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ABSTRACT 

 

This study assessed the real-world performance of a typical range-hood 

ventilation system by focusing on parameters such as duct pressure drop and range hood 

capture efficiency.  The research can be divided into two parts, mathematical modeling 

and laboratory testing. For example, the pressure drop through a typical range hood 

ducting system and the capture efficiency of under-cabinet range hoods were modeled 

individually. For laboratory testing, the range hood was experimentally tested in two 

ducting configurations representing two typical installation strategies found in practice, 

namely flexible and rigid ducts exiting through walls and ceilings.  

 The bulk of the effort in this project was the experimental phase, and it could be 

divided into a Case 1 and Case 2. In Case 1 three different lengths of flexible duct (32”, 

46”, 75”) and five different lengths of rigid duct (32”, 46”, 75”119”, 148”) were 

mounted so as to exit a sidewall. In Case 2, rigid duct was vented through the roof by 

using the same duct lengths tested in Case 1. Pressure drops through the duct and vent 

cap were measured at different fan speed levels to produce system performance curves. 

These curves were overlaid with measured fan curves to find operating points (i.e. flow 

rate, and pressure drop) that represent real-world range-hood ventilation systems. This 

study provides the basis for system performance assessments and system design 

recommendations. 

The results of this study showed that the pressure drop through flexible ducting is 

larger than the pressure drop through rigid ducting of same length. The increased static 
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pressure drop in flexible ducting had a negative impact on range hood performance, 

which results in a lower airflow rate and capture efficiency. By comparing the predicted 

and the actual results, it was found that the pressure drop measured in the experimental 

test is higher than that predicted by the mathematical model, which needs to be taken 

into consideration in future designs.  

For capture efficiencies, it was found that they do not differ much for different 

duct lengths in the same configuration. At the same fan speed, rigid-duct range hood 

systems have higher capture efficiencies compared to flexible-duct range hood systems. 

Furthermore fan speeds have the largest effect on capture efficiencies, with values 

varying from 75% to 95% for fan speeds varying from low to high. 
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NOMENCLATURE 

 

ASHRAE American Society of Heating, Refrigerating and Air-conditioning 

Engineers 

C Compression Ratio [%] 

   Constant Coefficient, 1.68E-05 [       (   ) ] 

   Local Fitting Loss Coefficient 

CE Capture Efficiency 

CFD Computational Fluid Dynamics 

CFM Volumetric flow rate in rigid ducts [cfm] 

D Diameter [in] 

DAQ Data Acquisition  

FD Flexible Duct 

HVI Home Ventilating Institute 

HVAC Heating, Ventilation and Air-conditioning 

K Local Pressure Loss Coefficient 

    Newly Defined Local Pressure Loss Coefficient 

L Length [in] 

LBNL Lawrence Berkeley National Laboratory 

n Constant                           

P Pressure [inch WC] 

   Pressure Loss [inch WC] 
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REEL Riverside Energy Efficiency Laboratory 

RD Rigid Duct 

 ̇ Volumetric Airflow Rate [cfm] 

    Standard Density of Air [            ] 
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CHAPTER I  

INTRODUCTION 

 

Overview 

Heating, ventilation and air-conditioning (HVAC) system design is the most 

complex topic in house designing (Burdick, 2011), when one considers that the energy 

consumption of the whole house, involves predicting  house heating and cooling loads, 

selecting equipment of the right size, duct design to match equipment and finding blower 

fan capabilities. In addition to energy consumption considerations, an effective HVAC 

system design must also guarantee that properly conditioned air is delivered to a space 

efficiently for health and safety reasons. In this regard, the kitchen ventilation system is 

an important branch of a whole-resident ventilation system, which is the subject of this 

thesis.  

According to many building regulations, a kitchen must be provided with a 

window opening that connects to outdoor air.  This alone is not an effective way to 

remove the moisture, smell, contaminants, and carbon dioxide that is generated during 

the cooking process. On the contrary, it can even help spread contaminants into other 

parts of a residential building because of wind effects. Therefore many households equip 

their kitchens with a range exhaust hood, which is a device containing a mechanical fan 

that hangs above the stove in the kitchen. Its main function is to remove pollution, such 

as combustion products, smoke and steam from the air by evacuation of the air through a 
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filtration system, and then keeping the pollution level in a confined space as low as 

possible.  

Range hoods can be divided into two main categories. The first category is a 

recirculating range hood or ductless range hood, which recirculates air from the stove 

top back to the kitchen, so that filters may be needed to remove odors and grease. The 

other category, which is the focus of this study, is when the range hood exhausts air to 

the outdoors and ensures that fresh air comes back into the room.  

There are two approaches to installing range hood ductwork as shown in Figure 

1, with one being through the sidewall while the other is through the roof. When 

installing a range hood, the length of the ductwork is a main consideration, usually a 

longer ductwork with more bends will require a higher fan discharge pressure, which is 

provided by the range hood, in order to overcome the ductwork resistance. Both flexible 

ducts and rigid ducts are used in a ductwork for range hood, and vent caps are used at the 

interface between the ducting and the outdoor, to make sure the air flows into the 

ambient while not allowing the same air to return into the building. 

There are various kinds of flexible ducts available in residential applications, 

such as metallic flexible ducts and nonmetallic flexible ducts. Flexible ducts are widely 

used in practice due to its flexible nature, allowing for easy installation and an ability to 

be installed in confined spaces. However, rigid ducts are more sturdy and less likely to 

have leaks, which would be a safety issue. 
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Figure 1. Two Approaches for Venting a Range Hood 

 

Purpose and Goals of Study 

Range-hood fan airflow rates have been measured previously in laboratory 

studies; however, the results are not applicable to real-world applications, because these 

past studies have not indicated the ducting and vent caps. Therefore the purpose of this 

study is to evaluate the performance of range-hood fans in real-world systems that 

include ducts and vent caps. In this respect, the laboratory fan data (i.e. fan curves) and 

real-world ducting and vent cap data (i.e. system curves) measured in this study is 

combined to perform an analysis and assessment, which can then be used by HVAC 

designers. Furthermore, because the purpose of the range hood is to remove 

contaminants, the real-world range-hood capture efficiency can then be determined by 

combining the experimental data reported in this thesis with the capture efficiency 
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versus flow rate data measured previously by Lawrence Berkeley National Laboratory 

(LBNL).  

Scope of Work 

The research work in this study can be divided into two parts, namely 

mathematical modeling and experimental tests. 

Mathematical Modeling Overview 

Firstly, pressure drops through individual components, including flexible ducts, 

rigid ducts, bends, and vent caps will be modeled individually. For the flexible and rigid 

duct component, the modeling will utilize data from previous Texas A&M University 

research performed on pressure drops through flexible ducts (Weaver, 2011). For the 

bends, pressure drops will be modeled by utilizing ASHRAE published data in 

ASHRAE Handbook 2005 (ASHRAE, 2005A). For the pressure drop models through 

the vent caps, research results from a former REEL student Escatel will be used (Escatel, 

2011). Secondly, mathematical modeling of range hood capture efficiency for back 

burner configurations will use data based on LBNL research results (Delp, 2012). 

Experimental Tests and Analysis Overview 

In the experimental part of the project, airflow tests will first be performed on 

range hood fans by using the Riverside Energy Efficiency Laboratory flow chamber, 

which can be used to obtain air flow rate data versus pressure drop data to create fan 

performance curves. After obtaining fan curve data in the lab, experiments will be 

performed on well-unstructured real-world range hood and duct assembly systems that 

duplicate actual systems installed in residential households. Furthermore, these 
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experiments will be performed on the two configuration approaches for installing range 

hood systems, either exhausting through the sidewall or through the roof. In 

Configuration 1 through the sidewall, flexible ducting is connected to the range hood 

outlet and tested at three different lengths (32”, 46”, 75”), and then changed to rigid 

ducting to be tested at 5 different lengths (32”, 46”, 75”119”, 148”). In Configuration 2 

through the roof, only rigid ducting is tested at 5 different lengths, which are the same as 

those in configuration 1. For each test, pressure drops through the duct and vent cap 

system are measured and a system curve is generated for each duct length to then be 

superimposed on previously measured fan curves. The test matrix and data to be taken is 

shown in Table 1, with P1 being the pressure drop through the ducting system, while 

also includes a bend, and P2 being the pressure drop through the vent cap mounted at the 

outlet. 

