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ABSTRACT 

 

During the past five decades, research in damage detection has been rapidly 

expanding. Most of the methods explored are based on changes in frequencies, mode 

shapes, mode shape curvature, and flexibilities. These methods can only detect and 

locate damage. Current methods can seldom identify the exact severity of damage to 

structures. In this research, a new non-destructive evaluation method is proposed to 

identify the existence, location, and severity of damage for structural systems. 

Additionally, damage in mass, damping and stiffness will be characterized. The goal of 

this research is to develop the concept of Dynamic ISR method and apply it to specific 

types of structures. The method utilizes dynamic analysis of the structures to simulate 

direct measurements of acceleration, velocity and displacement simultaneously. 

Numerical results demonstrate that the application of the method will reflect the 

advanced sensitivity and accuracy of the method in characterizing multiple damage 

locations. 
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ISR Invariant Stress Resultants 

NDE Non-destructive Evaluation 

SHM Structural Health Monitoring 

DOF Degree of Freedom 
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FEA Finite Element Analysis 

MAC Modal Assurance Criterion 

COMAC Coordinate Modal Assurance Criterion 

STRECH Structural Translational and Rotational Error Checking 

 



vi 

 

TABLE OF CONTENTS 

 

     Page 

ABSTRACT ..............................................................................................................  ii 

DEDICATION ..........................................................................................................  iii 

ACKNOWLEDGEMENTS ......................................................................................  iv 

NOMENCLATURE ..................................................................................................  v 

TABLE OF CONTENTS ..........................................................................................  vi 

LIST OF FIGURES ...................................................................................................  ix 

LIST OF TABLES ....................................................................................................  xi 

CHAPTER I INTRODUCTION ...............................................................................  1 

 1.1 Overview .......................................................................................................  1 

 1.2 Objectives ......................................................................................................  3 

 1.3 Significance ...................................................................................................  4 

 1.4 Limitations ....................................................................................................  5 

CHAPTER II BACKGROUND ................................................................................  6 

 2.1 Current Methods ............................................................................................  6 

 2.2 Limitations of Current Methods ....................................................................  12 

CHAPTER III SINGLE DEGREE OF FREEDOM .................................................  15 

 3.1 Overview of dynamic ISR Method ...............................................................  15 

 3.2 Application to SDOF System ........................................................................  16 

 3.3 Simulation Procedure for SDOF System, .....................................................  19 

 3.4 Results for SDOF System .............................................................................  21 

 3.5 Conclusions for SDOF System .....................................................................  23 

CHAPTER IV MULTI-DEGREE OF FREEDOM ..................................................  25 

 4.1 Overview of dynamic of ISR Method for MDOF System ............................  25 

 4.2 Simulation procedure for Two degree of freedom System ...........................  30 



vii 

 

 4.3 Results for Two Degree of Freedom System ................................................  34 

 4.4 Simulation procedure for Five Degree of Freedom System ..........................  40 

 4.5 Results for 5-DOF System ............................................................................  43 

 4.6 Conclusion for MDOF System ......................................................................  45 

CHAPTER V ROD SYSTEM ...................................................................................  47 

 5.1 Overview of dynamic ISR Method for Rod System .....................................  47 

 5.2 Application to Rod System ...........................................................................  49 

 5.3 Simulation Procedure for Rod System ..........................................................  52 

 5.4 Results for Rod System .................................................................................  54 

 5.5 Conclusion for Rod System ...........................................................................  56 

CHAPTER VI BEAM SYSTEM ..............................................................................  58 

 6.1 Overview of dynamic ISR Method for Beam System ...................................  58 

 6.2 Overview for Euler-Bernoulli Beam System ................................................  58 

 6.3 Application to Euler-Bernoulli Beam System ...............................................  61 

 6.4 Simulation Procedure for Euler-Bernoulli Beam System .............................  64 

 6.5 Results for Euler-Bernoulli Beam System ....................................................  66 

 6.6 Conclusions for Beam System ......................................................................  70 

CHAPTER VII TRUSS SYSTEM ............................................................................  72 

 7.1 Overview of dynamic ISR Method for Truss System ...................................  72 

 7.2 Application to Truss System .........................................................................  74 

 7.3 Simulation Procedure for Truss System ........................................................  77 

 7.4 Results for Truss System Simulation ............................................................  79 

 7.5 Conclusion for truss system ..........................................................................  81 

CHAPTER VIII FRAME SYSTEM .........................................................................  83 

 8.1 Overview of Frame System ...........................................................................  83 

 8.2 Application to Frame System ........................................................................  86 

 8.3 Simulation Procedure for Frame System ......................................................  89 

 8.4 Results for Frame System .............................................................................  91 

 8.5 Conclusion for Frame System .......................................................................  93 

CHAPTER IX CONCLUSION AND FUTURE WORK .........................................  95 

 9.1 Conclusions ...................................................................................................  95 

 9.2 Future Work ..................................................................................................  96 

REFERENCES ..........................................................................................................  97 



viii 

 

APPENDIX A ...........................................................................................................  102 



ix 

 

LIST OF FIGURES 

 

     Page 

Figure I.1 Concept of damage (Federal Highway Administration, 2007).................  1 

Figure III.1 Pre-damaged and post-damaged system for single degree of freedom..  16 

Figure III.2 Stress resultants and external force in initial and final system ..............  17 

Figure IV.1 Mass-damping-stiffness multi-degree of freedom system model ..........  25 

Figure IV.2 The thi  member for pre-damage and post-damage cases.......................  26 

Figure IV.3 Stress resultants and external force in initial and final systems ............  27 

Figure IV.4 Two degree of freedom system model for undamaged case..................  30 

Figure IV.5 Two degree of freedom system model for damaged case......................  30 

Figure IV.6 Five degree of freedom system model in undamaged case ...................  41 

Figure IV.7 Five degree of freedom system model in damaged case .......................  41 

Figure V.1 Portion of a member undergoing axial deformation ...............................  48 

Figure V.2 Free-body diagram of a length-element member ....................................  48 

Figure V.3 Free-body diagram for the element length member ................................  49 

Figure V.4 Axial displacement for the thi  member ...................................................  50 

Figure V.5 Cross-section of the rod model ...............................................................  52 

Figure V.6 Finite element mesh of rod system .........................................................  53 

Figure V.7 Calculated damage indicators for Case 1 for rod system ........................  54 

Figure V.8 Calculated damage indicators for Case 2 for rod system ........................  55 

Figure V.9 Calculated damage indicators for Case 3 for rod system ........................  55 



x 

 

Figure V.10 Calculated damage indicators for Case 4 for rod system ......................  56 

Figure VI.1 Euler-Bernoulli beam model .................................................................  59 

Figure VI.2 Internal force of Euler Bernoulli beam system ......................................  60 

Figure VI.3 Free-body diagram of the Euler-Bernoulli beam member .....................  62 

Figure VI.4 Transverse displacement for the thi  member .........................................  63 

Figure VI.5 Cross-section of the beam model ...........................................................  65 

Figure VI.6 Finite element mesh of simply supported beam system ........................  65 

Figure VI.7 Calculated damage indicators for Case 1 for beam system ...................  67 

Figure VI.8 Calculated damage indicators for Case 2 for beam system ...................  68 

Figure VI.9 Calculated damage indicators for Case 3 for beam system ...................  68 

Figure VI.10 Calculated damage indicators for Case 4 for beam system .................  69 

Figure VII.1 
thj  joint equilibrium .............................................................................  73 

Figure VII.2 Truss Model ..........................................................................................  78 

Figure VIII.1 The 
thj  joint of the frame system .......................................................  84 

Figure VIII.2 Simple frame system ...........................................................................  87 

Figure VIII.3 Frame model .......................................................................................  90 

Figure VIII.4 Cross section for frame model ............................................................  90 

Figure A.1 Cantilever beam model ...........................................................................  126 

Figure A.2 Calculated damage indicators for Case 1 for cantilever beam ................  126 

 



xi 

 

LIST OF TABLES 

 

     Page 

Table III.1 Damage indices for seven damage cases ................................................  19 

Table III.2 Actual Results for seven cases ................................................................  20 

Table III.3 Calculated damage indices for seven cases .............................................  22 

Table III.4 Calculated damage severity for seven damage cases ..............................  23 

Table IV.1 Description of different damage cases ....................................................  32 

Table IV.2 The actual values for damage indicators .................................................  33 

Table IV.3 Results for mass damage indices ............................................................  35 

Table IV.4 Results for damping damage indices ......................................................  36 

Table IV.5 Results for stiffness damage indices for twelve cases ............................  37 

Table IV.6 Results of mass damage severity for twelve cases ..................................  38 

Table IV.7 Results of damping damage severity for twelve cases ............................  39 

Table IV.8 Results of stiffness damage severity for twelve cases ............................  40 

Table IV.9 Description of the damage case for 5-DOF ............................................  42 

Table IV.10 Dynamic loads for pre-damage and post-damage system .....................  43 

Table IV.11 Results for damage indices for 5-DOF .................................................  44 

Table IV.12 Results for damage severity for 5-DOF ................................................  44 

Table V.1 Damage cases for rod system ...................................................................  53 

Table VI.1 Damage cases for Euler-Bernoulli beam system ....................................  66 

Table VII.1 The connectivity information of truss model ........................................  79 



xii 

 

Table VII.2 Damage cases for truss system ..............................................................  79 

Table VII.3 Results of damage indicators parameter for truss system ......................  80 

Table VII.4 Results for damage severities for truss system ......................................  80 

Table VIII.1 The connectivity information of truss model .......................................  90 

Table VIII.2 The damage cases for frame system .....................................................  91 

Table VIII.3 Results of damage indicators parameter for frame system ..................  92 

Table VIII.4 Results for damage severities for frame system ...................................  92 

Table A.1 Description of damage Case 1 for SDF model .........................................  103 

Table A.2 Results for Case 1 for SDOF model based on same time step number ....  103 

Table A.3 Results for Case 1 for SDOF model based on same time step size ..........  103 

Table A.4 Description of damage case 2 for SDOF model .......................................  104 

Table A.5 Results for case 2 for SDOF model based on same time step number .....  104 

Table A.6 Results for case 2 for SDOF model based on same time step size ...........  104 

Table A.7 Description of damage case 3 for SDOF model .......................................  105 

TableA.8 Results for case 3 for SDOF model based on same time step number ......  105 

Table A.9 Results for case 3 for SDOF model based on same time step size ...........  105 

Table A.10 Description of damage case 4 for SDOF model .....................................  106 

Table A.11 Results for case 4 for SDOF model based on same time step number ...  106 

Table A.12 Results for case 4 for SDOF model based on same time step size .........  106 

Table A.13 Description of damage case 5 for SDOF model .....................................  107 

Table A.14 Results for case 5 for SDOF model based on same time step number ...  107 

Table A.15 Results for case 5 for SDOF model based on same time step size .........  107 



xiii 

 

Table A.16 Description of damage case 6 for SDOF model .....................................  108 

Table A.17 Results for case 6 for SDOF model based on same time step number ...  108 

Table A.18 Results for case 6 for SDOF model based on same time step size .........  108 

Table A.19 Description of damage case 7 for SDOF model .....................................  109 

Table A.20 Results for case 7 for SDOF model based on same time step number ...  109 

Table A.21 Results for case 7 for SDOF model based on same time step size .........  109 

Table A.22 Results for Case 1 for rod system ...........................................................  110 

Table A.23 Results for Case 2 for rod system ...........................................................  112 

Table A.24 Results for Case 3 for rod system ...........................................................  114 

Table A.25 Results for Case 4 for rod system ...........................................................  116 

Table A.26 Results for Case 1 for simply supported beam system ...........................  118 

Table A.27 Results for Case 2 for simply supported beam system ...........................  120 

Table A.28 Results for Case 3 for simply supported beam system ...........................  122 

Table A.29 Results for Case 4 for simply supported beam system ...........................  124 

Table A.30 Damage case description for cantilever beam system ............................  126 

Table A.31 Results for Case 1 for cantilever beam system ......................................  127 

 

 



1 

 

CHAPTER I 

INTRODUCTION 

 

1.1 Overview 

Damage is the main cause of structural failures. In order to avoid failure, it is 

important to identify the minor damage early on. Damage can appear as cracks, 

corrosion and spalling, as well as local deformation both inside and outside the 

structures. Yao (1972) gave a definition of damage as “the occurrence of any 

modification in a part, or parts of a structure that can impair the intended performance of 

the structure.” From this definition, damage identification must compare two different 

states of structures. One is initial state, or undamaged state. The second is the final state 

(Farrar and Worden, 2007). Therefore, the definition of damage provides a general idea 

on how to obtain the current performance changes of a system, such as material and 

geometric properties. Figure I.1depicts a structure with cracks, corrosion / spalling and 

deformation. 

 

Figure I.1 Concept of damage (Federal Highway Administration, 2007) 
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In a general case, compliance, mass, damping and stiffness of the thi  member of 

the system can be defined as iF , im , ic  and ik , with changes defined as iF , im , ic   

and ik   respectively. Local mechanical manifestations of damage can be described as: 

 Increase in compliance (crack): 0iF    

 Decrease in stiffness (crack, corrosion): 0ik     

 Increase in damping (closed crack): 0ic    

 Decrease in damping (open crack): 0ic    

 Increase in mass (flooding): 0im    

 Decrease in mass (corrosion): 0im    

Knowing the mechanical manifestation of damage is not enough. Our research 

goal is to identify and predict damage so as to decrease loss. Structural Health 

Monitoring (SHM) involves the process of implementing a damage identification and an 

evaluation of the current status of the system health. In the long-term, because of the 

operational environment, the inevitable aging and damage accumulation will impact the 

intended performance of the structure. The output of SHM process periodically renews 

the information, which shows the current state of the structure. Under the external 

events, such as an earthquake or wind loads, SHM provides rapid condition screening to 

display the reliable information about system states and operational evaluation of the 

system (Farrar and Worden, 2007).  

Rytter (1993) gives the four principal damage stages of structural health 

monitoring: 



3 

 

 Level I: Only identify if damage has occurred 

 Level II: Identify and locate damage 

 Level III: Identify, locate and estimate the severity of damage 

 Level IV: Identify, locate, estimate, and evaluate the impact of damage on the 

structure. 

Non-destructive evaluation (NDE) is a wide set of analysis approaches used to 

perform SHM without causing damage to the physical structure. Thus, the above levels 

also can be used as a classification of NDE. The recently published methods mostly 

belong to the first two Levels. Level III & IV methods are what researchers work 

towards. The most generalized indicators to characterize the damage in a Level III NDE 

method can be explained in following equations (Stubbs, 1992): 

   i

i

Mass damage se
m

v rity
m

e


   (1.1)  

   i

i

Damping damage seve ity
c

c
r


   (1.2) 

   i

i

Stiffness damage severity
k

k


   (1.3) 

If the damage severity for a localized region equals to zero, there is no damage. 

Otherwise, damage is present in that region.  

1.2 Objectives 

The goal of this research is to propose an effective method to detect the 

existence, location and severity of damage to predict the state of the structures. The 

proposed dynamic ISR (Invariant Stress Resultants) method is developed and utilized to 
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detect the damage of corresponding changes in mass and stiffness in 1-D and 2-D 

models. The objectives of this research are to: 

1) Develop the basic theory of dynamic ISR method and apply it to the specific types of 

structures. 

2) Verify the accuracy of the developed theory using exact structural response 

quantities simulated from the static analysis of Finite Element models. 

1.3 Significance 

The proposed new method, dynamic ISR, is a Level III evaluation method that 

has the following advantages: 

 The potential to provide a clear indicator of damage location. 

 Potentially sensitive to small levels of damage and damage that occurs in 

inaccessible locations. 

 Only experimental data, including acceleration, velocity and displacement is 

needed to complete the analyses. The values of external force, mass, stiffness, 

and damping do not need to be provided. 

 Applicable to nearly all type of structure and multiple damage locations cases. It 

will detect mass, damping and stiffness change at the same time. 

 May provide accurate quantitative values of mass, damping, and stiffness 

damage severities. 

 Computational process is straight-forward and robust. 

According to the advantages listed above, this theory has the potential to be a 

valuable Level III non-destructive evaluation method. If it can be widely used in the 
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field, it will help to evaluate service life of structures and deduct the loss caused by 

damages. 

1.4 Limitations 

Although the proposed dynamic ISR shows great significant performance in 

identification damage, it still incomplete to some extent. Some noted limitations include: 

 The research mainly focuses on 1-D and 2-D structures. 3-D structures, such as 

plate structures, are not considered. 

 For beam system, truss system and frame system, only mass and stiffness will be 

explained in detail, but damping damage is not considered. 

 In practical situations, in order to get the exact location and severity of the 

damage, it may require data from closely-spaced sensors.  

As a new member of NDE methods are available, additional research will be 

required to refine the dynamic ISR method address the above limitations. 
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CHAPTER II  

BACKGROUND 

 

Early development in vibration-based damage detection was performed in the 

late 1970s and early 1980s. Most proposed techniques were in the offshore oil industry 

(Vandiver, 1975, 1977; Wojnarowski et al., 1977; Whittome and Dodds, 1983). Because 

the waterline measurements can only provide information about resonant frequencies, 

the influence of the environmental conditions was not considered in the results. Thus, the 

oil industry almost abandoned pursuit of this methodology in the mid-1980s. 

