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ABSTRACT

Uniformly most powerful Bayesian tests (UMPBTs) are defined to be Bayesian

tests that maximize the probability that the Bayes factor against a fixed null hy-

pothesis exceeds a specified evidence threshold. Unfortunately, UMPBTs exist only

in a relatively limited number of testing scenarios, and in particular they cannot

be defined for most tests involving linear models. In this dissertation, I generalize

the notion of UMPBTs by restricting the class of alternative hypotheses that are

considered in the test of a given null hypothesis. I call the resulting class of Bayesian

hypothesis tests restricted most powerful Bayesian tests (RMPBTs). I then derive

RMPBTs for linear models by restricting the class of possible alternative hypotheses

to g-priors.

An important feature of the resulting class of tests is that their rejection regions

coincide with the rejection regions of usual frequentist F -tests, provided that the

evidence thresholds for the Bayesian tests are appropriately matched to the size

of the classical tests. This correspondence leads to the definition of default Bayes

factors for many common tests of linear hypotheses. I illustrate the use of RMPBTs

in the special cases of ANOVA and one- and two-sample t-tests. I then use RMPBTs

to develop a novel Bayesian variable selection method and compare its performance

to other Bayesian tests based on g-priors in a sequence of numerical examples.

Finally, a software package for R is detailed which implements the RMPBTs

described herein as well as many of the UMPBTs that have been developed.
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1. INTRODUCTION

This dissertation describes advances in Bayesian hypothesis testing and model

selection, with special application to linear models. To begin, we describe some

notation and preliminaries. Let ǫ be a normal random vector of length n with mean

0 and covariance matrix σ2I for some σ2 > 0. Let X be a fixed matrix of dimension

n × p for some p > 0 and let β be a (possibly fixed or random) vector of length p.

The general linear model for the random vector y is given by

y = Xβ + ǫ.

Often in scientific research it is desirable to determine whether a specific X, call

it X1, is more appropriate than another, which might be called X0. This could be

due to a desire to test some hypothesis H0 versus an alternative H1, wherein H0 and

H1 are stated in terms of X0 and X1, or it could form a single step in some general

routine to select an X from among a large number of candidates.

In both cases, Bayesian methods commonly compare the appropriateness of X1

and X0 by comparing the probability that each is “right”, given y, with some ad-

ditional assumptions on β and ǫ. These conditional probabilities are calculated via

Bayes’ theorem, which provides a mathematical method for updating prior beliefs

about the probabilities of X1 and X0 with new information from the data. The

simplest form of the theorem can be written

P(A|B) =
P(B|A)P(A)

P(B)
,

where A and B are events and P(·) denotes a probability. Bayes theorem can be
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easily modified to express the odds of event A given B. In this form, it is called

Bayes’ rule, and the simplest version is

P(A|B)

P(AC |B)
=

P(B|A)
P(B|AC)

· P(A)

P(AC)
,

where AC denotes the complement of event A. If one regards AC as the event that

some null hypothesis H0 is true, and A as the event that an alternative hypothesis H1

is true, and B as the event that a given data set y is sampled from the population,

Bayes’ rule can be written as

P(H1|y)
P(H0|y)

=
m(y|H1)

m(y|H0)
· P(H1)

P(H0)
,

where m(y|Hi) is a probability mass function under hypothesis i. With a limiting

argument we can show that the relation holds for probability density functions as

well, which is the case to which we will restrict attention hereafter. It is easily seen

that the posterior odds in favor of the alternative hypothesis equal the prior odds

times the ratio of the marginal densities on y. This ratio is known as the Bayes

factor, and it is written more explicitly as

BF10 =
m(y|H1)

m(y|H0)
=

∫

Θ
f(y|H1,θ)π(θ|H1) dθ

∫

Θ
f(y|H0,θ)π(θ|H0) dθ

,

where f(y|Hi,θ) is a density function in y indexed by the parameter vector θ given

hypothesis i (i ∈ {0, 1}), and π(θ|Hi) is a density in θ, given hypothesis i.

The prior density of the parameter vector θ under the alternative hypothesis,

π(θ|H1), is not necessarily specified by the research problem at hand. Frequently

the Bayes factor is very sensitive to the choice of this density, even for large sample

sizes, and the absence of an objective selection opens researchers to criticism of
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subjectivity. In 2013, Johnson [2] defined Uniformly Most Powerful Bayesian Tests

(UMPBTs), and in so doing, introduced a default prior π(θ|H1) for one-parameter

exponential family models. He concluded:

Additional research is needed to identify classes of models and testing

contexts for which UMPBTs can be defined. The UMPBTs described in

this article primarily involve tests of point null hypotheses, or tests that

can be reduced to a test of a point null hypothesis after marginalizing

over nuisance parameters. Whether UMPBTs can be defined in more

general settings remains an open question.

This dissertation describes a set of findings which extend the results in Johnson

[2, 1] to tests of a point null hypothesis and model selection methods in the general

linear model. Along the way, two other prominent themes from Johnson’s work

receive additional attention: the equivalence (or non-equivalence) of frequentist and

Bayesian tests, and statistical power. These themes underscore the rationale behind

the most powerful Bayesian tests described and highlight some interesting features

they possess.

The dissertation is organized as follows. Section 2 provides a literature review

of Bayesian testing, UMPBTs, Bayesian and frequentist testing equivalence, g pri-

ors, Bayesian model selection, and R computing for Bayesian hypothesis testing

and model selection. Section 3 describes Restricted Most Powerful Bayesian Tests

(RMPBTs) and applies them specifically to linear models using a g prior. Section

4 develops a model selection framework using g prior-RMPBTs and compares it to

previously proposed model selection methods in a simulation routine. Section 5 de-

scribes an R package, MPBT, which provides easy-to-use functions for implementing

the tests in Johnson’s work and these chapters. Section 6 provides a summary of
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the developments herein and proposes further research. Proofs to the theorems in

Section 3 are found in Appendix A.
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2. LITERATURE REVIEW

This chapter briefly reviews six topics in the statistical literature which will

be treated in the development of this dissertation. Subsection 2.1 gives a general

overview of Bayesian hypothesis testing. Subsection 2.2 reviews the short history of

Uniformly most powerful Bayesian testing. Subsection 2.3 describes equivalences be-

tween Bayesian and frequentist hypothesis tests and Subsection 2.4 reviews Zellner’s

g prior in the general linear model. Subsection 2.5 summarizes in brief fashion the

extensive literature on Bayesian model selection, and Subsection 2.6 touches on the

major packages that have been developed for Bayesian hypothesis testing and model

selection in R.

2.1 Bayesian Testing

An early development of Bayesian hypothesis testing can be found in Jeffreys [3].

He showed the need to specify a prior density on the parameter of interest under the

alternative hypothesis but did not prescribe a specific method to set priors under

alternative hypotheses. Instead, he mentioned that multiple such priors may need to

be explored, and that prior information should be taken into account. Outside the

context of hypothesis testing, Jeffreys [4], many before him (e.g. [5]), and many since

(e.g. [6]) have sought non-informative priors that can be assumed in the absence of

prior knowledge.

Bayes factors, the critical component in a Bayesian test, were given a general

overview in Kass and Raftery [7]. Smith and Spiegelhalter [8] distinguished between

global and local Bayes factors, finding in the former a relationship to the Schwarz

information criterion, and in the latter a relationship to the Akaike information

criterion.
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Bayesian tests of specific models are described in Gelman [9], Rouder et al. [10],

and Solari, Liseo, and Sun [11], who discussed ANOVA, and Rouder et al. [12], who

discussed t-tests. Between these references, there is no consensus regarding prior

specification under the alternative hypothesis.

2.2 Uniformly Most Powerful Bayesian Testing

Johnson [2] described the problems associated with subjective Bayesian methods,

including the specification of a prior density in hypothesis testing. He commented

that “subjective Bayesian testing procedures have not been–and will likely never be–

generally accepted by the scientific community.” Following this, he defined a Uni-

formly Most Powerful Bayesian Test for evidence threshold γ [UMPBT(γ)] against a

fixed null hypothesis H0 to be the hypothesis test in favor of an alternative hypoth-

esis H1 that maximizes the probability that the Bayes factor in favor of H1 exceeds

the evidence threshold γ. That is, the UMPBT(γ) test satisfies

Pθ[BF10(y) > γ] ≥ Pθ[BF20(y) > γ],

for all possible values of θ and all alternative hypotheses H2.

Next, he showed that UMPBTs exist for one-parameter exponential family models

under mild regularity conditions and derived the UMPBTs for one- and two-sample

z tests, tests of a binomial success probability, tests of linear regression coefficients

when σ2 is known, and several other models. Finally, he provided approximate

UMPBTs for one-sample t tests and tests of linear regression coefficients when σ2 is

unknown.

Johnson [1] revised the approximate UMPBT for the one-sample t-test and pro-

vided an approximate UMPBT for the two-sample t-test, while still acknowledging

their limited usefulness due to the large sample size required to satisfy the approxi-
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mation and their data-dependence.

2.3 Bayesian and Frequentist Testing Equivalence

An important property of the UMPBTs described in Johnson [2] is that the

rejection regions for these tests (i.e., the values of y for which BF10 > γ) can be

made to coincide with the rejection regions for classical uniformly most powerful

tests (UMPTs) by setting γ as a particular function of the size of the classical test α.

In this way, a p-value and a Bayes factor which result in the same conclusions can be

computed and compared. In one example of a phase II clinical trial, Johnson found

that a p-value of 0.05 corresponded to a posterior probability in favor of the null of

between 0.13 and 0.30 if equal prior probabilities were assigned to each hypothesis. In

[1], Johnson found that for a range of common tests, a p-value of 0.05 corresponded to

a posterior probability of the null hypothesis (still assuming equal prior probabilities

on the hypotheses) of between 0.17 to 0.25, while a p-value of 0.01 corresponded

to a posterior probability of between 0.05 and 0.08. In light of this, he went on to

estimate that between 17-25% of marginally significant scientific findings are false.

