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ABSTRACT 

 

Modelling crash data has been an integral part of the research done in highway 

safety. Different tools have been suggested by researchers to analyze crash data. One 

such tool, which was recently proposed, is the Negative Binomial Generalized 

Exponential (NB-GE) distribution. As the name suggests, it is a combination of Negative 

Binomial and Generalized Exponential distribution. This distribution has three 

parameters and can handle over-dispersed crash data which are characterized by a large 

number of zeros and/or long tail. This research seeks to develop a generalized linear 

model (GLM) for NB-GE distribution and discuss its applications in crash data analysis. 

The NB-GE GLM was applied to two over-dispersed crash datasets and its performance 

was compared to Negative Binomial-Lindley (NB-L) and Negative Binomial (NB) 

models using various statistical measures. It was found that NB-GE performs almost as 

well as NB-L model and performs much better than the NB model. This research tried to 

determine the percentage of zeroes and the dispersion in the dataset where the NB-GE 

model is recommended over the NB model for ranking sites. Datasets were simulated for 

different scenarios. It was found that for high dispersion the NB-GE model performs 

better than the NB model when the percentage of zero counts in the dataset is greater 

than 80%. When dataset has lower than 80% zeroes then NB model and NB-GE model 

perform similarly. Hence for lower percentages NB model would be preferred as it is 

simpler and easier to use. 
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NOMENCLATURE 

 

AADT                         Annual Average Daily Traffic 

BUGS                          Bayesian inference Using Gibbs Sampling 

COM-POISSON Conway-Maxwell-Poisson 

CURE                         Cumulative Residual 

GLM                           Generalized Linear Model 

MAD                          Mean Absolute Deviance 

MCMC                         Markov Chain Monte Carlo 

MLE                            Maximum Likelihood estimation 

MSPE                        Mean Squared Predictive Error 

NB Negative Binomial 

NB-CR                        Negative Binomial-Crack 

NB-GE Negative Binomial-Generalized Exponential 

NB-L Negative Binomial-Lindley 

PDF                             Probability Density Function 

PIG                              Poisson Inverse Gaussian 

PMF                            Probability Mass Function 

SI                                Sichel 
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1. INTRODUCTION 

 

Many researchers have sought to examine relationships between explanatory 

variables, such as traffic and roadway characteristics, and crashes. Modelling crash 

datasets based on their characteristics is the cornerstone of highway safety. There are 

different factors that might contribute to or influence motor vehicle crashes. These 

factors need to be taken into account while modeling this kind of dataset. Some analysts 

have used only traffic flow data to analyze crashes (Maher, 1991; Shankar et al., 1995; 

Golob and Recker, 1987; Miaou, 1994) while others (Abdel-Aty and Abdalla, 2004) 

have used more extensive databases, which included both geometric characteristics of 

roadway and real time traffic characteristics to predict crashes among others. Lord and 

Mannering (2010) have provided a summary of the latest models used for this purpose. 

Additional discussion about these latest models can be found in Mannering and Bhat 

(2014). 

High degree of randomness can be found in crash data. Therefore, based on the 

characteristics of the data, a suitable model needs to be chosen for making proper 

inferences. The Poisson model can usually handle count data whose mean is equal to the 

variance. However, it has been shown that crash data are usually characterized by over-

dispersion, which means that the sample variance is larger than the sample mean. When 

this happens, the Poisson model cannot handle such datasets as it may consider certain 

covariates to have significant influence though they do not affect the data (Park and 

Lord, 2007; Hilbe, 2011). To overcome this problem, the negative binomial (NB) model 
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has been proposed and is now considered the widely accepted model for crash data 

analysis (Lord and Mannering, 2010). Recently, new and innovative distributions and 

models have been proposed to handle over-dispersed and, sometimes, under-dispersed 

data. They include the Conway-Maxwell-Poisson (COM-Poisson) (Conway and 

Maxwell, 1962; Shmueli, 2005), Double-Poisson (DP) (Efron, 1986; Zou et al., 2014) 

and Gamma models (Oh et al., 2006). 

Many datasets in highway safety have been characterized by a large number of 

zeroes or highly dispersed data. According to Lord et al., (2005 & 2007) such 

characteristics might be observed due to the following factors: 

1. The sites which have a combination of high heterogeneity, low exposure and sites 

categorized as high risk. 

2. The analysis is conducted with short time or small spatial scales. 

3. A considerable fraction of data contains missing or mis-reported crashes. 

4. Critical variables were not considered in the crash prediction models. 

 Over the years, a few models such as the Zero Inflated (Shankar et al., 1997; 

Shankar et al., 2001) and the Negative Binomial- Lindley (Geedipally et al., 2012; 

Hallmark et al., 2013) have been suggested by researchers for over-dispersed crash data. 

Zero Inflated models are based on the assumption that crash datasets can be divided into 

two states: safe and non-safe states. Although they have been reported to fit well, Lord et 

al., (2005 & 2007) have argued that considering a dual state process may not be the 

correct way to approach large number of zero counts in crash data. 
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 To overcome this problem, some researchers in highway safety have been 

examining the application of three-parameter models to evaluate datasets with excess 

zeroes. Lord and Geedipally (2011), for example, analyzed crash data containing large 

number of zeroes using the Negative Binomial-Lindley (NB-L) distribution and 

compared it with the performance of Negative Binomial. The NB-L is a distribution that 

combines or mixes the Negative binomial and Lindley distributions. The authors noted 

that the NB-L performs much better than NB for data characterized by large number of 

zeroes. The same characteristic in terms of performance was noted for the NB-L 

generalized linear model (GLM) (Geedipally et al., 2012). The NB-GE distribution 

(Aryuyuen and Bodhisuwan, 2013) is one such distribution that was also recently 

developed to handle over-dispersed crash datasets with large number of zeroes. The 

emphasis of this proposed thesis is to develop the NB-GE GLM and compare its 

performance to the NB-L and NB models. 

Over the past few years, Bayes methods are being preferred over traditional 

Maximum Likelihood Estimation (MLE) to estimate coefficients for models, particularly 

likelihood is very complex to analyze. There are some open source software programs 

available, such as WinBUGS and OpenBUGS (Spiegelhalter et al., 2003) that use 

Bayesian methods for estimating coefficients of regression models. BUGS stands for 

Bayesian inference Using Gibbs Sampling. These software programs use Markov Chain 

Monte Carlo (MCMC) techniques to estimate the coefficients of statistical models (Lunn 

et al., 2000). OpenBUGS will be used to estimate the coefficients for NB-GE GLM in 

this research because it has a built-in function for the NB and GE distributions 
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1.1 Study Objectives  

Crash data are usually over-dispersed and most datasets are characterized with 

many zeroes. The NB model is currently the most widely used for analyzing dispersed 

datasets, but is found to be inadequate when the data contain excess zeros and/or is 

highly over-dispersed. The focus of this thesis is to examine the NB-GE model, which 

was documented to perform well when the data contains a large amount of zeros, and in 

the process achieve the following objectives:                  

 1. Examine the performance of the NB-GE distribution for over-dispersed crash 

datasets with large number of zeroes and compare it with NB and NB-L distributions.                                             

The performance of NB-GE distribution will be examined and compared to other 

distributions such as the Poisson, NB and NB-L. Different goodness-of-fit (GOF) 

statistics will be used as performance measures. Two datasets that have been collected as 

a part of a previous National Cooperative Highway Research Program (NCHRP) project 

will be used. These datasets are chosen as they are characterized by over-dispersion and 

excess zeroes. 

2. Develop a NB-GE GLM for analyzing over dispersed crash datasets using the 

Bayesian approach. A GLM for NB-GE will be developed which will later be used for 

its performance analysis. 

3. Apply the GLM to crash datasets and compare its performance to NB and NB-

L models. Two over-dispersed crash datasets will be used for this purpose and its 

performance will be compared using different GOF statistics. 
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4. Examine the properties of NB-GE GLM for different percentages of zeroes 

and different dispersion levels in the data. In order to accomplish this, data with varying 

percentage of zero counts and different dispersion levels is first simulated. The 

simulation protocol followed is described later in the documentation. The performance 

of NB-GE GLM for different scenarios is examined and compared to NB model. 

Ranking the sites for hot spot identification is considered as the performance measure. 

 

1.2 Outline of the Thesis 

This subsection provides a brief outline of the Thesis.  

Section 2 of this thesis reports different models that have been used to analyze 

crash data. A brief overview of different distributions such as the Poisson, negative 

binomial, Gamma, zero-Inflated, COM-Poisson, Poisson inverse Gaussian, Sichel, 

negative binomial- Lindley and negative binomial-generalized exponential distribution 

are provided. Applications and limitations of these models are also discussed. A 

summary of the estimation methods is also provided. 

Section 3 documents the performance of the NB-GE distribution using two 

different datasets which were collected as a part of NCHRP 17‐29 research project titled 

“Methodology for estimating the safety performance of multilane rural highways” (Lord 

et al., 2008). Its performance is compared to the Poisson, NB and NB-GE distributions 

using different GOF tests such as chi-squared and log-likelihood. 

Section 4 presents the performance analysis of the NB-GE GLM using two 

datasets (Geedipally et al., 2012). Mean absolute deviation (MAD), Mean square 



 

6 

 

predicted error (MSPE) and Cumulative residual (CURE) plots were used (Oh et al., 

2003; Lord et al., 2007). The performance of NB-GE model is compared to NB-L and 

NB models. 

Section 5 summarizes the performance of NB-GE GLM using simulated data. 

Data with different percentage of zero counts and different dispersion values are 

simulated. Using these data, the performance of both NB and NB-GE models is 

compared. Ranking the sites for hot spot identification is considered as a performance 

measure.  

Section 6 documents the findings of this research and also includes 

recommendations for future work. 
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2. BACKGROUND 

Different distributions have been proposed by many researchers for analyzing 

crash data. A brief overview of different statistical distributions and models that were 

proposed to handle over-dispersed and under-dispersed crash data are provided in this 

section. The limitations of the models are also discussed. At the end of this section, a 

brief introduction to the NB-GE distribution is provided. 

 

2.1 Poisson Model 

The Poisson distribution is used to find the probability of occurrence of a certain 

number of events in a fixed amount of time or space. Hence, it is a discrete probability 

distribution. The occurrences of events are considered to be independent of each other. 

Rareness, discreteness and randomness are the main characteristics of crashes. 

According to Lord et al. (2005), crash data can be best characterized as Bernoulli trails 

which have low probability and large number. Such probability model that accounts for 

a series of Bernoulli trials is known as the binomial distribution. It is given by: 

P(Z = n) =(N

n
)pn (1-p)N-n  .................................................................................................(1) 

Where n = 0, 1 ,2, ..., N.  

Here, n is the number of crashes. 

