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ABSTRACT

As the advance in high-throughput sequencing enables the generation of large
volumes of genomic information, it provides researchers the opportunity to study non-
model organisms even in the absence of a fully sequenced genome. The hugely
advantageous progress calls for powerful sequencing assembly algorithms as these
technologies also raise challenging assembly problems: (1) Some RNA products are
highly expressed but others may have much lower expression level. (2) Data cannot
easily be represented as linear structure, due to post-transcriptional modification like
alternative splicing. (3) Conserved sequences in domains in gene families can result in
assembly errors, (4) Sequencing errors due to technique limitations. Useful assembly
algorithms are required to overcome the difficulties above. In these studies, there is
often a need to identify similar transcripts in non-model organisms to transcripts found
in related organisms. The traditional approach to address this problem is to perform de
novo transcriptome assemblies to obtain predicted transcripts for these organisms and
then employ similarity comparison algorithms to identify them. | observe it is possible to
obtain a more complete set of similar transcripts from transcriptome assembly by
making use of evolutionary information. | apply new algorithms to study non-model
organisms which play an important role in applied biology.

Moreover, improvement of sequencing technologies and application of current
algorithms also help to study interkingdom signals between blow flies and bacteria

community. With current computational tools, | annotate genomes of Proteus mirabilis



and Providencia stuartii, which play an important role in bacteria-insect interaction. The
study shows significant features of these strains isolated, which provides useful

information to develop and test hypothesis in related interactions in insects and bacteria.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Central dogma of biology

In the central dogma of biology, there are three general processes which occur in
biological systems: DNA replication, transcription and translation. During DNA
replication, a complementary strand is synthesized with single-stranded DNA as
template and the process is catalyzed by multiple DNA polymerases. DNA segments
within gene regions can be transcribed into RNA with catalysis by RNA polymerase.
RNA products include non-coding RNA (ncRNA) and coding RNA. Many ncRNAs like
ribosomal RNA (rRNA), transfer RNA (tRNA), microRNA (miRNA), small nucleolar
RNA (snoRNA) and small nuclear RNA (snRNA) are known to have housekeeping
functions (1). For example, miRNAs are single strand ncRNA with length of around 22
nucleotides. They are found to work in concert to inhibit expression of target mMRNA.
Long non-coding RNAs (IncRNA) are expressed from genomic regions including
intergenic regions, the opposite strands of MRNAs and introns of genes. They have been
identified to play an important role in epigenetic regulation, transcriptional regulation,
post-transcriptional regulation (2). On Drosophila male X chromosome, ncRNA roX
forms complexes with male-specific lethal (MSL) proteins to mediate dosage
compensation, a process of transcriptional upregulation on the chromosome X so that
males express equal or similar numbers of gene products as females (3). In eukaryotic

organisms, the immediate product after transcription is primary transcripts, which are not
1



functional, therefore posttranscriptional processing is required to produce mRNA (4).
Nucleic acid sequence in mRNA is translated into amino acid sequence during protein
synthesis. Proteins provide important functions in biological processes, such as catalysis
by enzymes, oxygen transport by hemoglobin and oxygen storage by myoglobin (5).

The chapter will review current knowledge about sequencing technologies, mRNA
processing in eukaryotes especially alternative splicing and de novo assembly strategies
for non-model organisms and importance of some non-model organisms.

The expression and splicing of genes can impact many aspects of biology. One
important aspect of biology that is critical to understand from numerous applied
perspectives is the interaction between bacteria and eukaryotes. For instance, genomes
of bacteria isolated from blow flies show genetic differences from clinical strains, which
may contribute to physiological distinctions. Blow flies are eukaryotic non-model
organisms. There is a study that alternative splicing of PGRP family mediates interaction
between flies and bacteria (6). To understand interkingdom signaling between flies and
bacteria, studies on genomes from microbial community isolated from flies as well as
transcriptomes of flies may give useful hints. The advance of sequencing technologies

paves a way for this cross-species study.

Sequencing methods
To get sequence information, people used to reverse transcribe mMRNA into cDNA,
shear cDNA into small fragments and clone them to get large numbers of random cDNA

fragments for Sanger sequencing. The conventional sequencing method, Sanger
2



sequencing, is named after its inventor, Frederick Sanger. It is also called chain-
terminator method, because it utilizes ddNTPs (dideoxynucleotide triphosphates) as
sequence terminators. The conventional Sanger sequencing strategies separate DNA
samples into four portions for four independent sequence amplification experiments. In
each reaction, only one type of the four ddNTPs (ddATP, ddTTP, ddCTP, ddGTP) is
added to terminate the polymerization. DANTPs lack 3-OH compared to dNTPs, and
thus cannot form a phosphodiester bond between two adjacent nucleotides. Therefore
they terminate DNA strand extension at different positions according to the specific
ddNTPs added. The products are DNA fragments with diverse lengths. After
electrophoresis, DNA fragments are separated based on their sizes. Each band
corresponds to a nucleotide in the overall sequence (7). In this way, sequence data can be
retrieved from a gel with the read length of up to approximately 1,000 nucleotides.
Sanger sequencing gets information by termination of sequence extension, runs slow,
and is relatively expensive compared to next-generation techniques. However, this is
also the gold standard for sequence identification, as it has been used successfully for
decades and has well characterized error rates.

The next generation methods of sequencing produce many more sequences per
dollar; however, they include more errors per sequence read, and their sources of errors
are not well understood compared to Sanger sequencing. The main high throughput
sequencing methods considered here are 454 pyrosequencing and Illumina/Solexa,

SolLiD sequencing and ion torrent technologies.



1) 454 pyrosequencing

The 454 pyrosequencing technique depends on detection of pyrophosphate release.
It was invented by 454 Life Science, a biotechnology company in Connecticut
(www.454.com). It relies on emulsification PCR (polymerase chain reactions) to
guarantee immobilization of DNA fragments during amplification. First, DNA libraries
are prepared by shearing long sequences into shorter ones, adding adaptors to both ends
and dissociating dsDNA into ssDNA. Then adaptors immobilize DNA fragments on the
surface of beads. Each bead carries a unique ssSDNA fragment. The fragments will be
amplified in a water-and-oil mixture, which is a microreactor. When emulsified PCR
finishes, amplified fragments are loaded onto a sequencing instrument. Four types of
dNTPs (dATP, dCTP, dGTP, dTTP) are added sequentially to attach to 3' end of the
primer if it is complementary to the template, producing pyrophosphate. Pyrophosphate
can react with adenosine 5' phosphosulfate to generate ATP, which is then used to
convert luciferin to oxyluciferin to emit light. The signals are captured and analyzed to
get the sequence. Extra dNTPs are digested by apyrase before next cycle begins. The
read length is around 200-400 nts. Per sequence base, 454 pyrosequencing is cheap and
fast, compared to Sanger sequencing, but is not sensitive to homopolymers, for which it
gives ambiguous base calls because there is no linear relationship between detection
signals and the number of identical nucleotides. Also signals of long sequence with
identical nucleotides may be above the detection range (8). Such problem can be

overcome by Illumina/Solexa.



2) Hllumina/Solexa

Illumina/Solexa sequencing is another high throughput sequencing technique. It
utilizes four fluorescently-labeled nucleotides to sequence fragments from the surface of
a flow well after bridge amplification in parallel. First, long sequences are sheared to get
shorter fragments and adapters are added to both ends. The adapters enable fragments to
attach to specific positions on the surface of the flow well, where there are two PCR
primers attached and one of them has a cleavable site. The fragments hybridize to one
primer and serve as template to synthesize complementary strand after polymerase and
unlabeled nucleotides are added. After synthesis of new strand, original fragments are
denatured and removed. New strands bend to hybridize another PCR primer forming
‘bridges’. The primer hybridized extends to form a complementary strand. After cycles
of denaturation and extension, SSDNA are still attached to the surface. The strands
extended from the primer with the cleavage site are removed. DNA fragments left are
loaded on a sequencing device. Four labeled nucleotides are added simultaneously to
attach to the template. Each type of nucleotide emits a specific fluorescence if it is
attached to the template. A fluorescence signal particular to the addition of each
nucleotide is captured to get the sequence data. Illumina/Solexa sequencing costs less
per base considering the machinery and chemicals used, and also run at a faster rate
compared to traditional method and 454 pyrosequencing because all four types of
nucleotides are added simultaneously to synthesize the complementary strand in
sequencing; it also overcomes the homopolymer problem by relying on base-by-base

sequencing. However the read length is much shorter, around 75-300nts, because it is



harder for longer fragments to “bridge” efficiently on the surface of flow cell, thus the
resolution decreases dramatically for longer fragments (9). However, short reads make it
more difficult for sequence assembly as they are unable to resolve problems in assembly

related to long repeat sequences.

3) SoL.iD sequencing

SoLiD is a technique developed by Life Science in 2008. SoLiD depends on 2-base
encoding in ligation-based sequencing. After DNA libraries are prepared, fragments are
attached to the surface of bead for emulsification PCR like 454 pyrosequencing. When
amplification is completed, the adapter attached to the free end attaches to the surface of
a flow well via 3' modification to the strand. The surface of the flow well is now coated
with beads each attached with a single DNA species. The nucleotide detection is not
based on polymerase-driven amplification. Instead, eight-base probes are added. In the
probe, named from 3' end, the 1st and 2nd bases are specific which possibly involved in
hybridization, the 3th-5th are universal bases which can replace any of the four normal
bases (A/T/G/C) without destabilizing duplex interaction, and the last 3 bases are
degenerate bases which can replace at least two but not all of the four normal bases.
There are 16 possible dual base combinations, so 16 types of probes are added to detect
the sequence. Four colors are used to differentiate dinucleotides in 4th and 5th positions
of the probe, each corresponding 4 possible dinucleotide combinations. After a universal
primer with specific length is attached to the template, if the first dinucleotide in the
probe is complement to the template, it ligates to 5' end of the primer to hybridize the
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template with ligase, emitting specific fluorescence and the image is captured (Step 1 in
Figure 1-1). Unextended strands are protected by phosphatase. Cleavage agent cleaves
the 6-8th bases of the probe (Step 2 in Figure 1-1). If dinucleotide from another probe is
complement to the template immediately to the 5' end of previous probe, it ligates to
5'end of previous probe (Step 3 in Figure 1-1) and cleavage of 6-8th bases is repeated.
The cycle repeats until sequence extension is completed and fluorescence signals are
retrieved (Step 4 in Figure 1-1). Then newly synthesized strand is melted and removed, a
primer one base shorter than the previous primer is used to repeat the extension to get
another set of fluorescence signals. The cycle repeats with primer one base off the
previous primer (Step 5-6 in Figure 1-1). After 5 repeats with different-length primers,
the sequence information can be retrieved by analyzing the result. It is sensitive, because
a single base difference gives rise to 2 separate signal differences, while other
technologies only cause one. The read length is ~50-75nts (10). Short reads also make

barrier for assembly.

4) lon torrent semiconductor-based sequencing

lon torrent sequencing technology was developed by lon Torrent Systems Inc. The
preparation of DNA libraries is similar to 454 pyrosequencing to generate beads attached
with short single strands as templates for polymerization. Beads are loaded onto
microwells with transistor-based sensors. Four types of unlabeled dNTPs are added
separately, if polymerase incorporation occurs, that is, the added deoxynucleotides can
be attached to 3'OH end of the growing strand, one of the products hydrogen ions (H")
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will be released and the pH change will be detected by the sensor as voltage change and
translated into readable signals. Unused deoxynucleotides are washed away before the
next test to ensure only one type of bases is incorporated in each trial. Considering only
one type of deoxynucleotides is added each time, the sequencing time is not short and
this technology may be limited by homopolymer detection. When there is a long
fragment of identical bases, the signal may be above the detection range. It can produce

reads as long as ~400nts (11).
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Figure 1- 1 Principle for SoLiD sequencing



Single-molecule sequencing technologies

For the second generation of sequencing, many techniques give short reads after
amplification, although technologies like 454 pyrosequencing can detect longer strands,
but are not sensitive to homopolymers. Short reads build overwhelming challenges in
sequence assembly. The emerging single-molecule DNA sequencing approaches provide
new hope in genome research as it provides the potential to produce sequences of very
long lengths, though at the moment error rates are very high. They are methods to
determine sequences at single base resolution. The new approaches include True Single-
Moledule Sequencing (tSMS) developed by Helicos BioSciences, Single Molecule Real
Time (SMRT) sequencing by Pacific BioSciences, nanopore sequencing demonstrated
by Deamer’s group in 1996 and others. The first two approaches have been
commercialized.

The tSMS technology is a sequencing-by-synthesis approach. DNA double strands
are dissociated, sheared, attached to 3' poly(A) tails, labeled and blocked by terminal
transferase. The templates are immobilized with their poly(A) tails covalently bound to
poly(T) fragments on a surface. The surface is incubated with solution with one labeled
dNTPs. If the dNTPs can be incorporated to 3'end of the growing strand, terminators
will be removed and a fluorescence signal will be release. Sequencing information can
be deduced from the released signals. Unincorporated nucleotides will be washed away
before next test. It does not require PCR amplification, avoiding amplification error and

reducing experiment cost. However, the average length of reads is ~30-35 bases, limited



by reversible terminators. It is still challenging to detect strings of consecutive identical
base (12).

The SMRT sequencing technology was developed by Pacific Biosciences based on
observation of individual fluorophores during DNA synthesis. Different from most
sequencing-by-synthesis approaches, fluorescence labels are on the terminal phosphate
rather than the bases, with different colored fluorophores on different nucleotides. When
a nucleotide is incorporated into the growing strand, fluorescence intensity from the
zero-mode waveguides (ZMW) located in SMRT chips is elevated. After the formation
of phosphodiester bond, the labeled phosphate group is cleaved from the nucleotide by
DNA polymerase. The labeled phosphate group quickly diffuses out of ZMW and ends
the fluorescence pulse. It can sequence reads with length of ~3000bp on average with
raw error rates of 10-20% limited by photo destruction of DNA polymerase. The
accuracy can be improved by repeated sequencing (12).

Nanopore-based sequencing determines base type while sSDNA molecules pass
through nanopores with different electrical signals. The sequencing concept was first
demonstrated by Deamer et al in 1996. Nanopores are prepared from a-hemo lysine
covalently attached with cyclodextrin. Electrical current runs through the pore. After an
exonuclease cleaves ssDNA, single bases fall into the nanopores and block the current.
Different signals correspond to different nucleotides, thus the signal can be amplified to
get the sequence. It can process longer strands even with homopolymers. It does not
need DNA labeling, thus it is cheaper compared to fluorescence-label based sequencing.

Considering DNA molecules are destroyed as they are read, it is less likely to re-read the
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same strand, an improved strategy was proposed to identify individual nucleotides when
DNA strands pass intact through nanopores. The possible read length can be ~50,000
bases, without DNA amplification, but the technology is challenged by the cost of the
instrument and electrical noise during detection (12).

The progress of sequencing technologies helps to understand post-transcriptional
processing such as alternative splicing in eukaryotic organisms. Advanced sequencing
technologies provide huge RNA-seq data with splicing information inside at lower cost

per base compared to traditional technologies.

Posttranscriptional processing in eukaryotes

Primary transcripts in eukaryotes are still not functional after transcription. They
have to undergo removal of non-coding regions by splicing and addition of the 5' cap
(m’G or 7-methyl-guanylate cap) and 3' poly(A) tail, which includes around 100-250
adenosines. The mature mRNA is shown in Figure 1-2. It is composed of 5' cap, 5'
untranslated region (UTR), coding sequence, 3' UTR and poly(A) tail from 5' end to 3'
end. During processing, nonexpressed intervening sequences called introns are removed,
expressed sequences called exons are retained, 5' cap and 3' poly(A) tail are added to 5'
end of the first exon and 3' end of the last exon, respectively. Both the cap and poly(A)
tail are used to protect mMRNA from nucleolytic degradation. The cap consists of a 7-

methyguanosine (m’G) residue which is joined to the nucleotide at 5' end of the

transcript. The poly(A) tail, with the length of around 250nt, is appended to 3' end of the
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RNA transcript. 5' UTR plays a role in translational control. In 3' UTR, cis-acting
elements regulate mRNA stability (13). Both 5' UTR and 3' UTR sequences are not

coding sequence and thus not involved in translation. Therefore, both sequences can still

be found in transcriptome but not in proteome.

5’ cap 5"UTR coding sequence 3"UTR poly (A) tail

Figure 1- 2 Mature mRNA

Alternative splicing

In eukaryotes, alternative splicing is a common event. It has been found that around
43% genes in fission yeast Schizosaccharomyces pombe contain introns (14). In
Drosophila melanogaster, about 46% of the genes showing different expression patterns
during development probably due to alternative usage of promoters or alternative
splicing (15). In Homo sapiens, about 40-60% of the genes have alternative splicing
events (16).

