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Sergiy Butenko

Head of Department, Emil Straube

May 2015

Major Subject: Mathematics

Copyright 2015 Mitchell Allen Phillipson



ABSTRACT

Symmetry of monotone sequences arise in many combinatorial structures, the

classical examples being inversions and coinversions in permutations. Another ex-

ample is crossings and nestings in matchings, partitions and permutations. These

examples can be generalized to fillings of Ferrers diagrams and further generalized

to moon polyominoes. This dissertation first introduces layer polyominoes, then ex-

tends the joint symmetry between northeast and southeast chains exhibited in moon

polyominoes.

For a given structure it’s not always true that symmetry of crossings and nestings

holds. We introduce a type of matching, called an alternating matching, where the

distribution of crossings and nestings is not symmetric. We prove a necessary and

sufficient condition for an alternating matching to be non-nesting and use this to

partially enumerate non-nesting alternating matchings.

Finally, we prove several results on crossings and nestings in graphs. First we

show that the crossing number and nesting numbers are unrelated, i.e. there are

families of graphs with no crossings and with nestings numbers that diverge and vice

versa. Second we give a bijection between plane trees and bi-colored motzkin paths.

Lastly, we provide a generating function for a special class of Ferrers diagrams, where

each row a fixed length shorter than the previous row, and the filling of the diagram

has no southeast chains.
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1. INTRODUCTION

This thesis is divided into four chapters. The first provides relevant definitions,

context and history. The second contains new work in fillings of layer polyomi-

noes. The third introduces alternating matchings and discusses results in alternating

matchings with no nestings. The final chapter contains a collection of miscellaneous

results such as crossings and nestings in graphs, a bijection from plane trees to

Motzkin paths, and fillings of Ferrers diagrams with fixed step. This introductory

chapter will detail the results of the final three chapters, without definitions or con-

text.

We begin with the problem of enumerating chains in fillings of layer polyomi-

noes. Unlike moon polyomoninoes or Ferrers diagrams, there are two distinct types

of chains that can appear in a layer polyomino, strong chains and regular chains.

Regular chains extend two results first proved for 01-fillings of moon polyominoes.

The first results says for fixed row sum and at most one non-zero entry per column

the rows of a layer polyomino can be arbitrarily permuted, preserving the number

of northeast and southeast chains. Second, for fixed row sum the number of a 01-

fillings with no northeast chains is the same as in any permutation of the rows. In

addition to these, we give conditions on row and column sums so that N-fillings of

layer polyominoes exist and show that the filling with no northeast chains in unique.

Unlike regular chains, strong chains are not necessarily preserved when the rows are

permuted; however, symmetry results still hold. For fillings of layer polyomionoes

we develop recursive bijection that breaks the layer polyomino into rectangles, al-

lowing us to extend a maps on fillings of rectangles. This framework has allowed

us to prove several results. First, in 01-fillings of a layer polyomino, with fixed row
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sum and at most one non-zero entry per column, the joint distribution of strong

northeast and strong southeast chains is symmetric. Second, again in 01-fillings of

layer polyominoes, with fixed row sum, the number of fillings with no strong north-

east chains is the same as with no strong southeast chains. Finally, in N-fillings,

with fixed row and column sum, the joint distribution of strong northeast and strong

southeast chains is symmetric. Unlike regular chains, it’s not true that N-fillings

with no strong northeast chain are unique for given layer polyomino with fixed row

and column sums.

Alternating matchings are a special type of matching where each part has both

an even and odd element. Every non-crossing matching is also a non-crossing alter-

nating matching; however, not every non-nesting matching is a non-nesting alternat-

ing matching. This leads to the interesting occurrence that crossings and nestings

are not equi-distributed in alternating matchings. We modify a bijection between

non-nesting permutations and bi-colored motzkin paths, originally stated by Sylvie

Corteel [4], to a subset of alternating matchings that includes all non-nesting alter-

nating matchings. We give two disjoint conditions on bicolored Motzkin paths that

guarantee the corresponding alternating matching is non-nesting. These conditions

are used to classify a subset of non-nesting alternating matchings, alternating match-

ings that correspond to single cycle permutations, which can be used to construct

all non-nesting alternating matchings.

The final three results are smaller than the rest. The first is on crossings and

nestings in graphs. An ordering on the vertices of a graph allows us to define crossings

and nestings. The total number of crossings and nestings is highly dependent on the

the ordering, to counteract this is to take the minimum over all orderings. Using this

definition we show that trees and graphs with exactly one cycle have both crossing

and nesting number zero. Additionally, the complete graph on n vertices, Kn, has

2



crossing and nesting numbers
∑n−2

i=1

(

n−2
2

)

. We also explore the relationship between

the crossing and nesting numbers. Given a graph G with no crossings, we construct

a family of graphs Gn so that each Gn has no crossings. Additionally, if G has at

least one nesting then each Gn has at least n nestings. We explicitly construct two

graphs, G and H, so that G has no crossing and one nesting and H has no nestings

and one crossing. The graphs G and H imply that the crossing an nesting numbers

are unrelated, as neither is bound by the other. The second is a bijection between

plane trees and bicolored Motzkin paths. The final is on fillings, with no southeast

chains, of Ferrers diagrams where each row is a fixed length shorter than the previous

row. We give a recursive formula for the generating function enumerating over the

number of non-zero entries and the number of rows. We explicitly solve this for step

size 1 which corresponds to non-crossing (unordered) simple graphs.
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2. HISTORY AND PRELIMINARIES

Monotone sequences originated in the study of inversions and co-inversions in

permutations and was later extended to crossings and nestings in various structures.

This chapter introduces key concepts and historical results on crossings and nestings

in several combinatorial structures, then extends these results to monotone sequences

(northeast and southeast chains) in polyominoes.

Section 2.1 defines important paths and a result due to Flajolet on continued

fraction generating functions. Section 2.2 contains results on crossings and nestings

in matchings. Section 2.3 extends the results on matchings to partitions. Section

2.4 further extends these results to crossings and nestings in permutations. Finally

Section 2.5 defines polyominoes, fillings of polyominoes and two special types of

polyominoes, Ferrers diagrams and moon polyominoes.

2.1 Paths

This section is dedicated to defining the types of paths that will be used through-

out this document and state an extremely important result by Flajolet [8]. Flajolet’s

result gives a continued fraction generating function for classes of weighted Motzkin

paths. In this section we define weighted Motzkin paths, state a simplified version

of Flajolet’s result and use this result to enumerate several different types of paths.

Definition 2.1. A Motzkin path of length n is a word, u = u1u2 . . . un on the

alphabet {N,E, S} so that for 1 ≤ j ≤ n,

|u1 . . . uj|N ≥ |u1 . . . uj|S |u1 . . . un|N = |u1 . . . un|S

where |x|c denotes the number of occurrences of c in x.

4



This definition is very abstract, a more concrete version of a Motzkin path of

length n is path from (0, 0) to (n + 1, 0) with steps N = (1, 1), E = (1, 0) and

S = (1,−1) so that the path stays above the x−axis. Figure 2.1 shows the Motzkin

path M = NENNSESS.

Figure 2.1: The path NENNSESS

Definition 2.2. The height at step i of a Motzkin path M = m1m2 . . .mn is

hi = |m1 . . .mi|N − |m1 . . .mi|S

In a diagram of a Motzkin path the height of an edge is the y-coordinate of the

left vertex, Figure 2.2 has a breakdown of the heights of the path in Figure 2.1.

Definition 2.3. A weighted Motzkin path is a pair (M,w) where M is a Motzkin

path of length n and w is a word of length n, corresponding to weights on the steps

of M . Figure 2.3 has an example of a weighted path.

Using these definitions we can state a simplified version of Flajolet’s result. Fla-

jolet’s full theorem deals with generating functions in non-commutative variables,

which is an unnecessary generalization for our concerns, as all our variables com-

mute.

5



i 1 2 3 4 5 6 7 8
hi 0 1 1 2 3 2 2 1

Figure 2.2: A breakdown of the heights of the path NENNSESS

w1

w2

w3

w4 w5

w6

w7

w8

Figure 2.3: A Motzkin path with weights

Theorem 2.4 (Flajolet). Let {Xn}n≥0 be a family of sets and for each X ∈ Xn let

f(X) be the property we wish to enumerate. If for each n there is an injective map

Fn from Xn to weighted Motzkin paths of length n, so that for each X ∈ Xn the

corresponding weight path Fn(X) = (M,w = w1 . . . wn) satisfies

n
∏

i=1

wi = f(X).

6



Then, for all the paths in the image of this map, denote,

Ni = sum of all weights on N steps at height i

Si = sum of all weights on S steps at height i

Ei = sum of all weights on E steps at height i.

Then the continued fraction,

GF (x) =
∑

n≥0

xn
∑

X∈Xn

f(X) =
1

1− E0x−
N0S1x

2

1− E1x−
N1S2x

2

. . .

(2.1)

converges and is well defined.

We now enumerate several simple examples as a demonstration of the previous

Theorem.

2.1.1 Dyck Paths

Dyck paths, or Catalan paths, are a special case of Motzkin paths with no E

steps. It’s well known that the number of Dyck paths of length 2n is the nth Catalan

number C(n) =
1

n+ 1

(

2n
n

)

and the generating function is

D(x) =
∑

n≥0

C(n)xn =
1−

√
1− 4x

2x
(2.2)

However, we will use the method of Flajolet to arrive at this in a different way.

Since we are only enumerating Dyck paths we can set the weights on each N and S

step to 1 and E to 0, as there are no E steps. This makes Ni = Si = 1 and Ei = 0.

7



Thus by Equation (2.1),

GF (x) =
1

1−
x2

1−
x2

. . .

we can solve this explicitly to see

GF (x) =
1−

√
1− 4x2

2x2
.

This means GF (x) = D(x2), where the x2 comes from each Dyck path having even

length, so the x2n−1 terms are all 0 in the continued fraction.

2.1.2 Motzkin paths

This is quite easy, we set all weigths to equal 1 so we have

GF (x) =
1

1− x−
x2

1− x−
x2

. . .

.

If we say Mn is the number of Motzkin paths of length n, then solving the above

continued fraction explicitly, we see,

GF (x) =
∑

n≥0

Mnx
n =

1− x−
√
1− 2x− 3x2

2x2
.

8



2.1.3 Bi-colored Motzkin Paths

A bi-colored Motzkin Path is a Motzkin path with an extra step Ē = (1, 0) and the

condition that Ē can’t appear at height 0. The weights will be given by Ni = Si = 1

for all i, E0 = 1 and Ei = 2 for i > 0 since for height i > 0 there are two possibilities

for E steps. Then we have

GF (x) =
1

1− x−
x2

1− 2x−
x2

1− 2x−
x2

. . .

.

If BMn is the number of bi-colored Motzkin paths of length n, we see

GF (x) =
∑

n≥0

BMnx
n =

2x2

−2x3 + 2x2 + 2x− 1 +
√
1− 4x

.

This is significantly uglier than the previous generating functions, however it is still

possible to solve.

2.1.4 Motzkin paths with k ‘E’ steps

Let Mn,k be the number of Motzkin paths of length n with exactly k ‘E’ steps.

For a given path set the weights so that Ni = 1, Si = 1 and Ei = u. Then for any

9



path the product of the weights is uk, where k is the number of E steps. Then

GF (x, u) =
1

1− ux−
x2

1− ux−
x2

. . .

and when we solve explicitly,

∑

n≥0

xn

n
∑

k=0

Mn,ku
kxn =

1− ux−
√

(1− ux)2 − 4x2

2x2
.

Notice that if we plug u = 0 into the above we get the generating function for

Dyck paths, and if we use u = 1 we get the generating function for Motzkin paths.

This should help confirm that our process is correct.

2.2 Matchings

A matching on the set [n] = {1, 2, . . . , n} is a decomposition of [n] into subsets

of size 2 so that all elements of [n] are represented. This is actually a complete

matching, however we only consider complete matchings. The set of all matchings

on [n] is denoted M2n.

Example 2.5. On [8], the set

{(1, 3), (2, 4), (5, 8), (6, 7)}

is a matching.

Definition 2.6. In a matching M a pair of vertices (i1, j1) and (i2, j2) is said to be

10



a crossing if

i1 < i2 < j1 < j2,

and they are said to be a nesting if

i1 < i2 < j2 < j1.

The number of crossings in a matching M is denoted cros(M) and the number of

nestings is nest(M).

One way to visualize this definition is to represent matchings as a graph on a

number line. Given a matching M on [n] create a graph on the number line with

arcs the parts of the matching. By convention we draw the arcs above the number

line. Figure 2.4 shows what this looks like using Example 2.5.

1 32 4 5 86 7

Figure 2.4: The graph of a matching

Using these graphs crossings and nestings are easily visualized. A crossing is an

occurrence of

(2.3)

and a nesting is

. (2.4)

Example 2.7. The matching M in Figure 2.4 has cros(M) = 1 and nest(M) = 1.

And the matching M in Figure 2.5 has cros(M) = 2 and nest(M) = 3.

11



1 42 83 75 6

Figure 2.5: A second example of a matching.

