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ABSTRACT

Predictive modeling of the dynamic, multivariate, non-linear, stochastic systems

of biology is a difficult enterprise. High throughput measurement techniques are

enabling new approaches to computational biology, but the small number of sam-

ples typically available relative to the number of features measured make additional

sources of information critical for accurate predictions. In this dissertation, we offer

an approach to incorporate biological pathway knowledge into a predictive stochastic

model for genetic regulatory networks. In addition, we propose a statistical model

for shotgun sequencing and use computational approximation strategies to derive

optimal estimators for classification.

We perform comparisons of classifiers trained using this framework to other ex-

isting classification rules including non-linear support vector machines. Using both

synthetic and real sequencing data, our classifiers delivered lower classification error

rates than existing classification techniques. In addition, we demonstrate using prior

knowledge to construct the classifier through properly constructed prior distributions

and several scenarios where this increases classification performance.

This research establishes a flexible framework to generate optimal estimators

with respect to statistical biological models. By demonstrating the role and power of

computation in unlocking these estimators, we point future research efforts towards

this computationally intensive approach for the computational biology field.
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1. INTRODUCTION

Biological organisms can be considered high-dimensional, non-linear, stochastic,

dynamical systems. Each of these attributes increases the difficulty of making pre-

dictions about the behavior of these complex machines. Additionally, the known

operational mechanisms of biological systems are only partially catalogued adding

another level of difficulty to the task. Despite this, disciplines ranging from medicine

to synthetic biology drive the need to develop methodologies to make accurate pre-

dictions in the face of this difficult and partially understood domain.

Recent developments in the field of high-throughput biological measurement tech-

niques – most notably shotgun sequencing – have increased our ability to probe the

internal workings of the cell. These techniques produce measurements of the entire

transcriptional profile of a cell, or sequence an entire genome. But despite rapidly

dropping costs of these techniques, the number of samples obtained is typically much

smaller than the number of features measured. This positions the analyses of these

dataset squarely in the “small sample” domain where common statistical assumptions

such as asymptotics cannot be relied upon.

Despite the difficulty of the domain and the small number of samples available,

two facets of the problem, if properly leveraged, can enable forward progress. First,

for decades biologists have worked to discover knowledge regarding the mechanistic

underpinnings of biology in the form of pathways. These pathways describe known

relationships between genes, proteins, RNAs, and other functional elements of the

cell. Secondly, with the data and pathway knowledge available, we are typically

not immediately interested in a full understanding of the biological system itself.

Instead, we would often like to make predictions about some limited aspect of the
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system. For example, medical practitioners often want answers to questions such

as, “what subtype of cancer is my patient suffering from?” and “which treatment

will lead to the best prognosis?”. Similarly biologists ask targeted questions of their

experimental datasets such as, “what mechanism is responsible for this observed

shift in phenotype?” and “which experiment should I perform next to discover this

mechanism?”

Leveraging those two insights, in this dissertation, we propose techniques to utilize

biological pathway knowledge to make predictions about biological systems.

1.1 Contributions

The contributions made in this dissertation result from two primary research

projects. First, we developed an algorithm to use biological pathways to construct

a stochastic dynamical model for gene regulatory networks. This model can then

be used for making predictions of system behavior under unobserved operating con-

ditions. We then applied this technique to build an NF-κB regulatory model using

pathways from the literature. We then used additional mouse knockout experiments

available in the literature for an external qualitative validation. Secondly, we wished

to improve this technique to develop an optimal estimation methodology for the in-

corporation of prior knowledge with high-throughput data. We achieved this in the

realm of classification using Optimal Bayesian Classification and the application of

computational approximation techniques.

1.1.1 Markov models for pathway knowledge

The cell is the essential functional unit of life, and an understanding of its internal

mechanisms has occupied a large proportion of the productive output of biology.

Biological pathways represent a formalization of much of this knowledge in the form

of mechanistic dependencies between the functional elements in a cell.
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Unfortunately, the information inherent in these pathways is incomplete and often

conflicting due to cellular context including epigenetics and internal or environmental

conditions for the cell. Additionally, the information is univariate and therefore does

not typically provide enough information alone to make accurate predictions in light

of the cellular context.

We address that problem in Section 2 by developing an algorithm which takes

as an input a set of pathways and outputs a Markov chain model of the system

which evolves consistently with the pathways. This requires a procedure to deal with

inconsistencies in the pathway information that may arise due to differing cellular

context when the pathway was originally discovered.

We then use this Markov chain to make predictions regarding the steady state

distribution of the gene/protein expression. These steady state distributions can

then be used to predict phenotypes based on known gene actions in the cell.

The NF-κB network is of prime interest in translational medicine and biology as

it acts as a hub network of the cellular inflammatory response mechanism. Chronic

inflammation is linked to many diseases such as autoimmune disorders, the progres-

sion of cancer, and heart disease. Therefore, it is of great interest in translational

medicine to produce accurate predictions about the activation of NF-κB given a set

of conditions (or treatments) surrounding the upstream signaling network.

We obtained 28 pathways from the NF-κB literature and transformed them into a

binary vector valued Markov chain model of the NF-κB network. We then compared

the predictions of this Markov chain under seven network perturbations to the litera-

ture where a seven analogous mice knockout models were performed. This qualitative

validation of the network model demonstrates that pathways can encode enough in-

formation regarding the system when intelligently combined, and the Markov chain

model maintains this information in a consistent manner enabling predictions under

3



perturbation which match biological observations under similar perturbations.

1.1.2 Optimal Bayesian classification for non-Gaussian sequencing datasets

While the approach taken in Section 2 was seen to produce acceptable predictions,

it still remains essentially heuristic. In Section 3, by adopting a cost function and an

optimization approach, we find optimal estimators for predictions of biological sys-

tems. Specifically, we consider the prediction problem of classification. In addition,

instead of considering pathway information, we utilize a new statistical model (this

time of the data generation process) in order to operate on labeled sample data and

prior distributions to train an optimal classifier.

This work builds on previous work by Dalton and Dougherty [15, 16, 17, 18]

where they discovered MMSE classifiers for Gaussian and multinomial distributions.

However, we wished to apply these methodologies to sequencing data which is a

widespread biological measurement technique and does not conform to Gaussian dis-

tributional assumptions. This required a statistical feature-label distribution with

considerably more complexity than multivariate Gaussian or multinomial distribu-

tions alone. We therefore proposed a hierarchical Poisson model to encapsulate the

known processes that sequencing data undergoes from the biology to the resulting

measurements.

Utilizing a statistical model that aligns closely with the underlying measurement

process provides several advantages over simpler phenomenological statistical models:

• Placing prior distributions over the parameters of the model is more straight-

forward as the parameters of the model relate to measurable, real world, quan-

tities.

• The inferred parameters of the model are easier to interpret and troubleshoot

should problems arise.
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• The flexible construction of the model allows the addition or subtraction of

complexity as the data warrant (or require) it.

The downsides to these complex models is the loss of analytical tractability. We

therefore developed a computational approximation strategy to arrive at the op-

timal estimators using tools such as Markov chain Monte Carlo and Monte Carlo

integration.

We validated the performance of these models and subsequent optimal classifiers

on a variety of synthetic datasets against other classification techniques. We also used

a real dataset from The Cancer Genome Atlas to classify subtypes of lung cancer

sequencing data using the same set of available classifiers. The optimal classifier

exhibited superior performance in nearly all cases.

We also applied the same statistical model in a feature selection study to detect

groups of genes which well separate phenotypes of interest. In this capacity, we

utilized two additional optimal estimators surrounding the prediction problem: the

Bayesian error estimate, and the mean square error of the Bayesian error estimate.

These two estimates give a salient measure of the separation of the phenotypes and

a quantification of the uncertainty in that estimate.

We then applied the three estimators (including the optimal classifier itself) to

a dietary animal model dataset to discover gene pairs and triplets that were not

individually differentially expressed, but together well separated the groups with

low error estimates and low uncertainties around those estimates. This led to novel

biological insights to the system which were not available using widely available to

the differential expression analysis techniques common in sequencing data analysis.
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1.2 Organization

Section 2 introduces a novel algorithm to produce binary vector valued Markov

chain models of genetic regulatory networks consistent with biological pathway knowl-

edge. Section 3 explains an optimal estimation framework to use prior knowledge

and data for sample classification. Section 4 extends the work in Section 3 for feature

selection of sequencing datasets using an additional pair of optimal estimators. And

Section 5 concludes the dissertation with summarizing remarks and future work.
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2. FROM BIOLOGICAL PATHWAYS TO PREDICTIVE MODELS∗

2.1 Introduction

Biological regulatory network models offer the promise of one day applying sys-

tems based approaches for cancer diagnosis and therapy [27, 21]. Consequently, it

is not surprising that the systems biology literature contains many algorithms to

infer such regulatory networks from (time-course) microarray data [46, 72, 24, 1, 45].

Inferring such networks is inherently difficult because of the limited availability of

the data and the fact that most of these algorithms do not include mechanisms for

incorporating prior knowledge, which could potentially reduce the data requirement.

Consequently, most of these network models have not been validated, thereby hin-

dering their use in translational science and medicine.

Before the advent of high throughput measurement techniques such as microar-

rays and shotgun sequencing, biological experimentation often focused on uncovering

(mostly univariate) relationships between genes and proteins in the production of

what is usually referred to as pathway knowledge. This pathway knowledge is based

on empirical observations across different experiments that have acquired some degree

of validity through the peer review process. While not all pathways in the literature

are accurate, and some pathways may in fact be conflicting, we believe that they

offer an excellent foundation for the network construction process especially when

combined with high throughput data for model refinement and validation.

In the absence of any pathway knowledge, one would have to assume that each

protein behaves randomly. In other words, with no knowledge of the interactions
∗Parts of this section are reproduced with permission from Knight, J.M.; Datta, A.; Dougherty,

E.R. "Generating Stochastic Gene Regulatory Networks Consistent with Pathway Information and
Steady-State Behavior", IEEE/ACM Transactions on Computational Biology and Bioinformatics,
59(6), 1701-1710 2012. doi:10.1109/TBME.2012.2192117 Copyright © 2012 IEEE.
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between proteins we cannot predict if a certain protein will be expressed more or

less than average over the long run. With available pathway information, however,

one can refine the random model by using the knowledge to guide the behavior of

the model when the contextual information of the pathway is satisfied. By requiring

the model to obey the pathway information, we can be sure that the model reflects

the pathway knowledge that is available. By using a significant amount of pathway

information we can reduce the data requirement and generate models that produce

predictions that are more meaningful than those with little or no prior information.

Based on the preceding discussion, it is clear that the long run behavior of the

model is a function of the amount of pathway information available about the system

and the initial conditions. If we know too little about the system, then the long

run behavior will reflect the unknown, random evolution and no conclusions can be

made. However, if the long run behavior differs from the stochastic background level,

then the pathway knowledge and initial conditions are sufficient to make qualitative

predictions about that system. This is what we will be demonstrating in this section

by using a model which captures the behavior of the pathways relating to the NF-κB

system.

A few key assumptions underlie our model development. The first is the dis-

crete state and discrete time approximation of protein behavior. This is a large

assumption, but the most important one utilized in this section. It has been vali-

dated in many biological contexts [53, 22], and provides an important simplification

that enables large scale network modeling with pathway data. Indeed, as pointed

out in [63], such discrete-time discrete-state modeling avoids the need for making

continuous-time measurements of protein concentrations and facilitates the accom-

modation of genes/proteins which exhibit ON/OFF switch-like behavior. Moreover,

discrete time systems are easier to analyze, model and control in real time [60].
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The second assumption that we make is that there is no prior knowledge about the

initial state of the cell and only the presence or absence of external stimuli is known.

In other words, we assign a uniform initial distribution to all possible states and allow

the pathway constrained model to stabilize into attractor cycles. This assumption

has the effect of distributing the resulting probability mass of the cell states to the

states that are in the attractor cycles. Furthermore, these attractor cycles have a

total probability that is proportional to the size of the basin of attraction. A similar

conclusion was reached by Huang [49] but from a biological argument of cellular

homeostasis in the presence of continual perturbations of the inter and intra cellular

environments.

In this section, we propose a new method for generating networks from pathway

information. We then apply this method to the set of proteins that compose the NF-

κB regulatory network to build the transition probability matrix of a discrete-state,

discrete-time Markov chain that produces predictions that agree with the literature.

The NF-κB system was chosen due to the prevalence of associated pathway infor-

mation in the literature as well as due to its biological importance in cancer and the

innate immune system.

2.2 Obtaining the pathways

In any network inference procedure, the first step consists of selecting a specific

biological system and choosing the specific agents for inclusion in the model. In this

section, this task was performed manually, although future work could include using

selection techniques such as statistical tests on high-throughput data to identify the

most relevant molecules for state based modeling.

The model generated in this section consists of protein species with the exception

of one lipoglycan (lipopolysaccharide). In general, the species in the pathways and
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the resulting model can be a mixture of any types of biological entities as long as

the pathways are accurately reflect the relationships being studied. Throughout

this section, we will refer to the elements in the model as proteins with the tacit

understanding that sometimes other biological entities would also be admissible.

To obtain pathway data for this section, we manually reviewed the biological

literature relevant to the NF-κB system and recorded a pathway when significant

biological evidence was available and the molecules involved in the pathway were

chosen to be significant. For interactions that included non-significant species, the

pathway was either ignored or extended upstream and downstream until it included

significant species. The resulting pathways and the references used to arrive at them

are summarized in Table 2.1. A full description of the NF-κB system appears later

in section 2.6.

Here each pathway description consists of two parts, the predicate and the subject

and are separated by the implication sign, =⇒ . The information that the pathway

contains can be understood as: “when the predicate is true, the subject is implied to

occur in the future." The timing with which this dependence occurs is not known,

but in this section we assume that the dependence relationship is implemented at

the next time step as in [63].

Using the pathway data, one can determine which proteins are upstream of each

other and also determine the set of predictor proteins, i.e. the proteins whose ac-

tivity status collectively determines the time course updates of a given protein. In

the general case, it is possible that one could have this information without having

any pathway knowledge about the specific behavior of the regulation. While the

algorithm presented below can handle this case equally well, in the NF-κB model

considered here we did not have any knowledge of this type and therefore the pre-

dictor sets were derived directly from the pathway knowledge.
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Table 2.1: Pathways comprising the NF-κB system. Reproduced with permission
from [56].

Pathway Reference
RIP1 = 1 =⇒ NEMO = 1 [43]
A20 = 1 =⇒ NEMO = 0 [43]
LTβR = 1 =⇒ NEMO = 1 [43]
A20 = 1 and RIP1 = 1 =⇒ NEMO = 0 [43]
RIP1 = 0 and LTβR = 0 =⇒ NEMO = 0 [43]
TNFR = 1 =⇒ AP-1 = 1 [43]
TNFR = 0 =⇒ AP-1 = 0 [43]
TNFR = 1 =⇒ RIP1 = 1 [44]
TNFR = 0 =⇒ RIP1 = 0 [44]
LPS = 1 =⇒ TNFR = 1 [54]
TNFα = 1 =⇒ TNFR = 1 [54]
LPS = 0 and TNFα = 0 =⇒ TNFR = 0 [54]
IKKα = 1 =⇒ p52 = 1 [43]
IKKα = 0 =⇒ p52 = 0 [43]
LTβR = 1 =⇒ IKKα = 1 [43]
NEMO = 1 =⇒ IKKα = 1 [43]
NEMO = 0 and LTβR = 0 =⇒ IKKα = 0 [43]
NEMO = 1 =⇒ IKKβ = 1 [90]
LPS = 1 =⇒ IKKβ = 1 [44]
NEMO = 0 and LPS = 0 =⇒ IKKβ = 0 [90, 44]
p65 = 1 =⇒ IκB = 1 [43, 88]
p65 = 1 =⇒ A20 = 1 [43, 88]
p65 = 0 =⇒ A20 = 0 [43, 88]
IKKβ = 0 =⇒ IκB = 1 [43]
IKKβ = 1 =⇒ IκB = 1 [43]
IκB = 1 =⇒ p65 = 0 [43]
IκB = 0 =⇒ p65 = 1 [43]
IKKα = 1 =⇒ p65 = 0 [61]
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Let us now demonstrate this algorithm on a part of the NF-κB system. From

Table 2.1, we consider the pathways related to the behavior of NEMO. These are the

first five entries in that table and are given by:

RIP1 = 1 =⇒ NEMO = 1 (2.1)

A20 = 1 =⇒ NEMO = 0 (2.2)

LTβR = 1 =⇒ NEMO = 1 (2.3)

A20 = 1 and RIP1 = 1 =⇒ NEMO = 0 (2.4)

RIP1 = 0 and LTβR = 0 =⇒ NEMO = 0 (2.5)

The pathways listed above mandate the following relationships: when RIP1 is

activated, it activates NEMO; when A20 is activated, it deactivates NEMO; when

LTβR is activated, it activates NEMO; when both A20 and RIP1 are activated,

NEMO is deactivated; and when RIP1 and LTβR are both inactive, NEMO is de-

activated. From these, we can infer that a reasonable predictor set for NEMO is

{A20,LTβR,RIP1}. One can similarly arrive at predictor sets for the other biologi-

cal entities in Table 2.1.