These findings track closely to earlier attempts to quantify a p-values by finding a

corresponding Bayes factor. Edwards, Lindman, and Savage [13] found some special

cases where the two approaches could be compared and noted that “Often evidence

which, for a Bayesian statistician, strikingly supports the null hypothesis leads to re-

jection of that hypothesis by standard classical procedures”. Bernardo [14] developed

a prior distribution under the alternative and a prior probability of the null using

information theoretic arguments, enabling him to calculate the asymptotic posterior

probability in favor of the null hypothesis for a given p-value and found that a result

significant at the 0.05 level corresponded to a posterior probability in favor of the null

hypothesis of about 0.2. Dickey [15] estimated that the 0.05 p-value corresponded
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to a posterior probability of between 0.25 and 0.58, depending on the sample size.

Berger and Sellke [16] and Berger and Delampady [17] examined normal and bino-

mial models and found lower bounds on Bayes factors and posterior probabilities over

a wide class of priors, concluding that the discrepancy between p-values and Bayes

factors puts them in dramatic conflict. Berger, Boukai, and Wang [18] showed that

Bayesian tests are virtually equivalent to frequentist tests if a conditional frequentist

method is utilized.

Although the various methods employed for calculating a Bayes factor based

on a p-value produce similar and striking results, they are open to criticism for

resorting to approximations or relying on subjective choices of priors. By matching

rejection regions of the Bayesian and frequentist tests, the UMPBTs demonstrate

more robustly and objectively that p-values can exaggerate evidence against the null

hypothesis in certain cases where UMPBTs exist.

2.4 g Priors

The g prior was first suggested by Zellner [19]. He assumed that a length-n

random vector y could be modeled by the general linear model

y = Xβ + e,

where e had a multivariate normal distribution with mean 0 and covariance matrix

σ2I. With a nuisance parameter prior density π(σ2) ∝ 1/σ2, he defined the g prior

density on the parameter vector β to be

π(β|σ2) = (2π)−p/2 · |gσ2(XTX)−1|−1/2 · exp{−1/(2gσ2)βTXTXβ},
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or a normal density with mean 0 and covariance matrix gσ2(XTX)−1 for some g > 0.

Here, p is defined to be the dimension of β.

The g prior’s conjugacy and interpretability have facilitated its widespread adop-

tion, but numerous methods for setting g have been proposed and there is no con-

sensus of opinion regarding which is best. In a hypothesis testing or model se-

lection scenario, these proposals include g = n (where n is the sample size) ac-

cording to the unit information prior (UIP) [7]; g = p2 (where p is the number

of covariates in the model) according to the risk information criterion (RIC) [20];

g = max(n, p2) [21]; g = log(n)3 according to the Hannan-Quinn information cri-

terion [22]; g = max(F̂ − 1, 0) where F̂ is the usual F statistic, which is a local

Empirical Bayes prior (EBL) [23]; and a global Empirical Bayes prior (EBG) [23].

Liang et al. [23] reviewed some proposed methods and discussed a second approach,

which is to place a prior distribution on g. They argued that the multivariate Cauchy

priors advocated in Zellner and Siow [24] are equivalent to an Inverse Gamma(1/2,

n/2) prior on g. They also introduced a hyper-g prior, which takes the form:

π(g) =
a− 2

2
(1 + g)−a/2, g > 0, a > 2.

Guo and Speckman [25] put the Jeffreys prior on g and found that the resulting

Bayes factor is consistent.

2.5 Bayesian Model Selection

For the purposes of this dissertation, the terms “model selection” and “variable

selection” will be used interchangeably, which is a reflection of the fact that, in many

linear modeling scenarios, the data analyst will fully specify the model up to the

inclusion of certain candidate predictors a priori. Selecting between models, in such

a case, consists merely in selecting predictors.
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Bayesian model selection is a vast area which encompasses many of the other

topics reviewed here. Review articles are provided by Wasserman [26] and O’Hara

and Sillanpää [27]. The latter authors classified the major methods in the litera-

ture into four types: indicator model selection, stochastic search variable selection,

adaptive shrinkage, and model space approaches. The first three classes place priors

directly on the coefficients of the candidate variables and calculate their posterior

distributions and posterior inclusion probabilities. The fourth class adds a prior on

the model size to calculate posterior distributions on model size and coefficients. In

each of these classes, there is no direct reliance on using Bayes factors to compute

posterior model probabilities. The review by Wasserman discussed this approach,

which forms an additional class of model selection methods. We focus on the lit-

erature for this last class, since it most closely relates to the development of this

dissertation.

Notably, model selection methods that rely on Bayes factors can seem, in many

cases, unappealing because the Bayes factors can be difficult to calculate. This has

lead to the development of estimating procedures such as a method in Spiegelhalter

and Smith [28], fractional Bayes factors from O’Hagan [29] and intrinsic Bayes factors

from Berger and Pericchi [30, 31]. Bayes factors can also be replaced by the Bayesian

information criterion, which gives an approximation to the log of the Bayes factor.

The article by Liang et al. [23] investigated model selection in the normal linear

model with a g prior. In a simulation model selection study with 15 predictors,

they concluded that the Zellner and Siow method, the Empirical Bayes procedures,

and the hyper-g prior perform nearly identically well, and outperform the other

priors. No work has been published regarding the performance of UMPBTs in a

model selection framework, but the tests could be easily modified to accommodate

comparisons between multiple models and may possess desirable properties in model
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selection such as Bayes factor coherence and consistency.

In close relationship to the model selection problem lies the model averaging prob-

lem, which attempts not to select one “best” model but to average the output from

all models considered. This averaging is analogous to the averaging over nuisance

parameters that is done in certain Bayesian calculations which marginalize parame-

ters of interest. In this case, the models are weighted by their posterior probabilities.

Bayesian model averaging is described in [32].

2.6 R Computing for Bayesian Hypothesis Testing and Model Selection

The development of R tools for Bayesian hypothesis testing and variable selection

has resulted in the availability of several useful packages for download. We discuss

packages for hypothesis testing first.

The ‘BEST’ package (for “Bayesian Estimation Supersedes the t-Test”) offers an

alternative to one- and two-sample t-tests by providing posterior estimates for group

means and their differences [33]. The premise of the functions is not to facilitate

hypothesis testing but to prevent it.

The package ‘BayesFactor’ offers several functions for computing Bayes factors

in various testing scenarios, including one- and two-sample t tests, general ANOVA

designs, and linear regression. Functions testing general linear models, regression

models, and ANOVA models assume the JSZ prior on regression coefficients. The

functions contain functionality for testing multiple models at once [34].

There are many packages which extend the functionality for testing multiple mod-

els to a general Bayesian variable selection or Bayesian model averaging capability.

Some which do either Bayesian variable selection or model averaging can in fact do

both, since the difference merely depends on the way the posterior distribution on

the model space is summarized. We first discuss three packages written specifically
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for Bayesian model averaging problems.

Clyde et al. [35, 36] described the package BAS (for “Bayesian Adaptive Sam-

pling”) as a set of functions designed to obtain a posterior distribution on the model

space in the linear model variable selection problem. Available prior distributions on

regression coefficients include many g priors and mixtures of g priors (e.g. JZS and

hyper-g), but model selection criteria such as AIC and BIC are also available [37].

The main function, bas, can either search the model space exhaustively when there

are less than 25 covariates or use adaptive sampling without replacement for larger

model spaces.

The package BMS (for “Bayesian Model Selection”) is written for performing

Bayesian model averaging for linear models. The syntax of its main function, bms,

requires the specification of a fixed value for g or the name of a fixed (e.g. UIP or

HQ ) or model-specific prior (e.g. RIC, BRIC, EBL, and hyper-g) [38, 39]. However,

more flexible prior specifications are possible using other functions [37]. The BMS

package can enumerate the model space when there are less than 15 covariates and

search exhaustively or utilize various MCMC approaches to search stochastically for

larger model spaces.

The package BMA (for “Bayesian Model Averaging”) carries out averaging for

linear models and certain nonlinear models [40]. For the linear models, it does not use

g priors on regression coefficients, but instead employs the BIC approximation, which

gives somewhat similar results to a g prior with g set by the UIP [37]. The package

can either perform an exhaustive search of the model space using the leaps and

bounds algorithm or utilize a Markov chain to search the model space stochastically

[41].

These three packages were reviewed by Amini and Parmeter [37]. In a comparison

study, they found that the BAS package is usually faster than its competitors, both
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for small models and especially for large models. When trying to reproduce the re-

sults of two published data analyses that carried out Bayesian model averaging using

handwritten code, they found that BMS gave results which were most consistent to

those which were published [37].

There are also several packages nominally designed specifically for Bayesian vari-

able selection. The BayesVarSel package was designed to perform variable selection

using JZS, hyper-g, UIP, and BRIC priors, as well as the “Robust” prior from [42].

It is written to search the model space either exhaustively or using a Gibbs sampler

[43]. The spikeSlabGAM package performs Bayesian variable selection for Gaussian

and certain types of non-Gaussian responses in additive mixed regression models.

The package is designed to fit spike and slab priors on regression coefficients, rather

than g priors [44]. The modelSampler package, likewise, performs Bayesian vari-

able selection using spike and slab priors [45]. The mombf package performs model

selection when non-local priors are put on regression coefficients [46].

In addition, there exists functionality for implementing certain Bayesian variable

selection methods in R through packages that connect R to independent MCMC

engines such as WinBUGS, OpenBUGS, and JAGS.
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3. RMPBTS FOR LINEAR MODELS

In Section 2 we reviewed Johnson’s [2] definition of Uniformly Most Powerful

Bayesian Tests (UMPBTs). UMPBTs exist in a relatively limited number of testing

scenarios (e.g., one parameter exponential families), and in particular they cannot be

defined for tests of parameters in the general linear model when variance parameters

are not known a priori.