These notions were introduced by De-Sainte Catherine in her 1983 Ph.D disserta-

tion [7]. Using a bijective proof she showed the distribution of crossings and nestings

in symmetric, or
∑

M∈M2n

pcros(M) =
∑

M∈M2n

pnest(M).

In 2006 Klazar [12] noticed that De-Sainte Catherine’s proof implied the stronger

result that the joint statistic (cros, nest) is symmetric. In other words, if

F (x, p, q) =
∑

n≥0

xn
∑

M∈M2n

pcros(M)qnest(M)

then F (x, p, q) = F (x, q, p). The remainder of this section applies the methods of

Section 2.1 to find a continued fraction expansion of F (x, p, q), which then implies

this symmetry.

Let M be a matching and (i, j) be a pair in M with i < j, we call i an opener

and j a closer in M . Construct a weighted Dyck path (D,w) with D = d1 . . . d2n

and w = w1w2 . . . w2n so that

di =











N if i is an opener in M

S if i is a closer in M

and

wi =











pcros(M,i)qnest(M,i) if i is an opener in M

1 if i is a closer in M

12



where cros(M, i) = #{k | k < i < ℓ < j, where (i, j), (k, ℓ) ∈ M} and similarly

nest(M, i) = #{k | k < i < j < ℓ, where (i, j), (k, ℓ) ∈ M}. An example of this map

is in Figure 2.6.

1 42 83 75 6
p0q0

p1q0
p1q1 1 p0q2 1

1

1

Figure 2.6: A matching with the corresponding Dyck path

Lemma 2.8. For a matching M and the corresponding weighted Dyck path (D,w),

if i is an opener in M and hi is the height of the ith step of the Dyck path, then

hi = cros(i) + nest(i)

This lemma implies that the image of this map is the set of (D,w = w1 . . . w2n)

where D = d1 . . . d2n is a Dyck path, if di = N then wi ∈ {paqb | a ≥ 0, b ≥ 0, a+ b =

hi} and if di = S, wi = 1. With a set image we can show the map is a bijection.

Let (D,w) be a weigthed Dyck path, construct a matching M as follows. Each

N step in D corresponds to an opener in M and each S step a closer. To create the

arcs read the weights right to left connecting each N step to the ath available closer,

where wi = paqb. Recall Figure 2.6 for an example.

Finally, it’s clear that for a matching M and weighted Dyck path (D,w)

n
∏

i=1

wi = pcros(M)qnest(M).

13



Thus we have,

F (x, p, q) =
∑

n≥0

xn
∑

M∈M2n

pcros(M)qnest(M) =
1

1−
[1]p,qx

1−
[2]p,qx

. . .

.

Where [n]p,q =
pn − qn

p− q
=

∑n−1
i=0 piqn−i+1 and the x2 has been changed to x, similar to

the generating for Dyck paths in Section 2.1.1. Unlike the examples in the previous

secton, this continued fraction has no known closed form.

This generating function exhibits several nice properties of crossing and nestings

in matchings. First the joint distribution distribution (cros, nest) is symmetric, i.e.

F (x, p, q) = F (x, q, p). Second, the number of matchings with either no crossings or

no nestings, i.e. F (x, 1, 0) or F (x, 0, 1), is C(n), the nth Catalan number. This is

actually apparent from our bijection as for each Dyck path there is only one sequence

of weights with either no p’s or no q’s.

2.3 Partitions

A partition is a collection of non-empty subsets of [n], called blocks, which are

mutually disjoint and have union equal to [n]. The set of partitions is denoted Πn.

If i and j are in the same block, we write i ∼ j. A partition π ∈ Πn with k blocks

is written π = B1 − B2 − · · · − Bk with the blocks ordered so that their minimal

elements are increasing. Denote by |π| the number of blocks in π, min(π) the minimal

elements in each block of π and max(π) the maximal elements in each block of π.

Similar to matchings we can draw a partition as a graph on a number line. For

a partition π ∈ Πn draw a graph on [n] with arcs (i, j) where i ∼ j and i < j so

that there is no k with i ∼ k and i < k < j, and (i, i) if i is a singleton block. An

14



example of the partition {{1, 2, 4}, {3, 7}, {5, 8}, {6}} can be seen in Figure 2.7.

1 2 43 75 86

Figure 2.7: The graph of the partition {{1, 2, 4}, {3, 7}, {5, 8}, {6}}

For π ∈ Πn we say arcs (i1, j1) and (i2, j2) cross if i1 < i2 ≤ j1 < j2 and nest if

i1 < i2 < j2 < j1, these can be seen in Figure 2.8. The number of crossings in π is

(a) Cross type 1 (b) Cross type 2 (c) A nest

Figure 2.8: Crossings and nestings in partitions

denoted cros(π) and the number of nestings is nest(π).

For π ∈ Πn and i ∈ [n] \max(π) define

cros(π, i) = #{j | j < i ≤ a < b, where i ∼ b and j ∼ a}

and

nest(π, i) = #{j | j < i < b < a, where i ∼ b and j ∼ a}.

These are the number of crossings per arc in π.

Example 2.9. The partition, π, in Figure 2.7 has cros(π) = 3 and nest(π) = 2.
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Our goal is determine the following generating function,

F (x, y, p, q) =
∑

n≥0

xn
∑

π∈Πn

y|π|pcros(π)qnest(π).

To find this generating function we are going to biject to weighted Motzkin paths.

Let π ∈ Πn define a weighted Motzkin path (M,w) as follows. If M = m1 . . .mn

define

mi =























N if i ∈ min(π)

E if i ∈ min(π) ∩max(π) or i 6∈ min(π) ∪max(π)

S if i ∈ max(π)

and for w = w1 . . . wn,

wi =























ypcros(π,i)qnest(π,i) if i ∈ min(π) or i ∈ min(π) ∩max(π)

pcros(π,i)qnest(π,i) if i 6∈ min(π) ∪max(π)

1 if i ∈ max(π).

This implies that for each partition

n
∏

i=1

wi = y|π|pcros(π)qnest(π).

Figure 2.9 has an example of this bijection.

1 2 43 75 86
y

p1
yp1 1 yp1

q2

1

1

Figure 2.9: An example of the bijection from partitions to Motzkin paths
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Lemma 2.10. Let π ∈ Πn and (M,w) be the corresponding weighted Motzkin path.

If hi is the height of the Motzkin path at step i, then

hi = cros(π, i) + nest(π, i)

This lemma implies that the image of the map is the set of weighted Motzkin

paths (M,w) so that if mi = N then wi ∈ {paqb | a + b = hi}, if mi = E then

wi ∈ {yqhi , pa+1qb | a+ b = hi − 1} and if mi = S then wi = 1.

The reverse map is almost identical to the reverse map for matchings. If (M,w) is

a weighted Motzkin path, satisfying the conditions of the previous paragraph, define

π ∈ Πn as follows. Reading right to left, connect each N or E step to the ath available

E or S step where wi = yǫpaqhi−a (ǫ ∈ {0, 1}).

Therefore, we have

F (x, y, p, q) =
∑

n≥0

xn
∑

π∈Πn

y|π|pcros(π)qnest(π)

=
1

1− (yq0 + p[0]p,q)x−
y[1]p,qx

2

1− (yq + p[1]p,q)x−
y[2]p,qx

2

. . .

.

This equation simplifies greatly if y = 1,

F (x, 1, p, q) =
1

1− [0]p,qx−
[1]p,qx

2

1− [1]p,qx−
[2]p,qx

2

. . .

.
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Further, the number of non-crossing partitions (and non-nesting) is the nth Catalan

number as can be seen from the generating function,

F (x, 1, 0, 1) =
1

1−
x2

1−
x2

. . .

.

Crossings and nestings in partitions have been widely studied [1, 3, 10, 11, 15].

In particular Chen et al. [2] showed the joint statistic (cros, nest) is symmetric when

restricted to be over the set of partitions with fixed minimal and maximal elements.

2.4 Permutations

The work in this section is due to Corteel [4]. We include the results and con-

struction here for completeness and future use.

A permutation on the set [n] is a bijection σ : [n] → [n]. We denote the set of all

permutations on [n] by Sn.

Definition 2.11. For σ ∈ Sn and i, j ∈ [n] we say (i, σ(i)) and (j, σ(j)) cross if

either

i < j ≤ σ(i) < σ(j) σ(i) < σ(j) < i < j

and they nest if either

i < j ≤ σ(j) < σ(i) σ(i) < σ(j) < j < i.

We denote cros(σ) to be the number of crossings in σ and nest(σ) the number of
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nestings.

Permutations can be represented on a line with arcs connecting i and σ(i). We

draw the arcs above the x-axis if i ≤ σ(i) and below otherwise. Figure 2.10 has an

example of a permutation. Drawing permutations like this we can visualize crossings

1 2 3 4 5

Figure 2.10: The graph of a permutation

and nestings easily. There are two cases for crossings and nestings, one above the

x-axis and one below, Figure 2.11 contains an example each crossing and nesting.

(a) Above crossing (b) Below crossing

(c) Above nesting (d) Below nesting

Figure 2.11: The types of crossings and nestings in permutations

Example 2.12. The permutation, σ, in Figure 2.10 has cros(σ) = 2 and nest(σ) = 1.

The goal is to enumerate crossings and nestings over permutations. However, it

turns out we are able to include one additional statistic for free, weak exceedances.

For a permutation, σ, the number of weak exceedances is WEX(σ) = #{j | j ≤
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σ(j)}. Essentially this is the number of arcs above the x-axis. With this we can now

define the generating function we want to find,

F (x, y, p, q) =
∑

n≥0

xn
∑

σ∈Sn

yWEX(σ)pcros(σ)qnest(σ).

To find this generating function we are going to form a bijection with a collection

of weighted bi-colored Motzkin paths. Before we do this we need to split the notion

of crossings and nestings into above the x-axis and below versions.

For σ ∈ Sn and i ∈ [n] define the following,

cros+(σ, i) = {j | j < i ≤ σ(j) < σ(i)}

cros−(σ, i) = {j | σ(i) < σ(j) < i < j}

nest+(σ, i) = {j | j < i ≤ σ(i) < σ(j)}

nest−(σ, i) = {j | σ(j) < σ(i) < i < j}.

It’s important to observe that

cros(σ) =
n

∑

i=1

cros+(σ, i) + cros−(σ, i) nest(σ) =
n

∑

i=1

nest+(σ, i) + nest−(σ, i).

For σ ∈ Sn define a weighted bi-colored Motzkin path (M,w) as follows, for

M = m1 . . .mn set

mi =



































N if i < σ(i) and i < σ−1(i),

E if i ≤ σ(i) and σ−1(i) ≤ i,

Ē if σ(i) < i and i < σ−1(i),

S if σ(i) < i and σ−1(i) < i.
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And for w = w1 . . . wn set,

wi =











ypcros+(σ,i)qnest+(σ,i) if mi ∈ {N,E},

pcros−(σ,i)qnest−(σ,i) if mi ∈ {Ē, S}

this implies that for any permutation,

n
∏

i=1

wi = yWEX(σ)pcros(σ)qnest(σ).

An example of this bijection is in Figure 2.12.

1 2 3 4 5 6 7
y

yp q
1 yp 1

1

Figure 2.12: The bijection from permutations to bi-colored Motzkin paths

Lemma 2.13. For a permutation σ ∈ Sn, the corresponding weighted bi-colored

Motzkin path (M,w) and i ∈ [n]. If hi is the height of M at step i then

1. If i ≤ σ(i), then hi = cros+(σ, i) + nest+(σ, i).

2. If i > σ(i), then hi − 1 = cros−(σ, i) + nest−(σ, i).

This lemma tells us the image of our map is the set of weighted bi-colored Motzkin

paths where the weights satisfy

wi ∈











{paqb | a+ b = hi}, if mi ∈ {N,E},

{paqb | a+ b = hi − 1}, if mi ∈ {Ē, S}.
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The inverse of this map is similar to the inverse in Section 2.3. For a weighted

bi-colored Motzkin path M , the N and E steps give the top arcs and the Ē and S

steps give the bottom arcs.

Therefore, we have

F (x, y, p, q) =
∑

n≥0

xn
∑

σ∈Sn

yWEX(σ)pcros(σ)qnest(σ) =
1

1− b0x−
λ1x

2

1− b1x−
λ2x

2

. . .

where,

bn = y[n+ 1]p,q + [n]p,q λn = y[n]2p,q

Once again this generating function shows that the joint distribution of (cros, nest)

is symmetric, F (x, y, p, q) = F (x, y, q, p).

2.5 Polyominoes

A polyomino is a finite connected subset of Z2, where we regard an element of Z2

as a cell. A column of the polyomino is a set of cells along a vertical line, a row is the

set of cells along a horizontal line. As convention we number rows top to bottoms

and columns left to right.

The polyomino is row (column) convex if the intersection with any horizontal

(vertical) line is convex. It is intersection–free if for any two rows the column coordi-

nates of one are contained in the column coordinates of the other. For example, the

polyomino in Figure 2.13 is row–convex but neither column–convex nor intersection–

free.

