephrin reverse signaling was capable of causing MES 

degradation and palatal fusion in the absence of a TGFβ signal. The EphB2 treatments 

did not completely rescue fusion in TGFβ-blocked palates, and this observation could be 

explained by an insufficiency of ephrin reverse signaling to activate a specific part of the 

fusion program, such as an apoptotic activity that removes remaining MEE cells.  



 

 80 

The MEE cells were isolated and their comportment was investigated after 

activation of the ephrin reverse signal.  MEE cells grown to confluence exhibit the 

characteristics of epithelial cells. Packed, cuboidal cells joined in a sheet by desmosomes 

and tight junctions. E-cadherin, desmoplakin, and plakoglobin are among the proteins 

that are highly expressed in these epithelia-specific junctions.  After 48 hrs of exposure 

to clustered EphB2/Fc, the expression of these proteins disappeared. At the same time, 

fibronectin and vimentin, both fibroblast markers, rapidly increased. EphB2/Fc-treated 

cells assumed a looser, mesenchymal shape and became motile.   

In a scratch-wound assay on monolayers of the same MEE cells treated with 

EphB2/Fc showed an increased number of cells moved into the cleared scratch area over 

a 48 h period; whereas, control cells moved in fewer number over the same period of 

time.  By 48 h of treatment, a six-fold increase was observed in motile cell number in 

EphB2/Fc cultures. 

The results for gene expression were consistent with the changes expected for 

ephrin reverse signaling in activation of the EMT program. The transcription factors 

Snail and Sip1 are upregulated during developmental EMT and repress E-cadherin 

expression (249). Therefore, the mRNA levels were quantified using real-time PCR of in 

MEE cells after 48 h of EphB2/Fc treatment. Snail and Sip 1 increased, E-cadherin 

mRNA decreased when compared with the controls. Twist1 mRNA increased slightly; 

however, the change was significant. The results were consistent with a role for ephrin 

reverse signaling in activation of the EMT gene expression program.  
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The finding of PI3K involvement in ephrin reverse signaling provides a 

connection to this migration mechanism. PI3K signals to Akt, which activates the mTor 

complex, leading to migration of cancer cells. This pathway is frequently activated in 

malignancies, and inhibition of the mTor complex proteins Raptor and Rictor retards 

cancer cell invasiveness and suppresses the EMT required for metastasis (282).  This 

mechanism may control the EMT and migration of epithelial cells during palatal fusion 

(Figure 2-2). 

The discovery that EphB2 treatment both induces fusion and initiates EMT in 

MEE cells independently of TGFβ3 reinforces the view that EMT is a part of the fusion 

mechanism.  Thus, Ephrin-B signaling could induce apoptosis in other systems (279). It 

also implies that the same connection functions in cases of metastatic EMT, and suggests 

that ephrin-mediated pathways may be valid targets for cancer therapies.  

Understanding normal palate development as well as aberrant pathways involved 

in abnormal palate development is crucial to allow us to better develop therapeutic 

modalities to treat patients. Identifying the major pathways involved and manipulating 

those pathways prior to birth would represent a monumental step to prevent the primary 

and many secondary complications caused by CLP.  
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APPENDIX A FIGURES 

 

 
 