To remedy this situation, we define an extension of UMPBTs that we call re-

stricted most powerful Bayesian tests. The extension is obtained by restricting the

class of prior densities on θ that define the hypotheses to a parametric class, say

π(θ |ψ).

Definition A π-restricted most powerful Bayesian test for evidence threshold γ > 0

in favor of the alternative hypothesisH1 : θ ∼ π(θ|ψ1) against a fixed null hypothesis

H0, denoted as π-RMPBT(γ), is a Bayesian hypothesis test in which the Bayes factor

for the test satisfies

Pθt
[BF10(y) > γ] ≥ Pθt

[BF20(y) > γ],

for any θt ∈ Θ and for all alternative hypotheses H2 : θ ∼ π(θ|ψ2), where π is a

density function parameterized by ψ, and ψ1, ψ2 ∈ Ψ. A RMPBT(γ) refers to a

π-RMPBT(γ) where the dependence on the parametric class of prior densities π has

been suppressed.

In essence, we obtain RMPBTs by narrowing the search of alternative hypotheses

to a class of prior densities on θ. We assume that this class either incorporates prior

knowledge or provides computational convenience. The optimization within this class
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produces a value for one or more hyperparameters ψ which maximize the probability

that the Bayes factor exceeds γ over all possible values of ψ and over all θt.

The remainder of this section is organized as follows. In Subsection 3.1 we show

that by restricting the class of prior densities to g priors in the general linear model,

we are able to define an RMPBT, and that the value of g has a simple form when

the test’s rejection region is matched to a classical α-size test. We then specialize

this result for ANOVA and t-testing scenarios. In Subsection 3.2, we present two

simulation studies to compare the g prior-RMPBT to other Bayesian methods for

setting g, and finally in Subsection 3.3 we illustrate an application of our method to

a real data set.

3.1 g Prior-RMPBTs

We begin by considering the general linear model

y = Xβ + ǫ, ǫ ∼ N (0, σ2In) (3.1)

= 1nβ0 +X1β1 +X2β2 + ǫ. (3.2)

We partition X and β so that tests of hypotheses on subsets of β are performed on

the sub-vector β1. The prior density that we propose is based on Zellner’s g prior

[19], which in the general linear model leads to

β1|g, σ2 ∼ N (0, gσ2(XT
1X1)

−1), and π(σ2, β0, β2) ∝ 1/σ2.

If we restrict attention to prior densities of this form, and assume (without loss of gen-

erality) that the model has been parameterized in such as way that 1T
n

[

X1 X2

]

=

0 and XT
1X2 = 0, then the value of g that provides the RMPBT(γ) is provided by
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the following theorem.

Theorem 3.1.1 Suppose that y ∼ N (Xβ, σ2I), and partition X and β according

to X =

[

1n X1 X2

]

and β =

[

β0 βT
1 βT

2

]T

, where Xi has pi columns and

p = p1 + p2. Assume n > p2 − 1, and that the design matrix has been constructed

so that X1 and X2 are of full-column rank, 1T
n

[

X1 X2

]

= 0, and XT
1X2 = 0.

Assume further that the joint prior distribution on σ2, β0, and β2 is proportional to

1/σ2. If the null hypothesis is H0 : β1 = 0 and the alternative hypothesis is restricted

to take the form

H1 : β1|g, σ2 ∼ N (0, gσ2(XT
1X1)

−1) (3.3)

for some value of g > 0, then the RMPBT for evidence threshold γ is obtained by

setting g equal to

argmax
g∗

(g∗)−1
[

γ
−2

n−p2−1 (1 + g∗)
n−p−1
n−p2−1 − 1

]

. (3.4)

(Proofs of all theorems are provided in the Appendix.)

This theorem is important because it provides a default alternative hypothesis

for constructing a Bayesian test of regression coefficients in a linear model. Although

other objective methods for setting g have been proposed [23], the RMPBT com-

puted from (3.4) provides greater probability that the Bayes factor exceeds the given

threshold (i.e., has greater power) than any other alternative hypothesis taking the

form (3.3). As we demonstrate in Subsection 3.2, the resulting difference in power

can often be quite appreciable.
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The Bayes factor for the RMPBT can be expressed in terms of g and F̂ , the

observed F statistic for the classical test as

BF10(y) = (1 + g)(n−p−1)/2

[

1 + g · n− p− 1

F̂ p1 + n− p− 1

]

−(n−p2−1)/2

. (3.5)

The evidence threshold γ must be determined before g can be computed from

(3.4). In classical terms, the evidence threshold plays a role that is similar to the

size of a test; it specifies the value of the Bayes factor required to reject the null

hypothesis in favor of the alternative. In the case of UMPBTs, Johnson [2] fixed

evidence thresholds by equating the rejection regions of UMPBTs and frequentist

tests possessing specified type-I error rates. We propose to extend this idea for

application to RMPBTs; the next theorem provides a mechanism for doing this.

Theorem 3.1.2 Under the conditions in Theorem 3.1.1, the value of g that produces

a g prior-RMPBT that has the same rejection region as a size-α classical F -test is

obtained by setting

g = F1−α − 1, (3.6)

where F1−α is the 1−α quantile from an F distribution with p1 and n−p−1 degrees

of freedom. Moreover, the evidence threshold γ for the RMPBT with this value of g

is given by

γ =

[

p1F1−α + n− p− 1

F
p1/(n−p2−1)
1−α (n− p2 − 1)

](n−p2−1)/2

.

The Bayes factor for this test can be expressed in terms of F1−α and F̂ as

BF10(y) = F
(n−p−1)/2
1−α

[

F1−α + F̂ p1
n−p−1

1 + F̂ p1
n−p−1

]−(n−p2−1)/2

.
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There is an interesting similarity between the expression for g in Theorem 3.1.2

and the local empirical Bayes estimate for g described in Liang et al. [23],

ĝEBL = max{F̂ − 1, 0}. (3.7)

The RMPBT value for g in (3.6) is obtained from (3.7) by substituting F1−α for F̂ .

The implications of this difference are explored in Subsection 3.2.

We next consider g prior-RMPBTs for two special cases of the general linear

model: the one-way analysis of variance (ANOVA) model, and the two-sample t-

test. In each case, the simplest parameterization of the model uses a design matrix

of the form

X =

[

1n X1

]

=



















1n1 1n1 0 . . . 0

1n2 0 1n2 . . . 0

...
...

...
. . .

...

1nJ
0 0 . . . 1nJ



















,

where J = 2 for the two-sample t-test. To make the corresponding model

y = 1nβ0 +X1β1 + ǫ

identifiable, various constraints can be used. One option is to eliminate one column

of X (equivalent to setting one component of β1 equal to 0). The use of such con-

straints in the Bayesian setting has generated discussion in Gelman [9] and Rouder et

al. [10]. Gelman recommended an alternative constraint 1Tβ1 = 0, whereas Rouder

et al. employed this constraint only for fixed factors. In the following corollaries we

assume that an identifiable parameterization of the design matrix has been speci-

fied, although the particular parameterization used is not important as long as the
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following conditions are satisfied:

1. the design matrix can be written as X∗ =

[

1n X∗

1

]

for some n × (J − 1)

matrix X∗

1, and

2. the column space of X∗ is the same as the column space of X (i.e., the column

space of X∗

1 is equivalent to X1).

The parameter vector constraints described by the functions contr.treatment,

contr.SAS, contr.sum, contr.helmert, and contr.poly in R are all examples of

parameterizations that satisfy these conditions. We define β∗

0 and β∗

1 as the corre-

sponding regression parameters.

The principal problem in applying Theorem 3.1.1 to the one-way ANOVA setting

is that the condition 1
TX∗

1 = 0 is not, in general, satisfied by X∗

1. Wetzels et al. [47]

resolved this problem by centering the columns in X∗

1 so that the resulting model is

y = 1nβ
∗

0 + (In −P1)X
∗

1β
∗

1 + ǫ, (3.8)

where P1 = 1
n
1n1

T
n . It can be shown that

(In −P1)X
∗

1β
∗

1 = 0 ⇐⇒ X∗

1β
∗

1 = 0 or X∗

1β
∗

1 ∝ 1n,

and as a result, the test that β∗

1 = 0 in model (3.8) and the classical one-way

ANOVA test have the same null hypothesis. For concreteness, we use the Wetzels et

al. parameterization to state the g prior RMPBT for one-way ANOVA tests.

Corollary 3.1.3 Assume that

yij = β0 + βj + ǫij ,
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where yij is observation i under treatment j for i = 1, . . . , nj and j = 1, . . . , J and ǫij

are independent, mean-zero normally-distributed observational errors with constant

variance σ2. Under the parameterization in (3.8), assume that the prior density for

(σ2, β∗

0) is given by

π(σ2, β∗

0) ∝ 1/σ2.

Then the g prior-RMPBT for evidence level γ for testing hypotheses

H0 : β
∗

1 = 0, versus H1 : β
∗

1 | g, σ2 ∼ N
(

0, gσ2
(

X∗

1
T (In −P1)X

∗

1

)−1
)

is obtained by setting g equal to

argmax
g∗

(g∗)−1
[

γ
−2
n−1 (1 + g∗)

n−J
n−1 − 1

]

.

The value of g that produces a g prior-RMPBT that has the same rejection region as

a size-α classical F -test is obtained by setting

g = F1−α − 1, (3.9)

where F1−α is the 1−α quantile from an F distribution with J − 1 and n−J degrees

of freedom, and

γ =

[

(J − 1)F1−α + n− J

F
(J−1)/(n−1)
1−α (n− 1)

](n−1)/2

. (3.10)

The values of g and γ in this corollary do not depend on the particular form

of the parameterization of the design matrix because they are not functions of X∗

1.

