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ABSTRACT

Cost-effectiveness analysis is widely conducted in the economic evaluation of new

treatments, due to skyrocketing health care costs and limited resource available.

Censored costs data poses a unique problem for cost estimation due to “induced in-

formative censoring” problem. Thus, many standard approaches for survival analysis

are not valid for the analysis of cost data. We first derive the confidence interval for

the incremental cost-effectiveness ratio for a special case, when terminating events

are different for survival time and costs. Then we study how to intuitively explain

some existing estimators for costs, based on the generalized redistribute-to-the-right

algorithm. Motivated by that idea, we also propose two improved survival estimators

of costs, based on generalized redistribute-to-the-right algorithm and kernel method.

We first consider one special situation in conducting cost-effectiveness analysis,

when the terminating events for survival time and costs are different. Traditional

methods for statistical inference cannot deal with such data. We propose a new

method for deriving the confidence interval for the incremental cost-effectiveness

ratio under this situation, based on the counting process theory and the general

theory for missing data process. The simulation studies and real data example show

that our method performs very well for some practical settings.

In addition, we provide intuitive explanation to a mean cost estimator and a sur-

vival estimator for costs, based on generalized redistribute-to-the-right algorithm.

Since those estimators are derived based on the inverse probability weighting prin-

ciple and semiparametric efficiency theory, it is not always easy to understand how

these methods work. Therefore, our work engenders a better understanding of those

theoretically derived cost estimators.
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Motivated by the idea of generalized redistribute-to-the-right algorithm, we pro-

pose an estimator for the survival function of costs. The proposed estimator is

naturally monotone, more efficient than some existing survival estimators, and has

a quite small bias in many realistic settings. We further propose a kernel-based sur-

vival estimator for costs. The latter estimator, which is asymptotically unbiased,

overcomes the deficiency of the former estimator, while preserving the nice proper-

ties. Our proposed estimators outperform existing estimators under various scenarios

in simulation and real data example.
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NOMENCLATURE

T Survival time

C Censoring time

X Follow-up time

∆ Death indicator

M(t) Cost accumulated over time 0 to t

M Observed cost accumulated until follow-up time X

S(x) Survival function of costs M(T )

ST (t) Survival function of survival time T

K(t) Survival function of censoring time C
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CHAPTER I

INTRODUCTION

Due to skyrocketing of health care costs and limited resource available, economic

evaluation of new treatments has received more and more attention. To compare

different treatments, cost-effectiveness analysis helps evaluate the economic impact

of the new treatment and its effects on health care, in the hope of finding an effective

treatment without causing too much burden to the society or individuals.

The analysis of cost data involves some unique challenges that require advanced

statistical methodologies, especially when costs are censored. For example, random-

ized clinical trials often enroll subjects over a broad time period, but the trial ends

at a fixed time point. As a result, subjects are observed for differing amounts of

time, and those who are still alive at the end of the study are considered censored.

Thus, we cannot observe further costs after censored time for those patients. Be-

sides, Censoring poses a unique problem for cost estimation due to the “induced

informative censoring” problem, first noted by Lin et al. (1997). Traditional survival

analysis methods assume that the censoring time is independent of the survival time

(conditional on some covariates). However, the costs at censoring time are no longer

independent of the total uncensored costs. For example, a healthier patient will ac-

cumulate costs more slowly, and therefore will have less costs at the censoring time,

and at the potential event time (Lin, 2003). Thus, many standard approaches for

survival analysis, such as the Kaplan-Meier estimator (Kaplan and Meier, 1958), or

the Cox regression model (Cox, 1972), are not valid for the analysis of cost data.

Additionally, because of censoring, the costs and survival distribution cannot

be estimated over the entire health history, unless more assumptions are imposed.
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Hence, many researchers focus on the time-restricted medical costs, i.e., the costs

accumulated within a time limit L.

If a program has higher cost but greater benefit than its competitor, a deci-

sion must be made on which of the two programs to adopt. In performing cost-

effectiveness analysis with censored data, there have been several measures proposed

to evaluate the treatments (Chaudhary and Sterns, 1996; Heitjan, 2000; Willan and

Lin, 2001; Briggs et al., 2002; O’Brien and Briggs, 2002; Willan and Briggs, 2006).

Among them the incremental cost-effectiveness ratio (ICER) is a widely used crite-

rion. The ICER is defined as the costs incurred for saving an additional year of life.

However, it is commonly encountered in clinical studies that we need to use differ-

ent endpoints for costs and effectiveness estimation. For example, a new strategy

might prevent the heart failure event. Hence, it may extend the heart-failure free

survival time, but not overall survival time. However, we are still interested in the

costs estimation up to death. In this situation, we are interested in estimating the

ICER based on the heart-failure free survival time but costs accumulated until death.

Although the construction for the confidence intervals (CI) of usual ICER with the

same terminating points has been studied much, there are no theoretical results for

research on this ICER and its CI which allow different terminating events. Thus, we

propose a method to handle this problem in Chapter II.

Although many estimators for the mean costs have appeared in the literature,

they are often based on theory, and it is not always easy for practitioners to un-

derstand why these methods work. To alleviate this situation, Zhao et al. (2011)

established a mathematical equivalency between the BT estimator for the mean

costs (Bang and Tsiatis, 2000), and a replace-from-the-right (RR) algorithm (Pfeifer

and Bang, 2005). Thus, the BT estimator, which is based on the inverse probability

weighting technique (Horvitz and Thompson, 1952), has a more intuitive explanation

2



from the RR algorithm. Motivated by this idea, we will extend this work by propos-

ing a modified RR algorithm, the RRimp method, which utilizes the cost history

information and is therefore generally more efficient than the RR estimator. We will

provide a proof of the mathematical equivalence between the RRimp method and an

existing estimator for the mean costs, the ZT estimator (Zhao and Tian, 2001). Due

to a lack of a theoretical background for understanding the BT and ZT estimators,

some practitioners might be reluctant to use them. With the easy interpretation of

the RR and RRimp estimators, and established equivalency between these estimators

and the BT, ZT estimators, we believe these estimators will become more popular

among practitioners.

Moverover, since cost data are often highly skewed, it is more desirable to estimate

the median and other quantiles of the costs. These quantities can be available if we

can estimate the survival function of costs. Using the original redistribute-to-the

right algorithm, we propose a RRS (abbreviated as RRS for survival estimator)

survival estimator for costs, and show that it is equivalent to a simple weighted

(SW) survival estimator for costs (Zhao and Tsiatis, 1997; Zhao et al., 2012). We

extend this method and propose a RRimpS survival estimator. Numerical studies

will be conducted to compare this RRimpS survival estimator with the RRS survival

estimator (or equivalent SW estimator), and a more efficient ZTS survival estimator

(Zhao and Tsiatis, 1997; Zhao et al., 2012).

Furthermore, we propose a kernel-based estimator for survival function of costs,

the RRimpK estimator, which is naturally monotone, asymptotically unbiased, and

includes the RRimpS as a special case. The RRimpK estimator overcomes the de-

ficiency of the RRimpS estimator, while preserving the nice properties. We will

conduct numerical studies to examine the finite sample property of the survival esti-

mators for costs and apply them to a data example from a randomized cardiovascular

3



clinical trial.