Alternative splicing is not only found frequently in eukaryotic organisms, but also
plays a biologically important role. The gene Dscam (Down syndrome cell adhesion
molecule) in D. melanogaster can encode more than 38,000 diverse transcript products
due to alternative splicing. Temporal and spatial regulation of alternative splicing of

Dscam plays an important role in neuronal wiring specificity (17). The expression of
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Doublesex (Dsx) transcription factor in D. melanogaster is sex-specific, controlled by a
cascade of splicing factors which are alternatively spliced themselves (18). Exon
skipping of gene BRCA1 caused by nonsense or missense mutations results in breast
cancer in humans (19). The expression level of a circadian clock gene called LATE
ELONGATED HYPOCOTYL (LHY) in Arabidopsis thaliana can be decreased by
temperature-associated alternative splicing (20).

This differential use of exons is achieved through a well characterized splicing
mechanism. Pre-mRNA is composed of introns and exons. Before splicing, introns have
to be recognized via three fundamental signals: 5' donor site, 3' acceptor site and a poly-
pyrimidine tract before 3' acceptor site (21). There are multiple types of alternative
splicing events: exon skipping, in which an exon can be excluded from a transcript,
intron retention, in which an intron can be included after splicing, alternative
donor/acceptor, in which donor/acceptor site can be contained in the spliced product.
Thus one gene can encode multiple proteins (22).

Splicing events are catalyzed by a splicesome: a complex of U1, U2, U5 and U4/U6
snRNPs (small nuclear ribonucleoproteins), pre-mRNA and various pre-mRNA binding
proteins. After assembly of splicesome, splicing occurs in two stages. In the first stage,
2'-OH of an adenosine located close to 3' splice site, nucleophilically attacks the
phosphate at the 5' splice site to form 2'5'-phosphodiester bond with 5' end phosphate
group, becoming a branch nucleotide. The adenosine is generally located around 20-50
residues upstream of 3' splice site. The second stage includes addition of 3' OH of the

previous exon to the 5' end of the next exon forming a phoshodiester bond, as well as
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cleavage of RNA at 3' splice site. After exons are joined to each other, the transcript is
formed and introns are released in a lariat structure (23).

Alternative splicing mechanism plays an important role in physiological changes to
environmental factors, studies on expression of spliced variants under specific conditions
and their expressional levels are of great interest to scientists. To understand the splicing
information, transcriptomes from eukaryotic organisms need to be sequenced and

assembled.

Transcriptome assembly strategies

There are currently two transcriptome assembly strategies. Mapping-first method,
such as Cufflinks (24) and Scriptures (25), perform splice-aware alignment of short
reads to the reference genome and then assemble transcription products from spliced
alignments. It can reconstruct transcripts independent of known splice sites and identify
novel MRNA products. But this strategy relies on reference genome and is complicated
by sequencing and alignment errors. The alternative strategy, assembly-first approach,
also called de novo approach, involves software like assemblers Velvet and ABySS, and
their post-processing modules Oases and Trans-ABYSS respectively. Assemblers
assembles RNA reads de novo, and then post-processing modules construct predicted
transcripts based on assembly data, which can be further aligned to the genome if
available by users. It does not require a reference genome, but is less sensitive to

construct transcripts which are less abundant and complicated by short reads.
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Both strategies above build directed graphs and go through paths in graphs to find
diverse transcripts. Graph representation is more suitable than linear structure. First,
some positions in pre-mRNA have more than one possibility of splicing, which
introduces branches. Second, graph representation contains all possible transcripts and
the relation between different transcripts in a concise way. The graph most frequently
used is the de Brujin Graph, which is developed by Dr. Pevzner's group. It is different
from an overlap graph, in which reads correspond to vertices and edges connecting two
vertices correspond overlap (26). In the de Brujin graph, reads from sequencing are
decomposed into multiple k-mers, with k as a parameter called hash length set by users
representing the number of nucleotides in a fragment. Each node in the graph represents
a k-mer, which overlaps with adjacent ones. The overlapping length is k-1 nucleotides.
Nodes are connected by directed arcs which show the overlap and order (27). Users can
also set another parameter called coverage cutoff ¢ representing the minimum times that
a k-mer appears in the reads. Nodes in linear structure can be merged into single nodes,
but there still exist branches where there can be more than one possibility of splicing.
Fig 1-3 shows a simple case when k=3, reads are rearranged as 3-mers, with 3 nts each.
Adjacent 3-mers are overlapped by 2 nts. One 3-mer, GTC, appears 3 times among the
reads, thus its coverage is 3. After the construction of a de Brujin graph, linear sequences
are merged into one node to get alternative paths. In this case, adjacent nodes, GTC,
TCA and CAG are merged together to become a new node GTCAG. In the rearranged
graph shown below in Fig 1-3, single nodes are shown as rectangles of A, C and

GTCAG.

15



Reads:

sequence 1 AGTCA
sequence 2 GTCAG
sequence 3  CGTC

Sequence 1 Sequence 2
de Brujin Graph
| AGT |=mm [GTC | [TcA |==—]|caG |
7
CGT Sequence 3

Alternative paths —
-~

Figure 1- 3 de Bruijn graph construction and alternative paths

After de novo assembly by Velvet or AByYSS, Oases or Trans-ABYySS
correspondingly is used to construct predicted transcripts based on coverage from the
graph Velvet or ABySS built. However, the prediction process trims out short sequences,
which may be part of mMRNA products. One way to recover those short sequences is to
do construction with BLAST searches. Short sequences may not find a hit in BLAST
search, but after connecting to adjacent sequences in the graph, resulting longer
sequences may find a better hit in BLAST search than those before connection, and are
presumably portion of mMRNA products. Thus the more reasonable way is to connect
adjacent nodes in the graph based on BLAST result. The process can be conducted by

heuristic extension.
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Heuristic extension

Performing an exhaustive search to enumerate all possible transcripts from the
transcriptome graph is not feasible, but a heuristic algorithm can be used to find a
satisfactory solution in reasonable amount of time. One example is shown in Fig 1-4.
There are two ways for extension from node 1, extension towards node 2 or node 5.
Suppose the path 1—5 after extension towards node 5 shows an improved BLAST score
over the path 1—2 after extension towards node 2. To find an optimal path starting from
node 1by heuristic extension, extension will not continue in direction towards node 2
and bypass node 3 and node 4. However, exhaustive extension would enumerate all
paths starting from node 1, including paths that transverse node 3 or node 4, and it would
still identify path 1—5 is the optimal solution. In comparison, heuristic extension can

identify path 1—5 as the optimal search solution relatively quickly.

'3
2/’
@
i/ TS ey
\ 5

Figure 1- 4 Heuristic extension in the graph
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The strategy of de novo assembly with heuristic extension can be applied to non-
model organism studies. Non-model organisms are organisms which are poorly
annotated, because they were not selected for extensive study previously. However, they
play an important role in applied biology. Here are the examples of Melilotus, Proteus
mirabilis and Providencia stuartii studies that help to answer ecological and

evolutionary questions in biology.

Melilotus

Studies on Melilotus help to identify transcriptomic features in plants which allow
them to tolerate harsh growth conditions. The Melilotus genus originating from Eurasia,
is a forage legume that fixes nitrogen in root nodules with a symbiotic relationship with
rhizobia. It is evolutionarily closely related to Medicago truncatula, a legume model
organism (28). Melilotus can grow in hash environments like high salinity and tolerate
waterlogging, while Medicago is salt tolerant but susceptible to waterlogging. Studying
tolerance of forage legumes plays an important role in risk assessment before
recommendation of plants to increase fodder crop production under severe salinity and
waterlogging conditions (29).

Among Melilotus genus, the species Melilotus albus has been identified as
productive under saline conditions (28). An earlier study showed that Melilotus siculus

has high resistance to salinity and waterlogging (30).

18



Proteus mirabilis and Providencia stuartii

Studies on Proteus mirabilis and Providencia stuartii can advance understanding of
bacterial infection in patients and interkingdom signaling between bacteria and flies.

Proteus mirabilis, a Gram-negative rod-shaped pathogen, is a gut commensal
bacterium associated with human urinary tract infections (UTI) (31,32). The bacteria
produce urease, an enzyme with high molecular weight to catalyze hydroxylation of urea
into carbon dioxide and ammonia. Increase of ammonium concentration elevates
environmental pH to precipitate normally soluble polyvalent ions like ammonium,
phosphate, magnesium and calcium ions, which results in formation of urinary stones
(33). Other virulence factors involve flagella which give rise to swarming motility for
bacteria to ascend the ureters to the renal tubules, fimbriae which enable bacteria to
adhere to kidney epithelium and uroepitheial cells, proteases which avoid host defense as
well as hemolysin which causes cytotoxicity(34).

Quorum sensing (QS) is utilized by P. mirabilis to sense concentration of secreted
small chemical signal molecules (quormons) which reflect cell density and coordinate
gene expression (35,36). QS is a process of cell-to-cell communication. Quormons are
synthesized within cells and secreted out of the cells. When population density of
bacteria community exceeds a specific threshold, there are sufficient quormons to be
sensed to initiate concerted actions among bacteria. Different quormons are used by
Gram-positive and Gram-negative bacteria to measure density of population (36). A
recent study found that some bacteria signaling mechanisms are shared by Drosophila

melanogaster (37).
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Swarming mobility enables P. mirabilis to move and spread across surfaces by
increasing flagella number and secreting surfactants to reduce surface tension, giving
rise to difficulty of isolation from mixed cultures (38,39). When in contact with a solid
surface, P. mirabilis differentiate into elongated and hyperflagellated swarmer cells from
short vegetative swimmer cells (40). Recently, swarming signals associated with P.
mirabilis have been linked to fly behavior, making the species a model for interkingdom
signaling between P. mirabilis and Lucilia sericata (35).

P. mirabilis has been found in the blow fly L. sericata (35,41), a common blow fly
used in maggot therapy (42,43), and sterilization of maggot therapy with P. mirabilis has
been suggested (41,44). Bacteria survive in the guts of flies when added to the flies’
diets and may stimulate oviposition for flies by secreting volatile compounds (45). It has
been found that maggot secretions contain antimicrobial substances, some of which are
metabolic products of P. mirabilis (46).

Providencia stuartii has also been found in larvae of blow flies (45) and is
phylogenetically closely related to P. mirabilis (47), but does not show swarming nature
(48). Providencia is also distinguished from Proteus by producing acid from various
sugars and incapability of either hydrolyzing gelatin or producing hydrogen sulfide and
lipase (47).

Coinfection of mice with P. mirabilis and P. stuartii enhances urolithiasis and
bacteremia with synergistic induction of urease activity (49). There two species coexist

in the catheter biofilm microbial communities (50). Coinfection leads to similar bacterial
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load of multispecies infection but urease mutation in P. mirabilis results in decreased
synergistic induction (49).

Non-model organisms are not well annotated, but studies on non-model organisms
show ecological and evolutionary importance and benefit from research on closely
related model organisms which are well annotated. Traditional sequencing technologies
generate one read per sample, however, next generation sequencing technologies are
able to generate millions of reads per sample at lower costs per base. The advance of
next generation sequencing technologies enables the genomic and transcriptomic studies
on non-model organisms. Advanced bioinformatics algorithms and analysis need to be

performed to study the non-model organisms with increased-size read data.
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CHAPTER II
IDENTIFYING SIMILAR TRANSCRIPTS IN A RELATED ORGANISM FROM DE
BRUIIN GRAPHS OF RNA-SEQ DATA, WITH APPLICATIONS TO THE STUDY

OF SALT AND WATERLOGGING TOLERANCE IN MELILOTUS

As the advance in high-throughput sequencing enables the generation of large
volumes of genomic information, it provides researchers the opportunity to study non-
model organisms even in the absence of a fully sequenced genome. These studies often
start from sequencing the entire transcriptome, while additional software is applied to
process the data. An important mechanism to study is alternative splicing, which is
crucial to a variety of biological functions. The goal of these studies is to recover as
many isoforms as possible in order to understand the underlying biological processes.

In the presence of a reference database, there are two strategies for analyzing
transcriptome data. Mapping-first algorithms perform splice-aware alignment of the
reads to the reference genome to reconstruct the transcripts (24,25). While these
algorithms can construct transcripts independent of known splice sites and identify novel
MRNA products, they only allow very few differences during the alignment.
Alternatively, when a reference genome is not available but a reference transcriptome is
available, transcript quantification algorithms can be applied to analyze differential
expression of genes (51,52).

In the absence of a reference database, an alternative strategy is to employ de novo

sequence assembly algorithms (27,53-59). A popular strategy of transcriptome assembly
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algorithms is to assemble the reads by obtaining a de Bruijn graph that represents the
transcriptome (58-61).

Although the de Bruijn graph contains all branching possibilities, an additional step
IS needed to obtain predicted transcripts from the graph. To obtain information about
possible function of these predicted transcripts, a similarity search algorithm such as
BLAST (62) is then applied to identify similar transcripts in a related organism. Since
the predicted transcripts are constructed based on coverage information, one
shortcoming of this approach is that sequences with low coverage are often ignored
leading to missed transcripts. The later BLAST step to a related organism then starts
from this relatively incomplete set of predicted transcripts.

Instead of performing similarity search from the predicted transcripts, | observe that
it is possible to obtain a more complete set of similar transcripts if | start the search from
the de Bruijn graph directly (see Figure 2-1). This strategy bypasses the transcript
prediction step and makes use of support from evolutionary information. Since the graph
retains more information from the transcriptome data, transcripts that have low coverage
can still be recovered if they have high similarity with the ones from the related
organism. In metagenomics, Wu et al. (63) employed a similar idea to extract paths
directly from the de Bruijn graph that correspond to homologous genes from closely
related species. Recently, Bao et al. (64) utilized genomic information from the same
organism or a related organism (instead of transcripts from a related organism) to
improve de novo transcriptome assemblies by first identifying exons from alignments.

While the strategy of applying BLAST from each node in a de Bruijn graph to a related
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organism can already give a lot of hits, it is possible that some significant hits are missed
since the sequence within a node may be too short. There is a need to identify paths in
the de Bruijn graph that are similar to transcripts from the related organism. Since the
number of possible paths that can be constructed from the de Bruijn graph can be very

large, it is not feasible to enumerate all of them.

reads reads
transcriptome assembly transcriptome assembly
de Bruijn graph de Bruijn graph

get paths from graph
according to coverage

iterative BLAST search

redicted transcripts . .
p P in related species

BLAST search
in related species
4
similar transcripts similar transcripts
traditional strategy new strategy

Figure 2- 1 Difference between traditional strategy to obtain similar transcripts and
my new strategy that bypasses the transcript prediction step

I develop a heuristic extension algorithm that starts with enumerating short paths in

the de Bruijn graph, and iteratively extends these paths in the most promising directions
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rather than in all possible directions. This procedure generalizes the BLAST algorithm to
allow a non-linear query structure instead of a query sequence. Note that my strategy is
different from the one in (63) that uses optimal alignment to extend paths due to the
smaller scale of metagenomic data. | compare the performance of my algorithm that
starts the search from the de Bruijn graph against existing algorithms that employ the
strategy of first obtaining predicted transcripts then applying BLAST to obtain similar
transcripts. | validate my algorithm by extracting reads from publicly available RNA-
Seq libraries. I construct new RNA-Seq libraries for the non-model organisms Melilotus
albus and Melilotus siculus, and apply my algorithm to study salt and waterlogging

tolerance in these two species.

Methods

Given a set of reads and a parameter k, a popular strategy of transcriptome assembly
algorithms is to assemble these reads into a de Bruijn graph that represents the
transcriptome. By taking each k-mer that appears within the reads as a vertex, and
connecting two k-mers by a directed edge if the (k—1)-suffix of the first k-mer is the
same as the (k—1)-prefix of the second k-mer, the de Bruijn graph implicitly assembles
the reads by linking together the same k-mer that comes from different reads (65,66).
This strategy is very popular among short read assembly algorithms (27,54,55,57,58).

To minimize the effect of sequencing errors, these algorithms remove short tips and

further simplify the de Bruijn graph by collapsing similar paths. Each linear path that
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contains a sequence of vertices with no branches is collapsed into a single node, and a k-
mer coverage cutoff ¢ is imposed to remove low coverage nodes (27,57,58).

While the resulting de Bruijn graph contains all branching possibilities, it can
contain complicated cycles. | cannot consider each connected component as a splicing
graph that specifies the alternative splicing paths of a single gene (67). | develop an
algorithm to extract paths in the de Bruijn graph that correspond to similar transcripts in
a related organism. Each extracted path can be considered as a predicted transcript in the

original organism.

Initial choice of contigs to extend

For each transcript in a related organism, my goal is to recover the best path in the
de Bruijn graph that corresponds to the transcript. My approach is based on the seed-
extension strategy that starts from short paths, and iteratively extends these paths in
promising directions. | start the search from nodes in a de Bruijn graph that correspond
to contigs from short read assembly algorithms (27,57,58).