2.1 Current Methods 

In the past three decades, methods of damage identification has become very 

broad for both local and global. In this paper, the literature review mainly focuses on the 

development of vibration-based damage detection. 

 Frequency Changes / Frequency-Change Ratios 

Doebling (1996) and Salawu (1997) reviewed on the application of modal 

frequency changes for damage diagnostics. From these thorough reviews, researchers 

noticed that the shifts of frequency had significant practical limitations when applied to 

structures, although ongoing further work might help resolve these difficulties. 

2.1.1.1 Level I Methods 

Adams et al. (1978) used the change of frequency to classify glass fiber 

reinforced plastics and the cracks in unidirectional carbon. They used axial modes to 

identify and locate the damage in a one-dimensioned system. Cawley and Adams (1979) 
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provided a formulation to predict damage in composite materials based on the change of 

frequency. For each potential damaged location, they compared a number of mode 

shapes and overlapped the results to reduce the error to detect the damage. The drawback 

of this method is that it is not sensitive enough to identify multiple-damage locations. 

Friswell et al. (1994) used an existing model of a structure to compute frequency 

changes of the first several modes for both the initial and the final states. Furthermore, 

they calculated the ratios of all the changes in frequency and compared the results. Two 

measures of fit were used: a correlation coefficient, and how close the exponent and 

coefficient are to unity. The quality of the fit to a known pattern of damage was the 

possibility of damage. Juneja, et al. (1997) proposed a new method called contrast 

maximization and provided a predictive measurement to detect damage. In this method, 

a database of responses was developed. By matching the different response data, damage 

in the structures could be detected. 

2.1.1.2 Level II Methods 

On the basis of the work of Cawley and Adams (1979), Stubbs and Osegueda 

(1990) developed an explicit damage identification technique using the sensitivity of 

modal frequency changes. In this method, only one damage location is assumed. An 

error function for each mode and each member is proposed as part of the method. The 

member, whose function has the minimum error value is defined as the damaged 

element. However, this method limited in that it relies on the sensitivity matrices based 

on the accuracy of the Finite Element Model (FEM). To solve this problem, Stubbs et al. 

(1992) developed the damage index method using mode shape curvature changes. 
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 Mode Shape Changes 

Allemang and Brown (1982) presented a new method, modal assurance criterion 

(MAC), to find the relationship between two groups of mode shapes. West (1984) used 

the same technique to determine the level of correlation between two modes. One of the 

modes is from the test of an undamaged Space Shuttle Orbiter body flap while the other 

mode is from the test of the flap after it had been exposed to acoustic loading. Lieven 

and Ewins (1988) presented the Co-ordinate Modal Assurance Criterion (COMAC) and 

used it as a damage detection index. MAC indicates the correlation between two sets of 

mode shapes. COMAC shows the correlation between the mode shapes at a selected 

measurement point of a structure. 

Mayes (1992) presented a method called Structural Translational and Rotational 

Error Checking (STRECH), which accessed the precise of the different stiffness between 

two degrees of freedom by approaching model error localization. Ratcliffe (1997) 

proposed a technique focusing on beam-like structures, which using a Laplacian operator 

on mode shape data to do finite difference approximation. Cobb and Liebst (1997) did an 

eigenvector sensitivity analysis to present a method for prioritizing sensor locations for 

damage identification. Skjaeraek et al. (1996b) examined the optimal sensor location 

issue to do damage detection. By using a substructure iteration method, the changes in 

mode shapes and modal frequencies were computed. 
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 Mode-Shape-Curvature / Strain Mode Shape Changes 

2.1.3.1 Local changes in mode shape curvature 

Pandey et al. (1991) introduced a new parameter called “mode shape curvature”. 

By comparing the difference in the mode shape curvature between the initial and the 

final case, the crack of the FEM beam structure was located. By using the central 

difference operator, the values of mode shape curvature were calculated from the 

displacement mode shape. 

2.1.3.2 Conservation of local fractional modal strain energy 

Stubbs et al. (1992) presented a method called the damage index method, which 

relied on the decrease in modal strain energy in 2-DOF. The changes of the modal strain 

energy can be defined as the curvature of measured mode shapes. The basic assumption 

of this method is that the fractional strain energy of the
thj  element is the same in both 

intact and damaged system.  

Some researchers computed mode shape curvature from the acceleration and 

displacement while other researchers measured the strain directly. Chance et al. (1994) 

was one such researcher that used the measured strain instead of the measure curvature. 

This approach significantly avoids the unacceptable errors resulting from computing the 

mode shape curvature from acceleration and displacement data. 

 Increase in Flexibility 

2.1.4.1 Flexibility Changes 

Aktan et al. (1994) presented a method that used measured flexibility as a 

condition index to detect the relative integrity of two bridges. The presented complete 
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nodal system allows for strain-based measurement as well as testing and multi-input / 

multi-output forced excitation frequency response measurement. The results of the 

research demonstrated the reliable and feasible assessment to highway bridges. Toksoy 

and Aktan (1994) proposed a new technique that could indicate damage even without a 

baseline data set by observing the anomalies in the deflection profile. Zhang and Aktan 

(1995) suggested that changes in curvatures of the uniform load surface, which could 

also be the deformed shape of the structure when applied to a uniform load, are 

calculated from the experiment and analysis. They proposed that changes in the uniform 

load surface will be used as the indices as for measurement of structural analysis. This 

technique was applied to a highway bridge and the results showed very accurate damage 

indices. 

Pandey and Biswas (1994, 1995) presented a Level II method based on curvature 

mode shape of structures. The curvature mode was shape computed from the 

displacement by using a central difference approximation. This method was applied to a 

cantilever beam and a simply supported analytical beam. Numerical examples showed 

that the first two measured modes of the structure could be used to obtain to realize the 

damage conditions and locations with the beam. 

Mayes (1995) used measured flexibility to do damage detection on a bridge 

based on the results of a modal test. He also used measured flexibility as the input for a 

damage identification method (STRECH). By taking ratios of modal displacements, the 

presented method evaluated changes in the FEM. Peterson et al. (1995) developed a 

method to decompose flexibility matrix into elemental stiffness parameters for a known 
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structural connectivity. The process of decomposition was accomplished by projecting 

the flexibility matrix onto the element-level structural eigenvectors. 

Catbas et al. (2008) developed a new method that is based on the changes in 

mode flexibility and flexibility curvature. They detected the existence of the damage by 

comparing flexibility-based displacement and curvature between the original and 

damaged structures. This new technique was demonstrated be very sensitive in the 

presence of damage in the system. 

2.1.4.2 Effects of Residual Flexibility 

The residual flexibility matrix indicated the contribution from modes outside the 

measured bandwidth so that the exact flexibility matrix could be associated with the 

measured modes and the residual flexibility. Doebling et al. (1996) presented a 

technique to estimate the residual flexibility between non-excited structural degrees of 

freedom from experimental vibration data. The technique completed the reciprocity of 

the residual flexible matrix. The result of the work demonstrated that the use of the rank-

deficient flexibility should improve the result of the damage evaluation. 

 Invariant Stress Resultants Method 

Dincal and Stubbs (2013) presented the Static Invariant Stress Resultants (ISR) 

method, which could accurately locate and size damage in a Timoshenko beam.  Li and 

Stubbs (2013) expanded this method by using structural member energy strains to get the 

stiffness damage severity. The basic concept of invariant stress resultants is that at any 

given cross section the resultant internal force distribution in a structural member was 

not affected by the inflicted damage. The principal of the ISR method was that the local 
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damage decreases showed in the bending and shear stiffness in the structural member. 

These changes finally led to the variable of deformation properties generated from the 

static analysis. In order to accomplish the condition for the invariant stress resultants, the 

same static external forces were applied to the pre-damage and post-damage systems. 

Based on the invariant stress resultants, the ratio of pre-damage and post-damage 

elements strain energies equaled the ratio of stiffness. This method effectively avoids the 

consideration of the changes in mass and damping when detecting stiffness damage. The 

method was applied to 1-D, 2-D, and 3-D structures with single or multiple damage 

locations. This method shows very effective results in stiffness damage detection of 

structures during static loadings situations. 

2.2 Limitations of Current Methods 

 Frequency Changes 

In early publications, the proposed frequency change based methods fall into 

Level I damage identification, and most methods were used extensively by offshore oil 

industry investigators. The limitation posed by environmental conditions keeps the 

frequency shifts from precisely detecting damage. In more recent publications, some 

related methods had been developed that can be defined as Level II or Level III. 

However, these methods still show two main drawbacks: the limited range of damage 

scenarios and the low sensitivity of the frequencies to damages. 

Additionally, modal frequencies, as a global property of the structure, generally 

cannot give spatial information about structural changes. The methods to overcome the 

limitation require higher modal frequencies, where the modes are related to local 
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responses. However, the local models, which are a part of the high modal density, are 

difficult to extract. Multiple changes of frequency can provide local information about 

structural damage for different combinations of modal frequencies shifts. However, it is 

difficult to get sufficient number of frequencies shifts to estimate the damage location 

uniquely. 

 Mode Shapes Changes 

As mentioned preciously, the aim of SHM is to use damaged-sensitive features to 

determine the current states of the structures. However, the major drawback of MAC and 

COMAC is that neither are sensitive enough to realize small damages occurred in the 

early stages. The drawback of both of MAC and COMAC comes from the specific 

algorithms that distribute the differences resulting from the damage to all the 

measurement points (MAC) or to all the mode shapes (COMAC) (Heylen and Janter, 

1989; Pandey et al., 1991).  

 Change of Mode Shape Curvature 

Compared to the early methods, methods based on mode shape curvature are 

more sensitive. However, the major limitation is that it shows irreducible imprecision in 

detecting damage locations. When higher modes are utilized, false damaged locations 

will be detected. The false results will not disappear when refine system elements. 

 Changes of Flexibility  

Pandey and Biswas (1994) presented the technique based on the flexibility matrix 

of the structures. Although this new method requires few lower frequency modes, they 

did not present a clear measurable index for damage. Also, it is a problem to obtain the 
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ortho-normalized modes when applying to modes obtained from ambient data (Farrar 

and Jauregui, 1996). On the basis of previous work, Catbas et al. (2008) developed a 

damage detection method based on flexibility and flexibility based curvature. This 

method only meets the requirement of Level I, detecting the existence of damage, but is 

invalid to determine the location and the estimation of damage severity. 

 Invariant Stress Resultants Method 

Although the ISR method has produced effective results in identifying damage 

related to stiffness changes for specific structures, current approach assumes the external 

loads on the system are static. In many civil structural systems, the significant external 

forces arise from occupancy and usage of the structure, such as live loads, and from 

natural hazardous loads, such as earthquake and wind. These forces cannot be assumed 

to be static force under a performance analysis. On the other hand, the neglected mass 

and damping changes will apparently result in the changes of structures’ service life 
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CHAPTER III 

SINGLE DEGREE OF FREEDOM 

 

3.1 Overview of dynamic ISR Method 

As presented in 2.1.5, invariant stress resultant (ISR) means that the stress 

resultants are not affected by damage at any given cross section of a structural member. 

The ISR that is represented in local coordinates equals the external forces represented in 

global coordinates. Therefore, dynamic ISR method mainly focuses on establishing 

equations for invariant external forces compared to the existing static ISR method, which 

uses strain energies for a structural member. A benefit seen from this approach is that it 

is more straightforward and easy to implement, lending itself to computational 

efficiencies. Additionally, the values of the external force, the system mass, stiffness, 

and damping is not necessary during simulation.  

The dynamic-ISR methodology assumes that the initial system and the final 

system are subjected to the same external loading. It also assumes that the connectivity 

between members remains constant in both pre-damage and post-damage cases. 

Furthermore, the new methodology comes from the fundamental principles of mechanics 

of certain structures undergoing vibration. For a mass-spring-damping system, the 

equation of motion of the simple structures has been used. Based on the data at a specific 

location, which contains acceleration, velocity, and displacement, basic equilibrium is 

used and the damage severity is solved by numerical method. Based on the results of the 

specific element, the existence, location, and severity of the damage can be detected. 
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3.2 Application to SDOF System 

What follows is the description for a single degree of freedom (SDOF) mass-

damping-spring system (Figure III.1). The mass, damping and stiffness for the pre-

damaged system are m , c , and k  and for the post-damaged system, are *m , *c , and *k . 

The stress resultants for the pre-damage system and post-damage system both are  p t . 

Based on the assumption of invariant stress resultants, the external dynamic forces for 

both cases are the same,  P t . 

  

Figure III.1 Pre-damaged and post-damaged system for single degree of freedom 

 

 

 

The equation of motion for the undamaged system is 

   mx cx kx P t   , (3.1) 

while the equation of motion for the damaged system is 

  * * * * * *m x c x k x P t    (3.2) 

It is assumed that the initial acceleration x , velocity x , displacement x  and 

damaged acceleration *x , velocity *x , displacement *x are known at a specific time. 
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Because  P t  is a function of time, the acceleration, velocity and displacement for both 

cases are functions of time. 

  

Figure III.2 Stress resultants and external force in initial and final system 

 

 

 

In this example, the potential damage is expressed as a local decrease in mass, 

damping and stiffness in the structural member. At the cross-section, the consequence of 

the stress resultants shows the external force in the global coordinates (Figure III.2). As 

mentioned in the assumption, the external loading in both pre-damage and post-damage 

are the same. Based on this relationship, equations in global coordinates can be 

established to show the results of invariant stress resultants in local coordinates. 

By equating Eq. (3.1) and Eq. (3.2),  

 * * * * * *mx cx kx m x c x k x       (3.3) 

 
* *

* * *

* * * * *

m m c c k
x x x x x x

k k k k k
      (3.4) 

Assuming 1t t  , Eq. (3.4) can be written as  
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By solving Eq. (3.5), a new variable i  can be defined as 
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5 *k

k

k
    (3.8) 

The damage severity for mass, damping and stiffness are m , c ,. k   

 
1

1m

m




    (3.9) 
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    (3.10) 
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1

1k

k




    (3.11) 

Using the linear square method for several groups of equations, Eq. (3.5) written 

at different times, to solve for damage indicators will decrease errors.  

3.3 Simulation Procedure for SDOF System, 

In order to verify the presented theory, a mass-damping-spring model was built 

using SAP2000. The pre-damage model contains a particle and a link support, which can 

be taken as damping and stiffness. By decreasing the values of the mass of the particle 

and the coefficient of the link, a post-damage model can be developed. Then the same 

dynamic load, ( )P t  was applied to the particle for both initial and final cases. 

 

 

 

Table III.1 Damage parameters for seven damage cases   

 Mass  

(kip-s2)/in 

Damping  

(kip-s/in) 

Stiffness  

(kip/in) 

Force 

Amplitude 

(kips) 

Initial  3.00 1.00 2.00 1.00 

Case 1 2.40 1.00 2.00 1.00 

Case 2 3.00 0.90 2.00 1.00 

Case 3 3.00 1.00 1.40 1.00 

Case 4 2.40 0.90 2.00 1.00 

Case 5 2.40 1.00 1.40 1.00 

Case 6 3.00 0.90 1.40 1.00 

Case 7 2.40 0.90 1.40 1.00 
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Table III.2 Actual Results for seven cases  

Description of cases 
Mass Damping Stiffness 

m   m   c   c   k   k   

Case 1 – Reduction in 

mass 
1.25 -0.20 1.00 0.00 1.00 0.00 

Case 2 – Reduction in 

damping 
1.00 0.00 1.11 -0.10 1.00 0.00 

Case 3 – Reduction in 

stiffness 
1.00 0.00 1.00 0.00 1.43 -0.30 

Case 4 – Reduction in 

mass and damping 
1.25 -0.20 1.11 -0.10 1.00 0.00 

Case 5 –  Reduction in 

mass and stiffness 
1.25 -0.20 1.00 0.00 1.43 -0.30 

Case 6 – Reduction in 

damping and stiffness 
1.00 0.00 1.11 -0.10 1.43 -0.30 

Case 7 –  Reduction in 

mass, damping and 

stiffness 

1.25 -0.20 1.11 -0.10 1.43 -0.30 

 

 

 

For the SDOF system, only one damage location can be applied, but multiple 

types of damages can be combined in the simulation cases. These different types of 

damages include reduction of the mass, damping, and stiffness. Seven different 

combinations were designed and can be summarized in Table III.1. 

The acceleration, velocity and displacement for the initial and final system can be 

calculated directly by dynamic analysis using SAP2000. Using the data from the finite 
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element program, the damage indices and damage severity can be calculated. The actual 

values for damage indices and damage severity for each case are listed in Table III.2.  

3.4 Results for SDOF System 

Using the acceleration, velocity and displacement data from the pre-damage and 

post-damage systems, the damage indices and damage severity in every case can be 

calculated, which are listed in the Table III.3 and Table III.4. In Table III.3, the column 

of percent error shows the difference between the actual damage indices values and the 

calculated damage indices values. Similarly, in Table III.4, the absolute error provides 

the slight difference between the damage severities in initial and final systems. The 

reason to use absolute value for Table III.4 is to prevent zero as dominator when there is 

no changes in the parameters. 