2.3 Creating Karnaugh maps from pathways

Having identified the predictor set for each protein, we can use a Karnaugh map

[52] to determine the update rule for that protein. The method used is an extension

of the one developed in [63]. For each protein, using its predictor set, we initialize

a Karnaugh map with every entry in the map containing the unknown ‘x’. This is

consistent with the observation that to start with we have no information about how

the current value of the prediction proteins affects the update value of the predicted
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Figure 2.1: The process of developing the Karnaugh map using the pathways asso-
ciated with NEMO. For each step in the process, we evaluate each pathway in turn.
In each pathway, the predicate specifies certain locations in the Karnaugh map and
these are shaded in yellow in the corresponding table. Reproduced with permission
from [56].
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protein at the next time step. The Karnaugh map entries can then be updated by

incorporating the pathway information. For instance, consider the update of NEMO.

The initial blank Karnaugh map for it is shown in Fig. 2.1A. We will refer to the

locations in the Karnaugh map using the vector [A20, LTβR, RIP1]. Thus 000 would

correspond to the square in the upper left corner of the map and so on. Now, using

the first pathway: RIP1 = 1 =⇒ NEMO = 1, we can fill all the entries that

correspond to RIP1=1 with ones, and this results in the Karnaugh map shown in

Fig. 2.1B.

We next proceed to fill the locations 100 and 110 with zeros to satisfy the re-

quirements of the second pathway: A20 = 1 =⇒ NEMO = 0, but are faced with a

conflict when RIP1=1 and A20=1. At the two conflicting locations we replace the

ones with c1. The letter c indicates a conflict while the superscript 1 indicates that

the conflict comes from pathways which contain only one protein in the predicate.

The reasoning for this notation will become clear later in this section. This results

in the table in Fig. 2.1C.

We next consider pathway three: LTβR = 1 =⇒ NEMO = 1, which mandates

that the ’x’ at location 010 be replaced by a 1. Since location 110 contains a 0, so we

replace it with a c1 to indicate that there is a conflict. Finally, location 111 already

has a c1 and because this pathway only contains one protein in its predicate, we must

leave the c1 in place. This leads to the table shown in Fig. 2.1D.

Next we look at the fourth pathway: A20 = 1 and RIP1 = 1 =⇒ NEMO = 0.

The predicate here applies to locations 101 and 111. Both of these contain c1 conflicts,

but because this pathway contains two proteins in its predicate, we acknowledge

this pathway has more specific information regarding this particular experimental

scenario and can override the c1 conflicts. Therefore we fill the locations 101 and 111

with zeroes and obtain the table shown in Fig. 2.1E.
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For the final pathway: RIP1 = 0 and LTβR = 0 =⇒ NEMO = 0, the predicate

applies to the locations 000 and 100. The former has an x, so we replace it with a 0,

and the latter is already a 0. Therefore we are now finished with NEMO’s pathway

information and are left with the Karnaugh map of Fig. 2.1F. In this map, we see

there is only one uncertainty condition at the location 110.

The procedure demonstrated on the NEMO example above can be generalized by

proceeding through the pathways in order from the least specific predicates to the

most specific ones and filling in the Karnaugh map entries if information is available

or invalidating information already provided if there are conflicts in the pathway

information. This general procedure is presented in Algorithm 1. The key difference

between the algorithm presented in [63] and the one presented here is that in [63], one

attempts to resolve the conflicting entries in the Karnaugh maps by suitably altering

the timings of some of the pathways whereas here the conflicts in the Karnaugh

maps are retained. Consequently, the state transitions following a conflict will not

be unique and by assuming that all the subsequent states are equiprobable, we can

come up with probabilistic state transition graphs which are introduced next.

2.4 Probabilistic state transition graphs

The Karnaugh maps generated using the procedure of the last section can be used

to produce the probabilistic state transition graph (PSTG) of the system. A PSTG

is a directed graph that describes the evolution of the biological system through

time. It consists of kn nodes that correspond to the states of the system where k is

the number of quantization levels associated with the activity state of each protein

(assumed throughout the rest of this section to be two for a binary discretization)

and n is the number of proteins in the system. Additionally, each directed edge

indicates a viable transition between states as allowed by the pathway information.
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Figure 2.2: A simplified PSTG for the NEMO protein with predictors that are all
static for the purposes of illustration. Here the binary value of the state should
be interpreted as [A20, LTβR, RIP1, NEMO]. The red, dashed edges represent one
possible configuration of the network, while the blue, dotted edges represent the
other configuration. Reproduced with permission from [56].

For example, using the NEMO pathways and the Karnaugh map generated in

the last section we obtain a simplified but illustrative example of a PSTG for this

system as shown in Fig. 2.2. We assume here that the predictor proteins have no

predictors themselves and therefore exhibit static behavior. This is seen in Fig. 2.2

where the edges of the PSTG, or the allowed transitions, are between states with

identical values for the predictor proteins and only differing in the values of NEMO.

Also, based on the Karnaugh map generated from the NEMO pathways, we expect

uncertainty at the state 110x and indeed, both the states 1100 and 1101 have two

outgoing edges each. One of these creates a self loop, and the other directs to the

corresponding state with the value of NEMO flipped.

The PSTG is actually a compact representation for the class of networks which the

uncertain Karnaugh maps such as the one in Fig. 2.1F generate. To use the example

above, we could also represent the uncertainty of NEMO at 110x by creating two

separate networks with two corresponding state transition diagrams. One network

would contain the blue, dotted edges in Fig. 2.2 and predict that NEMO should

equal 0 when A20=1, LTβR=1, and RIP1=0, while the other would have the red,

dashed edges and predict that NEMO should equal one for the same set of predictor

values.
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Let us now demonstrate the process of converting Karnaugh maps to PSTGs.

We will use the synthetic example in Fig. 2.3A where we are given five pathways for

the three proteins A, B, and C. These produce the two Karnaugh maps in Fig. 2.3B

and the resulting PSTG is shown in Fig. 2.3C. As can be seen, protein A has no

predictors and thus the state space can be partitioned into two basins according to

its activity.

To produce the PSTG in Fig. 2.3C, we begin by listing all the possible 23 states

as unconnected nodes in a graph. Then, for each node we use the Karnaugh maps to

update the status of each gene and then concatenate this information to determine

the next state to which the model will transition to. For example, for the state

000, protein A has no predictors and therefore no Karnaugh map so we assume

it remains in the state 0. Using protein B’s Karnaugh map, A is currently 0, so

Bnext = 0. Finally, proteins A and B being zero imply Cnext = 1. Combining all this

information creates a transition edge from state 000 to 001 in the PSTG.

As another example, consider the state 111. Following the above logic, Anext = 1

and Bnext = 1 but Cnext is a conflict, so 111 will progress to 11x which can be

expanded to 110 and 111. This is shown in Fig. 2.3C, where the node 111 has two

outgoing edges, a self loop and an edge linking to 110.

The PSTG, as in Fig. 2.3C, can also be interpreted as the state transition graph

of a Markov chain. Thus, the Karnaugh maps can be converted into a 2n × 2n

(n = 3 here) transition probability matrix where each entry [pi,j]2n×2n represents the

probability of the model transitioning from state i to state j in one time step. This

matrix is stochastic, and is a row normalized sum of the individual deterministic

state transition matrices of the resulting class of Boolean networks that would be

required to accommodate the uncertainties associated with the different Karnaugh

maps. The PSTG is a compact, sparse representation of this transition probability
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matrix, and this is what motivates us to use this framework to simulate the long run

behavior of the model.

2.5 Simulating long run behavior

A chief objective of the developed model is to obtain some useful measure of the

long run behavior of the system akin to the steady state distribution for an ergodic

Markov chain. Unfortunately, the PSTG generated using the above method does

not necessarily provide an irreducible or aperiodic state space. Therefore, we must

approximate its long run behavior as explained in the following subsections.

2.5.1 A synthetic example

For illustrative purposes we start with the synthetic example in Fig. 2.3. Since

we do not have any prior knowledge as to whether a given cell exhibits activated

protein A, we make no assumptions about the cell initially being in either basin. In

general this would apply to all the proteins in our model and ,therefore, we initialize

the states in our network with uniform initial probabilities of 0.125 each as shown in

Fig. 2.3D.

We can think of this initial probability as our initial belief of the state of the

system. Then the algorithm can be understood as an application of the knowledge

incorporated in our model to refine the initial belief. We will refer to this belief as

the probability mass.

For transitions between states we again utilize uniformity by assuming that the

transition probability from one state to the chronologically next one is equal to the

inverse of the outgoing degree from the state of origin. So for a state with two

outgoing edges such as 110 in Fig. 2.3C, the probability to transition to any of its

children (110 and 111) will be 0.5.

Now our model dictates the evolution of the states, so any cell in state 010 will
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progress in one time step to state 000, so we can move the probability mass in state

010 to state 000. The same applies to state 011 as its mass will “flow" to state 000.

Now, state 110 has two outgoing edges, so our model is ambiguous about whether a

cell in state 110 will stay in state 110 or if it will transition to 111. Therefore, we

split the probability mass in state 110 and place half of it in state 110 and half in

state 111 for the next time step. The result of the first run of the process is seen in

Fig. 2.3E.

Through iteration of this process, the probability in each transient state tends

towards 0.0. This can be seen in the example as after the first step of the algorithm,

the states along the top are transient because once we leave them, we never return.

This is clear from Fig. 2.3E where the probability mass has already been depleted

from these transient states and will remain at 0.0 for the remaining lifetime of the

model under these conditions. At the next stage, we arrive at Fig. 2.3F, from which

we can see that after the second iteration of the algorithm, state 000 has no remaining

probability mass and will remain that way for the remaining simulation because the

state is transient and has no return path.

In simple attractor cycles such as the one consisting of the nodes 111 and 110 or

singleton attractors such as 001 in Fig. 2.3F, we can calculate the long run probability

mass intuitively. The resulting mass in a singleton attractor is obtained by summing

all the initial masses in its basin of attraction. For simple attractor cycles, we can

sum all of the initial mass in the basin of attraction for that cycle and divide it by

the number of nodes in the cycle. In this way, we can get an approximation about

how often we could expect the biological system to exist in certain states.
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2.5.2 The general method

The intuitive reasoning described above where we iterate over the nodes and

add their masses to the downstream nodes applies when the PSTG is acyclic and a

preorder traversal through the graph exists. However, with the possibility of cycles,

no such preorder traversal must exist and we are forced to introduce an accumulation

buffer to describe a general algorithm that works with cycles for any node traversal

order.

Let each node have a probability mass and an accumulation buffer. For each

node we first initialize the mass of each node to be uniformly distributed over the

entire graph, and set the accumulation buffer to zero. Then for each node divide

its current probability mass by the number of its outgoing edges and then add that

amount to the temporary accumulation buffers for each of its child nodes. Then for

each node, set the probability mass to be the value in its accumulation buffer and

reset the accumulation buffer to zero.

Repeating this algorithm will result in the probability mass accumulating in the

attractors of the system. In the case of aperiodic attractors, the masses will converge

to a limiting probability mass, but we must be careful about handling the possibility

of periodic attractors. Repeatedly using the algorithm in this case might result in

the propagation of an unbalanced mass around the cycle, analogous to oscillatory

behavior in undamped systems. To overcome this problem, it is necessary to first

run the algorithm a sufficient number of times to eliminate all the transient states

and then go through several runs of the algorithm and the final probability mass

in the attractor cycle states can then be taken to be an average of the probability

masses from the final runs. This essentially smoothens out any oscillations in the

probability mass distribution in the attractor cycles.
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2.5.3 The steady state activity vector

Now, from a biological point of view, it is more relevant to determine how often

a particular protein is active instead of determining how much time is spent in a

particular state. Accordingly, we apply a transformation to the long run probability

approximation, and define a steady state activity (SSA) vector with n components,

indexed by 0 to n− 1, corresponding to the n proteins in the model. The i-th com-

ponent of the SSA vector, characterizing the activity of the i-th protein, is computed

as:

SSA(i) =
2n−1∑
j=0

PA(j)zi(j)

where zi(j) is the binary value of the i-th protein in the j-th decimal state, and

PA(j) is the j-th entry of the Probability Approximation vector resulting from the

algorithm presented in the previous subsection. The resulting SSA(i) takes values

in the interval [0, 1] according to the probability that the model is likely to exist in

states where protein i is active. For example, an SSA(i) value of 1 indicates that the

i-th protein is active in every attractor state.

Applying this to our example, in Fig. 2.3F, the SSA for protein A, i.e. SSA(0), is

calculated by considering the two attractor states 111 and 110 with active protein A

as shown in the right hand basin in the figure. Therefore, SSA(0) = 0.25+0.25 = 0.5.

Similarly, SSA(1) (B) is also 0.5 while SSA(2) (C) is 0.75, the latter being due to the

fact that all attractors have protein C active except the state 110 which has a final

mass of 0.25.

We next further justify the need for using the SSA vector instead of the state

vector. Consider the network that we have constructed by applying Algorithm 1 to

the set of 28 pathways involving NF-κB. With the external stimuli set to TNFα = 1,
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Figure 2.4: The resulting communicating class of states for the full NF-κB PSTG
when the stimuli conditions are set to TNF=1, LPS=0, and LTβR=0. The thirteen
bit binary vector can be read as [A20, AP-1, IκB, IKKα, IKKβ, LPS, LTβR, NEMO,
p52, p65, RIP1, TNFα, TNFR]. To give a walk through of one state transition,
starting at the upper right state, 0100000010111, many things occur in one transition:
IκB is inactive and thus at the next state p65 translocates to the nucleus to become
active; NEMO is activated by RIP1; p52 is deactivated as IKKα is not activating
it; and IκB becomes active, as constitutive expression allows it to repopulate the
cytoplasm in the absence of activated IKKβ. All of these changes results in the
model evolving to state 0110000101111. Reproduced with permission from [56].
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LPS= 0, and LTβR= 0, the only communicating set of states for the resulting PSTG

is displayed in Fig. 2.4. Due to the size and complexity of the resulting set of states, it

would be difficult, if not impossible, to compare the behavior of this PSTG with that

obtained from any of the knockout experiments. The concept of the SSA vector was

introduced precisely to ameliorate this problem and aids in carrying out qualitative

comparisons with the experimental data. This will be demonstrated in the next

section.

2.6 The NF-κB system

Nuclear factor-κB (NF-κB) is a protein dimer from the rel family of transcription

factors that promote the expression of over 100 genes, primarily in the immune system

[37]. The NF-κB system’s primary role in the immune system is in the production

of inflammatory cytokines, small signaling proteins used extensively in cell to cell

communication. NF-κB also has both proapoptotic and antiapoptotic effects on the

cell and the balance of these responses can be adjusted by the stimulus context.

The NF-κB transcription factor is a key element in the inflammation stress re-

sponse pathway. The general architecture of this system is typical of several stress

response pathways [84]. The transcription factor NF-κB is sequestered in the cytosol

by the “sensor" which in this case is IκB and when degraded by the “transducer"

of IKKβ, it allows for a rapid downstream response without the lag associated with

de novo protein synthesis. As discussed in [84], this combination of a transducer,

sensor, and transcription factor is a common motif seen in stress response pathways

and forms the backbone of the NF-κB system.

The mammalian NF-κB family consists of p65 (RelA), RelB, c-Rel, NF-κB1

(p52/p100), and NF-κB2 (p50/p105). NF-κB is constitutively expressed, but se-

questered in the cytosol by a family of IκB inhibitor proteins which include the p100
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Figure 2.5: The pathway structure of the NF-κB system. Blue proteins are those
that are knocked out in the validation portion of this section. The presence of a
directed edge indicates that a pathway exists that shows the upstream protein causes
a change in the activity of the downstream protein. Inhibitory pathways are marked
red and terminated with a filled dot. One thing to note here is that the LPS induced
autocrine production of TNFα would seemingly imply that an excitatory connection
should be made between LPS and TNFα. However, because we want to exogenously
control TNFα, LPS, and LTβR in our knockout simulations, we consider TNFα to
be an exogenous stimulus, thereby allowing us to control that level in simulations
without affecting the autocrine feedback loop of LPS. The second thing to note is
the dotted connection from LTβR to NEMO which indicates this is a pathway with
unknown mechanism but described in [43]. Reproduced with permission from [56].
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and p105 precursors to p52 and p50, respectively, along with IκBα, IκBβ, IκBε,

IκBγ, and BCL-3 [43]. These IκBs prevent the NF-κB dimers from reaching their

binding sites in the nucleus.

The IκB kinase complex (IKK) consists of the IKKα, IKKβ, and IKKγ (NEMO)

subunits. The NEMO (NF-κB essential modulator) subunit is a regulator and main-

tains the IKKα and IKKβ subunits in inactive states.

The signaling pathways involved in the NF-κB system are shown in Fig. 2.5.

NF-κB activation is generally considered to occur through two separate cascade

pathways. The canonical pathway is primarily activated by the proinflammatory

cytokine Tumor Necrosis Factor-α (TNFα). When TNFα binds to TNF receptor

protein (TNFR), it begins a signaling cascade that through the receptor interacting

protein 1 (RIP1) activates the NEMO subunit of IKK which activates both the

IKKα and IKKβ subunits [81]. The IKKβ subunit then proceeds to phosphorylate

IκB proteins which leads to their destruction through polyubiquitination and allows

NF-κB dimers, primarily p65 heterodimers and homodimers to translocate to the

nucleus and bind to promoter regions [43].