Figure 1-1. Schematic drawing showing coronal view of a normal palate shelf and key 
stages of mouse palatal development. At E12-E13 days in the mouse gestation, the palatal 
shelves grow downward along the tongue (t). At E13-E13.5 days, the palatal shelves become 
elevated above the tongue. At E14.5, the palatal shelves adhere to each other in the midline. 
After E15.5 days, the MES completely degrades, and the palate fuses. 
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Figure 1-2. Comparison of the morphogenesis of the upper lip with that of the palate (D-F). 
After the bilateral maxillary processes (max) fuse externally with the inter-maxillary segment, 
the resulting epithelial seam (arrow, B) gives rise to mesenchyme (arrowhead, C) to produce a 
confluent lip. At a later time, the palatal shelves arising internally from the maxillary processes 
fuse with each other (arrows, D) and with the nasal septum (ns) above them, creating an 
epithelial seam that transforms to mesenchyme (arrowheads, E) to produce the confluent palate 
(arrowheads, F). p, sloughed periderm cells (32). 
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Figure 1-3. Diagram showing the relationship between the NC cartilages and the 
transpalatal suture. A) Dotted lines indicate cut lines for removing the palate from the embryo 
and the NC cartilage from above the sutures. (B-E) Micrographs of parasagittal sections of foetal 
rat heads show the pre-natal development of TP sutures. (B) At E16, NC cartilages (arrows) can 
be seen directly above the presumptive TP suture region (in box). (C) High-power micrograph of 
the region in the box, showing the advancing palatal plate of the maxilla and horizontal plate of 
the palatal bone (asterisks) on either side of the presumptive TP suture (between arrows). (D) At 
E18, the advancing bone fronts (asterisks) begin to overlap one another, creating a highly 
cellular suture blastema (between arrows). (E) By E20, an elongated TP suture (between arrows) 
continues to form as the bone fronts proceed to overlap one another. A, airway; B, shelves of 
maxillary bones; MP, midpalatal suture; NCC, nasal capsular cartilage; O, oral cavity; TP, 
transpalatal suture (143). 
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Figure 2-1. Ephs and ephrins in fusing palate. (A) Steps in mammalian palatal fusion. Palatal 
shelves of mesenchyme ensheathed in a two-cell thick epithelial layer elevate over the tongue 
and grow to midline. This happens beginning at about embryonic day 12.5 in the mouse. At 
e14.5, the epithelial cells adhere, migrate into the mesenchyme and/or die, leaving a confluent 
mesenchymal shelf. (B) Summary of published patterns of Eph and ephrin expression in the 
palate just before and during fusion. 
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Figure 2-2. Two proposed models of ephrin-B reverse signaling in palatal EMT based on 
current evidence. Pathway 1 places ephrin signaling downstream of TGFβ3 signaling such that 
TGFβ3 stimulates expression of EphBs and/or ephrin-Bs, leading to activation of PI3K 
signaling. In pathway 2, TGFβ3 and ephrin-B signaling act in parallel to stimulate PI3K 
together.  
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Figure 3-1. EphB2 and ephrin-B2 expression in fusing palate epithelium. Day 14.5 embryos 
from mice harboring: (A) the EB2/LacZ chimeric allele or (B) the LacZ knock-in to the EphB2 
locus were sectioned coronally and stained with X-gal. Counter stain is Nuclear Fast Red. βgal 
expression was found in the palate epithelium, suggesting a role in adhesion and/or fusion. Note 
the breakup and dispersion of EB2/βgal during EMT. 
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Figure 3-2. Eph and ephrin effects on palate fusion. Palatal shelves were dissected from eight 
day old chicken embryos and cultured in contact on a support for 72 h in the presence of specific 
treatments, as indicated. Tissues were fixed, paraffin processed, and sectioned. Shown are 
representative H&E stained sections from each treatment. Note the darkened epithelial layer that 
disappears as fusion proceeds. H&E stained sections from anterior to posterior were scored on 
for fusion on a scale of 1 to 5 at anterior, middle, and posterior points and these scores averaged 
to yield the mean fusion score (MFS) shown.  
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Figure 3-3. Ephrin dependence of mouse palate fusion. Embryonic day 14.5 mouse palates 
were cultured in the presence of unclustered EphA4/Fc soluble recombinant protein or IgG Fc 
control protein as described in the text. Tissues were fixed, paraffin processed, and sectioned. 
Shown are representative H&E stained sections from each treatment. H&E stained sections from 
anterior to posterior were scored on for fusion on a scale of 1 to 5 and these scores averaged to 
yield the mean fusion score (MFS) shown. Values are ±SEM for n=14 palates over four 
independent experiments. Magnification is 200×. 
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Figure 3-4. Effect of PI3K inhibition on Eph-induced palate fusion. Chicken palates were 
grown with the treatments indicated under the conditions described in the text. Samples grown in 
TGFβ3 or EphB2 alone fused almost completely. Addition of the PI3K inhibitor LY294002 
abrogated fusion with either TGFβ3 or clustered EphB2/Fc. Shown are H&E stained examples of 
each group with n=16 to 19 for each group from 3 independent experiments. Mean fusion score 
(MFS) for each is shown ± SEM. Magnification is 100×. 
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Figure 3-5. Model of ephrin and TGFβ3 signal transduction in palate fusion. Ephrin and 
TGFβR signals intersect at a point upstream of PI3K, which is required for fusion. Other 
possible pathways from eprhin-Bs that do not go through PI3K are not diagrammed. Known 