Given a de Bruijn graph G=(V,E), a database of known transcripts in a related
organism T and an e-value cutoff e, | first apply BLAST from each node in the de
Bruijn graph to the transcript database to obtain all hits with e-value below e;, where
ei>er (see Figure 2-2, step 1). The extra e-value cutoff e; is chosen to allow the initial
seed nodes to be of lower quality. Some of these nodes can be extended later into longer

paths that are of higher quality.
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Algorithm extContig (G=(V,E). T, ei, ef. n)

input: a de Bruijn graph = (V, E'), a transcript database T', initial e-value
cutoff ;. final e-value cutoff e ¢, and a parameter n;

output: a set of paths in &G that correspond to similar transcripts in T

apply BLAST from all nodes in V" to T to find all hits with e-value

[am—y
"

below e;;
2. Vie0;
3. for each transcript £ in T' do
4, V' V' (set of top n nodes in V' with the best e-value to ¢);
5. P+
6. for each node u in V' do
7. p+—u; e+ best e-value of u in step 1:
8. repeat
9. for each outgoing edge v—+w in E fromp=u—---—wv do
10. apply BLAST frompath u—---—v—wto T
11. P+—~Pu{u—---—v—=wh
12. if the best e-value in steps 9-10 is less than e then
13. p+— best path in steps 9-10: e+ best e-value in steps 9-10;

14.  until the e-value of p no longer improves:;

15.  repeat steps 7-14 starting from the twin node «" of u to get path p’;

16.  construct path p"’ =y—r—---—u—---— v— w from
p=u—+-—v—wand p’ =u'—---— ' — ¢, where =’ (and
y") is the twin node of x (and y). and apply BLAST from p" to T
to compute its e-value:

17. P+ Pu{p'"}

18. for each transcript ¢ in T' do

19.  report the path p in P with the best e-value to £ below e ¢

Figure 2- 2 Algorithm extContig that starts the search for similar transcripts from
the de Bruijn graph instead of from predicted transcripts. Steps 1-4 choose an
initial set of contigs to extend. Steps 5-17 implement the heuristic extension. Steps
18-19 report the results

For each transcript in the database, I extract top n nodes in the de Bruijn graph that
give the best BLAST hits to it, where n is a given parameter (see Figure 2-2, steps 2-5).

The resulting collection of nodes over all transcripts in the database becomes the set of
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all nodes that my heuristic extension algorithm extContig will start from, which are the
ones that are most likely to have correspondences with transcripts in the database. Note
that more stringent values of k and the k-mer coverage cutoff ¢ can provide longer nodes

to start with but can also lead to missed nodes.

Heuristic extension

For each node u in the collection, I extend its sequence by one node along all
outgoing edges from u, and apply BLAST from each of these extended sequences to the
transcript database. If at least one of these extended sequences gives a better e-value, |
extract the top extended path that gives the best e-value. | repeat the extension procedure
starting from this new path until either there are no more outgoing edges to extend from
or the e-value no longer improves (see Figure 2-2, steps 7-14).

Note that during each extension, only one best direction is chosen. Extending in
more than one direction is very time-consuming since the number of possibilities can be
exponential even in the absence of cycles. Although it is possible that the real best path
may be missed, it is still possible to resolve different isoforms since the heuristic
extension procedure starts independently from multiple nodes, some of which may be
specific to particular isoforms. The procedure can be applied even in the presence of
cycles in the de Bruijn graph since the e-value cannot improve indefinitely.

| perform a similar procedure on the node u' that is the twin node of u, which
represents the reverse complementary sequence of k-mers on the opposite strand, and try

to extend it in the opposite direction. In addition to adding these two extended paths
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from u and u' to the set of candidate paths, I also merge the twin path that is
complementary to the extended path from u' with the extended path from u to obtain a

longer path. I add the merged path to the set of candidate paths and identify its best

BLAST hit in the transcript database (see Figure 2-2, steps 15-17).

Extraction of similar transcripts

At the end of the procedure, for each transcript in the database, | report the top path
that gives the best e-value to it among all the candidate paths if such a path exists, where
the set of candidate paths includes all paths that BLAST has been applied (see Figure 2-2,
steps 18-19). Only the nodes of a path that are in the best BLAST alignment are reported.
It is possible that some of these paths may be the same or very similar for different

transcripts in the database.

Melilotus RNA-Seq

MRNA was extracted from Melilotus albus and Melilotus siculus using a Qiagen
Oligotex mRNA mini kit. Fragmentation of mRNA was done using an Ambion
fragmentation buffer. Construction of the cDNA library was based on the Illumina
protocol. First strand cDNA synthesis was done using Random Hexamer Primers
(Invitrogen) and second strand synthesized using a DNA Polymerase 1 (Promega). End
repair was carried out to create uniform blunt ends (Epicentre End-IT repair kit). Unique
4 bp adaptors (Illumina) were added so that the libraries could be pooled for sequencing.
An ‘A’ base was added using a Klenow enzyme (3' to 5' exo minus, NEB) and adaptor
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ligation was performed using Epicentre Fast-Link DNA ligation kit. The cDNA template
was run on a 2% agarose gel at 120 V for 60 minutes and fragments of approximately
200-500 bp were removed and purified (Zymo gel purification kit). The purified cDNA
template was PCR enriched using the Illumina primers and a Phusion polymerase. The
library was quantified using an Invitrogen Qubit fluorometer. Libraries were sequenced
on an Illumina Genome Analyzer Il under normal conditions and conditions associated
with salt tolerance or waterlogging tolerance or both as single-end 100 bp reads, which

were trimmed to 71 bp.

Results

To assess the performance of my algorithm, | extracted reads from publicly
available RNA-Seq libraries (see Table 2-1). | validate my algorithm on model
organisms by applying BLAST to a database of annotated transcripts in each model
organism itself and in two other related model organisms with varying evolutionary
distances, including Schizosaccharomyces pombe against another yeast species
Saccharomyces cerevisiae and another fungus Neurospora crassa, Drosophila
melanogaster against another Drosophila species Drosophila pseudoobscura and
mosquito Anopheles gambiae, Homo sapiens against squirrel monkey Saimiri boliviensis
and mouse Mus musculus, and Arabidopsis thaliana against another Arabidopsis species

Arabidopsis lyrata and rice Oryza sativa.
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Table 2- 1 Data sets used in the evaluation of my heuristic extension algorithm, with
organism indicating the starting organism, related organisms indicating the related
model organisms that BLAST is applied to, lib indicating the total number of
libraries, size indicating the total number of bases in all the reads after quality
trimming, and reference indicating the publication that describes the libraries.

organism related organism lib Size (G, giga reference
base pairs)
Schizosaccharomyces. pombe Saccharomyces cerevisiae 32 17 (59)
Neurospora crassa 9.6
Drosophila melanogaster Drosophila pseudoobscura 13 16 (68)
Anopheles gambiae 16
Homo sapiens Saimiri boliviensis 4 16 (69)
Mus musculus
Arabidopsis thaliana Arabidopsis lyrata 5 16 (70)
Oryza sativa
Lucilia. sericata D. melanogaster 9 4.6 (71)
Heterocephalus. glaber Homo sapiens 13 61 (72)
Ctenomys. sociabilis Homo sapiens 10 66 (73)
Cicer arietinum Arabidopsis thaliana 3 8.6 (74)
Melilotus. albus Arabidopsis thaliana 12 5.5 new data
Melilotus. siculus Arabidopsis thaliana 12 5.4 new data

I compare the performance of the algorithms on publicly available RNA-Seq
libraries from four non-model organisms. The blow fly Lucilia sericata is important in
medicine, forensic science and agriculture due to its filth feeding habits, its use in
maggot therapy, its colonization of human and animal remains, and its ability to cause
myiasis in vertebrates (71). The naked mole rat Heterocephalus glaber is important in
medicine and in biomedical research due to its resistance to cancer and delayed aging,

and its ability to live in adverse conditions (72). The rodent Ctenomys sociabilis is
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important in the study of social behavior of mammals and the relationship to gene
expression (73). The chickpea Cicer arietinum is one of the most consumed legume
crops that grows in arid areas with low productivity (74). Similarity search is performed
from L. sericata to the model organism D. melanogaster, from H. glaber and C.
sociabilis to the model organism H. sapiens, and from C. arietinum to the model
organismA. thaliana. The searches that are applied against the same model organism
have varying evolutionary distances. | have constructed new RNA-Seq assemblies for
the non-model organisms Melilotus albus and Melilotus siculus, which are important in
the study of salt and waterlogging tolerance of forage plants (28). Genomic information
on the species will enable the dissection of coumarin production that can be utilized in
pharmaceutical development (75). Similarity search is performed fromM. albus andM.
siculus to the model organism A. thaliana. | trimmed each read by removing all positions
including and to the right of the first position that has a quality score of less than 15. For
smaller data sets (including D. melanogaster, L. sericata, C. arietinum, M. albus and M.
siculus), I compare the performance of my heuristic extension algorithm

extVelvet starting from the de Bruijn graph given by Velvet (27) against the
performance of Oases (61) that is a postprocessing module of Velvet. Since Oases
requires that Velvet is run without coverage cutoff and then applies the coverage cutoff
itself, | use the de Bruijn graph within Oases that is modified from Velvet’s original de
Bruijn graph. For the other larger data sets, | compare the performance of my heuristic
extension algorithm extABYSS starting from the de Bruijn graph given by ABySS (57)

against the performance of Trans-ABYySS (60) that is a postprocessing module of ABYSS.
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| applied each algorithm with k as 25 or 31, for smaller data sets ¢ as 3, 5 or 10 and for
larger data sets c as 10, 20 or 50. BLAST is applied to predicted transcripts in Oases and
Trans-AByYSS, to paths in the de Bruijn graph in extVelvet and extABySS, and to
contigs in Velvet/Oases and AByYSS. To compare each model organism against itself,
nucleotide BLAST search is applied to a database of gene transcripts with initial e-value
cutoff e;=10"" and final e-value cutoff e;=10""%. For the other cases, translated BLAST
search is applied to a database of protein transcripts in a related organism with initial e-
value cutoff e;=10° and final e- value cutoff e =10 . For each transcript in the
database, top 8 nodes (and their twin nodes) are chosen to form the initial nodes for

extension. Additional criteria are imposed to extend past very short nodes.

Transcript recovery

| assess the performance of each algorithm in recovering transcripts by investigating
the number of similar transcripts obtained, database coverage, alignment length of
shared transcripts, and the number of recovered transcripts that are close to full length.
While the absolute performance depends on the amount of RNA-Seq data, the
complexity of transcriptomes, the evolutionary distance between organisms and the
assembly algorithm that is being used, Figure 2-3 shows that Oases and Trans-ABySS
generally recover more similar transcripts than their base algorithms Velvet and ABYSS,

while extVelvet and extABYSS generally recover even more.

33



OTrans-ABySS OextABySS

O Trans-ABySS OextABySS

O Trans-ABySS OextABySS

385 147 ,
- Ny , 141 108 4
345 127 M —
— — 117
84 84
247
208
69 70 - : .
52 50 51 51
sf| Y| sip @ s0 +
ol o o1 96| 101 4 3l 25
T T T T T T 1T T T T T T 1 T T T T T T 1
4520 4645 4722 4563 4675 4746 2775 2843 2944 2803 2873 2973 2929 3000 3075 2943 3027 3090
S. pom S. pom to §. cer S. pomto N. cra
OOases OextVelvet OOases OextVelvet O Oases OextVelvet
. 436
763 360 -
] 34
518 483 25(
422 206 218
345 315 327 175 192
o 233207 0230 24 20 153 S
- ° 85 84 93 99
20011 19864 18739 20069 19747 18459 11968 11960 11344 12012 11896 11215 8575 8756 8475 8759 8775 8413

D. mel

D. mel to D. pse

D. melto A. gam

Figure 2- 3 Comparisons of the change in the number of similar transcripts
recovered by Oases and Trans-ABySS (shown as white bar) to the change in the
number of similar transcripts recovered by extVelvet and extABYySS (shown as grey
bar) respectively over the numbe r of similar transcripts recovered by Velvet and
ABYSS (shown under the x-axis) respectively for different values of k and k-mer
coverage cutoffs c. Within each graph, the corresponding values of k=25/c=3,
k=25/c=5, k=25/c=10, k=31/c=3, k=31/c=5, k=31/c=10 from left to right for smaller
data sets, including D. melanogaster, L. sericata, C. arietinum, M. albus and M.
siculus, and k=25/c=10, k=25/c=20, k=25/c=50, k=31/c=10, k=31/c=20, k=31/c=50

from left to right for larger data sets, including S. pombe, H. sapiens, A. thaliana, H.
glaber and C. sociabilis. For comparing each model organism against itself (graphs

with a single-species label), nucleotide BLAST search is applied with e-value cutoff
er =107, For the other cases, translated BLAST search is applied with e-value

cutoff e; =10,
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| assess the performance of each algorithm in recovering transcripts by investigating

the number of similar transcripts obtained, database coverage, alignment length of

shared transcripts, and the number of recovered transcripts that are close to full length.

While the absolute performance depends on the amount of RNA-Seq data, the

complexity of transcriptomes, the evolutionary distance between organisms and the

assembly algorithm that is being used, Figure 2-3 shows that Oases and Trans-ABySS

generally recover more similar transcripts than their base algorithms Velvet and ABySS,

while extVelvet and extABYSS generally recover even more.
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Figure 2- 4 Comparisons of the change in database coverage of Oases and Trans-
ABYSS to the change in database coverage of extVelvet and extABySS respectively
over the database coverage of Velvet and ABYSS respectively for different values of
k and k-mer coverage cutoff c. Notations are the same as in Figure 3. Database
coverage is defined by the percentage of positions in the transcript database that
are included in the best BLAST alignment of each similar transcript.
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While Trans-ABYSS recover fewer similar transcripts than ABySS in the case of H.

glaber to H. sapiens, (see Figure 2-3), Figure 2-4 shows that this loss can be offset by
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the increase in length of the predicted transcripts over the length of the contigs. While
this leads to an overall improvement in database coverage by Oases and Trans-ABySS,
extVelvet and extABYSS generally improve even more. The improvement in database
coverage of Trans-ABYSS is small when compared to ABySS, which leads to a much
larger improvement of extABYSS over Trans-ABySS. These improvements are not
absolute since different algorithms can recover different sets of similar transcripts. The
base algorithm ABYSS already has high performance for S. pombe against itself, while
the large data set sizes of H. glaber and C. sociabilis lead to high database coverage for

all algorithms (see Table 2-1).
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Figure 2- 5 Comparisons of the distributions of the best BLAST alignment length of
each similar transcript that is recovered by both Oases and extVelvet (or by both
Trans-ABySS and extABYSS), with the total number of shared transcripts shown
under the x-axis for each value of k and k-mer coverage cutoff c. Y axis shows the
distribution of alignment length. Outliers are not shown within each box plot.
Other notations are the same as in Figure 3. Alignment length is in nucleotides for
comparing each model organism against itself and in amino acids for the other
cases.
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Figure 2- 5 Continued.

Figure 2-5 shows that among the similar transcripts that are recovered by both Oases
and extVelvet (or by both Trans- ABySS and extABYSS), extVelvet and extABYSS can
recover longer transcripts in some cases, with large improvements for A. thaliana. Most
of the recovered transcripts are shared between Oases and extVelvet (or between Trans-
ABYSS and extABYySS) (compare to Figure 2-3).

Figure 2-6 shows that extVelvet and extABYSS can recover more similar transcripts
that are close to full length than Oases and Trans-ABYSS. Both Oases and extVelvet (or
Trans-ABySS and extABySS) can recover more full length transcripts than Velvet (or

ABYSS).

41



O Trans-ABySS OextABySS O Oases OextVelvet

680 977
] 598 6790
507 ] 6003 ]
_ 455 B 5
. - 4763|4790 S118
382 | 4317 B
3901
283 3273
2 3048, 2857
2516
130 .
31 100 69 o5/ | 114
2022 3108 2969 2995 3164 2982 2756 4401 4354 3621 4935 4684
S. pom D. mel
OTrans-ABySS OextABySS O Trans-ABySS OextABySS
2825 15416
] 2431 ] ”f”
1746 8843
on
1392 6651
5651
763 .
580 3309
444 | 420 400 | 308l X |
|_ 223 U 33“ 6ad [1169 | 978| | 879] | 1120 66;“
6562 5533 3228 7481 6322 3364 5247 8973 8990 7251 11641 11241
H. sap A. tha

Figure 2- 6 Comparisons of the change in the number of similar transcripts that are
80% full length transcripts (100% full length transcripts for S. pombe) and
recovered by Oases and Trans-ABySS to the change in the ones recovered by
extVelvet and extABYSS respectively over the ones recovered by Velvet and ABySS
respectively on model organisms for different values of k and k-mer coverage cutoff
c. Notations are the same as in Figure 2-3. These transcripts are the ones in which
80% (100% for S. pombe) of the coding region is included in the best BLAST
alignment.
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Figure 2- 7 Comparisons of the change in the number of exons that are found in
only one annotated transcript of the same gene with multiple isoforms and
recovered by Oases and Trans-ABySS to the change in the ones recovered by
extVelvet and extABYSS respectively ov er the ones recovered by Velvet and ABySS
respectively for different values of k and k-mer coverage cutoff c. Notations are the
same as in Figure 2-3. Exons within isoforms that do not have the same starting
position or the same ending position are considered to be distinct. An exon is
recovered if it has some overlap with the best BLAST alignment. Exons within
MRNAs are considered for comparing each model organism against itself, while
exons within coding regions of the related model organism are considered for the
other cases. Results for S. pombe are not included since there is little alternative
splicing, while a few other results are not included due to poor annotations of

alternative splicing in the related

model organisms.
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Figure 2- 7 Continued.