Bacterial lipopolysaccharide (LPS) is a component of bacterial cell walls that

provides an activating stimulus for Toll-like receptors 2 and 4 (TLR2 and TLR4).

These receptors also activate the canonical pathway but through MyD88 and Trif

intermediary proteins [11] that directly activate the IKKβ subunit without activating

NEMO [81]. Also, the LPS dependent pathway indirectly activates the canonical

pathway through autocrine stimulation through the production of TNFα.

The alternative pathway is activated through CD40 and LTβR and through the

NIK protein directly activates the IKKα subunit which through phosphorylation,

processes p100 into p52 which activates the nuclear localization segment (NLS) which

allows the p52 dimer to translocate into the nucleus. The alternative pathway also
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activates the canonical pathway through an unknown mechanism [43].

NF-κB activates two genes in particular that produce IκB and A20. Both of

these act as negative feedback to dampen the response of the canonical pathway.

A20 binds to NEMO and impairs the activation of the IKKβ and IKKα subunits by

RIP1 [90]. Additionally, NF-κB activates antiapoptotic genes such as cFLIP (not

shown in Fig. 2.5) that counteracts the TNFα induced activation of the proapoptotic

AP-1 family such as c-Jun [76]. Consequently, NF-κB knockouts are likely to exhibit

apoptotic behavior when subjected to TNFα stimulation. This will be borne out by

some of the knockout studies considered later in the next section.

2.7 Towards model validation using knockout studies

The model developed by us in this section was designed to preserve the biological

state transitions and stable state attractor cycles. Accordingly, it seems reasonable to

validate our model using the experimentally observed long run behavior of biological

systems. We will specifically focus on animal knockout models. This kind of model

validation is appropriate given that a long term goal of our research is to enhance

medical treatment in patients. Currently, treatment is provided through therapeutic

drugs which have physiological effects on the order of 8 to 24 hours which can be

considered to be long run behavior in the context of regulatory networks. Thus,

long run behavior would be particularly appropriate for predicting drug effects and

patient outcomes.

Biologists use knockout models to disable a specific gene or a set of genes in

a model animal and then observe the resulting physiology to determine protein

functions and interactions. Our stochastic state models also provide us a platform

with which we can replicate these experiments and examine the resulting steady

states. Comparison of the proteins’ known functions and physiological phenotypes,
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the resulting increases or decreases in prevalence, and the recorded physiology of

the real knockout experiment together provide us with a mechanism for validating

our stochastic state space model. For instance, consider the knockout experiment in

Fig. 2.3G. Here we have knocked out protein B. This results in a PSTG where all

states with protein B active are no longer considered valid and the resulting model

has a PSTG consisting only of states with inactive protein B. This results in two

attractor states, one for each original basin.

The PSTG resulting from the 28 NF-κB pathways in Table 2.1 was too large to be

visually interpreted, although for illustrative purposes a small subset of it is included

in Fig. 2.4. We compared the behavior of our model in a steady state fashion with

the phenotypes and measured protein quantities as found in the knockout studies.

Due to the qualitative nature of the data collected in the knockout experimental

studies used, the comparisons between the model and the study will by necessity

be qualitative. We believe that this still allows for satisfactory validation given

the complexity of the model, the inherently noisy nature of biological systems and

experimentation, and the large number of knockout studies examined.

2.7.1 A20−/−

Werner et al. [88] aimed to derive ordinary differential equation (ODE) models

of NF-κB regulation in response to TNFα and LPS stimulation. One of their model

parameters includes the negative feedback of A20, and to justify this, they compared

A20+/+ against A20−/− Murine 3T3 immortalized fibroblasts and measured IKK and

NF-κB activity in response to 45 minutes of TNFα stimulation. It is clear in this

comparison that the A20−/− activity of IKK and NF-κB is much higher than that

of the A20+/+ cells. This is consistent with Table 2.2(a) produced by simulating our

model where the levels of IKKα and p65 both increase when the model is constrained
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Table 2.2: Knockout studies and simulations. Reproduced with permission from [56].

Knockout
Species

Baseline Conditions Baseline
SSA

KO SSA Reference

TNF LPS
(a) A20−/− 1 0 p65=0.389,

p52=0.611,
IKKα=0.611

p65=0.400,
p52=1.00,
IKKα=1.00

[88]

(b)
IKKβ−/−

1 0 p65=0.389,
IκB=0.487,
AP-1=1.00

p65=0.00,
IκB=1.00,
AP-1=1.00

[65]

(c)
IKKβ−/−,
TNFR−/−

1 0 p65=0.389,
AP-1=1.00

p65=0.00,
AP-1=0.00

[65]

(d) p65−/− 1 0 p65=0.389,
AP-1=1.00

p65=0.00,
AP-1=1.00

[35, 76]

(e)
IKKα−/−

0 1 p65=0.600,
A20=0.600,
IκB=0.300

p65=0.667,
A20=0.667,
IκB=0.333

[66, 61]

(f)
IKKβ−/−

0 1 p65=0.60,
AP-1=1.00

p65=0.00,
AP-1=1.00

[35, 75]

(g)
NEMO−/−
(macrophage)

0 1 p65=0.60,
AP-1=1.00

p65=0.67,
AP-1=1.00

[55]

(h)
NEMO−/−
(general)

0 1 p65=0.67,
AP-1=1.00

p65=0.67,
AP-1=1.00

[55]
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to A20−/−. While the increase in p65 is small, the direction of the change is consistent

with the findings of Werner et al.

2.7.2 IKKβ−/− and TNFR−/−

Li et al. [65] used IKKβ−/− knockout mice to investigate the role of IKKβ in

the NF-κB signaling pathway. They determined that the lack of IKKβ increased

hepatocyte death due to TNFα (TNFα toxicity). This was caused by a reduction

in the amount of phosphorylated IκB and a corresponding decrease in the activation

of NF-κB which is anti-apoptotic. They also found that the IKKβ−/− knockout

did not affect c-Jun levels, a member of the proapoptotic AP-1 family which helps

explain the increased toxicity. They also measured an increase in stability in IκB

from IKKβ−/− lines, which is seen in our model as an increase in the activity of IκB

in Table 2.2(b).

They also determined that a IKKβ−/−, TNFR−/− double knockout where both

of these genes were knocked out simultaneously allowed the mice to survive to term

(rescuing the phenotype). We mirrored this same result in our model as the IKKβ−/−,

TNFR−/− double knockout in Table 2.2(c) shows the same reduction of p65 as the

single knockout, but the c-Jun (AP-1 family) activation is also reduced which reduces

the pro-apoptotic nature of the TNFα stimulus under IKKβ−/− knockout conditions.

This explains the reduction in TNFα toxicity.

2.7.3 p65−/−

Prendes et al. [76] used fetal liver hematopoietic precursors from mice embryos

deficient in RelA (p65) to study the effect of RelA deficiency in lymphocytes. They

found that the loss of RelA increased TNFα toxicity greatly which was ameliorated

when cells were induced by virus to produce the antiapoptotic NF-κB target gene

cFLIP. This indicates that the increased cell death was due to the inhibition of NF-
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κB and this is backed by our knockout model by a reduction in RelA at steady state

in Table 2.2(d).

2.7.4 IKKα−/−

Li et al. [66] used embryonic liver-derived macrophages (ELDM) from IKKα−/−

mice to determine the role of IKKα in the innate immune system’s inflammation

response. IKKα−/− ELDM cells were found to exhibit higher than normal antigen

presenting response and higher NF-κB levels in response to LPS stimulation. In

addition, Lawrence et al. [61] used a model with an inactivatable variant of IKKα

(denoted by IKKαA/A) and observed an increase in NF-κB and A20 upon the appli-

cation of LPS, both of which match our model in Table 2.2(e).

Li et al. found a decrease in the post-induction response of IκB in their IKKα−/−

cells whereas Lawrence et al. measured an increase in the amount of IκB for their

IKKαA/A macrophages. Li et al. put forth a possible explanation for this discrepancy:

in IKKα−/− knockouts, the absent IKKα proteins are no longer competing with

IKKβ for NEMO binding locations allowing more IKKβ to homodimerize under

NEMO [44]. This in turn results in more effective IκB kinase activity and thus less

IκB than the IKKα-IKKβ-NEMO complexes that exists in IKKαA/A mutants and

normal cells.

Our model as presented in this section uses only two states to describe the state

of a protein. This approximation suffices when the behavior of an inactivated protein

is the same as that when that protein is absent. In this case, it is okay to associate

both the absence and inactivation of the protein into state 0. However, in the case

of IKKα, the effect of the protein’s absence is different from that of its inactivation

and thus for complete accuracy we would need an additional state to encode for this

level of detail.
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Accordingly, our model has included the pathway associated with IKKα’s inacti-

vation and therefore matches the observations of Lawrence et al’s inactivation model

because their experimental method resulted in an inactivation of IKKα rather than

its complete absence as in Li et al’s.

2.7.5 IKKβ−/−

Park et al. [75] used fetal liver derived macrophages (FLDM) deficient in IKKβ to

investigate the mechanism of macrophage survival under stimulus to TLR4 receptors.

Some bacterial toxins such as Salmonella AvrA inhibit NF-κB while stimulating

the TLR4 receptor which was observed to result in the stimulation of macrophage

apoptosis. This is mirrored in our model in Table 2.2(f) where we see that p65 activity

drops while the AP-1 proapoptotic family remains activated. This observation is

along the same lines as that in Table 2.2(b) where, in addition, we also tracked

alterations in IκB activity under different exogenous stimuli conditions.

2.7.6 NEMO−/−

Kim et al. [55] analyzed NEMO−/− Murine B cells. Because these mice die early

in embryogenesis, they used an in vitro differentiation process to convert embryonic

stem cells to B cells. They found that NEMO is not required for B cell development,

but does affect its survival. Specifically, after an application of LPS for three days

(+LPS) or mock stimulation for the control (-LPS), the wild-type B cells maintained

population levels while the +LPS NEMO-deficient group declined in population.

Oddly enough however, the -LPS NEMO-deficient cell group also declined in similar

proportions which confounds the simple explanation of NF-κB stimulation from LPS

increasing the cell apoptosis rate.

In our model, we see in Table 2.2(g) that our NEMO−/− simulation actually shows

an increase in p65 NF-κB activation levels with a constant AP-1 level which would
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seem to indicate an increase in cell survival. This conflicts with the finding in Kim et

al. but looking more closely at the pathways, we see that the IKKα = 1 =⇒ p65 = 0

pathway in table 2.1 is from [61] where the inhibition of p65 from IKKα is seen in

macrophages. It is entirely possible that this pathway is different in developed B

cells and indeed, if we remove this pathway from the model we see in Table 2.2(h)

that the p65 levels are unchanged in the NEMO-deficient model which means the

model does not contain enough information to predict any change in behavior for

this knockout configuration.

This reinforces a key assumption made in the model derived in this section.

The model is only as accurate as the pathway data used in its generation, and for

biological regulatory systems it is often acceptable to use pathways from different

cell types and contexts. However, to achieve maximum model fidelity and prediction,

it is necessary to obtain pathways from the same cell types that we wish to make

predictions about.

2.8 Conclusions

In this section we have presented a method to produce a regulatory network

model using only minimal assumptions of predictor proteins and utilizing literature

backed pathway information. The resulting networks assume no data other than that

given and were validated using a number of biological knockout experiments from

the literature that gave matching results. The use of minimal modeling assumptions,

along with the use of literature backed information result in a model that is built on

a solid foundation of biological experimentation, and will allow for further validation

and refinement through comparison with high-throughput data and new pathway

data as they become available.

We believe that techniques such as these will play a critical role in future drug
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discovery and predicting the effects of potential drugs. The linear and intuitive nature

of (marginal) biological pathways does not completely capture the (multivariate)

complex network level behaviors of reality. However, the methods presented here

will allow for these pathways to be used as a whole to describe the possible network

behaviors in a way that could some day guide physician therapy and drug design.

To extend this work, we will next develop new techniques to leverage the data

derived from high-throughput experiments to refine these pathway derived models.

This will allow for networks that merge the two greatest sources of biological knowl-

edge, the new and the old, into models with better predictive power. Additionally, it

will be done in a minimal assumption environment that can be extended and refined

as new pathways are developed and validated.

Some pathways, such as the phosphorylation of IκB by IKKα and IKKβ could

not be represented in our modeling with one hundred percent accuracy due to quan-

tization errors in our binary discretization. In reality, both IKKβ and IKKα phos-

phorylate and deactivate IκB but IKKβ deactivates IκB at a much greater rate than

IKKα. Unfortunately, the binary quantization does not allow this information to be

retained accurately and in this model we decided to ignore the direct effect of IKKα

on IκB. Such a decision could be justified based on the wide difference in the mag-

nitudes of the effects of IKKβ and IKKα on IκB. In the future, however, we would

like to use finer quantization levels for important and well understood components

of the regulatory system to enable a model that more closely reflects reality without

greatly increasing the knowledge requirements or uncertainty.

In this section, we have ignored the fact that many species in the model such

as AP-1 and IκB are actually dimerizing families of proteins, and the specific pro-

portions of these dimers could be important to determining the resulting cellular

response. The naive approach of simply accounting for each possible combination
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of dimers would result in a huge increase in uncertainty in the model and future

work should focus on more sophisticated ways to handle this real-world biological

complexity.

In the next section, we consider an improvement to this heuristic algorithm de-

veloped here. Briefly, by starting with an appropriate estimation problem and cost

criterion we can produce optimal estimators relative to the modeling assumptions

and cost criterion.

35



Algorithm 1: ProduceKMapForProtein(P,x)
/* P is the sorted list of pathway segments as described in [63]

in ascending number of predictive proteins. */
/* x is the name of the specific protein that we want to produce

a Karnaugh map for. */
/* This algorithm is simple and optimized for clarity of

exposition rather than runtime. Therefore, we use two loops
through the pathways. The first is to collect the set of
predictor proteins for this protein, and the second is to fill
in the entries of the Karnaugh map. */

foreach p ← P do
// Get the subjects S of this pathway
S ← Subjects(p);
if x ∈ S then

// Add the proteins from this pathway’s predicate
// to the set of predictors:
PredictorSet ← PredictorSet ∪ PredicateProteins(p);

initialize the Karnaugh map K[] with x’s in each location;
foreach p ← P do

// Decompose the pathway into its constituent parts
S ← Subjects(p);
if x ∈ S then

n← |PredicateProteins(p)|;
C ← PredicateCondition(p);
v ← NextStateValue(p);
// Now iterate over the locations in the Karnaugh map
foreach permutation e of the values of the PredictorSet do

/* If the permutation e matches the condition of the
predicate for this pathway, and if this pathway can
override the information already in the Karnaugh map
(i.e. it is more specific than it with n < z), then
overwrite it with the next state value subscripted
with the specificity of this pathway. Otherwise mark
the location as a conflict with this pathways
specificity of n. */

// for all z < n and y ∈ {0, 1}
if C ⊂ e and (K[e] = cz or K[e] = x or K[e] = yz) then

K[e] ← vn;
else

K[e] ← cn;
// K[] is the resulting Karnaugh map
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3. MCMC IMPLEMENTATION OF THE OPTIMAL BAYESIAN CLASSIFIER

FOR NON-GAUSSIAN MODELS: MODEL-BASED RNA-SEQ

CLASSIFICATION∗

3.1 Background

The possibility of genomic phenotype classification arose with the inception of

gene-expression microarrays. From the outset, two fundamental problems have frus-

trated the endeavor: (1) the inaccuracy of microarray measurements, and (2) small

samples. Our particular application of interest is classification using RNA-Seq data.

Modern RNA-Seq technologies sequence small RNA fragments (mRNA) to measure

gene expression, where the number of reads mapped to a gene on the reference

genome defines the count data. Given that RNA-Seq data has advantages over

microarray data, in particular, more accurate measurement, we still confront the

second fundamental problem, which is statistical, not technological: small samples

cause re-sampling-based classifier error estimators to be very inaccurate due to ex-

cessive variance and lack of regression with the true error [7, 41, 39, 40]. Since the

error rate of a classifier quantifies its predictive accuracy, it is the salient epistemo-

logical attribute of any classifier. The inability to satisfactorily estimate the error

with model-free methods with small samples implies that genomic classifier error

estimation is virtually impossible without the use of prior information, so that the

whole small-sample classification problem becomes unapproachable in a model-free

framework [29].
∗Parts of this section are reproduced with permission (CC by 4.0) from Knight, J.M.; Ivanov,

I.; Dougherty, E.R. "MCMC implementation of the optimal Bayesian classifier for non-Gaussian
models: model-based RNA-Seq classification", BMC Bioinformatics Page 401. Volume: 15, Issue:
1, 2014 doi:10.1186/s12859-014-0401-3 Copyright © 2014 Knight et al.; licensee BioMed Central
Ltd.
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The situation has been addressed by utilizing prior knowledge via a Bayesian

approach that considers a prior distribution on an uncertainty class of feature-label

distributions [15, 16]. For expression-based classification, prior distributions have

been constructed using expression data not employed in classifier design [14] and

known regulatory pathways [32]. Given that a prior model must be assumed to

achieve satisfactory error estimation, an obvious course of action is to derive an

optimal classifier based on the prior knowledge and the sample data, the result being

an optimal Bayesian classifier (OBC) that is guaranteed to have the best average

performance of any classifier relative to the posterior distribution derived from the

prior distribution and data [19, 20]. While Bayesian classification does not depend

on particular distributional forms, closed-form solutions have been derived for the

multinomial model and Gaussian models using linear classifiers for the minimum

mean squared error (MMSE) error estimate [15, 16], the MSE of the error estimate

[17, 18], and an optimal Bayesian classifier (OBC) relative to the prior distribution

[19, 20], the latter being expressed in terms of effective class conditional distributions,

which are expectations relative to the posterior distribution of the class-conditional

distributions. The closed-form solutions depend on particular models (multinomial

and Gaussian) and the existence of conjugate priors, which can be too constraining

for practical applications such as RNA-Seq classification.