The remainder of the dissertation is organized as followed. In Chapter II, we will

concentrate on cost-effectiveness analysis, and show how to handle the problem of

ICER with different terminating events. In Chapter III, we will discuss the mean cost

estimators with corresponding intuitive explanation, as well as the survival function

estimators for cost. We will also propose the RRimpS survival estimator of costs. In

Chapter IV, we will further propose the kernel-based RRimpK estimator for survival

function of costs, which improves the RRimpS estimator substantially. Chapter V

is the Summary of this dissertation, which summarizes the innovative methods we

proposed in this dissertation.
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CHAPTER II

ESTIMATING INCREMENTAL COST-EFFECTIVENESS RATIOS AND THEIR

CONFIDENCE INTERVALS WITH DIFFERENT TERMINATING EVENTS

FOR SURVIVAL TIME AND COSTS∗

II.1 Introduction

With health care costs surging in an environment of limited resources, economic

evaluations of new treatment strategies are becoming more and more prevalent. If

a program has higher cost but greater benefit than its competitor, a decision must

be made on which of the two programs to adopt. The incremental cost-effectiveness

ratio (ICER) is designed to measure the trade-off between the costs and health

benefits of medical interventions. It is defined as the extra costs incurred for saving

one additional year of life. The ICER has been the most widely used tool for cost-

effectiveness analysis (CEA) (Zwanziger et al., 2006; Wailoo et al., 2008; McIntosh

et al., 2009).

Analyzing cost data requires advanced statistical methodologies, especially when

cost data are censored. Over a decade has passed since scholars recognized that

caution should be exercised when using censored cost data, as described in Lin et al.

(1997). The authors point out that traditional methods for handling censored sur-

vival data, such as the Kaplan-Meier estimator, Log-rank test, and Cox proportional

hazards regression are no longer valid for analyzing censored cost data, due to the

“induced informative censoring” problem. Additionally, because of censoring, the

∗This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Bio-

statisitcs following peer review. The definitive publisher-authenticated version “Chen, S. and Zhao,
H. (2013). Estimating incremental cost-effectiveness ratios and their confidence intervals with dif-
ferent terminating events for survival time and costs. Biostatistics 14, 422-432” is available online
at: http://biostatistics.oxfordjournals.org/content/14/3/422.
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costs and survival distribution cannot be estimated over the entire health history,

unless more assumptions are imposed. Hence, a limited time horizon, such as L

(years), is often required, i.e. we measure life-years saved within a limited horizon

L, costs within L and hence ICER within L.

Since the ICER is a ratio statistic with quite a skewed distribution, authors often

construct a confidence interval (CI) for the ICER in order to estimate its variability.

Researchers have proposed various methods for how to find CIs for the ICER. The

most widely used in the health service research and health economic literature are

bootstrap methods (Efron and Tibshirani, 1986, 1993; Hwang, 1995; Mushlin et al.,

1998; Jiang et al., 2000; O’Brien and Briggs, 2002; Jiang and Zhou, 2004); but one

can also adapt Fieller’s theorem to censored cost data to obtain the CI for the

ICER (Fieller, 1954; Chaudhary and Sterns, 1996; Zhao and Tian, 2001; Wang and

Zhao, 2008). Although many researchers believe that since the Fieller method is

based on the large sample normal assumption, the bootstrap methods provide better

coverage, Hwang (1995) and Jiang et al. (2000) showed that both methods are first-

order accurate. Therefore, the Fieller method, if used correctly, can be a reliable and

efficient way to compute these CIs.

To obtain the CI for the ICER using Fieller’s theorem, we need to estimate not

only the mean costs and effectiveness (e.g., life expectancies) and their respective

variances, but also their covariance. There are proposed methods for estimating

the mean medical costs and related variance, and most of these focus on the time-

restricted medical costs (Lin et al., 1997; Bang and Tsiatis, 2000; Zhao and Tian,

2001; O’Hagan and Stevens, 2004; Raikou and McGuire, 2004; Zhao et al., 2007,

among others). In the construction of CI, a challenge caused by an earlier stopping

time for cost collection for some patients has been addressed by Wang and Zhao

(2006). However, another challenge arises when the terminating events for costs

6



and survival are different. For example, in the Multicenter Automatic Defibrillator

Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT), the

primary goal was to determine whether the cardiac-resynchronization therapy (CRT)

with biventricular pacing would reduce the risk of death or heart failure events in

patients with mild cardiac symptoms (Moss et al., 2009). The terminating event

for the effectiveness measure is death or heart failure (HF), whichever occurs first.

Meanwhile, some patients who experienced heart failure events were still living, and

continued to accumulate costs and report these costs. Since the treatment costs

accumulated until death is of interest, the terminating event for this cost evaluation

is a different one, death. We anticipate that more and more medical advances will

occur, which may not prolong the overall survival time, but will prevent adverse

events such as heart failures. Therefore, ICERs with different terminating events

might be used more frequently in the future.

The remainder of this capter is organized as follows. In Section II.2, we propose

a method for estimating the ICER and constructing its CI with censored data and

different terminating events. In Section II.3, we perform numerical studies to examine

the empirical coverage probability of the CI for this special ICER, and compare its

performance with bootstrap methods. Next, we illustrate our method by applying it

to the MADIT-CRT study. Finally, we provide discussions and concluding remarks.

II.2 Method

II.2.1 Notation and Assumptions

We first concentrate on patients in one arm of the study. For the ith person, let Ti

denote the overall survival time, i.e. time until death. In addition, the subject may

experience a heart failure event at time HFi. Let T F
i denote the HF-free survival

time, i.e. the time to a heart failure event or death, whichever occurs first, T F
i =

7



min(HFi, Ti). Let Ci represent the censoring time. Denote the observed follow-up

time as Xi = min(Ti, Ci), and the death indicator as ∆i = I(Ti ≤ Ci), where I(·)

is the indicator function. Similarly, denote the HF-free follow-up time as XF
i =

min(T F
i , Ci), and HF-free survival event indicator as ∆F

i = I(T F
i ≤ Ci). Let Mi(u)

be the costs accumulated over time u. For simplicity, we denote Mi = Mi(Xi) as the

observed total costs.

We assume that the censoring time Ci is independent of the survival time Ti,

the heart failure time HFi, and the cost history process {Mi(u), u ≤ Ti}. This

assumption is reasonable for a well-conducted clinical trial. Because of censoring,

it is impossible to estimate the costs over the entire health history. Therefore, we

consider only costs accumulated up to a maximum of L units of time, where L is

chosen based on the availability of data. This is equivalent to redefining our survival

time as TL
i = min(Ti, L), and T FL

i = min(T F
i , L). For ease of notation, we suppress

the superscript L of TL
i and T FL

i throughout this chapter.