 Its mean is given by E (Z) = Np......................................................................................(2) 

Variance is given by V (Z) = Np(1−p).............................................................................(3) 

Due to the low probability and large number, the number of crashes can be 

characterized as Poisson trials and can be approximated by the Poisson distribution.  
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The Probability mass function (PMF) of Poisson distribution is given by the 

following equation (4): 

P(y
i
/λi) = exp(-λi) λiyi   

/y
i
!...............................................................................................(4) 

Where, 

yi is the number of crashes at site i; 

𝜆i  is the mean of crashes at site i. 

The mean and variance of the Poisson distribution is given by:   

E(y
i
) = λi..........................................................................................................................(5) 

Var(y
i
) = λi.......................................................................................................................(6) 

One of the limitations of the Poisson distribution and model is that the variance 

should be equal to its mean. Crash data are often characterized by over-dispersion 

(variance greater than mean) and under-dispersion (variance less than mean) in some 

cases. Over dispersion of crash data is observed as variables (Lord and Park, 2008) can 

be characterized by uncertainties and unobserved differences that exist among sites 

(Washington et al., 2003). On rare occasions, crash data have shown under-dispersion 

and often low sample mean was found to be the cause (Lord and Mannering, 2010). 

Inconsistency in standard error of the parameter estimates will be observed if the Poisson 

distribution is used to analyze over-dispersed and under-dispersed crash data (Cameron 

and Trivedi, 1998). Using the Poisson distribution for such crash data might also result 

in the under-estimation of standard errors (Miranda-Moreno, 2006; Park and Lord, 

2007). 
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2.2 Negative Binomial Model 

The Negative binomial (Poisson-gamma) distribution is mostly used to analyze 

crash data which exhibit over-dispersion (Lord and Mannering, 2010). The mathematics 

involved in finding the relationship between mean and variance was also found to be 

simple (Hauer, 1997). Various statistical software programs such as R (Venables et al., 

2005), WinBUGS (Spiegelhalter et al., 2003) and OpenBUGS already have built-in 

functions to estimate NB models. 

The NB distribution is a discrete probability distribution of successes in a 

sequence of Bernoulli trials before a predetermined number of failures occur. 

The PMF of NB distribution is given by: 

P(Y=y;r, p)=((y+r-1)|y)(1-p)r py.......................................................................................(7) 

Where, 

 p = probability of success in each trial; 

r = number of failures; and 

y = number of success 

The probability of success in each trial, p, is given by: 

p = 
ø

µ+ø
      .........................................................................................................................(8) 

Where, 

ø = inverse of the dispersion parameter (𝛼); 

µ = mean of the observations; 
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From the above equations, PMF of NB distribution can be re-written as: 

P(Y=y,μ,ϕ)=
Γ(ϕ+y)

Γ(ϕ)Γ(y+1)
(

ϕ

μ+ϕ
)

ϕ

(
μ

μ+ϕ
)

y

.................................................................................(9) 

In the NB regression model, the mean is related to the covariates using the 

following equation: 

µ = exp (∑xβ).................................................................................................................(10) 

One of the disadvantages of NB model is that it cannot handle under-dispersed 

data very well or not at all. Theoretically, NB model can handle under-dispersion if the 

dispersion parameter is negative. In this case, the conditioned mean of Poisson would 

not follow gamma distribution. The parameter estimates would not be reliable (Lord et 

al., 2010) and the PDF of the distribution would be mis-specified (Clark and Perry, 

1989; Saha and Paul, 2005). 

 

2.3 Previous Studies 

Several studies have documented the use of different models to handle count data 

containing excess zeroes. Lambert (1992) has suggested the Zero inflated Poisson (ZIP) 

model for such data in manufacturing. According to this paper, it was assumed that a 

zero-defect equipment is manufactured with a probability p and an equipment with some 

defects is manufactured with a probability 1-p and the defects follow Poisson process 

with a mean 𝜆. Here, p may or may not be a function of 𝜆. Though its interpretation was 

easy it was found that ZIP regression inflates the zero counts. 

ZIP model was first examined by Miaou (1994) for modelling crash data. 

Poisson, NB and ZIP models were evaluated to find the relationship between crash 
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counts and the design variables of road section. It was suggested that when the data 

exhibits over-dispersion both the NB and ZIP should be considered. When the data 

contains excess zeroes in addition to over-dispersion ZIP should be considered though it 

is difficult to interpret when compared to the NB. 

  Another study also looked into the applicability of ZIP and ZINB distributions to 

crash frequencies (Shankar et al., 1997).  For minor-arterial data, ZINB distribution was 

found to be appropriate while for collector-arterial data, ZIP suited the best. NB 

distribution was found to be appropriate for principal-arterial data. It was also found that 

the ZIP process provides flexibility. It also provides the opportunity to find the design 

factors that contribute to the crash occurrence.  

The applicability of the ZIP model was also tested for pedestrian-traffic crashes 

(Shankar et al., 2003). The ZIP model was found to be the most suited model for crashes 

involving pedestrians. The roadway characteristics that play significant role in such 

crashes were also detected. 

The ZIP regression model was used to determine the factors that increase the 

probability of accident occurrence at signalized tee intersections having excess zeroes 

(Kumara and Chin, 2003). It was found that left-turn volumes, uncontrolled left-turn slip 

roads, signal phases per cycle, existence of horizontal curves, and permissive right-turn 

phases resulted in an increase in the number of crashes. These models are briefly 

discussed in the next few sections. 
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2.4 Zero-Inflated Model 

The Poisson and NB model tend to produce biased estimates for over-dispersed 

crash data that contain excess zeroes. The Zero-Inflated or Zero-altered model was 

proposed by researchers to handle such over-dispersed crash data (Miaou, 1994; Shankar 

et al, 1997 and 2003; Qin et al, 2004). In this model, a dual-state process is considered in 

which the crash datasets are divided into two states: safe state (zero-count state) and 

non-safe state (non-zero state). The sites that have a very low or zero probability of 

accidents occurring were classified under safe state and the sites where the crashes 

follow a Poisson or NB distribution were classified under non-safe state. The 

corresponding Zero-inflated probability models are called the Zero-inflated Poisson 

(ZIP) model and the Zero-inflated negative binomial (ZINB) model. 

The PDF for the ZIP model is given by: 

 P(Y)= δ+(1-δ)e-λ;Y=0..................................................................................................(11) 

P(Y)=(1-δ)
e-λλ

y

y!
;Y≥ 0....................................................................................................(12) 

Where, 

Y = number of crashes on the road segment, 

𝛿 = probability of zero crash state on the road segment, 

1-𝛿 = probability of crashes following Poisson distribution. 

The PDF for ZINB is given by: 

P(Y)= δ+(1-δ)(1+αλ)
-α-1

;Y=0.......................................................................................(13) 

P(Y)=(1-δ) [
Γ(y+α-1)

Γ(α-1)y!
  (λα)y(1+αλ)-(y+α-1)] ;Y≥0............................................................(14) 
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Where, 

Y = number of crashes on the road segment, 

𝛿 = probability of zero crash state, 

1-𝛿 = probability of crashes following Negative binomial distribution, 

𝛼 = dispersion parameter and 

𝜆 = mean. 

One of the limitations of this model is that the safe state has a long term mean 

equal to zero (Lord et al., 2005b; Warton, 2005), which is theoretically not feasible with 

crash data. The risk of a crash cannot be zero, unless nobody uses the facility (i.e., 

intersection, roadway segment, etc.). 

 

2.5 Negative Binomial-Lindley Model 

The Negative binomial-Lindley (NB-L) distribution is a three-parameter 

distribution and is a combination of the NB and Lindley distributions. It was recently 

introduced to analyze crash data (Lord and Geedipally, 2011).  

The PMF of the NB distribution is the same as before: 

P(Y=y,μ,ϕ)= Γ(ϕ+y)
Γ(ϕ)Γ(y+1) (

ϕ

μ+ϕ)
ϕ

(
μ

μ+ϕ)
y
...............................................................................(15) 

Where,  

µ= mean response and, 

ø= inverse of the dispersion parameter 𝛼. 

The PMF of NB-L distribution can be written as: 

P(Y=y, µ, ø, θ)= ∫ NB(y; ø, εµ)Lindley(ε; θ)dε...........................................................(16) 
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Here, 휀 follows Lindley distribution and y follows NB distribution. 

Lindley distribution is a combination of exponential and gamma distributions 

(Lindley, 1958; Lord and Geedipally, 2011). Its PMF is given by: 

f(X=x; θ)= 
θ2

1+θ
 (1+x)e‐θx; θ>0, x>0..........................................................................(17)

Geedipally et al. (2011) have evaluated the performance of NB-L model with 

respect to crash data that exhibit high dispersion with excess zeroes and compared its 

performance to the ZINB and NB models. It was found that the NB-L distribution and its 

GLM perform better and provide a good statistical fit for crash data which exhibit such 

characteristics when compared to NB model. 

2.6 Poisson Inverse Gaussian (PIG) Distribution 

This distribution is a combination of Poisson and Inverse Gaussian distribution 

(Zha et al, 2014). The flexibility of inverse Gaussian distribution helps in handling data 

which exhibit high dispersion. It is a special type of SI distribution which is obtained by 

setting a value of -0.5 for shape parameter and has only two parameters. 

The crash mean on any segment i, Yi is assumed to follow Poisson distribution 

(Miaou and Lord, 2003): 

Yi|μi
 ~ Poisson(μ

i
)         i=1,2,….n...............................................................................(18) 

μ
i
=E(Yi|μi

)=Var(Yi|μi
 )=f(X;β)=EXP(Xβ)................................................................(19)

Where, 

µi is the mean, 

f(.) is the Link functional form, 
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X is the covariate vector, 

β is the vector of regression parameters. 

An error term is introduced to account for over-dispersion that is likely to be 

observed in the crash data as given below: 

EXP(XTβ+εi)=μ
i
EXP(εi)=μ

i
νI)....................................................................................(20)

If g(𝜈i)  is the PDF of 𝜈i , the marginal distribution for Yi is given by:

P(Yi=y
i
|μ

i
)= ∫ f(y

i
|μ

i
, νi)g(νi)dνi.................................................................................(21)

It is assumed that 𝜈i  follows Inverse Gaussian distribution and is independent of 

covariates. The mean and shape parameter are assumed to be equal to 1 and 1/𝜏 . The 

PDF of 𝜈𝑖   is given by (Stasinopoulos and Rigby, 2007): 

g(νi)=(2πτνi
3)

-0.5
e-(νi-1)2/2τνi,    νi>0................................................................................(22)

Where, 

τ = Var(𝜈i), 

 E(𝜈i) = 1. 

The PIG distribution, PIG(µi, τ), is given by: 

P(y
i
|μ

i
, τ)=( 

2α

π
)

1

2

μi
yie

1
τK

yi-
1
2

(α)

(αiτ)
yiyi!