Much of the statistical literature concerning classification of RNA-Seq data at-

tempts to address differential expression testing, that is, univariate statistical testing

on an individual gene basis. These attempts typically model RNA-Seq data via neg-

ative binomial [2, 79] and Poisson distributions [70]. In addition, network inference

has been attempted using a hierarchical Poisson log-normal model [33], and clus-

tering of RNA-Seq data points has utilized various approaches [83, 77]. However,

in clinical settings one is often interested in sample classification: the problem of
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classifying the RNA-Seq data from unlabeled patients using a set of labeled training

data. One of the few RNA-Seq-specific attempts towards this goal uses a Poisson

modeling assumption with independent features [89]. The Poisson model is com-

pletely parameterized by its mean and thus is known to exhibit problems in fitting

RNA-Seq data due to the overdispersion typically observed in such datasets.

In this section, we focus on modeling the pipeline that starts with extracting the

gene concentrations from the biological samples and their subsequent processing by

the sequencing instrument [36]. This is accomplished using a hierarchical, multivari-

ate Poisson model (MP). Specifically, gene concentration levels are modeled by a

log-normal distribution and the sequencing instrument sampling of those is modeled

via a Poisson process. This allows us to accurately model the RNA-Seq data overdis-

persion as demonstrated by marginal variance calculations and posterior predictive

model diagnostics in Section 3.2.5. In addition, this hierarchical model allows for

inferring any covariance structure observed between the features.

Whereas Dalton and Dougherty have presented a computational method for non-

linear classifiers in the Gaussian model [14], this still depends upon conjugate priors.

In this work, we remove the constraints imposed by the requirement of a closed-form

solution by developing the optimal Bayesian classifier using a Markov-chain-Monte-

Carlo (MCMC) methodology. This provides a computational framework for calcu-

lating the OBC for any parameterized class conditional-density and any prior distri-

bution. Most notably, this allows us to use distributions designed to closely model

particular datasets and a prior distribution of any form to improve classification per-

formance in small-sample settings, in particular, for RNA-Seq-based classification.

39



3.2 Methods

3.2.1 Notation

Throughout, we use capital letters to indicate random variables, lower case letters

to indicate individual realizations of random variables or indices, bold latin charac-

ters for observed vectors, and Greek letters for latent features and parameters. We

write p(X) as the probability measure over the random variable X. p(X) may be

a probability mass function, probability density function, or arbitrary probability

measure. p(x|y) denotes the conditional probability p(X = x|Y = y). Similarly,

following Bayesian convention, we write parameterized distributions by conditioning

on the parameter, for instance, p(X|Y, θ), and posterior expectations by condition-

ing on the sample, such as E[X|Y, Sn], where Sn and all other values are defined in

Section 3.2.2. If it is unclear which density an expectation is taken with respect to,

then we denote it in subscript notation, such as Eθ|Sn [·], where the expectation is

taken with respect to the density p(θ|Sn).

3.2.2 Review of optimal Bayesian classification

Binary classification considers a set of n labeled training data points, Sn =

{(x, y)}n1 , where y ∈ {0, 1} is the class label and x ∈ X is the feature vector over

a feature space X . An example of binary classification in a clinical setting might

include class 0 and 1 being two types of cancers, or normal and cancerous tissues.

Available features would then be the gene or genes that will eventually be used in

the designed classifier to assign this label. The feature space X would be the set

of possible gene expression measurements for all genes in the feature vector. The

labeled training data Sn would be the set of gene expression measurements from

samples which had undergone further testing (possibly observation with the passage

of time, cell culturing, or more invasive followup procedures) to identify the type or
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malignancy of the tissue. Using Sn, we design a classifier ψ that hopefully performs

well on the unknown joint feature-label distribution p(X, Y ). In the same clinical

example, the classifier ψ could then identify the type of cancer using gene expression

measurements alone.

By parameterizing this unknown joint distribution in a model-based Bayesian

framework one can derive an optimal Bayesian classifier (OBC) that minimizes the

expected error over the space of all classifiers under assumed forms of the class-

conditional densities. Specifically, under Gaussian and multinomial class-conditional

densities and their corresponding conjugate prior distributions, closed-form solutions

for the OBC [19, 20] and the first two moments of the error estimate conditioned on

the sample [17, 18] have been obtained.

The parameterization of the feature-label distribution consists of the marginal

class probability c and the class-conditional densities p(x|y, θy), where a particular

value θy ∈ Θy specifies a single class-conditional density contained in the class of

densities defined over the space Θy, which will be a Cartesian product as described

in Section 3.2.4. Therefore, for a two-class problem, we specify a parameterized joint

feature-label distribution as θ = (c, θ0, θ1) ∈ Θ = [0, 1] × Θ0 × Θ1. In the Bayesian

classification framework, these values are then treated as random variables, so that

we may consider quantities such as the expectation of c, or another random variable

conditioned on the value of the parameter vector θ.

Fig. 3.1 describes the inter-relationships between the quantities of interest in the

general theoretic framework of Bayesian classification. The tree shows a subset of

the derivations possible from the posterior feature-label parameter distribution to

the OBC classifier and error estimates. Specifically, directed edges indicate that

the child can be derived from the parent by performing the operation indicated

by the edge label. Closed-form solutions of the quantities highlighted in grey have
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Figure 3.1: A Bayesian classification derivation tree summarizing the relationships
between several important quantities in the general theoretical framework of Bayesian
classification. A directed edge between a parent and its child indicates that the child
can be derived from the parent by the equations indicated in the edge label. The root
of the tree p(θ|Sn) is the posterior distribution of the feature label parameters and by
taking expectations with respect to this distribution, we can derive the effective class
conditional densities p(x|y, Sn) and the distribution of the classifier error p(ε|Sn).
Then these quantities give rise to the OBC, and MMSE and MSE estimates for the
error as described in the text. Quantities highlighted in grey are given in closed form
for Gaussian and multinomial distributions in [17]. Reproduced with permission
from [57].

been calculated for the Gaussian and multinomial feature-label distributions [15, 16].

As in those derivations, the tree assumes independence between the marginal class

42



probability c and the class-conditional parameters θy. In addition, the posterior of c

is assumed known throughout the tree. Fig. 3.1 demonstrates a primary benefit of

the Bayesian approach to classification. Once we obtain the posterior distribution

of the class-conditional parameters, it is straightforward to calculate many relevant

quantities through appropriately crafted conditional expectations. In this section

we demonstrate how to approximate any quantity in the tree for arbitrary class

conditional densities and arbitrary prior distributions.

We now examine the tree in more detail. Starting at the far left of the tree,

p(θ|Sn) is the posterior distribution of the parameterized feature-label distribution

– posterior to the labeled samples in Sn. Typically, error estimates and the optimal

classifier are our primary interest, so that this posterior distribution is traditionally

used as a means to compute other quantities and is not of interest by itself.

The effective class-conditional density is the marginal predictive posterior of the

feature vector X conditioned Sn and the class variable Y ,

p(x|y, Sn) =

∫
Θy

p(x|y, θy)p(θy|Sn)dθy. (3.1)

It gives the distribution of the feature vector using a weighted average over all the

parameterized class-conditional densities in Θy given a class y. The weights in this

expectation are the posterior, p(θy|Sn), evaluated at each θy.

The true error of classifier ψ is ε = p(ψ(X) 6= Y ). Given the sample data Sn, ε is

a random unknown quantity in the Bayesian framework. The MMSE estimate given
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in [17] can be written as

E[ε|Sn] = p(ψ(X) 6= Y |Sn)

= Eθ|Sn [p(ψ(X) 6= Y |θ, Sn)]

= ĉε0(θ0, ψ) + (1− ĉ)ε1(θ1, ψ)

=

∫
X

(ĉp(x|0, Sn)Ix∈R1

+ (1− ĉ)p(x|1, Sn)Ix∈R0)dx, (3.2)

where IA is the indicator function for event A, ĉ = E[c|Sn] is the posterior expectation

of c, Ry is the region of the feature space the classifier predicts to be class y, X is

the feature space, and εy(θy, ψ) is the error of classifier ψ contributed by class y on

the fixed distribution θy.

We can also obtain the full posterior distribution of the error,

p(ε|Sn) =

∫
Θ

p(ε|θ)p(θ|Sn)dθ

= Eθ|Sn [p(ε|θ)], (3.3)

where p(ε|θ) is the true error for a fixed feature-label distribution and fixed classifier.

We denote this deterministic function by ε(θ, ψ). As shown in Fig. 3.1, the MMSE

estimate and the sample conditioned MSE for this error can also be calculated using

the first two moments of the error distribution.

With the MMSE estimator defined, the optimal Bayesian classifier (OBC) is the

classifier minimizing the expected error by pointwise minimization of the integral
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(3.2) [20]:

ψOBC(x) =


0 if ĉp(x|0, Sn) ≥ (1− ĉ)p(x|1, Sn),

1 otherwise.
. (3.4)

3.2.3 Conditional error estimator

If the true feature-label distribution were known, then we could compute the true

error of a classifier exactly as an expectation over the conditional error [30]:

ε = p(ψ(X) 6= Y ) =

∫
X
p(ψ(x) 6= Y |x)p(x)dx.

Treating ε as a random variable, one can similarly derive its posterior distribution

by conditioning on the feature vector:

p(ε|Sn) =

∫
X
p(ε,x|Sn)dx

=

∫
X

∫
Θ

p(ε, θ,x|Sn)dθdx

=

∫
Θ

p(θ|Sn)

∫
X
p(ε|x, θ)p(x|Sn)dxdθ, (3.5)

which is different than the derivation of the same quantity in (3.3).

This introduces the idea of the conditional error estimator, which we define as

the MMSE estimate of the classification error conditioned on the feature vector x,

ε̂(ψ,x) = Eθ|Sn [ε|x, Sn]

= p(ψ(x) 6= Y |x, Sn) (3.6)

=
p(x|Y 6= ψ(x), Sn)p(Y 6= ψ(x)|Sn)

p(x|Sn)

= Z−1p(x|Y 6= ψ(x), Sn)p(Y 6= ψ(x)|Sn),

45



as expanded through application of Bayes’ theorem, where Z is a normalizing con-

stant given by

Z = p(x|Sn) =
∑

y∈{0,1}

p(x|y, Sn)p(y|Sn).

In addition to being useful in the above alternative derivation of the classifier’s

error posterior, the conditional error estimate has other practical applications. When

classifying an unlabeled data point, we would like to estimate the error of the classifier

output for that particular data point, as opposed to the overall error estimate for

the classifier.

For the OBC, from (3.4) the conditional error estimator can be written as

ε̂(ψOBC,x) = Z−1 min
y∈{0,1}

{p(x|y, Sn)p(y|Sn)} . (3.7)

In sum, using the effective class-conditional densities and the posterior marginal

probabilities one can calculate conditional error estimates for points in the feature

space in addition to the earlier quantities described.

3.2.4 The multivariate Poisson model

With the widespread use of next-generation sequencing techniques, classification

approaches must be developed to account for the discrete nature of the mapped

sequence data and to accommodate the various types of prior information available

regarding these experiments.

Gene concentration levels can be modeled using a log-normal distribution [5, 4].

As discussed in the introduction, we assume that the sequencing instrument samples

this mRNA concentration through a Poisson process and obtainsXi,j reads for sample

46



point i and gene j. We model this as

p(Xi,j|λi,j) ∼ Poisson(di exp(λi,j)), (3.8)

where λi,j is the location parameter of the log-normal distribution for sample i and

gene j, and di is a variable accounting for the sequencing depth as determined by

the sequencing process [36]. For each i, we model the location parameter vector λi

with a multivariate Gaussian distribution, λi ∼ Normal(µ,Σ). We then consider the

mean µ and covariance Σ of the gene concentrations as independent quantities for

each class y.

The entire MP model is represented in Fig. 3.2 as a plate diagram. The distribu-

tion of a single class y is parameterized by θy = (µ,Σ,d, λ), where d = (d1, . . . , dn)

and λ = (λi,j), i = 1, 2, ...n, j = 1, 2, ..., D, for n sample points and D total genes.

Therefore, θy ∈ Θy = RD × RD×D × Rn × RD×n. The feature-label distribution

parameterization for the two-class problem is then given by θ = (c, θ0, θ1), where

c = p(Y = 0), the prior probability for class 0.

To ensure a proper posterior with unit integral, we place weakly informative

priors over the latent variables in the MP model. In choosing these values, we have

aimed to avoid the complications that can occur with overly diffuse priors, such as

Lindley’s paradox [68, 82]. We choose:

µy ∼ Normal(ηy, ν2ID)

Σy ∼ Inverse-Wishart(κy, Sy)

c ∼ Beta(1, 1),

where each element of µy is distributed according to a univariate Gaussian. Unless
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Figure 3.2: Mutivariate Poisson model plate diagram. A plate diagram for the
multivariate Poisson model. The outermost plate represents the classes that we are
interested in classifying against, where i is the index of the sample in class y, and j
are the genes being modeled. Reproduced with permission from [57].

otherwise stated, η is the D dimensional zero vector, ν2 = 25, κ = 10, and S =

(κ − 1 − D)ID. For computational and identifiability reasons, d is fixed to be a

vector of normalization constants in order to match the different sequencing depths

across all the samples. In practice, d can be approximated by an upper quartile

normalization, which has been shown to be effective [25].

In any Bayesian approach the choice of prior affects the results, especially when

only a few data points are given. In the case of MMSE classifier error estimation
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in the Bayesian framework, robustness to incorrect modeling assumptions has been

extensively studied in [16] and in those studies performance held up well for various

kinds of incorrect modeling assumptions. Robustness of optimal Bayesian classifiers

to false modeling assumptions was extensively studied in [20]. Again, good robust-

ness was exhibited. Of course, one can get bad small-sample results by intentionally

selecting an inaccurate prior. In general, if one is confident in his knowledge, then

a tight prior is called for because tighter priors require less data for good perfor-

mance; on the other hand, when one is not confident, then prudence calls for a less

informative prior. As proven in [20], OBC classification is consistent under very

general conditions; however, a prior whose mass is concentrated far away from the

true parameters will perform worse than one that is non-informative. These issues

have been extensively discussed in the Bayesian literature [50, 51, 6, 32]. In the end,

performance is the measure of worth and our results with synthetic and real data

indicate solid performance for the modeling approach used herein.

3.2.5 Overdispersion

The MP model uses the Poisson distribution in a hierarchical scheme. It is

important to note that, while the read counts are modeled as conditionally Poisson

in equation 3.8, the observed read counts are not marginally Poisson distributed.

To demonstrate this, consider a one-dimensional simplification of the MP model in

which X is the number of reads observed,λ is the log of the RNA concentration, and

λ ∼ Normal(µ, σ2)

X ∼ Poisson(exp(λ)).
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Then for the marginal variance of X,

Var(X) = E[Var(X|λ)] + Var(E[X|λ])

= e(µ+σ2/2) + (eσ
2 − 1)e(2µ+σ2)

≥ eµ = Var(Poisson(eµ))

where µ and σ2 are the mean and variance of the log of the concentration. Therefore,

when σ2 > 0, the marginal variance of X is always greater than that of a Poisson

random variable with the same effective rate.

In addition, by carrying out a posterior predictive model check [34, p. 143] by

computing marginal posterior p-values against real RNA-Seq data, we can quanti-

tatively assess the ability of the MP model to fit the dispersion of the TCGA data.

For a test statistic T , we compute the p-value by comparing the test statistic on the

true data T (Sn) and the value of the statistic averaged across the posterior predictive

distribution T (xrep), where xrep ∼ p(x|Sn):

pT = Pr(T (xrep) ≥ T (Sn)|Sn)

= Pr(T (xrep) > T (Sn)|Sn)

+ (0.5)Pr(T (xrep) = T (Sn)|Sn)

≈ 1

M

M∑
i=0

I{T (xrep(s)) > T (Sn)}

+ 0.5I{T (xrep(s)) = T (Sn)},

where xrep(s) are Monte Carlo samples taken from the posterior predictive distribution

p(x|Sn) using the M Monte Carlo samples from the posterior distribution of θ as

described in Section 4.2.2. The term (0.5)Pr(T (xrep) = T (Sn)|Sn) is necessary due
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to the discrete nature of RNA-Seq data. P-values away from 0 and 1 indicate that

the model posterior produces test statistics both above and below that measured on

the real data.

We also consider where the real test statistic falls in relation to credible intervals

of the test statistic to consider the magnitude of any differences. We apply the inter-

quartile distance test statistic to provide a measure of the MP model’s ability to fit

the dispersion of RNA-Seq data. We also consider several other test quantities in

Appendix C.

3.2.6 Prior calibration using discarded features

Since designed classifiers typically use very few of the totality of observed genes,

only a small fraction of the data is used for classifier design. Similarly to [14], we can

use the discarded features to calibrate the inverse-Wishart prior for our MP OBC.