 

 

 

Table 1. Measured Experimental Data for the Range Hood Ventilation System 

 
Duct 

Type 

Duct 

Length

(inch) 

Speed 
P1(inch 

WC) 

P2(inch 

WC) 

Rotational 

Speed 

(rpm) 

Airflow 

rate 

(cfm) 

Case 1 

(Through 

sidewall) 

Rigid 

Duct 

32 

High x x x x 

Medium x x x x 

Low x x x x 

46 

High x x x x 

Medium x x x x 

Low x x x x 

75 

High x x x x 

Medium x x x x 

Low x x x x 
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Table 1. Continued 

 
Duct 

Type 

Duct 

Length

(inch) 

Speed 
P1(inch 

WC) 

P2(inch 

WC) 

Rotational 

Speed 

(rpm) 

Airflow 

rate 

(cfm) 

Case 1 

(Through 

sidewall) 

Rigid 

Duct 

119 

High x x x x 

Medium x x x x 

Low x x x x 

148 

High x x x x 

Medium x x x x 

Low x x x x 

Flexible 

Duct 

32 

High x x x x 

Medium x x x x 

Low x x x x 

46 

High x x x x 

Medium x x x x 

Low x x x x 

75 

High x x x x 

Medium x x x x 

Low x x x x 

Case 2 

(Through 

roof) 

Rigid 

Duct 

32 

High x x x x 

Medium x x x x 

Low x x x x 

46 

High x x x x 

Medium x x x x 

Low x x x x 

75 

High x x x x 

Medium x x x x 

Low x x x x 

119 

High x x x x 

Medium x x x x 

Low x x x x 

148 

High x x x x 

Medium x x x x 

Low x x x x 

 

 

           Of special importance and as noted previously, the fan curves and system curves 

can be overlapped (i.e. superimposed) to find the real-world operating point (flow rate 
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and pressure drop point). In addition, the measured system curve can be compared to the 

system curve generated from mathematical modeling, and as a result, design 

considerations well beyond what can be measured in the laboratory can be investigated.  
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CHAPTER II 

BACKGROUND THEORY 

 

System and Fan Curves and Operating Points 

A fan performance curve depicts the relationship between the static pressure and 

airflow rate at a given operating speed with each operating speed having a corresponding 

fan curve. Of special importance, the pressure-flow rate performance of a fan can be 

predicted based on fan curves, and, as such, fan manufacturers provide their customers 

with airflow fan test data in a table on graph with their products. Their airflow test data 

(i.e. fan curve data) for fans is usually measured in a laboratory system following the 

Home Ventilating Institute (HVI) airflow test standard 916 (HVI, 2009 ), which 

specifies standard testing and rating procedures in accordance with ANSI consensus 

standards.  

A system resistance curve represents how a system pressure drop reacts to a 

given airflow. For example, the flow resistance for a range hood ventilation system 

includes pressure losses through the ducting (rigid ducts or flexible ducts), elbows, 

bends, wall or ceiling vent caps and any other fitting that involves a resistance to airflow.  

The intersection point of the fan performance curve and the system curve is 

called the operating point, and the actual airflow rate and pressure drop is determined by 

the operating point. Therefore, the air flow of the installed kitchen-hood exhaust device 

depends on the performance curve of the fan and the flow resistance through the venting 

system. Fan curves are necessary for fan selection, and when the operating speed is 
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given, fan performance characteristic always follow the fan curve. There are two main 

considerations for selecting a fan for any system. One important consideration is to 

select a fan that gives the airflow rate needed for overcoming a system pressure drop, 

which means that the pressure drop through the system must be known for fan selection.  

Another consideration is to select a fan that has its peak efficiency at or near the 

operating point. Figure 2 taken from ASHRAE Handbook (ASHRAE, 2005a) shows the 

relationship between an actual system curve, a predicted system curve and a fan curve, 

as well as the actual and designed operating points. 

 

 

Figure 2. Actual System Curve, Designed System and Fan Curve (ASHRAE, 2005a) 
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Range Hood Performance Ratings 

There are multiple criteria to evaluate the performance of a range hood: airflow, 

loudness, power consumption, and capture efficiency. Home Ventilating Institute (HVI) 

has established a standard rating system for airflow testing, sound testing and power 

consumption measurement; however, there is no standard rating system for the capture 

efficiency, which is defined as the percentage of emissions captured and vented to a 

control device. 

Every year HVI publishes airflow and sound test results for a wide variety of 

fans and range hoods in HVI certified Products Directory, which is necessary for 

comparing fans and for aiding with range hood selections. Usually the airflow rating 

point is 0.1 inch WC and 0.25 inch WC for fans, and 0.1 inch WC for range hoods, 

where WC stands for water column. 

The HVI test standard specifies that range hood fans will be tested and rated at a 

static discharge pressure of 0.1 inch WC, meaning that the rated airflow in cfm for the 

fan is based on this pressure across the fan. The explanation of this test point is that the 

system containing the fan will have a flow resistance or pressure drop similar to 0.1 inch 

WC for the given flow rate.  However, in practice, the rating point of 0.1 inch WC 

cannot always represent the real-world situation. For example there are numerous other 

factors that need to be taken into consideration, such as elbows, flexible ducts, 

transitions, and vent caps, with all attributing to the flow resistance. To summarize, the 

rating point is a guide for comparing hoods; however, in real applications, the actual 

installation will influence the performance of the hood, which will always be different 
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from the rated performance. Furthermore, even though the purpose of the range hood is 

to remove contaminants, there is no standard testing method for measuring or 

determining the capture efficiency of range hoods. As a result there is no connection 

between capture efficiency and the rated condition and even more importantly, real 

applications under real-world conditions need to be considered to obtain the actual 

capture efficiencies, which is the subject of this thesis. 

Flexible Duct Compression Ratio 

Pressure drops through flexible ducts are more complex than pressure drops 

through rigid ducts because flexible ducts have compressibility characteristics, based on 

a compression ratio which describes how compressed a flexible duct is. The compression 

ratio can be defined as the change in length after being compressed divided by the fully 

stretched length. It is known that pressure losses in flexible ducts increase as the duct is 

compressed, but there is no uniform or established relationship between pressure loss 

and other parameters such as duct diameter, compression ratio and airflow rate. 

Capture Efficiency 

Cooking pollutants emitted from burners can reach a hazardous level for indoor 

air and can do harm to human health. It is necessary to remove the cooking contaminants 

to maintain indoor air quality and to ensure a healthy life. A measure of a range hood’s 

ability to remove contaminants is the capture efficiency, which defined as the percentage 

of total emissions that are captured and vented to a control device (i.e. range hood and 

fan). Specifically, for a range hood venting system, capture efficiency is the fraction of 

pollutants removed by the exhaust fan divided by the total amount of pollutants 
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generated from the cooking device. Range hood capture efficiency varies with range 

hood type, fan speed, burner configurations, and even contaminant types. There are no 

standard rating systems for range hood capture efficiency performance, which is 

surprising given that the purpose of the range hood is to remove contaminant.   
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CHAPTER III 

LITERATURE REVIEW 

 

Certain areas addressed in the study presented here have been well-covered and 

established over the years and are well known in the HVAC engineering field. However, 

other areas to be modeled and experimentally tested in this research are unique and less 

well known. Therefore, three of these less known but important areas pertinent to this 

study are presented in this literature review chapter, including pressure drops through 

flexible ducts and vent caps, as well as range hood capture efficiencies. 

Previous Research on Flexible Ducts 

In 2004, researchers at LBNL performed a study to evaluate the influence of 

compression ratios on pressure drops in flexible, spiral wire helix core ducts (Abushakra, 

2004). Tests were conducted on 6”, 8” and 10” ducts with different compression ratios 

and it was found that the published data in the literature underestimate the compression 

effects. They then developed pressure drop power-law and the pressure drop correction 

factor models (PDCF) to predict pressure drop for different compression ratio. In 2005 

ASHRAE Handbook Fundamentals Chapter 35, Duct Design (ASHRAE, 2005a)  

presented a chart, which is Figure 3, that shows pressure drop correction factors for 

straight, flexible ducts that are less than fully extended. This ASHRAE chart used the 

research results obtained previously by Abushakra (Abushakra, 2004).  
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Figure 3. Pressure Drop Correction Factors for Flexible Duct (ASHRAE, 2005a) 

 

Another study measured airflow static pressure losses through non-metallic 

flexible ducts with diameters of 6”, 8” and 10” and a range of compression ratios 4%, 

15%, 30%, 45% and 100% of maximum stretch, (Weaver, 2011). The testing 

configurations were expanded by using an as-built test protocol, including maximum 

stretch, board supported, joist supported, joist natural sag and joist long term sag. The 

results showed that when the compression ratio is above 4%, the configuration has a 

great influence on duct performance. Later, a CFD simulation study was performed on 

the 30% compressed case (Uğursal, 2006), the simulation results present close 

comparison with testing results. 

A final study reported static pressure losses in 12”, 14” and 16” non-metallic 

flexible ducts that were tested at five different compression ratios, namely 4%, 15%, 

30%, 45% and 100% of maximum stretch (Cantrill Jr, 2013). The results showed good 
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agreement with previous studies in that the flexible duct performance decreased with an 

increase in compression ratio. This latest flexible duct study is less appropriate to the 

study reported here, because the duct diameters are all much larger than those typically 

found in range hoods. 

Previous Research on Capture Efficiency 

Lawerence Berkeley National Laboratory (LBNL) has reported and conducted 

extensive research on studying range hood capture efficiencies starting in 2011, with a 

web-based survey gathering information about cooking appliance use in California 

homes (Klug, 2012). These results were used to set up an experimental study of capture 

efficiency (Singer, 22.3 (2012)). LBNL then performed experimental tests on fifteen 

cooking exhaust devices as installed in residences with regards to their ability to remove 

contaminants. Their experimental results were then analyzed and compared in order to 

quantify the impact of different parameters (range hood type, air flow rate, burner 

configuration) on capture efficiency.  In addition to converting and analyzing their data 

results in a series of plots, they also found that the back burner configurations with open 

range hoods have the highest capture efficiency performance. 