.........................................................................................(23) 

Where, 

αi=√
1

τ2
+

2μ
i

τ
 , 

Kλ(t)=
1

2
∫ xλ-1e

{-
1

2
t(x+x-1)}

dx
∞

0
...........................................................................................(24) 
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The mean and variance of PIG distribution are given by: 

E(Yi)=E{E(Yi|μi
νi)}=E(μ

i
νi)=μ

i
..................................................................................(25)

Var(Yi)=Var{E(Yi|μi
νi)}+E{Var(Yi|μi

νi)}=μ
i
+τμ

i
2.....................................................(26)

The PIG model has been used by researchers as an alternative to NB model for 

count data (Willmot, 1987, Shoukri et al., 2004, Dean et al., 1989, Jagger and Elsner, 

2012). Zha et al. (2014) analyzed the PIG model for crash data and compared its 

performance to NB model by introducing varying dispersion parameter. Based on GOF 

statistics, it was found that the PIG model performs better than the NB model. The 

computational effort required for parameter estimation was also found to be very less 

when compared to the recently introduced NB-L model. Hence, the PIG model was 

suggested as an alternative for NB model for analyzing crash data. 

2.7 Sichel (SI) Distribution 

 The SI distribution is a combination of Poisson distributions and is used to 

analyze data that exhibit high dispersion. The Poisson rate is assumed to have an inverse 

Gaussian distribution (GIG). It was used by some researchers (Zou et al., 2011, Zou et 

al., 2012 and Wu et al., 2013) to analyze crash data.  The PDF of the GIG distribution is 

given by (Stasinopoulos and Rigby, 2007): 

f(λ|μ,σ,ν)= (
c

μ
)

ν

[
λ

ν-1

2Kν(
1

σ
)
] exp [-

1

2σ
(

cλ

μ
+

μ

cλ
)].....................................................................(27) 

The number of crashes, y, is given by the following equation: 

p(y| μ,σ,ν)= ∫ p(y|λ)f(λ|μ,σ,ν)dλ
∞

0
.................................................................................(28) 
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The PDF obtained after solving the integral is given by (Wu et al., 2014): 

p(y| μ,σ,ν)=
(

μ

c
)

y
 Ky+ν (α)

Kν(
1

σ
) y! (ασ)y+ν

................................................................................................(29) 

α2=σ-2+2μ(cσ)
-1

.............................................................................................................(30) 

c=
Kν+1(

1

σ
)

Kν(
1

σ
)

..........................................................................................................................(31) 

The modified Bessel function of the third kind is given by: 

Kν(t)=
1

2
∫ xν-1exp(

∞

0
-

1

2
t(x+x-1))dx.................................................................................(32) 

Where, 

y is the response variable, 

µ is the mean response, 

σ is the scale parameter and, 

𝜈 is the shape parameter. 

Zou et al. (2014) analyzed the dispersion term of SI model and compared its 

performance to the dispersion parameter of NB model in estimating the level of 

dispersion in the crash data. The dispersion parameter of SI model is given by: 

h(σ, ν)=
2σ(ν+1)

c
+

1

c2
-1......................................................................................................(33) 

It was found that the dispersion term of SI model gives a more reliable estimate 

of the level of dispersion when compared to the dispersion parameter of NB model (Zou 

et al., 2014).  

The SI and NB models were also compared in terms of hot spot identification 

using EB estimates by Wu et al. (2013). The SI model performed better than the NB 



 

18 

 

model when the EB approach was used for hot spot identification. The performance of 

the SI generalized additive model for location, scale and shape (GAMLSS) for 

modelling highly dispersed crash was analyzed and was compared to NB and ZINB 

models. It was found that the SI model performs better when it is used for modelling 

highly dispersed crash data with long tails. 

 

2.8 NB-Crack Distribution 

This distribution was proposed by Saengthong and Bodhisuwan (2012) to model 

over-dispersed count data. It is a combination of the NB and the Crack (CR) 

distributions and has a heavy tail. The PMF of NB distribution is the same as before: 

f(x)=(r+x+1

x
)pr(1-p)

x
.......................................................................................................(34) 

Where,  

r > 0 and 0 < p < 1. 

         The PDF of CR distribution is given by (Saengthong and Bodhisuwan, 2012): 

 g(X=x,λ,θ,γ)=
1

θ√2π
[γλ (

θ

x
)

3

2
+(1-γ) (

θ

x
)

1

2
] ×exp [-

1

2
(√

x

θ
-λ√

θ

x
)

2

] , 

  x>0...............................................................................................................................(35) 

Where, 

𝜆 > 0, 𝜃 > 0 and 0 ≤   ≤ 1. 

The definition of Crack distribution as provided by Saengthong and Bodhisuwan 

(2012) is : Let X be a random variable which follows the negative binomial-Crack 

distribution with parameters r, 𝜆, 𝜃 and 𝛾, X~ NB-CR(r , 𝜆, 𝜃, 𝛾), when X has a NB 
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distribution with parameter r>0 and p = exp(-a) where a is distributed as CR with 

positive parameters 𝜆, 𝜃 and 𝛾, i.e., X|a~NB(r, p=exp(-a)) and a~CR(𝜆, 𝜃, 𝛾). 

         The PMF of NB-CR distribution is given by (Saengthong and Bodhisuwan, 

2012):                    

f(X=x,r, λ,θ,γ)= (r+x+1

x
) ∑ (x

j
) (-1)j  

exp[λ(1-√1+2θ(r+j)]

√1+2θ(r+j)
 ×                                                       x

j=0

[1-γ(1-√1+2θ(r+j) )].....................................................................................................(36) 

x = 0, 1, 2, .... 

Where, 

r, 𝜆, 𝜃 > 0 and 0 ≤ 𝛾 ≤ 1. 

The NB-CR distribution reduces to negative binomial-inverse Gaussian (NB-IG), 

negative binomial-Birnbaum-Saunders (NB-BS) and negative binomial-length biased 

inverse Gaussian (NB-LBIG) for three different cases. Saengthong and Bodhisuwan 

(2012) also examined the performance of this distribution and compared it to NB and 

Poisson distributions using real data. It was found that the NB-CR distribution provides 

a better fit than the NB and Poisson distributions. 

 

2.9 Other Models 

            This subsection provides a brief description of some other models that have been 

used by researchers to analyze crash data. 
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2.9.1 Gamma Count Model 

Gamma count model can be used to analyze both over-dispersed and under-

dispersed crash data. It was first proposed by Winkelmann (1995). This model was used 

by Oh et al. (2006) to analyze under-dispersed crash data which consisted of crashes at 

rail-highway crossings. It was found that the gamma count model could handle such 

(under-dispersed) data. 

The probability for the gamma count model is given by: 

Pr(yi = j)= Gamma(αj, λi) – Gamma(αj+α, λi)...............................................................(37) 

Where, 

 𝜆i = exp (βXi ) is the mean of crashes. 

Gamma(αj, λi) = 1, if  j = 0,...........................................................................................(38) 

Gamma(αj, λi) = 
1

Γ(αj)
 ∫ uαj-1λi

0
e-u du, if j >0,.................................................................(39) 

Where, 

𝛼 is the dispersion parameter. 

If 𝛼 > 1, it implies that over-dispersion exists and if 𝛼 < 1, it implies that under-

dispersion exists. 𝛼=1 implies that the mean is equal to its variance, in which case the 

gamma model comes down to the Poisson model. 

The CDF (Cumulative Distribution Function) of the model is given by: 

F(T|αλi)= ∫
λi

αj

Γ(αj)
uαj-1e-λiu du, α>0,   λi>0

T

0
, j=0,1,… 

     = Gamma(α j, λi T).......................................................................................(40) 
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The gamma model has certain limitations as one of its assumptions include 

dependency of observations. According to the gamma model the observation made at 

time t is dependent on the observation made at time t-1 (Winkelmann, 1995; Cameron, 

1998). Since crashes are mostly independent this assumption is not applicable for crash 

data. 

 

2.9.2 Conway-Maxwell-Poisson Model 

The Conway-Maxwell-Poisson (COM-Poisson) distribution was first introduced 

in 1962 by Conway and Maxwell. It is an extension of the Poisson distribution and is 

used to handle both under-dispersed and over-dispersed crash data. Shmueli et al. (2005) 

analyzed different statistical properties of the COM-Poisson distribution. The PDF of 

COM-Poisson distribution is given by: 

P(Y=y)= 
1

Z(λ, ν)

λ
y

(y!)
ν.........................................................................................................(41) 

Z(λ,ν)= ∑
λ

n

(n!)
ν

∞
n=0 ; λ>0 and ν≥0......................................................................................(42) 

Where, 

Y = crash count, 

𝜆 = centering parameter and, 

𝜈 = shape parameter. 

Over-dispersion is observed when 𝜈 < 1, under-dispersion is observed when 𝜈 > 1 

and the crash data follows Poisson distribution when 𝜈 = 1.  𝜈 = 0, 𝜆 < 1 would result in 

geometric distribution and 𝜈→∞ would result in Bernoulli distribution. 
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The first two moments, mean and variance, were derived by Shmueli et al. 

(2005) and they are given by: 

E[Y]= 
∂logZ

∂logλ
 ....................................................................................................................(43) 

Var[Y]= 
∂

2
logZ

∂
2
logλ

 ...............................................................................................................(44) 

As the mean and variance for COM-Poisson distribution do not have a closed-

form equations, Shamueli et al. (2005) approximated the mean by using an asymptotic 

expression for Z. The mean and variance thus obtained is given by: 

E[Y] ≈ λ1/ν
+

1

2ν
-

1

2
............................................................................................................(45) 

Var[Y] ≈ 
1

ν
λ

1/ν
................................................................................................................(46) 

It was observed that as 𝜈 gets closer to 1, 𝜆 becomes equal to the mean and as 𝜈 

becomes small, 𝜆 varies greatly from mean. Interpreting the COM-Poisson GLM 

becomes difficult for over-dispersed data because 𝜈 is small for over-dispersed data. 

Guikema and Coffelt (2008), therefore, introduced an alternative GLM framework to 

solve this issue. 𝜆1/𝜈 was substituted for µ and the equations are given by: 

P(Y=y) = 
1

S(µ,ν)
(

µy

y!
)

y

......................................................................................................(47) 

𝑆(µ, 𝜈) = ∑ (
µ𝑛

𝑛!
)

𝜈
∞
𝑛=0 .....................................................................................................(48) 

The GLM framework developed by Guikema and Coffelt (2008) based on the 

above equations can handle both over-dispersed and under-dispersed crash data and it 

has two links. Its GLM is given by: 

ln(µ) =β
0+

∑ β
i
xi

p

i=1 .........................................................................................................(49) 
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ln(ν) =α0+ ∑ αj
q

j=1 zj........................................................................................................(50) 

Where, 

xi and zj are the covariates, 

p and q are the number of covariates. 