Similarly, the value of the Bayes factor obtained for the g prior RMPBT is invariant

to the choice of design matrix, even though the prior on the regression coefficient

β∗

1 does depend on the parameterization of the design matrix. The invariance of the
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Bayes factor to the parameterization of the design matrix follows from its expression

as

BF10(y) = F
(n−J)/2
1−α

[

F1−α + F̂ J−1
n−J

1 + F̂ J−1
n−J

]

−(n−1)/2

,

which does not depend on X∗

1.

In addition to the UMPBTs developed in Johnson [1], approximate UMPBTs are

given for one- and two-sample t-tests. However, these approximations fail for large

values of the sample mean ȳ. As an alternative, Corollary 3.1.3 can be applied to

obtain a g prior-RMPBT for the two-sample t-test as follows.

Corollary 3.1.4 Assume that yij|β0, β1, β2, σ
2 are conditionally independent nor-

mally distributed random variables with mean β0 + βj and variance σ2 for i =

1, . . . , nj and j = 1, 2. Under model (3.8), let π(σ2, β∗

0) ∝ 1/σ2 and suppose that

the design matrix satisfies the two conditions stated above. For the test of

H0 : β
∗

1 = 0 versus H1 : β
∗

1|g, σ2 ∼ N
(

0, gσ2
(

X∗

1
T (I−P1)X

∗

1

)−1
)

,

the g prior-RMPBT for evidence level γ is obtained by setting g equal to

argmax
g∗

(g∗)−1
[

γ
−2
n−1 (1 + g∗)

n−2
n−1 − 1

]

.

Furthermore, the value of g that produces a g prior-RMPBT that has the same re-

jection region as a size-α classical t-test is obtained by setting g equal to

g = t21−α/2 − 1,

where t1−α/2 is the 1−α/2 quantile from a t distribution with n−2 degrees of freedom.
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Moreover, the evidence threshold γ is given by

γ =

[

t21−α/2 + n− 2

t
2/(n−1)
1−α/2 (n− 1)

](n−1)/2

.

In this test, the Bayes factor can be written as a function of the classical t statistic

t̂ and a quantile from the t distribution as

BF10(y) = tn−2
1−α/2

[

t21−α/2 + t̂2 1
n−2

1 + t̂2 1
n−2

]

−(n−1)/2

.

The previous corollaries describe RMPBTs for the one-way ANOVA and two-

sample t-tests. These corollaries follow directly from Theorem 3.1.1. However, one-

sample t-tests are not a special case of Theorem 3.1.1 because these tests are tests

of the intercept term (rather than the effect term) in that theorem. Instead, the

following theorem describes the g prior-RMPBT for a one-sample t-test. Without

loss of generality, we consider only the case of testing H0 : β0 = 0.

Theorem 3.1.5 Assume that yi|β0, σ
2 are independent normally-distributed random

variables with mean β0 and variance σ2 for i = 1, . . . , n. Under the priors π(σ2) ∝

1/σ2 and β0|g, σ2 ∼ N (0, gσ2/n), the g prior-RMPBT that H0 : β0 = 0 versus

H1 : β0 6= 0 for evidence threshold γ is obtained by setting g equal to

argmax
g∗

(g∗)−1
[

(1 + g∗)(n−1)/nγ−2/n − 1
]

. (3.11)

The value of g that produces a g prior-RMPBT that has the same rejection region as

a size-α classical t-test is obtained by setting g equal to

t21−α/2 − 1
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where t1−α/2 is the 1−α/2 quantile from a t distribution with n−1 degrees of freedom.

Moreover, the evidence threshold γ is given by

γ =

[

t21−α/2 + n− 1

t
2/n
1−α/2n

]n/2

.

The Bayes factor of the one-sample t-test, expressed as a function of the classical

t statistic t̂ and the corresponding quantile of the t distribution, is

BF10(y) = tn−1
1−α/2

[

t21−α/2 + t̂2 1
n−1

1 + t̂2 1
n−1

]

−n/2

.

3.2 Numerical Comparisons of g Prior-based Bayes Factors in Linear Models

In this section, we compare the performance of some of the methods from the

literature for setting g, discussed in Section 2, to that of the g prior-RMPBT in a

numerical study. This study evaluates performance in terms of statistical power; we

therefore estimate power functions for each method in a simulated testing problem.

A second simulation study compares the power functions for the two-sample t-test

under the g prior-RMPBT and the approximate UMPBT.

Although the g prior-RMPBT is, by definition, guaranteed to provide the highest

probability of rejection at the given evidence level within the class of g-prior alterna-

tives, it is interesting to examine the relative power achieved by the other methods

and to compare the actual values of g used under each proposal. We emphasize, in

making these comparisons, that the expected values of the Bayes factors under vari-

ous alternatives will often be much higher than it is under the RMPBT; the RMPBT

only provides the maximum probability of exceeding a specified evidence threshold.

For simplicity, we restrict attention to a balanced one-way ANOVA test in which
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Figure 3.1: Numerical simulation results comparing the probability of exceeding the
threshold γ = 20 for all values of g between 0 and 35. Vertical lines indicate the
values of the RIC value of g; the RMPBT value of g; the UIP value of g; and the
mean EBL value of g. The shaded region represents the middle 50% of EBL values
of g. In this simulation, J = 3, n = 15, and σ2 = 5.

the true model for the random effects β∗

1 is given by

β∗

1 ∼ N
(

0, gtσ
2(X∗

1
T (I−P1)X

∗

1)
)

. (3.12)

Here, gt is a fixed “true” value of g, σ2 = 5 is the error variance, and J = 3

and n = 15. The elements of β∗

1 are generated from a centered model so that the

values of gt are on the same scale as the RMPBT value of g. Figure 3.1 displays

Pgt [BF10(y) > γ] as a function of g from three different experiments where data were

simulated using model (3.12) with gt set to different values. The evidence threshold

used in this plot was γ = 20, which is the minimum threshold for “strong” evidence

according to the modified schedule in Kass and Raftery [7]. Vertical lines are drawn

to indicate values of g corresponding to the RIC prior; the RMPBT prior; the UIP;

and the mean EBL prior. Also shown is a shaded region which represents the center

50% of ĝEBL values from the simulation. Values of gt were selected to be equal to

the RIC value [(J − 1)2 = 4], the RMPBT value (8.23), and the UIP value (n = 15).

The RMPBT, by definition, corresponds to the peak of the curve in each plot.
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The RIC and UIP tests provide smaller probabilities that the Bayes factor exceeds

the threshold γ = 20, although these differences in power are mitigated as gt grows.

The variability in results obtained with the local empirical value of g increases quickly

as the true value of gt becomes large.

Results from this simulation study were also used to compare Bayes factors

from the RMPBT to classical p-values through the relation specified in (3.10) with

α = 0.05. To this end, g was set according to (3.9). The left panel of Figure 3.2

displays the resulting correspondence between p-values and Bayes factors for this

experiment. This plot illustrates the tendency for the magnitude of p-values to ex-

aggerate evidence against the null hypothesis, as was similarly found in [1]. This

tendency argues in favor of requiring more stringent criteria for rejecting tested null

hypotheses in frequentist testing.

A separate simulation study was used to compare the power curves of the g prior-

RMPBT and the approximate UMPBT from Johnson [1] in two-sample t-tests. The

right panel of Figure 3.2 displays the resulting power curves. The two-sided tests

were simulated 5,000 times at an increasing sequence of β2 values, where β1 and β0

were held fixed at 0. In this experiment, n1 = n2 = 15 and γ = 20. As expected,

the approximate UMPBT outperforms the g prior-RMPBT in terms of power for

small to moderate values of β2; this occurs because the UMPBT alternatives are not

restricted to the class of g priors. However, as evidence against the null hypothesis

becomes strong, the quality of the approximation to the UMPBT decays and its

power declines. The g prior-RMPBT does not suffer from this problem and actually

provides higher power for large values of β2.
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Figure 3.2: Left panel: p-values plotted against Bayes factors using the RMPBT in
a one-way ANOVA. As before, J = 3, n = 15, σ2 = 5, and gt = 4. In these plots,
γ ≈ 2.88 from (3.10). Right panel: A two-sided two-sample t-test power curve for the
g prior-RMPBT and the approximate UMPBT from Johnson [1]. In this simulation,
n1 = n2 = 15, γ = 20, σ2 = 1, and β0 = β1 = 0. The power of each test is plotted
against a range of β2 values.

3.3 Example

To illustrate the use of g prior-RMPBTs on real data, we re-analyzed the seaweed

grazer data previously analyzed by Qian and Shen [48]. The experimental design in

this study was a randomized complete block design with six treatments (grazers) in

eight blocks (intertidal locations) with two replications. The response variable yijk

was the logit of the percentage seaweed recovery in the kth experimental plot (k =

1,2) in block j (j = 1,. . . ,8) under treatment i (i = 1,. . . ,6). An ANOVA model for

the experiment can be written as

yijk = β0 + β1i + β2j + β3ij + ǫijk,

where β1 is the vector of treatment effects, β2 is the vector of block effects, and β3

is the vector of interactions. The elements in the vector ǫ are assumed to be i.i.d.
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Table 3.1: RMPBT and frequentist tests results of the seaweed grazers data

Effect g BF10 γ p-value

Treatment 1.41 1.7× 107 3.0 4.5× 10−20

Block 1.21 1.4× 106 3.2 5.4× 10−17

Interaction 0.67 1.76 3.8 0.1209

mean-zero normal random variables.

We begin by testing the interaction effect, β3. In the notation of Theorem 3.1.1,

we have n = 96 and p = p1 + p2 = 35 + (5 + 7), so that with the intercept β0 there

are 48 parameters in the model. If we set g and γ so that the RMPBT corresponds

to a 5% classical test, then g = 0.67 and γ = 3.83. The Bayes factor for the resulting

RMPBT test is 1.76 and the p-value is 0.12.

The main effects are tested next. The Bayes factor of the treatment effect is

1.7 × 107, and that of the blocking effect is 1.4 × 106. The corresponding p-values

are 4.5× 10−20 and 5.4× 10−17, respectively. These results are summarized in Table

3.1.