In another LBNL study, laboratory tests were conducted on seven new under-

cabinet hoods representing typical U.S design in order to assess range hood performance 

with regard to removing contaminants (Delp, 2012). Capture efficiency was measured 

for three burner configurations: both back burners, both front burners, and the oven. It 

was found that open hoods using back burner configurations have the highest capture 

efficiency, which is consistent with previous test results. 
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Previous Research on Vent Caps 

In 2011, extensive tests were performed on a wide variety of vent caps to 

evaluate vent caps performance over a wide flow rate range (Escatel, 2011). The 

pressure drop versus airflow rate relationship was measured for vent caps of different 

types, designs, and sizes. Soffit, wall-mount and roof jack vent caps of 4” and 6” were 

tested. The pressure drops across the vent caps for a range of flow rates were used to 

calculate nondimensional loss coefficients, with the results showing that loss coefficients 

can be used to predict pressure drops across vent caps over a range of air flow rates. 
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CHAPTER IV 

MATHEMATICAL MODELLING 

 

The first modeling step is to determine those components and their characteristics 

to be modeled and then to identify those mathematical equations that govern the 

component’s behavior. There are several major components in a range-hood ducting 

system that can affect the system performance., including flexible or rigid ducts, vent 

caps, and bends Each of these components are modeled here individually, and then 

combined to form a system model utilizes a capture efficiency model to fully evaluate 

the efficiency of range hood system along with the ducts to remove contaminants when 

operating real-world conditions. 

Pressure Drop in Flexible Duct 

A study by Weaver (Weaver, 2011) suggests that the pressure drop through 

metallic flexible ducts is comparable with that through non-metallic flexible ducts. 

Because there are no available references for pressure drops through metallic flexible 

duct, as was used in this study, the testing results of non-metallic flexible ducts reported 

by Weaver (Weaver, 2011) were then used to generate pressure drop model with 

compression effects. As noted, the modeling equation used to calculate pressure loss at a 

given air flow rate for a given duct size was developed based on the testing results 

reported by Weaver (Weaver, 2011), where the loss coefficient is defined as 

 
     

 

 
 
   

 
                                  (1) 
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and, 

 

 
  

  

 
     

 

 (2) 

 

In the above equations, the parameter L is the length of pipe, D is the hydraulic 

diameter for the pipe, V is the average velocity of the fluid flow, and    is the pressure 

loss. Furthermore the loss coefficients for 6 inch diameter flexible ducts used in this 

thesis can be defined by using duct diameter and airflow rate as follows. 

 
    

    

  ̇ 
 (3) 

 

   Pressure loss (inch WC/100ft) 

D  Duct diameter (inch) 

   Standard density of air (            ) 

 ̇  Air flow rate (cubic feet per minute, cfm) 

In the flexible duct model used here, the value of K’ was calculated by using Eq. 

3 based on test data taken from Weaver (Weaver, 2011). In that study, several 

configurations were tested, but it is assumed that the flexible duct installations are 

straight, with board supports, which all the test result used for the calculation of K’ here.  

The K’ values from Weaver (Weaver, 2011) for different duct sizes at various air flow 

rate are listed in Appendix A. It was found that K’ values are comparatively stable at 

different air flow rates; however, the values are sensitive to duct diameter and 

compression ratio. Therefore, for use here, a general model for flexible ducting was 

developed by averaging K’ values at different airflow rates over all these duct sizes. By 
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adding and averaging linear trend lines for the three duct sizes, it was found that there is 

approximately a linear relationship between K’ and the compression ratio for any given 

duct size. By comparing the pressure drop predicted by the flexible duct model averaged 

over all diameters with testing data, the general model was shown to have a large error 

of more than 20%, meaning that it is not appropriate for ducting system pressure drop 

modeling. Therefore as a next step, an individual model was developed for each duct 

size (6”, 8” and 10”) based on the linear relationship between K’ and compression ratios. 

For example, as shown in Figure 4, the 6 inch duct, which is the duct used in the thesis 

study, the loss coefficient equation is                   . The resulting pressure 

drop mathematical model, which also includes the above loss coefficient equation, for 6” 

flexible duct is shown in Eq.4, this is the mathematical model that can be used to 

calculate pressure drop as a function of flow in the flexible ducts found in this study. 

 

 
Figure 4. Averaged Loss Coefficient versus Compression Ratio for Flexible Ducts 
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(              )  ̇ 

  
 (4) 

 

    Pressure loss per 100 feet length of flexible duct (inch WC/100ft) 

C  Compression ratio (%) 

D  6” Duct diameter (inch) 

    Standard density of air (            ) 

 ̇   Air flow rate (cubic feet per minute, cfm) 

Pressure Drop in Rigid Ducts and Bends 

Pressure losses in rigid sheet metal ducts were modeled by using a power law 

equation, Eq. 5 as follows (Weaver, 2011). 

       (   )  (5) 

 

where 

   Pressure drop through rigid duct (inch WC/100feet)  

    Constant coefficient, 1.68E-05 (       (   ) ) 

    Volumetric flow rate in rigid ducts, cfm 

  Constant equals, 1.84 

For bends in rigid ducts, pressure losses were modeled by using the relationship 

given in Eq. 6. 

 
      

   

 
 (6) 
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where    is pressure loss due to friction (  );    is the bend loss coefficient;   is fluid 

density (     ), and   is the mean flow velocity (   ). After converting to British 

units, inputting parameter values, and introducing new parameters, then the original Eq.4 

become the following equation, Eq. 7. 

 
      

 ̇ 

      
 (7) 

 

Where 

   Pressure loss in a duct (inch WC) 

 ̇  Volumetric flow rate in the bends (cubic feet per minute, cfm) 

   Local fitting loss coefficient 

Fitting loss coefficients for sheet metal bends are listed in the Duct Fitting 

Database in ASHRAE Handbook, fundamentals, Chapter 35 (ASHRAE, 2005a). The 

rigid duct bend used in the tests reported here, is a 90 degree elbow with three gores, and 

the     equal to 1.5 as shown in Figure 5. According to the database, the approximate 

loss coefficient for this type of bend is equal to 0.34. 

 

 

Figure 5. Three Gore, 90 Degree Elbow, Diameter=6" (ASHRAE, 2005a) 
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Abushakra (Abushakra, 2002) showed that for bends in flexible ducts, there was big 

variance in loss coefficient with different conditions, which could not be calculated or 

summarized uniformly. In 2005 the ASHRAE Handbook, it is suggested to use 2.0 for 

any bend in flexible ducts. 

Pressure Drop through Wall Vent Caps  

Pressure drops across the vent caps installed at the system exit were modeled by 

using the data and analysis reported by Escatel (Escatel, 2011), who tested both 4” and 

6” vent caps, with the later diameter being the same as that used in this thesis study. 

Figure 6 shows loss coefficient changing with flow rate for 6 inch vent caps with labels 

Q to V representing a variety of wall-mounted vent cap types, and W and X representing 

two types of roof-mounted vent caps. It can be seen that when most airflow rates are 

above 100 cfm, then the loss coefficients for 6-inch vent caps are mostly constant, which 

can be used to calculate pressure drop through vent caps when airflow rate is above 100 

cfm. 
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Figure 6. Loss Coefficient versus Airflow Rate for 6" Vent Caps (Escatel, 2011) 

 

Using the results in Figure 6 at flow rates above 100 cfm, an average   value of 

1.48 for the six wall-mounted vent caps was used for the vent cap pressure loss 

calculation. Starting with the general loss coefficient equation presented earlier, namely 

Eq. 6, the working equation after inputting air properties and unit conversions is Eq. 8 as 

follows. 

               ̇  (8) 

   

where the vent cap pressure drop is in inch WC and  ̇ is the airflow rate in cfm. 

Total System Pressure Drop Model 

Total pressure loss in a range hood ducting system from the fan outlet to the vent 

cap discharge to the outdoors is calculated by combining Eqs 4 through 8, depending on 

the type of duct, either flexible or rigid. The equations used to model and calculate the 

pressure loss in the range hood ducting systems are Eqs 9 and 10, with Eq.9 being for 
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flexible ducting systems and Eq.10 being for rigid ducting systems. The parameter   is 

the length of ducts in inches, and the other terms have been specified previously. 

 
   

(              )  ̇ 

  
 

 

    
    

 ̇ 

      
            ̇  

 

(9) 

 

 
      (   )  

 

    
    

 ̇ 

      
            ̇  (10) 

 

It should be noted that the term 
 

    
 is based on the fact that the term is pressure 

drop per 100 feet, so 
 

    
 is the number of 100 feet intervals that the ducting system 

contains. 