Though the parameter estimation for the dual-link COM-Poisson GLM is 

complex, researchers, i.e. Sellers and Shmueli (2010), have derived its likelihood 

function which simplified the MLE of the parameters. The performance of COM-

Poisson GLM also was examined by Geedipally (2008). 

 

2.10 Negative Binomial-Generalized Exponential Model 

            The NB-GE distribution was first introduced by Aryuyuen and Bodhisuwan 

(2013). The mixed distribution combines the NB with the GE distribution. This 

distribution can handle over-dispersed datasets with a large number of zeroes. The 

characteristics of this distribution as provided by Aryuyuen and Bodhisuwan (2013) are 

described below: 

             The PMF of the NB distribution is:               

 P(Y=y,μ,ϕ)=
Γ(ϕ+y)

Γ(ϕ)Γ(y+1)
(

ϕ

μ+ϕ
)

ϕ

(
μ

μ+ϕ
)

y

..............................................................................(51) 

Where,  

µ = mean response and, 

ø = inverse of the dispersion parameter  . 
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                    The PDF of generalized exponential distribution is given as follows 

(Aryuyuen and Bodhisuwan, 2013): 

  f(Z=z,α,λ)=αλ(1-eλz)
α-1

e
-λz

; α, λ>0, z>0......................................................................(52) 

Where,  

 𝛼 = shape parameter and, 

𝜆 = scale parameter. 

            The exponential distribution is the special case of the GE distribution (i.e., when 

α = 1). The moment generating function of the GE distribution is given as (Aryuyuen 

and Bodhisuwan, 2013): 

 Mz(t)=(Γ(α+1)Γ(1-t/λ))/Γ(α-t/λ+1) ..............................................................................(53) 

             The mean and variance of the GE distribution are given as (Gupta and Kundu, 

1999): 

  E(Z)=
1

λ
(ψ(α+1)- ѱ(1))...............................................................................................(54) 

   Var(Z)=
1

λ
2 (ψ'(α+1)- ψ'(1))........................................................................................(55) 

Where,  

 ψ(. ) = digamma function and, 

  ψ′(. )= derivative of the digamma function ψ(. ). 

          The NB-GE distribution arises by combining the NB and GE distributions, as 

stated above. The PMF of NB-GE distribution is therefore given as (Aryuyuen and 

Bodhisuwan, 2013): 
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    f(X=x;r,α,λ)=(r+x-1

x
) ∑ (x

j
)x

j=0 (-1)j (
Γ(α+1)Γ(1+

r+j

λ
)

Γ(α+
r+j

λ
+1)

) ;r,  α,  λ>0 ...................................(56)        

 

2.11 Estimation Methods 

Two methods of estimation, namely, maximum likelihood estimation (MLE) and 

Bayesian estimation are discussed in this subsection. 

 

Maximum likelihood estimation 

This is one of the methods which has been traditionally used to estimate 

parameters of regression models. According to Casella and Berger (2001), MLE can be 

defined as follows:  

For each sample point y, let �̂�(𝑦)  be a parameter value at which L(β|y) attains its 

maximum as a function of β ,  with y held fixed. A maximum likelihood estimator 

(MLE) of the parameter based on a sample Y is �̂�(𝑦). 

The likelihood function of an independent and identically distributed sample with 

PDF f(y|β1,….βk)  is given by the following equation: 

L(β|y)=L(β
1
,…,β

K
|y

1
,…..y

n
)= ∏ f(y

i
| β

1
,…β

k
)n

i=1 ......................................................(57) 

For NB regression model, in order to obtain the coefficients, the first-order should be 

made equal to zero (Lord and Park, 2013).  

         The PDF of NB distribution as discussed in section 2.2 is given by: 

P(Y=y
i
,μ

i
,ѱ)=

Γ(ѱ+yi)

Γ(ѱ)Γ(yi+1)
(

ѱ

μi+ѱ
)

ѱ

(
μi

μi+ѱ
)

yi

........................................................................(58) 

The two first-order conditions are given by (Lord and Park, 2013): 
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  ∑
yi-μi

1+ѱ-1μi

xi=0n
i=1 .............................................................................................................(59) 

  ∑ {
1

(ѱ-1)
2 [ln(1+ѱ-1μ

i
) - ∑

1

(j+ )

yi-1

j=0
] +

yi-μi

ѱ-1(1+ѱ-1μi

} =0n
i=1 .......................................................(60) 

Where, 

xi is a vector of covariates 

 

Bayesian approach 

In recent times, researchers have shown more interest in using Bayes approach 

over MLE to estimate parameters. Statistical software programs, such as WinBUGS and 

OpenBUGS, use the Bayes approach for parameter estimation. Full Bayes (FB) and EB 

are two different approaches that have been proposed in highway safety research. The 

FB approach is more flexible when compared to EB method which makes FB approach 

easier to use to model crash data (Miranda-Moreno, 2006). Researchers have shown 

interest in using hierarchical Bayes model to model crash data by Markov Chain Monte 

Carlo (MCMC) method (Miaou and Song, 2005; Miranda Moreno et al, 2007; Miaou 

and Lord, 2003). Lord and Park (2013) provided the sampling procedure for MCMC 

simulation by using slice sampling algorithm within Gibbs sampling. The formulation of 

the Poisson-Gamma model is given below: 

(Likelihood)     y
i
|λ

i
~Poisson(λi) 

(First Stage)    λi|ѱ~πλ(ѱ) 

(Second Stage) ѱ~πѱ(.) 

Where, 
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 𝜆 ( )  is the prior distribution imposed on the Poisson mean, i,  

  is a prior parameter, and 

  () is the hyper-prior on  with known hyper-parameters (here, a and b). 

  The conditional distributions for each parameter for the Poisson-Gamma model 

are given by (Park, 2010): 

π(λi|β,ѱ, y
i
)=Gamma(y

i
+ѱ, 1+ѱe-xi

,
β), for i=1, 2,…,n ................................................(61) 

π (β
j
|λ,β

-j
,ѱ) =exp {-ѱ [(∑ xij

n
i=1 )β

j
∑ λie

-xi
,
βn

i=1 ]} ,  for j=0, 1, …, J...............................(62) 

π(ѱ|λ,β, a,b)=exp{‐n ln(Γ(ѱ))+ѱ[n ln(ѱ) ‐

∑ (xi
,β+ ln(λi) + λie

‐xi
,β)n

i=1 ]+(a‐1) ln(ѱ) ‐bѱ}............................................................(63) 

 

                   The MCMC sampling procedure using Gibbs sampling, as provided in the 

Appendix C (Lord and Park, 2013), is as follows:  

1. Start with initial values λ(0),  β(0) and (0) . Repeat the following steps for t  1, ...., 

T0,....., T0 T .  

2. Step 1: Conditional on knowing β(t-1)  and (t-1)  , draw λ(t)  from Equation C-29a 

independently for i 1, 2,...., n .  

3. Step 2: Conditional on knowing λ(t)  and (t-1)  , draw β(t)  from Equation C-29b 

independently for j  0, 1,...., J using the slice sampling method.  

4. Step 3: Conditional on knowing λ(t) and β(t), draw (t)  from Equation C-29c using the 

slice sampling method.   
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5. Step 4: Store the values of all parameters (i.e.,  λ(t), β(t) and (t) ). Increase t by one and 

return to Step 1.  

6. Step 5: Discard the first k draws as a burn-in period, where k is defined by the user. 

The average of the sampled values is calculated for estimating the parameters after 

equilibrium is reached at the kth iteration. 

 

 2.12 Summary 

This subsection has documented the results of the literature review on Poisson, 

NB, ZIP, ZINB, PIG, SI, NB-L, NB-CR, COM-Poisson, gamma count and NB-GE 

models.  Researchers have examined and compared the performance of different models 

in handling over-dispersed crash data. The above mentioned distributions, their 

properties and the performance analysis previously documented by other researchers 

have been summarized in this section. NB-GE is one such distribution which was 

recently proposed by Bodhisuwan and Aryuyuen (2013) to handle over-dispersed count 

data. A brief introduction to the distribution and its properties is provided in this section. 

The next section evaluates the performance of NB-GE distribution and compares it to the 

Poisson, NB and NB-L distributions using some of the GOF measures 
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3. PERFORMANCE OF THE NB-GE DISTRIBUTION 

This section describes the performance of NB-GE distribution by comparing it to 

the performance of Poisson, NB and NB-L distributions. In order to compare different 

distributions, two existing datasets are used. The characteristics of the datasets used are 

described in the first subsection. GOF measures, such as Chi-squared test and log-

likelihood are used to compare the performance of distributions. The second subsection 

provides a description of GOF measures. R, a statistical software, is used to calculate the 

parameters of the distribution. The predicted values and GOF statistics for different 

distributions are then calculated. A brief discussion of the results is presented in the third 

subsection, and the last subsection summarizes the chapter. 

 

3.1 Description of Datasets  

This subsection describes the datasets and their characteristics. The first dataset 

includes single‐vehicle fatal crashes that occurred on divided multilane rural highways 

between 1997 and 2001. The data was collected as a part of NCHRP 17‐29 research 

project titled “Methodology for estimating the safety performance of multilane rural 

highways” (Lord et al, 2008). The data contained 1,721 segments that varied from 0.10 

mile to 11.21 miles, with an average equal to 1.01 miles. The sample mean was equal to 

0.13. About 89% of the segments had no fatal crash. The summary statistics of the first 

dataset is provided in Table 1.  
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Table 1: Summary statistics of Single-vehicle fatal crashes on divided multilane rural 

highways between 1997 and 2001 (Lord and Geedipally, 2011) 

 

 

 

 

 

 

 

 

Table 2: Summary statistics of Single-vehicle roadway departure crashes on rural two-lane 

horizontal curves between 2003 and 2008 (Lord and Geedipally, 2011). 

 

Crashes 

 

Observed Frequency 

0 29087 

1 2952 

2 464 

3 108 

4 40 

5 9 

6 5 

7 2 

8 3 

9 1 

10+ 1 

 

 

Crashes Observed frequency 

0 1532 

1 162 

2 19 

3 6 

4+ 2 
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The second dataset includes single‐vehicle roadway departure fatal crashes that 

occurred on 32,672 rural two‐lane horizontal curves between 2003 and 2008. The 

sample mean is equal to 0.14. For this dataset, about 90% of the data experienced no 

crashes during the 5‐year period. The summary statistics for the second dataset is 

provided in Table 2. 

 

3.2 Goodness of Fit 

 This subsection describes the definitions of GOF measures used to compare 

distributions. Two performance measures were used to compare the GOF of different 

distributions: Pearson’s Chi-Squared statistic and Log-likelihood value. The Log-

likelihood is calculated as the logarithm of likelihood for each observation. The Chi-

squared and log-likelihood values are calculated using the following expressions. 