We emphasize that the Bayes factors cited in this example were obtained through

straightforward calculations that were based only on the F statistics reported from

standard ANOVA software. Indeed, an R function to compute these values is de-

scribed in Section 5. RMPBT methodology thus provides a simple mechanism for

converting classical test statistics and p-values into Bayes factors. This method-

ology also makes explicit the alternative hypothesis that is implicitly being tested

in a significance test, and provides practitioners with an estimate of the posterior

probability that both the null and alternative hypotheses are true, given the prior

probabilities they assign to the truth of each hypothesis.
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4. RMPBTS FOR MODEL SELECTION

The g prior-RMPBTs described in the previous section maximize the power of

a test between sharp hypotheses over a class of priors. By testing multiple models

against a common benchmark model, the RMPBT can choose which of them sig-

nificantly fit the data better than the benchmark, using values of g that allow each

model to perform most favorably against the benchmark. This rationale underlies

the model selection method that is based on g prior-RMPBTs, which we describe in

Subsection 1. Subsection 2 provides numerical studies to evaluate the performance

of this model selection routine against other proposed methods.

4.1 g Prior-RMPBTs in Model Selection

As before, let y represent a sample of size n drawn from the population. Define

an n× p matrix of p candidate predictors X =

[

x1 x2 . . . xp

]

for y and let the

model space Ω consist of the set of models determined by all 2p possible combinations

of the columns of X. Without loss of generality, we assume X has been centered, so

that 1
TX = 0. As in Liang et al. [23], we index the model space with the vector

γ, which is of length p and contains 1s and 0s to indicate the membership status of

each candidate predictor in the model. We denote the model as Mγ that consists of

an intercept term, a linear combination of the columns of X indicated by γ, and an

unknown error term. We write Xγ for the n× pγ matrix of predictors in model Mγ

and βγ for the vector of regression coefficients of length pγ .

It is assumed that the data vector y is generated as a linear combination of an

intercept and a certain set of predictors γt, with error, where Mγt
∈ Ω. In detail,

y = 1nβ0 +Xγt
βγt

+ ǫ, (4.1)
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where β0 is an intercept, and, once again, ǫ is a normal random vector with mean 0

and covariance matrix Iσ2.

Rather than formally testing each candidate model in Ω against a benchmark,

which would result in a list of rejected and a list of accepted models, we compute their

Bayes factors for straightforward comparison. Each Bayes factor is weighted by the

prior probability of the model being tested. For candidate modelMγi
and benchmark

model Mγk
, the Bayes factor BFγi,γk

is weighted by π(Mγi
). By rescaling the

weighted Bayes factors, we obtain posterior probabilities, i.e.

BFγi,γk
π(Mγi

)
∑2p

j=1BFγj ,γk
π(Mγj

)
, =

π(y|Mγi
)π(Mγi

)
∑2p

j=1 π(y|Mγj
)π(Mγj

)
(4.2)

= π(Mγi
|y) (4.3)

By approaching the model selection problem as a comparison of Bayes factors be-

tween each candidate model Mγi
(for i ∈ {1, . . . , 2p}) and some common benchmark

model Mγk
, we find a justification for the use of g prior-RMPBTs: each candidate

model’s acceptability is measured by its improvement in fitting y over the bench-

mark model, and therefore the Bayes factor that measures each candidate model’s

improvement should be calibrated to maximize that model’s improvement. To do

anything else would imply comparing models on unequal footing; those whose Bayes

factor is enhanced by the prior implicit in the Bayes factor would enjoy artificially

inflated posterior probabilities relative to those whose Bayes factor is not.

There are several possible choices for the benchmark model Mγk
, such as the

full model M1, the null model M∅, and any other fixed model in Ω. To preserve

coherency in the Bayes factors, several authors [23] have chosen the null model as

the benchmark model; we also adopt this choice. Under this convention, the test of
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model Mγi
can be expressed as follows:

y = 1nβ0 +Xγi
βγi

+ ǫ, ǫ ∼ N (0, σ2In).

H1 : βγi
|g, σ2 ∼ N (0, gγi

σ2(XT
γi
Xγi

)−1), versus H0 : βγi
= 0,

π(σ2, β0) ∝ 1/σ2.

Assuming that Xγi
is of full rank, and given some threshold γ, gγi

is given by

Theorem 3.1.1 as

gγi
= argmax

g∗
(g∗)−1

[

γ
−2
n−1 (1 + g∗)

n−pγi
−1

n−1 − 1
]

. (4.4)

The resulting Bayes factor is given by (3.5):

BFγi,∅ = (1 + gγi
)(n−pγi

−1)/2

[

1 + gγi
· n− pγi

− 1

F̂ pγi
+ n− pγi

− 1

]

−(n−1)/2

.

Specifying prior model probabilities π(Mγi
) requires some care due to the issue

of multiplicity. Scott and Berger [49] describe the need for multiplicity correction to

account for the false positives that result from comparing the posterior probabilities

of all 2p models and argue that such correction is best applied through the prior

model probabilities. One fully Bayesian solution sets prior probabilities equal to

π(Mγi
) =

1

p+ 1

(

p

pγi

)

−1

,

so that prior model mass is equally divided among the various sizes of model and

among models of the same size.

Finally, the g prior-RMPBTs in this model selection method require the specifica-
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tion of the evidence threshold γ. The values of gγi
in (4.4) are derived by evaluating

the expression

argmax
g∗

P(BFγi,∅ > γ)

= argmax
g∗

P

(

π(Mγi
|y)

π(Mγ
∅
|y) > γ̃

)

where γ̃ = γ · π(Mγi
)

π(Mγ
∅
)
.

Thus, the RMPBT can be defined either by setting an evidence threshold γ for

the Bayes factor, or by setting an evidence threshold γ̃ for the posterior odds. In

some cases it may be desirable to set the hyperparameter gγi
so as to maximize the

probability that the posterior odds of a model exceed a threshold, after accounting

for the prior odds against the model. For instance, if the prior odds against a non-null

model Mγi
were 100:1, and if we wanted to set gγi

so as to maximize the probability

that the posterior odds in favor of the model exceeded 4:1, this would imply setting

γ at 400. That is, by fixing γ̃, the corresponding γ for this comparison will depend

on pγi
through π(Mγi

). As a result, a different Bayes factor evidence threshold γ is

used for each model size. This strategy incorporates the multiplicity correction into

the RMPBT calculation of the optimal γ.

Guidelines for γ̃ can be based on the schedule of evidence thresholds for γ given

by Jeffreys [3] and modified by Kass and Raftery [7], which provide satisfactory

demarcations between distinct weights of evidence in the posterior odds.

4.2 Numerical Comparisons of g Prior-based Model Selection Methods

To evaluate the performance of the g prior-RMPBT in a model selection problem,

a simulation study was conducted. The parameters of the study closely follow those

of the simulation study conducted by Liang et al. [23].
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The candidate predictor matrix X was generated as an n×p matrix with n = 100

and p = 50 in such a way that XTX = I, the identity matrix, and 1
TX = 0. In

each independent simulation iteration, a “true” model Mγt
of size pγt

was randomly

chosen, and values of βγt
were generated from a N (0, gtσ

2XT
γt
Xγt

) distribution.

Then data y were generated according to the model (4.1), where ǫ was generated from

a N (0, Iσ2) distribution, α = 2, and σ2 = 1. One-thousand simulation iterations

were run for each of pγt
∈ {1, 5, 9, 13, 17, 21, 25} and gt ∈ {5, 25}.

Because the model space contains 250 models, it was not practical to exhaustively

search for the best model. We therefore sampled from the posterior model distribu-

tion using a simple birth-death Metropolis-Hastings sampler. This algorithm begins

with a randomly-selected initial model Mγ0
. Then a new model Mγ′ is proposed

through a birth/death process; i.e., one variable is randomly selected, and if it is

already in the initial model, the proposed model omits it; if it is not in the initial

model, the proposed model includes it. The proposed model is then accepted with

probability min(1, a), where

a =
BFγ′,∅

BFγ0,∅

· π(γ
′)

π(γ0)
.

The proposal density is symmetric, so that it does not contribute weight to a. If

the proposal is not accepted, the model γ0 is accepted in its place. This sampler

repeats 10,000 iterations plus 1,000 more for a burn-in period, which are discarded.

Convergence was assessed using a trace plot of model size. Acceptance rates for all

methods average roughly 10%.

If convergence is roughly achieved after the burn-in, the resulting draws approx-

imately represent draws from the posterior distribution on model space. The empir-

ical posterior probabilities were calculated on each model and the highest posterior
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probability (HPP) model was recorded. The maximum a posteriori (MAP) estimate

of β was taken from this model, which is denoted β̂γHPP
, and the selected model’s

estimation performance was evaluated under squared error loss:

MSEγHPP
= ||Xγt

βγt
−XγHPP

β̂γHPP
||2

The mean MSE was calculated over the 1,000 simulation iterations, and plotted as

a function of pt for each model selection method in Figure 4.1.

In addition to HPP, performance was also evaluated for median posterior proba-

bility model (MPP) and Bayesian model averaging (BMA). MPP selects all variables

with a posterior probability greater than or equal to 0.5, where the posterior proba-

bility of variable i is equal to

P(γ(i) = 1|Y) = E(1γ(i)=1|Y)

=
2p
∑

j=1

1
γ
(i)
j =1

π(Mγj
|Y),

and the MAP estimate is likewise taken from the selected model. BMA provides the

estimate of β given by

β̂γBMA
=

2p
∑

j=1

β̂γj
π(Mγj

|Y),

where within each model γj, the estimate β̂γj
is the MAP.