possible effectors or ephrin-Bs in reverse signaling are described in the text. Signals from Eph 
RTKs that induce partial fusion are unknown. 
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Figure 4-1. Ephrin reverse signaling induces palatal fusion without TGFβ3. Mouse E13.5 
palatal shelves were dissected and grown with their medial edges in contact for 72h in the 
presence of treatments as indicated. All samples received either EphB2/Fc or IgG Fc protein at 5 
µg/ml. Tissues were then fixed, paraffin-embedded and sectioned in the coronal orientation from 
anterior to posterior for histological analysis. Anterior, medial, and posterior regions were scored 
for fusion based on a one to five scale. Values shown are mean±SEM with n=12 to 18 palates for 
each group pooled from three independent experiments. (A) Control palates were treated with 
IgG Fc control protein and fused normally, with a slight decrease in posterior score indicative of 
the incomplete fusion commonly observed in some embryos during the 72h experimental period 
(MFS= 4.5 anterior, 4.6 middle, 3.0 posterior). Palates treated with 10 µM anti-TGFβ3 failed to 
fuse (MFS= 1.4 anterior, 2 middle, 1.3 posterior) and displayed intact MES. Palates treated with 
anti-TGFβ3 antibody+EphB2/Fc fused substantially better, especially in the middle region, 
displaying significant MES degradation (MFS= 2.6 anterior, 3.9 middle, 2.6 posterior). (B) 
Example H&E stained sections from each experimental group in A.  
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Figure 4-2. Ephrin reverse signaling induces palatal fusion without TGFβr. (A) 
Experimental conditions were the same as in A, except that the SB431542 inhibitor of the TGFβr 
kinase was used at 25 µM instead of anti-TGFβ3. IgG Fc control palates fused normally (MFS= 
3.5 anterior, 4.7 middle, 3.4 posterior), and SB431542 abolished fusion (MFS= 1.3 anterior, 1.7 
middle, 1.1 posterior). EphB2/Fc largely rescued fusion in the presence of kinase inhibitor 
(MFS= 2.0 anterior, 3.8 middle, 3.1 posterior). (B) Example H&E stained sections from each 
experimental group in C. Differences between antibody or inhibitor treated groups and their 
corresponding EphB2/Fc treated groups were statistically significant as determined by Mann 
Whitney U Test (**p<0.001). 
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Figure 4-3. TGFβ3 is not required for EphB2 expression. (A) Sections of palates from wild 
type and TGFβ3 knockout mice were stained with antibody against EphB2. Staining (reddish-
brown, DAB) is apparent in the MEE with both genotypes. (B) Mouse palatal MEE cells were 
grown in the presence of the indicated doses of either 10 µM TGFβ3 or 5 µg/ml EphB2/Fc for 
48 h before being harvested for Western analysis with anti-TGFβ3 or anti-EphB2. 
UN=untreated; IgG=IgG Fc treated control. TGFβ3 treatment did not increase EphB2 levels 
while EphB2 treatment increased TGFβ3 levels modestly. Thus, the ability of TGFβ3 to cause 
palatal fusion cannot be explained by simple stimulation of EphB expression. 
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Figure 4-4. Ephrin reverse signaling causes EMT in mouse palatal MEE cells. Embryonic 
mouse MEE cells were cultured for 48 h in either IgG Fc or EphB2/Fc protein at 5 ng/ml, then 
fixed and processed for immunofluorescent detection of epithelial or mesenchymal markers. (A) 
Expression of the epithelia-specific cell junction markers E-cadherin, demosplakin, and 
plakoglobin (green) virtually disappeared after 48 h of EphB2/Fc treatment. (B) Expression of 
the mesenchymal markers fibronectin (green) and vimentin (red) increased dramatically after 48 
h of EphB2/Fc exposure while expression of epithelia-associated proteins E-cadherin (red) and 
Z01 (green) essentially disappeared. 
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Figure 4-5. Expression of the mesenchymal markers fibronectin (green) and vimentin (red) 
increased dramatically after 48 h of EphB2/Fc exposure while expression of epithelia-associated 
proteins E-cadherin (red) and Z01 (green) essentially disappeared. 
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Figure 4-6. Ephrin reverse signaling induces migration of mouse palatal MEE cells. (A) 
Embryonic MEE cells were grown to confluence and then scratched with a needle to create a 
cleared area with uniform borders. The cells were treated with IgG Fc or EphB2/Fc for 48 h. (B) 
The number of cells that migrated across the borders into the cleared area was counted at 24 and 
48 h. The change in the number of cells was determined by comparison to control (IgG Fc) and 
plotted as actual numbers of migrating cells (mean±SD.; n=3; *P<0.005 compared with controls 
AP-value of ≤0.05 was considered significant. The one-way ANOVA indicated that the values 
differ significantly across the treatment groups. All EphB2 treatment (time dependent) differed 
significantly (*P≤0.005) from the control groups (IgG Fc). 
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Figure 5. Ephrin reverse signaling induces EMT-associated gene expression in palatal 
MEE cells. RNA was harvested from mouse palatal MEE cells cultured for 48 h with 1, 2, or 5 
µg/ml EphB2/Fc as indicated. Quantitative real time PCR analysis showed that messages for 
Snail, Sip1, and Twist1 were all significantly increased by EphB2/Fc treatment, demonstrating 
that ephrin reverse signaling activated expression of EMT-associated transcription factors. The 
change in mRNA levels was determined by comparison to control (IgG Fc) and plotted as fold 
change/s (mean±SD.; n=3; *P<0.005 compared with controls; AP-value of ≤0.05 was considered 
significant. The one-way ANOVA indicated that the values differ significantly across the 
treatment groups. All EphB2 treatment (dose dependent) differed significantly from the control 
groups (IgG Fc) **P<0.0005. 
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APPENDIX B TABLES 