Alternative splicing

C. arito A. tha

M. alb to A. tha

| assess the ability of each algorithm in distinguishing between isoforms by

considering exons that are found in only one annotated transcript of the same gene with

multiple isoforms, which are the ones that can resolve them. Figure 2-7 shows that

extVelvet and extABYSS are able to recover a larger number of such exons in most cases,

with large improvements of extABySS over Trans-ABYSS. Figure 2-8 shows examples

in which extVelvet and extABYSS can better resolve isoforms with respect to a related

organism, including the ZDHHC16 gene, which is a zinc finger protein that may be
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involved in apoptosis regulation (76); the dSarm gene, in which the loss of its function in
D. melanogaster protects against injury-induced axon death (77); the STAT3 gene, which
IS an acute-phase response factor in H. sapiens in which the isoforms have unique
functions (78); and the AT4G34660 gene, which is a SH3 domain-containing protein in
A. thaliana that is involved in clathrin-mediated vesicle

trafficking (79).

False positive estimates

| assess the reliability of each algorithm by identifying similar transcripts that are
recovered by each algorithm, but are not recovered by a simple protein BLAST search
from each model organism to another related model organism with the same e-value
cutoff. The number of such transcripts serves as the upper limit on the number of false
positives (some of these correspondences may actually be correct but not annotated).
Figure 2-9 shows that the number of false positives is very small for all algorithms, with
extVelvet (or extABYSS) having slightly higher values than Velvet and Oases (or

ABYSS and Trans-ABYSS).
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Figure 2- 9 Comparisons of the change in the number of false positive similar
transcripts recovered by Oases and Trans-ABySS to the change in the ones
recovered by extVelvet and extABYSS respectively over the ones recovered by
Velvet and AByYSS respectively for different values of k and k-mer coverage cutoff c.
Notations are the same as in Figure 2-3. A false positive similar transcript is
recovered by each algorithm, but is not recovered by a simple protein BLAST

search from each model organism to another related model organism with e-value
cutoff 107%.
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Figure 2- 10 Comparisons of the cumulative distribution of the expression estimates
of similar transcripts that are 80% full length transcripts (100% full length
transcripts for S. pombe) and recovered by Velvet, Oases and extVelvet (or by
ABYSS, Trans-ABySS and extABySS) divided into 20 quantiles in model organisms.
Y-axis shows fraction of transcripts in different quantiles (5% increment) and x-
axis shows expression quantiles. The least stringent values of k and c are used in
each case, which is k=25/c=3 for D. melanogaster and k=25/c=10 for the other
organisms.
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Gene expression

| assess the ability of each algorithm to recover transcripts at different expression
levels. For each model organism, | apply eXpress (52) to the reads in each data set with
respect to the reference transcript database, and obtain expression estimates of similar
transcripts that are close to full length and recovered by each algorithm. Figure 2-10
shows that extABYSS is able to recover a higher proportion of full length transcripts

with low coverage than ABYSS and Trans-ABYySS.

Melilotus albus and Melilotus siculus

In order to study salt and waterlogging tolerance of the two Melilotus species, |
apply my algorithm starting from each species to the model organism A. thaliana and the
non-model organism Medicago truncatula, which is not as well annotated but closer in
evolutionary distance. | assess the differences between the two species by applying GO
Term Finder (80) to the two sets of gene names in recovered similar transcripts from M.
albus and M. siculus to A. thaliana and M. truncatula to identify significantly
overrepresented GO terms with Bonferroni corrected p-value below 0.01 within the

biological process ontology.
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Figure 2- 11 Venn diagrams of the number of genes in recovered similar transcripts
from M. albus and M. siculus to A. thaliana and M. truncatula in the k=25/c=3
assembly.

Figures 2-11 and 2-12 show that while a large number of genes in recovered similar
transcripts and significantly overrepresented GO terms are shared by the two species, a

small number of results that are unique to each species can be found.

M. alb M. sic M. alb M. sic

1048

to A. tha to M. tru
Figure 2- 12 Venn diagrams of the number of significantly overrepresented GO

terms from M. albus and M. siculus to A. thaliana and M. truncatula in the k=25/c=3
assembly.
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To assess differential gene expression under different conditions, | apply edgeR (81)
in the Bioconductor package (82) on the expression estimates given by eXpress (52) to
obtain a set of differentially expressed genes under one condition against another
condition with g-value below 0.01, and apply GO Term Finder (80) to identify
significantly overrepresented GO terms. Tables 2-2 and 2-3 show that differentially
expressed genes can be identified under all conditions, with some of them associated
with significantly overrepresented GO terms (g<0.01). These results provide further
basis to study the genes that are responsible for differences in salt and waterlogging

tolerance of the two species.

Table 2- 2 Differentially expressed genes recovered from M. albus and M. siculus to
A. thaliana and M. truncatula from libraries associated with one condition versus
another condition in the k=25/c=3 assembly, with organism indicating the starting
organism and its related organism, SvsC indicating salt tolerance versus control,
WhvsC indicating waterlogging tolerance versus control, SWvsC indicating salt and
waterlogging tolerance versus control, SWvsS indicating salt and waterlogging
tolerance versus salt tolerance, and SWvsW indicating salt and waterlogging
tolerance versus waterlogging tolerance.

Organism SvsC WvsC SWvsC SWvsS SWvswW
M. alb to A.tha 8 141 81 47 12

M. sic to A.tha 39 7 10 45 8

M. alb to M.tru 11 220 114 86 17

M. sic to M.tru 74 24 31 84 12
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Table 2- 3 Significantly overrepresented GO terms recovered from M. albus and M.
siculus to A. thaliana and M. truncatula from libraries associated with one condition
versus another condition in the k=25/c=3 assembly. Notations are the same as in

Table 2-2.

Organism

SvsC

WvsC

SWvsC

SWvsS

SWvsW

M. alb to A.tha

0

23

42

7

0

M. sic to A.tha

9

0

0

2

0

M. alb to M.tru

2

0

1

0

0

M. sic to M.tru

0

0

Conclusions

Since the main memory requirement of my algorithm is for storing the de Bruijn
graph and performing BLAST searches, my heuristic extension algorithms extVelvet and
extABySS are much less memory intensive and more easily parallelizable than the base
algorithms Velvet and ABySS (37). Iterative BLAST searches can be performed
independently in parallel by assigning disjoint subsets of nodes to different processors
for extension.

The running time of my algorithm has large dependence on the number of nodes that
are chosen for extension (see Table 2-4). This in turn depends on the size of RNA-Seq
data and the complexity of transcriptomes, which are reflected by the number of nodes in
the de Bruijn graph and the number of transcripts in the database, and it also depends on
the evolutionary distance between the starting organism and the related model organism.
When applying to a different related organism, my running time in terms of processor-
hours is at most a few to 10 times more than the base algorithm in almost all cases, and it

can be much less in some cases.
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Table 2- 4 Running time in processor-hours, with the values to the left and to the
right of “+” indicating the running time of Velvet and Oases respectively (or
ABYSS and Trans-ABYSS respectively), organism indicating the related model
organism, time indicating the running time of extVelvet (or extABYSS), chosen
indicating the number of nodes that are chosen for extension, de Bruijn indicating
the number of nodes in the de Bruijn graph, and database indicating the number of
transcripts in the database.

least stringent k_c organism time chosen de Bruijn database
S. pom (84+0.2) S. pom 45 40786 536894 5011
S.cer 12 15252 536894 5907
N.cra 12 16366 536894 10082
D. mel (6.7+4.4) D. mel 238 139248 466572 22102
D. pse 67 63982 466572 16071
A.gam 32 41578 466572 12659
H. sap (45+0.2) H.sap 595 221942 1133348 32787
S.bol 490 88342 1133348 25621
M.mus 167 89070 1133348 29617
A. tha (112+0.2) A.tha 2495 397638 3111862 41671
Alyr 944 218760 3111862 32549
O.sat 616 143778 3111862 26777
L.ser (1.2+0.2) D. mel 67 46760 392630 22102
T.yun (2.0+0.4) D. mel 28 47638 330514 22102
H. gla (368+0.2) H.sap 1920 203466 5457924 32799
C. soc (440+0.2) H.sap 1344 175692 5030586 32799
C. ari (4.2+46) Atha 200 103652 1209068 41671
M. alb (5.8+2.9) Atha 79 82596 536210 41671

The situation is different in model organisms when similarity searches are
performed to the organism itself. Since the BLAST hits are of much higher quality, path
extensions can be very time consuming. In such cases, mapping-first algorithms such as

Cufflinks (2) or Scripture (1) could be used instead, which often have better performance
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since my need to impose a k-mer coverage cutoff to simplify the de Bruijn graph for
heuristic extension often leads to missed transcripts.

My heuristic extension strategy cannot be applied to all transcriptome assembly
algorithms. On algorithms such as Trinity (12) that first clusters the data and constructs a
de Bruijn graph individually for each cluster, each of these individual graphs has simple
structures. Performing heuristic extension on top of these graphs will not lead to
significant improvements.

While my strategy cannot replace transcript predictions in de novo assemblies when
the goal is to identify novel transcripts that have no similarity to other organisms, | have
shown that my strategy can recover more and longer transcripts and can better resolve
isoforms when similar transcripts are available from a related organism. By making use
of evolutionary information, the sequence similarity support from the BLAST
alignments ensures that the correspondences between the similar transcripts in the

original organism and in the related organism are real.
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CHAPTER IlI
HEURISTIC PAIRWISE ALIGNMENT OF DE BRUIJN GRAPHS TO FACILITATE
SIMULTANEOUS TRANSCRIPT DISCOVERY IN RELATED ORGANISMS FROM

RNA-SEQ DATA

There is often a need to investigate the transcriptomes of two related organisms at
the same time in order to study their similarities and differences. In these cases, RNA-
Seq libraries are obtained from both organisms under different experimental conditions
and the goal is to compare their transcriptome assemblies. The traditional approach to
address this problem is to perform transcriptome assemblies to obtain predicted
transcripts for the two organisms separately (see Figure 3-1). Similarity comparison
algorithms such as BLAST (83) are then employed to extract corresponding transcripts
that are shared in the two organisms. Since predicted transcripts are constructed
independently for each organism based on coverage information only, this strategy is
often unreliable. To address this problem, I develop an algorithm to allow direct
comparisons between paths in the two intermediate de Bruijn graph structures by an
iterative extension strategy (see Figure 3-1). Since sequence similarity information is
often more reliable, this strategy allows the direct extraction of shared transcripts based

on evolutionary support.
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Figure 3- 1 Difference between traditional strategy and my strategy.

Methods
De Bruijn graph

Given a set of reads and a parameter k, a de Bruijn graph is constructed by taking
each k-mer that appears within the reads as a vertex. Two k-mers are connected by a
directed edge if the (k—1)-suffix of the first k-mer is the same as the (k—1)-prefix of the
second k-mer (66,84). The de Bruijn graph implicitly assembles the reads by linking
together the overlapping parts, and it is employed as the main intermediate structure by
most short read assembly algorithms (27,54,55,57,58). To obtain a more compact
structure, each linear sequence of vertices that have no branches is collapsed into a

single node that corresponds to contigs.
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Iterative extension

Given de Bruijn graphs G; and G that correspond to transcriptome assemblies of
two related organisms, | first apply BLAST to obtain similarity scores between each pair
of nodes u from G; and v from G,. | then start the iterative extension process as follows.
For each node u from Gy, | extract its most similar node v from G, with e-value below a
cutoff. If such a node v exists, | retain u as a single-node path. | extend u by one node
along all its outgoing edges into multiple paths, and apply BLAST from each of these
extended paths from u against v. If at least one of these extended paths gives a better e-
value against v, | retain all the paths that have better e-values and continue to extend the
top path that gives the best e-value. | repeat the procedure starting from this new path
until the e-value no longer improves. Note that only one best direction is chosen since
extending in more than one direction is very time-consuming. By starting from each
node u in G; independently, the probability of missing the real best path is reduced a lot.
After the above procedure, I have retained u and all the extended paths from u that have
improved e-values, with the top path that gives the best e-value being fully extended. |
then retain v as a single-node path and perform a similar extension process starting from
v by extending it by one node along all its outgoing edges into multiple paths. I apply
BLAST from each of these extended paths from v against all the retained paths from u. If
at least one of these extended paths gives a better e-value, | retain all the paths that have
better e-values and continue to extend the top path that gives the best e-value. Similar to

above, | repeat the procedure starting from this new path until the e-value no longer
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improves to obtain a fully extended path and a set of retained paths from v that have

improved e-values (see Figure 3-2).

graph G4 graph Gao
/"_"‘; N TN
/juj\?--f--*'\—— N~ I/—'\,—V\--_J
L‘x---/"'ﬂl/’_“\ o TN T e i
\,___,g. \_____:) 2, k.___,/--a-x..ﬁ/——-\w __/
\}..-— — I\h_ A
! \\I
)

Figure 3- 2 Illustration of the iterative extension procedure. The paths that are fully
extended from u in G1 and from v in G2 are marked in bold, while the other
retained paths with improved e-value are not marked.

| then repeat the entire extension procedure in turn in G; and G, by replacing u by
the fully extended path from u and comparing against all the retained paths from v, and
replacing v by the fully extended path from v and comparing against all the retained
paths from u. The entire process is repeated until no more improvements can be made,
and the algorithm is applied again by switching the role of G; and G, and repeating all
the steps. To obtain longer paths, | consider the retained paths from each node u and the
retained paths from its twin node u’, in which u’ represents the reverse complementary
sequence of u on the opposite strand. | merge the twin paths that are complementary to
the retained paths from u’ with the retained paths from u, and keep those paths with

improved e-values.
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Extraction of predicted transcripts

I consider all the retained paths in G; as predicted transcripts in the first organism
and all the retained paths in G, as predicted transcripts in the second organism. Since the
collection of all these retained paths can be very big, I only keep a path if it contains a
node in the de Bruijn graph that is not covered by another path with a better e-value
according to the top BLAST alignment. In this condition, a node is covered by a path if
it contains the node itself or its twin node. To avoid a large number of incorrectly
predicted isoforms, | remove paths with worse e-values so that each node in the de
Bruijn graph along with its twin node appears at most 10 times within the final set of

paths.

Extraction of predicted shared transcripts

To obtain predicted shared transcripts that have correspondences between the two
organisms, | apply BLAST from each predicted transcript in one organism against the
set of all predicted transcripts in the other organism as database. | retain a predicted
transcript as a predicted shared transcript if it appears both as a query with BLAST hits

from one direction and as a subject BLAST hit in the other direction.

Results and discussion
Validation
I implement my algorithm Mutual as a postprocessing module of Velvet (27), which

is a popular sequence assembly algorithm that returns a set of contigs along with the de
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Bruijn graph. | compare my performance to Oases (61), which uses output from Velvet
to construct predicted transcripts. | validate my algorithm by applying it to
simultaneously recover transcripts in mouse against rat and in mouse against human
from publicly available RNA-Seq libraries at the sequence read archive (85), including
two libraries from mouse in (24) (SRX017794), one library from rat in (86)
(SRX076903), and four libraries from human in (87) (SRX011545). | perform quality
trimming by removing all positions including and to the right of the first position that
has a quality score of less than 15, resulting in a size of 1.3 G for the mouse libraries, 2.5
G for the rat libraries and 1.1 G for the human libraries. | apply each algorithm over
k=25 and k=31, and over k-mer coverage cutoff c=3, 5 and 10. In my algorithm Mutual,
iterative extension is applied twice with an e-value cutoff of 0.1 using the bl2seq
(BLAST 2 Sequences) variant of BLAST, once with translated BLAST and once with
nucleotide BLAST. Velvet and Oases are applied independently in each organism. Since
Oases applies the coverage cutoff itself to obtain a de Bruijn graph by modifying
Velvet’s original de Bruijn graph without coverage cutoff, Mutual is applied on the two
de Bruijn graphs given by Oases to obtain predicted transcripts. To obtain predicted
shared transcripts for both Oases and Mutual, I apply both translated BLAST and
nucleotide BLAST with an e-value cutoff of 10”7 or 10 ?° from each predicted transcript
in one organism with the set of all predicted transcripts in the other organism as database.
The predicted transcripts that appear both as a query with BLAST hits from one
direction and as a subject BLAST hit in the other direction are retained as predicted

shared transcripts. To evaluate the accuracy of the predicted shared transcripts, | apply
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nucleotide BLAST to compare them against known mouse, rat or human transcriptome
databases using the same e-value cutoff as the one used to obtain the transcripts, which
is 107" or 107%. To assess the extent of translocated transcripts, | apply GMAP (88) to

map the predicted shared transcripts to known mouse, rat or human genomes.