For each of the two treatment groups, k = 0, 1, we observe the following identically

distributed, independent data {Xi,∆i, X
F
i ,∆

F
i ,Mi(Xi), i = 1, · · · , nk}; nk is the

number of patients for arm k. Our goal is to estimate the mean cost µM = E{Mi(Ti)}

and the mean HF-free survival time µF = E(T F
i ) for each of the treatment groups,

and to compare the treatment strategies by obtaining the ICER and its CI, based

on the estimated differences of µM and µF from the two groups and their variances

and covariances.

II.2.2 Estimating the Mean Costs for Each Group

Here we briefly review the methods for estimating the mean costs accumulated

over time L with censored data. Bang and Tsiatis (2000) proposed a consistent

8



estimator based on the inverse probability weighting technique: µ̂M
BT = 1

n

∑n
i=1

∆iMi

K̂(Ti)
,

where K̂(Ti) is the Kaplan-Meier estimator for the survival function of the censoring

time C, K(u) = Pr(Ci > u). This is the simple unpartitioned version, and Bang

and Tsiatis (2000) also provided a partitioned estimator BTp.

When cost history is available, the BT estimator is not efficient since it does

not use the cost information from censored observations. A more efficient estimator,

which is also easy to use, is proposed by Zhao and Tian (2001). The ZT estimator

has the following simplified form (Pfeifer and Bang, 2005):

µ̂M
ZT =

1

n

n∑

i=1

∆iMi

K̂(Ti)
+

1

n

n∑

i=1

(1−∆i){Mi(Ci)−M(Ci)}

K̂(Ci)
, (1)

where M(Ci) =
∑n

j=1 I(Xj ≥ Ci)Mj(Ci)/
∑n

j=1 I(Xj ≥ Ci), which is the average

accumulated costs at time Ci of those subjects who are alive at Ci.

Zhao et al. (2007) described the conditions under which the ZT estimator is

equivalent to the BTp estimator, as well as the two estimators LinA/B proposed by

Lin et al. (1997).

Zhao and Tian (2001) show that the ZT estimator is consistent, and asymptoti-

cally normally distributed with variance that can be estimated consistently by

ˆV ar(µ̂M
ZT ) =

1

n2

n∑

i=1

∆i(Mi − µ̂M
ZT )

2

K̂(Ti)
+

1

n2

∫ L

0

dNC(u)

K̂(u)2
{Ĝ(M2, u)− Ĝ(M,u)2}

−
2

n2

∫ L

0

dNC(u)

K̂(u)2
[Ĝ{MM(u), u} − Ĝ(M,u)Ĝ{M(u), u}]

+
1

n2

∫ L

0

dNC(u)

K̂(u)2
[Ĝ∗{M(u)2, u} − Ĝ∗{M(u), u}2],

9



where

NC(u) =

n∑

i=1

NC
i (u) =

n∑

i=1

I(Xi ≤ u,∆i = 0),

Ĝ∗{Z, u} = {

n∑

i=1

ZiYi(u)}/Y (u),

Y (u) =

n∑

i=1

Yi(u) =

n∑

i=1

I(Xi ≥ u),

and Ĝ(Z, u) = 1
nŜ(u)

∑n
i=1

∆i

K̂(Ti)
ZiI(Ti ≥ u), for any random variable Z, and Ŝ(u) is

the Kaplan-Meier estimator for S(u), the survival distribution of T at time u, using

data (Xi,∆i, i = 1, · · · , n). This variance formula is a simplified form of the original

formula given by Zhao and Tian (2001) and Zhao and Wang (2010).

II.2.3 Estimating the Mean HF-free Survival Time for Each Group

The mean survival time up to time L can be obtained by the area under the

survival function, i.e., µ̂T =
∫ L

0
Ŝ(x)dx, where Ŝ(x) is the Kaplan-Meier estimator

for S(u) = Pr(T > u). This estimator can be more conveniently obtained (Satten

and Datta, 2001; Zhao and Tian, 2001) by

µ̂T =
1

n

n∑

i=1

∆iTi

K̂(Ti)
. (2)

Similarly, the mean HF-free survival time can be estimated by

µ̂F =
1

n

n∑

i=1

∆F
i T

F
i

K̂F (T F
i )

, (3)

where K̂F (u) is the Kaplan-Meier estimator for K(u) = Pr(C > u), the survival

distribution of C at time u, using data (XF
i ,∆

F
i , i = 1, · · · , n). Following Zhao and

10



Tian (2001), its variance can be estimated consistently by

1

n2

n∑

i=1

∆F
i (T

F
i − µ̂F )2

K̂F (Ti)
+

1

n2

∫ L

0

dNF (u)

K̂F (u)2
[ĜF{(T F )2, u} − ĜF (T F , u)2],

where

NF (u) =
n∑

i=1

NF
i (u) =

n∑

i=1

I(XF
i ≤ u,∆F

i = 0),

ĜF (Z, u) =
1

nŜF (u)

n∑

i=1

∆F
i

K̂F (T F
i )

ZiI(T
F
i ≥ u),

ŜF (u) is the Kaplan-Meier estimator for SF (u) = Pr(T F
i > u).

II.2.4 Estimating the ICER and Its Confidence Interval

The ICER is the ratio of the difference of costs and the difference of effects

between two treatment groups. Here we use HF-free survival time as the measure

of effectiveness. For a two-arm trial, for each group k (k = 0, 1), denote µM
k as the

mean cost and µF
k as the mean HF-free survival time, each limited to a window of

time [0, L]. The ICER, which measures the additional costs needed for saving one

year of HF-free lifetime, is defined as γ =
µM
1

−µM
0

µF
1
−µF

0

.

The ICER γ can be estimated by plugging in the ZT estimator (1) for the mean

cost µ̂M
k , and the estimator for mean HF-free survival time (3), µ̂F

k , for each group

k, k = 0, 1. We use Fieller’s Theorem to obtain CIs for the ICER, similarly to Zhao

and Tian (2001). Since asymptotically x = µ̂M
1 − µ̂M

0 and y = µ̂F
1 − µ̂F

0 are bivariate

normally distributed, the 100(1− 2α)% confidence limits for the ICER γ are

xy − z2αsxy ± {(xy − z2αsxy)
2 − (x2 − z2αsxx)(y

2 − z2αsyy)}
1/2

y2 − z2αsyy
, (4)

where sxx, syy, sxy are respectively the variances of x and y, and the covariance of x

11



and y, zα is the cut-off point with tail area α of the standard normal distribution.

If the denominator of (4) is positive, the CI is finite. If the denominator of (4) is

negative, meaning that the difference between the effects of two treatments is not

statistically significant, the CI for the ICER is exclusive and thus infinite. For a

discussion on the interpretation of infinite intervals, see Wang and Zhao (2008).