The damage indices showed in Table III.3 can reflect the ratio of the original 

parameters and post-damaged parameters. For example, when 1.25m   , it 

demonstrates the ratio of the initial mass to the final mass which equals 1.25. The 

percent error in Table III.3 indicates the error of initial and final damage indices over the 

initial one. And in all cases, the percent values are smaller than standard criterion, 2%. 

The results listed in Table III.4 can directly indicate the current state of the structures. 

For example, 0.20m   , means a reduction in mass of 20%. The absolute error in 

Table III.4 expresses the absolute difference between the calculated damage severities 

and the actual one and the values are less than 0.02, which are very small. Compared 

results of the two tables, it clearly shows that Case 1, Case 2 and Case 3 reflect the 

reduction of single parameter cases, while Case 4, Case 5, Case 6 and Case 7 show the 
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changes in the multiple parameters cases. The results of Case 1 indicates the reduction of 

mass is 20%. The calculated values of indicator and damage severity show the changes 

in damping is 10%. Case 3 provides the results for the value decrease in stiffness is 30%. 

Case 4 is the combination of Case 1 and Case 2. Case 5 shows the equivalent results of 

the combination of Case 1 and Case 3. For Case 6, the results show the damage 

reduction cases as the combination of Case 2 and Case 3. As for Case 7, the calculated 

indicators and severities show that the reduction of mass, damping and stiffness are 20%, 

10% and 30%. 

 

 

 

Table III.3 Calculated damage indices for seven cases  

Damage 

Case  

*/m m m    
*/c c c    

*/k k k    

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Case 1 1.25 -1.32E-08 1.00 5.93E-06 1.00 -3.10E-06 

Case 2 1.00 -1.40E-08 1.11 -1.00E-03 1.00 -2.7E-06 

Case 3 1.00 -7.6E-09 1.00 9.3E-08 1.43 -1.00E-04 

Case 4 1.25 -1.5E-08 1.11 -1.00E-02 1.00 -3.00E-06 

Case 5 1.25 -2.00E-08 1.00 2.45E-06 1.43 -1.00E-04 

Case 6 1.00 -2.00E-08 1.11 -1.00E-02 1.00 -1.10E-04 

Case 7 1.25 -4.97E-09 1.11 -1.00E-03 1.43 -6.10E-06 

Notes: (1) Number of the time step for each case is 50  

            (2) The output time step size 0.05 
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Table III.4 Calculated damage severity for seven damage cases  

Damage 

Case  

1 1m m     1 1c c     1 1k k     

Calc. 

Value 

Absolute 

Error 

Calc. 

Value 

Absolute 

Error 

Calc. 

Value 

Absolute 

Error 

Case 1 -0.20 1.06E-10 0.00 5.93E-08 0.00 3.07E-08 

Case 2 0.00 1.43E-10 -0.10 8.9E-05 0.00 2.70E-08 

Case 3 0.00 7.62E-11 0.00 9.30E-10 -0.30 7.19E-07 

Case 4 -0.20 1.17E-10 -0.10 9.00E-05 0.00 2.97E-08 

Case 5 -0.20 1.61E-10 0.00 2.45E-08 -0.30 7.45E-07 

Case 6 0.00 1.55E-10 -0.10  9.00E-05 -0.30 7.49E-07 

Case 7 -0.20 3.97E-11 -0.10 -9.00E-06 -0.30 4.30E-08 

Notes: (1) Number of the time step for each case is 50  

            (2) The Output time step size 0.05 

 

 

 

3.5 Conclusions for SDOF System 

By comparing the results from different cases, the following conclusions can be 

drawn effectively, 

 The application of dynamic ISR method in SDOF indicates the superiority of a 

Level III method. Although the SDOF model repeatedly simulated one damage 

location, it still provided very effective results to identify the type and the 

severity of the damage. Some damage index errors can be very small. All of the 

results are less than the standard detection error, 2%. 
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 Based on the calculated damage indices, it is easy to qualify the damage severity, 

which is contributed to learning the exact state of the structure.  

 Dynamic ISR method can detect the changes in the mass, stiffness and damping 

without knowing any of the system parameters.  

 Detection by dynamic ISR method in a SDOF system is not limited to structures 

with one damage case. It can effectively characterize the combination of changes 

in mass, damping and stiffness simultaneously.  

 The dynamic ISR method applied in a SDOF provides better performance in 

mass change identification than damping and stiffness detection. The error 

between the calculated values and actual values of the mass indices are very low. 

 Because of the use of the linear squares method, the accuracy of the calculation 

can be improved by increasing the number of the samples cases and output steps 

of the data (Table A.1 to Table A.21).  

 The accuracy of the results largely depends on the precision of the data. This 

problem can be easily solved in simulation by increasing the number of 

significant digits, but in practice, high precision sensors are necessary.
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CHAPTER IV 

MULTI-DEGREE OF FREEDOM 

 

4.1 Overview of dynamic of ISR Method for MDOF System 

 Introduction 

As presented in Chapter III, dynamic ISR Method is very capable in a SDOF 

system. The basic theory of dynamic ISR emphasizes the internal stress resultants are 

not affected by damage at any given section of the structure member. In essence, this 

theory is not limited to different types of systems. Therefore, the dynamic ISR will be 

suitable for Multi-degree of freedom (MDOF) systems. Compared with SDOF system, a 

MDOF system can provide more damage locations, which helps to effectively test 

whether the proposed method meet the requirements of a Level III method. Additionally, 

a general approach for MDOF will be presented, which will help to simplify the theory 

and allow it to be widely used in different cases. 

 General Approach 

For a MDOF system, the model can be taken as a multi-degree of freedom mass-

damping-spring system, which is shown in Figure IV.1. 

  

Figure IV.1 Mass-damping-stiffness multi-degree of freedom system model 
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In order to get a general solution for the MDOF system, the thi   member, which 

is shown in Figure IV.2, is the focus. For the thi   member, the mass for initial and final 

system are im  and *

im . The damping and stiffness, on the left side of the respective 

mass, for pre-damaged system is ic , and ik  and for the post-damaged system, is *

ic  and 

*

ik . For the right side of the mass, the damping and stiffness for pre-damaged system is 

1ic   and 1ik   and for the post-damaged system, is *

1ic 
 and *

1ik 
. The stress resultants for 

the pre-damage system and post-damage system both are  ip t (Figure IV.3). Based on 

the assumption of invariant stress resultants, the external dynamic forces for both cases 

are the same, ˆ(t) cos ti iP P  , where P̂  is the amplitude of the dynamic force. Those 

values of the above parameters are unknown.  

 

 

 

 

Figure IV.2 The thi  member for pre-damage and post-damage cases 

 

 

 

The equation of motion for the undamaged system: 
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    1 1 1 1 1 1( ) ( ) ( )i i i i i i i i i i i i i im x c x x c x x k x x k x x P t               (4.1) 

Similarly, for the damaged system, 

    * * * * * * * * * * * * * *

1 1 1 1 1 1( ) ( ) ( )i i i i i i i i i i i i i im x c x x c x x k x x k x x P t               (4.2) 

It is assumed that the initial acceleration x , velocity x , displacement x  and 

damaged acceleration *x , velocity *x , displacement *x are known at a specific time. 

Because  iP t  is a function of time, the acceleration, velocity and displacement for both 

cases are functions of time.  

 

Figure IV.3 Stress resultants and external force in initial and final systems 

 

 

 

In the thi   member, the potential damage is expressed as a local decrease in mass, 

damping and stiffness in the structural member. At the cross-section, the consequence of 

the stress resultants shows as the external force in global coordinates (Figure IV.3). As 

mentioned in the assumption, the external loading in both pre-damage and post-damage 

are the same. Based on this relationship, equations in global coordinates can be 

established to show the results of invariant stress resultants in the local coordinates. 

Thus, by equating Eq. (4.1) and Eq. (4.2),  
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Assuming 1t t , Eq. (4.4) can be written as  
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where, 
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Thus the damage indices are, 
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The damage severities are, 
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Using the linear square method to determine the values of the damage indices 

and severities will increase solution accuracy.  

4.2 Simulation procedure for Two degree of freedom System 

In order to verify the application of the dynamic ISR method general approach 

for MDOF, a 2-DOF model has been built in SAP2000 (Figure IV.4 and Figure IV.5).  

 

 

 

   

Figure IV.4 Two degree of freedom system model for undamaged case 

 

 

 

  

Figure IV.5 Two degree of freedom system model for damaged case 
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From the Figure IV.4 and Figure IV.5, the pre-damage model contains two 

particles and three link supports, which can be taken as damping and stiffness. By 

decreasing the values of the particles mass and the coefficient of the links, post-damage 

model can be developed. The dynamic load 1( )P t  was applied to the first particle and

2( )P t  to the second particle for both initial and final systems.  

For the 2-DOF system, multiple types of damages and multiple damage locations 

can be applied. These different damages include reduction of the mass, damping and 

stiffness. Twelve different combinations have been designed, which can be summarized 

in Table IV.1.  

As mentioned in the general approach of MDOF, the simulation procedure 

mainly focus on the structural members. Therefore, the results for thi  member just 

provides the changes of the parameters related to itself. 

The acceleration, velocity and displacement for initial and final system can be 

calculated directly by dynamic analysis using SAP2000. Using the data from the finite 

element program, the damage indices and damage severity can be calculated. The actual 

values for damage indices and damage severity for each case are listed in the Table IV.2. 
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Table IV.1 Description of different damage cases  

 Mass  

(kip-s2)/in 

Damping  

(kip-s/in) 

Stiffness  

(kip/in) 

Force 

Amplitude 

(kips) 

Number 1 2 1 2 3 1 2 3 1 2 

Initial 3.00 2.00 1.50 1.40 1.30 1.00 1.10 1.20 10.00 8.00 

Case 1 2.70 2.00 1.50 1.40 1.30 1.00 1.10 1.20 10.00 8.00 

Case 2 3.00 1.78 1.50 1.40 1.30 1.00 1.10 1.20 10.00 8.00 

Case 3 3.00 2.00 1.43 1.40 1.30 1.00 1.10 1.20 10.00 8.00 

Case 4 3.00 2.00 1.50 1.32 1.30 1.00 1.10 1.20 10.00 8.00 

Case 5 3.00 2.00 1.50 1.40 1.21 1.00 1.10 1.20 10.00 8.00 

Case 6 3.00 2.00 1.50 1.40 1.30 0.88 1.10 1.20 10.00 8.00 

Case 7 3.00 2.00 1.50 1.40 1.30 1.00 0.96 1.20 10.00 8.00 

Case 8 3.00 2.00 1.50 1.40 1.30 1.00 1.10 1.03 10.00 8.00 

Case 9 2.70 1.78 1.43 1.32 1.21 1.00 1.10 1.20 10.00 8.00 

Case 10 3.00 2.00 1.43 1.32 1.21 0.88 0.96 1.03 10.00 8.00 

Case 11 2.70 1.78 1.50 1.40 1.30 0.88 0.96 1.03 10.00 8.00 

Case 12 2.70 1.78 1.43 1.32 1.21 0.88 0.96 1.03 10.00 8.00 
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Table IV.2 The actual values for damage indicators   

 1m   2m   1c   2c   3c   1k   2k   3k   

No. 
1m   

1m   
2m   

2m   
1c

   
1c

   
2c   

1k   
3c   

3k   
1k   

1k   
2k   

2k   
3k   

3k   

1 1.11 -0.10 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

2 1.00 0.00 1.12 -0.11 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

3 1.00 0.00 1.00 0.00 1.05 -0.05 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

4 1.00 0.00 1.00 0.00 1.00 0.00 1.06 -0.06 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

5 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.08 -0.07 1.00 0.00 1.00 0.00 1.00 0.00 

6 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.14 -0.12 1.00 0.00 1.00 0.00 

7 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.15 -0.13 1.00 0.00 

8 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.16 -0.14 

9 1.11 -0.10 1.12 -0.11 1.05 -0.05 1.06 -0.06 1.08 -0.07 1.00 0.00 1.00 0.00 1.00 0.00 

10 1.11 -0.10 1.12 -0.11 1.00 0.00 1.00 0.00 1.00 0.00 1.14 -0.12 1.15 -0.13 1.16 -0.14 

11 1.00 0.00 1.00 0.00 1.05 -0.05 1.06 -0.06 1.08 -0.07 1.14 -0.12 1.15 -0.13 1.16 -0.14 

12 1.11 -0.10 1.12 -0.11 1.05 -0.05 1.06 -0.06 1.08 -0.07 1.14 -0.12 1.15 -0.13 1.16 -0.14 
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4.3 Results for Two Degree of Freedom System 

By using the calculated data from finite element program, the damage indices 

and damage severities can be determined. Table IV.3, Table IV.4 and Table IV.5 provide 

the calculated damage indices for mass, damping and stiffness. Table IV.6, Table IV.7 

and Table IV.8 provide the calculated damage severities for mass, damping and stiffness. 

Comparing the results of twelve cases in Table IV.3, Table IV.4 and Table IV.5, 

the dynamic ISR method can detect the exact value of damage indices in 2-DOF system. 

Most of the percent errors are less than the standard percent error, 2%. By reading the 

data of the damage indices, potential damage locations are clearly seen. And by reading 

the value of damage severity, it is easy to get the value of the reduction of each 

parameters. 

Compared to damage indices, the values of damage severity shows the state of 

the structure more effectively. Using the data in Table IV.6, Table IV.7 and Table IV.8, 

it is easy to learn the reduction of the parameters in each case. Most of the values of the 

calculated absolute error are less than 0.02, which shows the effectiveness of the 

proposed method. By comparing the results, multiple damage location cases can be 

detected. 

It should be noted that the results of damage severities between mass, damping 

and stiffness, the errors for mass detection are smaller. In the general approach, a 

concerned member contains a particle and two links. And these links are shared with 

other members. Therefore, the shared links will have two groups of results from the 

simulation of the related members. Using the average of the two groups of data will 
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improve the accuracy of the results at the respective link support. Some related tables 

can be seen in the Appendix B, and the list results for
2c , 

2c , 
2k , 

2k  in Table IV.6 

to Table IV.8 are the mean values.  

 

 

 

Table IV.3 Results for mass damage indices  

Damage 

Case  

1

*

1 1/m m m    
2

*

2 2/m m m    

Calc. Value Percent Error Calc. Value Percent Error 

Case 1 1.11 1.36E-03 1.00 4.49E-03 

Case 2 1.00 -2.67E-04 1.12 5.83E-04 

Case 3 1.00 -1.9E-03 1.00 1.84E-02 

Case 4 1.00 1.99E-01 1.00 7.83E-02 

Case 5 1.00 1.54E-02 1.00 3.32E-03 

Case 6 1.00 3.13E-03 1.00 5.28E-03 

Case 7 1.00 3.89E-02 1.00 2.37E-02 

Case 8 1.00 3.44E-03 1.00 4.45E-03 

Case 9 1.11 4.24E-04 1.12 6.40E-04 

Case 10 1.11 4.24E-04 1.12 9.95E-05 

Case 11 1.00 3.25E-03 1.00 4.27E-04 

Case 12 1.11 4.24E-04 1.12 1.16E-04 

Notes: (1) The output time step number is 100 

            (2) The size of the time step is 0.05 
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Table IV.4 Results for damping damage indices  

Damage 

Case  

1

*

1 1/c c c    
2

*

2 2/c c c    
3

*

3 3/c c c    

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Case 1 1.00 5.13E-02 1.00 4.54E-02 1.00 5.13E-02 

Case 2 1.00 2.35E-02 1.00 -2.90E-01 1.00 -1.76E-04 

Case 3 1.05 -1.51E-01 1.00 -2.84E-02 1.00 -1.95E-01 

Case 4 1.00 -1.64E-01 1.07 -2.13E-01 1.00 5.66E-02 

Case 5 1.01 9.00E-01 1.04 4.07E-00 1.07 1.14E-01 

Case 6 1.00 3.74E-01 0.99 -1.43E00 1.00 1.07E-01 

Case 7 1.00 4.59E-01 1.01 1.23E00 1.00 6.52E-02 

Case 8 1.00 5.3E-02 1.00 4.54E-02 1.00 4.49E-03 

Case 9 1.05 5.20E-03 1.06 -3.03E-01 1.08 7.02E-02 

Case 10 1.00 1.43E-02 1.00 -1.35E-01 1.00 5.22E-02 

Case 11 1.05 5.58E-04 1.06 -6.13E-01 1.08 1.91E-01 

Case 12 1.05 2.97E-02 1.06 -1.27E-01 1.08 2.41E-03 

Notes: (1) The output time step number is 100 

            (2) The size of the time step is 0.05 
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Table IV.5 Results for stiffness damage indices for twelve cases  

Damage 

Case  

1

*

1 1/k k k    
2

*

2 2/k k k    
3

*

3 3/k k k    

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Case 1 1.00 6.64E-01 1.00 5.93E-06 1.00 5.66E-01 

Case 2 1.00 6.26E-04 1.00 -3.16E-01 1.00 -3.23E-02 

Case 3 1.05 2.9E-01 1.00 -1.81E-01 1.00 -2.66E-03 

Case 4 1.00 5.90E-01 0.94 -5.72E-00 1.00 -7.92E-02 

Case 5 0.99 1.00E00 1.07 6.84E00 1.00 3.88E-01 

Case 6 1.13 8.41E-01 0.97 -3.23E-01 1.00 1.34E-02 

Case 7 0.99 5.89E-01 1.17 2.13E00 1.00 1.77E-01 

Case 8 0.99 6.64E-01 1.00 8.29E-01 1.16 -1.21E-03 

Case 9 1.00 6.96E-03 1.00 -3.02E-01 1.00 8.75E-02 

Case 10 1.14 3.51E-02 1.15 -2.16E-01 1.16 8.54E-02 

Case 11 1.14 9.20E-04 1.15 -6.31E-01 1.16 1.52E-01 

Case 12 1.14 6.69E-02 1.15 -2.43E-01 1.16 1.72E-03 

Notes: (1) The output time step number is 100 

            (2) The size of the time step is 0.05 
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Table IV.6 Results of mass damage severity for twelve cases  

Damage 

Case  

1 1
1/ 1m m     

2 2
1/ 1m m     

Calc. Value Absolute Error Calc. Value Absolute Error 

Case 1 -0.10 -1.22E-05 0.00 4.49E-05 

Case 2 0.00 -3.00E-06 -0.11 -5.14E-06 

Case 3 0.00 2.00E-05 0.00 1.84E-04 

Case 4 0.00 -1.90E-03 0.00 -7.82E-04 

Case 5 0.00 1.53E-04 0.00 3.3E-05 

Case 6 0.00 3.10E-05 0.00 5.30E-05 

Case 7 0.00 3.89E-04 0.00 2.37E-04 

Case 8 -0.00 4.32E-03 0.00 4.5E-05 

Case 9 -0.10 4.05E-06 -0.11 5.54E-06 

Case 10 -0.10 4.05E-06 -0.11 1.58E-06 

Case 11 0.00 3.05E-04 0.00 4.00E-06 

Case 12 -0.10 4.05E-06 -0.11 1.58E-06 

Notes: (1) The output time step number is 100 

            (2) The size of the time step is 0.05 
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Table IV.7 Results of damping damage severity for twelve cases  

Damage 

Case  

1 1
1/ 1c c     

2 2
1/ 1c c     

3 3
1/ 1c c     

Calc. 