Our goal is to obtain hyperparameters S,m, κ, and ν2 for each class from our training

data Sn. In general, we do not expect the discarded features to give us information

about any particular genes and the specific covariances between genes, so we make

the simplifying assumptions that we learn information from the discarded genes in an

aggregate sense. Thus, we consider the following structure on the hyperparameters:

m = m[1, 1, . . . , 1]T and

S = σ2



1 ρ · · · ρ

ρ 1 · · · ρ

...
... . . . ...

ρ ρ · · · 1


,

where m ∈ R, σ2 > 0, and −1 ≤ ρ ≤ 1. For each class, we need to determine values

for five scalar quantities: m, ν2, σ2, ρ, and κ.

Due to the hierarchical design of the MP model, we cannot apply the method
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of moments in a direct fashion, as did [14]. Instead, we utilize a sampling based

approach to the method of moments. This MCMC sampling approach has been

examined in [9] as an extension to the generalized method of moments [42]. The

sampling approach uses the discarded features in an additional MCMC run evaluated

prior to the primary classification MCMC procedure as discussed in Section 4.2.2

– and then proceeds to the method of moments. In this calibration MCMC, we

initialize all prior distributions with flat priors and use the discarded features to

obtain samples from the posterior distribution of µ and Σ. Typically, the number of

discarded features F is much larger than the dimensionality D of the classification

problem. Therefore, due to computation time, we uniformly sample Fs pairs of

features from F and average the resulting runs rather than using all or large groups

of discarded features in a single MCMC run. We use the following procedure (for

the complete algorithm, see Appendix A):

1. For each randomly chosen discarded feature pair (s in total):

(a) Obtain MCMC samples using the feature pair as data and flat priors.

(b) Record posterior averages of µ and Σ.

2. Average over these posterior averages as given by eqs.(3.15)-(3.19).

3. Using the resulting five hyperparameter estimates, run the final MCMC for

classification.

Following [14], we use the moments of the posterior samples to determine the

hyperparameters through the following relations: The mean of an inverse-Wishart

distribution is

E[Σ] =
S

κ−D − 1
, (3.9)
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which together with our simplified covariance structure implies

σ2 = (κ−D − 1)E[Σ11], (3.10)

ρ =
E[Σ12]

E[Σ11]
. (3.11)

The variance of the first diagonal of an inverse-Wishart matrix can be used to solve

for κ via

κ =
2(E[Σ11])2

Var(Σ11)
+D + 3. (3.12)

As we have samples of µ directly from our posterior, we obtain

m = E[µ1], (3.13)

ν = Var[µ1]. (3.14)

In order to use equations (3.9)-(3.14), we obtain estimates of the moments from

MCMC performed over the Fs discarded feature pairs. For the i-th feature pair we

obtain the posterior means µ̂(i)
1 , Σ̂

(i)
11 , and Σ̂

(i)
12 and then average:

Ê[µ1] =
1

Fs

Fs∑
i=1

µ̂
(i)
1 (3.15)

V̂ar[µ1] =
1

Fs − 1

Fs∑
i=1

(Ê[µ1]− µ̂(i)
1 )2 (3.16)

Ê[Σ11] =
1

Fs

Fs∑
i=1

Σ̂
(i)
11 + Σ̂

(i)
22

2
(3.17)

Ê[Σ12] =
1

Fs

Fs∑
i=1

Σ̂
(i)
12 (3.18)

V̂ar[Σ11] =
1

Fs − 1

Fs∑
i=1

(Ê[Σ11]− Σ̂
(i)
11 )2. (3.19)
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We substitute the estimates from Eqs. (3.15)-(3.19) back into Eqs. (3.9)-(3.14) to

obtain the final hyperparameter estimates.

One must keep in mind that the calibration procedure explicitly assumes the MP

model. Hence, one can only expect an improvement in the classification performance

if the data follow the MP model.

3.2.7 Computation

To obtain the MP OBC, we approximate the effective class conditional densities

in order to minimize the expected error in a pointwise fashion:

p(x|y, Sn) =

∫
Θy

p(x|y, θy)p(θy|Sn)dθy

≈ 1

M

M∑
i=1

p(x|y, θ(i)
y ), (3.20)

where θ(i)
y are M samples of θy from the model posterior distributions.

For clarity of presentation, we do not consider the class variable y, and we assume

a single class. We do this because the computation can be performed per-class

due to the assumed independence between the classes and the marginal probability,

p(c, θ0, θ1) = p(c)p(θ0)p(θ1).

To obtain posterior samples of θ using the Metropolis Hastings MCMC algorithm

we define a proposal distribution p(θ′|θ) to obtain a new value for the class parameters

θ′ from the old values θ. We then calculate the acceptance ratio

R = min

{
1,
p(θ′|Sn)p(θ′|θ)
p(θ|Sn)p(θ|θ′)

}
= min

{
1,
p(Sn|θ′)p(θ′)
p(Sn|θ)p(θ)

}
,

under the assumption of a symmetric proposal distribution (p(θ′|θ) = p(θ|θ′)). The

process of proposing and accepting samples from this distribution with the proba-
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bility R induces a Markov chain. Positivity of the proposal distribution (p(θ′|θ) > 0

for any θ) is a sufficient condition for ergodicity of this Markov chain. Furthermore,

this Markov chain admits a steady-state distribution equal to our desired posterior

distribution p(θ|Sn) [38].

From the definition of the likelihood,

p(Sn|θ) =
n∏
i=1

p(xi|θ) =
n∏
i=1

p(xi|λi)

=
n∏
i=1

D∏
d=1

p(xi,d|λi,d),

where p(xi|θ) = p(xi|λi) owing to conditional independence. From the definition of

the prior,

p(θ) = p(µ,Σ, λ)

= p(λ|µ,Σ)p(µ|Σ)p(Σ)

=
n∏
i=1

p(λi|µ,Σ)p(µ|Σ)p(Σ).

The posterior predictive distribution in (3.20) is approximated by

p(x|Sn) ≈ 1

M

M∑
i=1

p(x|θ(i))

=
1

M

M∑
i=1

∫
Λ

p(λ|θ(i))p(x|λ)dλ

=
1

M

M∑
i=1

∫
Λ

p(λ|θ(i))
D∏
k=1

p(xk|λk)dλ

≈ 1

MT

M∑
i=1

T∑
g=1

D∏
k=1

p(xk|λ(g)
k ),
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where, p(xk|λk) ∼ Poisson(dk exp(λk)), λ ∼ Normal(µ,Σ), Λ = Rn×D, and the λ(g)

are T vector-valued samples drawn from the appropriate class’s posterior distribu-

tion used to approximate the inner intractable integral. In addition, we use this

approximation of the effective class-conditional density to calculate the conditional

error estimates of (3.7) in a pointwise fashion.

Finally, because we have assumed a conjugate prior distribution for the marginal

class probability c, the posterior expectation takes the closed form

Eθ|Sn [c] =
n0 + α0

n0 + n1 + α0 + α1

,

where the ny are the number of training samples obtained from class y and the αy are

hyperparameters set to 1 for an uninformative prior. Conjugacy was used for this one

parameter because the increased flexibility of the full sampling approach was deemed

not necessary due to the constrained, univariate nature of the parameter. If more

complex relationships between c and other parameters were desired, then a sampling

approach using non-conjugate priors would be straightforward to implement.

3.2.8 Synthetic data

To evaluate OBC performance in the setting of the MP model, we generate syn-

thetic data using the method proposed in [47] to simulate gene expression/mRNA

concentrations (see Appendix B). These gene expression values are then statistically

sampled to emulate modern sequencing machines as described in [36]. Parameter

values are drawn from the following distributions to examine a wide variety of clas-

56



sification problems:

µy ∼ Normal(0, 0.2),

σy ∼ Inverse-Gamma(1, 3),

ρ = Uniform(0.0, 1.0),

dlow = 9,

dhigh = 11,

blocksize = 5.

With these parameters, ten global, twenty heterogeneous, and ten non-marker

features are generated. Then four features are randomly chosen to represent a mix-

ture of features of various classification quality. Following [36], the features in the

data are zero mean and unit standard deviation normalized except for the MP OBC.

The exception occurs because the MP model expects features to be positive integers

and normalization is not necessary. The discarded features are used for calibration

of the MP OBC priors, and 3000 samples are generated from each class to estimate

the true classification rate for each classifier.

We use four features in this synthetic data classification study owing to limited

computational resources as discussed in Section 3.3.3.

The synthetic data generation method proposed in [47] imposes the strong as-

sumption of a homogeneous covariance (HC) structure between the two classes of

data. This assumption does not hold for biological situations where interactions

between features are not necessarily preserved between classes, and this occurs fre-

quently in biology when considering the possible effects of canalizing genes, nonlinear

gene regulation, and mutations in the case of cancer [71, 28]. Specifically, if the canal-
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izing gene is not observed, and differs in activity between the two classes, then the

measured correlation between two downstream genes could potentially be negligible

in one class while strong in the other class. Similarly, for highly nonlinear gene reg-

ulation, if a gene in one class is in the saturation region of its response curve from

a master gene, then the correlation will be low, while a lower expression level in

the other class would allow for a large measured correlation with the same canaliz-

ing gene. And finally, if one class represents normal gene expression and the other

tumor-related expression, then a correlation might exist from a functioning pathway

in the normal tissue, but a mutation could result in a lack of correlation effects in

the tumor.

Hence, we modify the synthetic data generation procedure in an attempt to pro-

duce synthetic datasets more representative of such nonlinear phenomena in biology.

In this modified procedure, we allow independent covariance (IC) matrices for the

features of the two classes. To generate these covariance matrices, Σy, we utilize inde-

pendent draws from inverse-Wishart distributions with parameters κy = 22, D = 20,

and scale matrix S = σ2
y(κ− 1−D)ID. To examine the effects of feature correlation

in IC datasets, we can also generate low-correlation covariance matrices by zeroing

the off-diagonal terms. Once the covariance matrix for class y is obtained, location

parameters for gene-expression values for each sample point are drawn from the re-

spective multivariate normal distribution λy ∼ N(µy,Σy). Each sample point is then

assumed to be normalized through an upper quartile or other suitable method, but

in practice any sample-based normalization is imperfect. We reflect this variation by

drawing the sequencing depth di from a Uniform(dlow, dhigh) distribution, giving the

rate of the Poisson process as di expλi. The number of reads for a single gene from

a single sample is then drawn from this Poisson distribution. See Appendix A for

more detail.
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The OBC is optimal on average across the space of distributions determined by

its prior distributions. To avoid biasing the performance comparison, we draw the

classification problem datasets using different distributions than those of the OBC

priors. See Appendix A for more detail.

3.2.9 Real data

We consider a real RNA-Seq dataset composed of level 3, RNASeqV2 data from

the Cancer Genome Atlas (TCGA) project. It contains 484 and 470 specimens from

lung adenocarcinoma and lung squamous cell carcinoma tumor biopsies, respectively.

The samples are mapped read counts against 20531 known human RNA transcripts

as generated by the University of North Carolina at Chapel Hill, one of the Genome

Sequencing Centers for the TCGA. The data for each cancer type is the result of

processing approximately 20 billion reads and the read count files for each are one

gigabyte apiece. The problem is to classify the tumor types. Because the class-0

(lung adenocarcinoma) and class-1 (lung squamous cell carcinoma) sample sizes, 484

and 470, are not chosen randomly, we are confronted with the problem of separate

sampling. This means that there is no way to obtain a posterior distribution for c and

therefore cmust be known in advance. Based upon records from 2006-2010, we have a

very accurate estimate, 48, 600/141, 300 ≈ 0.34 [78]. Whereas we can use the value of

c directly, along with all of the data, in designing the OBC, for classification rules that

do not use c explicitly, the separately sampled data must be maximally subsampled

to the proper sampling ratio c before applying the classification rule [31]. This means

that for Ntrn desired samples, the sample subsets will contain round((1−c)Ntrn) and

round(cNtrn) for class 0 and 1, respectively. Moreover, holdout error estimation,

which we use here, must be properly adapted for separate sampling for all design

methods, including the OBC. The holdout estimate is given by
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ε̂c = cε̂0 + (1− c)ε̂1,

where ε̂0 and ε̂1 are the ordinary holdout estimators (performed on all remaining

data samples not used for training) for the class-0 and class-1 errors, respectively

[31]. We note that many studies have made the mistake of using classification rules

designed for random sampling when sampling is separate. This can have devastating

effects on classifier performance [31].

While averaging over sample subsets for holdout error estimation, we also average

over uniformly, randomly selected gene subsets of size 4. This sampling occurs from

low (1-10 average reads per gene) expression genes. We sample from these lower

expression genes because we are ultimately interested in classification problems where

the delineation between phenotypes is determined by genes with low expression.

We used 10,000 for averaging in order to obtain a large enough sample over this

feature and sample subset space to achieve repeatable results (data not shown).

Computational runtime for each sample and gene subset was similar to the synthetic

data.

3.3 Results and discussion

Appendix A contains a simple two-class, two-feature demonstration of the overall

procedure to allow for easy visualization and interpretation. Here we discuss the

results for the synthetic and real data.

3.3.1 Synthetic data

To evaluate classification performance, classifiers were trained using 3NN, LDA,

and c-support vector machines with a radial basis function kernel [30]. Starting

with the homogeneous-covariance model, Fig. 3.3a shows that the performance of
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Figure 3.3: Synthetic data classification results with (a) homogeneous-covariance, (b)
high correlation independent-covariance, (c) low correlation independent-covariance,
and (d) high correlation independent-covariance data at several problem difficulties.
Reproduced with permission from [57].

the multivariate Poisson OBC is better than nonlinear SVM when more than 10

samples are available and is significantly better than any other classifier when using

calibrated features. Equivalently, by using discarded features, we can obtain the

same classification performance while requiring fewer training samples.

In the case of independent-covariance data with highly correlated features, Fig. 3.3b

shows superior classification performance of the MP OBC at nearly all sample sizes

considered. In addition, for calibrated prior distributions, the performance of the MP

OBC improves. This improvement is greater when the sample sizes are small, which

demonstrates the importance of additional knowledge (through discarded features)
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when data are expensive to obtain or not readily available.

The superior performance of the OBC relative to LDA, 3NN, and SVM in Fig.

3.3b is on account of classification optimization relative to the model, which char-

acterizes prior information. To further investigate OBC improvement, we again

considered heterogeneous covariance matrices but with independent features to de-

termine if there is any difference in the relative performance between the classifiers.

In fact, the results provided in Fig. 3.3c show identical relative performance to the

error curves in Fig. 3.3b, thereby indicating that both the standard classifiers and

the OBC, relative performance (at least in the case considered) is not affected by

whether or not the features are correlated. Indeed, comparing Fig. 3.3a with Figs.

3.3b and 3.3c, we see that the relative performance of SVM, MP OBC, and cali-

brated MP OBC is the same in both the homogeneous and heterogeneous models.

The switch in relative performance between LDA and 3NN between Fig. 3.3a and

Figs. 3.3b and 3.3c is not surprising because LDA is optimal for a fixed (known)

homogeneous Gaussian model but not for a heterogeneous Gaussian model.

The larger overall classification errors in Fig. 3.3a as compared to Figs. 3.3b

and 3.3c are due to the different covariance matrices generated by the HC and IC

models. Each model required different generating distributions for {σy, ρ} and {S, κ}

for the HC and IC cases, respectively, and the particular choices made in Section

3.2.8 resulted in larger dispersions and higher errors in the HC models than the IC

models. To demonstrate this, we tested LDA with 1000 training and testing samples

across 1000 random generating distributions and found the average HC classification

error to be 0.41 and the IC error to be 0.32. This is despite LDA being optimal for

homogeneous, fixed, known Gaussian cases and sub-optimal for heterogeneous, fixed,

known Gaussian cases, where the former is similar to the HC case.

These differences in overall error rates are also consistent with the intuition that
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larger differences between class covariance matrices induce higher classification error

rates. This is seen in: the low classification error rates in Fig. 3.3c where all elements

of the covariance matrices are not shared between the two classes, the high error rates

in Fig. 3.3a where the covariance matrices are identical between the two classes, and

the error rates of Fig. 3.3b falling in between the previous two figures where only the

diagonal elements of the covariance matrices differ between the two classes and all

off-diagonal elements are shared (and zero).

Still using independent-covariance data, we fixed the mean of class 0 at µ0 = 0.0 in

Fig. 3.3d, and varied µ1 from 0.0 to 1.0 to make the classification problem harder and

easier, respectively. Across this range of classification problems, the MP OBC had

better classification performance than the other classification methods. In addition,

calibrated priors improved performance further, especially for harder classification

problems.

3.3.2 Real data

In Table 3.1, we chose ten genes at random from adenocarcinoma tumor TCGA

samples and performed model diagnostics [34, p. 143] by calculating posterior pre-

dictive p-values for interquartile distance (IQR) as a measure of dispersion. In the

Appendix C, we provide additional test statistics and graphical predictive posterior

model diagnostics. These results indicate that RNA-Seq overdispersion is modeled

sufficiently with the MP model.