The variance of x and y, sxx and syy, can be obtained from results mentioned

above, treating two arms as independent samples. The challenge is to find the co-

variance between x and y, or the covariance between the mean cost estimator and

the mean HF-free survival time estimator µ̂M
k and µ̂F

k , due to the different terminat-

ing events used here. In Appendix A, we express the mean HF-free survival time

estimator µ̂F
k and the mean cost estimator µ̂M

k in martingale forms, and derive the

covariance between them based on the counting process theory and the general the-

ory for missing data process (Fleming and Harrington, 1991; Robins and Rotnitzky,

1992; Robins et al., 1994). We show that the covariance between µ̂M
k and µ̂F

k can be

estimated consistently by

ˆCov(µ̂M , µ̂F )

=
1

n2

n∑

i=1

∆iMiT
F
i

K̂(Ti)
−

1

n3

n∑

i=1

∆iMi

K̂(Ti)

n∑

i=1

∆F
i T

F
i

K̂F (T F
i )

+
1

n2

∫ L

0

dNF (u)

K̂F (u)2
{ĜF0(T FM,u)− ĜF0(M,u)ĜF0(T F , u)}

−
1

n2

∫ L

0

dNF (u)

K̂F (u)2
[ĜF0{T FM(u), u} − ĜF0{M(u), u}ĜF0(T F , u)], (5)

where ĜF0(Z, u) = 1
nŜF (u)

∑n
i=1

∆i

K̂(Ti)
ZiI(T

F
i ≥ u).
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II.3 Simulation

We conduct simulation studies to examine the performance of the covariance for-

mula, and the coverage probability of the CI of the ICER that relies on the covari-

ance formula. The overall survival time has an exponential distribution T ∼ exp(10),

which is the same for both treatment groups. The heart failure time is also expo-

nentially distributed, but is different for each group. HF ∼ exp(6) for Group 0,

and HF ∼ exp(12) for Group 1. Hence Group 1 represents a new treatment which

prevents occurrence of heart failures but is not effective in preventing death. The sur-

vival time T and heart failure time HF are generated independently and truncated

at L=10. The HF-free survival time is defined as T F = min(T,HF ), as mentioned

previously. The censoring time has a uniform distribution, C ∼ Unif(0, 15), result-

ing in 42% censoring for the overall survival time and 24%-30% censoring for the

HF-free survival time. The true mean HF-free survival time is 3.49 and 4.58 for

Group 0 and Group 1 respectively.

We consider U-shaped sample paths for the costs, similarly to Bang and Tsiatis

(2000) and Zhao et al. (2012). The entire time period [0, 10] is partitioned into

10 equal (yearly) intervals. The total costs consist of the initial costs incurred at

the beginning of the study, the terminal costs accumulated during the last year

before death, the fixed annual costs which do not change for each patient, and the

random annual costs which vary from year to year. We consider two scenarios with

uniformly distributed costs and log normally distributed costs. For the uniform

setting, the initial costs, fixed annual costs, random annual costs, and terminal costs

are uniformly distributed in (1, 000, 3, 000), (2, 000, 4, 000), (0, 400), (5, 000, 15, 000)

for Group 0, and in (20, 000, 30, 000), (2, 000, 3, 000), (0, 400), (5, 000, 15, 000) for

Group 1. For the log normal setting, these costs are log normally distributed with
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parameters (8.5, 0.6322), (8, 0.2452), (4, 0.2452), and (8, 0.6322) for Group 0, and

(10.2, 0.6322), (7.5, 0.2452), (4, 0.2452), and (8, 0.6322) for Group 1. The true mean

costs for Group 0 and Group 1 are $28,241 and $48,095 under the uniform setting,

and $27,932 and $47,133 under the log normal setting. Thus, Group 1 is associated

with a longer HF-free survival time, but is also more costly than Group 0, mainly

due to large initial costs.

The simulation results based on 2000 runs, and various sample sizes, are sum-

marized in Table 1. We first examine the performance of the covariance estimator.

Here SCov represents the sample covariance of mean costs and mean HF-free survival

times, and ECov represents the mean of estimated covariance using our formula (5).

As expected, the estimated covariances between the cost estimator and the HF-free

survival estimator are very close to the sample covariances.

For each run of the simulation study, we calculate also the ICER, the extra costs

incurred for saving a year of HF-free survival time, and its confidence interval, within

a time limit of L = 10 years. We then calculate the coverage probability of the true

ICER by the CI over the 2000 simulations, which is also shown in Table 1. We see

that for various nominal levels, the empirical coverage probability is very close to the

nominal level, especially when the sample size is large.

At the suggestion of one reviewer, we also examined the performance of the boot-

strap CIs. For our simulation scenarios, the bootstrap samples lie in the Northeast

and Northwest regions of the cost-effectiveness (CE) plane. We consider a naive

way of constructing the 100(1-2α)% CI using the bootstrap percentile method, i.e.

arranging the bootstrap ICERs in ascending order, and obtain the 100(1-2α)% CI

using the upper and lower 100α% cutoff points. We also examine the re-ordered

bootstrap method proposed by Wang and Zhao (2008), where the orders of ICER

are re-arranged according to their positions from a CE plane before obtaining the
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Table 1

Summary of covariance estimation for costs and HF-free survival time, and
empirical coverage probability of CI for ICER for different nominal levels

(0.95,0.90,0.80) from 2000 simulations

Empirical coverage
Sample Covariance probability for ICER

Cost size Group SCov ECov 0.95 0.90 0.80
Uniform 100 0 187 176 0.938 0.887 0.784

1 182 193
200 0 82 83 0.948 0.897 0.789

1 107 96
400 0 39 41 0.942 0.898 0.794

1 46 48
Log normal 100 0 177 196 0.934 0.889 0.788

1 179 164
200 0 95 94 0.946 0.894 0.786

1 75 81
400 0 47 46 0.953 0.897 0.790

1 39 40
Note: SCov is the sample covariance of mean cost estimator and mean
HF-free survival estimator; ECov is the mean of estimated covariance.
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tail cutoff points. The comparison of the three methods is shown in Table 2. The

bootstrap percentile has much higher coverage probabilities than the nominal levels,

and this poor performance is due to the fact that it always produces finite intervals,

which is incorrect when the difference of the effectiveness between two groups is non-

significant. The performance of re-ordered bootstrap method is comparable with our

method. However, our method runs much faster than the two bootstrap methods (1

minute vs 8 hours).

Table 2

Comparison of empirical coverage probability of CIs of ICERs from 2000
simulations and 100 sample size

Nominal Uniform cost Log normal cost
level New Re-ordered Percentile New Re-ordered Percentile
0.95 0.938 0.933 0.978 0.934 0.941 0.972
0.90 0.887 0.883 0.949 0.889 0.887 0.948
0.80 0.784 0.788 0.889 0.788 0.779 0.892

Note: New is our proposed method; Re-ordered is re-ordered bootstrap
percentile method; Percentile is ordinary bootstrap percentile method; The
bootstrap replication is 1000.

II.4 A Real Data Example: MADIT-CRT

In MADIT-CRT study, patients were recruited into the study over time, and

were randomized into either the implantable cardiac defibrillator (ICD) arm or CRT

with an ICD (CRT-ICD) arm in a 2:3 ratio. After the trial was completed, it was

shown that CRT-ICD reduces the risk of the occurrence of heart failure or death,

especially in patients with left bundle branch block (LBBB) conduction disturbance

(Goldenberg et al., 2011; Zareba et al., 2011).