Value 

Absolute 

Error 

Calc. 

Value 

Absolute 

Error 

Calc. 

Value 

Absolute 

Error 

Case 1 0.00 5.3E-04 0.00 -4.53E-04 0.00 -5.10E-04 

Case 2 0.00 2.35E-04 0.00 -2.09E-03 1.00 1.76E-04 

Case 3 -0.05 -1.43E-03 0.05 -5.00-03 1.05 -1.95E-03 

Case 4 0.00 -1.63E-03 -0.06 2.01E-03 0.00 5.66E-04 

Case 5 0.00 8.91E-03 -0.04 3.91E-02 -0.07 1.06E-03 

Case 6 0.00 3.76E-03 0.01 1.46E-02 0.00 1.08E-03 

Case 7 0.00 4.57E-03 0.00 1.23E00 0.00 6.52E-04 

Case 8 0.00 5.34E-04 0.00 4.53E-04 0.00 5.13E-04 

Case 9 -0.05 4.96E-04 -0.06 2.86E-03 -0.07 6.53E-04 

Case 10 0.00 1.43E-03 0.00 1.35E-03 0.00 5.23E-04 

Case 11 -0.05 4.51E-06 -0.05 5.76E-03 -0.07 1.77E-03 

Case 12 -0.05 2.82E-05 -0.05 1.12E-03 -0.07 2.25E-05 

Notes: (1) The output time step number is 100 

            (2) The size of the time step is 0.05 
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Table IV.8 Results of stiffness damage severity for twelve cases  

Damage 

Case  

1 1
1/ 1k k     

2 2
1/ 1k k     

3 3
1/ 1k k     

Calc. 

Value 

Absolute 

Error 

Calc. 

Value 

Absolute 

Error 

Calc. 

Value 

Absolute 

Error 

Case 1 0.00 -6.67E-03 0.00 5.93E-06 0.00 -8.16E-03 

Case 2 0.00 6.26E-04 0.00 -0.32E-03 0.00 -3.23E-06 

Case 3 0.00 -2.94E-03 0.00 -1.80E-03 0.00 -2.66E-03 

Case 4 0.00 5.87E-03 0.06 -1.00E-02 0.00 -7.93 E-04 

Case 5 0.01 1.01E-02 -0.06 6.40E-02 0.00 3.87E-03 

Case 6 -0.11 7.46E-03 0.03 3.33E-02 0.00 1.34E-04 

Case 7 0.00 5.92E-03 -0.15 1.59E-02 0.00 1.77E-03 

Case 8 0.00 6.69E-03 0.00 8.16E-03 -0.14 2.33E-03 

Case 9 0.00 7.00E-05 0.00 3.04E-03 0.00 8.76E-04 

Case 10 -0.12 3.10E-04 -0.13 1.69E-03 -0.14 7.36E-03 

Case 11 -0.12 8.51E-06 -0.13 4.80E-03 -0.14 1.32E-03 

Case 12 -0.12 6.05E-04 -0.13 1.85E-03 -0.14 1.48E-05 

Notes: (1) The output time step number is 100 

            (2) The size of the time step is 0.05 

4.4 Simulation procedure for Five Degree of Freedom System 

Although, dynamic ISR method can effectively show the damage existence, 

locations and severities in 2-DOF, it does not stand for all MDOF. In order to further 

verify the application of the dynamic ISR method general approach for MDOF system, a 

5-DOF model has been built in SAP2000 (Figure IV.6 and Figure IV.7). 
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Figure IV.6 Five degree of freedom system model in undamaged case 

 

 

 

 

Figure IV.7 Five degree of freedom system model in damaged case 

 

 

 

From Figure IV.6 and Figure IV.7, the model contains five particles and six link 

supports, which can be taken as damping and stiffness. By decreasing the values of the 

particles mass and coefficient of the links, the post-damage model can be developed. 

Like the 2-DOF model, multiple types of damages and multiple damage locations can be 

applied to a 5-DOF model. As mentioned in the general approach of MDOF, the 

simulation procedure mainly focus on the structural members. Therefore, the results for 

the thi  member just provides the changes of the parameters related to itself
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Table IV.9 Description of the damage case for 5-DOF  

 undamaged damaged Actual Value 

Mass  

(kip-s2)/in 

1m   1.00 
*

1m   0.80 
1m   1.25 

1m   -0.20 

2m   2.00 
*

2m   1.62 
2m   

1.23 
2m   -0.19 

3m   3.00 
*

3m   2.46 
3m   

1.22 
3m   -0.18 

4m   4.00 
*

4m   3.32 
4m   

1.20 
4m   -0.17 

5m   5.00 
*

5m   4.20 
5m   

1.19 
5m  -0.16 

Damping  

(kip-s/in) 

1c   1.10 
*

1c   0.94 
1c

   1.18 
1c

   -0.15 

2c   1.20 
*

2c   1.03 
2c   

1.16 
2c   -0.14 

3c   1.30 
*

3c   1.13 
3c   

1.15 
3c   -0.13 

4c   1.40 
*

4c   1.23 
4c   

1.14 
4c   -0.12 

5c   1.50 
*

5c   1.34 
5c   

1.12 
5c   -0.11 

6c  1.60 
*

6c  1.44 
6c   

1.11 
6c   -0.10 

Stiffness  

(kip/in) 

1k   2.10 
*

1k   1.91 
1k   1.10 

1k   -0.09 

2k   2.20 
*

2k   2.02 
2k   

1.09 
2k   -0.08 

3k   2.30 
*

3k   2.14 
3k   

1.09 
3k   -0.07 

4k   2.40 
*

4k   2.26 
4k   

1.06 
4k   -0.06 

5k   2.50 
*

5k   2.38 
5k   

1.05 
5k   -0.05 

6k  2.60 
*

6k  2.50 
6k   

1.04 
6k   -0.04 
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Table IV.10 Dynamic loads for pre-damage and post-damage system  

Force (kips) 

Undamaged Damaged ratio 

 1P t   10cos(2 )t    *

1P t   10cos(2 )t   1 

 2P t   9cos(2 )t    *

2P t   9cos(2 )t   1 

 3P t   8cos(2 )t    *

3P t   8cos(2 )t   1 

 4P t   7cos(2 )t    *

4P t   7cos(2 )t   1 

 5P t   6cos(2 )t    *

5P t   6cos(2 )t   1 

 

 

 

To avoid repetitive simulation, only one damage case is designed, which contains 

all types of damages in mass, damping and stiffness at multiples damage locations. The 

description of every parameter and the actual results is listed in Table IV.9. The applied 

load is listed in Table IV.10.  

4.5 Results for 5-DOF System 

Different from the example in the 2-DOF, the simulation for 5-DOF mainly 

focuses on one damage case, which considers all types of damage at every potential 

damage location. Table IV.11 provides the calculated values of damage indices, which is 

the ratio of the parameter before and after damage. Table IV.12 presents the data of 

calculated damage severity, which indicates the reduction in every parameter. From the 

two tables, the results show good agreement. The error between the calculated values 

and the actual values are small.  
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Table IV.11 Results for damage indices for 5-DOF  

Parameter 

number  

*/m m m    
*/c c c    

*/k k k    

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

1 1.25 3.87E-08 1.18 2.02E-05 1.10 1.87E-05 

2 1.23 1.89E-07 1.16 -2.61E-06 1.09 -3.62E-06 

3 1.22 1.14E-08 1.15 1.15E-05 1.08 7.72E-06 

4 1.20 -2.10E-07 1.14 1.97E-05 1.06 1.79E-09 

5 1.19 -1.06E-07 1.12 7.71E-04 1.05 2.24E-05 

6 - - 1.11 -1.43E-04 1.04 4.22E-05 

Notes: (1) The output time step number is 100 

            (2) The size of the time step is 0.05 

 

 

 

Table IV.12 Results for damage severity for 5-DOF  

Parameter 

number  

1 1m m     1 1c c     1 1k k     

Calc. 

Value 

Absolute 

Error 

Calc. 

Value 

Absolute 

Error 

Calc. 

Value 

Absolute 

Error 

1 -0.20 3.10E-07 -0.15 7.23E-07 -0.09 1.39E-06 

2 -0.19 1.53E-07 -0.14 8.90E-05 -0.08 1.94E-06 

3 -0.18 9.35E-09 -0.13 1.23E-07 -0.07 7.18E-08 

4 -0.17 1.67E-07 -0.12 1.44E-06 -0.06 9.49E-08 

5 -0.16 8.90E-08 -0.11 6.34E-06 -0.05 1.02E-06 

6 - - -0.10  1.29E-06 -0.04 1.55E-06 

Notes: (1) The output time step number is 100 

            (2) The size of the time step is 0.05 
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The simulation of 5-DOF is based on the results of 2-DOF and proves the 

correctness of the general approach in the MDOF problems. The dynamic ISR method 

can not only detect damage but also locate and characterize damages in different 

locations. It shows the superiority of a Level III non-destructive evaluation methodology 

in the application of MDOF. 

4.6 Conclusion for MDOF System 

From the results above, the dynamic ISR method can be applied to a MDOF 

system for damage detection. The most direct and obvious conclusion of the application 

in MDOF is that dynamic ISR method can detect different damage locations and be 

extremely accurate with damage severity. As with the SDOF system, the procedure of 

the method is straight-forward. Without knowing any parameters or applied loads, the 

experimental data can solve the problem. 

Moreover, one of the improvements in the application is that a general approach 

has been presented. According to the definition of the ISR, to effectively solve the 

problem, the whole structural system can be divided into several members. By 

performing dynamic simulations for the structure member, the experimental data can be 

calculated automatically from finite element programs. It is not limited to a special 

model, but can be applied to various structure systems. 

However, for the general approach, there are some limitations. Compared the 

results of the mass, damping and stiffness, it is clear that the detection error in mass is 

smaller than in damping and stiffness. For mass, the quantity for each member is 

relatively independent. As for the shared links, these errors come from the discrete 
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dynamic analysis. But this kind of error can be slightly reduced by overlaping the results 

from the related members. 

Finally, compared to the results of SDOF, the precision of the MDOF results are 

decreasing, which means high precision data and sensors are still needed for MDOF 

systems.  
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CHAPTER V 

ROD SYSTEM 

 

5.1 Overview of dynamic ISR Method for Rod System 

In Chapter IV, the application for dynamic ISR method was made in discrete-

parameter model of structures. However, in reality, all structures are actually three-

dimensional solid bodies, and every point in such a body, unless restrained, can displace 

and rotate along three mutually perpendicular directions x , y , z . In this chapter, 

continuous models are considered. A finite element based rod structural member model 

will be picked up to provide “exact” solutions for simple structures. The equation of 

motion of “one-dimensional” rod system is derived by Newton’s Laws. 

What follows is an overview of a rod theory. The assumption for the partial-

differential-equation model is a long stick, a portion of which is shown in Figure V.1. To 

derive the equation of motion for axial vibration, a free-body diagram of unit length 

member is isolated, which is resultant lying along the central axis. A  is the cross-section 

area and   is the mass density (i.e., the mass per unit volume). It is assumed that either 

the member is prismatic (i.e., it has constant cross section) or that its cross section varies 

only with x  , as indicated in Figure V.2. 
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Figure V.1 Portion of a member undergoing axial deformation 

   

Figure V.2 Free-body diagram of a length-element member 

 

 

 

The assumptions for the rod system are the axis of the member remains straight, 

the material of the system is linearly elastic. The cross sections of the rod remain plane 

and remain perpendicular to the axis of the member. 

Based on these assumptions, the differential equation of motion for axial 

vibration of a linearly elastic rod is given as: 

 
 

2

2
,x

u u
AE p x t A

x x t


   
  

      (5.1) 
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5.2 Application to Rod System 

Based on the theory of the rod system, a free-body diagram of an element length 

rod member is shown in Figure V.3. It is assumed that either the member is prismatic 

(i.e., it has constant cross section) 

 

 

 

   

Figure V.3 Free-body diagram for the element length member 

 

 

 

In the thi  member of the rod, say the acceleration of the unit length member 

equals to the one at the middle point, which is iu  . Here, iu   is used instead of ix  to 

distinguish the partial differential denominator x . The external force in this member at 

the center cross section is  iP t  . Based on the free-body diagram, equation of motion of 

the rod member has been established. 

 1( )i i i iP t p p mu     (5.2) 

Based on Hooke’s law and presented assumptions, the axial force at the thi  and 

 1
th

i   cross section the axial force can be defined as ip   and 1ip   (Eq. (5.3) and Eq. 

(5.4)), where the modulus of elasticity for the thi  member is E . 

 
i

i
x

u
EAp 












  (5.3) 
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In terms of the external load 

  
1

i i i

i i

u u
m u EA EA P t

x x 

    
     

    
  (5.5) 

Similarly, for the damaged system, the equation of motion is, 

      
* *

* ** *

1

i i i

i i

u u
m u EA EA P t

x x


    
     

    
  (5.6) 

Invoking the stated criterion, 

    
* *

* ** *

1 1

i i i i

i i i i

u u u u
m u EA EA m u EA EA

x x x x 

         
          

          
 (5.7) 

The later equation reduces to, 

 
       

* * * *

* * * *

1 1

i i i i

i i i i

m u m u EA u EA u u u

x x x xEA EA EA EA  

         
          

          
 (5.8) 

 
* *

*

1 2 3

1 1

i i

i i i i

u u u u
u u

x x x x
  

 

           
           

           
 (5.9) 

For a concerned rod member, the partial differential displacement can be solved 

by getting the changes of the displacement between the center and double sides of the 

chosen rod member (Figure V.4). 

 

Figure V.4 Axial displacement for the thi  member 
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1
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  (5.10) 

 
* *

* * *

_ _ _

1

2i left i center i right

i i

u u
u u u

x x


    
       

    
 (5.11) 

In which, m , k  are mass damage and stiffness damage indices for the rod 

member, m , k  are mass damaged and stiffness damage severity for the unit model. 

 
 *1
EA

mi  (5.12) 
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    (5.15) 

 3*

i
K

i

k

k
    (5.16) 

 1/ 1m m     (5.17) 

 1/ 1k k     (5.18) 

Using the linear square method to solve for damage indicators and damage 

severities will decrease the errors.  
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5.3 Simulation Procedure for Rod System 

In order to validate the presented theory for a rod system, a 120ft rod model has 

been built in SAP2000, which can be designed into pre-damaged case and post-damaged 

case. The section of the pre-damaged rod is provided in Figure V.5. 

   

Figure V.5 Section of the rod model 

 

 

 

The mass damage severity is defined as the reduction of the value of unit mass. 