In Fig. 3.4, we see mean holdout errors averaged over 10,000 training sets and

testing sets of TCGA data as described in Section 3.2.9. Here the MP OBC performs

better than all other classifiers across most training sample sizes considered, but

calibration does not improve performance for this particular dataset. Recall that

improvement owing to calibration depends on the extent to which the data satisfy
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Table 3.1: Posterior predictive model diagnostics are given for 10 randomly selected
genes from adenocarcinoma TCGA samples. Inter-quartile distance (IQR) is used
as a robust measure of dispersion. In the table, IQR(Sn) is the training data’s IQR,
followed by the 95-th credible interval, and the posterior predictive P-value. In cases
where the P-value is close to 0 or 1, the true test statistic’s distance from the 95-th
credible interval can be used to determine the magnitude of the mis-fit. Reproduced
with permission from [57].

Gene ID IQR(Sn) 95% int. for IQR(xrep) p-value
UPK1A|11045 2.12 [1.0, 3.0] 0.09
OR4P4|81300 0.00 [0.0, 0.0] 0.50

PCDHA12|56137 139.22 [107.8, 187.0] 0.54
MDS2|259283 1.85 [2.0, 5.0] 1.00
AXIN2|8313 347.69 [331.5, 439.3] 0.85
DYNLT1|6993 848.41 [830.0, 1043.3] 0.90
RARA|5914 786.43 [706.8, 881.3] 0.62

TMEM194A|23306 396.06 [367.0, 471.3] 0.76
AGPS|8540 496.45 [505.8, 636.5] 0.97

NLRP2|55655 854.47 [381.3, 677.5] 0.00

the MP model. If the aim of this section were to build an operational classifier

based on the TCGA data, then we would have to go back and extensively study the

data set to examine deviations from the model – for instance, outliers; however, here

our aim is to show the functionality of the OBC with non-Gaussian data based on

MCMC and apply it to the MP model. The fact that the MP OBC performs well

on the real data satisfies this aim. Calibration is a tricky business and it would be

a major separate study to characterize the manner in which model variation affects

calibration, even if we were to perform an intensive study of this particular data set.

Performance on the synthetic data demonstrates the effectiveness of the calibration

when the model is satisfied.
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Figure 3.4: TCGA RNA-Seq Classification. Average holdout errors were computed
over 10,000 training sets and feature subsets using two types of lung cancer RNA-
Seq data from TCGA. MP OBC with and without calibrated priors demonstrates
superior performs across a range of training sample sizes. In addition, providing
the MP OBC with calibrated priors does not appear to improve performance in this
particular dataset. Reproduced with permission from [57].

3.3.3 Computational limitations

The results in Fig. 3.3 and Fig. 3.4 required tens of thousands of MCMC runs.

Owing to limited available computational resources, we could only allocate around 30

seconds on a single CPU core for each MCMC run. This necessitated using only four

genes for these classification results as each iteration of the MCMC procedure has

time complexity of O(D3), where D is the number of features. In practice, one would

have a small number of data sets and could use parallel computing to devote more

time and computing effort for the classification. For example, in timescales on the

order of hours on a typical workstation, we have successfully performed classification
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using 50 genes.

The other classification methods compared in this study have smaller computa-

tional requirements and can correspondingly handle larger numbers of features given

the same available resources. However, for the small sample sizes often available

in biology, 50 genes is typically beyond the “peaking” point where most classifiers

decrease in classification performance as more features are added (for a fixed num-

ber of training samples) [48]. Incidentally, the OBC does not suffer this “peaking

phenomenon” as shown in [19].

In addition, the computational time requirements of classification is typically

not a bottleneck in translational medicine given the timescales used in collecting

biological data. In these settings, the accuracy of classification is much more valuable

than rapid runtimes, and this is the primary advantage of the computational OBC

framework proposed in this section.

3.4 Conclusions

We have demonstrated that Bayesian classification can be applied to specific

problem domains such as RNA-Seq through statistical modeling and MCMC compu-

tation. The resulting classifier provides superior classification performance compared

to state-of-the-art classifiers such as SVM with a radial basis kernel. Although we

have not discussed error estimation – our interest in the present section being clas-

sification, ipso facto, the MCMC approach to optimal Bayesian classification can be

applied, via [15, 16] and [17, 18], to obtain optimal MMSE error estimators for any

classification rule and sample-conditioned evaluation of the MSE for error estimation.

In the next section, we extend this work to the error estimation in the optimal

Bayesian error estimate and mean square error of the Bayesian error estimate. We

then use these two estimators for feature selection as a method to find gene sets
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which well separate biological phenotypes.
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4. DETECTING MULTIVARIATE GENE INTERACTIONS IN RNA-SEQ

DATA USING OPTIMAL BAYESIAN CLASSIFICATION∗

In the previous section, we developed the multivariate Poisson statistical model

of sequencing data and built an Optimal Bayesian Classifier relative to that model

for sequencing datasets. In this section, we consider optimal error estimation using

the same hierarchical Poisson model as a biological discovery tool through feature

selection.

4.1 Introduction

RNA-Seq is a high-throughput technique for measuring the gene expression profile

of a target tissue or even single cells. Due to its increased accuracy and flexibility

over microarray technologies, it is widely applied in biological fields to uncover the

transcriptional mechanisms at play in a given physiology or phenotype.

Typically, this analysis involves mapping the RNA-Seq reads to a reference genome,

quantifying transcript expression, and then performing testing for differential gene

expression to determine which genes are expressed at significantly different levels in

the phenotypes being compared. Tools such as Cufflinks [86], edgeR [79], and DE-

Seq2 [69] provide these univariate statistical tests using well characterized univariate

statistical models of gene expression.

However, one is often interested in phenotypes which can only be differentiated by

the state of several genes simultaneously. These multivariate relationships cannot be

detected using univariate testing procedures only. Instead, it is necessary to consider

the joint expression patterns between multiple genes simultaneously and the ability
∗Parts of this section were reproduced with permission from Knight, J.M.; Ivanov, I.; Dougherty,

E.R. "Detecting Multivariate Gene Interactions in RNA-Seq Data Using Optimal Bayesian Classi-
fication", under review [58] © 2015.
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to use this joint expression to differentiate the phenotypes of interest.

While this problem can be approached using the study of multivariate statisti-

cal testing, we instead opt to utilize the theory of statistical classification for two

primary reasons. First, translational medicine aims to apply scientific knowledge

to improve medical practice, and classification’s prediction of phenotypes from gene

expression data is well aligned with this goal. Secondly, the model-based approach

used in optimal Bayesian classification allows for the use of prior biological knowledge

to improve results in the small number of samples typically available in biological

studies.

Here, we employ the optimal Bayesian classifier and optimal Bayesian error es-

timator to quantify the relationship between the joint gene expression information

and phenotypes of interest. We begin in Section 4.2.1 by reviewing optimal error

estimation with optimal Bayesian classification. Section 4.2.2 explains our approach

to computation using Monte Carlo techniques including Markov Chain Monte Carlo.

Then Section 4.3 describes the dietary intervention study dataset and discusses the

overall study design. Section 4.4.2 discusses the results of the computational study,

and Section 4.4.3 considers the biological implications of the top performing gene

sets.

4.2 Methods

4.2.1 Optimal Bayesian classification

Binary classification considers a set of n labeled training data points, Sn =

{(x, y)}n1 , where y ∈ {0, 1} is the class label and x ∈ X is the feature vector over a

feature space X . Using Sn, we design a classifier ψ based on data from the unknown

joint feature-label distribution p(X, Y ). By parameterizing this unknown joint dis-

tribution in a model-based Bayesian framework one can derive an optimal Bayesian
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classifier (OBC) that minimizes the expected error over the space of all classifiers

under assumed forms of the class-conditional densities [19, 20]. While extending this

framework to the multiple class classification problem is straightforward, this section

utilizes the two-class problem formulation to aid biological interpretation.

We parameterize the feature-label distribution into the marginal class probability

c = p(y = 0) and the class-conditional densities p(x|y,θy), where a particular value

θy ∈ Θy specifies a single class-conditional density and for a two-class problem θ =

(c,θ0,θ1) ∈ Θ = [0, 1] × Θ0 × Θ1. In the Bayesian classification framework, the

components of θ are treated as random variables, so that we may consider quantities

such as the expectation of c, or the conditional expectation of some other quantity

conditioned on the value of the parameter vector θ.

4.2.1.1 The optimal Bayesian error estimate

The true error of a classifier ψ can be written as ε = p(ψ(X) 6= Y ). Given the

sample data Sn, one can utilize a Bayesian framework and compute the posterior

distribution p(ε|Sn). Additionally, one can consider the conditional expectation of

the posterior E[ε|Sn], which is taken with respect to the model posterior distribution

p(θ|Sn). Keeping in mind that, in the Bayesian framework, the true error is a

function of both θ and Sn, this conditional expectation provides an optimal estimate

of the true error of the designed classifier relative to mean-square error (MSE) with

respect to the joint distribution of θ and Sn [15, 16]. This minimum mean-square

error (MMSE) estimate is known as the optimal Bayesian error estimate (BEE) and

is defined by

ε̂ = E[ε|Sn] = Eθ|Sn [p(ψ(X) 6= Y |θ, Sn)].
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Optimality follows directly from classical MSE theory. Moreover, according to that

theory the BEE is an unbiased estimate of the true error relative to the sampling

distribution.

With the BEE defined, the optimal Bayesian classifier (OBC) for binary classifi-

cation is given by [19]

ψOBC(x) =


0 if ĉp(x|y = 0, Sn) ≥ (1− ĉ)p(x|y = 1, Sn),

1 otherwise.

where ĉ = E[c|Sn] is the expected posterior marginal class probability. The OBC is

the classifier minimizing the expected error through pointwise minimization.

4.2.1.2 Uncertainty quantification for the optimal Bayesian error estimate

In addition to the BEE estimate, one is often interested in the uncertainty asso-

ciated with the estimate. This quantification of uncertainty captures the inaccuracy

of our modeling assumptions, the noise in the data, and the amount of data that we

possess. It is given by the posterior variance of the error ε:

Var(ε | Sn) = Eθ|Sn [(ε(θ)− ε̂)2]

=

∫
Θ

ε(θ)2p(θ|Sn)dθ − ε̂2.

This conditional variance is equal to the conditional MSE of the BEE (BEEMSE) as

an estimator of the true error given the sample [17]:

MSE(ε̂|Sn) = Eθ|Sn [(ε̂− ε)2|Sn)].
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Section 4.2.2 considers the efficient computation of this quantity.

4.2.2 Computation

Using the multivariate Poisson model of Section 3, the goal is to obtain the OBC,

BEE, and BEEMSE given a labeled RNA-Seq dataset. The posterior distribution

p(θ|Sn) of θ is sufficient for this; however, the hierarchical multivariate Poisson (MP)

model is not conjugate. Thus, no known analytical closed form solution exists and we

must instead sample from the posterior using MCMC utilizing the prior distribution

and likelihood function [57],

p(Sn|θ) =
∏
y

ny∏
i=1

D∏
d=1

p(xy,i,d|λy,i,d),

where Syny
are ny number of training samples from class y only, xy,i are feature

values of the training samples from class y, λy are the λ values from class y, and

p(xy,i|θy) = p(xy,i|λy,i) owing to conditional independence. The prior can also be

decomposed using the assumed independence between the classes and conditional

independence between training samples given the model parameters as [57]

p(θ) =
∏
y

n∏
i=1

p(λy,i|µy,Σy)p(µy|Σy)p(Σy).

Using this form of the prior distribution and likelihood, we obtain samples of

θ from the posterior distribution using Adaptive Metropolis-within-Gibbs Markov

Chain Monte Carlo. As in [57], we approximate the effective class conditional density:

p(x|y, Sn) ≈ 1

Tθ

Tθ∑
i=0

p(x|θ(i), y), (4.1)

where θ(i) are the Tθ samples drawn using MCMC. The OBC can then be calculated
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point-wise. The BEE of the OBC can also be determined using the effective class

conditional density:

ε̂ =

∫
X

∑
y

Iψ(x) 6=yp(y,x|Sn)dx

=

∫
X

min
y
p(x|, y, Sn)p(y|Sn)dx

However, this integral is difficult to compute numerically due to the time taken to

evaluate the integrand (4.1) and the discrete, yet large, nature of the integration

space, which poses problems for traditional quadrature routines.

Instead, we reconsidered the integrand to obtain

ε̂ =

∫
X

min
y
p(y|x, Sn)p(x|Sn)dx

≈ 1

Tx

Tx∑
i=1

min
y
p(y|x(i), Sn)

≈ 1

Tx

Tx∑
i=1

min
y

[
p(x(i)|y, Sn)p(y|Sn)∑
y p(x

(i)|y, Sn)p(y|Sn)

]
,

where the x(i) are the Tx samples drawn from the effective conditional densities from

both classes. This integration is straightforward to compute as drawing from the

effective conditional density is equivalent to the efficient process of drawing samples

from the posterior samples of θ.
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Samples of θ

Samples of ε
Monte Carlo integration

E[ε|Sn]

MCMC Sampling

For each θ:Draw x ~ p(x|θ)

E[ε2|Sn]
BEEMSEBEE

Approximate ε|θ

For each x:Using all θ samples, calculate the conditional BEE
Monte Carlo integration

Figure 4.1: BEEMSE calculations utilize MCMC sampling from the posterior of θ.
Then for each sample of θ, ε|θ is approximated using a draw of x from p(x|y,θ).
Then the conditional BEE error is computed for each of these in order to form a
Monte Carlo approximation to ε|θ. Then these approximations are again used in a
Monte Carlo integration step to approximate ε̂ and E[ε2].

Computing the BEEMSE requires the first moment (ε̂) and the second moment,

E[ε2|Sn] =

∫
Θ

ε(θ)2p(θ|Sn)dθ

=

∫
Θ

[∫
X

∑
y

Iψ(x) 6=yp(y|x,θ)p(x|θ)dx

]2

× p(θ|Sn)dθ.
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Samples of θ

MCMC Samplingfor gene sets of size 3

For each 2 gene projection in[1,2] [1,3] and [2,3]:
For each θ:Select only the dimensions fromthe projection of μ, Σ, and λ

Compute BEE for this projection

Compute BEECompute Minimum
Subtract

Δ
Figure 4.2: Computation of ∆ is sensitive to Monte Carlo approximation error so
naive calculations of each error quantity are inadequate. Instead we used the above
scheme where the main insight is that the BEE computation for each gene subset
must be made using the same MCMC samples of θ but projected down to the
appropriate dimension. This results in the ∆ quantities shown in Fig. 4.8.

By using a Monte Carlo approximation for the above integrals and simplifying for

binary classification,

E[ε2|Sn] ≈ 1

Tθ

Tθ∑
i=0

[
1

Tx

Tx∑
j=0

p(y̆|x(j),θ(i))

]2

,

where y̆ = arg miny p(y|x, Sn). This process is shown in Fig. 4.1.

We now define the quantity ∆ to be the reduction of classification error by adding

an additional feature to the classification problem. Consider a classification problem
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using three genes with ε̂3 = α. Given the classification errors ε̂2(i) for the i classifi-

cation problems using two gene subsets of the three original features, we define

∆ = min
i
ε̂2(i)− ε̂3 (4.2)

Naive computations of ∆ can easily be dominated by the error from Monte Carlo

approximations. A robust way of computing ∆ can be computed using the process

in Fig. 4.2.

4.2.3 Normalization

Normalization of RNA-Seq datasets is important for reproducible differential ex-

pression testing and many methods have been proposed and tested [25]. We com-

puted the upper quartile normalization factor as a surrogate for sequencing depth

and used that quantity for each sample’s d parameter. We call this normalization

approach a “model” based normalization.

To perform draws from the posterior predictive distribution p(x|y, Sn), the mean

of the normalization factor of training samples from class y is used as the value for

the average sequencing depth factor d.

We also compared the classification errors using this method of normalization

against the raw data and a normalized count approach where the upper quartile

normalized counts were scaled up by the average normalization factor and rounded

back to integers. We denote the two approaches as the “raw” and “count” techniques

respectively.

4.2.4 MCMC convergence diagnostics

It is a well understood limitation of MCMC that it is not possible to determine if

the Markov Chain has reached convergence in a finite number of iterations [67]. We
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employ a convergence diagnostic to check against simple forms of non-convergence.

Here we use the Gelman-Rubin statistic [8] and calculate the potential scale reduction

factor (PSRF) for each element of our MP model. We run five parallel MCMC chains,

each with 10000 iterations, 2000 burn-in samples and a 1/50 sub-sampling ratio. We

assume convergence for each element of the MP model when |1−PSRF| < 0.05 [13].

4.3 Dietary intervention study

A preclinical dietary study was carried out to determine the interplay between

poly-unsaturated fatty acids (PUFA) and the short chain fatty acid, butyrate, which

is generated by fiber fermentation in the intestine. Rats were treated with dietary

fish oil plus the fermentable fiber, pectin or with a control (non chemoprotective) diet

containing corn oil plus cellulose. Six rats per treatment group were then injected

with the colon-specific carcinogen azoxymethane (AOM) to investigate protective

dietary effects during cancer progression. Comparisons of particular interest include

the fish oil/pectin and corn oil/cellulose AOM groups (fpa-cca), fish oil/pectin and

corn oil/pectin AOM groups (fpa-cpa), and the corn oil/pectin and corn oil/cellulose

(cpa-cca) AOM groups.