Due to the huge costs associated with the implantation of an ICD, a cost-
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effectiveness analysis also was conducted based on patients from the US centers,

with 503 patients in the ICD arm and 748 in the CRT-ICD arm (Noyes et al., 2013).

The goal was to evaluate the cost-effectiveness of the CRT-ICD arm as compared to

the ICD only arm, restricted to a 4 year horizon, using both overall survival time,

and HF-free survival time as effectiveness measures.

Cost data were collected and available for analysis with start and stop dates

for each entry. These were first discounted at a 3% annual rate and then spread

out evenly in the interval. These discounted costs were then used to estimate the

mean costs within a four-year time horizon using the ZT estimator (1), separately

for the CRT-ICD group and ICD group. One hundred and twelve (22%) patients in

ICD arm and sixty-five (9%) patients in ICD-CRT arm had heart failures but kept

accumulating costs, with average additional costs of $35,040 and $28,360 respectively.

Each patient’s survival time was also discounted at a 3% annual rate, and then

plugged in the formulae (2) or (3) to obtain the average unrestricted year-of-life

(YOL), or HF-free YOL, within 4 years. In addition, the ICERs comparing the

CRT-ICD group and the ICD group were obtained using both the unrestricted and

the HF-free YOL. The results are shown in Table 3.

The average health care expenditures in the CRT-ICD group were higher than the

ICD-only group ($62,600 vs $57,050, pvalue=0.0146). The CRT-ICD group had also

a larger average HF-Free YOL compared to the ICD group, and the difference (0.26

years) was statistically significant (pvalue=0.0002). These results agreed with the

primary study which showed that the CRT-ICD had a significant effect reducing the

risk of heart failure events or death. On the other hand, the difference of unrestricted

YOL (0.07 years) was not statistically different (pvalue = 0.1052).

The HF-free ICER comparing the CRT-ICD group with the ICD group was

$21,100 (95% CI: 3,400, 64,310) per one HF-free YOL saved, using the method
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Table 3

Estimated mean accumulated costs and life expectancies, ICERs and CIs, limited
to a 4 year time horizon, for MADIT-CRT example

CRT-ICD ICD Difference 95%CI p-value
Costs($1000) 62.60 57.05 5.55 1.10, 10.00 0.0146
HF-free YOL 3.29 3.02 0.26 0.12, 0.40 0.0002
Unrestricted YOL 3.61 3.54 0.07 -0.01, 0.15 0.1052

95% CI of ICER
ICER($1000/yr saved) New Bootstrap

Incremental costs for HF-free YOL 21.10 3.40, 64.31 3.38, 62.66
Incremental costs for unrestricted YOL 80.91 — —
Note: New is our proposed method; Bootstrap denotes the bootstrap percentile
method with 1000 bootstrap replications.

we proposed, which is very close to the bootstrap CI, (3,380, 62,660). The panel a

of Figure 1 shows the bootstrap samples on the CE plane, as well as the estimated

HF-free ICER and 95% CIs. Since the bootstrap samples lie in the Northeast and

Southeast regions of the CE plane, we calculated the bootstrap 95% CI by the boot-

strap percentile method. The unrestricted ICER comparing the CRT-ICD group

with the ICD group was much higher, $80,910 per one overall YOL saved. The 95%

CI for the unrestricted ICER using both our method and bootstrap method consists

of infinite intervals due to the non-significance of the difference of unrestricted YOL

between the two groups, as shown in the panel b of Figure 1.

II.5 Conclusions

In this chapter, we consider an important challenge that arises in an actual cost

study performed alongside a clinical trial. In a comparison of the cost-effectiveness

of a new treatment strategy, the estimates of the effectiveness of the treatment and

the costs of the treatment are based on different terminating events. For example,

in the MADIT-CRT study, either a heart failure event or death is used as the ter-
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Figure 1. Estimated 95% CIs of HF-free ICER (panel a) and unrestricted ICER
(panel b) for the MADIT-CRT study limited to a 4 year time horizon. The dots are
1000 bootstrap samples. The solid line is the estimated ICER; The dashed lines are
CI limits obtained by our method; The gray dot-dashed lines are CI limits obtained
by bootstrap method. The positive y axis indicates an infinite ICER.
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minating event for evaluating the effectiveness of treatment, but death is used for

assessing accumulated costs. As in other economic studies conducted in this setting,

a censoring problem also complicates the analysis.

We provide a method for estimating consistently the covariance between the costs

estimator and the survival estimator under this scenario. This method enables us

to construct a correct CI for the ICER. Simulation studies show that our covariance

estimator and the CIs perform very well for some practical settings. Our method also

accommodates discounting for costs and survival time, and can easily be extended to

obtain ICERs and construct their CIs using quality adjusted life years as a measure

of effectiveness.

The method we propose here expands the usefulness of ICERs in more flexible

settings. Further work may be performed on incorporating covariates information to

estimate ICERs, and developing software to facilitate the use of these new methods.
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CHAPTER III

GENERALIZED REDISTRIBUTE-TO-THE-RIGHT ALGORITHM:

APPLICATION TO THE ANALYSIS OF CENSORED COST DATA∗

III.1 Introduction

High and rising health care costs in an environment of limited resources have

sharpened the focus on economic evaluation of new treatments. Studies of cost-

effectiveness usually aim at evaluating new treatments in the hope of finding an

effective treatment that does not cause too much financial burden on society. In

clinical trials and observational studies, survival time and health costs frequently

are censored for administrative reasons, since not all patients can be observed until

events such as death or disease relapse occur. Censoring poses a unique problem for

cost estimation due to the “induced informative censoring” problem, first noted by

Lin et al. (1997). Traditional survival analysis methods assume that the censoring

time is independent of the survival time (conditional on some covariates). However,

the costs at censoring time are no longer independent of the total uncensored costs.

For example, a healthier patient will accumulate costs more slowly, and therefore will

have lower costs at the censoring time and at the potential event time (Lin, 2003).

Thus, many standard approaches for survival analysis, such as the Kaplan-Meier

estimator (Kaplan and Meier, 1958), or the Cox regression model (Cox, 1972), are

not valid for the analysis of cost data.

Many researchers have proposed methods for estimating mean medical costs.

Most focus on restricted medical costs, i.e., the costs accumulated within a time

∗Reprinted with permission of Grace Scientific Publishing LLC from “Chen, S. and Zhao, H. (2013).
Generalized redistribute-to-the-right algorithm: application to the analysis of censored cost data.
Journal of statistical theory and practice 7, 304-323”.
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limit. Among them, Lin et al. (1997) proposed estimators via survival probability

weighting using partitioned time intervals; Bang and Tsiatis (2000) proposed con-

sistent estimators using the inverse probability weighting technique; and Zhao and

Tian (2001) proposed a more efficient estimator. Later, Zhao et al. (2007) discovered

some special conditions under which the estimators without using cost history and

those using cost history become identical within each class.

Although many estimators for the mean costs have appeared in the literature,

these often are deeply based in theory and therefore less accessible to practitioners.