The stiffness damage severity is determined as the changes in Young’s modulus. In a 

certain member, if the damage severity is less than zero, it indicates location of the 

damage and the value of the damage severity. The rod model is divided into 30 elements, 

which is shown in Figure V.6. Four different damage cases have been designed based on 

the changes of the parameters and damage locations (Table V.1). 
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Figure V.6 Finite element mesh of rod system 

 

 

 

Table V.1 Damage cases for rod system  

 Case  Location 
m  m  k  k  

Single 

location 

1 17th

  1.11 -0.10 1.00 0.00 

2 17th

  1.00 0.00 1.18 -0.15 

3 17th

  1.11 -0.10 1.18 -0.15 

Multiple 

locations 
4 

17th

  1.11 -0.10 1.18 -0.15 

27th   1.25 -0.20 1.22 -0.18 

 

 

 

Table V.1 depicts the damage prediction results for four different cases. Case 1 

and Case 2 are focusing on the changes of single parameter simulation. Case 3 and Case 

4 concern on variable of multi-damage parameters at single locations, include the 

reduction of the mass and stiffness. Case 4 also involves in multiple damage locations, 

which is more typical. 
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5.4 Results for Rod System 

Obviously, based on the definition of the dynamic ISR method, this theory can be 

applied to various types of dynamic loads, such as earthquake and wind. In the 

simulation process, in order to verify the internal force and external force are always 

equal. The amplitude of the applied dynamic load  P t  is 10 kips/node and the 

concerned node is taken as the center of each unit element rod member. The results for 

four different damage cases will be explained as follows. 

 

Figure V.7 Calculated damage indicators for Case 1 for rod system 
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Figure V.8 Calculated damage indicators for Case 2 for rod system 

 

Figure V.9 Calculated damage indicators for Case 3 for rod system 
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Figure V.10 Calculated damage indicators for Case 4 for rod system 
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Case 2, Case 3 and Case 4, the existence, the location and the severity of the damage can 
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dynamic ISR method, the application to the rod model is also based on the finite element 

method. By doing dynamic analysis for a unit rod member, related the pre-damage and 

post-damage situation by invariant internal stress. Using the calculated data from finite 

element program, the ratio of the parameters for each member will be calculated to 

indicate the state of the structures. 

From the simulation results, it is clear that the performance of the damage 

prediction by dynamic ISR method is very applicable. The advantages in rod simulation 

are forward the ones in discrete parameter system. From the results of the four different 

damaged cases, it is an explicit Level III damage detection method which can 

simultaneously identify the existence, locations and the severities of the damage.  

One of the assumption for rod system is that the system is linearly elastic and the 

cross section is prismatic or varies by x . When applied this method into real situation, 

the change of the cross section will also impact the results for damage indicators. 

Compared to mass-damping-spring system, the rod system is more complicated. 

The requirement of the data has been improved. In the procedure of the simulation, the 

number of the output has been increased to 500. Additionally, in order to solve partial 

differential parameters, it assumes that the unit member have the same damage state. 

However, in reality, the damage always occurs in a very small area and the severity of 

the damages can be nonlinearly. On the one hand, if the length of the concerned element 

member is too large, the correct prediction of damage will not be obtained. On the other 

hand, if the length of the unit member is very small, in other words, the measuring 

position is really near, which means the sensor should be placed very closely.  
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CHAPTER VI 

BEAM SYSTEM 

 

6.1 Overview of dynamic ISR Method for Beam System 

In the Chapter V, rod model has been set up to prove the accuracy of the dynamic 

ISR method. However, rod system just stands for models undergo axial deformation. In 

reality, all structures are actually three-dimensional solid bodies, and every point in such 

a body, unless restrained, can displace and rotate along three mutually perpendicular 

directions, x , y , and z . In this chapter, structures models which represent the 

transverse vibration of beam will be provided. The general example models in this 

research are taken as Euler-Bernoulli beam. Euler- Bernoulli beam theory covers the 

case for small deflections of a beam that is subjected to lateral loads only. In the beam 

model, a finite element based beam structural member will be picked up to provide 

“exact” solutions for simple structures. The equation of motion of “one-dimensional” 

Euler-Bernoulli beam system will be derived by Newton’s Laws.  

6.2 Overview for Euler-Bernoulli Beam System 

Euler-Bernoulli beam theory, which is also known as classical beam theory, is a 

simplified linear theory of elasticity. This theory presents a methodology to calculate the 

load-carrying and deflection characteristics of beams. Based on the definition mentioned 

above, the general model for an Euler Bernoulli beam is a long, thin system undergoing 

transverse vibration. 

http://en.wikipedia.org/wiki/Beam_(structure)
http://en.wikipedia.org/wiki/Theory_of_elasticity
http://en.wikipedia.org/wiki/Deflection_(engineering)
http://en.wikipedia.org/wiki/Beam_(structure)
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The equation of motion of Euler-Bernoulli beam system is derived using 

Newton’s Second Law. Figure VI.1 shows a portion of a member undergoing transverse 

motion (i.e., motion in the y  direction), and Figure VI.2 shows an appropriate free-body 

diagram. The transverse displacement of the point  ,0x  on the neutral axis of the beam 

is labeled as  ,v x t  , with positive v  in the y  direction. The bending moment at 

section x  is  ,M x t  , the transverse shear force is  ,S x t  , and the external transverse 

force per unit length is  ,yP x t  , with the sign convention for these specific in Figure 

VI.2. 

 

 

 

 

Figure VI.1 Euler-Bernoulli beam model 
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Figure VI.2 Internal force of Euler Bernoulli beam system 

 

 

 

The assumptions of Euler- Bernoulli elementary beam theory are: 

 The principle plane of the beam is x y  plane, which also remains plane as 

beam deforms in y -direction. 

 The neutral surface for the Euler-Bernoulli beam is the original x z   plan. The 

neutral axis of the beam, which undergoes on extension or compression, is 

labeled the x  axis.  

 Cross section, which are perpendicular to the neutral axis in the undeformed 

beam, remains plane and remains perpendicular to the deformed neutral axis, that 

is, transverse shear deformation is neglected. 

 The material is linearly elastic and the beam is homogenous at any cross section. 

(Generally, E  constant throughout the beam.) 

 Stresses y  and z  are negligible compared to x . 

 The rotation inertia of the beam may be neglected in the moment equation. 
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 The mass density,  x , is constant at each cross section, so that the mass center 

coincides with the centroid of the cross section (Generally,    constant 

throughout the beam). 

From the kinematics on the assumptions, the bending moment can be related to 

the curvature by the moment-curvature equation (Eq. 6.1), where I  is the area moment 

of inertia of the cross section. 

  ,
EI

M x t


   (6.1) 

Based on the Newton’s Laws (Eq. 6.2 to Eq. 6.3), the equation of motion for the 

unit member can be solved (Eq. 6.4). 

 y yF ma    (6.2) 

 G GM I     (6.3) 

  
2 2 2

2 2 2
,y

v v
EI A p x t

x x t


   
  

   
  (6.4)  

6.3 Application to Euler-Bernoulli Beam System 

In this section, a free-body diagram of an element length Euler-Bernoulli beam 

member is shown in Figure VI.3. It is assumed that either the member is prismatic (i.e., 

it has constant cross section). The actual deformation of the beam member is not shown 

in the picture. 
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Figure VI.3 Free-body diagram of the Euler-Bernoulli beam member 

 

 

 

Based on the description in the above passage and the free-body diagram in 

Figure VI.3, equation of motion for the member has been set up in Eq. (6.5). 

 1( )i i i iP t V V mv     (6.5) 

Notes that, 

 
 3

3

,
( )i

i

v x t
V t EI

x

 
  

 

 (6.6) 

 
 3

1 3

1

,
( )i

i

v x t
V t EI

x




 
  

 

 (6.7) 

For the undamaged system, the equation of motion is, 

 1( ) ( ) ( )i i imv V t V t P t     (6.8) 

Similarly, for the damaged system, the equation of motion is, 

 
* * * *

1 ( ) ( ) ( )i i im v V t V t P t     (6.9) 

Equating Eq. (6.8) and Eq. (6.9),  

 
* * * *

1 1( ) ( ) ( ) ( )i i i i i imv V t V t m v V t V t        (6.10) 

By simplifying Eq. (6.10),  
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     (6.12) 

 

 

 

  

Figure VI.4 Transverse displacement for the thi  member 

 

 

 

Based on the Figure VI.4, the partial differential equation can be solved as,  

 

3 3
_ _ _ _

3 3

1

i left i right i left i right

i i
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 (6.13) 

Similarly for undamaged system, 

 

* *

* *3 * 3 *
_ _ _ _

3 3

1

i left i right i left i right

i i

v v

x xv v

x x x x x

 



    
   

          
       

       
 (6.14) 
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In which, m , k  are mass damage and stiffness damage indices for the beam 

member, m , k  are mass damaged and stiffness damage severity for the unit model. 

 
 

 
1 *
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i

EI

EI
    (6.15) 
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    (6.16) 
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    (6.17) 

 1k    (6.18) 
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5
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i
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 (6.19) 

 1/ 1m m    (6.20) 

 1/ 1k k    (6.21) 

Using the linear square method to solve for damage indicators and damage 

severities will decrease the calculated errors.  

6.4 Simulation Procedure for Euler-Bernoulli Beam System 

In order to verify the presented theory for a beam system, a 60ft simply 

supported beam model has been built in SAP2000, which can be designed into pre-

damaged case and post-damaged case. The cross section of the pre-damaged rod is 

provided in Figure VI.5. 
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Figure VI.5 Cross-section of the beam model 

 

 

 

The mass damage severity is defined as the decreases in volume of the unit mass. 

The stiffness damage severity is determined as the reduction of Young’s modulus. In a 

certain member, if the damage severity is less than zero, it indicates where the damage 

exists and the value of the damage severity stands for how much the damage is. The 

simply supported beam model is divided into 30 elements, which is shown in Figure 

VI.6. Four different damage cases have been designed based on the changes of the 

parameters and damage locations (Table V.1). 

 

 

 

 

Figure VI.6 Finite element mesh of simply supported beam system 
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Table VI.1 Damage cases for Euler-Bernoulli beam system  

 Case  Location 
m   m   k   k   

Single 

location 

1 17th

  1.11 -0.10 1.00 0.00 

2 17th

  1.00 0.00 1.18 -0.15 

3 17th

  1.11 -0.10 1.18 -0.15 

Multiple 

locations 
4 

17th

  1.11 -0.10 1.18 -0.15 

25th   1.05 -0.05 1.21 -0.18 

 

 

 

Table VI.1 Damage cases for Euler-Bernoulli beam system provides the damage 

prediction results for the designed cases. Case 1 and Case 2 are focusing on the changes 

of single parameter simulation. Case 3 and Case 4 mainly concern on variable of multi-

damage parameters at single locations, including the reduction of the mass and stiffness. 

Case 4 contains multiple damage locations, which is more typical. 

The presented example focuses on simply supported beam. Note that the aspect 

ratio (depth/length) of the beam is less than 1 10 , which meets with the requirement of 

the Euler-Bernoulli beam system theory. Additionally, the results of simulation for 

different boundary condition examples, such as fixed-fixed beam and cantilever beam 

will be provided in the Appendix. 

6.5 Results for Euler-Bernoulli Beam System 

Obviously, based on the definition of dynamic ISR method, this theory can be 

applied to various types of dynamic loads, such as earthquake and wind. In the 
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simulation process, in order to easily verify the internal force and external force are 

always equal. The amplitude of the applied dynamic load  P t  is 10 kips/node and the 

concerned node is taken as the center of each unit element beam member. The direction 

of the dynamic load is in y  direction. And the results for four different damage cases 

will be explained as follows. 

 

Figure VI.7 Calculated damage indicators for Case 1 for beam system 
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Figure VI.8 Calculated damage indicators for Case 2 for beam system 

 

Figure VI.9 Calculated damage indicators for Case 3 for beam system 
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Figure VI.10 Calculated damage indicators for Case 4 for beam system 

From the Figure VI.7, Figure VI.8, Figure VI.9 and Figure VI.10, it is clear to 

see the states of structures. From Case 1 to Case 3, the potential damage location is 17th  

element. In Case 1, the calculated mass damage severities at 17th  unit is -0.10, which 

indicates the reduction of the mass at near region is 10%. Similarly, the parameter 

decrease for Case 2 is 15% reduction of stiffness. And Case 3 is the combination case of 

Case 1 and Case 2. Additionally, for Case 4, the potential damage locations are element 

17 and element 25. And the damage severities in Figure VI.10 demonstrates the exact 

damage states of the structures system. Compared the results read from the above figures 

and Table VI.1, the predicted states of the structure highly agrees with the designed the 

ones.  
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6.6 Conclusions for Beam System 

Beam system model undergoes the transverse deformation, which is more typical 

than rod models. According to the principle of dynamic ISR method, the analysis for the 

beam model mainly bases on the finite element method. By doing dynamic analysis for a 

unit beam member, relate the pre-damage and post-damage situation by invariant 

internal stress. Using the calculated acceleration and displacement from SAP2000, the 

damage indicators for each unit member will be calculated to predict the state of the 

structures. 

From the simulation results, it is clear that the performance of the damage 

prediction by dynamic ISR method is very applicable. The advantages in beam 

simulation are forward the ones in previous chapter. From the results of the four 

different damaged cases, it is an explicit Level III damage detection method which can 

simultaneously identify the existence, locations and the severities of the damage. 

Additionally, the effectiveness of this method is not affected by changing boundary 

conditions (Table A.31) or combining multiple damage locations. 

The assumption for beam system is that the system is linearly elastic and the 

cross section is prismatic or varies by x  . When applied this method in to real situation, 

the change of the cross section will also impact the results for damage indicators. 

The application of the beam system required high precision of the data. In the 

procedure of the simulation, the number of the output has been increased to 500. 

Additionally, as mentioned in rod system, in order to solve partial differential 

parameters, we assume the unit member have the same damage state. However, in 
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reality, the damage always occurs in a very small area and the severity of the damages 

can be nonlinearly. The length of the chosen member will apparently impact the results 

of simulations.  
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CHAPTER VII  

TRUSS SYSTEM 

 

7.1 Overview of dynamic ISR Method for Truss System 

Based on the previous work, the dynamic ISR method works well in discrete-

parameter models of structures and beam systems. In truss system, the basic idea for 

dynamic ISR method is also applicable. Thus, it may be able to use the general beam 

approach to detect damage for every single member. However, a truss system is always 

composed by several members, it is not smart to identify damage from members to 

members. Also it is hard to apply dynamic load and get the value of the acceleration and 

the displacement at the midpoint of the members. Therefore, in this chapter, a direct 

approach of truss will be used, which is called node method. 

The truss has a very restrict definition: It is composed of pin-connected elements 

which are loaded as only at its joints. (Spillers, 1972) In other words, the resultant 

member force lies along a straight line between the ends of the member. The member 

force can be describe as specific single scalar because only forces, no moments acts at 

the end of the members. 

In this chapter, the research only concerned with straight, pin-connected truss 

system. The truss member are idealized as lines which meet at points which is called 

joints. The free body diagram of the joint j of a generic truss is depicted as Figure VII.1.  



73 

 

   

Figure VII.1 
thj  joint 

 

 

 

In a general a joint equilibrium equation must contain a term for each member 

incident upon the joint –the sign is determined by whether the element is positive or 

negatively incident. In the Figure VII.1, this precisely form provided by, where i  is the 

number of the truss element and j  is the number of joint.  ,  ,  ,   are directions 

for each element at 
thj  joint. 

     jj j jF F F F P t m             n n n n  (7.1) 

Based on the node method for trusses, the node equilibrium equation become as 

follows, in which   is the joints displacement.   is the length change of each member. 

iF  is the member force of the 
thi  element.  jP t  is the joint force at the 

thj  joint.  

 NF P  (7.2) 

Using Hooke’s Law, 

 F k   (7.3) 
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The branch-displacement joint-displacement equation, 

 N   (7.4) 

For the entire structure k  is the primitive stiffness matrix.  

 

1

2

3

4
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k

k

k k

k

k

 
 
 
 
 
 
  

 (7.5) 

in  is the unit vector of the member, N  represents the geometrical connectivity 

of the truss structure. 

 jF F F F p NF           n n n n  (7.7) 

 j jNk p NkN p     (7.9) 

Thus Eq. (7.1) can be written as Eq. (7.9).  

   
1

n

ji i i j j j

i

N k N P t m 


 
  

 
  (7.10) 

7.2  Application to Truss System  

Assume that two comparable systems exist, pre-damage and post-damage truss 

system. Both truss systems have the same joint connectivity and are subject to the same 

external loading at the 
thj  joint. 

ju , *

ju  are the acceleration at 
thj  joint for initial and 

final system. ju , *

ju  are the displacement of the 
thj  joint for pre-damage and post-

damage system. However, the masses and stiffness of the elements in the two system are 

unknown. The equation of motion for the undamaged system is, 
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   (7.11) 

Similarly, for the damaged system, the equation of motion is, 
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* * * *
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The fundamental assumption is  
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For a different truss system the 
1

n

i i i

i

N k N


 can be different, the stiffness matrix of 

the system is decomposed to get the stiffness changes for each related members. For 

example, for the model of Figure VII.1, Eq. (7.14) becomes, 
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in which, 
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Eq. (7.13) to Eq. (7.34) present the approach to get the mass indicators at the 
thj  

joint ,
jm , 

jm  and stiffness indicators for every direction, k
 , k

 , k
 , k

 , k
 , 

k
 , k

 , k
 . 