22



1

2

3

1 2 3 4 5

Figure 2.13: Row-convex polyomino, neither intersection–free nor column–convex

For A ⊂ N an A–filling of a polyomino P is an assignment of the elements of A

to the cells of P . The set of all A fillings of P is denoted

FA(P).

A filling, P , of a polyomino has row sums ~r = 〈r1, r2, . . . , rn〉 if the sum of the

entries in the ith row of P equals ri, column sums are defined similarly. The set of

all A-fillings of P with row sums ~r is denoted

FA(P , ~r)

and with row sums ~r and column sums ~c is denoted

FA(P , ~r,~c).

The two sets that are most common sets for fillings are {0, 1} and N = {0, 1, . . . },

for convenience we write 01-filling for {0, 1}–filling.

Example 2.14. Figure 2.14 has an example of both a 01-filling and an N–filling. The

filling in Figure 2.14(a) has row sums 〈1, 2, 3, 1, 2〉 and column sums 〈1, 2, 3, 2, 1〉, and

the filling in Figure 2.14(b) has row sums 〈2, 4, 5, 1, 3〉 and column sums 〈2, 3, 4, 4, 2〉.
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1

1 1

1 1 1

1

1 1

(a) A 01-filling

2

1 3

2 1 2

1

2 1

(b) An N-filling

Figure 2.14: Fillings in a polyomino

A northeast k–chain (nek–chain) in a filling, P , of a polyomino is k non-empty

cells (ia, ja) for 1 ≤ a ≤ k with i1 > i2 > · · · > ik and j1 < j2 < · · · < jk so that

the cells (i1, ja), (ik, ja), (ia, j1) and (ia, jk) are contained in P for all 1 ≤ a ≤ k. In

particular, a northeast 2–chain (ne2–chain) is two non-empty cells (i1, j1) and (i2, j2)

so that the cells (i1, j2) and (i2, j1) are contained in P . Southeast k–chains (sek–chain)

are defined similarly except we require i1 < i2 < · · · < ik and j1 < j2 < · · · < jk.

Figure 2.15 has examples of a nek–chain.

1

1

1

1

(a) A ne4-chain in
a rectangle

1

1

1

1

(b) A ne4-chain in a polyomino

Figure 2.15: A ne4–chain in two polyominoes

For a filling, P , of a polyomino we denote the total number of nek–chains in P
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as nek(P ) and the number of sek–chains as sek(P ). If P has no nek–chains we say

P avoids nek–chains. For a collection of fillings of a polyomino, F(P), we denote

by Av(nek,F(P)) the set of all P ∈ P that avoid nek–chains. Similarly define

Av(sek,F(P)).

2.5.1 Ferrers Diagrams

A Ferrers Diagram is a polyomino with rows R1, . . . , Rn so that, if the length of

Ri is |Ri|, |R1| ≥ |R2| ≥ · · · ≥ |Rn| and the rows are left justified. Figure 2.16 has

an example of Ferrers diagram.

Figure 2.16: A Ferrers diagram

Ferrers diagrams arise naturally in partitions of natural numbers, with each part

corresponding to a length of a row. However, we are mostly concerned with enumer-

ating chains in fillings. It turns out many of the results in the previous sections can

be described in terms of fillings of Ferrers diagrams.

This was first realized by Krattenthaler [13]. He was able to show symmetry in

fillings over the longest nek-chain and sek-chains.

Theorem 2.15 (Krattenthaler). For a Ferrers diagram T and positive integers n,

s and t, the number of 01-fillings of T with exactly n 1’s, such that there is at most

25



one 1 in each column and in each row, with longest ne-chain of length s and longest

se-chain of length t equals the number of fillings with longest se-chain of length s and

longest ne-chain of length t.

In the context of crossings and nestings in general graphs, de Mier [6] showed

that graphs with no k-crossings are equidistributed as graphs with no k-nestings.

She proved this using chains in Ferrers diagrams.

Theorem 2.16 (de Mier). For a Ferrers diagram T , ~r ∈ N
n and ~c ∈ N

m

av(nek,FN(T , ~r,~c)) = av(sek,FN(T , ~r,~c)).

2.5.2 Moon Polyominoes

Amoon polyomino is a polyomino which is row and column convex and intersection–

free. Figure 2.17 has an example of a moon polyomino.

Figure 2.17: A moon polyomino

Fillings of moon polyominoes can be seen as a generalization of fillings of Ferrers

diagrams. Kasraoui [9] showed several symmetry results in fillings of Ferrers diagrams

have analogues in fillings of moon polyominoes.
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Theorem 2.17 (Kasraoui). For a moon polyomino M, ~r ∈ N
n and ~c ∈ {0, 1}, the

joint statistic (ne, se) is symmetrically distributed over F01(M, ~r,~c), i.e.

∑

M∈F01(M,~r,~c)

pne2(M)qse2(M) =
∑

M∈F01(M,~r,~c)

pse2(M)qne2(M)

Kasraoui also found the generating function for (ne2, se2). The form of this gen-

erating function implies that the joint distribution of (ne2, se2) is unaffected by a

permutation of the rows of a moon polyomino, provided the resulting shape is a

moon polyomino.

Theorem 2.18 (Kasraoui). For any moon polyomino M, ~r ∈ N
n and ~c ∈ {0, 1}m,

the distribution of the joint statistic (ne, se) over F01(M, ~r,~c) is given by

∑

M∈F01(M,~r,~c)

pne2(M)qse2(M) =
n
∏

j=1

[

hj

rj

]

p,q

where hj is the length of row j minus the row sums of all rows shorter than row j.
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3. LAYER POLYOMINOES

Definition 3.1. Recall the notions of a polyomino and a filling of a polyomino from

Section 2.5. A layer polyomino is a row–convex, intersection–free polyomino. A

moon polyomino is a column–convex layer polyomino. Figure 3.1 shows examples of

a layer polyomino.

Figure 3.1: A layer polyomino.

In layer polyominoes there are two notions of ne-chains, regular chains and strong

chains. A regular ne-chain is a ne2-chain, as defined in Section 2.5. We now define

strong chains. Figure 3.2 contains an example of how regular chains and strong

chains differ.

Definition 3.2. A strong northeast chain, or ne�–chain, in a filling P of a polyomino

P , is a ne–chain so that the smallest rectangle containing the entries is contained in

the polyomino. More precisely, the non-zero entries (r1, c1) and (r2, c2) in P form

a ne�–chain if r2 < r1, c1 < c2, and all the cells in the set {(r, c) | r2 < r <

Part of the material in this chapter is reprinted with permission from ”Chains of length 2 in
fillings of layer polyominoes” by Mitchell Phillipson, Catherine Yan and Jean Yeh, The Electronic
Journal of Combinatorics, 23(2), 2009
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r1 and c1 < c < c2} are contained in P . We similarly define strong southeast chains,

or se�–chains.

2

1

(a) ne–chain and ne�–chain

2

1

(b) ne–chain, not ne�–chain

Figure 3.2: Chains in a layer polyomino.

Figure 3.2 contains an example of how regular chains and strong chains differ.

Note that strong and regular chains coincide on moon polyominoes. As we will see

regular chains are a more natural generalization from chains in moon polyominoes

as Kasraoui’s [9] result on permuting rows in moon polyominoes extends to regular

chains in layer polyominoes, this is the content of Subsection 3.1. This section also

shows gives conditions when an N-filings of a layer polyomino exists and shows the

filling with no ne-chains in unique.

Subsection 3.2 contains results on strong chains, showing the joint distribution of

(ne�, se�) is symmetric for 01-fillings with fixed row sums and at most on non-zero

entry per column, and for N-fillings with fixed row and column sums. It concludes

with several remarks on strong chains.

3.1 Regular Chains in Layer Polyominoes

In this section we prove several results about regular chains in fillings of layer

polyominoes. For both 01- and N- fillings we prove that an arbitrary permutation of

the rows preserves the numbers of fillings with either no ne–chains or no se–chains.
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Further, for N-fillings we give necessary and sufficient conditions with which N–fillings

exist with given row and column sums, and prove that under those conditions, the

filling with no ne-chains (reps, se-chains) is unique.

The first result shows that in fillings of layer polyominoes with at most 1 non-

zero entry per column, the joint distribution (ne, se) is unaffected by an arbitrary

permutation of rows. This result was originally published by Phillipson, Yan and

Yeah in [14].

Theorem 3.3 (Phillipson,Yan,Yeah). Let L be a layer polyomino with rows R1, ..., Rn

from top to bottom, ~r ∈ N
n and ~c ∈ {0, 1}m. For a permutation σ ∈ Sn, let

L′ = σ(L) be the layer polyomino whose rows are Rσ(1), . . . , Rσ(n), and ~r′ = σ(~r) =

(rσ(1), . . . , rσ(n)). Then

∑

L∈F01(L,~r,~c)

pne(L)qse(L) =
∑

L′∈F01(L′,~r′,~c)

pne(L
′)qse(L

′).

Proof. It is sufficient to prove Theorem 3.3 for adjacent transpositions, that is, when

σ = (k, k + 1) where k ∈ {1, . . . , n − 1}. Explicitly, let L′ be the layer polyomino

obtained from L by exchanging the rows Rk and Rk+1. We construct a bijection

φ : F01(L, ~r,~c) → F01(L′, ~r′,~c)

such that ne(L) = ne(φ(L)) and se(L) = se(φ(L)) for every L ∈ F01(L, ~r,~c).

Let R be the largest rectangle contained in Rk ∪ Rk+1 and L ∈ F01(L, ~r,~c).

Construct a filling L′ from L′ from L as follows

1. exchange rows Ri and Ri+1 with their fillings,

2. fix the empty columns in R, and
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3. reverse the filling in each row of R′, where R′ is the rectangle consisting of all

non-empty columns of R.

See Figure 3.3 for an example of this process, the cells are labeled for clarity and

the rectangle R is boxed. In this example we flip rows 2 and 3 and shade cells in R

that we do not reverse.

1

2

3

4

5

1

1
2 3

1
4

5 6 7

8 9 10

1
11 12 13 14

1
15

16

1
17 18

1
19 20

1
21

1
22 23 24 25 26 27 28

1

1

2

3

4

5

1

1
2 3

1
4

5 6 7

8 910

1
11 1213 14

1
15

16

1
1718

1
1920

1

21

1
22 23 24 25 26 27 28

1

Figure 3.3: An example of the process in Theorem 3.4.

We claim that ne(L) = ne(L′) and se(L) = se(L′). We prove the first equation

only as the second can be treated similarly. First, any ne-chain formed by two 1-cells

outside Rk ∪Rk+1 is not changed.

Let Cℓ be a column in Ri ∪ Ri+1. If Cℓ is empty or Cℓ is outside R, then any

ne-chain formed with Cℓ is preserved, as the column is unchanged. Suppose Cℓ

contains a non-zero enetry and is inside R, then Cℓ contains exactly one non-zero

entry. Under the above bijeciton, Cℓ moves and is replaces by a column that also

has one non-zero entry. Any ne-chain that was form in L with Cℓ is replaced in L′

with the new column. Thus ne(L) = ne(L′).

If we consider 01-fillings with fixed row and column sums in N
∗, then the sym-

metry of (ne, se) may not hold. Moreover, for a layer polyomino L and σ ∈ Sn it’s
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no longer true that av(ne,F01(L, ~r,~c)) = av(ne,F01(σ(L), σ(~r),~c)). For example, for

row sums ~r = 〈1, 2〉 and column sums ~c = 〈1, 2〉, there is only one possible filling of a

2× 2 rectangle, Figure 3.4(a), and this filling has one ne–chain. On the other hand,

transposing the rows givens σ(~r) = 〈2, 1〉, but there is only one 01-filling with row

sums σ(~r) and column sums ~c, which is given in Figure 3.4(b) and has no ne–chains.

1

1 1

(a) Row sums 〈1, 2〉

1 1

1

(b) Row sums 〈2, 1〉

Figure 3.4: Fillings with fixed row sums and column sums

The next result states that the number of fillings with no ne–chain is preserved

under permutations of rows if we only fix row sums, but have no restrictions on

column sums.

Theorem 3.4. Let L be a layer polyomino with rows R1, . . . , Rn from top to bottom

and ~r ∈ N
n. For a permutation σ ∈ Sn, let L′ = σ(L) be the polyomino with rows

Rσ(1), . . . , Rσ(n) and ~r′ = σ(~r) = (rσ(1), . . . , rσ(n)). Then

av(ne,F01(L, ~r)) = av(ne,F01(L′, ~r′)),

and

av(se,F01(L, ~r)) = av(se,F01(L′, ~r′)).

Proof. The method used in this proof is identical to the proof of Theorem 3.3. The

argument, including the bijection, is repeated here as the base set is different.
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Any permutation can be obtained using a transposition of two adjacent rows, so

we’ll show that permuting two consecutive rows preserves the number of fillings with

no ne–chains. The case for se-chains is similar.