Table 1. Syndromic Genes Associated with Cleft and Palate 
 

SYNDROME CLINICAL FEATURES GENES REFERENCE 
Apert Syndrome 
(AS) 

AD; high arched palate, bifid uvula, and cleft 
palate. 

FGFR2 (116,292-
295), (296) 

Bamforth-Lazarus 
Syndrome (BLS) 

AR; hypothyroidism, athyroidal, CPO, 
choanal atresia, spiky hair. 

FOXE1 (116,297,
298) 

Branchio-oculo 
facial syndrome 
(BOFS) 

AD; pseudocleft of the upper lip resembling a 
poorly repaired cleft lip. 

TFAP2A  (116,299)  

Down syndrome 
(DS) 

Macroglossia, microstomia, atlantoaxial 
subluxation 

duplication of 
portion of 
chromosome 
21 

(300) 

Ectrodactyly-
ectodermal 
dysplasia-cleft 
syndrome (EEC) 

AD; triad of ectrodactyly, ectodermal 
dysplasia, and facial clefting. 

P63 (116,301,
302) 

Fetal alcohol 
syndrome(FAS) 

Disorder characterized by a pattern of minor 
facial anomalies, prenatal and postnatal 
growth retardation.  

alcohol 
dehydrogenase 
1B (ADH1B) 

(303-
305);(306
) 

Goldenhar syndrome 
(GS) 
 

Oculo auricular vertebral dysplasia; AD;   
incomplete development of the ear, nose, soft 
palate, lip, mandible . 