Table 3- 1 Comparisons of the number of predicted transcripts in the test on mouse
against rat from Oases and from Mutual over different values of k and k-mer
coverage cutoff c. Note that these numbers are not directly comparable between
Oases and Mutual since the predicted transcripts from Mutual are obtained by
extending similar paths that appear in the two organisms with an e-value cutoff of
0.1 from bl2seq, while the predicted transcripts from Oases are obtained
independently in each organism without such constraints

mouse rat
k c Oases Mutual Oases Mutual
25 3 51218 40657 100317 56409
25 5 27873 18511 33396 22538
25 10 10557 6104 7669 5639
31 3 48841 29778 82090 38141
31 5 25947 14073 28047 15981
31 10 8224 3954 5145 3485

Predicted transcripts

Tables 3-1 and 3-2 show that Mutual constructed fewer predicted transcripts than
Oases. Note that the predicted transcripts from Mutual are obtained by extending similar
paths that appear in the two organisms through iterative BLAST, while the predicted
transcripts from Oases are obtained independently in each organism. The similarity

constraints in Mutual ensure that a predicted transcript in one organism has a similar
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counterpart in the other organism, albeit with a loose e-value cutoff. The later reciprocal
BLAST is needed to enforce more stringent e-value cutoffs. On the other hand, the
predicted transcripts from Oases have no such constraints, and reciprocal BLAST is used

to obtain shared transcripts.

Predicted shared transcripts

When compared to Tables 3-1 and 3-2, Tables 3-3 and 3-4 show that only a small
percentage of predicted transcripts were shared in the two organisms, with a smaller
decrease by Mutual than by Oases. The decrease by Mutual is due to more stringent e-
value cutoffs, while the decrease by Oases is due to imposing similarity constraints
between the two organisms. While the actual amount of predicted shared transcripts that
can be recovered depends on the size of libraries, the evolutionary distance between the
two organisms and the experimental conditions, Tables 3-3 and 3-4 show that Mutual
recovered more predicted shared transcripts than Oases. Almost all these predicted
shared transcripts are found in the corresponding known transcriptome database, with
comparable percentages between Mutual and Oases. The percentages are lower for rat,
probably due to the fact that the rat genome is less well annotated. The number of
predicted shared transcripts decreases as the assembly parameters become more stringent,

but these transcripts are of higher quality.
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Table 3- 2 Comparisons of the number of predicted transcripts in the test on mouse
against human. Notations are the same as in Table 3-1.

mouse human

k c Oases Mutual Oases Mutual
25 3 51218 34514 100317 36268
25 5 27873 18561 33396 17519
25 10 10557 7020 7669 5405
31 3 48841 23510 82090 23263
31 5 25947 13433 28047 12867
31 10 8224 4358 5145 3182

Table 3- 3 Comparisons of the number of predicted shared transcripts (shared) and
the number of predicted shared transcripts that have BLAST hits from each
organism to its known transcriptome database (found) in the test on mouse against
rat from Oases and from Mutual over different values of k and k-mer coverage
cutoff ¢ and over different e-value cutoffs 107" and 107%°. The number in
parentheses is the percentage of predicted shared transcripts that have BLAST hits
from each organism to its known transcriptome database

mouse (107) rat (107)

k_c Oases Mutual Oases Mutual

shared found shared found shared found shared found

253 27671 26756 (97%) 35230 | 34011 (97%) 24489 21844 (89%) 39287 34298 (87%)

255 | 12729 | 12366 (97%) | 14924 | 14520 (97%) | 10092 9245 (92%) 15287 | 13639 (89%)

2510 | 3955 3823 (97%) | 4589 | 4465 (97%) 2994 2835 (95%) 3955 3705 (94%)

313 | 22635 | 22046 (97%) | 25035 | 24396 (97%) | 20917 19008 (91%) | 27484 | 24744 (90%)

315 10229 10028 (98%) 11039 | 10825 (97%) 8398 7815 (93%) 11225 10332 (92%)

31_10 2597 2545 (98%) 2871 2815 (98%) 2013 1939 (96%) 2489 2382 (96%)
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Table 3- 3 Continued

mouse (10%°) rat (10%)
k_c Oases Mutual Oases Mutual
shared found shared found shared found shared found
25_3 22936 | 22290 (97%) 28705 | 27881 (97%) 19282 17719 (92%) 29923 26898 (90%)
255 10904 | 10608 (97%) 12648 | 12336 (98%) 8242 7669 (93%) 12087 10999 (91%)
25 10 | 3077 | 3253 (96%) 3901 | 3790 (97%) 2510 2388 (95%) 3254 3070 (94%)
313 | 18052 | 17627 (98%) | 20026 | 19567 (98%) 15835 14699 (93%) 20943 | 19264 (92%)
315 8429 8261 (98%) 9157 8964 (98%) 6623 6623 (94%) 8886 8251 (93%)
3110 | 2196 | 2150 (98%) 2438 | 2386 (98%) 1681 1681 (97%) 2041 1959 (96%)

Table 3- 4 Comparisons of the number of predicted shared transcripts and the

number of predicted shared transcripts that have BLAST hits from each organism
to its known transcriptome database in the test on mouse against human. Notations
are the same as in Table 3-3

mouse (107) human (107)
k_c Oases Mutual Oases Mutual
shared found shared found shared found shared found
25_3 | 20763 | 20406 (98%) 25630 25189 (98%) 22499 22084 (98%) 28364 27911 (98%)
255 | 11914 | 11685 (98%) 12956 | 12784 (99%) 12037 11786 (98%) 12806 | 12643 (99%)
25_10 | 4644 4520 (97%) 5226 5114 (98%) 3844 3762 (98%) 4121 4047 (98%)
313 | 14631 | 14440 (99%) 16226 16041 (99%) 16498 16348 (99%) 18482 18482 (99%)
315 8351 8241 (99%) 8920 8825 (99%) 9250 9171 (99%) 9841 9753 (99%)
31 10 | 2727 | 2686 (98%) 2924 2887 (99%) 2326 2308 (99%) 2438 2420 (99%)
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Table 3- 4 Continued.

mouse (10°%°) human (10%°)

k_c Oases Mutual Oases Mutual

shared found shared found shared found shared found

253 | 15532 | 15335(99%) | 18418 | 18165 (99%) | 17104 16799 (99%) | 19840 | 19558 (99%)

255 9534 9356 (98%) 10249 10137 (99%) 9718 9541 (98%) 10120 10000 (99%)

25 10 | 3965 | 3854 (97%) 4452 4358 (98%) 3344 3278 (98%) 3593 3529 (98%)

313 | 10165 | 10045 (99%) | 11250 | 11127 (99%) | 12052 11960 (99%) | 13138 | 13043 (99%)

315 | 6262 | 6183 (99%) 6728 | 6654 (99%) 7267 7216 (99%) 7615 7557 (99%)

3110 | 2245 | 2209 (98%) 2419 2385 (99%) 2003 1989 (99%) 2083 2069 (99%)

Top BLAST hits to databases

By applying BLAST from each set of predicted shared transcripts in each organism
to its known transcriptome database, Tables 3-5 and 3-6 show that Mutual recovered
more shared transcripts than Oases, with many more shared transcripts recovered when

the assembly parameters are less stringent.

Length distribution of transcripts

Figures 3-3 and 3-4 show that the lengths of predicted shared transcripts recovered
by Mutual were comparable to the ones recovered by Oases, which are slightly shorter
for mouse but have slightly higher medians for rat. These transcripts are generally longer

when the k-mer coverage cutoff c increases.
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Table 3- 5 Comparisons of the number of top unique BLAST hits to different
transcripts from each set of predicted shared transcripts in each organism to its
known transcriptome database in the test on mouse against rat from Oases and
from Mutual over different values of k and k-mer coverage cutoff ¢ and over
different e-value cutoffs 10~" and 10~%. Only the top hit with e-value below the
cutoff is considered. The number in parentheses is the change by Mutual over

Oases.

107 mouse rat 10?2 mouse rat

k_c Oases | Mutual Oases Mutual k_c Oases | Mutual Oases Mutual
25_3 7780 | 8349 (+569) | 7382 8061 (+679) | 253 7035 | 7547 (+512) | 6608 7148 (+540)
255 5310 | 5563 (+253) | 4863 5158 (+295) | 255 4715 | 4929 (+214) | 4319 4538 (+219)
25 10 | 2361 | 243 (+102) 2011 2094 (+83) | 25_10 | 2008 | 2094 (+86) 1769 1833 (+64)
31.3 | 6645 | 6854 (+209) | 6392 6660 (+268) | 31.3 | 5780 | 5997 (+217) | 5527 5802 (+275)
315 | 4286 | 4368(+82) | 3933 4103 (+170) | 315 | 3713 | 3804 (+91) | 3454 3557 (+103)
31 10 | 1705 | 1740(+35) 1462 1517 (+55) | 31 10 | 1443 | 1484 (+41) 1287 1320 (+33)

Table 3- 6 Comparisons of the number of top unique BLAST hits to different
transcripts from each set of predicted shared transcripts in each organism to its
known transcriptome database in the test on mouse against human. Notations are
the same as in Table 3-5

107 mouse human 10% mouse human

k_c Oases | Mutual Oases Mutual k_c Oases | Mutual Oases Mutual
25 3 | 7090 | 7474 (+384) | 7123 7548 (+425) | 25 3 | 6169 | 6402 (+233) | 6317 6539 (+222)
255 5308 | 5392 (+84) 5244 5318 (+74) 255 4666 | 4700 (+34) 4679 4696 (+17)
25 10 | 2781 | 2818 (+37) 2591 2612 (+21) | 25 10 | 2452 | 2476 (+24) | 2376 2385 (+9)
313 | 5490 | 5647 (+157) | 5198 5387 (+189) | 31_3 | 4421 | 4557 (+136) | 4416 4547 (+131)
315 | 3918 | 3971 (+53) 3662 3732 (+70) | 315 | 3221 | 3275 (+54) 3180 3222 (+42)
3110 | 1796 | 1805 (+9) 1573 1594 (+21) | 31_10 | 1531 | 1540 (+9) 1403 1410 (+7)
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Table 3- 7 Comparisons of the number of predicted shared transcripts that are
809% full length transcripts in the test on mouse against rat from Oases and from
Mutual over different values of k and k-mer coverage cutoff ¢ and over different e-
value cutoffs 10" and 107%°. These transcripts are the ones in which 80% of the
coding region is included in the best BLAST alignment from each organism to its
known transcriptome database. The number in parentheses is the change by
Mutual over Oases.

107 mouse rat 10?2 mouse rat

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual
25_3 1900 1840 (-60) 2066 1777 (-289) | 253 1802 1743 (-59) 1870 1611 (-259)
255 | 1705 1677 (-28) | 1739 1581 (-158) | 255 | 1595 1561 (-34) | 1577 1429 (-148)
25 10 | 1119 1097 (-22) | 862 848 (-14) 25 10 | 984 975 (-9) 798 788 (-10)
313 | 1144 1158 (+14) | 1407 1179 (-228) | 31.3 | 1061 1077 (+16) | 1226 1042 (-184)
315 | 1054 1062 (+8) | 1240 1095 (-145) | 31.5 | 966 990 (+24) | 1092 978 (-114)
31.10 | 719 724 (+5) 662 662 (0) 3110 | 638 646 (+8) 607 602 (-5)

Table 3- 8 Comparisons of the number of predicted shared transcripts that are
80% full length transcripts in the test on mouse against human. Notations are the
same as in Table 3-7.

107 mouse rat 107 mouse rat

k_c Oases Mutual Oases Mutual k_c Oases Mutual Oases Mutual
25 3 | 1851 1808 (-43) | 1529 1553 (+24) | 253 | 1733 1686 (-47) | 1450 1477 (+27)
255 | 1716 1666 (-50) | 1534 1536 (+2) 255 | 1605 1552 (-53) | 1454 1459 (+5)
25 10 | 1250 1241 (-9) 1178 1183 (+5) 25 10 | 1124 1112 (-12) | 1114 1126 (+12)
313 | 1085 1099 (+14) | 739 746 (+7) 313 | 995 1008 (+13) | 686 700 (+14)
315 | 1009 1018 (+9) | 734 736 (+2) 315 | 923 932 (+9) 678 683 (+5)
31,10 | 720 723 (+3) 627 628 (+1) 31 10 | 654 656 (+2) 579 585 (+6)

Recovery of full length transcripts
The situation is different when considering predicted shared transcripts that are

close to full length. Tables 3-7 and 3-8 show that Mutual recovered more or a
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comparable number of 80% full length transcripts as Oases when the assembly
parameters are more stringent, and less 80% full length transcripts than Oases when the
assembly parameters are less stringent. Although Mutual performs worse for rat that
recovers less 80% full length transcripts than Oases, its predicted shared transcripts have
slightly higher median lengths when considering all the transcripts together (see Figure

3-3), instead of just the ones that are 80% full length transcripts.

Presence of translocated transcripts

Reconstructed transcripts covering fragments from different chromosomes or
different loci far away on the same chromosomes may be considered translocated
transcripts and identified as assembly errors because they are rare. As reported by
GMAP, Tables 3-9 and 3-10 show that Mutual recovered a much larger number of
predicted shared transcripts that are uniquely mapped than Oases, while at the same time
returning more translocated transcripts that can be considered to be errors due to their
rare occurrences (89). The ratio of the number of translocated transcripts to the number
of uniquely mapped transcripts is at most about twice as much for Mutual when
compared to Oases. This ratio increases when k decreases or when the k-mer coverage

cutoff c increases.
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Table 3- 9 Comparisons of the number of predicted shared transcripts that are
uniquely mapped (unique) or translocated (transloc) as reported by GMAP in the
test on mouse against rat from Oases and from Mutual over different values of k
and k-mer coverage cutoff ¢ and over different e-value cutoffs 10~ and 10™%. The
number in parentheses is the ratio of the number of translocated transcripts to the

number of uniquely mapped transcripts.

mouse(10™) rat(10°")
Oases Mutual Oases Mutual
k_c unique transloc unique transloc unique transloc unique transloc
253 24635 599 (0.024) 30713 1475 (0.048) 21335 | 986 (0.046) | 33566 | 2337 (0.067)
255 10718 436 (0.041) 12071 1011 (0.084) 8509 438 (0.051) 12676 971 (0.077)
25_10 2913 218 (0.075) 3197 409 (0.128) 2353 122 (0.052) 3042 257 (0.084)
313 20360 242 (0.012) 22229 483 (0.022) 18236 | 497 (0.027) | 23818 | 795 (0.033)
315 8778 189 (0.022) 9263 388 (0.042) 7132 251 (0.035) 9453 388 (0.041)
31_10 1914 99 (0.052) 2026 176 (0.087) 1553 65 (0.042) 1888 113 (0.060)
mouse(107%) rat(10%)
Oases Mutual Oases Mutual
kc unique transloc unique Transloc unique transloc unique transloc
25 3 20209 544 (0.027) 24662 1368 (0.055) 16880 | 746 (0.044) | 25851 | 1536 (0.059)
255 9070 396 (0.044) 10067 931 (0.092) 7021 332 (0.047) 10097 718 (0.071)
25 10 2431 188 (0.077) 2631 372 (0.141) 1977 98 (0.050) 2499 214 (0.086)
31.3 16077 213 (0.013) 17610 415 (0.024) 13866 376 (0.027) 18290 516 (0.028)
315 7136 156 (0.022) 7538 347 (0.046) 5656 177 (0.031) 7572 243 (0.032)
31_10 1590 85 (0.053) 1701 146 (0.086) 1299 51 (0.039) 1559 83 (0.053)
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Table 3- 10 Comparisons of the number of predicted shared transcripts that are
uniquely mapped or translocated as reported by GMAP in the test on mouse
against human. Notations are the same as in Table 3- 9.

mouse(10™) human(10™)
Oases Mutual Oases Mutual
k_c unique transloc unique transloc unique transloc unique transloc
25_3 18157 531 (0.029) 21931 1209 (0.055) 19912 224 (0.011) 25142 592 (0.024)
255 10036 393 (0.039) 10760 763 (0.071) 10353 | 150(0.014) | 11088 | 334 (0.030)
25_10 3582 203 (0.057) 3838 420 (0.109) 3114 78 (0.025) 3281 221 (0.067)
313 12899 196 (0.015) 14105 370 (0.026) 14748 65 (0.004) 16499 126 (0.008)
315 7084 147 (0.021) 7392 302 (0.041) 8101 43 (0.005) 8536 94 (0.011)
31 10 2029 93 (0.046) 2095 167 (0.080) 1858 30 (0.016) 1919 58 (0.030)
mouse(107%) human(10)
Oases Mutual Oases Mutual
k_c unique transloc unique transloc unique transloc unique transloc
25_3 13313 499 (0.037) 15285 1073 (0.070) 14928 195 (0.013) 17259 518 (0.030)
255 7877 373(0.047) 8286 713 (0.086) 8301 130 (0.016) 8638 315 (0.036)
25_10 2980 188 (0.063) 3152 400 (0.127) 2699 73 (0.027) 2822 211 (0.075)
313 8736 181 (0.021) 9504 330 (0.035) 10690 57 (0.005) 11621 106 (0.009)
315 5183 137 (0.026) 5408 281 (0.052) 6325 35 (0.006) 6580 84 (0.013)
31_10 1618 91 (0.056) 1671 161 (0.096) 1591 19 (0.012) 1623 55 (0.034)
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Figure 3- 3 Length distribution of predicted shared transcripts in the test on mouse
against rat from Oases and from Mutual over different values of k and k-mer
coverage cutoff ¢ (represented by k_c) and over different e-value cutoffs 10~ and
10~%. The width of each box is proportional to the square root of the size of each
group, while outliers are ignored
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Figure 3- 4 Length distribution of predicted shared transcripts in the test on mouse
against human. Notations are the same as in Figure 3-3.
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Figure 3- 5 Precision, recall and F-score with respect to the accuracy of shared
transcript reconstruction in the test on mouse against rat from Oases and from
Mutual over different values of k and k-mer coverage cutoff ¢ (represented by k_c)
and over different e-value cutoffs 107" and 10™%. Precision is defined to be the
fraction of query positions from predicted shared transcripts that are included in
BLAST alignments from each organism to its known transcriptome database.
Recall is defined to be the fraction of subject positions from database sequences
that are included in BLAST alignments from each organism to its known
transcriptome database. F-score is the harmonic mean of precision and recall.
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Figure 3- 6 Precision, recall and F-score with respect to the accuracy of shared
transcript reconstruction in the test on mouse against human. Notations are the
same as in Figure 3- 5.
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Accuracy of transcript reconstruction

By investigating the fitness of the alignment between the predicted shared
transcripts and the known transcriptome database sequences, Figures 3-5 and 3-6 show
that with respect to the accuracy of shared transcript reconstruction, there are tradeoffs
between precision and recall by Mutual when compared to Oases. Mutual has slightly

lower F-scores than Oases in most cases.