Let Ri and Ri+1 be two consecutive rows, L ∈ Av(ne,F01(L, ~r)) and R be the

largest rectangle contained in Ri ∪Ri+1. Construct L
′ from L by

1. exchanging Ri and Ri+1 with their fillings,

2. fixing the empty columns of R, and

3. reversing the filling of each row of R′, where R′ is the rectangle consisting of

all the non-empty columns of R.

Then L′ ∈ Av(ne,F01(L′, ~r′)) as the above operations preserve fillings on L−R, the

empty columns of R, and changes the row sum from ~r to σ(~r). This guarantees that

no new ne–chains are created involving cells outside of R. Additionally R will still

not have ne–chains as flipping both the rows and columns preserves this property.

Corollary 3.5. For a layer polyomino L with n rows and ~r ∈ N
n, then

av(ne,F01(L, ~r)) = av(se,F01(L, ~r)).

Proof. Let L̃ be the polyomino obtained by reversing the rows of L, that is, L̃ = σ(L)

where σ = n · · · 21. For L ∈ F01(L, ~r), let L̃ be obtained from L by reversing the

rows of L together with their fillings. Then L̃ ∈ F01(L̃, σ(~r)). It is clear that L has

no se-chains if and only if L̃ has no ne-chains. Hence

av(se,F01(L, ~r)) = av(ne,F01(L̃, σ(~r))) = av(ne,F01(L, ~r)).

The last equation follows from Theorem 3.4.
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Next we give necessary and sufficient conditions when N–fillings of layer poly-

ominoes exist with given row and column sums, and show that when such fillings do

exist there is a unique one with no ne–chains. First we show the result for rectangles,

then extend to Ferrers diagrams and finally to layer polyominoes by transforming

N-fillings of a layer polyomino to those of a Ferrers diagram with permutations of

the rows and columns.

Lemma 3.6. Let R be an n×m rectangle, ~r ∈ N
n and ~c ∈ N

m. Then N-fillings of

R with row sums ~r and column sums ~c exist if and only if

n
∑

i=1

ri =
m
∑

j=1

cj. (3.1)

Further, if ~r and ~c satisfy (3.1) then there is a unique filling of R with no ne–

chains (reps. se–chains).

Proof. The necessity of (3.1) is clear. To prove sufficiency we use a greedy algorithm,

implemented inductively. Let R, ~r and ~c be as in the statement and satisfy (3.1). If

n = 1 we can fill cell (1, i) with ci; similarly if m = 1 we fill cell (i, 1) with ri.

In general, we have three cases to consider r1 = c1, r1 < c1, and r1 > c1; however,

the last two cases are similar. If r1 = c1, fill cell (1, 1) with r1, cell (1, i), (j, 1) with

0 for 1 < i ≤ m and 1 < j ≤ n, and reduce the problem to an (n − 1) × (m − 1)

rectangle.

Assume r1 < c1. Then we fill cell (1, 1) with r1, fill cell (1, i) with 0 for 1 < i ≤ m,

and reduce the problem to an (n− 1)×m rectangle with row sums 〈r2, . . . , rn〉 and

column sums 〈c1 − r1, c2, . . . , cm〉. Continuing this process inductively produces a

filling R with no ne–chains.

If fij is the entry in the (i, j) cell of the above constructed R, then each non-zero
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fij has the property that either
∑i

ℓ=1 fℓj = cj or
∑j

ℓ=1 fiℓ = ri.

Now we show the filling R is the unique one with no ne-chains. Let R′ be a

different filling in FN(R, ~r,~c) with entries f ′
ij in cell (i, j). Find a cell i, j with

minimal indices such that f ′
ij 6= fij . Then we must have 0 ≤ f ′

ij < fij and hence

i
∑

ℓ=1

f ′
ℓj <cj and

j
∑

ℓ=1

f ′
iℓ <ri. (3.2)

Therefore there exist non-zero entries fkj ne 0 with i + 1 ≤ k ≤ n and fiℓ 6= 0 with

j + 1 ≤ ℓ ≤ m, which means the entries fkj and fil form a ne–chain in R′.

Now we extend this result to Ferrers diagrams. The conditions for a Ferrers

diagram are slightly more complex than for rectangles.

Theorem 3.7. Given a Ferrers diagram T with n rows and m columns, vectors

~r ∈ N
n and ~c ∈ N

m, an N-filling of T , with row sums ~r and column sums ~c, exists if

and only if the following conditions hold.

n
∑

i=1

ri =
m
∑

j=1

cj. (3.3)

∀S ⊆ [n],
∑

i∈S

ri ≤
∑

j:∃i∈S((i,j)∈T )

cj. (3.4)

Further, if ~r and ~c satisfy (3.3) and (3.4) then the filling of T with no ne–chains

(se–chains) is unique.

Proof. Partition the Ferrers diagram into a collection of rectangles R1,R2, . . .Rk,

where Ri is the union of the ith shortest rows, see Figure 3.5(a). Starting with the

rectangle R1, fill R1 using the greedy algorithm in the preceding proof from lower
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right to upper left, until all the cells of R1 are filled. By condition (3.4) this is

possible, and in the resulting filling all the rows of R1 are saturated, i.e., the row

sum of each row in R1 equals the desired row sum given by ~r, and the column sums

of R1 are no more than ~c.

Subtract the column sums in R1 from the corresponding entries of ~c to get ~c′.

One checks that the conditions (3.3) and (3.4) still hold for the Ferrers diagram

T \ R1 with the row sums ~r′ and column sums ~c′, where ~r′ is the restriction of ~r to

the rows in T \ R1. Then we continue inductively until we reach the last rectangle

Rk, which is filled and the row sums and columns sums are both saturate, by Lemma

3.6. Figure 3.5(b) has an example with row sums 〈2, 6, 3, 4, 1, 2〉 and column sums

〈6, 5, 1, 3, 1, 2〉.

...

R1

R2

Rk

(a) Fill with no ne-chains

2

3 1 2

1 2

1 3

1

2

(b) No ne–chains

Figure 3.5: N-filling of a Ferrers diagram

This filling has no ne–chains as if a column is saturated in Ri, that column will

remain empty in each subsequent Rj, j > i. Additionally, the filling is unique by

the same argument as in the proof of Lemma 3.6.

Note that if the Ferrers diagram is aligned at the top and the left as in English

notation, (e.g, Figure 3.5(b)), then condition (3.4) is equivalent to the following set
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of inequalities: for each i such that the row Ri of T is the top row of some rectangle

Rj,
n

∑

j=i

ri ≤
∑

j:(i,j)∈F

cj.

In addition, conditions (3.3) and (3.4) imply that

∀T ⊆ [m],
∑

j∈T

cj ≤
∑

i:∃j∈T ((i,j)∈F)

ri (3.5)

Theorem 3.8. Let L be a layer polyomino with rows R1, . . . , Rn from top to bottom,

m columns, ~r ∈ N
n, and ~c ∈ N

m. Rσ(1), . . . , Rσ(n) and ~r′ = σ(~r) = (rσ(1), . . . , rσ(n)).

Then

av(ne,FN(L, ~r,~c)) = av(ne,FN(L′, ~r′,~c))

and

av(se,FN(L, ~r,~c)) = av(se,FN(L′, ~r′,~c))

Proof. Proceeding in a manner similar to Theorem 3.4, we’ll show that we can per-

mute any two adjacent rows while preserving the number of fillings with no ne–chains.

Let Ri and Ri+1 be two consecutive rows, L ∈ Av(ne,FN(L, ~r,~c)) and R be the

largest rectangle contained in Ri∪Ri+1. Let σ = (i, i+1) be a transposition. Define

L′ to be a filling of σ(L) by the following operations.

1. Exchange Ri and Ri+1 with their fillings,

2. Refill the rectangle R with the unique filling with no ne–chains (Lemma 3.6),

preserving the row and column sums of R.

We claim that the filling L′ has no ne–chains. It is clear that any entry outside of R

does not change, and R contains no ne–chains. Let α be a non-zero entry in column

cl outside R. Assume α forms a ne–chain with entry β 6= 0 in R.
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• If cl∩R 6= ∅, then in L there exists a nonzero entry in the same column as β’s.

This entry forms a ne-chain with α in L.

• If cl ∩ R = ∅, then β is in the longer row of Ri, Ri+1. Hence in the filling L

there exists a nonzero entry in the longer row of R, which forms a ne-chain

with α.

In either case we have a ne-chain in L, which is a contradiction.

Corollary 3.9. Given a layer polyomino L with n rows and m columns, vectors

~r ∈ N
n and ~c ∈ N

m, FN(L, ~r,~c) is nonempty if and only if conditions (3.3) and

(3.4) hold. Further, if ~r and ~c satisfy (3.3) and (3.4) then the filling of L with no

ne–chains (se–chains) is unique.

Proof. Given L, rearrange the rows of L from large to small to get a polyomino L1.

Then L1 can be viewed as a layer polyomino rotated 90◦. Apply column permutations

to transform L1 to a Ferrers diagram L2. By Theorem 3.8,

av(ne,FN(L, ~r,~c)) = av(ne,FN(L2, ~r′, ~c′)), (3.6)

where ~r′ and ~c′ are obtained from ~r,~c in the same way when one permutes the rows

and columns. From Theorem 3.7 the formulas in (3.6) is non-zero if and only if

conditions (3.3) and (3.4) hold, in which case the filling is unique.

3.2 Strong Chains in Layer Polyominoes

In this section we study strong chains as defined in Definition 3.2. We begin by

introducing a framework for a bijection on fillings of layer polyominoes. We’ll use

this framework to prove three distinct results. The first is the equality of numbers of

01-fillings with no strong northeast chains and those with no strong southeast chains.
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The second shows the symmetry of (ne�, se�) when the column sum is restricted to

{0, 1}. The final result extends the first to N-fillings, with the additional condition

that both row and column sums are fixed.

For a polyomino P , let F(P) be either N- or 01-fillings of P . Let f be an invertible

operation so that for any n×m rectangle R, f induces a bijection f : F(R) → F(R).

Let L be a layer polyomino with n rows, define ρf : F(L) → F(L) recursively as

follows. If L is a rectangle then ρf = f , otherwise for L ∈ F(L),

1. LetR1, . . . ,Rk be the maximal blocks of the consecutive shortest rows, B0, . . . ,Bk

be the layer polyominoes between each Ri, and L1 be the maximal rectangle

in L containing each Ri. See Figure 3.6 for an illustration of these sets. Let

L1 be the filling of L restricted to L1.

B0

B1

Bk−1

Bk

R1

Rk

L1

Figure 3.6: An example of the sets from step 1 of ρf .

2. Apply f to L1.

3. For each i, apply f−1 to the current filling in Bi ∩ L1.
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4. For each i, apply ρf to the current filling in Bi.

The resulting filling of L is ρf (L).

Proposition 3.10. The map ρf is a well defined bijection. Additionally, if f pre-

serves row (column) sums, so does ρf .

Proof. By construction ρf does not modify the shape of L, thus ρf is well defined.

The map ρf can be inverted by performing each step in reverse, thus ρf is a bijection.

If f preserves row (column) sums, then in each step of ρf , the row (column) sums

are preserved. Therefore, ρf preserves row (column) sums.

Example 3.11. For an n ×m rectangle R, define the map f1 : F01(R) → F01(R)

so that for R ∈ F01(R), f1(R) leaves empty columns unchanged and reverses each

row of R in the non-empty columns. Figure 3.7 has an examples of f1. Clearly f1

preserves row sums.

f1











1

1
2 3 4

1
5

1
6 7 8

1
9 10

1
11

1
12 13

1
14 15

1











=

1

1
2 34

1
5

1
67 8

1
910

1
11

1
12 13

1
1415

1

Figure 3.7: An example of the map f1.

Proposition 3.12. The map ρf1 is a bijection from the set F01(L, ~r) to itself satis-

fying (ρf1)
−1 = ρf−1

1
= ρf1.

Proof. By definition f1 = f−1
1 on 01-fillings of any rectangle. Let L be a layer

polyomino with n rows, ~r ∈ N
n, and L ∈ F01(L, ~r), we need to show ρf1(ρf1(L)) = L.

It is clearly true when L is a rectangle.
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Let Ri, Bj and L1 be as in the definition of ρf1 . Ignoring empty columns of L1,

the map ρf1 reverses fillings in each Ri, so applying ρf1 twice leaves fillings in each

Ri unaffected.

Each Bj is a layer polyomino. Applying f1 to L1 and then to Bj∩L1 only changes

the location of the empty columns of L in Bj, but does not affect the fillings in the

non-empty columns of Bj. Applying ρf1 on Bj will not touch the empty columns.

Now when we apply the ρf1 to the whole polyomino L again, steps 2 and 3 will move

the empty columns in Bj back to their original places, while step 4 will map the

current filling on Bj back to L on Bj , by the inductive hypothesis.

For a 01-filling L of a layer polyomino L, Figure 3.8 shows one iteration of the

map ρf1 and the final result. The cells in the polyomino are labeled so one can

observe where each cell ends up.