7.3 Simulation Procedure for Truss System 

In order to verify the presented theory for a truss system, a model has been built 

in SAP2000, which can be designed into pre-damaged case and post-damaged case. The 

geometry information of the truss system is shown in Figure VII.2. The amplitude of the 

dynamic loads applied at joint 2 is 10kips. 

 

 

 



78 

 

    

Figure VII.2 Truss Model 

 

 

 

The damage cases for truss system will be designed into four different situations. 

Case 1, Case 2 and Case 3 are mainly focus on single damage location, while Case 4 

concerns on multi-damage locations. The designed damaged element is member b for 

Case 1, 2 and 3. And for Case 4, the damaged locations are member b and member c. 

Notes that the value of mass at each joint indicates the one at the linked point cross 

section so that the change of the mass value will indicates the composite results for the 

related members. The expected damage indices and damage severities results for each 

cases can be shown in Table VII.4. 
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Table VII.1 The connectivity information of truss model  

Frame text Joint text (left) Joint text (right) Length (in) 

a 3 1 108.82 

b 2 1 108.82 

c 3 2 144.00 

d 4 2 72.00 

 

 

 

Table VII.2 Damage cases for truss system  

Case 
2m   

2m   
bk   

bk   
dk   

dk   

1 1.07 -0.06 1.00 0.00 1.00 0.00 

2 1.00 0.00 1.11 -0.10 1.00 0.00 

3 1.07 -0.06 1.11 -0.10 1.00 0.00 

4 1.15 -0.13 1.11 -0.10 1.25 -0.20 

 

 

 

7.4 Results for Truss System Simulation 

The study for the truss system mainly focus on the 2nd  joint of the truss model 

in Table VII.2. The related detection members are member b, member c and member d. 

As the designed dynamic load  2P t  goes horizontally, there is no internal force in 

member d. Therefore, the changes in stiffness damaged indices and stiffness damage 

severities will mainly focus on member b and member c.  



80 

 

As mentioned before, the changes of the joint mass indicates the changes to 

related elements. In other words, the reduction of mass in one element will be expressed 

as the change versus the composite value for all related elements. 

 

 

 

Table VII.3 Results of damage indicators parameter for truss system  

Case  
2

*

2 2/m m m    
*/ k

bk b bk    
*/

dk d dk k    

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

1 1.07 -2.24E-07 1.00 -1.87E-06 1.00 4.83E-08 

2 1.00 4.12E-07 1.11 -1.84E-07 1.00 -1.80E-07 

3 1.07 1.14E-08 1.11 2.51E-07 1.00 -1.87E-07 

4 1.15 -2.21E-07 1.11 1.79E-05 1.25 3.28E-08 

 

 

 

Table VII.4 Results for damage severities for truss system  

Case  
2 2

1/ 1m m     1/ 1
b bk k     1/ 1

d dk k     

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

1 -0.06 -1.75E-09 0.00 -1.90E-08 1.00 4.83E-08 

2 0.00 4.00E-09 -0.10 -1.71E-09 1.00 -2.00E-09 

3 -0.06 2.26E-05 -0.10 2.34E-09 1.00 -2.00E-09 

4 -0.13  6.81E-03 -0.10 1.69E-07 -0.20 7.18E-06 
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By doing dynamic analysis for joint 2, the time-series based acceleration, 

displacement can be calculated by SAP2000. Using these data to solve Eq. (7.16), the 

damage indices and damage severities will be calculated to determine the state of the 

structures, which can be seen in Table VII.3 and Table VII.4. 

In Table VII.3, the damage indices have been calculated for each cases. In Case 

1, the reduction of the parameter is the mass at joint 2. In Case 2, the change of the 

stiffness in element b is 10 %. Case 3 is the combination case of Case 1 and Case 2. As 

for Case 4, it indicates the potential damage locations are member b and member c. In 

Table VII.4, it is clearly to see the calculated damage severities in each cases, which can 

be used to predict the state of the structures. However, the severities of mass for each 

case can only indicates the changes at the joint cross section. In other words, the results 

cannot provide the changes of the mass in each member. 

7.5 Conclusion for truss system 

In this chapter, the application of dynamic ISR in truss system has been 

introduced. In order to avoid problems by using general approach in beam system, a new 

direct approach for truss system is provided, which is called node method. (Spillers, 

1972) Based on the approach, the truss model has been designed into two cases. One is 

initial case and the other is final case. By doing dynamic analysis at a certain joint and 

decomposing of the stiffness matrix, the mass indicators can be calculated at the 

concerned joints and the damage indicators for each related element.  

The results of the simple example for truss system shows great accuracy between 

the designed and calculated damage indicators. It demonstrates that the dynamic ISR can 
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be used as a Level III method when applied to the truss system, which can not only 

provide exact damage locations, but also damage severities.  

The advantage for the new approach is that new method can apply dynamic loads 

at the joints of the truss model. And by using node method it can detect several related 

elements at the same time. It will definitely save time to find the potential damage 

regions. 

However, one drawback for the node approach is that the change of the mass can 

be shown as the composite results of every related member. The detailed damage 

severities for every related element cannot be provided by this method. However, this 

problem can be solved by comprehensively using the general approach of beam member 

and node method. In other words, node method can be used to find a potential mass 

damage joint. Then do a general approach of beam system for each potential elements to 

get the detailed damage information.  
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CHAPTER VIII 

FRAME SYSTEM 

 

8.1 Overview of Frame System 

From Chapter VII, the proposed general approach based on the dynamic ISR 

method at a certain node has good application for truss system. In order to increase 

complexity, the plane frame provides a convenient step up from the truss.  

The plane frame considered in this chapter is a skeletal structure constructed by 

assembling plane beams which use rigid connections (Spillers, 1972). The loads are 

applied at the nodes of the frame system. The frame system model in this chapter does 

not consider temperature effects, lack of fit. etc. The key difference between plane 

frames and trusses system is the rigid connection. The boundary condition of the frame 

system is that both the displacement vector and the rotation are assumed to be zero. The 

rigid connections allow the adjacent members to restrain the rotations for each other and 

give rise to moments at the ends of members. At each node of the plane frame model, 

rotation can be defined as a single scalar, which does not exists in truss systems. It notes 

that all of the members in the frame is taken as Euler-Bernoulli beam. 
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Figure VIII.1 The 
thj  joint of the frame system 

 

 

 

Figure VIII.1 depicts a typical frame node associated with the applied dynamic 

load  jP t , an applied moment vector jm , a displacement vector 
j ., and the rotation 

vector of the
thj  node j  .  

Here, for a plane frame system, displacement vector can be defined as, 

 

 

 

j x

j j y

j



 



 
 
 
 
 
    (8.1) 

Let 
jf   and 

jf   represent the end member forces at the positive and negative 

ends of the 
thj  member. 

 i i if N F   and i i if N F   (8.2) 

 jNF P  (8.3) 
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 i i iF k   (8.4) 

i  is the definition of local coordinates. As mentioned in the Chapter VI, it can 

be taken as Eq. (8.5), where iL   is the length change of the 
thi  member, 

i
  is the 

rotation of the positive end and 
i
  is the rotation of the negative end of the 

thi  member. 

 

   

   

   

1

1

i i

A Cx x

i
i i

i i A A Cy y
i

i
i i

C A Cy y
i

L

L

L

 

   



  





 
 
  
            
     

    
 

 (8.5) 

For entire structure k  is the primitive stiffness matrix.  
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N  represents the geometrical connectivity of the frame structure. 

 jp NF  (8.7) 

 j jNk p NkN p     (8.8) 

Thus Eq. (8.3) can be written as Eq. (8.9).  

   
1

n

ji i i j j j

i

N k N P t m 


 
  

 
  (8.9) 
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8.2 Application to Frame System 

Assume that two comparable systems exist, pre-damage and post-damage frame 

systems. Both systems have the same node connectivity information and are subject to 

the same external loading at the 
thj  joint. 

ju , *

ju  are the acceleration at 
thj  joint for 

initial and final system. 
ju , *

ju  are the displacement of the 
thj  joint for pre-damage and 

post-damage system. However, the values of the mass and stiffness of the elements in 

two cases are unknown. The equation of motion for undamaged system is, 

  
1

n

i ji i j j j

i

N k N u P t m u


 
  

 
   (8.10) 

Similarly, for damaged system, 

  
* *

* * * *
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N k N u P t m u


 
  

 
  (8.11) 

The fundamental assumption is  
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in which, 
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Figure VIII.2 Simple frame system 

 

 

 

For different frame systems the matrix of 
1

n

i i i

i

N k N


 can be different, the system 

stiffness matrix needs to be decomposed to detect individual element damages related to 

the 
thj  joint. Equations can be solved in different directions. The number of the 

equations depends on the number of the degree of freedom of the system. Take the 

model in Figure VIII.2 as an example, in y  direction at joint 2, the equation of motion 

is, 

     

     

* ** * * * *

* *
* * * *

y y y y y

y

a b c a ba a b b c c j a a b b jy y

c j jc c j j jy y y

N k N N k N N k N u N k N N k N u

N k N u m u m u

   

  
(8.14) 
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Eq. (8.15) to Eq. (8.28) present the approach to get the damage indicators at the 

thj  joint. The mass indicators are 
jm , 

jm  and stiffness indicators for every member 

are 
ak , 

ak , 
bk , 

bk , 
ck , 

ck . 

 Here, the stiffness matrix for each element is, 

 
4 2

2 4

i

i

i i
i

i i

i i

i i

A

L

I I
k E

L L

I I

L L

 
 
 
 

  
 
 
 
 

  (8.29) 

When consider different directions, the influence of the damage indicators may 

be different. For example, for x  direction stiffness severity for a certain member, it 

means the identified damage related to the change of Young’s modulus and the sections 

area. As for y  direction, it relates to the changes of Young’s modulus and moment of 

inertia. 

8.3 Simulation Procedure for Frame System 

In order to validate the presented theory for a frame system, a model has been 

built in SAP2000, which can be designed into pre-damaged case and post-damaged case. 

The geometry information of the frame system is shown in Figure VIII.3 and Table 

VIII.1. The information for cross section properties is shown in Figure VIII.4 The 

amplitude of the dynamic load applied at joint 2 is 10kips. 
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Figure VIII.3 Frame model 

 

 

 

   

Figure VIII.4 Cross section for frame model 

 

 

 

Table VIII.1 The connectivity information of truss model  

Frame text Joint text (left) Joint text (right) Length (in) 

a 1 3 1 

b 2 1 1 

c 4 2 1 
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Table VIII.2 The damage cases for frame system  

Case 
2m  

2m   
bk   

bk   
ck   

ck   

1 1.11 -0.10 1.00 0.00 1.00 0.00 

2 1.00 0.00 1.11 -0.10 1.00 0.00 

3 1.11 -0.10 1.11 -0.10 1.00 0.00 

4 1.11 -0.10 1.11 -0.10 1.25 -0.20 

 

 

 

In this example, four different damage cases are designed. Case 1, Case 2 and 

Case 3 are focus on single damage location, while Case 4 concerns with multi-damage 

locations. For Case 1, 2 and 3, the designed damaged element is element b. For Case 4, 

the damaged elements are element b and element c. The implement of the mass damage 

is by changing the unit mass volume of the element. The reduction of the stiffness is by 

changing the value of Young’s Modulus of the cross section. Notes that the value of 

mass at each joint indicates the one at the linked point cross section. Therefore, the 

change of the mass parameter will indicate the composite results for the related 

elements. The expected damage indices and damage severities results for each case can 

be shown in Table VII.4. 

8.4 Results for Frame System 

The study for the truss system mainly focus on the 2nd  joint of the frame model 

in Table VII.2. The related detection elements are element b, element c. The designed 
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dynamic load  2P t  goes horizontally. Therefore, the changes in stiffness damaged 

indices and stiffness damage severities will mainly focus on element b and element c.  

Table VIII.3 Results of damage indicators parameter for beam system  

Case  
2

*

2 2/m m m    
*/ k

b y yy
k b bk    */

c y yy
k c ck k    

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

1 1.11 4.76E-01 1.00 -9.00E-02 1.00 2.34E-03 

2 1.00 2.12E-03 1.11 -1.45E-03 1.00 -2.30E-01 

3 1.11 8.97E-02 1.11 3.22E-03 1.00 -1.87E-07 

4 1.25 -4.41E-04 1.11 1.94E-03 1.25 4.77E-04 

 

 

 

Table VIII.4 Results for damage severities for beam system  

Case  
2 2

1/ 1m m     1/ 1
b by y

k k     1/ 1
c cy y

k k     

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

1 -0.10 9.01E-04 0.00 9.89E-02 1.00 2.33E-03 

2 0.00 2.12E-03 -0.10 9.79E-02 1.00 2.99E-01 

3 -0.10 1.66E-01 -0.10 1.02E-01 1.00 1.91E-02 

4 -0.20 2.00E-01 -0.10 1.01E-01 -0.20 2.00E-01 

 

 

 

As mentioned before, the changes of the joint mass indicates the changes to 

related elements. In other words, the reduction of mass in one element will be expressed 
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as the change versus the composite value for all related elements. Additionally, the 

mainly concerned direction for this example is y  direction.  

By doing dynamic analysis for joint 2, the time-series based acceleration, 

displacement can be calculated by SAP2000. Using these data to solve Eq. (8.14), the 

damage indices and damage severities will be calculated to determine the state of the 

structures, which can be seen in Table VII.3 and Table VII.4. 

In Table VII.3, the damage indices have been calculated for each case. In Case 1, 

the reduction of the parameter is mass at joint 2. In Case 2, the reduction of the stiffness 

in element b is 10 %. Case 3 is the combination case of Case 1 and Case 2. As for Case 

4, it indicates the potential damage locations are element b and element c. In Table 

VII.4, it is clear to see the calculated damage severities in each case to predict the state 

of the structures. However, the severities of mass for each case can only indicates the 

changes at the joint cross section. In other words, the results cannot provide the changes 

of the mass in each element. 

8.5 Conclusion for Frame System 

In this Chapter, the application of dynamic ISR in frame system has been 

introduced. The Node method has been applied to find equation of motion of frame 

system (Spillers, 1972). Based on the general approach, the frame model has been 

designed into two cases. One is initial case and the other is final case. By doing dynamic 

analysis at a certain joint and decomposition of the stiffness matrix, one can calculate the 

mass indicators at the concerned joints and the damage indicators for each related 

element.  
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The results of the simple example for frame system shows great accuracy 

between the designed and calculated damage indicators. It demonstrates that the 

dynamic ISR can be used as a Level III method when applied to the frame system, which 

can not only provide exact damage locations but also damage severities.  

As mentioned in Section 7.5, the advantage for the node method is that it can 

apply dynamic loads at the joints of the frame model. And by using node method it can 

detect several related elements at the same time. It will definitely save time to find the 

potential damage regions. 

Compared with the truss system, the application of dynamic ISR is more 

complicated. In order to get the damage indices for every different element, 

decomposition of the stiffness matrix is necessary. Additionally, the geometry 

information of the frame system is required.  

The concerned direction of the system will impact the results. If the damage of 

the stiffness occurs in x  direction, the reason for the damage may be the reduction of 

the Young’s Modulus or the change of the cross section area. If the stiffness happens in 

y  direction, it means the damage comes from the change of Young’s Modulus or the 

moment of inertia. Moreover, the change of the mass can be shown as the composite 

results of every related member. The detailed damage severities for every related 

element cannot be provided by this method. However, this problem can be solved by 

comprehensively using the general approach of beam system and node method. One can 

use node method to find a potential mass damage joint. Then using general beam FEM 

approach for each potential element to get the detailed mass damage information.  
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CHAPTER IX 

CONCLUSION AND FUTURE WORK 

 

9.1 Conclusions 

The goal of this research is to propose an effective Level III NDE method to 

detect the existence, location and severity of damage in structures. The proposed method 

is called dynamic ISR method. The essential principle of this theory is the net internal 

force at any given section is not impact by the inflicted damage. Therefore, this method 

potentially can be applied to nearly all types of structures. 

In the first two chapters, an introduction and a literature review of vibration 

based NDE method have been provided. From Chapter III to Chapter VIII, the definition 

of dynamic ISR method has been applied to different types of structures, which includes 

discrete-parameter system, rod system, beam system, truss system and frame system. 

And the simulation procedures for special type of structures are mainly divided into four 

steps: 

1) General review of the system.  

2) Application of the dynamic ISR theory for the system.  

3) Simulation procedures for the concerned system.  

4) Results and conclusion for the special system. 

The research also provide general approaches for different type of structures 

based on finite element method. By analyzing the free-body diagram of the unit member, 

set up equations by the invariant stress resultants at a certain cross section for initial and 
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final system. Based on the data calculated by SAP 2000 to solve for damage indices and 

damage severities for the structures, which can help to locate and characterize damages. 

Based on the results for different types of structures, the proposed dynamic ISR 

method can provide clear indicators to accurately locate and characterize multiple 

damage locations. The detected damages can be mass, damping and stiffness damages 

from nearly all type of structures. Additionally, it is sensitive to detect small and 

inaccessible damage. No analytical model of the structure is required and only 

experimental data is needed to complete the analyses. The computational process is 

based on vibration theory, which is straight-forward and robust. 