The methods compared consist of the JZS, UIP, EBL, hyper-g, and RMPBT

priors, together with the oracle model, which is based on the least-squares esti-

mate taken from the data-generating model. The MAP estimate for JZS is obtained

through a Laplace approximation, as described in Liang et al. [23] and implemented

in the R package “BAS” [35], with hyperparameter a set equal to 3. The RMPBT
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Figure 4.1: Simulation results of 6 methods. The y-axis is the mean MSE of the
MAP estimate from the highest posterior model. The x-axis is the size of the data-
generating model. Left panel: gt = 5; Right panel: gt = 25.
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Figure 4.2: Simulation results of 5 methods (oracle not shown). Each point plots the
percentage of the time that its method selected the correct model. Asterisks denote
simulations with gt = 25, while squares denote simulations with gt = 5.

is derived using an evidence threshold γ̃ of 20, which is, once again, the minimum

threshold for “strong” evidence of a Bayes factor according to Kass and Raftery [7],

though now it is applied to posterior probabilities.

In terms of estimation error, Figure 4.1 shows that the RMPBT method performs

slightly worse than model selection based on the the hyper-g prior and the EBL. It

appears this difference in performance does not depend greatly on gt. In contrast,

model selection based on RMPBTs appears to do slightly better than selection based

on the JZS and UIP priors. UIP is the worst-performing prior for most sizes of pt.

We also examined the probability that each method correctly chose the true

model. These probabilities are depicted in Figure 4.2. The procedures performed

roughly similarly according to this criterion.

Although the RMPBT had slightly larger estimation errors than the hyper-g and
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EBL methods in this simulation study, it appears to compete well in selecting the

correct model. On the other hand, the RMPBT method is much easier to implement

and requires an order of magnitude less computation than the hyper-g prior, and it

has a much simpler and more direct interpretation than does the EBL method, while

providing an explicit form of the alternative hypotheses that is being tested. In rou-

tine applications, these advantages may offset the slight increase in estimation error

associated with the RMPBT, and make it an attractive alternative for practitioners.
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5. AN R PACKAGE FOR MOST POWERFUL BAYESIAN TESTING

The tests described in [2, 1] and in Section 3 have been implemented in an R pack-

age for distribution through the CRAN repository. This package, entitled “MPBT”,

makes UMPBTs and RMPBTs easily accessible for R users. They are written to

invoke syntax and arguments as similar as possible to functions that implement the

corresponding classical tests, and provide both the Bayesian and classical test results

as output. The Bayesian tests can be performed either by specifying the γ thresh-

old, or in cases where an equivalence between the Bayesian test and the frequentist

test exists, by specifying the frequentist threshold α. In this way, they facilitate the

reporting of Bayes factors in conjunction with p-values.

In this section we describe the functions in the MPBT package, including their

arguments, their output values, and important details. Subsection 1 describes the

data sets that are included in this package, which are used to illustrate the pack-

age’s functions. Subsection 2 treats functions designed for tests of one-parameter

exponential family models. Subsection 3 describes functions that test the regression

coefficients in the general linear model.

There are several commonalities between the various functions in this package.

First, the output for the Bayesian test is always given as the Bayes factor in favor of

the alternative hypothesis,

BF10 =
m(y|H1)

m(y|H0)
.

Given this quantity, the conversion to posterior odds is straightforward using the

identity

P(H1|y)
P(H0|y)

= BF10 ·
P(H1)

P(H0)
.
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The advantage of reporting the Bayes factor over directly reporting the posterior

odds is that each consumer of the test result is able to calculate custom posterior

odds based on his or her subjective assessment of the prior odds.

Second, in all cases the two-sided UMPBTs or RMPBTs have not been derived, if

they exist at all. Hence, a call to any function with a two-sided test will only return

results for the frequentist test.

Third, in many cases the UMPBT or RMPBT is not available in closed form, so

that a numerical algorithm must be used to estimate it. In such cases, the results of

the numerical search are included among the output of the test, although they are

not printed when using the print method defined for the class of objects that these

functions return. These numerical search results are viewable through accessing the

list of objects returned by each function through the names function.

Fourth, in the testing situations represented by some of these functions it is not

obvious what the default frequentist test would be. In these cases, we will describe

the particular frequentist test implemented.

5.1 MPBT Package Data Sets

The MPBT package includes seven data sets for use in illustrating the use of

the various functions. The first of these is the batteries data set from [50]. It

consists of data from a CRD experiment on the effect of ambient temperature on

battery life. The data set contains 5 observations of a response variable life, which

represents the battery life in hours, at each of 6 levels of the explanatory variable

temp, which represents the ambient temperature of the battery’s environment in

degrees Fahrenheit.

The second data set is the rubber data set, also taken from [50]. This data results

from a 3 × 3 × 4 crossed factorial designed experiment. The first treatment, lab,
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has 4 levels and indicates at which of 4 laboratories the measurements were made.

The second treatment, temp, has 3 levels and represents the target temperature in

degrees Fahrenheit of batches of rubber. The last treatment mix, has 3 levels and

indicates which of three different mixing procedures were used on a rubber batch.

The response variable, time, represents the time, in minutes, for the batch of rubber

to solidify. There are 2 replicates of this experiment, so that there are 72 different

time measurements total.

The third data set is the rainfall data set, taken from [51]. It provides the

maximum daily rainfall (in mm) in each of 47 consecutive years for Turramurra,

Sydney, Australia. This data is assigned to the variable rain.

The fourth data set is the London data set, also taken from [51]. It provides the

number of times 576 different grid squares in South London, each 1/16 km2 in area,

were hit by bombs during World War II. This data is assigned to the variables hits.

The fifth data set is the bearings data set, also taken from [51]. It provides the

measured diameter in microns of 10 randomly selected ball bearings from each of

two production lines, line1 and line2.

The sixth data set is the health data set, taken from [52]. This data was taken

from 26 randomly selected males ages 25-30. Researchers measured each subject’s

weight in lbs. (weight) and his systolic blood pressure in mm Hg (systolic).

The last data set is the pressure data set, also taken from [52]. This data

reports an experiment done on a bubble column with a screen plate. The response

variable, drop, reports a dimensionless factor for the pressure drop through a bubble

cap. The explanatory variables are velocity, the superficial fluid velocity of the

gas in cm/s, viscosity, the kinematic viscosity, mesh, the mesh opening in cm, and

relationship, a dimensionless measure of the relationship between the superficial

fluid velocity of the gas and the superficial fluid velocity of the liquid.
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5.2 Tests of One-Parameter Exponential Family Models

In [2, 1], Johnson derives the UMPBTs for several special cases of the one-

parameter exponential family model. These are: the test of a binomial probability

(when the sample size is fixed and known), the test of an exponential distribution

scale parameter, the test of a negative binomial probability (when the target number

of successes is fixed and known), the test of a Poisson rate parameter, and the test

of a normal variance (when the mean is known). In addition, although it is not an

exponential family model, we will also discuss here the test of a χ2
1 noncentrality

parameter.

5.2.1 Tests of a Binomial Probability

The function binom_mpb tests the probability parameter p in a sequence of Bernoulli

trials against an alternative hypothesis when the sample size is fixed and known.

The proper syntax for the binom_mpb function is

binom_mpb(x, n, p0, gamma,

alternative=c("two.sided", "less", "greater"))

where x is the observed number of successes, n is the sample size, p0 is the value of

p under H0, and the γ threshold gamma must be user-specified for the Bayesian test.

A call to the two-sided test only returns the frequentist test results. The frequentist

p-value is the sum of discrete probability masses.

For an example we test the one-sided claim that a coin is fair after observing a

string of 10 consecutive heads, with γ = 20.

> binom_mpb(x=10, n=10, p0=0.5, gamma=20, alternative=’greater’)

BF p.value

243.4408 0.0009765625
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The user-specified gamma is 20.

5.2.2 Tests of an Exponential Distribution Scale Parameter

The function exp_mpb tests the scale parameter µ in an exponential distribution

against an alternative hypothesis.

The proper syntax for the exp_mpb function is

exp_mpb(x, mu0, gamma, alternative=c("two.sided", "less", "greater"))

where x is a numeric vector of observed data, mu0 is the value of µ under H0, and the

γ threshold gamma must be user-specified for the Bayesian test. A call to the two-

sided test only returns the frequentist test results. The frequentist test is performed

using the fact that the pivot

(x̄− µ0)

µ0/
√
n

converges to a standard normal distribution under H0 as n increases.

For an example we test the claim that the scale parameter for the exponential

distribution that best fits the rainfall data set is less than 1,500, with γ = 20.

> exp_mpb(x=rainfall$rain, mu0=1500, gamma=20, alternative=’less’)

BF p.value

0.1401655 0.2748396

The user-specified gamma is 20.

5.2.3 Tests of a Negative Binomial Probability

The function negbinom_mpb tests the probability parameter p in a sequence of

Bernoulli trials against an alternative hypothesis when the target number of successes
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is fixed and known. The negative binomial parameterization used matches that used

by the dnbinom function in R.

The proper syntax for the negbinom_mpb function is

negbinom_mpb(k, r, p0, gamma,

alternative=c("two.sided", "less", "greater"))

where k is the observed number of failures, r is the target number of successes, p0

is the value of p under H0, and the γ threshold gamma must be user-specified for the

Bayesian test. A call to the two-sided test only returns the frequentist test results.

The frequentist p-value is the sum of discrete probability masses.

For an example we test the one-sided claim that a coin is fair after observing 10

heads before a single tail, with γ = 20.

> negbinom_mpb(k=0, r=10, p0=0.5, gamma=20, alternative=’greater’)

BF p.value

176.3025 0.0009765625

The user-specified gamma is 20.

5.2.4 Tests of a Poisson Rate Parameter

The function poisson_mpb tests the rate parameter λ in a poisson distribution

against an alternative hypothesis.

The proper syntax for the poisson_mpb function is

poisson_mpb <- function(x, lambda0, gamma,

alternative=c("two.sided", "less", "greater"))
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where x is a numeric vector of observed data, lambda0 is the value of λ under H0,

and the γ threshold gamma must be user-specified for the Bayesian test. A call to

the two-sided test only returns the frequentist test results. The frequentist test is

performed using the fact that the pivot

(x̄− λ0)
√

λ0/n

converges to a standard normal distribution under H0 as n increases.