1 2 3 4

1
5 6 7

8 9 10 11 12

1
13

1
14

1
15 16 17

18 19 20 21 22 23 24

1
25

1
26 27 28 29 30 31

32 33

1
34 35

(a) The filling of L

1 234

1
5 6 7

8 91011 12

1
13

1
14

1
151617

18 19202122 23 24

1
25

1
26272829 30 31

3233

1
3435

(b) First iteration of ρf1

1 23 4

1
56 7

8 910 1112

1
13

1
14

1
151617

1819202122 2324

1
25

1
26272829 3031

3233

1
3435

(c) Result of ρf1(L)

Figure 3.8: A demonstration of the map ρf1 .

Theorem 3.13. For a layer polyomino L with n rows and ~r ∈ N
n,

av(ne�,F01(L, ~r)) = av(se�,F01(L, ~r)).
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Proof. Let f1 be as defined in Example 3.11. For an n×m rectangle R and ~r ∈ N
n

the restriction, f1 : Av(ne�,F01(R, ~r)) → Av(se�,F01(R, ~r)) is clearly well defined.

For a layer polyomino L with n rows and ~r ∈ N
n, we show the restriction ρf1 :

Av(ne�,F01(L, ~r)) → Av(se�,F01(L, ~r)) is also well defined. That is, if L has no

ne�-chains, then ρf1 has no se�-chains.

We proceed by induction on the number of rows of L. If L has only one row or is

a rectangle, then the claim is true. In general, let L ∈ Av(ne�,F01(L, ~r)) and Ri, Bj ,

L1 and L1 be as in the definition of ρf1 . Within L1, there are no ne�-chains so that

f1(L1) has no se�-chains. For any non-empty cell α in some Ri the cells to the upper

left and lower right of α are empty in f1(L1). Since f1 fixes empty columns, the

empty cells will remain empty in the final filling ρf1(L). Thus α forms no se�-chains

in ρf1(L).

For cells in Bj for some j, as observed before, applying f1 to L1 and then to

L1 ∩ Bj will not change the filling L ∩ Bj in the non-empty columns of Bj . Hence

there are no ne�-chains after steps 2 and 3. By induction, applying ρf1 to Bj yields

a filling with no se�-chains.

Therefore, ρf1(Av(ne
�,F01(L, ~r))) ⊆ Av(se�,F01(L, ~r)), and hence

av(ne�,F01(L, ~r)) ≤ av(se�,F01(L, ~r)).

The reverse direction is proved similarly. In conclusion, ρf1 is a bijection from

Av(ne�,F01(L, ~r) to Av(se�,F01(L, ~r)).

If one fixes both row sum ~r and column sum ~c, then av(ne�,F01(L, ~r,~c)) may

not equal av(se�,F01(L, ~r,~c)), as shown in the polyomino in Figure 3.9 with ~r =
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(1, 1, 2) and ~c = (1, 2, 1). It is easy to check that av(ne�,F01(L, ~r,~c)) = 0 and

av(se�,F01(L, ~r,~c)) = 1.

1 1

1

1

1 1

1

1

Figure 3.9: Fillings with ~r = (1, 1, 2) and ~c = (1, 2, 1).

The following theorem was first proved by Phillipson, Yan and Yeh [14] by in-

duction on the generating functions. Now we give a bijective proof by using the map

ρf1 . In the statement of Theorem 3.14 statistics (ne�, se�) represent the numbers of

strong ne- and se-chains.

Theorem 3.14. For a layer polyomino L with n rows and m columns, ~r ∈ N
n and

~c ∈ {0, 1}m, the map ρf1 restricted to F01(L, ~r,~c) is a bijection that maps F01(L, ~r,~c)

to itself and carries the statistics (ne�, se�) to (se�, ne�), where f1 is defined as

in Example 3.11. Consequently, the distribution of the joint statistic (ne�, se�) is

symmetric in F01(L, ~r,~c).

Proof. For an n × m rectangle R, ~r ∈ N
n, and ~c ∈ {0, 1}m, the restriction of f1

to F01(R, ~r,~c) is well defined as f1 fixes empty columns, and hence preserves the

column sums when ~c ∈ {0, 1}m. Also, f1 exchanges ne� and se�-chains in R.

We’ll show that ρf1 exchanges the numbers of ne� and se�-chains for fillings in

F01(L, ~r,~c). Again we proceed by induction. The claim is obvious if L has only one

row or is a rectangle. Assume it is true for all layer polyominoes with less than n

rows. For L ∈ F01(L, ~r,~c) set Ri, Bj and L1, L1 to be as in the definition of ρf1 .
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First we show that each ne�-chain (resp, se�–chain) of L1 not completely con-

tained in some Bi has a corresponding se�-chain (resp, ne�–chain) in ρf1(L). Explic-

itly, let entries at cells α, β be such a ne�-chain, where the columns of α, β are the

kth
1 and kth

2 nonempty columns of L1, counting from left, then Step 2 of ρf1 maps

them to a se�-chain with 1-cells γ and δ, in the kth
1 and kth

2 -th nonempty columns of

f1(L1), counting from right. We have three cases.

1. Both α and β are contained in (possibly different) Ri’s.

2. One of α, β is contained in Ri, and the other is in Bj.

3. The cell α is in Bi and β in Bj, with i 6= j.

For Case 1, γ and δ are in the same Ri as α and β, respectively, and are not

changed further by steps 3,4 of ρf1 . Thus (γ, δ) remains a se�-chain.

For Case 2, without loss of generality, assume α ∈ Ri and β ∈ Bj. Then γ ∈ Ri

and will not be changed further. The cell δ may be changed in Steps 3 and 4 of ρf1 .

However, the operations on both steps 3 and 4 preserves the column sum, hence in

the final filling there is a unique 1-cell in Bj that lies in the same column as δ. It

forms a se�-chain with γ.

For Case 3, we have γ ∈ Bi and δ ∈ Bj . By the same argument as in Case 2,

after steps 3 and 4 there is a unique 1-cell in Bi that lies in the same column as γ,

and a unique 1-cell in Bj that lies in the same column as δ. These two 1-cells form

a se�-chain.

Applying the same argument in reverse, we conclude that the ne�-chains (se�-

chains) of L that are not completely in some Bi are in one-to-one-correspondence

with the se�-chains (ne�-chains) of ρf1(L) not completely in some Bi.

Finally we look at the strong chains inside Bi for some i. As observed before,

steps 2 and 3 of ρf1 does not change the filling on the non-empty columns of Bi.
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Hence after these two steps, the number of strong chains in each Bi doesn’t change.

When one applies step 4, by inductive hypothesis, ρf1 on Bi is a bijection that maps

the statistics (ne�, se�) of fillings of Bi to the statistics (se�, ne�) on Bi.

Theorem 3.14 follows from combining all the above cases.

The final result is an analog of Theorem 3.13 on N-fillings. We show that over N–

fillings of layer polyominoes with fixed row and column sums, the number of fillings

with no ne�–chains is the same as that with no se�–chains.

Theorem 3.15. For a layer polyomino L with n rows and m columns, ~r ∈ N
n, and

~c ∈ N
m,

av(ne�,FN(L, ~r,~c)) = av(se�,FN(L, ~r,~c)).

Proof. For an n×m rectangle R, ~r ∈ N
n and ~c ∈ N

m, define the map

f2 : Av(ne,FN(R,~r,~c)) → Av(se,FN(R,~r,~c))

that maps the unique filling of R with no ne-chains to the unique filling with no

se-chains, as in Lemma 3.6. For a layer polyomino L with row sums ~r and column

sums ~c, we show the restriction ρf2 : Av(ne�,FN(L, ~r,~c)) → Av(se�,FN(L, ~r,~c)) is

also well defined.

The proof is again by induction and analogous to that of Theorem 3.13. Let

L ∈ Av(ne�,FN(L, ~r,~c)) and Ri, Bj and L1, L1 be as in the definition of ρf2 . Step

2 of ρf2 maps the filling L1 to one with no se�-chains. For any non-empty cell α in

some Ri, the columns to the upper right and lower left are empty. Since f2 preserves

column sums, these areas will remain empty in ρf2(L).

For each Bi, we claim that after steps 2 and 3 of ρf2 , the filling on Bi contains
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on ne�-chains. To see this, note that by definition of f2, there is no ne�-chain inside

L1∩Bi. Clearly there is no ne�-chains containing two cells in Bi\L1. If there exists a

ne�-chain on Bi containing cells α, β with α 6∈ L1 and β ∈ L1, since both operations

in steps 2 and 3 preserves the row sums of L1 ∩ Bi, there must be a nonempty cell

in L that lies in the same row as β in L1 ∩ Bi. Such a cell and α forms a ne�-chain

in L, contradiction.

Thus ρf2 is well defined and is an injection from Av(ne�,FN(L, ~r,~c)) to Av(se�,FN(L, ~r,~c)).

The reverse inclusion is similarly proved, which implies Theorem 3.15.

Remarks:

1. Unlike 01-fillings, for general L, Av(ne�,FN(L, ~r,~c)) contains more than one element.

2. In general it’s not true that for a given f , (ρf )
−1 = ρf−1 . However, this is the case for

the f1 and f2 we used. It’s unclear what conditions on f would guarantee this, but it’s an

interesting occurrence.

3. It is natural to ask if we can flip adjacent rows while preserving the number of ne�–chains

in layer polyominoes. The answer is no. Consider the polyominoes in Figure 3.10 with row

and column sums (1, 1, 1). The left polyomino has 2 fillings with no ne�–chains where as

(a) (b)

Figure 3.10: Layer polyominoes with one row flipped.

the right has only 1. In fact, this example shows that the joint distribution of (ne�, se�) is

dependent on the order of the rows in layer polyominoes.

46



4. CROSSINGS AND NESTINGS IN ALTERNATING MATCHINGS

A 01 sequence is a sequence of an equal number of 0’s and 1’s. A matching on

a 01 sequence has the property that each part of the matching contains both a 0

and 1. In this chapter we focus on matchings of alternating sequences, which are 01

sequences that begin with 0 and alternate 0’s and 1’s. A matching on an alternating

sequence can be viewed as a matching where each part of the matching contains

both and even and an odd element. These matchings are interesting to study, from a

combinatorial perspective, because they do not exhibit symmetry between crossings

and nestings, which is very common in most combinatorial structures.

Section 4.1 provides key definitions and shows the relationship with permuta-

tions. Section 4.2 gives necessary and sufficient conditions when a matching on

alternating sequences is non-nesting. Finally, Section 4.3 lays out how to explicitly

enumerate non-nesting matchings on alternating sequences and concludes with a few

conjectures.

4.1 Preliminaries

A matching, σ, on the alternating 01 sequence of length n is a matching on [n]

so that each part of σ has one even element and one odd. The set of all matchings

on the alternating sequence of length n is denoted An. For convenience, with refer

to matchings on alternating sequences as alternating matchings. Unlike matchings,

which are drawn on [2n], alternating matchings are drawn on (01)n with each arc

connected to both a 0 and 1. Figure 4.1 has an example of two matchings, one that

is an alternating matching and one that is not.

Alternating matchings inherit the structure of crossings and nestings from match-

ings. Consider a matching, M , with part {2i, 2j} ∈ M . There are |2j − 2i|−1 digits
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01 01

(a) Alternating matching

01 01

(b) Not an alternating matching

Figure 4.1: Two matchings related to alternating matchings

between 2i and 2j, which implies there must be a crossing as this number is odd.

This means that any non-crossing matching has parts with one even and one odd

element so that each non-crossing matching is also an alternating matching. Thus

there are an equal number of non-crossing matchings as alternating matchings. The

same is not true for nestings, Figure 4.1(b) shows a non-nesting matching that is not

alternating. This implies the usual symmetry between crossings and nestings does

not hold for alternating matchings.

For an alternating matching σ ∈ An we say, for i ∈ [n], σ(i) = j if {i, j} ∈ σ.

Using this identification, the conditions for crossings and nestings in alternating

matchings can be restated. For σ ∈ An, arcs (i, σ(i)) and (j, σ(j)) are crossing if one

of the following holds,

i < j < σ(i) < σ(j) i < σ(j) < σ(i) < j

σ(i) < j < i < σ(j) σ(i) < σ(j) < i < j

and are nesting if,

i < j < σ(j) < σ(i) i < σ(j) < j < σ(i)

σ(i) < j < σ(j) < i σ(j) < σ(i) < i < j.

Alternating matchings are naturally identified with permutations, see Section 2.4

for relevant definitions of permutations. Given an alternating matching σ ∈ An

48



define ϕ ∈ Sn so that for i ∈ [n], ϕ(i) = σ(i). This is easily seen to be well defined;

however, it does not preserve crossings and nestings. Figure 4.2 has an example

of this bijection so that the permutation has no nestings whereas the alternating

matching does.

01 01 01 01 01 01
1 2 3 4 5 6

Figure 4.2: A comparison between alternating matchings and permutations.

Recall in Section 2.4 we stated a bijection between bi-colored motzkin paths and

non-nesting permutations. This can be extended to alternating matchings, but the

image will not necessarily be non-nesting.

4.2 Conditions for Top and Bottom Non-Nesting

In this section we prove two independent conditions for alternating matchings

being non-nesting. Both theorems rely on the bijection between permutations and

bicolored motzkin paths given in Section 2.4.