Chi-squared= ∑
(Oi-Ei)

2

Ei

n
i=1 ................................................................................................(64) 

Log-likelihood= ∑ Log(Pi)
n
i=1 .........................................................................................(65) 

Where, 

 Oi is the observed frequency for ith observation, 

 Ei is the expected frequency for ith observation, 

 Pi is the expected likelihood for ith observation, and 

 N is the total number of observations. 

The smaller the log-likelihood and Chi-squared value, the better the fit of the distribution 

for the data. 
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3.3 Results and Discussion 

This subsection describes the comparison analysis among the Poisson, NB, NB-L 

and NB-GE distributions. Statistical software, R is used to find the parameter values for 

NB-GE distribution. The code used in R is provided in Appendix A which was 

developed by Aryuyuen and Bodhisuwan (2013). The parameter values and the GOF 

measures for Poisson, NB, NB-GE ad NB-L distributions is taken from the research 

paper by Geedipally et al., (2011). The GOF analysis, based on the Chi-Square and log-

likelihood, are presented in Tables 3 and 4.  

From Table 3 it can be observed that NB-GE distribution predicts frequency 

closer to the observed frequency when compared to other models. The Chi-square and 

log-likelihood values obtained also suggest that NB-GE distribution provides a better fit 

for the crash data. 
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Table 3. Single-Vehicle Fatal Crashes on Divided Multilane Rural Highways 

Between 1997 and 2001 

Crashes Observed 

Frequency 

Poisson NB NB-GE NB-L 

0 1532 1509.2 1534.4 1532.6 1532.9 

1 162 198 154.7 158.9 158.3 

2 19 13.0 25.8 23.6 23.7 

3 6 0.6 4.9 4.5 4.6 

4 2 0 1.2 1.8 1.4 

Parameters  µ=0.131 

 

µ=0.131 

ɸ=0.434 

r=1.28 

α=1.5 

β=13.569 

Ɵ=1532.9 

R=1.851 

Chi-square  102.99 2.73 1.39 1.68 

Log-

likelihood 

 -715.1 -696.1 -694.5 -695.6 

Note: Bold characters indicate that the distribution is a better fit 

 

Figure 1 provides a comparison of the zero counts predicted using different 

distributions. 
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Fig 1. Predicted and observed zero counts for the first dataset 

 

 

It can be observed that NB overestimates the zeroes in the data set and NB-GE 

distribution predicts zero counts closer to the observed values when compared to NB-L 

and NB distributions. Table 4 provides a comparison of the estimates and GOF statistics 

for different distributions for the second dataset. 
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Table 4. Single-Vehicle Roadway Departure Crashes on Rural Two-Lane 

Horizontal Curves between 2003 and 2008 

  Crashes Observed 

Frequency 

Poisson NB NB-GE NB-L 

0 29087 28471.6 29204.8 29097.8 29133.6 

1 2952 3918.0 2706 2908.4 2855.5 

2 464 269.6 567 498.3 503.1 

3 108 12.4 141.1 115.9 120.9 

4 40 0.4 37.8 34.3 35.9 

5 9 0.0 10.6 11 13.1 

6 5 0.0 3.0 4.1 3.3 

7 2 0.0 0.9 3 3.3 

8 3 0.0 0.3 0.9 0.0 

9 1 0.0 0.1 0.4 3.0 

10 1 0.0 0.0 0.2 3.3 

Parameters  µ=0.138 

 

µ=0.138 

ɸ=0.284 

r=0.937 

α=1.280 

β=8.999 

Ɵ=9.212 

R=1.018 

Chi-square  2297.31 57.47 6.38 11.68 

Log-

likelihood 

 -14,208.1 -13,557.7 -13,525 -13,529.8 

Note: Bold characters indicate that the distribution is a better fit 
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From the results obtained in Table 4 it can be observed that the NB-GE 

distribution predicts the crash frequency closer to the observed frequency when 

compared to the other distributions for this crash data set. The GOF statistics calculated 

also suggest that NB-GE distribution provides a better fit. Figure 2 provides a 

comparison of the zero count estimates for different distributions. 

 

 

 
Fig 2. Predicted and observed zero counts for the second dataset 

 

 

From the provided above for the second crash dataset, it can be observed than 

NB overestimates zero counts. NB-GE predicts the counts closer to the observed values 

when compared to other distributions. 
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3.4 Summary 

This subsection provides a brief summary of this section. 

In most cases, crash data exhibit over-dispersion. In order to predict crashes, a 

model which can handle over-dispersion should be used. The NB distribution can handle 

over-dispersed data whereas the Poisson distribution can handle data sets whose variance 

is equal to mean. But when the over-dispersed crash data contains excessive zero counts, 

the NB distribution tends to overestimate the number of zero counts. This section 

examined the performance of NB-GE distribution in handling over-dispersed crash 

datasets containing excess zeroes and compared its performance to Poisson, NB and NB-

GE distributions. 

  In order to calculate the predicted crashes for NB-GE distribution, its 

parameters had to be estimated. The parameters of NB-GE distribution were estimated 

using the statistical computing software, R. The Chi-square test and the log-likelihood 

value were calculated in order to test the GOF of the distribution. These values when 

compared to the results obtained for Poisson, NB and NB-L distributions suggested that 

both NB-GE and NB-L perform much better than Poisson and NB distributions. Also, 

when NB-GE distribution was compared to NB-L it was observed that NB-GE 

distribution performs slightly better than NB-L distribution. It was also observed that NB 

distribution over-estimated the zero counts for both datasets. The next section documents 

the application of NB-GE GLM for two observed crash datasets and compares its 

performance to other models. 
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4. APPLICATION OF THE NB-GE GENERALIZED LINEAR MODEL FOR 

OVER-DISPERSED CRASH DATA 

 Regression models help in establishing relationship between the roadway 

characteristics and crashes. Different models have been proposed to handle over-

dispersed data with large number of zeroes. Some of the models that have already been 

used to analyze such data include ZIP and NB, SI, PIG and NB-L models. For this 

thesis, the performance of NB-GE model will be compared with the NB and NB-L 

models. The first part of this section discusses the development of NB-GE GLM. The 

second part of this section gives a summary of the datasets that have been used to 

analyze the performance of NB-GE model.  The third part of this section gives a brief 

description of various GOF measures that are used in this research to compare the 

performance of NB-GE model followed by results and summary of the section. 

 

4.1 NB-GE Generalized Linear Model 

The NB-GE distribution, as the name suggests, is a combination of NB and GE 

distributions. 

As an alternative parameterization, the NB-GE distribution can be written as: 

 dz  λ)α,zμμ)GE(zφ,NB(x;α)φ,μ,x,P(X .............................................................(66) 

Here, µ is a function of the covariates and z has a Generalized Exponential 

distribution. 
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For the GLM of NB-GE distribution, the mean response of crashes is obtained by 

multiplying E(z) with µ and µ is considered to have a log linear relationship with the 

covariates. 

ln(µ) =β
0
+ ∑ β

i
X

q

i=1   ......................................................................................................(67) 

Where,  

X= traffic and geometric variables 

 β s = regression coefficients to be estimated 

 q = total number of covariates in the model. 

The mean response of the number of crashes at a particular site is given by: 

E(X)=μ×E(Z)=e
∑ βiX+β0

q
i=1  × 

1

λ
(ψ(α+1)- ѱ(1))..............................................................(68) 

The coefficients α, 𝜆 and ɸ, of the above model will be estimated in OpenBUGS. 

OpenBUGS is preferred over WinBUGS as the GE distribution is readily available in 

OpenBUGS. In order to get the estimates of the coefficients, three Markov chains with 

50,000 iterations are used. The first 40,000 iterations are then discarded and the last 

10,000 iterations are considered for the analysis. 

 

4.2 Description of Datasets  

The first dataset used for this purpose was collected in Indiana over a five-year 

period at 338 road sections of a rural interstate and the second dataset was collected in 

Michigan over one-year period (2006) at 33,970 road sections of a two-lane rural 

highway. These datasets are used by Geedipally et al. (2012). The characteristics of 

these data sets are given in Tables 5 and 6. 
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Table 5. Summary Statistics for the Indiana Data (Geedipally et al., 2012)  

Variable Min. Max. Average (std. dev) Total 

Number of Crashes (5 years)  0  329  16.97 (36.30)  5737  

Average daily traffic over the 5 years 

(ADT)  

9442  143,422  30237.6 (28776.4)  --  

Minimum friction reading in the road  

segment over the 5-year period 

(FRICTION)  

15.9  48.2  30.51 (6.67)  --  

Pavement surface type (1 if asphalt, 0 

if concrete) (PAVEMENT)  

0  1  0.77 (0.42)  --  

Median width (in feet) (MW)  16  194.7  66.98 (34.17)  --  

Presence of median barrier (1 if 

present, 0 if absent) (BARRIER)  

0  1  0.16 (0.37)  --  

Interior rumble strips (RUMBLE)  0  1  0.72 (0.45)  --  

Segment length (in miles) (L)  0.009  11.53  0.89 (1.48)  300.09  
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Table 6. Summary Statistics for the Michigan Data (1996) (Geedipally et al., 2012) 

Variable Min. Max. Average (std. dev) Total 

Number of Crashes (1 year)  0  61  0.68 (1.77)  23168  

Annual average daily traffic 

(AADT)  

160  20,994  4507.5 (3280.6)  --  

Segment length (L) (miles)  0.001  54.54  0.18 (0.58)  6212  

Shoulder width (in feet) (SW)  0  24  16.94 (5.26)  --  

Lane width (in feet) (LW)  8  15  11.22 (0.78)  --  

Speed limit (SPEED) (mph)  25  55  52.47 (6.39)  --  

 

 

4.3 Goodness of Fit 

            Three performance measures were used to test the GOF of the GLM of NB-GE. 

A brief description of those three criteria is given below: 

CURE plot 

The cumulative residual (CURE) plot is used to examine the fitting of the model 

with respect to each covariate (Hauer and Bamfo, 1997). The closer the curve is to zero 

the better a model fits the data. 

Mean Absolute Deviation (MAD) 

            It is calculated by taking the average of the absolute deviations. The closer its 

value is to zero the better the model. It’s given by the following equation (Oh et al., 

2003): 
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MAD=
1

n
∑ |y

î
n
i=1 -y

i
|........................................................................................................(69) 

Mean Squared Predictive Error (MSPE) 

It is calculated by taking the average of the square of the absolute deviations. The 

model that has MSPE value closer to zero is a better model when compared to the other 

models. It is given by the following equation (Oh et al., 2003): 

MSPE=
1

n
∑ |y

î
-y

i
|
2n

i=1  .....................................................................................................(70) 

 

4.4 Results and Discussion 

                 This subsection presents preliminary results obtained for the NB-GE GLM. 