To address this situation, Zhao et al. (2011) established a mathematical equiva-

lency between the BT estimator for the mean costs (Bang and Tsiatis, 2000), and

a replace-from-the-right (RR) algorithm (Pfeifer and Bang, 2005). Thus the BT

estimator, which is based on the inverse probability weighting technique (Horvitz

and Thompson, 1952), has a more intuitive explanation from the point of the RR

algorithm. Motivated by this idea, we propose a modified RR algorithm, the RRimp

method, which utilizes cost history information and therefore is generally more effi-

cient than the RR estimator. We provide a proof of the mathematical equivalence

between the RRimp method and an existing estimator for the mean costs, the ZT

estimator (Zhao and Tian, 2001). The ZT estimator was derived from complicated

theory. Therefore, the RRimp algorithm provides insight on how the ZT estimator

works and eventually can help promote its application in practice.

Cost data are often highly skewed, with most patients incurring relatively small

costs, but a few accumulating huge costs. It is often desirable, therefore, to estimate

the median and other quantiles of the costs. These quantities are readily available if

we can estimate the survival function of costs. Using the original redistribute-to-the

right algorithm (Efron, 1967), which was used for explaining the Kaplan-Meier esti-

mator, we propose an RRS survival estimator for costs, and show that it is equivalent
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to a simple weighted (SW) survival estimator for costs (Zhao and Tsiatis, 1997; Zhao

et al., 2012), which uses the inverse probability weighting technique. We further ex-

tend this method to propose an RRimpS survival estimator. We conduct simulation

studies to compare this RRimpS survival estimator with the RRS survival estima-

tor (or equivalent SW estimator), and with a more efficient ZTS survival estimator

(Zhao and Tsiatis, 1997; Zhao et al., 2012). We discuss our findings in the Conclusion

section.

III.2 Notation and Assumptions

For the ith individual in the study, i = 1, 2, . . . , n, we define Ti as the survival

time from the beginning of the study until the occurrence of some event, e.g. death

or disease relapse. The censoring time for the ith individual is denoted as Ci. We can

observe either the survival time or the censoring time, whichever is shorter, i.e. we

observe the follow-up time Xi = min(Ti, Ci) and the indicator variable ∆i = I(Ti ≤

Ci). We define Mi(t) as the accumulated cost of patient i from time 0 to t. For some

real applications, we observe only the total cost Mi = Mi(Xi). However, in other

studies, we may know the entire cost history, Mi(t), 0 < t < Xi.

We assume that the censoring variable is independent of the survival time and

cost accumulation process, a condition that is often satisfied in well-conducted clinical

trials and in some observational studies where censoring occurs mainly for adminis-

trative reasons. Due to the presence of censoring, the marginal distribution of cost

may be nowhere identifiable without making some parametric assumptions (Huang,

2002). Hence we adopt an approach that focuses on the accumulated cost by a time

limit L, where L is chosen such that a reasonable number of subjects are still being

observed at that time. A consequence of applying such a restriction is that a survival

time longer than L can be considered equivalently as having an event at time L, i.e.
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TL
i = min(Ti, L) (we still use Ti for notational convenience).

We consider the problem of estimating the mean cost, µ = E{Mi(Ti)}, and the

survival function of cost, S(x) = Pr{Mi(Ti) > x}, for costs accumulated to a time L.

For reasons that will become clear below, we also need to define the survival function

for the event time as ST (t) = Pr(Ti > t), and the survival function for the censoring

time as K(t) = Pr(Ci > t).

III.3 Estimating the Mean Cost

III.3.1 Without Using Cost History: The BT Estimator and Its Equivalent RR

Estimator

Bang and Tsiatis (2000) proposed a consistent estimator for the mean costs accu-

mulated over time L with censored data, based on the inverse probability weighting

technique:

µ̂BT =
1

n

n∑

i=1

∆iMi

K̂(Ti)
, (6)

where Mi is the total observed cost for the ith individual, and K̂(Ti) is the Kaplan-

Meier estimator for the survival function of the censoring time, K(t) = Pr(Ci > t).

K(Ti) represents the probability that a subject is uncensored at Ti. The basic idea

of the BT estimator is that each complete observation represents potential 1/K̂(Ti)

observations that might be censored.

Even though the BT estimator is easy to obtain mathematically, for many a

full understanding of its mechanism is not very intuitive. The replace-from-the-

right (RR) estimator proposed by Pfeifer and Bang (2005), on the other hand, is

more so. To explain the main idea of the RR method, first we note that in the

absence of censoring, a mean cost estimator is simply the average of costs from all

observations. When a subject is censored, we know that this subject lives longer
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than his/her censoring time, but we do not have information on his/her total cost.

In the RR algorithm, we replace this subject’s cost by an average of costs from those

individuals who survived longer than this subject. Specifically, an RR estimator for

the mean costs can be obtained by first arranging all the subjects from the shortest

observed time to the longest. If some of these are equal, we put the event time

before the (same) censored time. Since we focus on time-restricted cost estimation,

we can assume that the individual with the longest observed time is uncensored.

We then move from the right (the longest observation time) to the left (the shortest

observation time). When we encounter the first censored observation, say, at time

Ci, we replace its costs by the average of costs from all the observations to its right,

MRR
i =

∑n
j=1 I(Xj > Ci)Mj∑n
j=1 I(Xj > Ci)

.

We move to the left and repeat this process of replacing all the censored costs with

the average of all upstream costs (some of which are real costs and some are replaced

costs). The RR mean cost estimator is simply an average of all the costs from both

complete observations and censored observations (replaced costs), i.e.

µ̂RR =
1

n

n∑

i=1

{∆iMi + (1−∆i)M
RR
i }. (7)

Although the BT estimator (6) and the RR method (7) look quite different – the

former is based on a well-known theory, and the latter makes intuitive sense – it is

rather amazing that the two estimators in fact are mathematically equivalent. The

detailed proof was provided in Zhao et al. (2011).

Note that if we replace the costs M by the survival time T (restricted by time L),

we also obtain an equivalency between the RR estimator for the mean (restricted)
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survival time, and a simple weighted estimator for the mean survival time,

µ̂T =
1

n

n∑

i=1

∆iTi

K̂(Ti)
.

Since this simple weighted estimator has been shown to be equivalent to the area

under the Kaplan-Meier survival curve (Satten and Datta, 2001; Zhao and Tian,

2001), we are providing an alternative and simpler way for obtaining the (restricted)

area under the Kaplan-Meier survival curve using the RR algorithm.

III.3.2 Using the Cost History: The ZT Estimator and Its Equivalent RRimp

Estimator

The BT estimator and its equivalent RR algorithm use only the total cost infor-

mation from uncensored subjects. Hence, they are not very efficient. An improved

estimator proposed by Zhao and Tian (2001) utilizes cost history information from

both censored and uncensored observations. Therefore this ZT estimator is often

more efficient. It has the following simplified form Pfeifer and Bang (2005):

µ̂ZT =
1

n

n∑

i=1

∆iMi

K̂(Ti)
+

1

n

n∑

i=1

(1−∆i){Mi(Ci)−M(Ci)}

K̂(Ci)
,

where M(Ci) =
∑n

j=1 I(Xj ≥ Ci)Mj(Ci)/
∑n

j=1 I(Xj ≥ Ci), which is the average

cumulative cost at time Ci of those subjects who are alive at Ci.