Conclusions

I have developed an algorithm that makes use of evolutionary information to
simultaneously recover significantly more shared transcripts from RNA-Seq data in two
related organisms that may be missed by traditional de novo approaches. While more
shared transcripts are recovered due to the smaller evolutionary distance between mouse
and rat, my algorithm can be applied to related organisms that are evolutionarily farther
away, such as between mouse and human. While known transcriptomes are used as
databases during validation, one important characteristic of my algorithm is that no
reference transcriptomes or a closely related model organism is needed. My algorithm
can be used to recover shared transcripts that are specific to two closely related non-
model organisms, which may not be present in a related model organism that is
evolutionarily farther away. Depending on the size of the de Bruijn graphs, my algorithm
can take many processor-hours to run. It takes more than 600 processor-hours to obtain
all the predicted transcripts in mouse against rat or in mouse against human for the least

stringent values of k and the k-mer coverage cutoff c. Although my algorithm can take
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much more computational time than the de novo algorithms Velvet or Oases, the
iterative BLAST searches can be run independently in parallel on a computing cluster.
While an additional 60 processor-hours are needed to obtain predicted shared transcripts
from the predicted transcripts, a similar procedure is also needed for Oases. No special
memory requirement is needed after the de Bruijn graphs are obtained.

One drawback of my algorithm is that only a weak recovery of non-coding regions
of MRNA is possible since these regions may not be conserved. Due to the use of
similarity information between two related organisms to extend transcripts, my
algorithm cannot identify extended transcripts that are not shared between the two

organisms.
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CHAPTER IV
GENOME ANNOTATIONS OF PROTEUS MIRABILIS AND PROVIDENCIA

STUARTII

Many bacteria are widespread and exhibit various interactions with insects. For
example, insects can serve as important vectors. Some of these bacteria exhibit wide host
ranges, while some have preferred host targets. For example, Bacillus sphaericus is
selectively pathogenic to mosquitoes while Bacillus papillae only infects Scarabaeid
beetles (90). Understanding how such bacteria interact with insects and other eukaryotes
is currently an area of intense interest in biology.

The interaction between insects and bacteria can be considered symbiotic. A
symbiotic relationship is an interaction between different species. It can be divided into
parasitism, commensalism and mutualism. Parasitism is a relationship when one species
benefits from association while its partner gets harmed. Commensalism occurs when one
species get benefit from interactions with no significant effect on its partner. Mutualism
is the association where species living together mutually benefit each other (91). For
example, pea aphid Acyrthosiphon pisum is able to diet on plant phloem sap with low
content of essential amino acids, in presence of their symbiotic bacteria, Buchnera
aphidicola by providing these nutrients (92). A virulent pathogen Photorhabdus produce
an antibiotic (E)-1,3-dihydroxy-2-(isopropyl)-5- (2-phenylethenyl)benzene to inhibit

phenoloxidase in the insect Manduca sexta to suppress host defenses (93).
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There are also studies on symbiotic relationships between phages and their bacterial
hosts. Phages rely on their bacterial hosts to complete their life cycle. Lytic phages
introduce their genetic material into host cells and utilize host cell machinery for
replication of viral genetic material and production of viral proteins. Then viral proteins
self-assemble to package viral genetic material into capsids. When a sufficient number
of virions are produced, host cells are lysed with lytic bacteriophage enzymes and
release progeny viruses. The new cycle starts when released phages contact with new
host cells (94). For example, bacteriophage BRK20 is a lytic phage of Brevibacterium
flavum, an industrial producer of lysine (95). Unlike lytic phages, lysogenic phages can
integrate their genetic material into host genome which can be transmitted to host
progenies without killing host cells. Lysogenic phages can enter lytic cycle under
stressful conditions (94). Lamboid phage Gifsy-1 is an example of a lysogenic phage
that integrates its genetic material into its host Salmonella enterica serovar Typhimurium
(96). Phages not only make use of bacterial hosts for their life cycle, but also have
impacts on their abundance, competitive ability, changes in physiology, as well as gene
transfer (94,97).

Proteus mirabilis, a Gram-negative bacterium, is an endosymbiont of blow flies. It
produces antibacterial agents including phenylacetaldehyde (PAL) and phenylacetic acid
(PAA) (98), which are supposed to benefit insects by controlling external and internal
microbe community and repressing growth of bacteria which compete with the larvae
(99). On the other hand, maggot excretions/secretions of insects inhibit biofilm

formation of would pathogens such as Staphylococcus aureus and Enterobacter cloacae,
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but protect biofilms of P. mirabilis (100). Biofilms help bacteria resist antimicrobial
agents (101).

P. mirabilis has been isolated from salivary glands of the Lucilia sericata, a blow fly
used in maggot therapy due to antibacterial, antibiofilm, and wound debridement
properties. Some of these antibacterial agents are synthesized by P. mirabilis (41). An
earlier study showed that swarming P. mirabilis produces small molecules to attract L.
sericata to lay eggs and twenty genes associated with the swarming phenotype have
been identified in P. mirabilis. Several swarming mutations can be complemented with
fly attractants like ammonia and putrescine and one mutant has been shown to
differentially impact fly oviposition and attraction (35).

Providencia stuartii has also been found to colonize maggots of L. sericata along
with P. mirabilis (35). P. stuartii is a Gram-negative pathogen giving rise to human
infections like meningitis (102) and causing blockages of urinary catheters (48). It does
not swarm like P. mirabilis (48). A recent study found that P. stuartii shares a common
cell-to-cell communication system with D. melanogaster. An inner membrane protein
AarA in P. stuartii is required for exporting extracellular signals. AarA is homologous to
rhomboid protein (RHO) in D. melanogaster, a serine protease required for stimulation
of epidermal growth factor receptor ligands (103) and plays an important role in many
developmental processes such as organization of the fly eye and proper wing vein
development (37). D. melanogaster rho mutant can be complemented with expression

of AarA from P. stuartii to exhibit normal wing vein development and P. stuartii aarA
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mutant can be rescued with expression of RHO from D. melanogaster to overcome cell-
to-cell communication defects (37).

Interkingdom communication between bacteria and their hosts involves hormones
and hormone-like compounds, which may help bacteria to recognize the immune system
on their hosts and activate their virulence genes (104). For example, binding of an
outermembrane protein OprF in Pseudomonas aeruginosa to their host human
interferon-v leading to expression of both type | P. aeruginosa lectin (PA-1) and
pyocyanin, which enables disruption of epithelial cell function (105).

In the present work, | have assembled, annotated and compared the draft genomes of
P. mirabilis and P. stuartii isolated from larvae of L. sericata to reference genomes of
clinical strains to identify unique genes which are absent in the reference genomes. |
annotated gene content which probably contributes to physiological differences between
P. mirabilis and P. stuartii isolated from flies and genes with evidence of recombination
or positive selection among Proteus or Providencia tested. | also identified insertion
sequences from other strains into these draft genomes to hypothesize the novel

phenotypes studied strains may show.

Methods
Genome assembly

Sequencing was performed using lon Torrent after preparation with NEBNext® Fast
DNA Fragmentation & Library Prep Set to produce approximately 1.38x10° reads of an

average length of 211bp with 23x coverage of the genome for Providencia stuartii and
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2.77x10° reads of an average length of 218 bp with 41x coverage for P. mirabilis. A total
of ninety-seven and seventy-five contigs were assembled by CLC de novo assembly
workbench for P. stuartii and P. mirabilis respectively. Scaffolds were assembled with
CONTIGuator (106) from contigs with well annotated reference genomes P. stuartii

MRSN 2154 for P. stuartii and P. mirabilis HI4320 and BB2000 for P. mirabilis.

Gene annotation method

Coding sequences (CDS) were predicted from scaffolds and unassembled contigs
with PRODIGAL (107). Predicted gene sequences were aligned to genes from related
reference genomes including Providencia stuartiit MRSN 2154 (accession no
NC _017731), Proteus mirabilis HI4320 (NC_010554 and NC_010555) and Proteus
mirabilis BB2000 (accession no NC_022000) at e-value cutoff of 1e-20. For those
unaligned genes, the NCBI non-redundant (nr) database was used to infer their potential

functions at an e-value cutoff of 1le-5.

Identification of orthologs

Orthologous genes were identified as shared among Proteus and Providencia of my
bacteria strains and strains from NCBI including my P. mirabilis draft genomes, P.
stuartii draft genome, P. stuartii MRSN 2154, P. mirabilis HI4320, P. mirabilis BB2000,
Proteus hauseri ZMd44, P. mirabilis ATCC 29906, P. mirabilis WGLW4, P. mirabilis
WGLWS, Proteus penneri ATCC 35198, Providencia alcalifaciens 205/92, P.

alcalifaciens DSM 30120, P. alcalifaciens Dmel2, P. alcalifaciens F90-2004, P.
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alcalifaciens PAL-1, P. alcalifaciens PAL-2, P. alcalifaciens PAL-3, P. alcalifaciens
R90-1475, P. alcalifaciens RIMD 1656011, Providencia burhodogranariea DSM 19968,
Providencia rettgeri DSM 1131, P. rettgeri Dmell, Providencia rustigianii DSM 4541,
Providencia sneebia DSM 19967, P. stuartii ATCC 25827 plus the outgroup

Escherichia coli str. K-12 substr. MG1655. Ortholog identification was performed with

PanOCT (108).

Alignment of orthologs

Protein alignment of ortholog clusters identified above was produced with ClustalO
(109) for phylogentic analysis, recombination analysis and positive selection analysis.
Codon alignment from protein alignment in positive selection analysis was done with

PAL2NAL (110).

Phylogenetic analysis

Phylogenetic analysis helps to understand evolutionary relationships among
different species. The alignment of all 1322 orthologous clusters that cross all species
tested were concatenated and used as input in RAXML (111) with 100 boostraps and

with Escherichia coli str. K-12 substr. MG1655 set as an outgroup.

SNP and indel identification
Single nucleotide polymorphism (SNP) is variation of a single base in DNA (112).

Indel is insertion and deletion of DNA sequences (113). Small genetic variations in
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DNA sequences help to reveal evolutionary adaption and develop personal medicines
(114). SNP and indels were identified between P. stuartii draft scaffold to P. stuartii
MRSN 2154, P. mirabilis draft scaffold to P. mirabilis HI4320 or P. mirabilis BB2000
with MUMMer (115). Densities of SNP and indel across assembled scaffolds were

shown with Circos with window size of 5000nt.

COG annotation

COG annotation is a genome-wide tool to predict protein functions and evolution
(116). Predicted CDSs were aligned to NCBI database of Clusters of Orthologous
Groups (COG) of proteins(117) collection (118) with BLAST at e-value cutoff of 1e-5 to

detect enrichment in COG families.

Insertion sequence (IS) analysis

Insertion sequences are mobile genetic elements introduced to host genomes, which
may involve gene exchange and reassortment (119). The genome sequence including
scaffold and unaligned contigs were aligned to the IS finder database of a collection of
bacterial insertion sequences (119) with BLASTX at e-value cutoff of 1e-5 to identity
potential insertion sequence. Each insertion region was assigned to the top hit of
alignment. Sequences in IS database with significant alignment scores were annotated by

alignment to microbial protein database from NCBI.
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GO term assignment and pathway analysis

Gene ontology terms (GO terms) assignment is a tool to identify functions of gene
clusters to reflect important biological aspects (120). GO terms were assigned to
predicted genes with Blast2GO (121). Gene function distribution was studied with GO
classification of predicted genes with WEGO (122). Predicted genes were mapped to

KEGG database from Blast2GO to predict pathway activities of my strains.

Identification of tRNA, rRNA and phage genes

tRNA, as the link between mRNA and proteins, delivers amino acids to the
ribosome for peptide synthesis directly by triplet nucleotides (123). rRNA is an
important component of ribosome, a complex that catalyzes protein synthesis (124).
Bacteria and phages interact with each other biologically (94). Identification of tRNA
and rRNA was performed with tRNA-scan (125) and RNAmmer (126) respectively.

Phage genes were identified and classified with PHAST (127).

Synteny comparisons

Syntentic blocks are segments of sequences that exhibit conservation across species
or within a chromosome. Collinearity reflects conserved orientation and conserved
adjacency of genes (128). Synteny comparsions were performed with MUMMer (115)
and CONTIGuator between P. stuatii draft genome and P. stuartii MRSN 2154, P.

mirabilis draft genome and P. mirabilis HI14320 or P. mirabilis BB2000.
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Recombination analysis

Recombination is a process of genetic material exchange between DNA strands to
rearrange genes or parts of genes (129). Only clusters of orthologs with gene orthology
across all Proteus or all Providencia strains used were retained for recombination
analysis. Four statistical analyses were performed: GENECONYV (inner fragments)
(130) , Pairwise homoplasy Index (PHI), Maximum Chi square and Neighbor Similar
Score. The latter three were performed with PhiPack (131) with 1000 permutations.
Window size was set as 50 in PHI test. The p-values are corrected with program Q-value

(132), and significant clusters were reported with FDR of 10%.

Positive selection analysis

Positive selection is selection of advantageous alleles to increase fitness (133).
Positive selection analysis was performed with PAML (134) on 2213 and 1965 ortholog
clusters across all tested Proteus and Providencia species respectively. Site-model
studies were implemented with codeml to compare model M1a (nearly neutral) to M2a
(positive selection). The likelihood ratio test statistics was compared with the chi square
distribution with two degrees of freedom. Computed p-values were corrected with
program Q-value (132) with FDR of 20%, cases with p,=0 or w,=1 are ignored. Amino

acid sites were predicted with Bayes Empirical Bayes inference (BEB inference) (135).
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Results

Basic genomic information

Table 4- 1 Basic genomic information

species sequenced | number N50 assembled | number Average
size (Mb) of contige | contig genome of CDS GC %
Providencia stuartii 1.38 97 139,103 draft 4522 40.35
Proteus mirabilis 2.77 75 174,883 draft 1 3725 38.48
draft 2 3719 38.15

The basic genomic information is shown in Table 4-1. P. stuartii draft is assembled
with reference of P. stuartii MRSN 2154, the only P. stuartii strain available with
complete genome sequence. There are 4522 CDS predicted among draft genome, which
are more than the reference genome with 4125 CDS. In total 38 contigs are unassembled
in the scaffold assembly with 152 CDS among them. There are 14 rRNA and 74 tRNA
regions identified in P. stuartii draft genome, with their positions shown on the draft
genome in Figure 4-1.

There are two P. mirabilis draft genomes, because there are two P. mirabilis strains
available with complete genome sequences, H14320 and BB2000. The draft 1 is
assembled with reference of P. mirabilis HI4320 and contains 3725 CDS, comparable to
the corresponding reference genome with 3747 CDS. The draft 2 genome assembled
with reference of BB2000 contains six less CDS than draft 1, the CDS number is more

than the CDS of BB2000 with 3465 CDS. In total 19 contigs are unassembled in the
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scaffold assembly with 109 CDS among them in either way of assembly. There are 15
rRNA and 78 tRNA regions identified in draft 1 genome and 17 rRNA and 78 tRNA
regions in draft 2 genome, with their positions shown on draft genomes in Figure 4-2
and Figure 4-3 respectively.

All these three draft genomes show clear GC skew as Figure 4-4-4-6 show, which is
an indication of DNA replication origin and terminus (136). Unique genes in draft
genomes which are not found in their corresponding clinical reference genomes are also
shown in these figures (4th ring), possibly associated with symbiosis with L. sericata

and the microbial community.