Capture Efficiency of Residential Cooking Exhaust Hoods 

The purpose of the modeling efforts is to provide a tool for evaluating real-world 

systems, not just individual components such as fans and/or ducts acting separately, 

which is the limits of past models. In this regard, a capture efficiency model was 

investigated and with the other models presented and described previously to evaluate 

real world conditions for removing contaminants. 

The results of tests performed by LBNL to measure capture efficiencies of range 

hoods were used to model pollutant capture efficiencies of range hoods in the study 

reported herein. All of the range hoods tested in the LBNL research were under-cabinet 

hoods, meaning the hoods are attached to the underside of kitchen cabinets. LBNL found 

that capture efficiency can be influenced by system design, burners configuration (which 

burner is being used), range hood type, fan setting (high, medium or low speed) and 
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different cooking contaminants. Unfortunately, there is no standard equation to quantify 

capture efficiency as a function of flow rates due to the complexity of those multiple 

parameters. 

Therefore, in the research reported herein, the capture efficiency was modeled by 

using LBNL testing data, which used carbon dioxide as the tracking pollutant. In 

LBNL’s research, three configurations were tested: both back burners, both front 

burners, and the oven. Capture efficiency was measured by LBNL for each configuration 

at each fan operating point. The fact that these LBNL experiments included only the fan 

and not a real-world ducting system, demonstrates the importance of the study reported 

here, which shows capture efficiency and pollutant removal for systems installed in 

actual buildings. 

 For both front burners and oven configurations, there appear to be no uniform 

trend as airflow rate goes up. In contrast for both back burner configurations, capture 

efficiency goes up as the airflow rate increases, so the capture efficiency in this thesis 

was modeled by using data measured from both back burner configurations for under-

cabinet exhaust hoods. As summarized in Table 2 taken from LBNL research testing 

results (Delp, 2012). The CE versus cfm data from the table is plotted in Figure 7 and a 

trend line for all the data is also shown. 
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Table 2. Performance Assessment of US Residential Cooking Exhaust Hoods 

Hood 

Category 

Hood 

ID 
Capture efficiency (CE) for various cfm 

Single grease 

screen  

L1 
cfm 94 148 200    

CE 66 81 84    

B1 
cfm 86 119 148 179 210  

CE 52 65 77 86 96  

Microwave  M1 
cfm 147 173 280 348   

CE 77 79 99 90   

Flat-profile 

A1 
cfm 86 141 198 254 309  

CE 51 61 68 81 95  

E1 
cfm 68 120 138 176 190 222 

CE 49 68 74 78 79 81 

E2 
cfm 54 80 115 178 202 229 

CE 37 50 64 77 79 85 

Open capture  P1 
cfm 183 210 232 252 262  

CE 83 88 92 96 97  

 

 

 
Figure 7. Capture Efficiency at Different Airflow Rates (Delp, 2012) 
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The CE (%) versus airflow (cfm) equation represented by the Figure 7 trend line 

is as follows 

            ̇        ̇         (11) 

 

Eq11 is used herein to model capture efficiency as a function of cfm for under- 

cabinet range hoods with both back burner configurations. The value of integrating the 

fan and system model with the capture efficiency model is that a designer and engineer 

will be able to determine actual pollutant removal based on actual flow rate, which is 

much different than only knowing a capture efficiency value that changes with flow rate. 
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CHAPTER V 

TEST METHODOLOGY 

 

This chapter focuses on the laboratory setups used to evaluate range hood 

performance as installed in actual world setup used in real homes for real application. As 

a first step, field trips were made to actual residences and discussions to have with 

builders. Next, a fan selected for real-world evaluation was tested in an airflow chamber 

setup for the purpose of obtaining the fan performance curve. Thirdly, the range hood 

was tested in real world system that included ducting, bends, and vent caps.  

Field Trip: Present Day Range Hood Ducting System 

Flexible ducting has been widely used in range hood ventilation systems due to 

its flexibility, which makes installation easier, and low cost; however, as society has 

progressed, other considerations such as aesthetics and safety are getting more attention. 

Given to this situation, a field trip was made to “Fall Parade of Homes” held in Bryan 

and College Station, Texas to research nowadays residential range hood installation 

strategies in order to ensure that the testing of the range hood in this study mimicked 

actual installed condition according to the field trip results.  

It was found that, in the new houses being constructed, reasons that rigid ducts 

are widely used in range hood ducting systems instead of flexible ducts for safety 

reasons, that is to prevent grease build-up and fire hazards. In the field trip, all the 

houses visited were typical American style one-story houses. Discussions with house 

builders revealed that range hoods are usually vented through the side wall or through 
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the roof, with the roof plan being preferable due to aesthetics purpose. In some old 

apartments, flexible ducts are still used in range-hood ducting systems. Of special 

importance, range hood ventilation plan needs to be selected according to specific floor 

plans and kitchen structures. Several typical range hood ducting system were 

photographed and are shown in Figure 8. 

 

  

                                 (a)                                                              (b) 

 

(c) 

Figure 8. (a) Rigid Duct Vented Through Sidewall; (b) Rigid Duct Vented Through 

Roof; (c) Flexible Duct Vented Through Sidewall in Some Apartments 
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Airflow Test 

The range hood was first tested on the airflow chamber setup in Riverside Energy 

Efficiency Laboratory (REEL) for the purpose of obtaining the fan performance curve 

before it was tested in the real-world system. Airflow test setup and procedures are 

illustrated below. 

Airflow Test Setup 

Airflow Chamber Specifications 

Before the range hood and fan assembly was tested in a whole system, which 

included ducting and a vent cap, airflow tests were performed on only the range hood 

fan for the purpose of obtaining a fan performance curve. These tests were performed 

following HVI standard 916 standard procedures for testing and rating airflow, which 

are consistent with ANSI/AMCA 210-ANSI/ASHRAE 51standard.  The range hood 

tested in this study was manufactured by Cyclone, it is an under-cabinet range hood and 

three fan speeds (high, medium and low) with a six-inch duct outlet. 

These airflow tests that reflect in a fan performance curve were performed on the 

green airflow chamber as shown in Figure 9 located at the Riverside Energy Efficiency 

Laboratory (REEL). This chamber is delegated as a “Figure 12” unit, which is a 

technical description and delegation. This is an outlet chamber, which means that, when 

a fan assembly is mounted on the chamber, the chamber works as an outlet of the 

product, and air blows into the chamber. Usually a blower is installed at the exit of the 

chamber as the variable exhaust system helping adjust chamber static pressure. 
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Figure 9. Green Airflow Test Chamber Located at REEL 

 

Multiple air flow nozzles are used so that they can be blocked as necessary to 

achieve flow measurements over a wide airflow range requirement. Nozzle board layout 

is shown in Figure 10, and the size, cross section area and air flow range at differential 

pressure limits (0.25 to 2.5 inch WC) for each nozzle are listed in Table 3. 
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Figure 10. Nozzle Board Layout for the Green Air Flow Chamber 

 

 

Table 3. Green Air Flow Chamber Nozzle Information 

Nozzle Key 
ISO Dia 

(inch) 
ISO Area 

Single Nozzle Flow at 

Differential Pressure Limits 

1 0.94656 0.0048867 9.8-30.9 

2 1.35216 0.0099720 19.9-63 

3 3.03144 0.5012161 200.2-316.6 

4 4.27476 0.0996668 398.1-629.5 

5 6.75252 0.2486902 496.7-1570.8 

 

 

 

Range Hood Mounting Description 

The range hood and fan assembly prior to being tested was mounted on the 

chamber following specifications in HVI standard 916, The standard mounting method 
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for an outlet chamber and a horizontally ducted range hood is shown in Figure 11. 

Figure 12 presents test setup pictures, which is in accordance with the standard.  

 

A Horizontally Ducted 
Range Hood

 
Figure 11. HVI Standard 916 Standard Test Setup for an Outlet Chamber 

 

 

Figure 12. Range Hood Airflow Test Setup 

 

A piece of reflective tape was attached to the fan blade, and a Monarch speed 

sensor was then used to measure rpm by exporting a signal to an ACT-3X panel 

tachometer that can be read by the users. 
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The airflow test procedure used to measure data and to develop the fan curve 

consists of four major steps that are described below in sequence. 

Step 1: Start Program, input test information and initial test note. The air and   

sound measurement program operation interface is shown in Figure 13, along with  

Figure 12 nozzle chamber green selection tab.  

 

 

Figure 13. Airflow Test Program Operation Interface 

 

Step 2: Prior to testing data, the pressure transducers must be zeroed as shown in 

Figure 14 and then checks were made to make sure that the wet bulb and dry bulb, 

barometric pressure are reasonable. 

Airflow Test Procedure 
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Figure 14. Zero Pressure Transducers Panel 

 

Step 3: Fan performance curve generation. 

 Select appropriate nozzle code for the appropriate chamber and nozzle 

configuration. 

 Record the appropriate power consumption information. 

 Commit a point to collect data, and then hit next point to confirm data. Ten 

points are committed consecutively to finish the full fan curve. 