For an example we test the one-sided claim that the rate parameter for the poisson

distribution that best fits the London data set is 1, with γ = 20.

> poisson_mpb(x=London$hits, lambda0=1, gamma=20, alternative="less")

BF p.value

2.762978 0.05208128

The user-specified gamma is 20.

5.2.5 Tests of a Normal Variance Parameter

The function normalvar_mpb tests the variance parameter σ2 in a normal distri-

bution against an alternative hypothesis when the mean is known.

The proper syntax for the normalvar_mpb function is

normalvar_mpb <- function(x, mu, s0, gamma, alternative=

c("two.sided", "less", "greater"))

where x is a numeric vector of observed data, mu is the mean of the population, s0 is

the value of σ2 under H0, and the γ threshold gamma must be user-specified for the
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Bayesian test. A call to the two-sided test only returns the frequentist results. The

frequentist test is performed using the fact that the pivot

∑n
i=1(xi − µ)2

σ2
0

∼ χ2
n

under H0.

For an example we test the one-sided claim that the variance parameter for the

normal distribution with mean 7 that best fits the logarithm of the rainfall data

set is 0.25, with γ = 20.

> normalvar_mpb(x=log(rainfall$rain), mu=7, s0=0.25, gamma=20,

> alternative="less")

BF p.value

0.01629677 0.5036909

The user-specified gamma is 20.

5.2.6 Tests of a χ2
1 Noncentrality Parameter

The function chisq_mpb tests the noncentrality parameter λ in a χ2
1 distribution

against a one-sided alternative hypothesis. Although this test is not a special case

of testing a one-parameter exponential family model, we include it in this subsection

because it was described among certain of the other tests mentioned here in [1].

The proper syntax for the chisq_mpb function is

chisq_mpb(x, gamma)

where x is a single numeric observation and the γ threshold gamma must be user-

specified for the Bayesian test. The frequentist p-value is the area to the right of x

under a χ2
1 density curve.
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For an example we perform a χ2 test of independence on a 2 × 2 contingency

table, where the test statistic equals 6, with γ = 20.

> chisq_mpb(x=6, gamma=20)

BF p.value

9.859353 0.01430588

The user-specified gamma is 20.

5.3 Tests of Regression Coefficients in the General Linear Model

The functions in this section perform tests of all or some of the regression coeffi-

cients in the general linear model or some special case of it. We begin by discussing

the test of one or two normal means, followed by general ANOVA tests. Finally, we

provide a function for testing in the general linear model setting. The tests in these

functions were described variously in [2, 1] and Section 3.

5.3.1 Tests of One- and Two-sample Normal Means

The function normalmean_mpb performs one- and two-sample z and t tests, i.e.

tests of normal mean(s) where the variance σ2 either is known a priori or is not.

The one- and two-sample z tests are described in both [2, 1]. Both of these sources

also provide an approximate UMPBT for the one-sample t-test, albeit their tests are

slightly different. For the package we implement the approximate UMPBT found

in [1], which is given for both one- and two-sample tests. We also implement the

RMPBTs for the one- and two-sample RMPBTs t tests found in Section 3.

The proper syntax for the normalmean_mpb function is

normalmean_mpb(x, y=NULL, sigma2=NULL, mu0=0, gamma, alpha=NULL,

paired=FALSE, var.equal=FALSE,

45



method=c("restricted","approximate"),

alternative=c("two.sided", "less", "greater"))

where x is a numeric vector of observed data, y is an optional numeric vector of data,

sigma2 is the known variance (for z tests only), and mu0 is the value of µ under H0

(for one-sample tests only). The γ threshold may either be user-specified for gamma,

or calculated based on an α threshold by specifying alpha and leaving gamma un-

specified (which prompts the function to match the frequentist and Bayesian tests’

rejection regions). In addition, the paired option can be used to perform paired

two-sample tests and the var.equal option can be used to perform either the two-

sample z-test with unequal variances or the Welch-Satterthwaite approximation to

the two-sample t-test, although there will be no corresponding Bayesian test per-

formed. A call to the two-sided test, likewise, only returns the frequentist results.

The method argument selects between the RMPBT ("restricted") and the approx-

imate UMPBT ("approximate"). All frequentist tests are computed in the usual

way.

We provide four examples of using the normalmean_mpb function. The first il-

lustrates the test of a normal mean when the variance σ2 is known (the one-sample

z-test). We do this by testing the one-sided claim that the mean of the normal dis-

tribution with variance 0.08 which best fits the bearings$line1 data set is 1, with

γ = 20.

> normalmean_mpb(x=bearings$line1, sigma2=0.08, mu0=1, gamma=20,

> alternative="greater")

BF p.value

10.1087 0.01504188
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The user-specified gamma, 20, corresponds to an alpha of 0.0072.

The second example illustrates the test of the equality of two means when the

common variance σ2 is known (the two-sample z-test). We do this by testing the

one-sided claim that the difference of the means of the normal distributions with

variance 0.10 which best fit the bearings data set is 0, with γ set by matching the

Bayesian test’s rejection region to that of an α = 0.05 level frequentist test. Note

that, consistent with the two-sample z-test described in [1], the argument x should

correspond to the sample with the lower mean under H1 and the argument y should

correspond to the sample with the higher mean under H1, since the right-sided test

is being performed.

> normalmean_mpb(x=bearings$line1, y=bearings$line2, sigma2=0.10,

> alpha=0.05, alternative="greater")

BF p.value

3.043393 0.06692821

A gamma of 3.8681 corresponds to the user-specified alpha 0.05.

The third example illustrates the test of a normal mean when the variance is

unknown (the one-sample t-test). We do this by testing the one-sided claim that the

mean of the normal distribution which best fits the bearings$line1 data set is 1,

with γ = 20. We opt to do an approximate UMPBT.

> normalmean_mpb(x=bearings$line1, mu0=1, gamma=20,

> method="approximate", alternative="greater")

BF p.value

7.07438 0.03163275
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The user-specified gamma, 20, approximately corresponds to an alpha

of 0.0119.

The last example illustrate the test of the equality of two means when the common

variance σ2 is unknown (the two-sample t-test). We do this by testing the one-sided

claim that the difference of the means of the normal distributions with common

variance σ2 which best fit the bearings data set is 0, with γ set by matching the

Bayesian test’s rejection region to that of an α = 0.05 level frequentist test. We opt

to use the "restricted" method. Again, the argument x should correspond to the

sample with the lower mean under H1 and the argument y should correspond to the

sample with the higher mean under H1, since the right-sided test is being performed.

> normalmean_mpb(x=bearings$line1, y=bearings$line2, alpha=0.05,

> alternative="greater")

BF p.value

0.9111004 0.1066991

A gamma of 2.2874 corresponds to the user-specified alpha 0.05.

5.3.2 General ANOVA Tests

The function aov_mpb is a subsidiary function for the more general function

lm_mpb (described below) in analogy to the wrapper function aov which exists for

the more general function lm. It performs ANOVA tests using the RMPBTs described

in Section 3.

The proper syntax for the aov_mpb function is

aov_mpb(formula, data=NULL, gamma, alpha=NULL)
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where the formula argument is an object of the R formula class and the data

argument is an object of the R data.frame class. The γ threshold may either be

user-specified for gamma, or calculated based on an α threshold by specifying alpha

and leaving gamma unspecified (which prompts the function to match the frequentist

and Bayesian tests’ rejection regions).

We provide two examples of using the aov_mpb function. First we use the

batteries data set to test that the mean lifetimes for the five temperature groups

are equal. We test at the α = 0.05 level and the function provides the corresponding

γ threshold for the factor temp.

> aov_mpb(life~temp,data=batteries,alpha=0.05)

BF gamma p.value

temp 46083.43 3.064042 3.146185e-13

The user-specified alpha is 0.05.

As another example, we use the rubber data set. We test the main effects, two-

way interactions, and three-way interaction of the factors temp, lab, and mix. Again

we test at the α = 0.05 level and the function provides the corresponding γ threshold

for each test.

> aov_mpb(time~temp*lab*mix,data=rubber,alpha=0.05)

BF gamma p.value

temp 1.643114e+09 2.594327 8.143344e-54

lab 1.409900e+06 2.818816 6.208338e-15

mix 9.583649e+04 2.594327 3.569071e-10

temp:lab 3.649044e+03 3.180965 4.722377e-08
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temp:mix 1.357029e+03 2.972724 1.150316e-06

lab:mix 1.164397e+02 3.180965 1.394283e-04

temp:lab:mix 6.779397e+01 3.510330 3.675729e-04

The user-specified alpha is 0.05.

5.3.3 Tests of Coefficients in the General Linear Model

Moving toward greater generality, we finally consider the function lm_mpb, which

implements the RMPBT of linear regression coefficients with unknown variance de-

veloped in detail in Section 3.

The proper syntax for the lm_mpb function is

lm_mpb(formula, data=NULL, gamma, alpha=NULL)

where the formula argument is an object of the R formula class and the data

argument is an object of the R data.frame class. The γ threshold may either be

user-specified for gamma, or calculated based on an α threshold by specifying alpha

and leaving gamma unspecified (which prompts the function to match the frequentist

and Bayesian tests’ rejection regions).

We provide two examples of using the lm_mpb function. In the first example, we

use the health data set to test for the significance of the slope for weight in the

simple linear regression of systolic on weight. We specify a γ threshold for gamma

of 20.

> lm_mpb(systolic~weight, data=health, gamma=20)

BF p.value alpha

weight 5490.473 3.591105e-06 0.00306274
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The user-specified gamma is 20.

The second example illustrates multiple linear regression with the pressure data

set. We test for the significance of the slopes of the four explanatory variables in

modeling drop, the response. We specify an α threshold for alpha of 0.05.