An average of 38M 50bp single-end Illumina reads were obtained per treatment

group with averages of 33M, 42M, and 41M from the fpa, cca, and cpa groups,

respectively. Spliced alignment was performed against the rat genome (rn5) using

the STAR aligner [26], and the resultant alignments were further processed with

HTSeq-count [3] to perform reference annotation-based transcript assembly using

standard parameters. Differential expression analyses were performed with edgeR

[79] and DESeq [69].

Classification was performed as shown in Fig. 4.3. Using prior biological knowl-

edge, 858 genes were selected for investigation with this dataset. To further aid
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838 Genes from prior knowledge

Expression Filtering

Subsets of size 2 and 3
(1.7M)

BEE calculation

Top 1000 gene sets from each 
comparison and gene set size

BEEMSE calculation Delta calculation

Gene sets size = 3

Figure 4.3: Classification of 858 genes from prior knowledge was performed with an
expression filtration step, then BEE calculations were performed on all 1.7M gene sets
across the three comparisons and two dimensionalities (sets of two and three genes).
Then the lowest 1000 classification error sets were selected from each comparison
and run in additional BEEMSE and ∆ calculations.

biological interpretation, we filtered out genes with an FPKM value and average

read count of less than one in both groups of the comparison. Moreover, we only

considered genes where the absolute value of the log fold change between the groups

was greater than 0.3.

This filtering reduced the list of genes to be evaluated from the previously selected

858 to 185, 58, and 159 in the fpa-cpa, cpa-cca, and fpa-cca comparisons, respectively.

Computing all two and three gene subsets of these three comparisons resulted in 1.7M

BEE calculations to be performed over 200 cores over a period of several days.

Subsequently, the top 1000 gene sets from each comparison and dimensionality

(two and three) were additionally used to perform BEEMSE and ∆ computations.

The computations described in Section 4.2.2 require knowledge or an estimate
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Figure 4.4: For the fpa-cca comparison the above histogram for all 12,000 genes and
for the 858 genes in the prior knowledge gene list show that the majority of genes in
the prior knowledge list set are not differentially expressed and have a distribution
of P-values to the entire dataset.

for the value of the parameter c. Because of the specific experimental design and the

purpose of the OBC classification, i.e. to examine sets of genes that can discriminate

well between the experimentally generated phenotypes, we assume c = 0.5. This

choice reflects the experimental design that makes no a priori preference towards

the classes being compared. Thus, we considered the error contribution from each

class as equally important.

4.4 Results

4.4.1 Differential expression analysis

To establish a point of comparison Fig. 4.4 shows the distribution of un-adjusted

P-values for the entire 12,000 genes in the fpa-cca comparison and of the 858 genes

used in classification. The distribution of P-values for the 858 genes shows that most
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Table 4.1: The top ten differentially expressed genes of the 858 gene list by adjusted
P-value as reported by DESeq in the fpa-cca comparison.

Gene Adjusted P-Value
Hoxa2 0.0001
Fabp1 0.0061
Nucks1 0.0085
Plaa 0.0227
P4hb 0.0227
Il6st 0.0250
Pax6 0.0517
Aldh2 0.0774
Ccndbp1 0.0784
Rxra 0.0867

genes were not differentially expressed and the distribution of P-values was similar

to that of the entire dataset.

Table 4.1 shows the top 10 genes from the 858 gene list as reported by adjusted

P-value from DESeq. Using a traditional 0.05 threshold, only six genes would be

considered statistically differentially expressed.

4.4.2 Overall error distributions

The overall distributions of classification errors from a random sampling of the

300M possible gene sets from the 858 prior-knowledge-selected genes are given in

Fig. 4.5 split across the number of genes used and the phenotype comparison.

Classification errors in the cpa-cca comparison are significantly higher than the

other two groups. This matches previous qPCR data (not published) that also in-

dicated greater transcriptional differences in animals fed dietary fat as opposed to

fiber. It can also be noted that the three-gene sets show slightly lower classification

errors on average than the two-gene sets.

Fig. 4.6 shows the relationship between the BEE and the BEEMSE across this
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Figure 4.5: The overall classification error distributions are shown by the number of
features (panel x-axis), dietary comparison (panel y-axis), and normalization type
(stacked plot colors). Average classification error is slightly lower (0.28 vs 0.30) as
expected for classification with 3 genes when compared against two genes. Addition-
ally, the three dietary comparisons (oil and fiber types (FP/CC), oil only (FP/CP),
and fiber only (CP/CC)), showed differences in average classification performance.

dataset. The figure shows that the BEE and BEEMSE are tightly correlated at low

BEE values, and this correlation diminishes at higher values of the BEE.

More gene sets in the lower left of Fig. 4.6 indicates that the fpa-cca and fpa-

cpa comparisons are well separated by a larger combination of genes than the cpa-

cca comparison. The fewer number of gene sets in the lower left for the cpa-cca

comparison indicates that the transcriptional differences between the phenotypes are

small, we are considering the wrong set of genes, or the data for these phenotypes

might contain a higher level of noise.
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Figure 4.6: For the best 1000 gene sets for each dietary comparison, the BEEMSE
tends to increase as a function of BEE.

As more genes are used for classification, the points shift to the left and down as

the dataset becomes more separable (if any such separation exists).

The top four gene pairs from each classification grouping are shown in Table 4.2.

Genes such as Fabp1 are present both in this list for classification and in Table 4.1 as

a differentially expressed gene for the fpa-cca comparison. Most other genes, however,

have non-significant adjusted P-values, such as Arg2 (P=0.11, adjusted P=1.0) and

Adamts1 (P=0.82, adjusted P=1.0), yet together can have classification errors of less

than 1%. This is illustrated along with the OBC decision boundary in Fig. 4.7.

For classifications using gene sets of size three, we compute ∆ to show the amount

of classification improvement by adding an additional gene. Fig. 4.8 shows the dis-

tribution of ∆ for the three comparison groups. Because the cpa-cca comparison
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Figure 4.7: Normalized count expressions are shown for the three genes Arg2,
Lgals3bp, and Adamts1. The cubes and spheres indicate the fpa and cca sam-
ples, respectively. Using the marching cubes contouring algorithm, an approximate
rendering of the nonlinear OBC decision boundary is also displayed.

has the highest classification errors it shows the largest improvements (> 0.02) by

adding an additional feature to the classification problem.

One concern with using approximation algorithms is whether the computation is

sufficiently repeatable. To address this, we ran the top 200 gene subsets from each

comparison twice and computed the correlation of BEE estimates from the two runs.

A Pearson correlation coefficient of 0.999 across the six comparisons indicated that

the computation is repeatable.

Fig. 4.9 shows the comparison between no normalization, count-based normal-

ization, and model-based normalization. The normalized counts show an increase in

classification error, potentially due to the 2% rounding error induced from the final

integer conversion.
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Figure 4.8: The distribution of ∆ for the top 1000 gene sets of the three comparison
groups. CPA-CCA has the largest ∆ values which corresponds to that comparison
having the largest classification errors. Negative values of ∆ are due to approximation
error.

4.4.3 Biological findings

The interactions of dietary fiber-derived compounds in the colonic lumen can

have a substantial impact on the metabolism and kinetics of the colon epithelial cell

population and suppress inflammation and neoplasia [12, 59]. It has been proposed

by us and others that n-3 PUFA found in fish oil and butyrate (a fiber fermentation

product) interact in the colon to profoundly suppress colon cancer [23, 10].

We found that in the chemoprotective treatment containing fish oil and fer-

mentable fiber (FPA-CCA), two genes, Fabp1 and Eno3, were prominently detected

together with a wide variety of other genes in the gene sets of length three. The cal-

culated 23 fold over-expression of Fabp1 correlates with previous findings classifying

85



Normalization
None Counts Model

0.0

0.1

0.2

0.3

0.4

0.5

B
E
E

Figure 4.9: Overall classification error varied depending on whether normalization
was used (None) and whether it was implemented as a pre-processing step applied
to the data (Counts) or input into the model through the sequencing depth variable
d (Model).

Fabp1 as a tumor suppressor in colon cancer [62, 80]. Since Fabp1 is a gene involved

in the uptake and metabolic processing of PUFA, the higher levels of fish oil derived

n-3 PUFA are the most likely cause for its increased expression and chemoprotec-

tive activity [73]. The 1.3 fold upregulation of Eno3 is likely due to the fermentable

fiber in the diet. Fermentable fiber leads to the generation of the HDAC inhibitor

butyrate, which has been previously associated with concurrent increases in enolase

3 (Eno3) levels and differentiation, a hallmark of chemoprotection [85, 87]. The

expression levels of Fabp1 and Eno3 are shown along with the OBC classification

boundary in Fig. 4.10.

Other genes present with Fabp1 and Eno3 included Ccnd2 (BEE=0.018), Arg2

(BEE=0.004) and Cdk1 (BEE=0.014). Ccnd2, a gene responsible for enhancing can-
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Figure 4.10: Normalized counts of the Fabp1 and Eno3 genes were plotted against
each other in relation to the OBC decision boundary (black line) for the fpa-cca
comparison.

cer cell proliferation, was downregulated by 1.4 fold in the FPA chemoprotective diet.

Similarly, anti-oncogenic genes Arg2 and Cdk1 were also present in low-classification

gene sets of size three and these were elevated by 3.34 fold and 1.28 fold, respec-

tively, in the FPA diet. Both of these genes can be upregulated by HDAC inhibitors,

a putative mechanism for the chemoprotective nature of these diets [64, 74].

Although these three genes were not considered differentially expressed through

individual testing (P-values of 0.11, 0.36, and 0.51 for Arg2, Ccnd2, and Cdk1,

respectively), they were indicated as highly predictive in delineating the phenotype

when using the Bayesian error estimator. These data suggest that via multivariate

interactions with other genes, the BEE highlights novel genes for the purposes of

hypothesis generation or further biomarker development/validation. This supports

the biological relevance of the BEE as a useful tool in RNA-seq analysis.
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4.5 Conclusion

This work demonstrates an application of the OBC and BEE in identifying multi-

variate gene interactions in RNA-Seq data for the purpose of differentiating biological

phenotypes.

Using 858 genes selected by prior knowledge in a preclinical RNA-Seq dataset, we

identified genes that in combination yield low classification errors, whereas each gene

individually had a large P-value for differential expression. Thus, the application of

our previously developed Bayesian classification framework [57] enables investigators

to generate new hypotheses regarding multivariate effects between these gene sets

and the observed phenotypes.

In addition, new tools such as BEE-BEEMSE scatter plots offer additional diag-

nostic visualizations to assess the quality of RNA-Seq data, similarly to a volcano

plots, as done in DE testing. Future work needs to be performed on synthetic data

sets to better uncover the utility of such a graphical representation of the classifi-

cation performance. Computing and reporting the classification improvements as

represented by the ∆ quantity is also of particular interest to biologists as large val-

ues could potentially indicate more complex interactions between genes than merely

P-values or even BEE alone can.
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5. CONCLUSIONS

In this dissertation we laid out two main approaches to utilize prior biological

knowledge for the purposes of predictive inference. This progression represents no-

table advances in computational biology from the data driven methodologies that

prevail in the field to those that utilize both data and other sources of knowledge

about the biology and measurement methodologies.

The algorithm presented to transform incomplete and potentially conflicting bio-

logical pathway knowledge into a stochastic, predictive framework provides a founda-

tion upon which researchers can build or enrich network models. This compliments

the data-driven network inference approaches which are common in the network

inference literature. In addition, the qualitative validation used provides another

technique of testing predictive models utilizing existing literature sources.

Furthermore, we introduced a statistical model for sequencing data, that together

with extension and computational approaches to the Bayesian framework of optimal

minimum mean square error estimation, allowed us to produce the Optimal Bayesian

Classifier for sequencing datasets. This classifier provides a step forward in the field

of biological data classification, and is available in a well documented, open source

code repository (https://github.com/binarybana/OBC.jl). Moreover, it provides

a flexible framework for additional improvements to the model, a platform to test

additional methods of prior construction from biological data, and an example of the

enabling role of computation in directly unlocking optimal estimators with respect

to informative statistical models.

We are currently extending this approach to network models and working to

addressing several important questions.
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• Given an underlying statistical model, which forms of prior information over

the model parameters are most informative towards reducing the uncertainty

of the different estimators of interest?

• Given a model class, is there an optimal complexity for a given data set or

characteristic function?

• For other cost functions (other than mean square error), is the posterior dis-

tribution of the model parameters sufficient to derive the optimal estimator?
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Algorithm 2: Calibrate Priors - This is the procedure to use discarded fea-
tures to create calibrated prior distributions for use in a classification problem.
Reproduced with permission from [57].
[1] µ-list ← [] Σi,i-list ← [] Σi,j-list ← [] for i = 1 : s do

s pairs sampled Randomly select a pair of features f1, f2 dsub ← data for this
pair Initialize uniform priors MCMCSamples ← N MCMC Samples using
dsub E[µ1],E[µ2]← Sample µ means from MCMCSamples Append
E[µ1],E[µ2] to µ-list Append E[Σ1,1],E[Σ2,2] to Σi,i-list Append E[Σ0,1] to
Σi,j-list sigdiagmean ← mean(Σi,i-list) sigoffmean ← mean(Σi,j-list) sigdiagvar
← 1

s−1

∑s
i=1(sigdiagmean−Σi,i-list[i])2 m̂← mean(µ-list) ν̂ ← var(µ-list)

σ̂2 ← 2× sigdiagmean ×( sigdiagmean2
sigdiagvar + 1) ρ̂← sigoffmean

sigdiagmean

κ̂← 2×sigdiagmean2
siagdiagvar +D + 3
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Algorithm 3: Generate IC Synthetic Data - To examine the effects of indepen-
dent covariance matrices, we used the following IC method to first draw random
covariance matrices for each class, and then to sample data. Reproduced with
permission from [57].
[1] N, dlow, dhigh N : Number of samples desired D ← 20 κ← D + 2 for each
class do

µ← Normal(0, 0.2)× ones(D) σ ← Normal(0, 0.2)
Σ← Inverse-Wishart(ID(κ−D − 1) ∗ σ,D + 2) if Low correlation features
then

off-diagonal(Σ)← 0 data ← empty N ×D matrix lams ← Draw N vectors
from Normal(µ,Σ) for i = 1 : N do

j = 1 : D data[i, j]← Poisson-draw(Uniform(dlow, dhigh)× exp(lams[i, j]))

Algorithm 4: Synthetic Validation Procedure - The steps used to generate the
sets of points for each Ntrn (the number of training samples in each class along
the x-axis in Figure 3.3. Reproduced with permission from [57].
[1] for i = 1 : N do

N : Number of averages desired µ0 ← Normal-draw(0.0, 0.2)
µ1 ← Normal-draw(0.0, 0.2) σ0 ← InverseGamma-draw(3.0, 1.0)
σ1 ← InverseGamma-draw(3.0, 1.0) train-data-0 ← genData(µ0, σ1, Ntrn, ρ)
train-data-1 ← genData(µ1, σ1, Ntrn, ρ) test-data-0 ← genData(µ0, σ1, Ntest, ρ)
test-data-1 ← genData(µ0, σ1, Ntest, ρ) used-features ← Randomly select 4
features Using Training data: hyperparameters ← MCMC using Algorithm 1
and used-featuresc Train (Run) Calibrated MCMC with hyperparameters
Train (Run) MCMC with weakly informative priors Train SVM Train LDA
Train 3NN Train Normal OBC Using testing data: Evaluate Calibrated
MCMC Evaluate MCMC with weakly informative priors Evaluate SVM
Evaluate LDA Evaluate 3NN Evaluate Normal OBC
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Algorithm 5: Real Data Validation Procedure - The procedure used to gen-
erate each set of points along the x-axis of Figure 3.4 given a desired number
of training samples Ntrntotal over N averages with an a priori known value of c.
Reproduced with permission from [57].
[1] for i = 1 : N do

N : Number of averages desired train-data0 ← draw round(c ∗Ntrntotal) samples
from data0 train-data1 ← draw round((1− c) ∗Ntrntotal) samples from data1

test-data0 ← data0 - train-data0 test-data1 ← data1 - train-data1 used-features
← Randomly select 4 features Using Training data: hyperparameters ←
Algorithm 1 MCMC using used-featuresc Train (Run) Calibrated MCMC
using hyperparameters Train (Run) MCMC with weakly informative priors
Train SVM Train LDA Train 3NN Train Normal OBC Using testing data:
Evaluate Calibrated MCMC Evaluate MCMC with weakly informative priors
Evaluate SVM Evaluate LDA Evaluate 3NN Evaluate Normal OBC
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Figure B.1: The multivariate normal distribution used to generate samples for the
IC synthetic data case. The block structure indicates the several different types of
features that are generated. Used with permission from Ghaffari et al., 2013 [36].
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Figure B.2: A simple two class, two gene, synthetic example demonstrates the use of
the MP OBC. Six training samples from each class (circles and triangles) are shown
in all four panels and used to train the MP model. After MCMC computation,
the resulting effective class conditional density contour is shown for the triangles
in panel a and the circles in panel b. Panel c then shows the resulting MP OBC
decision boundary resulting from these effective class conditional densities and panel
d shows the contours of the optimal Bayes conditional error estimate plotted next to
the classifier decision boundary. Reproduced with permission from [57].
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Figure B.3: Using the same classifier, we can now evaluate the performance of the
classifier using 3000 testing samples from each class. When evaluated and averaged,
this particular example results in a classification error of 0.29. Reproduced with
permission from [57].
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Figure B.4: Two examples of 100 samples from adenocarcinoma TCGA tumor sam-
ples and the posterior predictive xrep simulation from the MP model. Reproduced
with permission from [57].
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Table C.1: Posterior predictive model diagnostic – 5th quantile. Reproduced with
permission from [57].