Step 4: Finish the test by export airflow reports to appropriate folders, and by 

taking photos of the product before removing the unit from the chamber. 
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Range Hood Ducting System Pressure Drop Test Setup 

Tests Description and Preparation 

The previous section described the test setup and procedure for developing the 

fan performance curve where this section does the same for a system setup consists of 

the range hood and fan assembly along with real-world ducting. 

The range hood and system were tested in two configurations based on the field 

trip survey results, namely flexible and rigid ducts exiting through side walls and 

ceilings respectively. Specifically, the range hood was vented through the side wall via 

flexible ducting and rigid ducting in Case 1 and through the ceiling via rigid ducting in 

Case 2. In both cases, the range hood was mounted on a mobile wire shelving platform 

for the purpose of being moved easily by adjusting the height of each shelf as desired. 

The test setup was mounted horizontally along a wall in the lab based on the fact that the 

direction of the duct either horizontal or vertical did not impact the range hood 

performance. The ducts were held along the wall by using wall mounted shelves as 

shown in Figure 15. 



 

37 

 

 

Figure 15. Case 1 (Flexible Duct) Pressure Measurement Test Setup 

 

Static Pressure Measurement 

Pressure data are important parameters and were taken to follow appropriate 

standards and procedures. Therefore in this research, pressure is measured by using 

pressure taps set up in a pressure ring following ASHRAE Standard 37 (ASHRAE, 

2005b), which specified dimensions for pressure taps as shown in Figure 16. For 

example, a tube of inner diameter D equals to ¼” was soldered to the outer plenum 

surface, and was centered over a hole of 1/8” drilled to form a pressure tap section. 

Figure 17 shows a pressure tap assembly made from a copper plate with the plates being 

cut into approximate 2”   2” square pieces, and the 1” length of ¼” inner diameter 

copper tubing was soldered to the center of the copper piece. 
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Figure 16. Pressure Tap Illustration 

 

 

Figure 17. A Well Made Pressure Tap Following Standards 

 

To complete the pressure tap assembly, for round ducts described above, four 

holes were drilled in the duct by using a 1/8” drill bit. The four holes are spaced equally 

around the circumference on the same cross section of the duct center line. The four 

pressure taps are then attached to the duct surface with the center line of each tube on the 

tap being aligned with the centerline of the holes drilled on the duct surface. The taps are 
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connected to each other using ½” inner diameter silicon tubing to create a pressure ring 

as shown in Figure 18, the purpose of the ring is to average the pressure. The blue parts 

are tubes.  

Pressure Taps

 

Figure 18. A Pressure Ring on a Round Duct 

 

 

For the range hood and system setup, pressure needs to be measured at two 

positions, and the two pressure rings are labeled as follows  

 P1: Range hood outlet pressure ring. 

 P2: Vent cap inlet pressure ring.  

P1 located at the fan outlet, is the pressure loss across the fan, which also means 

it is the pressure loss of the whole system, while P2 located upstream of the vent cap, is 

the pressure loss of the vent cap. Of special importance, the pressure loss for ducts with 

bends, meaning the flow region between the fan discharge and the vent cap inlet, is 

calculated by subtracting P2 from P1 for both Case 1 and Case 2 tests. The P1 pressure 

ring was on a separate circular piece of aluminum ducting, which enabled the pressure 
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ring remain fixed while changing ducts without attaching pressure taps to the removable 

ducts. The dimensions of the separate fixed pressure ring are shown in Figure 19, it can 

be seen that the four pressure taps located evenly around the circle surface (as described 

earlier and as specified by the standard), while the width  of the ring is  
 

 
” and diameter 

is 6”. 

 

2 1/8"

Ø 6"

Pressure Taps

 

Figure 19. Dimension of the Separate Fixed Pressure Ring 

 

 

To summarize, P1 is located at the outlet of the range hood to measure the 

pressure loss of the whole system, which is equivalent to the pressure loss across the fan. 

P2 is located three inches from the end of the vent cap duct, and the pressure taps are 

attached to the vent cap inlet using aluminum tape as shown in Figure 20. The vent cap 

used in the tests is a 6” round duct aluminum wall cap with damper.  
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Figure 20. Pressure Ring on the Vent Cap 

 

Case 1 Setup 

The range hood and fan assembly were installed as the test setup by following all 

the manufacturer recommended installation heights. The most common stove top height 

is 36 inches, and usually a range hood is installed at a height of 26” to 32” above the 

cooktop following guideline suggested by manufactures for best performance. For the 

ceiling height, sometime between 1995 and 2004 nine-foot ceilings replaced eight-foot 

ceilings as the most common ceiling height in single-family homes (Borson, 2010).  

The test setup dimension for flexible ducting system in Case 1 is presented in 

Figure 21 with the height of the cooktop being 36”, and the range hood being installed 

32” above the cooktop. For flexible duct testing, three different lengths of ducts (32”, 

46”, 75”) were mounted to exit a sidewall. Flexible duct lengths were measured by 
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laying the naturally relaxed duct on the floor and then achieved a compression ratio of 

about 23% compared to the fully stretched case. This compression ratio (i.e. 23%) is 

defined as natural compression ratio, which means that the compression ratio is 

measured when the flexible duct is at a natural status, without being stretched or 

compressed. All the flexible ducts installed in the experimental testing were with natural 

compression ratios. P1 as shown in Figure 21, located at the outlet of the range hood to 

measure the whole system pressure loss. P2 as shown located at the end of the duct 

length, just before the vent cap, measuring pressure drop through the vent cap. Rubber 

bend attachments were used to fasten the flexible ducts on the wall mounted shelve as 

shown in Figure 22.  

The test set up for rigid ducts is presented in Figure 23, with five different 

lengths (32”, 46”, 75”119”, 148”) of rigid ducts being tested. In this case, P1 located one 

diameter (i.e. 6”) from the range hood outlet in order to avoid the turbulent flow at the 

outlet. It is noted that for flexible ducting tests, P1 locates exact at the range hood outlet, 

because the folded inner surface of flexible ducts is a main cause for turbulence, so the 

turbulence at the exhaust outlet can be neglected. Rigid ducts are made of galvanized 

steel duct, and were cut by using a sheet metal brake. Various duct lengths were 

connected to make longer ducts with duct tape being used at the butts to prevent leakage.     
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Figure 21. Case 1 Test Setup Dimension (Flexible Duct) 

 

 

Figure 22. Flexible Duct Fastened to Shelving with a Rubber Attachment 
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Figure 23. Case 1 (Wall Vent) Test Setup Dimension (Rigid Duct) 

 

Case 2 Setup 

The test setup for Case 2 is similar to that used in Case 1, for the rigid ducting 

was set up in Figure 24 with some minor differences. For example, the Case 2 setup used 

the same duct lengths (32”, 46”, 75”, 119”, 148”) of rigid ducts that were used in Case 1 

were mounted to vent through the roof. According to the field trip, in a typical American 

style one-story residence, there is usually a bend above the ceiling that causes the duct to 

vent horizontally before venting outside instead of going straight up to the roof. In this 

study it is assumed that gravity will not impact range hood performance significantly, 
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which can be neglected. The fact that the rigid duct for the roof mount goes through the 

ceiling and is then directed horizontally to the outside can be seen in Figure 24. Due to 

the limited space in the lab and for test set up convenience. P1 located 6” from range 

hood outlet and in this case, the horizontal duct is 8” above the ceiling. Comparing the 

Case 1 wall setup in Figure 23 with the Case 2 roof setup in Figure 24, both being rigid 

ducts, one can observe that the Case 2 ducting length, even if the horizontal sections are 

of equal length for the two cases, must be longer than Case 1. The reason for this extra 

length is that the Case 2 roof mount ducting must reach the 9 feet high ceiling. By 

comparing Figure 23 and Figure 24, this extra length is determined as the difference 

between the distances from the floor to the horizontal duct, which is     -       . 
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Figure 24. Case 2 (Roof Vent) Test Setup Dimension (Rigid Duct) 

 

Data Acquisition and Instrumentation 

A data acquisition (DAQ) system was used to process signals and measure data 

in this research. The DAQ system shown in Figure 25 consists of three parts: pressure 

sensors, DAQ measurement hardware, and a computer with programmable software.  
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Figure 25. DAQ System 

 

Figure 26 shows the details of the pressure sensor board, with sensor 1 and 

sensor 2 being used in this study and sensor 3 being used as a spare. Both of the 

transducers send a 4-20 mA current output signal and then a 200  resistor is added 

between the two channels on the patch board, so that the current output signal is 

converted to a DAQ system voltage input signal ranging from 0.8 volts to 4 volts. Table 

4 lists the pressure sensor specifications while Figure 27 shows the sensor wiring 

diagrams. As shown in Figure 27 the sensors are connected to the NI9205 spring 

terminal connector, which is a 32-channel single-ended analog input module with a 

signal amplifier built-in made by National Instrument. The NI9205 is inserted to a 4-slot 

USB chassis with the model being cDAQ-9174 made by National Instruments. The 

chassis is connected to NI PXI-1042(Q) 8-slot PXI chassis with the chassis working as a 

main frame. The computer uses the voltage signal sent from DAQ board and transfers it 

to a pressure value by using a linear calculation.  
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Table 4. Detailed Information of the Sensors 

Sensors Manfr. Model Supply Range(i

n H2O) 

%Accurac

y(+/-FS) 

Drift Output 

   Dwyer 616-1 10-35VDC 0-3.0 0.25% .5%FS/yr 4-20mA DC 

   Dwyer 616-1 10-35VDC 0-3.0 0.25% .5%FS/yr 4-20mA DC 

 

1 2 3

 

Figure 26. Pressure Sensor Board 
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Figure 27. Sensors Wiring Diagram 

 

LabVIEW was used to acquire data during all testing. Because LabVIEW 

programs are called virtual instruments (VIs), meaning they use graphical languages for 

programming. Figure 28 shows the LabVIEW VI front panel with indicators added to 

the front panel to show graph and report measurements of both the voltage and pressure. 