> lm_mpb(drop~velocity+viscosity+mesh+relationship, data=pressure,

> alpha=0.05)

BF gamma p.value

velocity 1.045076e+00 2.165836 1.652960e-01

viscosity 2.533954e+08 2.165836 3.779436e-15

mesh 1.653112e+01 2.165836 2.316482e-03

relationship 2.183894e+00 2.165836 4.935047e-02

The user-specified alpha is 0.05.
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6. CONCLUSION AND DISCUSSION

The conditions in Theorem 3.1.1 encompass many of the ANOVA, ANCOVA,

and linear regression tests performed in practice, as well as the ubiquitous t tests.

The RMPBTs described by this theorem apply to a large set of testing situations.

These tests’ principal virtue lies in three salient features: the objective and default

alternative hypotheses they define, the supplemental information they provide to

frequentist test results, and the power-maximizing criterion that motivates their

definition. We discuss each feature briefly.

First, Section 2 reviewed the literature on Bayesian hypothesis testing and model

selection, finding that in the former area there exists no objective method for defin-

ing alternative hypotheses in general, while in the latter area there exists no default

method for specifying g in Zellner’s g prior. In a testing situation, once the decision

is made to apply a π-RMPBT and γ is specified, the alternative hypothesis is com-

pletely determined. Likewise in the model selection situation, once the decision is

made to utilize a g prior-RMPBT and γ is chosen, g is given by a formula. In both

cases, the principal source of subjectivity is the selection of a general method. We

argue that the other two features of RMPBTs, described proximately, largely obviate

this subjectivity by putting forward additional rationale supporting their usage.

Second, by calibrating γ to provide an α-level test, the g prior-RMPBT provides

an alternative quantification of the evidence against the null hypothesis, as well

as a description of the weight of evidence in favor of it. For this reason, we view

the g prior-RMPBT as a supplement to the classical F -test. Under an assumption

of equipoise, the g prior-RMPBT provides an objective estimate of the posterior

probabilities of the null and alternative hypotheses, quantities that in many cases

52



are of primary interest to practitioners and are more interpretable to consumers.

Additionally, it may of value to some users that the RMPBT explicitly declares the

alternative hypothesis being tested.

Third, RMPBTs and UMPBTs optimize over all possible values of θt, the data-

generating value of the parameter being tested. For a fixed γ these tests maximize

statistical power, in analogy to the frequentist uniformly most powerful tests. This

optimization results in a maximization of the probability that the Bayes factor ex-

ceeds γ for values of θt that satisfy H0. Philosophical objections to this facet of these

tests should be balanced against the fact that the probability of a false rejection is

still controllable through the specification of γ.

The upshot of these three features is that RMPBTs provide a broadly applicable,

defensible, and coherent methodology for performing Bayesian hypothesis tests and

model selection. The software package described in Section 5 makes this methodology

easily accessible.

We conclude with some observations on potential research directions in subse-

quent work. Although the model selection method described in Section 4 did not

outperform other common methods, its computation burden was lighter than that

of the two highest-performing methods (hyper-g and local empirical Bayes). It has

a simpler justification than the empirical Bayes method and does not depend on

the use of additional prior specifications like the hyper-g method. Additional re-

search may be able uncover improvements to the method which further increase its

competitiveness in simulation tests.

The results described in this article depend on the use of the Normal-Gamma g

prior on model coefficients, which restricts their applicability. Although the g prior

has found wide and extensive application in Bayesian model averaging [32] and model

selection methods, RMPBTs may be sought for other classes of priors, including non-
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local priors [53]. Finally, the extension of RMPBTs to non-linear models is currently

under investigation.
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APPENDIX A

PROOFS OF THEOREMS

Proof of Theorem 3.1.1 Under the alternative hypothesis, m1(y), the marginal den-

sity is given by

m1(y) = (2π)−(n−p2−1)/2 (1 + g)−p1/2

√
n

|XT
2X2|−1/2

Γ((n− p2 − 1)/2)
{

1
2
yT (I− g

1+g
PX1 −PX2 −P1)y

}(n−p2−1)/2
,

where PXi
= Xi(X

T
i Xi)

−1XT
i . Under the null hypothesis, the marginal density is

m0(y) = (2π)−(n−p2−1)/2 1√
n
|XT

2X2|−1/2 Γ((n− p2 − 1)/2)
{

1
2
yT (I−PX2 −P1)y

}(n−p2−1)/2
.

Therefore, the Bayes factor in favor of the alternative is

BF10(y) = (1 + g)(n−p−1)/2

[

1 + g
1−R2

1

1−R2
0

]

−(n−p2−1)/2

,

where R2
i is the coefficient of determination for the model in hypothesis i. The

probability of the Bayes factor exceeding a threshold can be expressed as

P

(

1−R2
1

1−R2
0

<
γ

−2
n−p2−1 (1 + g)

n−p−1
n−p2−1 − 1

g

)

.

This probability is maximized by maximizing the right-hand side of the inequality

in g, regardless of the distribution of the left-hand side.
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Proof of Theorem 3.1.2 The rejection region for the frequentist test is

{

y : F̂ > F1−α

}

,

where F̂ is the test statistic and the constant F1−α is the 1 − α quantile of an F

distribution with p1 and n− p− 1 degrees of freedom. For the Bayesian test using a

g prior, the rejection region is

{

y :
1−R2

1

1−R2
0

< g−1
[

γ
−2

n−p2−1 (1 + g)
n−p−1
n−p2−1 − 1

]

}

,

which can be expressed as
{

y : F̂ > c
}

,

where the constant c equals

(

n− p− 1

p1

)

·
(

1 + g − γ−2/(n−p2−1)(1 + g)(n−p−1)/(n−p2−1)

γ−2/(n−p2−1)(1 + g)(n−p−1)/(n−p2−1) − 1

)

.

The rejection region for the Bayesian test can therefore be made equivalent to that

of the frequentist test by setting F1−α = c. Solving for γ, we obtain

γ2/(n−p2−1) =
(1 + g)(n−p−1)/(n−p2−1)(p1F1−α + n− p− 1)

(n− p− 1)(1 + g) + p1F1−α

.

This is the value of γ which gives a size-α test, given g.

By differentiating and equating to 0 the expression in (3.4), we obtain another

expression for γ in terms of g:

γ2/(n−p2−1) = (1 + g)(n−p−1)/(n−p2−1) −
g(1− p1

n−p2−1
)

(1 + g)p1/(n−p2−1)
.
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Solving for g and γ completes the proof.

Proof of Corollary 3.1.3 We will show that the conditions given in this corollary

satisfy the conditions in Theorem 3.1.1. Letting X2 = 0, β2 = 0, and p2 = 0, define

p = p1 = J − 1. It is easily seen that 1T (In − P1)X
∗

1 = 0. It only remains to show

that (In − P1)X
∗

1 is of full-column rank, or rank J − 1. A rearrangement of the

rank-nullity theorem gives

rank ((In −P1)X
∗

1) = J − 1− nullity ((In −P1)X
∗

1) .

We must show that the dimension of the null space of (In−P1)X
∗

1 is 0, or equivalently

that, for any vector a ∈ R
J−1,

(In −P1)X
∗

1a = 0 =⇒ a = 0.

Fix a vector a such that (In − P1)X
∗

1a = 0. Since the null space of (In − P1) is

spanned by 1n, and X∗

1a is in that null space, there must be some constant b such

that

1nb = X∗

1a.

But the reparameterization of the model ensured that 1n was not linearly dependent

on the columns of X∗

1, so it must be that b = 0 and a = 0.

The proof to the corollary follows from Theorems 3.1.1 and 3.1.2.

Proof of Corollary 3.1.4 The proof follows from Corollary 3.1.3 using J = 2 and the

fact that the 1 − α quantile from an F distribution with 1 and n − 2 degrees of

freedom is equivalent to the square of the 1 − α/2 quantile of a t distribution with

n− 2 degrees of freedom.
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Proof of Theorem 3.1.5 Under the alternative hypothesis, the marginal density is

given by

m1(y) = (2π)−n/2(1 + g)−1/2 Γ(n/2)
{

1
2

[

∑n
i=1 y

2
i − g

1+g
nȳ2
]}n/2

.

Under the null hypothesis, the marginal density is

m0(y) = (2π)−n/2 Γ(n/2)
{

1
2

∑n
i=1 y

2
i

}n/2
.

Therefore, the Bayes factor in favor of the alternative is

(1 + g)(n−1)/2

[

1 + g

∑n
i=1 y

2
i − nȳ2

∑n
i=1 y

2
i

]

−n/2

,

and the probability of the Bayes factor exceeding a threshold can be expressed as

P

{∑n
i=1 y

2
i − nȳ2

∑n
i=1 y

2
i

< g−1
[

(1 + g)(n−1)/nγ−2/n − 1
]

}

.

This probability can be maximized by maximizing the expression on the left side.

The rejection region of the frequentist test is

{

y : |t̂| > t1−α/2

}

,

where t̂ is the test statistic and the constant t1−α/2 is the 1 − α/2 quantile of a t

distribution with n−1 degrees of freedom. For the Bayesian test, the rejection region

is
{

y : (1 + g)(n−1)/2

[

1 + g

∑n
i=1 y

2
i − nȳ2

∑n
i=1 y

2
i

]

−n/2

> γ

}

,

which is equivalent to
{

y : |t̂| > c
}

,
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where the constant c equals

[

g

(1 + g)(n−1)/nγ−2/n
− 1

]1/2

(n− 1)1/2.

Letting t1−α/2 = c and solving for γ yields

γ2/n = (1 + g)(n−1)/n
t21−α/2 + n− 1

t21−α/2 + n− 1 + g(n− 1)
.

Differentiating (3.11) and setting the result to zero leads to

γ2/n =

[

(1 + g)(n−1)/n − g

(1 + g)1/n
· n− 1

n

]n/2

.

Solving for g and γ completes the proof.
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