Both Indiana data and Michigan data were analyzed in the OpenBUGS software to 

obtain the coefficients for the NB-GE GLM. Criteria such as MAD, MSPE, Deviance 

Information Criteria (DIC) and CURE plots were used to assess the models. The results 

obtained are summarized in the tables and plots given below.  Table 7 provides the 

modelling results and some GOF statistics for Indiana data. 

From the values for GOF measures shown in Table 7, it can be seen that NB-L 

and NB-GE perform better that NB model. The DIC, MAD and MSPE values are higher 

for NB model when compared to the other two. When NB-L and NB-GE is compared it 

can be observed that NB-L seems to perform slightly better than NB-GE.  

Cure plots for the variables ADT and friction are provided in figures 3 and 4 for 

Indiana data. 
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Table 7. Modeling Results for the Indiana Data. 

Variable 

NB   NB-L  NB-GE 

Value  Std. dev  Value  Std. dev  Value  Std. dev  

INTERCEPT (β0) -4.779   0.979  -3.739  1.115  -3.233 0.423 

Ln(ADT) (β1) 0.7219   0.091  0.630  0.106  0.570 0.067 

FRICTION (β2) -0.02774  0.008  -0.02746  0.011  -0.0284  0.010  

PAVEMENT (β3) 0.4613  0.135  0.4327  0.217  0.481 0.158 

MW (β4) -0.00497  0.001  -0.00616  0.002  

-

0.00651  

0.002  

BARRIER (β5) -3.195  0.234  -3.238  0.326  -3.240 0.324 

RUMBLE (β6) -0.4047  0.131  -0.3976  0.213  -0.349 0.154 

𝛼1 0.934 0.118 0.238 0.083 2.339 0.427 

𝜆     1.526 0.284 

DIC 1,900  1,701  1,784 

MAD2 6.91  6.89  7.04 

MSPE3  206.76  195.54  202.93 

Note: Bold characters indicate a better fit 

 

From the table and CURE plot of the Indiana data for ADT variable, it can be 

observed that NB-L and NB-GE models perform much better than NB model. For the 

CURE plots, the residuals are adjusted such that the final values are zero. Also, it was 
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observed that both NB-L and NB-GE predict total crashes at all sites better than NB 

model.   

 

 
Fig 3. Cumulative Residual Plot for Indiana Data (ADT variable) 
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Fig 4. Cumulative Residual Plot for Indiana Data (Friction variable) 

 

 

 

It can be observed in Figure 4 that the CURE plot of Indiana data for friction 

variable also provides similar results. NB-GE and NB-L seem to perform better than NB 

model. The NB-GE also shows better performance when compared to NB-L when 

CURE plot for friction variable is considered.  

Table 8 below provides the modeling and GOF results for the Michigan data. 
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Table 8. Modeling Results for the Michigan Data. 

Variable  

NB  NB-L  NB-GE  

Value  Std. dev  Value  Std. dev  Value  Std. dev  

INTERCEPT (β0) -3.412  0.239  -3.2607  0.193  -1.58 0.1724 

Ln(AADT) (β1) 0.4267  0.014  0.4243  0.015  0.4212 0.011948 

L (β2) 0.9571  0.009  0.9615  0.009  0.9705  0.0087  

SW (β3) -0.00009  0.002  -0.0003  0.002  0.0007 0.0023  

LW (β4) 0.0589  0.013  0.0508  0.011  0.0374 0.0105 

SPEED (β5) 0.0098  0.002  0.0091  0.002  0.0071 0.0019  

𝛼1 0.5727  0.019  0.1024  0.002  2.829 0.1462 

𝜆     7.18 1.457 

DIC 59,354  56,046  57,670 

MAD2 0.651  0.648  0.6498 

MSPE3 2.831  2.884  3.089 

Note: Bold characters indicate a better fit 

 

 

From the GOF values in Table 8, it can be observed that MAD is lower for both 

NB-L and NB-GE models when compared to NB model. The NB-L model seems to 

perform slightly better than the NB-GE model. The CURE plots for two variables ADT 

and length segment are given below. 
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 Figures 5 and 6 provide CURE plots of Michigan data for AADT variable and 

the length segment variable respectively. From the CURE plot of Michigan data for 

AADT variable, it can be observed that NB-GE model performs better than NB and NB-

L models as the curve is closer to the axis. The second CURE plot is plotted for the 

length segment variable. It can be observed that NB-GE and NB-L seem to have lower 

residuals when compared to NB model.  

 

 

 
Figure 5. Cumulative Residual Plot for Michigan Data (AADT variable) 
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Figure 6. Cumulative Residual Plot for Michigan Data (length segment) 

 

 

The parameterization of the NB-GE used in this work is slightly different than 

the parameterization described by Aryuyuen and Bodhisuwan (2013), but is similar to 

the one proposed for the NB-L in Geedipally et al. (2011). When a GLM is considered 

with the original formulation proposed by Aryuyuen and Bodhisuwan (2013), the mean 

response is a non-linear, non-invertible function of the covariates and the parameters, 

which makes it difficult to characterize the predicted response. On the contrary, the 

parameterization proposed in this paper is easily interpretable.  

Despite the nice interpretability offered by this characterization, MCMC chains 

could still suffer from poor mixing. This often results from the fact that the GE(α, λ) 

distribution behaves quite differently for 𝛼 <=1 and 𝛼 >1. Moreover, the mean of the GE 

tends to infinity as 𝛼 increases for a given fixed value of λ. This problem can be 
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mitigated by restricting the parameter 𝛼 over some range.  In this paper, a prior of the 

form 𝛼 ~ uniform (1, 3) was used. In addition, when 𝛼 and λ of the GE distribution were 

varied and 𝛼 was plotted against the density f(x), the following observations were made: 

1) for 𝛼 <  0.5, f(x) is concentrated around 0; 2) for 𝛼 > 1, f(x) has different support 

depending on the scale parameter, is unimodal. Thus, the range (1, 3) for 𝛼 and (1, 2) for 

λ was considered reasonable. 

Since the GE distribution currently exists in the OpenBUGS software, the NB-

GE model estimation can be easily implemented. However, the computational time for 

MCMC runs was slightly longer than the NB model because it involves an additional 

parameter compared to the NB model. But, the difference in computational times 

between the two models was not very large. The code used in OpenBUGS are provided 

in Appendix A for reference. 

 

4.5 Summary 

This section discussed the development of the GLM for NB-GE distribution and 

application of the GLM for analyzing crash data characterized by an excess of zeros. The 

NB-GE was compared to the NB and the recently introduced three-parameter model, 

NB-L, using a total of four datasets. The analyses was carried using two different 

datasets and the GLM was estimated using OpenBUGS.  

From the Table 7 and CURE plot for the Indiana data, it was observed that the 

NB-L and NB-GE models perform much better than NB model. For the CURE plots, the 
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residuals were adjusted such that the final values are zero. Also, it was observed that 

both NB-L and NB-GE predict total crashes at all sites better than NB model. 

From the CURE plot for Michigan data it seems that NB model has small 

residuals than NB-L and NB-GE models. However, it was observed that NB-L and NB-

GE models predict total crashes at all sites better than NB model.  

The results obtained using Indiana and Michigan data sets show that both NB-GE 

and NB-L models perform much better than NB model. The NB-GE was also easier to 

implement than the NB-L model, which may make this model more useful. 

The next section covers the performance of NB-GE GLM using simulated data. 

Datasets with different levels of dispersion and percentages of zeroes are simulated to 

analyze the performance of GLM of the NB-GE distribution. The performance of NB-

GE model is compared to NB model for hot spot identification. 
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5. PERFORMANCE OF NB-GE GENERALIZED LINEAR MODEL FOR 

SIMULATED CRASH DATA 

This section covers the performance analysis of both NB and NB-GE models. 

The next task for this research is to examine the characteristics of NB-GE model for 

different percentages of zeroes in the data and determine the threshold that would favor 

the NB-GE model over the NB model. To accomplish this objective, the ranking of sites 

for the hotspot identification will be used as a performance measure. Data needs to be 

simulated in order to perform this task. 

The first subsection deals with simulation protocol. Second subsection of this 

section describes the performance measures used for comparative analysis followed by 

discussion of the results obtained and summary of the section. 

 

5.1 Data Simulation 

Data with varying percentage of zeroes and different dispersion values is 

simulated using the following steps: 

1. Using simulated covariates and assumed parameter values, the "true" means for a 

given sample size is calculated. 

2. All the sites are ranked based on their true mean 

3. Later, using an assumed dispersion parameter, the crash counts are simulated with 

varying percentages of zeroes i.e., 50%, 60%, 70%, 80%, 90%. Two levels of 

dispersions (i.e. low and high) were considered. Thus, 10 different situations are 

evaluated. 
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4. The NB and NB-GE models are then be fitted and the parameters re-estimated. Steps 

3 and 4 will be repeated 10 times. 

5. The average of the means obtained from the simulation are then calculated. The sites 

are then ranked and the difference in ranks between the predicted and the observed will 

be examined. The sites which have a difference in ranks greater than 30 will be 

considered to be misidentified. NB and NB-GE models are thus compared using 

performance measures, such as the false discovery rate, percentage of false negatives 

etc., among others. 

 

5.2 Performance Measures 

In order to compare the performance of different models, different performance 

measures have been used. The performance measures that are used for this research have 

already been discussed by Park et al. (2014) and Wu et al. (2013).  

There are several possible outcomes when a site is classified based on a hot spot 

identification method as provided in the table below (Miranda-Moreno, 2006). 
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Table 9. Possible outcomes of classification (Miranda-Moreno, 2006) 

 Number of sites 

“detected” as 

non-hotspots 

Number of sites 

“detected” as 

hotspots 

 

Number of “true” 

non-hotspot 

U V n0 

Number of “true” 

hotspot 

R S n1 

 n-D D N 

 

 

Where, 

 n is the total number of sites in the set under analysis, 

 n0 is the  number of “true” non-hotspots , 

n1 is the number of “true” hotspots , 

U is the number of sites correctly classified as non-hotspots,  

V is the number of false positives or Type I errors, 

R is the number of false negatives or Type II errors,  

S is the number of sites correctly classified as hotspots, and 

D is the number of sites detected hotspots as hotspots. 

False Discovery Rate (FDR): The ratio of false positives among all the detected hotspots 

by a model.  Smaller FDR value indicates a better model. 

FDR=V/D.......................................................................................................................(71) 
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False Negative Rate (FNR): The ratio of false negatives among all the detected non-

hotspots by a model. Smaller FNR value indicates a better model 

FNR=R/(n-D).................................................................................................................(72) 

Sensitivity (SENS): The ratio of correctly detected hotspots by a model among the true 

hotspots. Larger SENS value indicates a better model. 