Gene ID Mean expression (counts) T (Sn) 95th int. T (xrep) P-value
MRGPRX1|259249 0.0 0.00 [0.00, 0.00] 0.50
C17orf105|284067 0.0 0.00 [0.00, 0.00] 0.50

HBBP1|3044 0.1 0.00 [0.00, 0.00] 0.50
SNORA18|677805 0.2 0.00 [0.00, 0.00] 0.50

SCN10A|6336 0.3 0.00 [0.00, 0.00] 0.50
CDCP2|200008 0.7 0.00 [0.00, 0.00] 0.50

FGF17|8822 3.3 0.00 [0.00, 0.00] 0.50
NTN5|126147 5.7 1.32 [0.00, 0.00] 0.00

NCRNA00185|55410 11.5 0.00 [0.00, 0.00] 0.50
CCR8|1237 16.6 1.46 [0.00, 1.90] 0.06

CCDC33|80125 23.1 0.00 [0.00, 0.00] 0.50
PPAPDC3|84814 23.5 6.00 [2.95, 8.95] 0.32
PCDHGB2|56103 68.1 5.19 [1.95, 10.80] 0.47
FAM81A|145773 81.1 13.38 [5.00, 17.90] 0.23
ZNF383|163087 81.2 54.44 [24.00, 48.45] 0.01
ANKRD1|27063 87.1 1.23 [0.00, 3.95] 0.52

UGT2B4|7363 93.4 0.00 [0.00, 0.00] 0.50
IL12RB1|3594 98.9 15.33 [13.85, 36.40] 0.88
ZNF628|89887 160.0 75.54 [41.95, 83.80] 0.16

FBF1|85302 184.2 52.03 [29.60, 75.50] 0.41
ZNF615|284370 209.2 70.60 [36.95, 81.40] 0.16
RHBDD1|84236 299.9 127.69 [82.90, 170.90] 0.46

NICN1|84276 330.1 173.29 [87.95, 187.40] 0.12
COQ6|51004 369.7 193.25 [106.95, 194.20] 0.05

CHAF1A|10036 387.3 150.70 [81.55, 190.65] 0.30
DTD1|92675 534.5 273.70 [141.50, 282.20] 0.07

EARS2|124454 663.7 380.07 [193.10, 356.85] 0.03
KIAA1737|85457 668.3 365.58 [214.25, 393.95] 0.12
LRRC8D|55144 690.2 445.36 [214.45, 405.95] 0.02

SKIL|6498 691.0 336.66 [199.70, 368.85] 0.15
WDR36|134430 761.6 531.67 [258.20, 479.55] 0.02

ZNF259|8882 831.0 455.39 [221.15, 425.20] 0.03
CHSY1|22856 1029.7 474.64 [269.05, 548.10] 0.15

DHX8|1659 1192.9 695.25 [354.10, 728.70] 0.08
AGTRAP|57085 1254.0 539.55 [283.75, 622.85] 0.20
VPS26B|112936 1337.3 643.79 [350.35, 716.25] 0.17

MCM4|4173 1543.3 343.29 [202.80, 528.50] 0.51
SLC2A3|6515 1559.7 338.07 [178.00, 474.20] 0.38
VPS39|23339 1594.0 908.35 [460.90, 964.45] 0.07
FOXA1|3169 1800.3 396.41 [217.10, 584.20] 0.40
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Table C.2: Posterior predictive model diagnostic – Median. Reproduced with per-
mission from [57].

Gene ID Mean expression (counts) T (Sn) 95th int. T (xrep) P-value
MRGPRX1|259249 0.0 0.00 [0.00, 0.00] 0.50
C17orf105|284067 0.0 0.00 [0.00, 0.00] 0.50

HBBP1|3044 0.1 0.00 [0.00, 0.00] 0.50
SNORA18|677805 0.2 0.00 [0.00, 0.00] 0.50

SCN10A|6336 0.3 0.00 [0.00, 0.00] 0.50
CDCP2|200008 0.7 0.00 [0.00, 0.00] 0.50

FGF17|8822 3.3 1.01 [0.00, 1.00] 0.03
NTN5|126147 5.7 4.35 [2.00, 7.50] 0.41

NCRNA00185|55410 11.5 0.00 [0.00, 0.00] 0.50
CCR8|1237 16.6 12.18 [4.00, 17.50] 0.22

CCDC33|80125 23.1 6.01 [1.00, 10.00] 0.17
PPAPDC3|84814 23.5 19.68 [13.50, 24.00] 0.36
PCDHGB2|56103 68.1 33.59 [18.50, 46.00] 0.34
FAM81A|145773 81.1 45.82 [31.00, 71.50] 0.59
ZNF383|163087 81.2 85.50 [68.00, 104.50] 0.45
ANKRD1|27063 87.1 20.69 [9.50, 34.00] 0.36

UGT2B4|7363 93.4 1.77 [0.00, 4.00] 0.30
IL12RB1|3594 98.9 80.38 [56.50, 110.00] 0.45
ZNF628|89887 160.0 158.95 [121.00, 194.50] 0.39

FBF1|85302 184.2 162.49 [111.00, 211.00] 0.28
ZNF615|284370 209.2 184.09 [126.00, 218.00] 0.25
RHBDD1|84236 299.9 275.19 [214.00, 337.50] 0.48

NICN1|84276 330.1 320.44 [264.00, 436.00] 0.60
COQ6|51004 369.7 335.85 [265.00, 405.00] 0.46

CHAF1A|10036 387.3 302.09 [252.50, 452.50] 0.75
DTD1|92675 534.5 523.20 [385.00, 626.00] 0.30

EARS2|124454 663.7 603.62 [485.00, 732.50] 0.41
KIAA1737|85457 668.3 676.88 [529.00, 806.50] 0.39
LRRC8D|55144 690.2 645.04 [550.50, 835.00] 0.67

SKIL|6498 691.0 594.36 [479.50, 761.00] 0.56
WDR36|134430 761.6 752.27 [631.50, 909.00] 0.55

ZNF259|8882 831.0 658.89 [551.00, 903.00] 0.71
CHSY1|22856 1029.7 872.60 [721.00, 1146.50] 0.59

DHX8|1659 1192.9 1150.34 [957.00, 1552.00] 0.67
AGTRAP|57085 1254.0 1069.75 [839.00, 1375.50] 0.55
VPS26B|112936 1337.3 1189.98 [912.00, 1415.00] 0.40

MCM4|4173 1543.3 1094.04 [795.00, 1417.00] 0.41
SLC2A3|6515 1559.7 1053.06 [719.50, 1420.50] 0.45
VPS39|23339 1594.0 1651.32 [1274.00, 2078.50] 0.43
FOXA1|3169 1800.3 1168.83 [887.50, 1642.00] 0.62
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Table C.3: Posterior predictive model diagnostic – 95th quantile. Reproduced with
permission from [57].

Gene ID Mean expression (counts) T (Sn) 95th int. T (xrep) P-value
MRGPRX1|259249 0.0 0.00 [0.00, 0.00] 0.50
C17orf105|284067 0.0 1.01 [0.00, 0.05] 0.00

HBBP1|3044 0.1 0.50 [0.00, 1.00] 0.07
SNORA18|677805 0.2 0.25 [0.00, 0.00] 0.00

SCN10A|6336 0.3 1.49 [0.05, 7.45] 0.38
CDCP2|200008 0.7 2.12 [0.05, 25.10] 0.56

FGF17|8822 3.3 16.60 [6.35, 279.40] 0.78
NTN5|126147 5.7 14.10 [16.40, 109.85] 0.97

NCRNA00185|55410 11.5 38.88 [1.05, 146.00] 0.20
CCR8|1237 16.6 38.64 [42.30, 308.40] 0.97

CCDC33|80125 23.1 107.94 [59.25, 2444.60] 0.85
PPAPDC3|84814 23.5 48.09 [35.05, 87.75] 0.66
PCDHGB2|56103 68.1 179.96 [89.40, 276.50] 0.36
FAM81A|145773 81.1 200.17 [127.60, 378.45] 0.54
ZNF383|163087 81.2 144.50 [144.55, 263.35] 0.95
ANKRD1|27063 87.1 225.79 [82.90, 400.90] 0.31

UGT2B4|7363 93.4 54.66 [19.50, 1361.35] 0.80
IL12RB1|3594 98.9 230.41 [155.80, 432.00] 0.65
ZNF628|89887 160.0 299.84 [269.00, 554.20] 0.86

FBF1|85302 184.2 374.78 [297.80, 748.75] 0.72
ZNF615|284370 209.2 368.14 [316.55, 769.65] 0.87
RHBDD1|84236 299.9 427.40 [455.05, 820.10] 0.97

NICN1|84276 330.1 737.03 [611.90, 1253.15] 0.74
COQ6|51004 369.7 568.48 [542.15, 1066.55] 0.90

CHAF1A|10036 387.3 834.67 [617.75, 1323.90] 0.54
DTD1|92675 534.5 989.05 [832.60, 1590.50] 0.75

EARS2|124454 663.7 1005.24 [970.90, 1902.00] 0.91
KIAA1737|85457 668.3 887.21 [1075.65, 1961.85] 1.00
LRRC8D|55144 690.2 1086.87 [1088.05, 2025.85] 0.95

SKIL|6498 691.0 1140.47 [1019.95, 2039.50] 0.80
WDR36|134430 761.6 1220.71 [1231.45, 2132.60] 0.95

ZNF259|8882 831.0 1169.19 [1186.25, 2164.80] 0.95
CHSY1|22856 1029.7 1705.17 [1557.95, 2971.50] 0.86

DHX8|1659 1192.9 1953.12 [2051.05, 4246.15] 0.97
AGTRAP|57085 1254.0 2240.63 [1841.20, 4096.95] 0.76
VPS26B|112936 1337.3 1847.39 [1949.45, 3436.10] 0.97

MCM4|4173 1543.3 3410.08 [2205.70, 5370.80] 0.41
SLC2A3|6515 1559.7 3378.11 [2183.05, 5712.85] 0.51
VPS39|23339 1594.0 2514.10 [2719.90, 5625.80] 0.98
FOXA1|3169 1800.3 3302.97 [2553.55, 6376.40] 0.73
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Table C.4: Posterior predictive model diagnostic – IQR. Reproduced with permission
from [57].

Gene ID Mean expression (counts) T (Sn) 95th int. T (xrep) P-value
MRGPRX1|259249 0.0 0.00 [0.00, 0.00] 0.50
C17orf105|284067 0.0 0.00 [0.00, 0.00] 0.50

HBBP1|3044 0.1 0.00 [0.00, 0.00] 0.50
SNORA18|677805 0.2 0.00 [0.00, 0.00] 0.50

SCN10A|6336 0.3 0.50 [0.00, 0.00] 0.03
CDCP2|200008 0.7 0.98 [0.00, 1.00] 0.07

FGF17|8822 3.3 2.59 [1.00, 9.00] 0.52
NTN5|126147 5.7 6.93 [4.50, 21.75] 0.75

NCRNA00185|55410 11.5 5.45 [0.00, 1.50] 0.00
CCR8|1237 16.6 17.69 [11.00, 58.00] 0.66

CCDC33|80125 23.1 17.19 [6.25, 93.25] 0.60
PPAPDC3|84814 23.5 13.91 [11.00, 25.50] 0.79
PCDHGB2|56103 68.1 43.70 [28.50, 82.25] 0.60
FAM81A|145773 81.1 63.53 [38.75, 109.75] 0.51
ZNF383|163087 81.2 34.43 [40.25, 86.75] 1.00
ANKRD1|27063 87.1 74.52 [21.25, 83.75] 0.11

UGT2B4|7363 93.4 6.98 [2.00, 43.50] 0.64
IL12RB1|3594 98.9 84.17 [47.50, 130.00] 0.42
ZNF628|89887 160.0 100.43 [78.50, 171.50] 0.73

FBF1|85302 184.2 154.54 [95.00, 226.75] 0.36
ZNF615|284370 209.2 117.16 [96.00, 228.50] 0.82
RHBDD1|84236 299.9 126.20 [128.75, 275.50] 0.96

NICN1|84276 330.1 246.20 [179.75, 411.50] 0.61
COQ6|51004 369.7 153.72 [153.50, 361.00] 0.95

CHAF1A|10036 387.3 234.48 [172.75, 422.25] 0.72
DTD1|92675 534.5 297.30 [236.75, 533.75] 0.77

EARS2|124454 663.7 237.65 [262.25, 578.50] 0.98
KIAA1737|85457 668.3 220.32 [281.50, 651.75] 0.99
LRRC8D|55144 690.2 359.07 [285.00, 655.50] 0.83

SKIL|6498 691.0 247.07 [290.75, 615.75] 1.00
WDR36|134430 761.6 216.40 [331.25, 737.50] 1.00

ZNF259|8882 831.0 322.44 [314.50, 715.00] 0.94
CHSY1|22856 1029.7 441.38 [442.25, 1005.00] 0.95

DHX8|1659 1192.9 582.12 [584.75, 1240.00] 0.95
AGTRAP|57085 1254.0 622.58 [532.25, 1264.50] 0.86
VPS26B|112936 1337.3 529.40 [536.00, 1111.25] 0.96

MCM4|4173 1543.3 835.39 [631.25, 1588.50] 0.74
SLC2A3|6515 1559.7 845.02 [611.00, 1788.75] 0.79
VPS39|23339 1594.0 586.40 [764.75, 1831.00] 1.00
FOXA1|3169 1800.3 1275.06 [765.00, 2040.75] 0.50
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Table C.5: Posterior predictive model diagnostic – Variance. Reproduced with per-
mission from [57].

Gene ID Mean expression
(counts)

T (Sn) 95th int. T (xrep) P-value

MRGPRX1|259249 0.0 0.00 [0.00, 0.00] 0.04
C17orf105|284067 0.0 0.11 [0.00, 0.12] 0.07

HBBP1|3044 0.1 0.08 [0.00, 0.25] 0.13
SNORA18|677805 0.2 0.01 [0.00, 0.05] 0.25

SCN10A|6336 0.3 0.36 [0.05, 1242.64] 0.69
CDCP2|200008 0.7 0.74 [0.16, 5117.85] 0.80

FGF17|8822 3.3 26.34 [32.90, 1109445.84] 0.97
NTN5|126147 5.7 42.93 [51.13, 8446.14] 0.96

NCRNA00185|55410 11.5 303.63 [1.35, 1340191.71] 0.53
CCR8|1237 16.6 157.20 [285.39, 81521.57] 0.98

CCDC33|80125 23.1 14201.11 [2292.16, 31223489.92] 0.79
PPAPDC3|84814 23.5 181.37 [112.92, 1048.31] 0.80
PCDHGB2|56103 68.1 4048.26 [1228.20, 20426.96] 0.52
FAM81A|145773 81.1 5661.96 [1970.14, 26450.20] 0.53
ZNF383|163087 81.2 1206.74 [1301.43, 6287.70] 0.96
ANKRD1|27063 87.1 9884.12 [1356.27, 51853.87] 0.36

UGT2B4|7363 93.4 5664.11 [291.72, 8368761.19] 0.66
IL12RB1|3594 98.9 4745.05 [2290.87, 27420.28] 0.79
ZNF628|89887 160.0 6534.92 [5024.43, 31689.22] 0.87

FBF1|85302 184.2 12711.43 [7286.06, 71120.08] 0.77
ZNF615|284370 209.2 11122.81 [9659.19, 69434.34] 0.88
RHBDD1|84236 299.9 8546.28 [13399.90, 63578.81] 0.99

NICN1|84276 330.1 32463.87 [26378.50, 154304.78] 0.87
COQ6|51004 369.7 15005.15 [19147.05, 94982.52] 0.98

CHAF1A|10036 387.3 47233.01 [28450.33, 196129.54] 0.74
DTD1|92675 534.5 59301.87 [45681.73, 251258.48] 0.90

EARS2|124454 663.7 52839.46 [58542.64, 301221.33] 0.98
KIAA1737|85457 668.3 48505.67 [75259.02, 340071.74] 0.99
LRRC8D|55144 690.2 48918.16 [78779.94, 378872.68] 1.00

SKIL|6498 691.0 56797.55 [69545.32, 366715.84] 0.97
WDR36|134430 761.6 49947.90 [88525.22, 422834.77] 1.00

ZNF259|8882 831.0 88575.80 [82583.27, 472063.68] 0.94
CHSY1|22856 1029.7 201986.35 [168564.65, 873474.11] 0.90

DHX8|1659 1192.9 348984.33 [285590.39, 1578955.67] 0.87
AGTRAP|57085 1254.0 424287.54 [248618.71, 1869240.10] 0.71
VPS26B|112936 1337.3 158070.60 [240558.63, 1169889.12] 1.00

MCM4|4173 1543.3 901681.93 [386142.75, 3614045.91] 0.63
SLC2A3|6515 1559.7 1037093.04 [421036.96, 4698669.95] 0.61
VPS39|23339 1594.0 328769.35 [481155.30, 2674633.59] 1.00
FOXA1|3169 1800.3 1688527.66 [680898.40, 7470155.18] 0.54
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