The ZT estimator consists of two terms. The first is the BT estimator. The

second term is constructed using cost history information, which can be viewed as

an adjustment term. The ZT estimator gains more efficiency through an adjustment

made to the BT estimator using the difference of censored costs and the average

accumulated costs at the same time point. Zhao and Tian (2001) established the

large sample property for this estimator, and showed that the estimator is consistent
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and asymptotically normally distributed. Furthermore, Zhao et al. (2007) described

the conditions under which this estimator is equivalent to the partitioned Bang and

Tsiatis (2000) estimator (BTp), as well as to the two estimators of medical costs

LinA/B proposed by Lin et al. (1997).

Since the BT estimator has an intuitive explanation through the RR algorithm,

naturally one may wonder whether the ZT estimator has a similar intuitive explana-

tion. Therefore we propose an RRimp algorithm, which makes intuitive sense, and

later we show that it is equivalent to the ZT estimator. In contrast to the simple

RR method, which depends only on the total costs from complete observations, the

RRimp algorithm uses the cost history information from both censored and complete

observations. Intuitively, for a censored subject i, we already know his/her accumu-

lated cost before censoring Mi = Mi(Ci). Hence, we need only to estimate his/her

cost beyond the censoring time point, Mi(Ti)−Mi(Ci). We propose to impute this

cost using the average of all additional costs beyond the censoring point Ci from

those subjects who survive longer. The detailed RRimp estimator can be described

as follows. First, arrange all the subjects from the shortest to the longest follow-up

time. If some of these are the same, we assume events happen shortly before censor-

ing times. Since we focus on time-restricted (say, by L) cost estimation, we assume

that the individual with the longest observed time (i.e. L) is uncensored. Starting

from the right (the longest observed time) we move to the left. We first find the

longest censoring time, denoted as Ci. We replace the cost for this observation by

summation of his/her observed costs and the average additional accumulated costs

from all subjects who have a longer survival time, i.e.

MRRimp
i = Mi +

∑n
j=1 I(Xj > Ci){Mj −Mj(Ci)}∑n

j=1 I(Xj > Ci)
. (8)
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We then move to the second longest censoring time and perform the same replacement

procedure, using the replaced cost for the longest censoring time in calculating the

average. We move to the left and repeat this process until we replace all the censored

costs. The RRimp estimator is then obtained by an average of costs from all complete

observations (real costs) and the censored observations (replaced costs), i.e.

µ̂RRimp =
1

n

n∑

i=1

{∆iMi + (1−∆i)M
RRimp
i }.

We illustrate this algorithm using a simple example. Suppose we observe the

following data: follow up time X = {1, 2, 3, 4, 5}, death indicator ∆ = {1, 0, 1, 0, 1},

and their accumulated costs Mi(·) are shown in Figure 2. Here the 2nd and 4th

subjects are censored. In Step 1, we try to obtain the replacement cost for subject 4.

Since subject 5 is the only one surviving longer than subject 4, the replacement cost

for subject 4 is equal to the summation of the censored cost of subject 4 (= 60) and

the additional cost of subject 5 beyond time C4 (= 40 - 30), which is 70. Similarly,

in Step 2 we try to obtain the replacement cost for subject 2 by adding the observed

cost of subject 2 (= 50) and the average of additional costs after time C2 for subject

3 (= 100 - 60, real costs), subject 4 (= 70 - 20, replaced costs) and subject 5 (= 40

- 10, real costs), which is equal to 90. Therefore, the mean cost estimated from the

RRimp method gives an estimate of 62, as shown in Figure 2.

Meanwhile, the ZT estimator of the mean cost obtained from the same data set
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Xi = 1 2 3 4 5
x o x o x

M1(·) =10

M2(·) =20 50

M3(·) =30 60 100

M4(·) =10 20 40 60

M5(·) =5 10 20 30 40

Step 1: (MRRimp
4 ) 70{= 60 + (40− 30)}

Step 2: (MRRimp
2 ) 90{= 50 + [(100− 60) + (70− 20) + (40− 10)]/3}

µ̂RRimp =(10 + 90 + 100 + 70 + 40)/5 = 62.

Figure 2. An example for the RRimp algorithm.

is:

µ̂ZT =
1

5

5∑

i=1

∆iMi

K̂(Ti)
+

1

5

5∑

i=1

(1−∆i){Mi(Ci)−M(Ci)}

K̂(Ci)

=
1

5
(
10

1
+

100

3/4
+

40

3/8
) +

1

5
(
50− 35

3/4
+

60− 45

3/8
)

=
1

5
(10 + 400/3 + 320/3) +

1

5
(20 + 40)

= 50 + 12 = 62,

where the Kaplan-Meier estimates for K(t) = Pr(Ci > t) are K̂(Xi)=(1, 3/4, 3/4,

3/8, 3/8), at Xi = {1, 2, 3, 4, 5}, and M(Ci) = {35, 45}, at Ci = {2, 4}, respectively.

Hence, we obtain exactly the same estimate for the mean costs through both the ZT

estimator and the RRimp method using this data set. In Appendix B we provide

mathematical proof of the equivalence between the ZT estimator and the RRimp

estimator for any data set.

In summary, when censoring of data is present, we cannot observe full costs for

every subject. If we have cost history information, we can replace the censored cost by
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supplementing what we can observe with the average of the additional accumulated

costs from upstream observations. This RRimp method is mathematically equivalent

to the ZT estimator, and as demonstrated by simulations and examples in Zhao and

Tian (2001), is generally more efficient than the BT estimator and its equivalent RR

method.

III.4 Estimating Survival Functions for Costs

In addition to estimating the mean costs, we may want to estimate the survival

function of costs in practice. The survival function can provide more information

about costs, such as medians and quartiles, which are more robust to outliers. Moti-

vated by the idea of the replace-from-the-right algorithm for estimating mean costs,

we investigate how to use similar approaches to develop survival estimators for the

costs. We show that a naive way of deriving the survival estimator based on the

replace-from-the-right algorithm will result in a biased estimator. Instead, we pro-

pose a new RRS estimator for the survival function of costs, based on the original

redistribute-to-the-right idea from Efron (1967) for estimating the survival function

of a failure time. Within this section only, when the context is clear, we will use the

same abbreviation “RR” to stand for redistribute-to-the-right. We will show that

the RRS estimator is equivalent to a simple weighted (SW) survival estimator of

costs, whose form was first described in the context of estimating quality-adjusted

lifetime by Zhao and Tsiatis (1997). We also attempt to derive a survival estimator

RRimpS based on a modified RR algorithm that uses cost history information. We

will discuss the advantages and disadvantages of such an estimator.
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III.4.1 The SW Estimator and Its Equivalent RRS Estimator

Following the work of Zhao and Tsiatis (1997) and Zhao et al. (2012), a SW

estimator for the survival function of costs can be obtained by:

ŜSW (x) =
1

n

n∑

i=1

∆i

K̂(Ti)
I(Mi > x). (9)

The large sample properties of this estimator, such as its consistency and asymptotic

normality, were established by Zhao and Tsiatis (1997).