After the front panel window is created, graphical source code is added in the block 

diagram window to control the front panel with Figure 29 showing the block diagram 



 

50 

 

 

Figure 28. LabVIEW Program Front Panel 
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Figure 29. Block Diagram in LabVIEW Program 

 

Test Procedure 

Step 1: First, set up the test, including installing the correct duct to the right duct 

length. 

Step 2: Start the range hood and let it run for at least 30 minutes. 

Step 3: Boot up the DAQ PC, and LabVIEW, open the program.  

Step 4: Calibrate the sensors at the beginning of each test period. The detail of 

pressure sensor calibration is present in Abstract C.  

Step 5: Zero the P1 and P2 pressure transducers.  

Step 6: Start the test, when the iterations reach 20, press stop button. The data 

will be saved automatically to the target folder. 
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Step 7: Measure the rpm manually using Monarch PLT200, which is a digital 

optical tachometer, write down the rpm every one second, in total 20 times. 

Step 8: Substitute data to the mathematical model built previously and analyze 

the data. 
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CHAPTER VI 

RESULTS AND DATA ANALYSIS 

 

Separate experimental tests were performed to obtain the fan performance 

curves, which utilized the air flow test setup, and to obtain the system performance 

curves, which used the range hood and ducting system setup. Once the above data 

measurements were performed, then a detailed analysis of the data and test results was 

done. 

Airflow Tests and Fan Curves 

 Figure 30 shows the range-hood fan performance curves obtained from airflow 

tests and data taken at three different fan speeds. The experimental curves shown in 

Figure 30 follow typical fan performance curve trends thus verifying the reliability of the 

tests. 

Figure 31 shows the RPM versus airflow rate measured data for each fan speed, 

and a number of conclusions can be drawn based on Figure 31 observations. For 

example, we can tell that as the static pressure goes up then the air flow rate decreases 

and the rpm increases. This phenomena can be explained by the fact that as static 

pressure goes up, there is more flow resistance, which results in a smaller airflow rate, 

and then the rpm goes up to compensate for the impact caused by the decrease in airflow 

rate.  

The fan curves in Figure 30 will later be used for generating system curves and 

operating points, while Figure 31 will later be used to calculate airflow rates during the 
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system analysis. 

 
Figure 30. Measured Fan Performance Curves at Different Fan Speeds 

 

 

 
Figure 31.  Measured RPM versus Airflow Rate at Different Fan Speeds 
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System Curves and Operating Points 

The fan curves obtained from the pressure drop and flow rate data in the previous 

section did not consider the system, meaning the ducts and bends that it might eventually 

be attached to. In the system tests that were performed in the previous section, the fan 

was integrated into a ducting system that resulted in a unique pressure drop and flow 

rate, otherwise called the operating point.  

 Test Results for Case 1 and Case 2 

Experiments were performed on the Case 1 and Case 2, namely the wall-mounted 

and roof mounted exhausts respectively, by using the test system and test procedures 

described in detail in an earlier section. Specifically, test results for Case 1 and Case 2, 

including measured pressure loss through the system (P1), measured pressure loss 

through the vent cap component (P2), measured pressure loss through the duct with bend 

component (P1-P2), and the rotation speeds, which was used to find airflow rates are 

presented in Table 5 and Table 6 for Case1 and Case 2, respectively. Additional 

explanation is appropriate to explain how airflow rates are obtained by using linear 

interpolations on RPM versus airflow rate curves. For every test, the rpm was recorded a 

total of twenty times at one second intervals, and then averaged as the representative fan 

speed for each test. Linear interpolations were then applied to calculate the airflow rate 

by using Figure 31 presented earlier.  
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Table 5. Test Results for Case 1 (Sidewall Vent Cap) 

Duct 

Type 

Duct 

Length

(inch) 

Speed P1 

(inch  

WC) 

P2 

(inch 

WC) 

P1-P2 

(inch 

WC) 

Rotational 

Speed(rpm) 

Airflow 

rate(cfm) 

Rigid 

Duct 

32 

High  0.393 0.329 0.064 1865.25 295.103 

Medium 0.235 0.195 0.040 1439.45 229.132 

Low 0.123 0.105 0.018 1065.1 163.569 

46 

High  0.376 0.302 0.074 1844.5 298.426 

Medium 0.223 0.178 0.045 1417.1 232.122 

Low 0.118 0.096 0.022 1052.85 165.282 

75 

High  0.355 0.254 0.101 1835.6 299.85 

Medium 0.214 0.152 0.062 1415.6 232.323 

Low 0.118 0.081 0.037 1046.15 166.218 

119 

High  0.376 0.246 0.130 1832.6 300.331 

Medium 0.230 0.153 0.077 1415 232.403 

Low 0.122 0.083 0.039 1047.25 166.064 

148 

High  0.396 0.253 0.143 1852.7 297.113 

Medium 0.240 0.153 0.087 1437.5 229.393 

Low 0.134 0.085 0.049 1067 163.303 

Flexible 

Duct 

32 
High  0.627 0.172 0.455 2030.24 265.047 

Medium 0.378 0.107 0.271 1581.43 207.383 

Low 0.202 0.061 0.141 1172.57 149.228 

46 
High  0.669 0.146 0.523 2052.17 259.995 

Medium 0.393 0.092 0.301 1591.33 206.318 

Low 0.208 0.054 0.154 1177.14 148.663 

75 
High  0.700 0.106 0.594 2068.77 256.172 

Medium 0.426 0.066 0.360 1613.89 202.838 

Low 0.227 0.038 0.189 1187.21 147.420 

 

 

 

Table 6. Test Results for Case 2 (Through Roof Vent Cap) 

Duct 

Type 

Duct 

Length 

(inch) 

Speed 
P1(inch 

WC) 

P2(inch 

WC) 

P1-P2 

(inch 

WC) 

Rotational 

Speed 

(rpm) 

Airflow 

rate(cfm) 

Rigid 

Duct 

32 

High 0.359 0.270 0.089 1821.9 302.044 

Medium 0.215 0.161 0.054 1409.1 233.192 

Low 0.119 0.089 0.030 1043.5 166.589 

46 
High 0.360 0.260 0.100 1830.9 300.603 

Medium 0.215 0.155 0.060 1410.45 233.012 
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Table 6. Continued 

Duct 

Type 

Duct 

Length

(inch) 

Speed 
P1(inch 

WC) 

P2(inch 

WC) 

P1-P2 

(inch 

WC) 

Rotational 

Speed 

(rpm) 

Airflow 

rate(cfm) 

Rigid 

Duct 

46 Low 0.116 0.085 0.031 1048.7 165.862 

75 

High 0.377 0.253 0.124 1844.6 298.890 

Medium 0.228 0.153 0.075 1428.75 230.563 

Low 0.127 0.086 0.041 1057.65 164.611 

119 

High 0.389 0.240 0.149 1841.6 298.890 

Medium 0.230 0.142 0.088 1422.3 231.426 

Low 0.130 0.080 0.050 1049.55 165.743 

148 

High 0.406 0.239 0.167 1868.05 294.927 

Medium 0.243 0.143 0.100 1442.5 228.188 

Low 0.132 0.079 0.053 1071 162.604 

 

 

Predicted Pressure Loss for Case 1 and Case 2 

The predicted pressure losses through individual components of the tested range 

hood ventilation system were obtained by using the mathematical models developed in 

Chapter IV. Pressure losses through flexible ducts and rigid ducts were calculated by 

using Eq.4 and Eq. 5, respectively. Of special importance, the equations need to be 

multiplied by L/1200 in order to obtain pressure loss through the whole duct length 

because L is in inches and the pressure loss calculation is for 100 feet of ducting. 

Pressure loss through bends in flexible ducts or rigid ducts can be predicted by using 

Eq.7, with different loss coefficients for the two types of ducts being used. Finally Eq.8 

can be used to predict pressure losses across the vent cap component. To obtain the total 

pressure loss through the whole system, either simply sum up the pressure loss through 

individual components (i.e. ducting, bends and vent caps) or use Eq.9 and Eq.10 for 

flexible and rigid duct range hood systems, respectively. Predicted pressure loss results 
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for Case 1(flexible and rigid ducts) and Case 2 (rigid ducts) are presented in Table 7, 

Table 8 and Table 9. The pressure drops (loss) in these three tables are listed as follows, 

P1 Predicted pressure loss through the whole system 

P2 Predicted pressure loss through the vent cap  

P1-P2 Predicted pressure loss through the duct with bend part 

P3 Predicted pressure loss through the duct  

P4 Predicted pressure loss through the bend  

along with airflow rates. 