Theorem 4.1. Let M = m1m2 · · ·mn be a bicolored Motzkin path and σ ∈ An the

corresponding alternating matching. Then σ is non-nesting if and only if for every i

with i < σ(i)

#{i < j < σ(i) | mj = E}+ δmσ(i)=E = #{i < j < σ(i) | mj = Ē}+ δmi=N. (4.1)

Theorem 4.2. Let M = m1m2 · · ·mn be a bicolored Motzkin path and σ ∈ An the

corresponding alternating matching. Then σ is non-nesting if and only if for every i
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with i > σ(i)

#{σ(i) < j < i | mj = E} = #{σ(i) < j < i | mj = Ē}+ 1. (4.2)

Before we prove these statements, we require a lemma. This lemma will allow us

to adjust nestings so that they satisfy nicer conditions.

Lemma 4.3. Let M = m1m2 . . .mn be a bicolored motzkin path associated to the

alternating matching σ ∈ An. Suppose σ has a nesting. If i < σ(i) is nested with

σ(j) < j then there exists k and ℓ so that

1. If σ(j) ≤ i < σ(i) < j then σ(k) ≤ σ−1(ℓ) < ℓ < k with ma = N for all

ℓ < a < k.

2. If σ(j) < i < σ(i) ≤ j then ℓ < k < σ(k) ≤ σ−1(ℓ) with ma = S for all

ℓ < a < k.

3. If i ≤ σ(j) < j < σ(i) then σ−1(ℓ) ≤ σ(k) < k < ℓ with ma = N for all

k < a < ℓ

4. If i < σ(j) < j ≤ σ(i) then k < ℓ < σ−1(ℓ) ≤ σ(k) with ma = S for all

k < a < ℓ.

Proof. We’ll prove the first statement, the others follow similarly. Choose ℓ so that

σ(i) ≤ ℓ < j, mℓ ∈ {E, S} and mℓ+1 ∈ {Ē,N, S}. Such an ℓ exists as mσ(i) ∈ {E, S}

and mj ∈ {Ē, S}. Let k be such that ℓ < k ≤ j, mk ∈ {Ē, S} and for all a with

ℓ < a < k, ma = N. Then σ(i) ≤ ℓ so i ≤ σ−1(ℓ) and k ≤ j so that σ(k) ≤ σ(j).

Thus σ(k) ≤ σ(ℓ) < ℓ < k. Figure 4.3 demonstrates this selection.
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01
σ(k)

01
σ(j)

01
i

01
σ−1(ℓ)

01
σ(i)

01
ℓ

N· · ·N01
k

01
j

Figure 4.3: Lemma 4.3 part 1.

Note that for a non-nesting permutation, ϕ, for each arc i ≤ ϕ(i) and each

i < j < ϕ(i) we must have ϕ−1(j) < i and ϕ(i) < ϕ(j), otherwise ϕ would have

a nesting. If M = m1 . . .mn is the corresponding bicolored motzkin path, then we

must have

#{j ≤ σ(i) | mj ∈ {S,E}} = #{j ≤ i | mj ∈ {N,E}}

#{j ≤ σ(i) | mj ∈ {S, Ē}} = #{j ≤ i | mj ∈ {N, Ē}}.

Proof of 4.1. Assume σ is a non-nesting alternating matching. Let i < σ(i), since σ

is non-nesting we must have the following equations.

#{j ≤ σ(i) | mj ∈ {S,E}} = #{j ≤ i | mj ∈ {N,E}}

#{j ≤ σ(i) | mj ∈ {S, Ē}} = #{j < i | mj ∈ {N, Ē}}

Subtracting these equations and rearranging we obtain (4.1).

On the other hand, assume σ is a nested alternating matching corresponding to

a bicolored motzkin path. By Lemma 4.3 and since the corresponding permutation

is non-nesting, there are three cases to consider

1. There is i with σ2(i) = i.

2. There are i, j so that σ(i) < i < σ(i) ≤ j with ma = S for all σ(j) < a < i.
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3. There are i, j so that i ≤ σ(j) < j < σ(i) with ma = N for all j < a < σ(i).

Case 4.1.1 (σ2(i) = i). Figure 4.4 shows this case. Since the permutation associated

01
i

01
σ(i)

Figure 4.4: i = σ2(i)

with σ is non-nesting, we have

#{ℓ ≤ σ(i) | mℓ ∈ {S,E}} = #{ℓ ≤ i | mℓ ∈ {N,E}}

#{ℓ ≤ σ(i) | mℓ ∈ {S, Ē}} = #{ℓ ≤ i | mℓ ∈ {N, Ē}}

Subtracting these gives

#{i < ℓ < σ(i) | mℓ = E} = #{i < ℓ < σ(i) | mℓ = Ē}.

But mi = N and mσ(i) = S so (4.1) cannot be satisfied.

Case 4.1.2 (σ(i) < i < σ(i) ≤ j with ma = S for all σ(j) < a < i). Figure 4.5

shows this case. The following equations follow from the permutation corresponding

01
σ(j)

01
i

01
σ(i)

S· · ·S 01
j

Figure 4.5: σ(i) < i < σ(i) ≤ j with ma = S for all σ(j) < a < i
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to σ being non-nesting.

#{ℓ ≤ i | mℓ ∈ {N,E}} = #{ℓ ≤ σ(i) | mℓ ∈ {S,E}} (4.3)

#{ℓ < σ(j) | mℓ ∈ {N, Ē}} = #{ℓ < j | mℓ ∈ {S, Ē}} (4.4)

hi = hσ(j) + δmσ(i)=N (4.5)

By manipulating equations (4.3) and (4.4) we have,

hi = −δmi=N +#{i < ℓ ≤ σ(i) | mℓ ∈ {E, S}}

hσ(j) = #{σ(j) ≤ ℓ < j | mℓ ∈ {S,E}}.

Plugging these into (4.5) we have,

#{i < ℓ ≤ σ(i) | mℓ ∈ {E, S}} =δmi=N +#{σ(j) ≤ ℓ < j | mℓ ∈ {S, Ē}}

+ δmσ(j)=N
.

Rearranging a bit we get,

#{i < ℓ < σ(i) | mℓ = E}+ δmσ(i)=E =δmi=N +#{i < ℓ < σ(i) | mℓ = Ē}+

+ 1 +#{σ(i) < ℓ < j | mℓ ∈ {E, S}}

>δmi=N +#{i < ℓ < σ(i) | mℓ = Ē}

Thus equation (4.1) cannot hold.

Case 4.1.3 (i ≤ σ(j) < j < σ(i) with ma = N for all j < a < σ(i)). Figure

4.6 shows this case. This is very similar to the previous case, except equation (4.5)
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Figure 4.6: i ≤ σ(j) < j < σ(i) with ma = N for all j < a < σ(i)

becomes,

hj = hσ(i) + δmj=S.

We rearrange equations (4.3) and (4.4) into,

hσ(i) = 1 +#{i < ℓ < σ(i) | mℓ ∈ {N,E}}

hj = #{σ(j) ≤ ℓ < j | mℓ ∈ {N, Ē}}.

Combine the previous equations and rearrange.

#{i < ℓ < σ(i) | mℓ = Ē}+ δmi=N =#{i < ℓ < σ(i) | mℓ = E}+ δmσ(i)=E + 1+

+ δmj=S + δmj=Ē + δmi=N − δmσ(i)=E+

+#{i < ℓ < σ(j) | mℓ ∈ {N, Ē}}

≥#{i < ℓ < σ(i) | mℓ = E}+ δmσ(i)=E + 1

>#{i < ℓ < σ(i) | mℓ = E}+ δmσ(i)=E.

Once again equation (4.1) cannot hold.

Proof of 4.2. Assume σ is a non-nesting alternating matching. Let i be so that
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σ(i) < i. We have

#{ℓ ≤ σ(i) | mℓ ∈ {N, Ē}} = #{ℓ ≤ i | mℓ ∈ {S, Ē}}

#{ℓ ≤ σ(i) | mℓ ∈ {N,E}} = #{ℓ < i | mℓ ∈ {S, Ē}}.

Subtract these,

#{ℓ ≤ σ(i) | mℓ = Ē} −#{ℓ ≤ σ(i) | mℓ = E} =#{ℓ ≤ i | mℓ = Ē}+ δ(mi=S)+

+#{ℓ < i | E}.

Continuing

#{i < ℓ < σ(i) | mℓ = E} =#{i < ℓ ≤ σ(i) | mℓ = Ē}+ δ(mi=S)

=#{i < ℓ < σ(i) | mℓ = Ē}+ 1

which is exactly equation (4.2).

On the other hand, assume σ is a nested alternating matching corresponding to

a bicolored motzkin path. By Lemma 4.3 and since the corresponding permutation

is non-nesting, there are three cases to consider

1. There is an i so that σ2(i) = i.

2. There are i, j so that j < σ(i) < i ≤ σ(j) with ma = S for all j < a < σ(i).

3. There are i, j so that σ(i) ≤ j < σ(j) < i with ma = N for all σ(j) < a < i.

Case 4.2.1 (i = σ2(i)). This is exactly the same as in the proof of Theorem 4.1.

Case 4.2.2 (j < σ(i) < i ≤ σ(j) with ma = S for all j < a < σ(i)). Figure 4.7

shows this case. Since the permutation corresponding to σ is non-nesting, we have
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Figure 4.7: j < σ(i) < i ≤ σ(j) with ma = S for all j < a < σ(i)

the equations

#{ℓ < j | mℓ ∈ {N,E}} = #{ℓ < σ(j) | mℓ ∈ {S,E}} (4.6)

#{ℓ ≤ σ(i) | mℓ ∈ {N, Ē}} = #{ℓ ≤ j | mℓ ∈ {S, Ē}} (4.7)

hσ(i) = hj + δ(mj=N) −#{j ≤ ℓ < σ(i) | mℓ = S}. (4.8)

Rewrite (4.6) and (4.7),

hj = #{j ≤ ℓ < σ(j) | mℓ ∈ {S,E}}

hσ(j) = #{σ(i) < ℓ ≤ i | mℓ ∈ {S, Ē}} − δ(mσ(i)=N)

Plug both of these into (4.8),

#{σ(i) < ℓ ≤ i | mℓ ∈ {S, Ē}} =δ(mσ(i)=N) +#{j ≤ ℓ < σ(j) | mℓ ∈ {S,E}}+

+ δ(mj=N) −#{j ≤ ℓ < σ(i) | mℓ = S}.

Simplifying,

#{σ(i) < ℓ < i | mℓ = Ē}+ 1 =#{σ(i) < ℓ < i | mℓ = E}+ δ(mj=E) + δ(mj=N)+

+#{i ≤ ℓ < σ(j) | mℓ ∈ {S,E}}+ δ(mσ(i)=N)

>#{σ(i) < ℓ < i | mℓ = E}
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Thus equation (4.1) cannot hold.

Case 4.2.3 (σ(i) ≤ j < σ(j) < i with ma = N for all σ(j) < a < i). Figure 4.8

shows this case. Similar to the previous case, we have

01
σ(j)

01
i

01
σ(i)

N· · ·N01
j

Figure 4.8: σ(i) ≤ j < σ(j) < i with ma = N for all σ(j) < a < i

hσ(i) = hi + δ(mσ(i)=S) −#{σ(j) ≤ ℓ < i | mℓ = N} (4.9)

Rewrite equations (4.6) and (4.7)

hσ(j) = #{j ≤ ℓ < σ(j) | mℓ ∈ {N,E}}

hi = #{σ(i) < ℓ < i | mℓ ∈ {N,E}}+ 1

Plug these equations into equation (4.9).

#{j ≤ ℓ < σ(j) | mℓ ∈ {N,E}} =#{σ(i) < ℓ < i | mℓ ∈ {N, Ē}}+ 1+

+ δ(mσ(j)=S) −#{σ(j) ≤ ℓ < i | mℓ = N}
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Finally,

#{σ(i) < ℓ < i | mℓ = E} =#{σ(i) < ℓ < i | mℓ = Ē}+ 1 + δ(mσ(j)=S)+

+#{σ(i) < ℓ < j | mℓ ∈ {N,E}}+ δ(mσ(j)=S)

>#{σ(i) < ℓ < i | mℓ = Ē}+ 1.

Thus equation (4.1) cannot hold.

4.3 Primitive Permutations and Valid Paths

A primitive motzkin path has height hi > 0 for all i > 0, in other words the

path only touches the x-axis at the beginning and the end. A primitive alternating

matching is one that corresponds to a primitive bicolored motzkin path.

Let Pn denote the set of primitive alternating matchings in An that are non-

nesting. If we are able to classify all alternating matchings in Pn we can then

construct all non-nesting alternating matchings. This process is quite simple, given

σi ∈ Pki , with
∑ℓ

i=1 ki = n, create σ ∈ An as follows, for i ∈ [n] define

σ(i) = σα(β) +
α−1
∑

j=1

kj

where α = max{j | ∑j
m=1 km < i}+ 1 and β = i−∑α−1

j=1 kj .