9.2 Future Work 

As presented in the thesis, the dynamic ISR method is an explicit damage 

identification method which can be applied into different types of structures. Future 

research can be focus on: 

 Application in Timoshenko beam system  

 Damping damage detection in beam system 

 Application to 3-D examples, such as plate structures and shell structures. 

 Field data is needed to verify the accuracy of this method 
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Table A.1 Description of damage Case 1 for SDF model  

 Mass  

(kip-s2)/in 

Damping  

(kip-s/in) 

Stiffness  

(kip/in) 

Force 

Amplitude 

(kips) 

Undamaged 3.00 1.00 2.00 1.00 

Damaged 2.40 1.00 2.00 1.00 

 

 

 

Table A.2 Results for Case 1 for SDOF model based on same time step number  

Time 

step 

size 

*/m m m    
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E-03 1.25 6.91E-04 1.00 2.59E-01 1.00 -1.97E-01 

1E-02 1.25 -4.38E-05 1.00 8.05E-05 1.00 2.03E-05 

2E-02 1.25 -2.62E-08 1.00 -2.00E-05 1.00 1.00E-05 

5E-02 1.25 -1.32E-08 1.00 5.93E-06 1.00 -3.10E-06 

Notes: Number of the time step for each case is 50. 

 

 

 

Table A.3 Results for Case 1 for SDOF model based on same time step size  

Time 

step 

number  

*/m m m   
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E01 1.25 6.91E-04 1.00 2.59E-01 1.00 -1.97E-02 

1E02 1.25 -1.23E-05 1.00 1.30E-03 1.00 -8.00E-04 

Notes: Output time step size 0.005.  
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Table A.4 Description of damage case 2 for SDOF model  

 Mass  

(kip-s2)/in 

Damping  

(kip-s/in) 

Stiffness  

(kip/in) 

Force 

Amplitude 

(kips) 

Undamaged 3.00 1.00 2.00 1.00 

Damaged 2.40 0.90 2.00 1.00 

 

 

 

Table A.5 Results for case 2 for SDOF model based on same time step number  

Time 

step size 

*/m m m   
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E-03 1.00 -4.66E-03 1.08 2.45E00 1.00 -4.63E-01 

1E-02 1.00 7.00E-04 1.11 -6.09E-02 1.00 8.47E-03 

2E-02 1.00 1.88E-06 1.11 -1.03E-02 1.00 5.94E-05 

5E-02 1.00 -1.40E-08 1.11 -1.00E-03 1.00 -2.7E-06 

Notes: Number of the time step for each case is 50. 

 

 

 

Table A.6 Results for case 2 for SDOF model based on same time step size  

Time 

step 

number  

*/m m m   
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. Value Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E01 1.00 -4.66E-03 1.08 2.45E00 1.00 -4.63E-02 

1E02 1.00 1.05E-03 1.11 9.21E-02 1.00 -1.59E-02 

Notes: Output time step size 0.005 



105 

 

Table A.7 Description of damage case 3 for SDOF model  

 Mass  

(kip-s2)/in 

Damping  

(kip-s/in) 

Stiffness  

(kip/in) 

Force 

Amplitude 

(kips) 

Undamaged 3.00 1.00 2.00 1.00 

Damaged 3.00 1.00 1.40 1.00 

 

 

 

TableA.8 Results for case 3 for SDOF model based on same time step number  

Time 

step size 

*/m m m   
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E-03 1.00 4.91E-03 1.00 7.19E-04 1.42 6.39E-01 

1E-02 1.00 1.16E-04 1.00 4.38E-05 1.43 -4.08E-03 

2E-02 1.00 1.33E-07 1.00 1.28E-07 1.43 -1.20E-04 

5E-02 1.00 -7.6E-09 1.00 9.3E-08 1.43 -1.00E-04 

Notes: Number of the time step for each case is 50. 

 

 

 

Table A.9 Results for case 3 for SDOF model based on same time step size  

Time 

step 

number  

*/m m m   
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E01 1.00 4.91E-03 1.00 7.19E-03 1.43 6.39E-01 

1E02 1.00 9.52E-05 1.00 -1.3E-04 1.43 -7.35E-02 

Notes: Output time step size 0.005 



106 

 

Table A.10 Description of damage case 4 for SDOF model  

 Mass  

(kip-s2)/in 

Damping  

(kip-s/in) 

Stiffness  

(kip/in) 

Force 

Amplitude 

(kips) 

Undamaged 3.00 1.00 2.00 1.00 

Damaged 2.40 0.90 2.00 1.00 

 

 

 

Table A.11 Results for case 4 for SDOF model based on same time step number  

Time 

step 

size 

*/m m m    
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E-03 1.25 -2.41E-03 1.11 3.69E-03 1.00 -2.98E-02 

1E-02 1.25 3.04E-05 1.11 -9.71E-03 1.00 -6.2E-03 

2E-02 1.25 3.76E-09 1.11 1.00E-02 1.00 1.46E-05 

5E-02 1.25 -1.5E-08 1.11 -1.00E-02 1.00 -3.00E-06 

Notes: Number of the time step for each case is 50. 

 

 

 

Table A.12 Results for case 4 for SDOF model based on same time step size  

Time 

step 

number  

*/m m m   
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent Error Calc. 

Value 

Percent 

Error 

5E01 1.25 -2.40E-03 1.11 3.69E-03 1.00 -2.98E-02 

1E02 1.25 -3.20E-05 1.11 -1.03E-02 1.00 5.00E-04 

Notes: Output time step size 0.005 
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Table A.13 Description of damage case 5 for SDOF model  

 Mass  

(kip-s2)/in 

Damping  

(kip-s/in) 

Stiffness  

(kip/in) 

Force 

Amplitude 

(kips) 

Undamaged 3.00 1.00 2.00 1.00 

Damaged 2.40 1.00 1.40 1.00 

 

 

 

Table A.14 Results for case 5 for SDOF model based on same time step number  

Time 

step 

size 

*/m m m    
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E-03 1.25 -9.60E-03 1.00 4.76E-01 1.43 -3.91E-01 

1E-02 1.25 8.27E-05 1.00 -2.88E-03 1.43 -2.90E-03 

2E-02 1.25 1.03E-06 1.00 5.4E-06 1.43 -1.00E-04 

5E-02 1.25 -2.00E-08 1.00 2.45E-06 1.43 -1.00E-04 

Notes: Number of the time step for each case is 50. 

 

 

 

Table A.15 Results for case 5 for SDOF model based on same time step size  

Time 

step 

number  

*/m m m   
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E01 1.25 -9.57E-03 1.00 4.76E-01 1.43 -3.91E-03 

1E02 1.25 1.94E-04 1.00 7.47E-04 1.43 -8.50E-04 

Notes: Output time step size 0.005 
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Table A.16 Description of damage case 6 for SDOF model  

 Mass  

(kip-s2)/in 

Damping  

(kip-s/in) 

Stiffness  

(kip/in) 

Force 

Amplitude 

(kips) 

Undamaged 3.00 1.00 2.00 1.00 

Damaged 3.00 0.90 1.40 1.00 

 

 

 

Table A.17 Results for case 6 for SDOF model based on same time step number  

Time 

step 

size 

*/m m m    
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E-03 1.00 -9.60E-03 1.11 -5.55E-01 1.00 -2.98E-00 

1E-02 1.00 8.27E-05 1.11 -8.55E-03 1.00 -6.04E-03 

2E-02 1.00 1.03E-06 1.11 9.99E-03 1.00 -1.20E-04 

5E-02 1.00 -2.00E-08 1.11 -1.00E-02 1.00 -1.10E-04 

Notes: Number of the time step for each case is 50. 

 

 

 

Table A.18 Results for case 6 for SDOF model based on same time step size  

Time 

step 

number  

*/m m m   
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent Error Calc. 

Value 

Percent 

Error 

5E01 1.00 -1.10E-03 1.11 -5.55E-01 1.39 2.98E00 

1E02 1.00 -3.30E-05 1.11 -1.08E-02 1.43 -8.50E-04 

Notes: Output time step size 0.005 
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Table A.19 Description of damage case 7 for SDOF model  

 Mass  

(kip-s2)/in 

Damping  

(kips-s/in) 

Stiffness  

(kip/in) 

Force 

Amplitude 

(kips) 

Undamaged 3.00 1.00 2.00 1.00 

Damaged 2.40 0.90 1.40 1.00 

 

 

 

Table A.20 Results for case 7 for SDOF model based on same time step number  

Time 

step 

size 

*/m m m    
*/c c c   

*/k k k   

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E-03 1.25 -4.21E-03 1.12 -1.15E00 1.40 2.41E-00 

1E-02 1.25 1.37E-04 1.11 -3.10E-03 1.43 -1.57E-02 

2E-02 1.25 3.80E-07 1.11 9.99E-04 1.43 -1.60E-05 

5E-02 1.25 -4.97E-09 1.11 -1.00E-03 1.43 -6.10E-06 

Notes: Number of the time step for each case is 50. 

 

 

 

Table A.21 Results for case 7 for SDOF model based on same time step size  

Time 

step 

number  

*/m m m 
 

*/c c c 
 

*/k k k 
 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

Calc. 

Value 

Percent 

Error 

5E01 1.25 4.21E-03 1.12 -1.15E00 1.39 2.41E00 

1E02 1.25 3.20E-04 1.11 -9.00E-03 1.43 -3.2E-03 

Notes: Output time step size 0.005.  
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Table A.22 Results for Case 1 for rod system  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

1 1.00 1.00 -1.96E-02 1.00 1.00 6.09E-04 

2 1.00 1.00 -6.53E-03 1.00 1.00 1.87E-04 

3 1.00 1.00 1.96E-02 1.00 1.00 -1.66E-04 

4 1.00 1.00 1.70E-02 1.00 1.00 2.56E-04 

5 1.00 1.00 -1.20E-02 1.00 1.00 5.87E-06 

6 1.00 1.00 -1.67E-03 1.00 1.00 -4.09E-05 

7 1.00 1.00 4.43E-03 1.00 1.00 -3.43E-04 

8 1.00 1.00 1.43E-03 1.00 1.00 1.71E-04 

9 1.00 1.00 -9.89E-03 1.00 1.00 -2.93E-05 

10 1.00 1.00 7.36E-03 1.00 1.00 -1.00E-04 

11 1.00 1.00 3.84E-03 1.00 1.00 2.18E-04 

12 1.00 1.00 1.51E-03 1.00 1.00 7.30E-04 

13 1.00 1.00 -2.89E-03 1.00 1.00 9.53E-04 

14 1.00 1.00 7.69E-04 1.00 1.00 1.46E-04 

15 1.00 1.00 -1.72E-03 1.00 1.00 2.92E-04 

16 1.00 1.00 -7.19E-04 1.00 1.00 -1.04E-04 
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Table A.22 Results for Case 1 for rod system (continued)  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

17 1.11 1.11 3.09E-03 1.00 1.00 6.09E-04 

18 1.00 1.00 -2.40E-03 1.00 1.00 1.87E-04 

19 1.00 1.00 -3.99E-03 1.00 1.00 -1.66E-04 

20 1.00 1.00 -1.07E-03 1.00 1.00 2.56E-04 

21 1.00 1.00 -1.62E-04 1.00 1.00 5.87E-06 

22 1.00 1.00 2.44E-02 1.00 1.00 -4.09E-05 

23 1.00 1.00 4.45E-04 1.00 1.00 -3.43E-04 

24 1.00 1.00 -1.22E-03 1.00 1.00 1.71E-04 

25 1.00 1.00 -1.27E-03 1.00 1.00 -2.93E-05 

26 1.00 1.00 -1.59E-03 1.00 1.00 -1.00E-04 

27 1.00 1.00 8.30E-04 1.00 1.00 2.18E-04 

28 1.00 1.00 2.57E-03 1.00 1.00 7.30E-04 

29 1.00 1.00 6.66E-04 1.00 1.00 9.53E-04 

30 1.00 1.00 1.34E-03 1.00 1.00 1.46E-04 
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Table A.23 Results for Case 2 for rod system  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

1 1.00 1.00 1.14E-02 1.00 1.00 2.24E-04 

2 1.00 1.00 -4.32E-02 1.00 1.00 -1.10E-04 

3 1.00 1.00 -8.11E-04 1.00 1.00 -1.29E-04 

4 1.00 1.00 3.11E-03 1.00 1.00 2.61E-04 

5 1.00 1.00 -1.09E-02 1.00 1.00 1.15E-04 

6 1.00 1.00 1.58E-03 1.00 1.00 3.46E-03 

7 1.00 1.00 -2.54E-03 1.00 1.00 -6.40E-05 

8 1.00 1.00 2.78E-03 1.00 1.00 -2.67E-04 

9 1.00 1.00 -6.37E-03 1.00 1.00 -8.13E-05 

10 1.00 1.00 6.77E-04 1.00 1.00 1.28E-03 

11 1.00 1.00 -2.42E-04 1.00 1.00 4.64E-05 

12 1.00 1.00 -1.02E-04 1.00 1.00 3.08E-04 

13 1.00 1.00 -2.40E-03 1.00 1.00 8.39E-04 

14 1.00 1.00 1.32E-03 1.00 1.00 1.88E-04 

15 1.00 1.00 -1.78E-03 1.00 1.00 2.09E-04 

16 1.00 1.00 -3.05E-03 1.00 1.00 1.29E-04 
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Table A.23 Results for Case 2 for rod system (continued)  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

17 1.00 1.00 6.67E-04 1.18 1.18 -3.37E-04 

18 1.00 1.00 -3.63E-03 1.00 1.00 4.94E-04 

19 1.00 1.00 -1.81E-03 1.00 1.00 -6.66E-05 

20 1.00 1.00 2.05E-03 1.00 1.00 3.62E-04 

21 1.00 1.00 9.65E-06 1.00 1.00 3.21E-04 

22 1.00 1.00 3.72E-03 1.00 1.00 -3.66E-05 

23 1.00 1.00 1.38E-03 1.00 1.00 -2.09E-04 

24 1.00 1.00 -4.90E-04 1.00 1.00 1.82E-04 

25 1.00 1.00 -1.97E-03 1.00 1.00 -1.00E-04 

26 1.00 1.00 3.66E-04 1.00 1.00 -1.01E-04 

27 1.00 1.00 2.77E-04 1.00 1.00 3.74E-05 

28 1.00 1.00 5.94E-04 1.00 1.00 2.38E-04 

29 1.00 1.00 2.75E-04 1.00 1.00 2.29E-04 

30 1.00 1.00 3.16E-03 1.00 1.00 8.08E-05 
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Table A.24 Results for Case 3 for rod system  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

1 1.00 1.00 -6.36E-02 1.00 1.00 5.01E-04 

2 1.00 1.00 1.01E-02 1.00 1.00 4.64E-04 

3 1.00 1.00 2.24E-03 1.00 1.00 1.18E-04 

4 1.00 1.00 8.77E-03 1.00 1.00 2.27E-04 

5 1.00 1.00 9.48E-04 1.00 1.00 7.96E-05 

6 1.00 1.00 6.18E-03 1.00 1.00 1.47E-04 

7 1.00 1.00 3.75E-03 1.00 1.00 -9.56E-05 

8 1.00 1.00 -7.88E-04 1.00 1.00 1.41E-04 

9 1.00 1.00 -1.00E-02 1.00 1.00 5.46E-06 

10 1.00 1.00 -2.86E-03 1.00 1.00 5.93E-05 

11 1.00 1.00 -1.74E-03 1.00 1.00 7.07E-05 

12 1.00 1.00 1.53E-02 1.00 1.00 3.58E-04 

13 1.00 1.00 -1.41E-04 1.00 1.00 9.35E-04 

14 1.00 1.00 5.13E-03 1.00 1.00 4.69E-04 

15 1.00 1.00 5.18E-04 1.00 1.00 1.61E-04 

16 1.00 1.00 2.21E-03 1.00 1.00 1.09E-04 

 

 

 

 

 

 



115 

 

Table A.24 Results for Case 3 for rod system (continued)  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

17 1.11 1.11 -7.65E-03 1.18 1.18 -1.28E-05 

18 1.00 1.00 8.67E-04 1.00 1.00 5.45E-04 

19 1.00 1.00 -2.87E-04 1.00 1.00 -1.02E-04 

20 1.00 1.00 9.26E-04 1.00 1.00 3.65E-04 

21 1.00 1.00 -5.97E-04 1.00 1.00 2.97E-04 

22 1.00 1.00 4.64E-04 1.00 1.00 -6.06E-04 

23 1.00 1.00 3.12E-03 1.00 1.00 -2.04E-04 

24 1.00 1.00 -2.43E-03 1.00 1.00 2.89E-04 

25 1.00 1.00 1.04E-04 1.00 1.00 -4.42E-04 

26 1.00 1.00 -1.41E-03 1.00 1.00 -1.87E-04 

27 1.00 1.00 3.14E-03 1.00 1.00 -4.51E-05 

28 1.00 1.00 1.11E-03 1.00 1.00 1.62E-04 

29 1.00 1.00 -1.65E-03 1.00 1.00 1.60E-06 

30 1.00 1.00 1.21E-03 1.00 1.00 2.84E-05 
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Table A.25 Results for Case 4 for rod system  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