 

 

Table 7. Predicted Pressure Loss for Case 1 (Flexible Ducts) 

 

 

Table 8. Predicted Pressure Loss for Case 1 (Rigid Ducts) 

Duct 

Length 

(inch) 

Fan 

Speed 

Airflow 

rate(cfm) 

P1(inch 

WC) 

P2(inch 

WC) 

P1-P2 

(inch 

WC) 

P3(inch 

WC) 

P4(inch 

WC) 

32 
H 295.103 0.276 0.209 0.067 0.019 0.048 

M 229.132 0.167 0.126 0.041 0.012 0.029 

Duct 

Length 

(inch) 

Fan 

Speed 

Airflow 

rate(cfm) 

P1(inch 

WC) 

P2(inch 

WC) 

P1-P2 

(inch 

WC) 

P3(inch 

WC) 

P4(inch 

WC) 

32 

H 265.047 0.588 0.168 0.420 0.192 0.228 

M 207.383 0.360 0.103 0.257 0.118 0.139 

L 149.228 0.186 0.053 0.133 0.061 0.072 

46 

H 259.995 0.633 0.162 0.470 0.251 0.219 

M 206.318 0.398 0.102 0.296 0.158 0.138 

L 148.663 0.207 0.530 0.154 0.082 0.072 

75 

H 256.172 0.748 0.157 0.590 0.378 0.213 

M 202.838 0.469 0.099 0.370 0.237 0.133 

L 147.420 0.248 0.052 0.195 0.125 0.070 
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Table 8. Continued 

Duct 

Length 

(inch) 

Fan 

Speed 

Airflow 

rate(cfm) 

P1(inch 

WC) 

P2(inch 

WC) 

P1-P2 

(inch 

WC) 

P3(inch 

WC) 

P4(inch 

WC) 

32 L 163.569 0.085 0.064 0.021 0.003 0.015 

46 

H 298.426 0.289 0.214 0.076 0.027 0.049 

M 232.122 0.176 0.129 0.046 0.017 0.030 

L 165.282 0.089 0.065 0.024 0.009 0.015 

75 

H 299.85 0.307 0.216 0.091 0.041 0.050 

M 232.323 0.185 0.129 0.056 0.026 0.030 

L 166.218 0.095 0.066 0.029 0.014 0.015 

119 

H 300.331 0.330 0.216 0.114 0.064 0.050 

M 232.403 0.200 0.129 0.070 0.040 0.030 

L 166.064 0.103 0.066 0.037 0.021 0.015 

148 

H 297.113 0.337 0.211 0.126 0.077 0.049 

M 229.393 0.203 0.126 0.077 0.048 0.029 

L 163.303 0.104 0.064 0.040 0.026 0.015 

 

 

 

Table 9. Predicted Pressure Loss for Case 2 (Rigid Ducts) 

Duct 

Length 

(inch) 

Fan 

Speed 

Airflow 

rate(cfm) 

P1(inch 

WC) 

P2(inch 

WC) 

P1-P2 

(inch 

WC) 

P3(inch 

WC) 

P4(inch 

WC) 

32 

H 302.044 0.302 0.219 0.083 0.033 0.050 

M 233.192 0.181 0.130 0.05 0.020 0.030 

L 166.589 0.093 0.067 0.027 0.011 0.015 

46 

H 300.603 0.306 0.217 0.089 0.040 0.050 

M 233.012 0.185 0.130 0.055 0.025 0.030 

L 165.862 0.094 0.066 0.028 0.013 0.015 

75 

H 298.890 0.316 0.214 0.103 0.054 0.049 

M 230.563 0.190 0.127 0.063 0.033 0.029 

L 164.611 0.098 0.065 0.033 0.018 0.015 

119 

H 298.89 0.339 0.214 0.125 0.076 0.049 

M 231.426 0.205 0.128 0.077 0.047 0.030 

L 165.743 0.107 0.066 0.041 0.026 0.015 

148 

H 294.927 0.344 0.208 0.136 0.088 0.048 

M 228.188 0.210 0.125 0.084 0.055 0.029 

L 162.604 0.108 0.064 0.044 0.030 0.015 
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Comparison between System Curves for Case 1 and Case 2  

In this section, Case 1 and Case 2 results for predicted and actual system curves 

are compared and analyzed. Specifically, Figure 32, Figure 33 and Figure 34 compare 

system curves for Case 1 (flexible ducts), Case 1 (rigid ducts) and Case 2 (rigid ducts), 

respectively. All solid lines stand for predictions, and dashed lines stand for the actual 

situation based on experimental data. From these figures, it can be observed that for all 

cases both predicted and actual pressure losses increase as the duct lengths are increased. 

Also, pressure losses in the flexible duct system changes more than those in the rigid 

duct systems as duct lengths increase. For example, comparing 75” and 32” duct lengths 

for flexible and rigid ducts at high fan speeds, the flexible duct length is 2.34 times 

longer while the pressure loss is 12.72 times higher. In contrast for rigid ducts, when the 

duct length is increased by the same amount, then the pressure loss is only increased by 

1.11 times.   

Additional analysis of the results in Figure 32 through 34 reveal that, for the 

flexible duct system, there is no uniform comparison trend over all flow rates as flexible 

duct lengths get longer. For example, when flexible duct lengths are equal to 46”, then 

the predicted system curve almost overlaps with the actual system curve, while at duct 

lengths less than 46”, then the predicted pressure loss is lower than the actual pressure 

loss. Finally, as flexible duct lengths are increased beyond 46”, the predicted pressure 

loss is higher than the measured pressure loss. 

 In contrast to the comparison for the flexible duct situation, predicted pressure 

drop system curves are always lower than actual system curves for all rigid duct lengths 
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at each fan speed. This comparison for the rigid duct systems means that pressure losses 

in the real situation are always higher than those predicted by the model.  

 

Figure 32. Comparison between System Curves for Case 1 (Flexible Ducts) 

 

Figure 33. Comparison between System Curves for Case 1 (Rigid Ducts) 
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Figure 34. Comparison between System Curves for Case 2 (Rigid Ducts) 
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Figure 35. Comparison between Operating Points for Case 1 (Flexible Ducts) 

 

Predicted and actual operating points for Case 1 and Case 2 rigid duct ventilation 
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Figure 36. Comparison between Operating Points for Case 1 (Rigid Ducts) 

 

Figure 37. Comparison between Operating Points for Case 2 (Rigid Ducts) 
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Figure 38. Comparison between Operating Points for 75" Duct Length in Case 1 

(Rigid Duct) 

 

Figure 39. Comparison between Operating Points for 75" Duct Length in Case 2 

(Rigid Duct) 
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operating point that has a lower flow rate and higher pressure compared to Case 2, the 

rigid duct which has a higher flow rate and lower pressure. 

The x and y values of operating points for all cases are listed in Table 10, where 

y is the static pressure in inch WC and x is the airflow rate in cfm. The percentage 

difference shown is the difference between the actual value and the predicted value 

divided by the actual value and then converted to a percentage (multiplied by 100). A 

positive percentage means the actual value is larger than the predicted value, while a 

negative percentage means the opposite. We can see that the percentage difference for 

flexible ducts is higher than that of rigid ducts, which means that the mathematical 

model for rigid-duct ventilation system is able to make design predictions more 

accurately than the mathematical model for flexible ducts.  

It can be observed that in Table 10 that predicted and actual values for flexible 

ducts are close, ranging from 3% to 13% differences, even though there are no uniform 

trends for flexible duct system operating points. The predicted and actual rigid duct 

system can also be compared by using the results in Table 10. For the rigid-duct system, 

x and y values in both cases at each fan speed do not show much difference between 

predicted and actual values. For example, taking an average of the x and y values from 

both cases at low fan speeds, the predicted air flow rate is 0.9% higher than the actual 

flow rate, and the predicted static pressure is 6% lower than actual value. At the medium 

fan speed, the predicted air flow rate is 0.5% higher than the actual value, while the 

predicted static pressure is 8% lower than the actual one. Nearly all of the percentage 

differences are less than 10%, which indicates that the mathematical model is adequate 
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for predicting pressure drops and flow rates (i.e. operating points) in flexible and rigid 

ducting range hood ventilation systems, considering the fact that in the real-world other 

parameters may have uncertainties of 10% or more. 

 

Figure 40. Comparison of Operating Points for Case 1 and Case 2 

 

 

Table 10. x and y Value of Operating Points for Each Case 
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Impact Analysis 

Nomenclature are introduced for a clear understanding. In the impact analysis, 

several new terms, including, ducting component (duct and bend combined), vent cap 

component and total system. They are similar to previous terms such as duct part, vent 

cap and whole system used in previous sections, yet they are slightly different in some 

cases more descriptive. 