Identification of phage genes

As shown in Figure 4-1, there are eight phage regions identified in P. stuartii draft
genome. Among these phage regions, five are intact. They are from Escherichia phage
HK75 (accession no. NC_016160), Salmonella phage vB_SosS_Oslo (accession no.
NC_018279), Shigella phage Sf6 (accession no. NC_005344), Pseudomonas phage B3
(accession no. NC_006548) and Pectobacterium phage ZF40 (accession no.
NC_019522), ordered by their positions on the scaffold beginning from the first
nucleotide. Bacteriophage sf6 has been identified to express gene oac to change
antigenic properties of O-antigen polysaccharide on surface of its host Shigella flexneri

(137). Pili on Pseudomonas surface is required for page B3 adsorption (138).
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Figure 4- 1 Map of the Providencia stuartii draft genome. Unassembled contigs are
shown as gaps with unknown positions. Rings from outermost to the center: (1)
genes on the forward strand. (2) Genes on the reverse strand. (3) tRNA (black) and
rRNA (red) genes. (4) Unique genes when compared to the corresponding reference
genomes (P. mirabilis HI14320 and B2000) (5) intact (black), incomplete (red) and
guestionable (green) phage genes. (6) GC skew with window size of 2000nt with
above average region in red and below average region in green. (7) Distribution of
orthologous genes with evidence of recombination (8) insertion sequence regions.
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Figure 4- 2 Map of the Proteus mirabilis draft 1 genome. Unassembled contigs are
shown as gaps with unknown positions. Annotation of rings from outermost to the
center are the same as annotation of 1st-8th rings in Figure 4-1. (9) Genes related to
swarming.
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Figure 4- 3 Map of the Proteus mirabilis draft 2 genome. Annotation is the same as
Figure 4-2.

Both P. mirabilis draft genome contain six phage regions, among which two are
intact shown in black in the 5th ring of Figure 4-2 -4-3. They are from Enterobacteria
phage mEp460 (accession no. NC_019716) and Salmonella phage Fels-2 (accession no
NC_010463), ordered by their positions on the scaffold beginning from the fist
nucleotide. Interestingly, within either P. mirabilis draft genome, a phage region from

Salmonella phage Fels-2 is located closely to loci of two genes related to swarming,
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UDP-glucose 6-dehydrogenase (ugd) and O-antigen ligase (rfaL) (35). Fels-2 prophage
has been identified to be responsible for lethality phenotype of lexA null mutants of
Salmonella (139). I hypnotize that the phage may impact P. mirabilis swarming and

biochemical tests need to be performed to verify it.

Phylogenetic analysis

| determined the phylogenetic relationship from a concatenated alignment of 1322
orthologs shared by Proteus and Providencia strains with information available for
analysis. Escherichia coli str. K-12 substr. MG1655 was set as an outgroup. As Figure 4-
4 shows, the studied P. stuartii strain is closely related to P. stuartii ATCC 25827 and
MRSN 2154, with only the latter strain having complete genome. The studied P.
mirabilis strain is closely related to P. mirabilis BB2000 with either way of scaffold
assembly. P. mirabilis BB2000 is a spontaneous rifampin-resistant mutant of PRM1
(140) with no plasmid (141). Compared to P. mirabilis HI4320, P. mirabilis BB2000
contains unique CDS related to toxin elements, self recognition and phages but no iron

acquisition proteins or transfer (tra) genes (141).

Synteny comparison

Synteny relationship was examined between P. stuartii draft genome and P. stuartii
MRSN 2154 reference genome, P. mirabilis draft 1 genome and P. mirabilis HI4320
reference genome, as well as P. mirabilis draft 2 genome and P. mirabilis BB2000

reference genome, as Figure 4-5 shows. There is some conserved synteny between P.
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stuartiit MRSN2154 and the draft genome. For Proteus mirabilis, draft 2 genome shows
higher synteny to BB2000 than draft 1 to HI4320. The result also validates that the
studied P. mirabilis draft genome is more evolutionarily closely related to BB2000 as
shown in Figure 4-4.

MUMmer-based comparative genomic alignment analysis is shown in Figure 4-6. P.
stuartii draft genome is somewhat collinear to MRSN2154. For P. mirabilis comparison,

draft 2 genome shows more colinearity to BB2000 than draft 1 to H14320.

SNP and indel analysis

SNPs and indels can serve as genetic markers to characterize variants and identify
potential evolutionary mutations (142). As Figure 4-7 shows, there are a large number of
SNPs and indels between P. stuartii draft and MRSN2154. There are relatively fewer
SNPs and indels between P. mirabilis draft genomes and corresponding reference
genomes. It seems the studied draft genomes are more closely related to P. mirabilis
reference genomes than P. stuartii draft genome to its relevant reference genome, which
is also reflected in synteny comparison in Figure 4-5 and 4-6. The indels between draft
genomes and corresponding reference genomes suggests genome reorganization which

may be associated with insect-bacteria association.
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Providencio stuartii MRSN 2154

T TR

L

(B) Proteus mirabilis HI4320

Providencia stuartiidraft

Proteus mirgbilisdraft 1

(C) Proteus mirabilis BB2000

Proteus mirabilisdraft 2

Figure 4- 5 Synteny comparison between P. stuartii draft to P. stuartii MRSN2154,
as well as P. mirabilis draft to P. mirabilis HI4320 or P. mirabilis B2000. Contigs of
draft genomes shown with solid red are overlapped with other contigs with two
ends, those in light red are overlapped with one end, while those in blue do not
show overlap with other contigs.
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Figure 4- 6 Alignment between (A) P. stuartii MSRN2154 and P. stuartii draft (B) P.
mirabilis HI4320 and P. mirabilis draft 1 (C) P. mirabilis B2000 and P. mirabilis
draft 2. Red dots show alignment in the same orientation in a genomic pair while
blue dots show alignment with opposite orientation.
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COG analysis

Figure 4-8 shows COG distribution of studied P. mirabilis and P. stuartii. The top
five functional classes with most COGs are: [S] Function unknown, [R] General function
prediction only, [E] Amino acid transport and metabolism, [C] Energy production and
conversion, [J] Translation, ribosomal structure and biogenesis. Genes in the latter three
function classes play an essential role in basic cellular functions. Interestingly, in the
class [B] Chromatin structure and dynamics, P. stuartii draft genome has a COG,
deacetylases including yeast histone deacetylase and acetoin utilization protein, which is
not found in either P. mirabilis draft genome. Histone deacetylase is identified to
reconstitute positive charge of lysine by catalyzing removal of the acetyl group from its
side chain to stabilize interaction between histone and DNA (143). In class
[Z] Cytoskeleton, P. mirabilis draft genome has a COG, myosin heavy chain, which is
absent in P. stuartii draft genome. A protein with high molecular-weight in E. coli has
been identified to share structural homology to a yeast heavy-chain myosin and
supposed to play a role in movement of cell division and nucleoid segregation (144). In
class [N] Cell motility, P. mirabilis draft genome has COG Tfp pilus assembly protein
PilF, which is not found in P. stuartii draft genome. Pseudomonas aeruginosa mutant
with knock-out homolog PilF does not exhibit swarming mobility (145). P. mirabilis
exhibits swarming mobility but not for P. stuartii (48), this COG absence in P. stuartii

draft may shed light to that phenotypic difference.
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GO term assignment

GO term assignment result is as Figure 4-9 shows. There are some GO terms unique
to P. mirabilis draft 2 genome or both P. mirabilis draft genomes, including virion,
antioxidant, electron carrier, transcription regulator and reproductive process.
Considering some of these GO terms play an essential role in organisms and the
relatively farther evolutionary distance between P. stuartii draft and the corresponding
reference genome MRSN2154 used in scaffold assembly compared to P. mirabilis
assembly, absence of these GO terms in P. stuartii draft may be caused by misassembly
with reference genome. In GO term virion, there is a gene chitin-binding protein in P.
mirabilis draft 2 genome. Chitin-binding protein is required for virus infection to host

(146).

Recombination and positive selection

I examined 2213 Proteus orthologs and 1965 Providencia orthologs. They are used
to identify recombination and positive selection among all Proteus and Providencia
species tested respectively. Among those orthologs, there are 411 Proteus orthologs and
373 Providencia orthologs that show evidence of recombination with FDR <20%. The
genes from my strains in those ortholog clusters are distributed evenly in the physical

genomes, as Figure 4-1-Figure 4-3 show (the 7th ring).
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Figure 4- 9 GO term comparison at level 2 between P. saurartii draft genome, P. mirabilis draft 1 genome

and P. mirabilis draft 2 genome.



To study positive selection among orthologs, | test Proteus and Providencia
orthologs which do not show significant evidence of recombination, because
recombination may violate the assumption of these models (147). It left 1802 Proteus
orthologs and 1384 Providencia orthologs for positive selection test. | used Codeml in
PAML to compare likehood of a neutral model M1a to a positive selection model M2a. |
found 6 Proteus genes but no Providencia genes with significant evidence of positive
selection with FDR<20%, as Table 4-2 shows.

Among Proteus genes with significant evidence of positive selection, 50S ribosomal
protein L9 exhibits most significant p-value and g-value in the test. Ribosomal proteins
are highly conserved, however, there are examples of ribosomal protein with evidence of
positive selection. For example, LSU ribosomal protein L9p exhibits evidence for
positive selection in site model tests of four Providencia species isolated from
Drosophila melanogaster (148) .

The other gene exhibiting evidence for positive selection is a virulence factor
intimin/invasin. The gene intimin encodes an outer membrane protein as adhesion for
bacteria attachment to host cells and its homolog invasin, plays a role in mediating
invasion. There is evidence for positive selection in intimin domains in E. coli (149),
suggesting amino acid substitution to generate novel protein variants to prevent
recognition by the host immune system.

The protein called Z-ring-associated protein shows significant evidence of positive

selection. Z-ring-associated protein ZapA in Bacillus subtilis stimulates the assembly
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and stabilization of Z-ring during cell division (150), but it is not essential for division.
Positive selection on Z-ring-associated protein may help to modulate growth rate of cells.

The gene hofC encoding assembly protein in type IV pilin biogenesis (151) exhibits
evidence of positive selection (p=3.408e-4, g=0.103). It is an outer membrane protein
and also found to be positively selected in a Gram-negative bacterium, Helicobacter
pylori (152).

Glutaredoxin-like protein also exhibits weak evidence for positive selection. The
glutaredoxin-like protein NrdH in E. coli behaves like thioredoxin as hydrogen donor
with the capability of reducing insulin disulfides (153). Positive selection on

glutaredoxin-like proteins in Proteus may play a role in modulation of redox rate.

IS analysis

As Figure 4-10 shows, IS analysis result reflects among the annotated sources of
these insertion sequences in IS database, six fragments show high similarity to sequences
from Escherichia coli in P. stuartii draft genome and four fragments to sequences from
Pseudomonas putida in either P. mirabilis draft genome. E. coli and P. putida are part of
diet for flies (154,155) and coexist in the microbe community with P. mirabilis and P.
staurtii. It is not surprising that insertion sequences from E. coli and P. putida are found

in the draft genomes.
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Table 4- 2 Details of genes with positive selection evidence.

annotation p-value g-value 27 0° parameter estimates® Positive selective sites®
50S ribosomal 1.303e-08 2.348e-05 36.312 P¢=0.820, p;=0, (p,=0.180) 441, 45E, 48E, 49A,
protein L9 Wo=0, (W:=1), wW,=999.000 50R, 51R, 52A
Intimin/invasion 1.870e=04 0.101 17.169 P¢=0.970, p;=0.021, (p,=0.009) 45A

1p=0.013, (w;=1), w,=326.885
Z-ring-associated 2.251e-04 0.101 16.798 Py=0.848, p;=0, (p,=0.152) 73R, 74D, 75Y, 77Y,
protein we=0.013, (W:=1), W,=326.885 78N, 79M, 80E, 81E,

82K

protein transport 3.408e-04 0.103 15.968 Py=0.791, p;=0.203, (p,=0.006) 22M
protein We=0.042, (Wi=1), w,=44.614
glutaredoxin-related | 6.514e-04 0.168 14.673 Py=0.965, p;=0.005, (p,=0.030) 69A
protein we=0.072, (w;=1), W,=999.000

a.  Twice of the difference of likelihood values between neutral and positive selection models
b.  Parameter estimates are from M2a model. Three sites class including under purifying selection, neutral and under positive

selection are indicated with their proportions p,, p; and p,, and the nonsynonymous-synonymous substitution rate ration wo, w;

and w,, respectively. Parameters in paranthese are not free.
c.  Positions of positive selection sites in alignment used in Codeml are identified using BEB inference with posterior probabilities
>95%. Amino acids are referred to the first reference sequence in alignment.

Details of insertion sequences are mentioned in Table 4-3-Table 4-5. Most of these
mobile elements are transposase, integrase and resolvase, which help insertion of foreign
sequences into bacteria genomes. There are some inserted sequences with interest and
labeled with gray in the tables. They are genes coding chloramphenicol exporter from
Corynebacterium striatum and genes coding MerR family transcriptional regulator as
well lipoprotein signal peptidase from Pseudomonas putida. For example, it seems these
three assembled draft genomes contain genes coding chloramphenicol exporter which

has been identified in Corynebacterium striatum and genes coding MerR family
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transcriptional regulator as well lipoprotein signal peptidase identified in Pseudomonas

putida.

Conclusions

| assembled and annotated draft genomes of P. mirabilis and P. stuartii of fly-
isolated strains with reference of corresponding clinical strains. It shows studied P.
mirabilis is more closely related to P. mirabilis BB2000 than P. mirabilis HI4320. |
identified a phage Salmonella phage Fels-2 in either P. mirabilis draft genome which is
located close to loci of two genes related to swarming, ugd and rfaL, and hypothesize the
presence of this phage may play a role in bacteria swarming to attract flies. | found a
COG Tfp pilus assembly protein PilF present in P. mirabilis draft but not in P. stuartii
draft, which may partially account for swarming phenotype of P. mirabilis.

The present work utilized current bioinformatics analysis approaches to identify
genomic features of P. stuartii and P. mirabilis strains isolated from larva of L. sericata
and provided some hypotheses on functional differences between these strains and

reference strains. Biochemical tests are needed to validate these hypotheses in the future.
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Table 4- 3 Details of insertion sequence for P. sauratii draft genome.

significant | IS group | origin e-value annotation query begin end

alignment family

ISEc12 1521 Escherichia 0 transposase scaffold 3021803 | 3020562
coli

ISPsy30 Tn3 Pseudomonas | 0 transposase Tn3 scaffold 3220752 3217753
syringae family protein

ISYall 1S3 1S407 | Yersinia 1.00E-178 | transposase scaffold 3831430 3830576
aldovae

1S3000 Tn3 - Escherichia 1.00E-174 | transposase Tn3 scaffold 561159 559582
coli family protein

1ISVch4 1S3 1S3 Vibrio 1.00E-174 | transposase OrfAB scaffold 3212622 3213539
cholerae subunit B

1S1635 1S6 - Yersinia 1.00E-117 | putative transposase c72 1569 835
intermedia

ISEc12 1S21 Escherichia 1.00E-114 | transposase scaffold 3020434 | 3019688
coli

1S1635 1S6 - Yersinia 1.00E-109 | putative transposase scaffold 3199946 3199263
intermedia

ISECc32 1S110 Escherichia 1.00E-100 | 1S110 family c61 104 1057
coli transposase

ISRhba4 15481 Rhodobacteral | 1.00E-97 integrase scaffold 3207015 3206194
es bacterium

ISEc32 1S110 Escherichia 3.00E-97 1S110 family scaffold 542753 543706
coli transposase

ISBam1 1S3 1S150 | Burkholderia 8.00E-87 integrase catalytic scaffold 366278 367168
ambifaria subunit

ISYps7 1S1 Yersinia 2.00E-80 1S1 family scaffold 3197694 | 3197254
pseudotubercu transposase orfB
losis

ISVsal7 ISNCY | ISPlu | Aliivibrio 2.00E-79 transposase scaffold 577896 576973

15 salmonicida
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Table 4-3 Continued

significant | IS group | origin e-value annotation query begin end
alignment family
I1SShal5 1S3 1S3 Shewanella 4.00E-66 integrase catalytic scaffold 3221815 | 3222396
baltica subunit
1SSde6 1S3 1S3 Shewanella 2.00E-64 integrase catalytic scaffold 3214567 3215049
denitrificans subunit
ISVsal9 Tn3 Aliivibrio 6.00E-54 transposase scaffold 575032 572699
salmonicida
1S6100 1S6 - Mycobacteriu 1.00E-50 1S6100 transposase scaffold 3011637 3011278
m fortuitum
ISVa3 1591 Vibrio 3.00E-46 transposase scaffold 3202150 3201668
anguillarum
I1SSysp7 ISKra4 | ISAz | Synechococcu | 2.00E-45 resolvase scaffold 563481 564032
bal S sp.
ISVsa9 1S91 Aliivibrio 1.00E-44 transposase scaffold 3205592 3206083
salmonicida
ISVsal7 ISNCY | ISPlu | Aliivibrio 2.00E-43 transposase c80 2 646
15 salmonicida
ISPIu15 ISNCY | ISPlu | Photorhabdus | 2.00E-42 ISNCY family c97 375 1
15 luminescens transposase
1S3000 Tn3 - Escherichia 7.00E-40 transposase, TnpA c94 340 11
coli family
ISEhe5 1S1 - Pantoea 5.00E-34 insertion element scaffold 3013498 3013767
agglomerans protein
ISMdi3 1S3 1S407 | Methylobacter | 5.00E-33 integrase catalytic scaffold 3993426 3994172
ium subunit
dichlorometha
nicum
ISYps3 Tn3 Yersinia 2.00E-29 hypothetical protein c58 247 801
pseudotubercu plu3296
losis
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Table 4-3 Continued

significant | IS group | origin e-value annotation query begin end

alignment family

I1SCepl ISKra4 | ISAz | Crinalium 6.00E-29 integrase family scaffold 3082868 | 3083416

bal epipsammum protein

1S5564 15481 Corynebacteri | 9.00E-29 chloramphenicol scaffold 4589174 | 4590094
um striatum exporter