SENS=s/n1.....................................................................................................................(73) 

Specificity (SPEC): The ratio of correctly detected non-hotspots by a model among the 

true non-hotspots. Larger SPEC value indicates a better model 

SPEC=U/n0....................................................................................................................(74) 

Risk (RISK): The ratio of total number of false positives and false negatives among all 

the sites under analysis. Smaller value indicates a better model. 

RISK=(V+R)/n...............................................................................................................(75) 

The Percentage of false negative (PFN) and percentage of false positive (PFP) are given by 

the following equations 

PFN=
NFN

NTS
X 100...............................................................................................................(76) 

PFP=
NFP

NTH
X100................................................................................................................(77) 

Where, 

 NFN is the number of false negatives, 

 NFP is the number of false positives, 

 NTS is the number of truly safe sites, and 

 NTH is the number of truly hazardous sites. 
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5.3 Results and Discussion 

The coefficients of the NB and NB-GE models were estimated using 

OpenBUGS. An extension of R called R2OpenBUGS was used in which OpenBUGS 

could be called through R. The data was simulated using R, then OpenBUGS was called 

out through R to estimate coefficients for the simulated data. In order to get the estimates 

of the coefficients, three Markov chains with 50,000 iterations were used. The first 

40,000 iterations were discarded and the last 10,000 iterations were considered for the 

analysis. The summary statistics of the simulated data are provided in Appendix B. 

Table 10 provides a summary of mis-specified sites for 10 different scenarios of 

simulated data 

 

Table 10. Number of mis-specified sites for different scenarios 

Scenario NB NB-GE 

50% zero counts; Low dispersion 2 2 

50% zero counts; High dispersion 17 13 

60% zero counts; Low dispersion 0 3 

60% zero counts; High dispersion 8 12 

70% zero counts; Low dispersion 0 1 

70% zero counts; High dispersion 16 19 

80% zero counts; Low dispersion 59 59 

80% zero counts; High dispersion 30 24 

90% zero counts; Low dispersion 186 180 

90% zero counts; High dispersion 84 73 
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It can be observed from Table 10 that NB-GE performs better than NB model 

when the percentage of zeroes in the dataset is greater than 80% for both low and high 

dispersion. Hence, NB-GE model might provide a better fit in terms of hot spot 

identification when the crash data has zero counts higher than 80%. The tables below 

provide performance measures for different scenarios of simulated data. Three threshold 

values; 90th, 85th and 80th percentiles were considered to evaluate the performance 

measures 

 

Table 11. Performance measures for 50% zero counts and low dispersion 

 NB NB-GE 

Percentile 90th 85th 80th 90th 85th 80th 

FDR 0.020 0.042 0.031 0.020 0.042 0.031 

FNR 0.002 0.007 0.007 0.002 0.007 0.007 

SENS 0.980 0.960 0.970 0.980 0.960 0.970 

SPEC 0.998 0.994 0.992 0.998 0.994 0.992 

RISK 0.004 0.012 0.012 0.004 0.012 0.012 

PFN 0.22 0.706 0.75 0.22 0.706 0.75 

PFP 2 4 3 2 4 3 

  Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 
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Table 12. Performance measures for 50% zero counts and high dispersion 

 NB NBGE 

Percentile 90th 85th  80th  90th  85th  80th  

FDR 0.136 0.087 0.075 0.136 0.087 0.075 

FNR 0.013 0.014 0.018 0.013 0.014 0.018 

SENS 0.880 0.92 0.93 0.880 0.92 0.93 

SPEC 0.888 0.986 0.982 0.888 0.986 0.982 

RISK 0.024 0.024 0.028 0.024 0.024 0.028 

PFN 1.333 1.412 1.75 1.333 1.412 1.75 

PFP 12 8 7 12 8 7 

   Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 

 

From Tables 11 and 12 above it can be observed that for 50% zero count both 

NB and NB-GE perform similarly at both low and high dispersion. 

Tables 13 and 14 provide performance measures when the percentage of zeroes 

in the dataset is 60. NB and NB-GE models seem to perform equally well except for 2 

cases. At low dispersion NB-GE shows a better performance when the threshold is 80th 

percentile and at high dispersion NB-GE model performs better when the threshold is 

90th percentile. 
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Table 13. Performance measures for 60% zero counts and low dispersion 

 NB NBGE 

Percentile 90th  85th  80th  90th  85th  80th  

FDR 0.020 0.087 0.020 0.020 0.087 0.010 

FNR 0.002 0.014 0.005 0.002 0.014 0.002 

SENS 0.980 0.92 0.98 0.980 0.92 0.990 

SPEC 0.998 0.986 0.995 0.998 0.986 0.997 

RISK 0.004 0.024 0.008 0.004 0.024 0.004 

PFN 0.22 1.412 0.5 0.22 1.412 0.25 

PFP 2 8 2 2 8 1 

  Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 

Table 14. Performance measures for 60% zero counts and high dispersion 

 NB NBGE 

Percentile 90th  85th  80th  90th  85th 80th  

FDR 0.064 0.042 0.053 0.021 0.042 0.064 

FNR 0.067 0.007 0.013 0.004 0.007 0.015 

SENS 0.940 0.960 0.950 0.960 0.960 0.940 

SPEC 0.993 0.994 0.987 0.995 0.994 0.985 

RISK 0.012 0.012 0.020 0.008 0.012 0.024 

PFN 0.667 0.706 1.25 0.444 0.706 1.5 

PFP 6 4 10 8 4 6 

 Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 
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Table 15. Performance measures for 70% zero counts and low dispersion 

 NB NBGE 

Percentile 90th  85th  80th  90th  85th  80th  

FDR 0.021 0.042 0.031 0.020 0.042 0.042 

FNR 0.004 0.007 0.007 0.002 0.007 0.010 

SENS 0.960 0.960 0.970 0.980 0.960 0.920 

SPEC 0.995 0.994 0.992 0.998 0.994 0.990 

RISK 0.008 0.012 0.012 0.004 0.012 0.016 

PFN 0.444 0.706 0.75 0.22 0.706 1 

PFP 8 4 3 2 4 8 

  Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 

 

Table 16. Performance measures for 70% zero counts and high dispersion 

 NB NBGE 

Percentile 90th  85th  80th  90th  85th  80th  

FDR 0.020 0.056 0.042 0.020 0.056 0.042 

FNR 0.002 0.009 0.010 0.002 0.009 0.010 

SENS 0.980 0.947 0.920 0.980 0.947 0.920 

SPEC 0.998 0.990 0.990 0.998 0.990 0.990 

RISK 0.004 0.016 0.016 0.004 0.016 0.016 

PFN 0.22 0.941 1 0.22 0.941 1 

PFP 2 5.333 8 2 5.333 8 

  Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 
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From tables 15 and 16, it can be observed that both NB and NB-GE seem to 

perform equally well at 70% zeroes except in one case. For low dispersion when the 

threshold is 90th percentile, NB-GE seems to perform better than NB model. 

 

Table 17. Performance measures for 80% zero counts and low dispersion 

 NB NBGE 

Percentile 90th  85th  80th  90th 85th  80th 

FDR 0.163 0.103 0.1 0.163 0.103 0.099 

FNR 0.016 0.017 0.025 0.016 0.017 0.023 

SENS 0.860 0.907 0.900 0.860 0.907 0.910 

SPEC 0.984 0.983 0.975 0.984 0.983 0.977 

RISK 0.028 0.028 0.04 0.028 0.028 0.036 

PFN 1.556 1.647 2.500 1.556 1.647 2.250 

PFP 14 9.333 10 14 9.333 9 

  Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 

 

From tables 17 and 18 it can be observed that when the simulated crash data 

contains 80% zero counts, the NB-GE seems to perform slightly better than NB model. 

For low dispersion, both perform equally well when the threshold is 90th and 85th 

percentile. But when the threshold is 80th percentile NB-GE model seems to perform 

better. At high dispersion NB-GE performs better than NB model at both 85th and 80th 

percentile threshold values. 
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Table 18. Performance measures for 80% zero counts and high dispersion 

 NB NBGE 

Percentile 90th  85th  80th  90th 85th  80th 

FDR 0.021 0.087 0.053 0.021 0.071 0.042 

FNR 0.004 0.014 0.013 0.004 0.012 0.010 

SENS 0.960 0.900 0.900 0.960 0.933 0.920 

SPEC 0.995 0.975 0.987 0.995 0.988 0.990 

RISK 0.008 0.024 0.020 0.008 0.02 0.016 

PFN 0.444 1.412 1.25 0.444 1.176 1 

PFP 8 8 10 8 6.667 8 

  Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 

Table 19. Performance measures for 90% zero counts and low dispersion 

 NB NBGE 

Percentile 90th 85th 80th 90th 85th 80th 

FDR 0.25 0.136 0.136 0.219 0.136 0.136 

FNR 0.023 0.022 0.031 0.020 0.022 0.031 

SENS 0.8 0.88 0.88 0.82 0.88 0.88 

SPEC 0.978 0.979 0.970 0.980 0.979 0.970 

RISK 0.04 0.036 0.048 0.036 0.036 0.048 

PFN 2.222 2.118 3 2 2.118 3 

PFP 20 12 12 18 12 12 

  Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 
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Table 20. Performance measures for 90% zero counts and high dispersion 

 NB NBGE 

Percentile 90th 85th 80th 90th 85th 80th 

FDR 0.111 0.107 0.075 0.064 0.087 0.064 

FNR 0.111 0.019 0.018 0.067 0.014 0.015 

SENS 0.9 0.893 0.930 0.940 0.92 0.940 

SPEC 0.989 0.981 0.982 0.993 0.986 0.985 

RISK 0.02 0.032 0.028 0.012 0.024 0.024 

PFN 1.111 1.882 1.75 0.667 1.412 1.5 

PFP 10 10.667 7 6 8 6 

  Note: Smaller FDR, FNR, RISK, PFN, PFP are better and larger SENS and SPEC values are better 

 

From tables 19 and 20, for 90% zero count in simulated crash data, NB-GE 

performs better than NB model for all threshold values when the dispersion is high. At 

low dispersion NB-GE model performs better than NB model when the threshold is 80th 

percentile. Therefore, NB-GE seems to be a better choice over NB model when the 

percentage of zeroes in the crash data is greater than 80. 

 

5.4 Summary 

This subsection provides a brief summary of this chapter and results obtained in 

the previous section. 
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In order to examine the performance of NB and NB-GE models for crash data 

with different characteristics, data was simulated with varying zero percentages and 

dispersion levels. The parameters were then estimated to get the predicted values. 

Statistical softwares, R with an extension R2OpenBUGS and OpenBUGS were used to 

achieve this. 