In this section, pressure drops both predicted and actual are compared and 

analyzed for major system components, namely the vent cap component and the ducting 

component (duct and bend combined) and for the total system, which is the summation 

of the two major components. Selecting the 75” duct length for analysis, the predicted 

and actual pressure losses through the vent cap component, ducting component and the 

total system for Case 1 are shown in Figure 41 and Figure 42 for flexible and rigid ducts, 

respectively. Solid lines stand for predicted and the dashed lines stand for the actual 

situation. The pressure loss comparisons for the other duct lengths are present in 

Appendix E.  

Analyzing the curves in Figure 41 and Figure 42 shows that for the flexible duct 

system, the ducting component is more influential than the vent cap on the range-hood 

system performance, which means that the total system pressure drop mainly comes 

from the pressure drop of the flexible ducting component. In contrast, for the rigid-duct 

system, the vent-cap component has a stronger impact than the rigid duct on the total 

system pressure drop, which also explains why the pressure drop through the rigid 

ducting component does not change much as the duct gets longer. The impacts of the 
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individual components in Case 2 are compared to the component impacts in Case 1(rigid 

duct) in Figure 43. Again the vent cap component is more influential than the rigid 

ducting component.   

 

 

Figure 41. Actual and Predicted Pressure Loss for Components and Total System 

for 75" Duct Length in Case 1 (Flexible Duct) 
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Figure 42. Actual and Predicted Pressure Loss for Components and Total System 

for 75" Duct Length in Case 1 (Rigid Duct) 
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Figure 43. Comparison of Individual Component Impact  

Between Case 1 and Case 2 
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operating systems. Therefore the capture efficiency results for Case 1 and Case 2 at 

operating points are presented in Table 11 and Table 12, respectively 

 

 

Table 11. Capture Efficiency for Case 1 

Duct Length and 

Fan Speed 

Capture Efficiency for Case 1 (%) 

Flexible Duct Rigid Duct 

Duct Length (inch) 32 46 75 32 46 75 119 148 

High 93 93 92 94 94 95 95 94 

Medium 86 86 85 89 90 90 90 89 

Low 74 73 73 77 78 78 78 77 

 

 

 

Table 12. Capture Efficiency for Case 2 

Duct Length and 

Fan Speed 

Capture Efficiency for Case 2 (%) 

Rigid Duct 

Duct Length (inch) 32 46 75 119 148 

High 95 95 95 95 94 

Medium 90 90 89 90 89 

Low 78 78 77 78 77 

  

The capture efficiencies in Table 1for Case 1 flexible ducts are plotted in Figure 

44, while capture efficiencies for rigid ducts in Case 1 and Case 2 are plotted together in 

Figure 45. 
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Figure 44. Capture Efficiency for Flexible Ducts (Case 1) 

 

 
Figure 45. Capture Efficiency for Rigid Ducts (Case 2) 
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An analysis of the capture efficiency results for actual operating points presented 

in Table 11 and Table 12, along with results in Figure 44 and Figure 45, provides 

significant insight into how range-hood systems should be designed to remove 

contaminants. Observations of both figures show that capture efficiency for both flexible 

ducts and rigid ducts at the same fan speed even overlap for different duct lengths. To 

summarize, it would appear that for the fan and system setup, the capture efficiency is 

mainly a function of fan speed.  

The comparison of capture efficiencies between flexible ducts and rigid ducts is 

shown in Figure 46. Capture efficiencies for rigid-duct ventilation systems are higher 

than that of flexible-duct systems by about 5.4% when working at the same fan speed. 

 

 

Low Fan Speed

High Fan Speed

Medium Fan Speed

 
Figure 46. Comparison of Capture Efficiency between Flexible and Rigid Ducts 
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CHAPTER VII 

CONCLUSIONS 

 

The purpose of this study is to evaluate the performance of range-hood fans in 

real systems that include ducts and vent caps. The basis for this performance evaluation 

of real systems is a series of experiments performed to obtain a fan curve and also to 

evaluate a range-hood and fan assembly connected to a variety of ducting systems that 

are representative of what is found in actual homes. In addition, mathematical models 

were developed to predict range-hood ventilation system performances. The predicted 

values and the measured results were compared to perform an analysis and assessment of 

real world range hood operations and to provide a design tool for the future. Finally the 

real-world data in this study produced flow rates for actual fans and ducting systems, 

which means that for the first time that laboratory measured capture efficiencies as a 

function of flow rates could now be applied to real-world situations. 

Comparisons of predicted and measured results show that for rigid ducts at all 

lengths for all situations, the predicted system pressure losses are lower than measured 

pressure losses. With regard to operating points at low fan speeds, the predicted air flow 

rates are about 1% higher than the flow rates for actual situations, while the predicted 

static pressure is lower than the actual situation by about 6%. For the operating point at a 

high fan speed, the predicted air flow rate is 0.5% higher than actual flow rate, while the 

predicted static pressure is lower than the actual one by 8.1%. All the differences 

between predicted and actual data for rigid ducts are less than 10%, which means that 
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the mathematical model developed for rigid-duct range hood ventilation can successfully 

and can predict the range hood system performance.  

For flexible ducts, the trends between predicted and test results are not uniform 

in that predicted pressure losses can be higher or lower than measured results depending 

on the length of the flexible duct. In terms of predicted and actual operating points, the 

percent pressure difference can be as large as 13%, while flow rate differences are about 

3%. 

The impact of individual components (e.g. ducting, bends and vent caps) on 

range-hood system performances was analyzed. It was found that for the flexible duct 

system, the ducting component has a larger influence on the total system pressure drop 

compared to the vent cap component. For rigid-duct range-hood systems, the impact of 

the vent cap component is larger than that of the rigid duct component.  

Capture efficiencies based on laboratory data found in the literature are basically 

a function of air flow rates through the range hood for any given unit. The actual flow 

rates and capture efficiencies for a number of units were averaged to develop a single 

equation for capture efficiencies as a function of flow rate. The actual flow rate data for 

the actual range hood and ducting systems measured in this study were then used to find 

non-laboratory real-world value. The results herein found that capture efficiencies do not 

differ much for different duct lengths in the same configuration, with the reason being 

that airflow rates do not change much as the duct length changed.  At the same fan 

speed, rigid-duct range-hood systems have higher capture efficiencies compared to 

flexible duct range hood systems, with capture efficiency values being 90% and 85% 
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respectively at high fan speeds. Of special importance, fan speeds have the largest effect 

on capture efficiencies with values varying from 75% to 95% for fan speeds varying 

from low to high. 

For future range hood ducting design, it is recommended to use rigid ducts rather 

than flexible ducts for a better performance and a higher capture efficiency. Also, for a 

rigid duct ventilation system, a vent cap with smaller loss coefficients can help improve 

the whole system performance.  
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APPENDIX A 

 

Figure 47. Data Used for Developing Pressure Drop Mathematical Model 
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APPENDIX B 

Unit Conversion for Pressure Loss in Six Inch Circular Duct 
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APPENDIX C 

Pressure sensor calibration 

The DAQ platform sent voltage signals to the computer, and the voltage signal 

was transferred to a pressure value by using Eq.12,  where a and b are parameters to be 

calibrated, x is the voltage signal accepted by the computer, and y is the pressure 

readings reported to users. Y changed linearly with x value. The Fluke 717 1G pressure 

calibrator was used for pressure sensor calibration. A manometer as shown in Figure 48 

was used to provide external pressure. Differential pressure transmitter can sense the 

pressure of air by adjusting the height of the water.  

        (12) 

 

Water

 

Figure 48. Manometer Used for Reference Pressure Supply 
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Manometer

Pressure

Sensor

Pressure 

Calibrator

 

Figure 49. Tube Connection for Pressure Calibration 

 

Figure 49 shows the tube connections for pressure calibration. The manometer 

was connected to the pressure calibrator (Fluke) and the pressure sensor to provide a 

reference pressure. Adjusting the height of the water to give a pressure supply, taking 

0.5, 1, 1.5, 2, 2.5 inches of water as target static pressure, adjusting the water height, and 

when the readings shown on Fluke reached the target static pressure, recording the 

pressure value as the reference pressure, that is y value, starting the test, and the value 

that was measured is the voltage, namely x value. Use x and y values to generate a linear 

relationship between x and y by adding a trend line, and then a and b values can be 

decided. In this way, a pressure sensor was calibrated. It is suggested that at the 

beginning of everyday test, the sensors should be calibrated, and checked a couple of 

times during the testing period. 
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APPENDIX D 

 

Figure 50. Test Setup for Case 2 

 

 

 

 

 

 



 

85 

 

APPENDIX E 

Predicted and real pressure losses through the vent cap component, ducting 

component and the total system for all other duct lengths in Case 1 are present here. 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

 

(f) 

Figure 51. Actual and Predicted Pressure Loss for Components, and Total System 

for Case 1, (a) 32" Flex Duct; (b) 46" Flex Duct; (c) 32" Rigid Duct, (d) 46" Rigid 

Duct, (e) 119" Rigid Duct, (f) 148" Rigid Duct  
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