I1SPa38 Tn3 Pseudomonas | 1.00E-26 resolvase scaffold 1247898 | 1248422
aeruginosa

ISPpul2 ISL3 Pseudomonas | 1.00E-26 lipoprotein signal scaffold 1563130 1562696
putida peptidase

ISYen2A 1S21 Yersinia 6.00E-25 ISPsy4, transposition | scaffold 2869723 2869962
enterocolitica helper protein

I1SGlo3 15481 Geobacter 3.00E-24 Integrase catalytic scaffold 1074088 | 1074936
lovleyi region

151635 1S6 - Yersinia 4.00E-24 putative transposase c80 1619 1828
intermedia

ISShes11 Tn3 Shewanella 2.00E-22 Transposon Tn21 scaffold 3220927 3221484
sp. resolvase

ISMno23 1S91 Methylobacter | 5.00E-19 integrase family scaffold 797390 796830
ium nodulans protein

ISRs014 1S3 1S407 | Ralstonia 3.00E-17 transposase scaffold 3831672 3831436
solanacearum ISRSO14

1SSod6 1S5 1S427 | Shewanella 4.00E-15 1SSod6, transposase scaffold 4399671 4399480
oneidensis

ISVa3 1591 Vibrio 3.00E-14 transposase c48 247 492
anguillarum

ISKpn21 ISNCY | 1S120 | Klebsiella 8.00E-13 putative transposase scaffold 2487730 2487434

2 pneumoniae

ISShal4 Tn3 Shewanella 1.00E-12 resolvase domain- c59 4235 4495

baltica containing protein
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Table 4-3 Continued

significant | IS group | origin e-value annotation query begin end
alignment family
ISPpul2 ISL3 Pseudomonas | 2.00E-12 MerR family scaffold 1055390 | 1054989
putida transcriptional
regulator
ISLdr1 ISKra4 | ISKra | Legionella 4.00E-11 reverse transcriptase | c47 1397 1816
4 drancourtii (RNA-dependent
DNA polymerase)
ISAzs36 15481 Azospirillum 2.00E-10 transposase scaffold 3735114 | 3734158
sp.
ISCARNS ISNCY | 1S120 | Metagenomic 3.00E-10 Sea24 scaffold 2488005 2487838
3 2 data from
CARNOULE
S
ISYps3 Tn3 Yersinia 3.00E-10 hypothetical protein c80 1357 758
pseudotubercu plu3296
losis
1SSba3 1S3 1S3 Shewanella 5.00E-10 transposase scaffold 3018941 3019216
baltica 1S3/1S911 family
protein
1S231K 1S4 1S231 | Bacillus 2.00E-08 ribosomal-protein- scaffold 3696845 3696573
cereus alanineacetyltransfer
ase
ISStmall ISL3 Stenotrophom | 2.00E-08 transposase scaffold 2930434 | 2930069
onas
maltophilia
ISKpn28 15481 Klebsiella 1.00E-07 hypothetical protein scaffold 3223595 3223281
pneumoniae KPN_pKPN3p05990
ISNpu13 ™3 Nostoc 2.00E-06 site-specific scaffold | 2709485 | 2710078
punctiforme recombinase XerD-
like protein
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Table 4-3 Continued

significant | IS group | origin e-value annotation query begin end
alignment family
ISMdi3 1S3 1S407 | Methylobacter | 1.00E-05 transposase of scaffold 3993097 | 3993363
ium 1ISMdi3, IS3family
dichlorometha (ORF 1)
nicum
Table 4- 4 Details of insertion sequence for P. mirabilis draft genome 1
significant | IS group origin e-value annotation query begin end
alignment family
1S609 1S200/1 Escherichia 0 | putative transposase | scaffold 639358 640551
S605 coli
1SSde6 1S3 1S3 Shewanella 7.00E-67 | integrase catalytic scaffold 291770 292222
denitrificans subunit
1S609 1S200/1 Escherichia 4.00E-64 | putative transposase | scaffold 3747161 3746736
S605 coli
1ISDgel0 1S200/1 Deinococcus 5.00E-59 | transposase, scaffold 3747181 3748326
S605 geothermalis 1S891/1S1136/1S134
1
ISPIu15 ISNCY | ISPlul | Photorhabdus 3.00E-57 | ISNCY family scaffold 2850047 2849298
5 luminescens transposase
1S606 1S200/1 Helicobacter 1.00E-44 | 1S200 insertion scaffold 3512519 3512929
S605 pylori sequence
fromSARA17
1ISSm4 ISL3 Serratia 1.00E-43 | hypothetical protein | scaffold 741125 740310
marcescens CAP2UW1_4293
ISPpul2 ISL3 Pseudomonas 4.00E-28 | lipoprotein signal scaffold 3918609 3919046
putida peptidase
1SCepl ISKra4 | ISAzba | Crinalium 4.00E-28 | integrase family scaffold 219697 219137
1 epipsammum protein
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Table 4-4 Continued

significant | IS group origin e-value annotation query begin end
alignment family
1SSs1 1S200/1 | 1S1341 | Synechococcu 5.00E-27 | transposase scaffold 3639013 3639966
S605 s sp.
1SSoc3 1S200/1 Synechococcu 7.00E-27 | 1SSoc3, orfA scaffold 102862 102479
S605 S sp. transposase
ISKpn25 ISL3 Klebsiella 6.00E-26 | putative type scaffold 1999932 1998736
pneumoniae Irestriction-
modification system
DNA methylase
ISTel2 1S200/1 Thermosynec 2.00E-25 | transposase scaffold 1417342 1417743
S605 hococcus
elongatus
1ISSm4 ISL3 Serratia 9.00E-24 | hypothetical protein | scaffold 1996374 1994497
marcescens KPN_pKPN4
p07084
ISBlo15 1S200/1 | 1S1341 | Bifidobacteri 1.00E-22 | transposase, 1S605 scaffold 805399 805989
S605 um longum OrfB family
ISRhba4 15481 Rhodobactera 1.00E-21 | integrase scaffold 938810 939022
les bacterium
1S891 1S200/1 | 1S1341 | Anabaena sp 2.00E-21 | transposase scaffold 2606823 2606098
S605
1SSod25 1S91 Shewanella 4.00E-21 | 1SSod25 integrase scaffold 2057434 2056598
oneidensis Int_ISSod25
ISCgl1l 15481 Corynebacter 2.00E-19 | chloramphenicol scaffold 1266629 1265523
ium exporter
glutamicum
ISClte2 1S200/1 Clostridium 2.00E-17 | transposase-related scaffold 120767 120369
S605 tetani protein
1ISDge19 1S200/1 | 1S1341 | Deinococcus 2.00E-15 | transposase, 1S605 scaffold 805371 804511
S605 geothermalis OorfB
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Table 4-4 Continued

significant | IS group origin e-value annotation query begin end
alignment family
ISPpul2 ISL3 Pseudomonas 3.00E-14 | MerR family scaffold 2874511 2874107
putida transcriptional
regulator
ISPlu2 1S200/1 | 1S200 Photorhabdus 9.00E-13 | 1S200 family scaffold 3178639 3179052
S605 luminescens transposase
ISNph21 1S200/1 | 1S1341 | Natronomona 6.00E-12 | 1S1341-type scaffold 28181 28849
S605 s pharaonis transposase
ISNpul13 Tn3 Nostoc 4.00E-10 | site-specific scaffold 1177440 1176892
punctiforme recombinase XerD-
like protein
ISPpul2 ISL3 Pseudomonas 6.00E-10 | MerR family c45 1812 1426
putida transcriptional
regulator
1SSpu9 1S4 1S50 Shewanella 7.00E-10 | transposase Tn5 scaffold 3405095 3405355
putrefaciens dimerisation subunit
1SSis2 1S200/1 Sulfolobus 4.00E-08 | transposase scaffold 55464 56123
S605 islandicus
1SCaal0 1S200/1 | 1S200 Candidatus 7.00E-08 | hypothetical protein | scaffold 639302 638934
S605 Amoebophilus Aasi_1732
asiaticus
ISHhu2 1S200/1 Halobacteriu 2.00E-07 | transposase, 1S605 scaffold 1416427 1415792
S605 m hubeiense OrfB family
ISPpu12 ISL3 Pseudomonas 3.00E-07 | MerR family c51 283 95
putida transcriptional
regulator
1S231K 1S4 1S231 Bacillus 4.00E-07 | HAD superfamily scaffold 3163243 3163959
cereus hydrolase

117




Table 4- 5 Details of insertion sequence for P. mirabilis draft genome 2.

significant | IS group origin e-value annotation query begin end
alignment family
1S609 1S200/1 Escherichia coli 0 putative scaffold 930701 931894
S605 transposase
1SSde6 1S3 1S3 Shewanella 7.00E-67 integrase scaffold 579118 579570
denitrificans catalytic
subunit
1S609 1S200/1 Escherichia coli 4.00E-64 | putative scaffold 59776 59351
S605 transposase
I1ISDgel0 1S200/1 Deinococcus 5.00E-59 | transposase, scaffold 59796 60941
S605 geothermalis 1S891/1S1136/1
S1341
ISPlu15 ISNCY ISPlul | Photorhabdus 3.00E-57 ISNCY family scaffold 3140468 | 3139719
5 luminescens transposase
1S606 1S200/1 Helicobacter 1.00E-44 1S200 insertion | scaffold 3803561 3803971
S605 pylori sequence
fromSARA17
1ISSm4 ISL3 Serratia 1.00E-43 | hypothetical scaffold 1030472 1029657
marcescens protein
CAP2UW1_42
93
ISMex20 1S200/1 1S200 Methylobacteriu 1.00E-29 | transposase scaffold 390128 389772
S605 m extorquens
ISPpul2 ISL3 Pseudomonas 4.00E-28 lipoprotein scaffold 231224 231661
putida signal peptidase
1SCepl ISKra4 ISAzb | Crinalium 4.00E-28 integrase scaffold 507044 506484
al epipsammum family protein
1SSs1 1S200/1 15134 Synechococcus 5.00E-27 | transposase scaffold 3930055 3931008
S605 1 sp.
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Table 4-5 Continued

significant | IS group origin e-value annotation query begin end
alignment family
ISKpn25 ISL3 Klebsiella 6.00E-26 | putative type | scaffold 2289290 | 2288094
pneumoniae restriction-
modification
system DNA
methylase
ISTel2 1S200/1 Thermosynechoco | 2.00E-25 | transposase scaffold 1706694 1707095
S605 ccus elongatus
1ISSm4 ISL3 Serratia 9.00E-24 | hypothetical scaffold 2285732 2283855
marcescens protein
KPN_pKPN4p
07084
I1SBlo15 1S200/1 15134 Bifidobacterium 1.00E-22 | transposase, scaffold 1094747 1095337
S605 1 longum 1S605 OrfB
family
ISRhba4 15481 Rhodobacterales 1.00E-21 integrase scaffold 1228158 1228370
bacterium
1S891 1S200/1 1S134 | Anabaena sp 2.00E-21 | transposase scaffold 2895996 2895271
S605 1
1SSod25 1S91 Shewanella 4.00E-21 1SSod25 scaffold 2346792 2345956
oneidensis integrase
Int_1SSod25
ISCgl1l 15481 Corynebacterium | 2.00E-19 | chloramphenico | scaffold 1555978 | 1554872
glutamicum | exporter
ISClte2 1S200/1 Clostridium tetani | 2.00E-17 | transposase- scaffold 408112 407714
S605 related protein
151535 1S607 Mycobacterium 2.00E-15 | putative scaffold 1706665 1705748
tuberculosis TRANSPOSAS
E
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Table 4-5 Continued

significant | IS group origin e-value annotation query begin end
alignment family
I1ISDge19 1S200/1 1S134 | Deinococcus 2.00E-15 | transposase, scaffold 1094718 | 1093858
S605 1 geothermalis 1S605 OrfB
ISPpul2 ISL3 Pseudomonas 3.00E-14 MerR family scaffold 3164933 3164529
putida transcriptional
regulator
ISHbo5 1S200/1 1S605 Halogeometricum | 2.00E-12 | transposase scaffold 930660 930274
S605 borinquense
ISNph21 1S200/1 1S134 Natronomonas 6.00E-12 1S1341-type scaffold 315524 316192
S605 1 pharaonis transposase
ISNpul13 Tn3 Nostoc 4.00E-10 | site-specific scaffold 1466789 1466241
punctiforme recombinase
XerD-like
protein
1SOih2 1S200/1 1S200 | Oceanobacillus 6.00E-10 | transposase for | scaffold 286600 286232
S605 iheyensis 1S657
ISPpul2 ISL3 Pseudomonas 6.00E-10 MerR family c45 1812 1426
putida transcriptional
regulator
I1SSpu9 1S4 1S50 Shewanella 7.00E-10 | transposase scaffold 3693058 | 3693318
putrefaciens Tn5
dimerisation
subunit
ISPpul2 ISL3 Pseudomonas 3.00E-07 MerR family c51 283 95
putida transcriptional
regulator
1S231K 1S4 1S231 Bacillus cereus 4.00E-07 HAD scaffold 3453667 3454383
superfamily
hydrolase

120




Table 4-5 Continued

significant | IS group origin e-value annotation query begin end

alignment family

ISHma7 1S200/1 Haloarcula 8.00E-07 | transposase scaffold 342808 343476
S605 marismortui
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CHAPTER V

CONCLUSION

As the advance in high-throughput sequencing enables the generation of large
volumes of genomic and transcriptomic information, it provides researchers the
opportunity to study non-model organisms even in the absence of a fully sequenced
genome. This progress calls for powerful sequencing assembly algorithms because there
are some challenging assembly problems related to the production of genomic and
transcriptomic data from organisms whose genomes are not already known: (1) Some
RNA products are highly expressed but others may have much lower expression level. (2)
Data cannot easily be represented as a linear structure, due to post-transcription
modification like alternative splicing. (3) Conserved sequences in domains in gene
families make it difficult to understand whether a de novo sequence can be attributed to a
single gene or several genes in a family, (4) sequencing errors due to technique
limitations can interfere with the ability to develop effective de novo assemblies.

These assembly problems can be partially overcome by powerful assembly
algorithms for non-model organisms. For those transcripts which are lowly expressed
and may be ignored by traditional post-processing algorithms, they can be recovered by
my algorithms extcontig and mutual. For transcripts generated from the same genes with
alternative splicing events, branched structures are required to show relationship
between these splicing products. Conserved sequences in domains in gene families may

cause cyclic structures which brings trouble in post-processing and may be ignored in
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transcript prediction. Partial sequencing errors can be corrected by increasing coverage
cutoff of k-mers in de Bruijn graphs.

Advanced development in transcriptome sequencing calls for powerful sequencing
assembly algorithms. | have developed algorithms that make use of evolutionary
information to recover more similar transcripts from RNA-seq data especially those with
low expression levels compared to traditional algorithms like Oases and Trans-ABYSS.
When my algorithms are applied to model organisms, it may be more time-consuming
compared to current mapping-first algorithms which are based on fast alignment. The
performance of my algorithms may not outcompete to the mapping-first algorithms
because they make use of reference information, which is not required in my algorithms.
The performance of my algorithms is affected by evolutionary distance between related
organisms and complexity of their transcriptomes. For example, for the RNA-seq dataset
of mouse transcriptome, my algorithms identify more and longer similar transcripts with
transcript information of rat than that of human. Its performance is better on dataset of
plants than yeast which shows less splicing events. My algorithms can be implemented
in parallel by assigning disjoint subsets of nodes to different processors for extension,
requiring less memory compared to current algorithms. This capability is advantageous
for implementation by smaller research groups that lack access to higher-level
computing systems. With their application to non-model organisms, computing systems
with small memory are sufficient to identify similar transcripts, which may be longer

and with higher resolution compared to current memory-intensive algorithms.
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Although my algorithms requires less memory to identify similar transcripts from de
Bruijn graphs compared to current post-processing algorithms, construction of de Bruijn
graphs with large-scale sequence dataset still takes large memory. Future research can be
performed on improvement of memory requirement of de Bruijn graph generation.

Current algorithms also help to annotate non-model organisms. For example,
Prokaryotic dynamic programming gene-finding algorithm (Prodigal) can be applied to
predict gene regions accurately. It shows high-quality gene prediction with low false
positive rates. Therefore | apply different existing algorithms to annotate genomes of P.
mirabilis and P. stuartii. The genome annotation work helps to understand interkingdom
signaling between bacteria community and insects. My study on those genomes shows
the differences between my strains isolated from larvae of blow flies and reference
strains isolated from patients before, which may give hints to research of fly influence on
bacteria community.

Non-model organisms are not well studied but the advance of high throughput
sequencing technologies enables the genomic and transcriptomic studies by providing
large volumes of sequence data. Application of existing and new algorithms paves the
way to identifying genotypes that correspond to phenotypic features which play an

important role in applied biology and broad view of scientists.
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