1 1.00 1.00 3.26E-02 1.00 1.00 3.24E-04 

2 1.00 1.00 -2.91E-02 1.00 1.00 5.50E-04 

3 1.00 1.00 -8.01E-04 1.00 1.00 4.47E-04 

4 1.00 1.00 1.45E-02 1.00 1.00 -5.23E-05 

5 1.00 1.00 -4.73E-03 1.00 1.00 2.65E-04 

6 1.00 1.00 3.24E-03 1.00 1.00 1.43E-04 

7 1.00 1.00 1.67E-03 1.00 1.00 -3.47E-04 

8 1.00 1.00 -3.40E-04 1.00 1.00 -1.09E-04 

9 1.00 1.00 -4.59E-04 1.00 1.00 -1.28E-04 

10 1.00 1.00 -1.34E-03 1.00 1.00 -2.64E-04 

11 1.00 1.00 -3.87E-03 1.00 1.00 3.82E-04 

12 1.00 1.00 1.56E-03 1.00 1.00 2.11E-04 

13 1.00 1.00 3.75E-05 1.00 1.00 8.35E-04 

14 1.00 1.00 3.19E-03 1.00 1.00 4.28E-04 

15 1.00 1.00 2.68E-03 1.00 1.00 3.90E-05 

16 1.00 1.00 2.37E-03 1.00 1.00 -5.66E-04 
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Table A.25 Results for Case 4 for rod system (continued)  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

17 1.11 1.11 2.69E-03 1.18 1.18 -3.57E-04 

18 1.00 1.00 -1.31E-03 1.00 1.00 1.39E-04 

19 1.00 1.00 -2.49E-03 1.00 1.00 -4.65E-04 

20 1.00 1.00 -1.47E-03 1.00 1.00 2.81E-04 

21 1.00 1.00 -2.70E-04 1.00 1.00 1.83E-04 

22 1.00 1.00 5.29E-04 1.00 1.00 -1.72E-04 

23 1.00 1.00 3.16E-04 1.00 1.00 -4.63E-04 

24 1.00 1.00 4.53E-04 1.00 1.00 -2.17E-04 

25 1.00 1.00 4.2-E-04 1.00 1.00 -3.96E-04 

26 1.00 1.00 5.60E-04 1.00 1.00 -2.39E-04 

27 1.25 1.25 3.65E-04 1.22 1.22 1.20E-04 

28 1.00 1.00 1.52E-04 1.00 1.00 3.48E-04 

29 1.00 1.00 2.16E-04 1.00 1.00 1.05E-04 

30 1.00 1.00 1.45E-04 1.00 1.00 -1.59E-04 
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Table A.26 Results for Case 1 for simply supported beam system  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

1 1.00 1.00 6.99E-03 1.00 1.00 2.09E-04 

2 1.00 1.00 4.14E-03 1.00 1.00 1.03E-04 

3 1.00 1.00 6.33E-04 1.00 1.00 1.34E-05 

4 1.00 1.00 4.27E-03 1.00 1.00 5.28E-05 

5 1.00 1.00 1.63E-03 1.00 1.00 1.2E-05 

6 1.00 1.00 4.44E-03 1.00 1.00 3.33E-05 

7 1.00 1.00 3.63E-03 1.00 1.00 2.41E-05 

8 1.00 1.00 2.45E-03 1.00 1.00 1.91E-05 

9 1.00 1.00 5.37E-03 1.00 1.00 3.03E-05 

10 1.00 1.00 2.25E-04 1.00 1.00 5.39E-06 

11 1.00 1.00 7.06E-03 1.00 1.00 3.50E-05 

12 1.00 1.00 3.21E-03 1.00 1.00 8.58E-06 

13 1.00 1.00 7.01E-03 1.00 1.00 3.78E-05 

14 1.00 1.00 8.83E-03 1.00 1.00 2.50E-05 

15 1.00 1.00 8.72E-03 1.00 1.00 4.86E-05 

16 1.00 1.00 4.73E-03 1.00 1.00 4.02E-05 

 

 

 

 

 

 



119 

 

Table A.22 Results for Case 1 for simply supported beam system (continued)  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

17 1.11 1.11 7.04E-03 1.00 1.00 9.78E-05 

18 1.00 1.00 6.33E-04 1.00 1.00 2.66E-05 

19 1.00 1.00 2.26E-03 1.00 1.00 4.62E-05 

20 1.00 1.00 3.72E-02 1.00 1.00 1.51E-05 

21 1.00 1.00 3.55E-02 1.00 1.00 3.01E-05 

22 1.00 1.00 2.78E-02 1.00 1.00 3.53E-06 

23 1.00 1.00 2.63E-02 1.00 1.00 2.34E-05 

24 1.00 1.00 3.03E-02 1.00 1.00 3.32E-06 

25 1.00 1.00 3.32E-02 1.00 1.00 1.98E-05 

26 1.00 1.00 3.06E-02 1.00 1.00 8.44E-06 

27 1.00 1.00 2.80E-02 1.00 1.00 1.96E-05 

28 1.00 1.00 2.91E-02 1.00 1.00 1.64E-05 

29 1.00 1.00 3.16E-02 1.00 1.00 2.81E-05 

30 1.00 1.00 3.33E-02 1.00 1.00 6.97E-05 
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Table A.27 Results for Case 2 for simply supported beam system  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

1 1.00 1.00 -1.56E-01 1.00 1.00 -4.60E-03 

2 1.00 1.00 -9.72E-02 1.00 1.00 -2.50E-03 

3 1.00 1.00 5.20E-03 1.00 1.00 1.34E-04 

4 1.00 1.00 9.36E-02 1.00 1.00 1.32E-03 

5 1.00 1.00 5.58E-02 1.00 1.00 5.21E-04 

6 1.00 1.00 -7.85E-02 1.00 1.00 -6.60E-04 

7 1.00 1.00 -9.35E-02 1.00 1.00 -6.90E-04 

8 1.00 1.00 1.78E-02 1.00 1.00 1.86E-04 

9 1.00 1.00 1.07E-01 1.00 1.00 7.34E-04 

10 1.00 1.00 4.72E-02 1.00 1.00 2.76E-04 

11 1.00 1.00 -9.34E-02 1.00 1.00 -4.80E-04 

12 1.00 1.00 -9.92E-02 1.00 1.00 -5.60E-04 

13 1.00 1.00 3.30E-02 1.00 1.00 1.77E-04 

14 1.00 1.00 1.28E-01 1.00 1.00 6.76E-04 

15 1.00 1.00 4.75E-02 1.00 1.00 1.27E-04 

16 1.00 1.00 -1.07E-01 1.00 1.00 -7.00E-04 
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Table A.23 Results for Case 2 for simply supported beam system (continued)  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

17 1.00 1.00 -4.75E-02 1.18 1.18 -8.70E-04 

18 1.00 1.00 -2.08E-02 1.00 1.00 -5.40E-04 

19 1.00 1.00 2.54E-02 1.00 1.00 -4.70E-04 

20 1.00 1.00 6.04E-02 1.00 1.00 2.66E-04 

21 1.00 1.00 1.27E-02 1.00 1.00 1.16E-04 

22 1.00 1.00 -4.12E-02 1.00 1.00 -2.30E-04 

23 1.00 1.00 -2.68E-02 1.00 1.00 -1.70E-04 

24 1.00 1.00 2.47E-02 1.00 1.00 1.97E-04 

25 1.00 1.00 4.00E-02 1.00 1.00 3.44E-04 

26 1.00 1.00 -7.75E-03 1.00 1.00 2.65E-6 

27 1.00 1.00 -3.48E-02 1.00 1.00 -2.50E-04 

28 1.00 1.00 -7.62E-03 1.00 1.00 -8.20E-05 

29 1.00 1.00 3.24E-02 1.00 1.00 8.41E-04 

30 1.00 1.00 5.71E-02 1.00 1.00 1.81E-03 
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Table A.28 Results for Case 3 for simply supported beam system  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

1 1.00 1.00 5.41E-01 1.00 1.00 1.56E-02 

2 1.00 1.00 3.18E-01 1.00 1.00 7.89E-03 

3 1.00 1.00 -5.58E-01 1.00 1.00 1.17E-03 

4 1.00 1.00 -3.33E-01 1.00 1.00 4.07E-03 

5 1.00 1.00 -1.13E-01 1.00 1.00 7.85E-04 

6 1.00 1.00 3.62E-01 1.00 1.00 2.74E-04 

7 1.00 1.00 2.75E-01 1.00 1.00 1.78E-03 

8 1.00 1.00 -2.19E-01 1.00 1.00 1.64E-03 

9 1.00 1.00 -4.34E-01 1.00 1.00 2.45E-03 

10 1.00 1.00 5.43E-02 1.00 1.00 6.62E-04 

11 1.00 1.00 6.11E-01 1.00 1.00 2.93E-03 

12 1.00 1.00 2.43E-01 1.00 1.00 4.23E-04 

13 1.00 1.00 -6.53E-01 1.00 1.00 3.51E-03 

14 1.00 1.00 -7.83E-01 1.00 1.00 1.93E-03 

15 1.00 1.00 8.59E-01 1.00 1.00 4.94E-03 

16 1.00 1.00 3.70E-01 1.00 1.00 3.74E-03 
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Table A.28 Results for Case 3 for simply supported beam system (continued)  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

17 1.11 1.11 -1.32E-01 1.18 1.18 -9.81E-03 

18 1.00 1.00 -7.74E-02 1.00 1.00 2.639E-03 

19 1.00 1.00 7.11E-01 1.00 1.00 4.59E-03 

20 1.00 1.00 -6.92E-01 1.00 1.00 -1.38E-03 

21 1.00 1.00 -5.25E-01 1.00 1.00 -2.87E-03 

22 1.00 1.00 2.04E-01 1.00 1.00 2.714E-04 

23 1.00 1.00 3.46E-01 1.00 1.00 2.185E-03 

24 1.00 1.00 -2.22E-02 1.00 1.00 3.97E-04 

25 1.00 1.00 -2.87E-01 1.00 1.00 -1.71E-03 

26 1.00 1.00 -6.32E-02 1.00 1.00 -9.08E-04 

27 1.00 1.00 1.74E-01 1.00 1.00 1.729E-03 

28 1.00 1.00 7.78E-02 1.00 1.00 1.533E-03 

29 1.00 1.00 -1.39E-01 1.00 1.00 -2.21E-03 

30 1.00 1.00 -2.83E-01 1.00 1.00 -6.3E-03 
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Table A.29 Results for Case 4 for simply supported beam system  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

1 1.00 1.00 8.20E-02 1.00 1.00 1.71E-03 

2 1.00 1.00 3.30E-02 1.00 1.00 4.15E-04 

3 1.00 1.00 -3.74E-02 1.00 1.00 -7.80E-04 

4 1.00 1.00 -5.72E-02 1.00 1.00 -3.40E-04 

5 1.00 1.00 4.52E-02 1.00 1.00 6.38E-04 

6 1.00 1.00 1.24E-01 1.00 1.00 7.50E-04 

7 1.00 1.00 4.62E-03 1.00 1.00 -2.90E-04 

8 1.00 1.00 -1.56E-01 1.00 1.00 -1.10E-03 

9 1.00 1.00 -1.15E-01 1.00 1.00 -2.80E-04 

10 1.00 1.00 1.79E-01 1.00 1.00 1.35E-03 

11 1.00 1.00 3.21E-01 1.00 1.00 1.32E-03 

12 1.00 1.00 -4.14E-02 1.00 1.00 -1.10E-03 

13 1.00 1.00 -5.33E-01 1.00 1.00 -2.70E-03 

14 1.00 1.00 -4.02E-01 1.00 1.00 7.35E-05 

15 1.00 1.00 9.56E-01 1.00 1.00 5.29E-05 

16 1.00 1.00 -2.95E-02 1.00 1.00 1.73E-05 
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Table A.29 Results for Case 4 for simply supported beam system (continued)  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

17 1.11 1.11 -1.78E-01 1.18 1.18 -1.1E-02 

18 1.00 1.00 1.38E-01 1.00 1.00 4.19E-03 

19 1.00 1.00 1.25E00 1.00 1.00 7.41E-03 

20 1.00 1.00 -6.22E-01 1.00 1.00 -1.6E-03 

21 1.00 1.00 -1.22E00 1.00 1.00 -6.9E-03 

22 1.00 1.00 -3.53E-01 1.00 1.00 -1.7E-03 

23 1.00 1.00 4.00E-01 1.00 1.00 7.93E-03 

24 1.00 1.00 2.39E-02 1.00 1.00 7.56E-03 

25 1.05 1.05 8.41E-02 1.21 1.21 -4.9E-03 

26 1.00 1.00 -7.2E-01 1.00 1.00 6.5E-03 

27 1.25 1.25 1.83E-01 1.22 1.22 1.18E-04 

28 1.00 1.00 -1.53E-01 1.00 1.00 6.86E-03 

29 1.00 1.00 -6.43E-01 1.00 1.00 -1.7E-04 

30 1.00 1.00 -8.53E-01 1.00 1.00 -3.1E-02 
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Figure A.1 Cantilever beam model 

 

 

 

Table A.30 Damage case description for cantilever beam system  

 Case  Location 
m   m   k   k   

Multiple 

locations 
1 

3rd  1.25 -0.20 1.14 -0.12 

17th

  1.11 -0.10 1.18 -0.15 

25th   1.05 -0.05 1.21 -0.18 

 

   
Figure A.2 Calculated damage indicators for Case 1 for cantilever beam 

0 10 20 30
0.9

1

1.1

1.2

Number of element

m
a
s
s
 d

a
m

a
g
e
 i
n
d
ic

e
s

0 10 20 30
0.9

1

1.1

1.2

Number of element

s
ti
ff

n
e
s
s
 d

a
m

a
g
e
 i
n
d
ic

e
s

0 10 20 30

-0.2

-0.1

0

0.1

Number of element

m
a
s
s
 d

a
m

a
g
e
 s

e
v
e
ri
ty

0 10 20 30

-0.1

0

0.1

Number of element

s
ti
ff

n
e
s
s
 d

a
m

a
g
e
 s

e
v
e
ri
ty



127 

 

Table A.31 Results for Case 1 for cantilever beam system  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

1 1.00 1.00 3.60E-01 1.00 1.00 -2.40E-02 

2 1.00 1.00 4.71E-01 1.00 1.00 -7.30E-03 

3 1.00 1.00 -9.47E-01 1.00 1.00 8.45E-03 

4 1.00 1.00 -3.98E-02 1.00 1.00 1.09E-02 

5 1.00 1.00 -1.90E-01 1.00 1.00 7.77E-03 

6 1.00 1.00 2.88E-02 1.00 1.00 3.56E-03 

7 1.00 1.00 1.81E-01 1.00 1.00 -1.40E-03 

8 1.00 1.00 2.93E-01 1.00 1.00 -6.40E-03 

9 1.00 1.00 3.75E-01 1.00 1.00 -1.10E-02 

10 1.00 1.00 4.32E-01 1.00 1.00 -1.40E-02 

11 1.00 1.00 4.74E-01 1.00 1.00 -1.60E-02 

12 1.00 1.00 5.12E-01 1.00 1.00 -1.50E-02 

13 1.00 1.00 5.67E-01 1.00 1.00 -1.00E-02 

14 1.00 1.00 6.6E-01 1.00 1.00 -1.10E-03 

15 1.00 1.00 7.95E-01 1.00 1.00 1.51E-02 

16 1.00 1.00 4.60E-01 1.00 1.00 4.24E-02 
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Table A. 31 Results for Case 1 for cantilever beam system (continued)  

 
*/m m m 
 

*/k k k 
 

Element 

Number 
Calculated Actual Percent Error Calculated Actual Percent Error 

17 1.11 1.11 -3.58E-01 1.00 1.00 -1.10E-02 

18 1.00 1.00 1.38E-01 1.00 1.00 4.19E-03 

19 1.00 1.00 2.47E-01 1.00 1.00 7.41E-03 

20 1.00 1.00 -6.22E-01 1.00 1.00 -1.60E-03 

21 1.00 1.00 -1.22E00 1.00 1.00 -6.90E-03 

22 1.00 1.00 -3.53E-01 1.00 1.00 -1.70E-03 

23 1.00 1.00 9.00E-01 1.00 1.00 7.93E-03 

24 1.00 1.00 -2.76E-01 1.00 1.00 7.56E-03 

25 1.00 1.00 8.41E-02 1.00 1.00 -4.90E-03 

26 1.00 1.00 -7.20E-03 1.00 1.00 6.50E-03 

27 1.00 1.00 6.83E-01 1.00 1.00 1.18E-02 

28 1.00 1.00 -1.53E-02 1.00 1.00 6.86E-04 

29 1.00 1.00 -6.43E-02 1.00 1.00 -1.70E-02 

30 1.00 1.00 -8.53E-02 1.00 1.00 -3.10E-02 

 

 

 

 

 

 

 

 

 

 