Example 4.5. Figure 4.9 show an alternating matching that has been constructed

using the above procedure. The vertical dashed line shows the split between the two

primitive alternating matchings used.
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01 01 01 01 01 01 01 01

Figure 4.9: An alternating matching given by two primitive alternating matchings

Corollary 4.6. The number of non-nesting alternating matchings is

n
∑

m=1

∑

k1+···+km=n
ki>0

|Pk1 | · · · |Pkm | .

Due to these results we only need focus on primitive alternating matchings. Table

4.1 contains a list of sizes of Pn. These values are not in OEIS and superseeker has

no information.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|Pn| 1 0 1 0 2 1 5 6 15 29 53 121 213 580 934

Table 4.1: A table listing values of |Pn|.

When viewed as permutations, elements of Pn have an interesting cycle structure.

See example 4.7 for the first few Pn. In the following, we write alternating matchings

in a similar manner as we write permutations, in line and cycle notation. This is for

convenience.

Example 4.7. The sets Pn for the first few n. The elements are written first as

words, then as cycles and finally reduced cycles (if there are more than one cycle).
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P1 P3 P5

1 231 → (123) 24153 → (12453)

34512 → (13524)

P6

245163 → (124)(356) → (123)(123)

P7 P8

2416375 → (2416375) 24167385 → (12453)(123)

2516734 → (2516734) 24517386 → (123)(12453)

3461275 → (3461275) 24617835 → (123)(13524)

3561724 → (3561724) 25671834 → (123)(13524)

4567123 → (4567123) 34617285 → (13524)(123)

35671284 → (13524)(123)

Example 4.7 is interesting because it implies that primitive alternating matchings

form a basic cycle structure. It appears that for even n, Pn contains combinations

of cycles of odd length, and for odd n, Pn contains single cycle elements. This is not

true in general, for example P9 contains element 245178396 → (123)(123)(123), but

this is created from a cycles of odd length.
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The remainder of this section will be devoted to attempting to prove the previous

observations. The results that are unproven are left as conjectures.

4.3.1 Valid Paths

Definition 4.8. A valid path is a bicolored motzkin path, M = m1 · · ·m2n+1, so

that for n ≥ 1 we have m1 = N,

1. If mi = N or mi = Ē then mi+1 ∈ {N,E}

2. If mi = S or mi = E then mi+1 ∈ {Ē, S}

and for k < 2n+ 1

|m1 · · ·mk|N > |m1 · · ·mk|S and |m1 · · ·m2n+1|N = |m1 · · ·m2n+1|S

We claim that valid paths correspond to single cycle non-nesting alternating

matchings. Notice that the horizontal steps of a valid path alternate EĒEĒ · · ·E

so that |M |E = |M |Ē + 1.

Example 4.9. Figure 4.10 contains both a valid path and the corresponding alter-

nating matching. The alternating matching is non-nesting and its permutation in

01 01 01 01 01

Figure 4.10: A valid path and the corresponding alternating matching

cycle notation is (12453), which is a single cycle.

First we will show that valid paths of length 2n + 1 are enumerated by the nth

Catalan number, we’ll do this with a bijection to parentheses sequences. Next we’ll
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show valid paths correspond to non-nesting permutations. And finally we’ll state

some conjectures.

Given a valid path M , define f(M) = u1 . . . u2n = u so that

ui =











( if mi ∈ {N, Ē}

) if mi ∈ {E, S}

Note the parenthesis sequence is on length 2n whereas the motzkin path is of length

2n+ 1. The final step in the path m2n+1 = S is unused.

Proposition 4.10. For a valid path M , f(M) = u is a closed parentheses sequence.

Proof. We know |M |N = |M |S and |M |E = |M |Ē + 1, so that

|M |N − (|M |S − 1) + |M |Ē − |M |E = 0

So there are an equal number of ( and ). u is closed follows from the steps E and Ē

alternating, there being a greater number of N than S at any step, and m2n ∈ {Ē, S}

as m2n+1 = S.

Example 4.11.

M = NNEĒESĒES 7→ f(M) = (()())()

Thus valid paths map to closed parentheses sequences. Now we’ll define the

inverse map. Let u = u1 · · · u2n be a closed parentheses sequence. Define ϕ(u) =
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m1 · · ·m2n+1 as follows. Set m1 = N , m2n+1 = S and for 1 < k < 2n+ 1, set

mk =



































N if uk = ( and mk−1 ∈ {N, Ē}

E if uk = ) and mk−1 ∈ {N, Ē}

Ē if uk = ( and mk−1 ∈ {E, S}

S if uk = ) and mk−1 ∈ {E, S}

Proposition 4.12. ϕ(u) is a valid path.

Proof. It’s clear that ϕ(u) = M = m1 . . .m2n+1 follows the structure of valid

paths, the only this needing to be checked is that M is a primitive path. Let

k = min{i | |m1 · · ·mk|N = |m1 · · ·mk|S}. If k < 2n + 1 we must have mk+1 = Ē,

as mk = S. But, the steps E and Ē alternate and we must have E before Ē so

|m1 · · ·mk|E = |m1 . . .mk|Ē + 1 which implies |u1 · · · uk|) = |u1 · · · uk|( + 1 which is a

contradiction.

It’s easy to see that f and ϕ are inverses, which implies that there are Catalan

number of valid paths.

Proposition 4.13. Valid paths correspond to non-nesting alternating matchings.

Proof. We are going to use Theorem 4.2. Let M = m1m2 . . .m2n+1 be a valid path

and σ be the corresponding alternating matching. Let i be so that σ(i) < i. Then

mi ∈ {Ē, S} and mσ(i) ∈ {N, Ē}. There must be a set j with σ(i) < j < i with

mj = E, as neither Ē nor S leads to Ē or S in valid paths.

Let j < i be so that mj ∈ {E, Ē} and there is no ℓ so that j < ℓ < i with

mℓ ∈ {E, Ē}. Similarly, let k > σ(i) with mk ∈ {E, Ē}.

If mj = Ē then we must have mj+1 = N, as mj+1 = E contradicts the choice of

j. However this implies that starting at mj+1 we have a sequence of N steps. Since
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mi ∈ {Ē, S} we must have an E step before mi, N steps only lead to N or E. But

this contradicts the choice of j, as we’ve found a closer E step. Thus we must have

mj = E. Similarly, we see that mk = E.

Therefore, the first step after mσ(i) and the last step before mi to not be an N or

S step is an E step. Since the steps E and Ē alternate in valid paths we have,

#{σ(i) < j < i | E} = #{σ(i) < j < i | Ē}+ 1

so that σ is non-nesting.

There is more work to be done in this area, the following are future goals.

Conjecture 4.14.

1. These valid paths represent single cycle non-nesting permutations.

2. These are all (including evens) single cycle non-nesting permutations.

3. If ϕ ∈ Sn is non-nesting and ϕ has cycles ϕ1, · · · , ϕk, then each ϕi is order

isomorphic to a valid path.
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5. MISCELLANEOUS RESULTS

This chapter contains results in several different areas. First we define the notion

of crossings and nestings in graphs and prove several results enumerating specific

graphs. Then we show the crossing and nesting numbers are unrealated. Second we

demonstrate a bijection between plane trees and motzkin paths. Finally we give a

generating function for fillings of Ferrers diagrams with no se-chains.

5.1 Crossings and Nestings in Graphs

Recall a few notations from Graph Theory. Let G be a simple, finite undirected

graph, V (G) be the vertex set of G and E(G) the edge set. Set n = |V (G)| and

m = |E(G)|. A vertex ordering is a bijection σ : V (G) → [n]. We write v <σ w if

σ(v) < σ(w). The pair (G, σ) denotes the graph G with order σ. The order relation

σ allows one to draw (G, σ) on the number line.

Given an edge e ∈ E(G) define L(e) and R(e) as the endpoints of e with L(e) <σ

R(e). Let e, f ∈ E(G) with no common endpoint and L(e) <σ R(e), we say

1. e and f cross if L(e) <σ L(f) <σ R(e) <σ R(f)

(

e f

)

2. e and f nest if L(e) <σ L(f) <σ R(f) <σ R(e)

(

e
f

)

Definition 5.1. Two arcs (v1, w1) and (v2, w2) in (G, σ) form a 2−crossing if v1 <

v2 < w1 < w2. The arcs form a 2−nestings if v1 < v2 < w2 < w1.

Denote by cros2(G, σ) the number of 2−crossings in (G, σ) and nest2(G, σ) the

number of 2-nestings in (G, σ).

Example 5.2. Figure 5.1 show that cros2(G, σ) varies with σ. If σa gives the

order for the left graph in Figure 5.1 and σb is the right, then cros2(G, σa) = 2 and

cros2(G, σb) = 0.
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1 2 3 4 5 1 2 34 5

Figure 5.1: An example of cros2 changing depending on σ

One way to make cros2 not depend on σ is to take the minimal crossing number

over Sn. For a graph G, the crossing number is

cros2(G) = min
σ∈Sn

{cros2(G, σ)}

and the nesting number is

nest2(G) = min
σ∈Sn

{nest2(G, σ)}

The remainder of this section will explore crossings and nestings in graphs. The

first subsection computes the crossing and nesting numbers of special classes of

graphs. The second shows that the crossing and nesting numbers are unrelated

by demonstrating two families of graphs, one that always has crossing number 0 and

the nesting numbers diverge and the other has the opposite.

5.1.1 Trees and other Simple Graphs

A tree is a connected graph containing no cycles. A rooted tree is a tree with one

special vertex, called the root. For an order σ on T , we say the vertex v is the root

if σ(v) = 1. Rooted trees are drawn in the plane with the root drawn above and the

rest of the vertices descending. Figure 5.2 has an example of a tree with an order

and the corresponding line graph.

Proposition 5.3. For a tree T , cros2(T ) = nest2(T ) = 0.

Proof. To see that cros2(T ) = 0, select one vertex to be the root of T . Construct the
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1 2 3 4 5 6 7 8

Figure 5.2: An example of an ordered together with its line graph

order σ so that the root has label 1 and the remainder of the vertices are labeled in

a depth first search starting with the root. If there exists two vertices u, v in T so

that L(u) <σ L(v) <σ< R(u) <σ R(v) (i.e. a cross) then we must have a path from

L(u) to L(v), as we used a depth first search and L(v) < R(u). Similarly, we must

have a cycle from L(v) to R(u). However, this contradicts T being a tree as then we

have a path from L(u) to L(v) to R(u) to L(u).

On the other hand, we have nest2(T ) = 0 by a similar argument except the order

is obtained using a breadth first search.

Example 5.4. Figures 5.3 and 5.4 show a tree, the former with a depth first order

and the later with a breadth first order and their corresponding line graphs.

1

4 5

6

7

2

8

3

1 2 3 4 5 6 7 8

Figure 5.3: A depth first search in a tree

As can be seen the depth first order has no crossings and the breadth first has

no nestings.
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Figure 5.4: A breadth first search in a tree

Proposition 5.5. Let C be a cycle of length n. Then cros2(C) = nest2(C) = 0.

Proof. Choose one vertex in C and call it 1. Label the remaining vertices in a depth

first pattern. Then for 1 < i < n, there are arcs (i− 1, i) and (i, i+ 1), which cause

no crossing as there is no vertex between i − 1, i and i + 1. Additionally, the arc

(1, n) causes no crossings. Thus cros2(C) = 0.

The order with no nestings is given by a breadth first search. The argument is

similar as almost every arc is of the form (i, i+ 2), and there aren’t enough vertices

between i and i+ 2 to form a nest.

Proposition 5.6. Let G be a graph with cros2(G) = 0 (nest2(G) = 0) and T be

a rooted tree. If G′ is the graph G with one vertex replaced by the tree T , then

cros2(G
′) = 0 (nest2(G

′) = 0).

Proof. Let σ be an order so that cros2(G, σ) = 0. Call the vertex in G that is the

root of the tree v. Create a new order σ′ from σ so that σ′(u) = σ(u) if σ(u) ≤ σ(v)

and σ′(u) = σ(u) + |T | if σ(u) > σ(v). The remainder of σ′ is defined as a depth

first order on T , starting with σ(v). Clearly we have cros2(G
′, σ′) = 0.

A similar, albeit more complicated, argument holds for nest2(G
′). The tree and

graph are given a breadth first order, preserving the order of the original vertices in

G.
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Proposition 5.7. For complete graph on [n], Kn, cros2(Kn) = nest2(Kn) =
n−2
∑

k=2

(

k

2

)

Proof. We’ll prove the result for cros2(Kn) as the other result is similar. This is

easy to prove inductively. A simple computation shows cros2(K4) = 1. Assume

cros2(Kn−1) =
∑n−3

k=2

(

k

2

)

. Consider vertex n in Kn. For 1 < i < n− 1, the arc (i, n)

in Kn crosses i − 1 arcs in Kn so that the vertex n contributes
∑n−2

i=2 i − 1 =
(

n−2
2

)

crossings. Combining this with all crossings in Kn−1 we see

cros2(Kn) =
n−2
∑

k=2

(

k

2

)

5.1.2 The relationship between cros2 and nest2

In this subsection we will construct two families of graphs that will show cros2

and nest2 are unrelated. But first we require a lemma.