Pericentric  
inversion of 
chromosome 9 

(307,308) 

Hereditary 
lymphedema-
distichiasis 
syndrome (HLD) 

AD; lymphedema of the limbs, double rows of 
eyelashes, cardiac defects, and cleft palate. 

FOXC 
mutations 

(309) 

Kallmann Syndrome 
(KS) 

AR disorder; Hypogonadotropic 
hypogonadism and anosmia 

FGFR1 
mutations 

(116,310,
311)  

Margarita Island 
ectodermal 
dysplasia (ED4)  

AR; unusual facies, dental anomalies, 
syndactyly, and cleft lip/cleft palate. 

PVRL1 
(nectin-1) 
mutation 

(116,312) 

Pierre Robin 
Sequence (PRS) 

 AD; triad of micrognathia, glossoptosis, and 
cleft palate.  

Loci 2q24.1-
33.3, 
4q32qter,11q2
123.1,and17q2
124.325.1.  

(313,314) 

Smith–Lemli-Opitz 
Syndrome (SLMOS) 

AR; defects in cholesterol biosynthesis, 
growth retardation, dysmorphic facial features 
including CLP/ CPO, postaxial polydactyly 

DHCR (116,315,316) 

Stickler Syndrome 
(SS) 
 

AD; midface hypoplasia, micrognathia, Pierre 
Robin sequence, retinal detachment and early 
cataracts deafness, hypermobility of joints. 

Col11A1, 
Col11A2, 
Col2A1 

(317,318) 

Treacher Collins 
(TC) 

AD ; craniofacial deformities such as 
downward slanting eyes, micrognathia, 
conductive hearing loss, underdeveloped 
zygoma. 

Mutation in 
TCOF1 gene 
at 
chromosome 
5q32-q33.1 

(319);(320) 
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SYNDROME CLINICAL FEATURES GENES REFERENCE 
van der Woude 
syndrome (VDWS) 

AD;  cleft lip palate, distinctive pits of the 
lower lips, or both. 

IRF 6 
(interferon 
regulatory 
factor 6) 
mutations 

(116,321)  

Velocardiofacial 
Syndrome (VCFS) 

AD ; cleft palate, heart defects, abnormal 
facial structure, and learning problems.  
 

Chromosome 
22q11 
microdeletion 

(322,323) 

Unnamed syndrome CLP and hereditary diffuse gastric cancer CDH1 (93) 
Unnamed syndrome Chromodomain helicase DNA-binding 

proteins; CLP in Charge syndrome 
CHD7 (324,325) 

Unnamed syndrome Bilateral CLP, colobomas of the optic nerve 
and retina, agenesis of the corpos callosum. 
Dysphagia, reduced esophageal peristalsis 

PAX 9 (116,326) 

Unnamed syndrome X-linked mental retardation and CLP PH8 6, (327)  
Unnamed syndrome Holoprosencephaly 7, a spectrum of forebrain 

and midline anomalies and midline CL 
PTCH(315,32
8,329) 

(116) 

Unnamed syndrome CPO, craniofacial anomalies, osteoporosis, 
and cognitive defects 

SATB2 (116,330) 

Unnamed syndrome Holoprosencephaly, a spectrum of anomalies 
ranging from severe (cyclopia) to subtle 
midline assymetries. CLP part of the spectrum 

SHH (116,315)  

Unnamed syndrome Anomalies with most features of 
DiGeorge/velocardiofacial  syndromes: CPO, 
thymus and parathyroid gland hypoplasia, 
vertebra, facial and cardiac outflow 
anomalies. 

TBX1 6, (331) 

Unnamed syndrome X-linked CPO and ankyloglossia TBX22 6, (73,74)  
Unnamed syndrome Cardiovascular, craniofacial, skeletal, and 

cognitive alterations,bifid uvula and or/CPO 
TGF Beta 
receptor 

6, (332)  
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Table 2. Non Syndromic Genes: Interaction Effects of Genes and Environmental Risk 
Factors on Oral Clefts. 
 