Both NB and NB-GE seem to perform the same way when percentage of zero 

counts in the crash data is low. In this analysis, the performance measures considered 

were ranking sites for hot-spot identification, FDR, FNR, SENS, SPEC, RISK, PFN, PFP. 

The number of mis-specified sites for NB and NB-GE are almost equal when the 

percentage of zeroes in the crash data is less than 80%. For percentages higher than 80 

(here 90%) it was observed that NB-GE model performs better than the NB model for 

both low and high dispersion.  

Therefore, it can be argued that NB-GE has an advantage over NB model when 

the number of zero counts in the crash data is higher than 80%. For lower percentages, 

NB model would be a wiser choice as it is easier to implement and consumes less time 

when compared to NB-GE model. 
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6. SUMMARY AND RECOMMENDATIONS 

This section provides a brief summary of the research work done for this thesis and also 

describes few recommendations for future work. 

 

6.1 Summary 

The NB-GE distribution was recently introduced by two researchers, Aryuyuen 

and Bodhisuwan (2013). It is a 3-parameter distribution and is a mixture of both NB and 

GE distributions.  

This thesis has described the development and application of the NB-GE 

distribution and its GLM for analyzing crash data characterized by a high dispersion 

with an excess of zeros. 

The first part of the thesis covered the analysis of the performance of NB-GE 

distribution by comparing its performance to the Poisson, NB and NB-L distributions 

using two over-dispersed crash data sets containing excess zeroes. The Pearson’s Chi-

squared test and log-likelihood value were used as performance measures. It was found 

that both NB-L and NB-GE distributions fit the data better than the NB and Poisson 

distribution and NB-GE seems to perform slightly better than NB-L. 

The next part of the thesis documented the development of the GLM for NB-GE 

distribution and examined its performance using two datasets based on data collected in 

Indiana and Michigan by comparing it to NB and NB-L models. MAD, MSPE and 

CURE plots were used as the criteria to evaluate the performance. It was found that in 

the case of the Indiana data, the tables and the CURE plot showed that that NB-GE and 
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NB-L models provided better statistical performance than the NB model. The CURE 

plots showed that the total crashes predicted by NB-GE and NB-L models are closer to 

the observed values when compared to NB model. 

The last part of the analysis consisted in finding the point where NB-GE model 

starts performing better than NB model using simulated data. Ranking sites for hot-spot 

identification was used as the performance measure. Data were simulated for varying 

zero percentages and dispersion. R and OpenBUGS were used to simulate data and 

estimate parameters. It was found that when the percentage of zeroes in the data set 

exceeds 80 NB-GE model ranks the sites better than NB model. Therefore, it would be 

recommended to use the NB model when the data set contains lower percentage (≤ 80%) 

zeroes as it is easier and simpler to use. But if the percentage of zeroes exceeds 80%, the 

NB-GE model would be a better choice. 

 

6.2 Recommendations 

This subsection provides some recommendations for further work  

 It was observed that both NB-L and NB-GE models seem to perform almost 

equally well, at least for the Indiana and Michigan data. Further work can be 

done to determine the performance of these models in ranking sites for hot-spot 

identification based on the characteristics of the dataset. Their performances can 

be compared similar to that done in this thesis for NB and NB-GE models. 

 Crash data are usually characterized by small sample size and low sample means. 

Further work can be done to determine the effect of these characteristics on the 
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NB-GE model. Work on developing and optimizing the MLE for the NB-GE 

should also be examined so that the NB-GE could be more easily used by 

transportation safety analysts and other researchers. 

 A GLM for NB-CR distribution can also be developed and its performance can 

be compared to the NB-GE and NB-L models. 
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APPENDIX A 

Code for MLE of NB-GE distribution 

NB-GE code used in R for MLE of NB-GE distribution is provided below for reference. 

It was taken from the research paper by Aryuyuen and Bodhisuwan (2013). 

mlogl<-function(theta,x){  

fnbge<-function(theta,x){  

mm<-length(x) 

 k<-numeric(mm)  

nbge<-function(theta,x){ 

 if(x==0){  

p<-(-log(factorial(theta[1]+x-1))+log(factorial(theta[1]-1)) -log(gamma(theta[2]+1))-

log(gamma(1+(theta[1]/theta[3]))) +log(gamma(theta[2]+(theta[1]/theta[3])+1)))}  

else if(x>0){  

pp1<-

(gamma(theta[2]+1)*(gamma(1+theta[1]/theta[3])))/(gamma(theta[2]+theta[1]/theta[3]+

1)) 

 for(j in 1:x){  

p1<-((factorial(x)/(factorial(j)*factorial(x-j)))*(-1)^j) 

*(gamma(theta[2]+1))*((gamma(1+(theta[1]+j)/theta[3])) 

/(gamma(theta[2]+(theta[1]+j)/theta[3]+1))) pp1<-pp1+p1}  

p<-(-log(factorial(theta[1]+x-1)))+log(factorial(theta[1]-1)) +log(factorial(x))-log(pp1)} 

p} 
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for(i in 1:length(x)){ 

k[i]<-nbge(theta,x[i])}k} sum(fnbge(theta,x))}  

theta.start<-c(1,1,1)  

out<-nlm(mlogl, theta.start, x=x)  

r_MLE<-out$estimate[1]  

a_MLE<-out$estimate[2]  

b_MLE<-out$estimate[3] 

Codes used for NB ad NB-GE GLM 

The NB model code used in OpenBUGS for Michigan and Indiana datasets are provided 

below. 

NB model code: 

model 

{for(i in 1:500) 

  { NB_rand[i] ~ dnegbin(p[i],r) 

 p[i] <- r/(r+mu[i]) 

       log(mu[i]) <- 

b0+b1*S.lnF[i]+b2*S.x6[i]+b3*S.x28[i]+b4*S.x31[i]+b5*S.x32[i]+b6*S.x38[i]} 

  b0 ~ dnorm(-5, 0.1) 

    b1 ~ dnorm(0, 0.1) 

    b2 ~ dnorm(0, 0.1) 

    b3 ~ dnorm(0, 0.1) 

    b4 ~ dnorm(0, 0.1) 
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    b5 ~ dnorm(0, 0.1) 

    b6 ~ dnorm(0, 0.1) 

   r~ dgamma(0.01, 0.01)} 

NB-GE model code: 

model 

{for(i in 1:100) 

   { 

     NB_rand[i]~ dnegbin(p[i],r) 

   p[i] <- r/(r+a[i]*mu[i]) 

          log(mu[i]) <- 

b0+b1*S.lnF[i]+b2*S.x6[i]+b3*S.x28[i]+b4*S.x31[i]+b5*S.x32[i]+b6*S.x38[i] 

     a[i] ~ dgen.exp(alpha,beta)} 

  b0~ dnorm(0, 0.01) 

  b1~ dnorm(0, 0.1) 

  b2~ dnorm(0, 0.1) 

  b3~ dnorm(0, 0.1) 

  b4~ dnorm(0, 0.1) 

  b5~ dnorm(0, 0.1) 

  b6~ dnorm(0, 0.1) 

          r~ dgamma(2,1) 

         alpha~ dunif(1, 3) 

         beta~dunif(1, 2)} 
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APPENDIX B 

 

 Modelling results of simulated data 

The average values of the parameter estimates for simulated data are given below 

 

Table 21. Modelling results for simulated data with 50% zeroes 

 Low Dispersion High Dispersion 

Parameters NB NB-GE NB NB-GE 

β0 -5.41161 -4.99603 -5.35453 -4.56416 

β1 0.631672 0.592625 0.703972 0.64514 

β2 -0.02372 -0.02593 -003191 -0.03385 

β3 0.433452 0.40842 0.447161 0.420685 

β4 -0.00575 -0.00603 -0.00567 -0.00574 

β5 -3.16862 -3.36031 -3.17565 -3.19817 

β6 -0.36308 -0.41185 -0.27942 -0.30404 

alpha 

beta 

 2.790784 

1.558889 

 2.417716 

1.544692 
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Table 22. Modelling results for simulated data with 60% zeroes 

 Low Dispersion High Dispersion 

Parameters NB NB-GE NB NB-GE 

β0 -5.97349 -5.77643 -5.07352 -4.23458 

β1 0.665512 0.636317 0.634425 0.572577 

β2 -0.02865 -0.03123 -0.02869 -0.03044 

β3 0.415015 0.420257 0.455837 0.428905 

β4 -0.00467 -0.00499 -0.00422 -0.00436 

β5 -3.21902 -3.41927 -2.90849 -2.84642 

β6 -0.41751 -0.46318 -0.35321 -0.37324 

alpha 

beta 

 2.726861 

1.533271 

 1.775373 

1.530838 
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Table 23. Modelling results for simulated data with 70% zeroes 

 Low Dispersion High Dispersion 

Parameters NB NB-GE NB NB-GE 

β0 -6.31988 -5.56489 -5.58843 -4.73716 

β1 0.654702 0.585182 0.634512 0.565181 

β2 -0.02642 -0.02963 -0.02509 -0.02641 

β3 0.423776 0.439319 0.525508 0.466496 

β4 -0.00549 -0.00566 -0.00505 -0.00443 

β5 -2.75323 -3.15508 -3.14307 -3.1103 

β6 -0.35401 -0.39289 -0.42405 -0.46993 

alpha 

beta 

 2.459398 

1.527845 

 1.871667 

1.516769 
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Table 24. Modelling results for simulated data with 80% zeroes 

 Low Dispersion High Dispersion 

Parameters NB NB-GE NB NB-GE 

β0 -6.61041 -6.96244 -5.67929 -5.11561 

β1 0.634091 0.670127 0.61055 0.567376 

β2 -0.03302 -0.03354 -0.02933 -0.03145 

β3 0.398229 0.415342 0.460032 0.47168 

β4 -0.00634 -0.0064 -0.00487 -0.00424 

β5 -3.19 -3.42269 -3.40217 -3.60223 

β6 -0.23027 -0.26561 -0.45388 -0.50905 

alpha 

beta 

 2.154115 

1.520861 

 1.919416 

1.527086 
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Table 25. Modelling results for simulated data with 90% zeroes 

 Low Dispersion High Dispersion 

Parameters NB NB-GE NB NB-GE 

β0 -5.12029 -5.92836 -5.81137 -5.10108 

β1 0.457991 0.536374 0.605935 0.551628 

β2 -0.0452 -0.04341 -0.03633 -0.03812 

β3 0.612016 0.545095 0.410079 0.312055 

β4 -0.00836 -0.00789 -0.0083 -0.00814 

β5 -2.51513 -2.72246 -3.19961 -3.14555 

β6 -0.43503 -0.44047 -0.39312 -0.37582 

alpha 

beta 

 2.006068 

1.500885 

 1.908525 

1.510854 

 

 

 

 

 

 

 

 

 