Lemma 5.8. For a graph G and an edge e in G, cros2(G) ≥ cros2(G−e) (nest2(G) ≥

nest2(G− e).

Proof. Let σ be the permutation so that cros2(G) = cros2(G, σ). It’s easy to see that

cros2(G, σ) ≥ cros2(G− e, σ) ≥ cros2(G− e). Thus cros2(G) ≥ cros2(G− e).

For two graphs G and H and two orders σ and ϕ, define G −(σ,ϕ) H to be the

graphs G and H together with an arc between the greatest vertex in G, under order

σ, and smallest vertex in H, under order ϕ. If the orders are clear, we write G−H.

Figure 5.5 contains an example of this process.

For a graph G on k vertices and permutation σ ∈ Sk, construct a family of graphs

Gn so that G1 = G and Gn = Gn−1 −(σ′,σ) G where σ′(i) = σ(i mod k).
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1 2 3 4 5

(a) The graph G

1 2 3 4

(b) The graph H

1 2 3 4 5 6 7 8 9

(c) The graph G−H

Figure 5.5: An example of the graphs G, H and G−H

Proposition 5.9. If a graph G satisfies cros2(G) = 0 and nest2(G) > 0, then there

is an order σ so that cros2(Gn) = 0 and nest2(Gn) > n nest2(G).

Similarly, if nest2(G) = 0 and cros2(G) > 0, then there is an order σ so that

nest2(Gn) = 0 and cros2(Gn) > n cros2(G).

Proof. We’ll prove the first statement as the second is identical. Let σ be an order

so that cros2(G, σ) = 0. If we assume cros2(Gn−1) = 0, then since Gn = Gn−1 − G

and cros2(Gn−1) = 0 and cros2(G) = 0 we must have cros2(Gn) = 0 as the additional

arc in Gn crosses no arcs in Gn−1 or G.

Let e be the arc in Gn that connects Gn−1 and G. Then nest2(Gn) ≥ nest2(Gn −

e), but the graph Gn − e has two components, so we can write nest2(Gn − e) =

nest2(Gn−1) + nest2(G). Continuing we obtain the desired result, or nest2(Gn) ≥

n nest2(G).

This proposition implies that if we can construct two graphs, G and H, with

cros2(G) = 0, nest2(G) > 0, nest2(H) = 0 and cros2(H) > 0, then the statistic cros2

and nest2 will be unrelated as they will not bound each other.

Example 5.10. The graph, G, in Figure 5.6 is drawn with no crossings. However,

it can be computed that nest2(G) = 1. The graph G turns out to be the smallest

graph that satisfies this property.
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1 2 3 4 5 6

Figure 5.6: A graph with no crossings and one nesting

Example 5.11. The graph, K2,3, in Figure 5.7 is the complete bipartite graph on the

sets [2] and [3]. This graph can be seen to have cros2(K2,3) = 1 and nest2(K2,3) = 0.

1 2 3 4 5

Figure 5.7: A graph with one crossing and no nestings

Examples 5.10 and 5.11 show that cros2 and nest2 have no relationship, i.e. there

are two families of graphs Gn and Hn so that cros2(Gn) = 0 and nest2(Hn) = 0 for

all n, but nest2(Gn) → ∞ and cros2(Hn) → ∞. Additionally, these examples show

that cros2 and nest2 are unrelated over graphs with bounded degree sequence.

5.2 A Bijection from Motzkin Paths to Trees

Recall the definition of bicolored motzkin paths from Section 2.1. A plane tree is

a rooted tree for which an ordering is specified for the children of each vertex. This is

called a plane tree because an ordering of the children is equivalent to an embedding

of the tree in the plane, with the root at the top and the children of each vertex

lower than that vertex. For a plane tree T , a vertex v and edge (v, u) say (v, u) is

a child of v if u is a child of v. In this section we will exhibit a bijection between
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bicolored motzkin paths and plane trees.

Let T be a plane tree. Label the edges of T with a depth first search, where left is

prioritized before right. Say ti is the i
th edge of the tree. Define a bicolored motzkin

path M = m1 . . .mn so that,

1. mi = N if ti is the left most child of a vertex with at least two children.

2. mi = E if ti is the only child of a vertex.

3. mi = Ē if ti is the middle child of a vertex with at least two children.

4. mi = S if ti is the right most child of a vertex with at least two children.

Figure 5.8 has a demonstration of this procedure. Each edge is labeled showing the

bijection in detail.

1
2

3
4

5

6

7

8

1 2 3 4 5 6 7 8

Figure 5.8: An example of the map from trees to motzkin paths

To prove this is a bijection we define the inverse. The inverse is described algo-

rithmically. Given a bicolored motzkin path M = m1 . . .mn, construct a plane tree T

starting with a single vertex, r. Initialize the algorithm setting the variable current

vertex = r and an ordered list open = [r]. For i from 1 to n do the following,
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1. If mi ∈ {Ē, S} then change current vertex to the last element of open that

has a child (this must exist as mi has positive height). Remove the vertices in

open after the new current vertex from open.

2. Add a new vertex to T , denoted child, beneath the current vertex and to

the right of any children current vertex may have.

3. If mi ∈ {E, S} then remove the current vertex from open.

4. Add child to the end of open and set current vertex to be child.

Example 5.12. Figure 5.9 shows the tree T obtained using the motzkin path from

Figure 5.8, the labels on the vertices of the tree correspond to the order they are

added to the tree. Table 5.1 shows the variables in each iteration of the algorithm.

r

1 2

3

4

5

6

7

8

Figure 5.9: An example a tree given by a bicolored motzkin

These processes are easily seen to be inverses as both proceed in a depth first

order on the tree and arcs are persevered between the two.

5.3 Ferrers Diagrams with Fixed Step

Recall the definitions of Ferrer’s diagrams, fillings of polyominoes and chains in

polyominoes from Section 2.5. In this section we enumerate the number of fillings
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i current vertex mi open

0 - - [r]
1 r N [r, 1]
2 1 Ē [r, 2]
3 2 E [r, 3]
4 3 N [r, 3, 4]
5 4 E [r, 3, 5]
6 3 S [r, 6]
7 6 E [r, 7]
8 1 S [8]

Table 5.1: Each step from a bicolored motzkin path to a plane tree

with no se-chains in Ferrer’s diagrams where each row is a fixed length shorter than

the previous row.

For s, k, n ∈ N define Ts,k,n to be a Ferrer’s diagram with k rows so that the

bottom row has length n and each row is s shorter than the above row. Figure 5.11

has an example. For a filling F ∈ F01(Ts,k,n) let |F | be the number of non-zero entries

in F .

For n, k, s ∈ N, define the generating function,

As,k,n(t) =
∑

F∈Av(se,F01(Ts,k,n))

t|F |. (5.1)

This generating function counts the number of fillings of Ts,k,n that have |F | non-zero

entries and no se-chains. The following generating function iterates As,k,n(t) over all

k,

Gs,n(t, y) =
∞
∑

k=1

As,k,n(t)y
k. (5.2)

We can write As,k,1(t) recursively in terms of As,k−1,s+1(t). In Figure 5.10 the

highlighted cell is independent of the remainder of the Ferrer’s diagram, its entry
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k

s
0|1

Figure 5.10: The bottom row has length 1 and doesn’t affect the other rows

can not create any se-chains. Thus we can eliminate this cell so that,

As,k,1(t) = (1 + t)As,k−1,s+1(t) (5.3)

To recursively write As,k,n(t), for n > 1, there are two distinct cases. First if the

last column in each row is empty there are As,k,n−1(t) fillings, as the last columns can

be eliminated. Second, say i is the first row, from the bottom, that has a non-zero

entry in its last column. Then we have two independent fillings of the remaining

areas of the Ferrer’s diagram. Figure 5.11 shows an example of this, the shaded cells

are forced to be empty. This adds As,i,n−1(t)As,k−i,s+1(t) fillings. Combining these

k

n

s

s

s

1

Figure 5.11: The shaded cells are required to be empty
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and summing over i, we see

As,k,n(t) = As,k,n−1(t) + t

k
∑

i=1

As,i,n−1(t)As,k−i,s+1(t).

Using (5.3) we can rewrite the previous,

As,k,n(t) = As,k,n−1(t) +
t

t+ 1

k
∑

i=1

As,i,n−1(t)As,k−i+1,1(t). (5.4)

Using (5.4) we can expand Gs,n(t, y).

Gs,n(t, y) =
∞
∑

k=1

As,k,n−1(t)y
k +

t

1 + t

∞
∑

k=1

k
∑

i=1

As,i,n−1(t)As,k−i+1,1(t)y
k

=Ga,n−1(t, y) +
t

1 + t

∞
∑

i=1

As,i,n−1(t)y
i−1

∞
∑

k=1

As,k,1(t)y
k

=Gs,n−1(t, y) +
t

y(1 + t)
Gs,n−1(t, y)Gs,1(t, y)

=Gs,1(t, y) +

(

1 +
t

y(1 + t)
Gs,1(t, y)

)n−1

where the last step follows by recursive application of Gs,n−1(t, y).

There is an alternate way to write As,k,1(t) and it’s similar to the derivation of

(5.4). The difference being the bottom row (of length 1) disappears, so the new

smallest row has length s. So,

As,k,1(t) = As,k−1,s(t) +
t

1 + t

k
∑

i=1

As,i−1,s(t)As,k−i+1,1(t). (5.5)
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Using (5.5) we can make Gs,1 more explicit.

Gs,1(t, y) =
∞
∑

k=1

As,k−1,s(t)y
k +

t

1 + t

∞
∑

k=1

k
∑

i=1

As,i−1,s(t)Aa,k−i+1,1(t)y
k

=y(1 +Gs,s(t, y)) +
t

1 + t

∞
∑

i=1

As,i−1,s(t)y
i−1

∞
∑

k=1

As,k,1(t)y
k

=y(1 +Gs,s(t, y)) +
t

1 + t
(1 +Gs,s(t, y))Gs,1(t, y)

=y +
t

1 + t
Gs,1(t, y) +

Gs,1(t, y)

ys−1

(

y +
t

1 + t
Gs,1(t, y)

)s

This turns out to be incredibly difficult to solve, but there are a few things we

can do. First, for fixed s ≥ 0 consider the generating function

Fs(t, y, x) =
∞
∑

n=1

Gs,n(t, y)x
n.

Then,

Fs(t, y, x) =
Gs,1(t, y)x

1−
(

1 + t
y(1+t)

Gs,1(t, y)
)

x
.

Second, for s = 0, G0,1(t, y) represents fillings of a single column. This means the

ymtk coefficient of G0,1(t, y) should be
(

m

k

)

as there are m cells and k 1’s. Explicitly

solving, we have

G0,1(t, y) =
(t+ 1)y

1− (t+ 1)y
=

∞
∑

i=1

i
∑

j=0

(

i

j

)

tjyi.

Which is exactly as predicted.

Finally, for s = 1, the ymtk coefficient of G1,1(t, y) represents the number of
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non-crossing simple graphs with m+ 1 vertices and k edges. We have

G1,1(t, y) =
y(t+ 1) +

√

(y(t+ 1)− 1)2 − 4yt(t+ 1)

−2t
.
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6. CONCLUSION

In conclusion, this dissertation attempted to accomplish several things. First

to generalize symmetry results in Ferrers diagrams and moon polyominoes to layer

polyominoes. Second, introduce a class of objects that did not satisfy symmetry

between crossings and nestings. Third, define a notion of crossings and nestings on

graphs and find if they bound each other. Fourth, demonstrate a bijection between

plane trees and bi-colored motzkin paths. And finally, determine the generating

function of fillings, with no southeast chains, of Ferrers diagrams with each row a

fixed sized shorter than the previous.

Each of these goals was achieved; however there is still work to be carried out

in each case. There are different types of polyominoes, such as skew polyominoes,

that provide a clear representation of combinatorial structures. The fillings of these

polyominoes would be interesting to study as they would imply new results in already

established fields, such as pattern avoidance in permutations.

The study of alternating matchings has left much to be desired. Within this

section we were unable to explicitly enumerate non-nesting alternating matchings,

let alone find a generating function for the crossings and nestings. A continuation

of this work would lead to a different order on the underlying set of the matching.

Alternating matchings have a 0 on odd vertices and 1 on even vertices with each 0

connected to a 1. Modifying where 0’s and 1’s can occur change the problem, and is a

natural generalization. However, the difficulties in the case of alternating matchings

made these generalizations unattractive to study.

Crossings and nestings in graphs is quite interesting. There are many ways to

generalize this problem, first for a given number of vertices, how many arc guarantee
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a cross or nest or how many arcs can you have guarantee no crossings or nestings?

Second, what can one say about graphs with fixed degree sequence? Finally, what

conditions on the graph (degree sequence, number of arcs) guarantee that the sym-

metry of crossings and nestings is symmetric.

Finally, fillings, with no southeast chains, of Ferrers diagrams with each row a

fixed length shorter than the previous row. The main way to generalize this is change

the function that determines row length. In these results the growth is linear, but

what if the growth is governed by some sequence of natural numbers?
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