GENE FUNCTIONAL ROLE RISK FACTOR REFERENCE 
Cytochrome P450 
Proteins (CYP) 
CYPIA1, CYPIA2,  
CYPIB1 CYP2E1 

Highly polymorphic, having multiple 
functional alleles; Role in detoxification; 
metabolism of endogenous morphogens 
in the developing fetus. 

Negative  gene; 
Smoking inter-
action effect 

(333-335) 

Epoxide Hydrolase 
(EPHX) 
 

Class of proteins that catalyze the 
hydration of chemically reactive 
epoxides into their corresponding 
dihydrodiol products.  

  

EPHX Plays an important role in both the 
bioactivation and detoxification of 
exogenous chemicals  such as PAHs, 
which are present in cigarette smoke. 

Negative gene; 
Smoking inter-
action effect 
 

(333,336) 
 

EPHX1  Y113H Variant of EPHX 1 found in the fetus 
and maternal smoking. 

Positive gene; 
Smoking inter-
action effect 

 
(16,337)  

Glutathione 
Transferase Gene 
Family (GST) 
 

Families of dimeric phase II enzymes 
that catalyze the conjugation of reduced 
glutathione with electrophilic groups of 
a wide variety of environmental agents. 

  

GSTM1 Major gene detoxifying PAHs and 
widely studied in many disorders and 
cancers. 
 

Negative gene; 
Smoking inter-
action effect 

 
(338,339) 

GSTT1  
 

Expressed in a variety of tissues/organs  
such as erythrocytes, lung, kidney, 
brain, skeletal muscles, heart, and small 
intestine; elevated expression profile at 
the craniofacial regions during 
embryonic development. 

Positive gene; 
Smoking inter-
action effect 

(340) 
(16,335,337,34
0) 
(16,337) 
 

GSTP1 
 

Major gene detoxifying PAHS; 
involvement in variety of disorders and 
cancers. Major enzyme involved in the 
inactivation of cigarette smoker’s 
metabolites; most important isoform at 
the embryonic and early fetal 
developmental stages. 

Positive gene; 
Smoking inter-
action effect 
 

(341) 
(16,337) 
 

GST A4 / GSTM3 Two other types of GST gene family 
members.  

Positive gene; 
Smoking inter-
action effect 

(16,337) 

Hypoxia-Induced 
Factor-1 (HIF1A) 
 
 

Mechanism that maternal smoking may 
affect embryonic development due to 
the production of carbon monoxide, 
which interferes with oxygen transfer to 
the placenta, or nicotine, which 
constricts the uterine wall resulting in 

Positive gene; 
Smoking inter-
action effects 

 
(16,337) 
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hypoxia.  

GENE FUNCTIONAL ROLE RISK FACTOR REFERENCE 

Arylamine N-
Acetyltransferase 
gene Family 
 

N-conjugation of arylamine by the 
action of N-acetyltransferases (NATs), 
UDP glucoronosyltransferases (UGTs), 
or sulfotransfereases (SULTS) produces 
nontoxic compounds. 

  

N-acetyltransferases1 
 (NAT 1) 

Expressed in many tissues such as 
erythrocytes, bladder, lymphocytes, 
neural tissues, liver and intestines. 

Negative gene; 
Smoking inter-
action effects 

(127,342,343) 

N-acetyltransferases  
pseudogene, 
(NATP1) 

Pseudogene identified, which is located 
at chromosome 8p23.1-8p21.3. 

 (127,342,343) 
 

N-acetyltransferases2  
(NAT 2) 

Expressed in the liver and epithelial 
cells of the intestine. 
 

Positive gene; 
Smoking inter-
action effects 

(16,335,337) 

Methylenetetrahydrof
olate reductase 
(MTHFR) 
 
MTHFRC677T 

Metabolism of folate by reducing 
methylenetrahydrofolate, primary donor 
for methionin synthesis. 
 
Variant of methylenetetrahydrofolate 
reductase. 

Positive gene; 
Vitamin inter-
action effect 
 
Negative gene; 
Smoking inter-
action effect 

(344-
348),(349,350) 

 
OTHER METABOLIC GENES 
NAD(P)H quinine 
oxidoreductase 
(NQO1) 
 

Flavoenzyme that catalyzes two electron 
reduction of quinine compounds to 
hydroquinone and is inducible by 
oxidative stress, dioxin, and PAHS 
found in cigarette smoke 

Negative gene; 
Smoking inter-
action effect 

(16,337) 
 

SULT1A1   
 

Catalyzes transfer of the sulfonate group 
from the active sulfate to a substrate to 
form the respective sulfate or sulfamate 
ester. 

Negative gene; 
Smoking inter-
action effects 
 

(16,337) 

UDP 
glycosyltransferases 
(UGTs) UGT1A7 
variant 
 

Catalyzes conjugation reactions where 
hydrophobic chemicals are transformed 
into water-soluble compounds. Potential 
maternal effects on embryonic 
development. 

Positive gene; 
Smoking inter-
action effects 
 

(337,351,352) 

 
DEVELOPMENTAL GENES FOR ORAL CLEFTS 
Transforming Growth 
Factor A (TGF a) 
 

Transmembrane protein expressed at the 
medial edge of the epithelium (MEE) of 
fusing palatal shelves. Its receptor 
epidermal growth factor (EGFR) is 
expressed in the degenerating MEE.  

Positive gene; 
Interaction 
effects (smoking, 
alcohol drinking, 
vitamins) 

(353-355) 
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Transforming growth 
Factor b-3 (TGF b3) 
 

Regulator of many biological processes 
such as proliferation, differentiation, 
epithelial mesenchymal transformation 
and apoptosis. 

Positive gene; 
Interaction 
effects (smoking, 
alcohol drinking) 

(102,354,356) 
 

GENE FUNCTIONAL ROLE RISK FACTOR REFERENCE 

Muscle Segment 
Homeobox1 (MSX1) 
 

Transcriptional repressor important in 
craniofacial, limb, and nervous system 
development.  
 
 

Positive gene; 
Interaction 
effects (smoking 
and alcohol 
drinking) 

(354,357,358) 

MSX2 
 

Similar to MSX1; rare cause of isolated 
cleft lip with or without cleft palate. 

 (357,358) 
 

Acyl-CoA desaturase 
ACOD4 

Pericentric inversion disrupts a gene 
(ACOD4) on chromosome 4q21 that 
codes for a novel acyl-CoA desaturase 
enzyme that occurs in a single two-
generation family with CL. 

 (359) 

Retinoic acid receptor 
( RAR) 

Odds ratios for transmission of alleles at 
THRA1 were significant when ethnic 
group was included. 

Negative gene; 
Smoking inter-
action effects 

(354) 

CHD7  Chromodomain helicase DNA-binding 
proteins. 

 (360) 

ESR1 Ligand-activated TF estrogen receptor.  (361) 
FGF/ FGFR families   
FGF8 FGF3 FGF10 
FGF18 FGFR1 
FGFR2 FGFR3 

Expressed during craniofacial 
development and can rarely harbor 
mutations that result in human clefting 
syndromes. 

 (362) 
(362)  

SPRY1/SPRY2 Loss of function mutations in FGFR1 
cause a syndromic form of clefting. 

 (363) 

TBX10 Ectopically expressed in dancer cleft lip 
and palate mutant mice. 

 (363) 

GABRB3  b3 subunit of GABA receptor CLP.  (85),(364),(116)  

GLI2 Mutations in GLi2 cause 
holoprosencephaly-like features with 
cleft lip and palate. 

 (363) 

ISGF3G Similar to IRF6.   (363) 

 
OTHER CANDIDATE GENES  
SKI, FOXE1,  JAG2, 
LHX8  

Rare causes of isolated cleft lip with or 
without cleft palate 

 (363) 

 