To construct an equivalent survival estimator, one is tempted to use the replace-

ment costs at each censoring points and estimate the survival function for costs using

the following formula:

Ŝnaive(x) =
1

n

n∑

i=1

{∆iI(Mi > x) + (1−∆i)I(M
RR
i > x)}. (10)

Unfortunately, if we use the empirical distribution function shown above to estimate

the survival function for costs, treating the replaced costs as if they were the real

costs, the estimated curve will be biased although the area under the curve, i.e.,

the estimated mean costs, is unbiased. This will be demonstrated in subsequent

simulation studies.

In order to find an equivalent RRS estimator, we rely on the original redistribute-

to-the-right idea proposed by Efron (1967), used to explain the Kaplan-Meier esti-

mator for survival time. For each censored subject, since we do not know the actual

costs, we will find the contributions from observations that have longer follow-up time

than this subject. Specifically, we first sort all subjects according to their observa-

tion times from the shortest (left) to the longest (right). For any tied observations,

we assume the death event occurs a little earlier than the censored time. We also
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assume that the individual with the longest observed time is uncensored, since we

focus on time-restricted cost estimation. Consider a censored observation i whose

initial weight is set to be 1. We distribute its weight evenly to all the time points to

its right. For example, if there are ni such observations, then each one gets a weight

of 1/ni. Next we find the nearest censored observation to its right, and redistribute

its weight again evenly to all the observations to its right. We repeat this process

until we have redistributed the weight of the longest censoring time. Note that after

redistribution the weights are non-zero only at those complete observations that are

on the right side of the censored observation i. Denote the final weight at the jth

complete event time as W
(i)
j , representing the contribution of a complete subject j

to the censored subject i.

Due to censoring we often cannot evaluate the mark I(Mi > x). Instead we use

the weighted sum

I(Mi > x)RR =

n∑

j=1

∆jI(Tj > Xi)W
(i)
j I(Mj > x) (11)

as the replacement mark. As a result, the RRS estimator for the survival function

of costs is

ŜRR(x) =
1

n

n∑

i=1

{∆iI(Mi > x) + (1−∆i)I(Mi > x)RR}. (12)

We illustrate this idea using a simple example. Assume we have data [X =

{1, 2, 3, 4, 5}, ∆ = {1, 0, 1, 0, 1}, M = {10, 20, 40, 30, 50}]. As shown in Figure 3,

we first find the weight W
(2)
j , i.e. the contribution of complete observations to the

censored observation 2. In Step 0, the censored observation 2 gets the weight of 1.

In Step 1, we distribute its weight of 1 to all of the 3 observations to its right, so
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Xj = 1 2 3 4 5
x o x o x

Step 0: 0 1 0 0 0

Step 1: 0 0 1
3

1
3

1
3

Step 2: 0 0 1
3

0 2
3
(= 1

3
+ 1

3
)

W
(2)
j : 1

3
2
3

Figure 3. An example for weights W
(i)
j .

that each gets a weight of 1/3. Moving to the next censoring time, observation 4, we

distribute its weight of 1/3 to the one observation to its right, making the weight at

time 5 to be 2/3. Hence we have W
(2)
3 = 1/3, and W

(2)
5 = 2/3.

It is easy to obtain the contributions of complete observations to the censored

observation 4, in this case W
(4)
5 = 1. Hence the RRS estimator is

ŜRR(x) =
1

5

5∑

i=1

{∆iI(Mi > x) + (1−∆i)I(Mi > x)RR}

=
1

5
{I(M1 > x) + I(M3 > x) + I(M5 > x)

+I(M2 > x)RR + I(M4 > x)RR}

=
1

5
{I(M1 > x) + I(M3 > x) + I(M5 > x)

+
1

3
I(M3 > x) +

2

3
I(M5 > x) + I(M5 > x)}

=
1

5
{I(M1 > x) +

4

3
I(M3 > x) +

8

3
I(M5 > x)}.
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The simple weighted estimator for this example is

ŜSW (x) =
1

5

5∑

i=1

{
∆iI(Mi > x)

K̂(Ti)
}

=
1

5
{
I(M1 > x)

1
+

I(M3 > x)

3/4
+

I(M5 > x)

3/8
}

=
1

5
{I(M1 > x) +

4

3
I(M3 > x) +

8

3
I(M5 > x)}.

It is clear that the RRS estimator is equivalent to the SW survival estimator for costs

in this example.

III.4.1.1 Remarks

1. It is not difficult to show that the weight W
(i)
j is related to the estimated

conditional probability of an event occurring at Xj given that the subject is

alive at Xi (discrete case). Thus, W
(i)
j can be easily obtained as follows:

W
(i)
j =

1

nŜT (Ci)K̂(Tj)
,

where ŜT (x) is the Kaplan-Meier estimator for Pr(T > x), and K̂(x) is the

Kaplan-Meier estimator for Pr(C > x).

2. We can show that this RRS estimator (12) for the survival function of costs is

mathematically equivalent to the SW estimator based on the similar proofs for

mean cost estimators.

3. The weights W
(i)
j are exactly the weights needed for obtaining the replaced

costs for a censored observation i, in estimating the mean costs by the replace-
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from-the-right algorithm, i.e.

MRR
i =

n∑

j=1

∆jI(Xj > Xi)W
(i)
j Mj .

Therefore, the replace-from-the-right algorithm for the mean cost estimator is

a generalized version of the redistribute-to-the-right algorithm.

4. The replaced costs MRRimp
i from the RRimp estimator, however, are not equiv-

alent to
n∑

j=1

∆jI(Xj > Xi)W
(i)
j {Mi +Mj −Mj(Ci)}, (13)

since MRRimp
i from (8) utilizes the cost information from censored observations

beyond Ci while (13) does not.

III.4.2 RR Improved Survival Estimator for the Survival Function of Costs

As in the case of estimating the mean costs, the SW and its equivalent RRS

estimator for the survival function of costs are not efficient since they utilize only the

costs from complete observations. Based on the principles of constructing the RRS

survival estimator and the RRimp estimator for mean costs, we propose an improved

RR survival (RRimpS) estimator, as shown below:

ŜRRimp(x) =
1

n

n∑

i=1

{∆iI(Mi > x) + (1−∆i)I(Mi > x)RRimp}, (14)

where

I(Mi > x)RRimp =

n∑

j=1

∆jI(Tj > Xi)W
(i)
j I(M

(i)
j > x), (15)

is the new replacement mark, and M
(i)
j = Mi+Mj −Mj(Ci) is the replacement cost,

combining information from censored observation i and complete observation j.
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For a censored subject i, if we observe Mi(Ci) > x, then we know for sure

that Mi(Ti) > x. This information is not utilized in the SW estimator (9), or the

equivalent RRS estimator (11). However, it is captured in the RRimpS estimator (14)

and (15), since M
(i)
j = Mi(Ci) +Mj −Mj(Ci) > x always holds under Mi(Ci) > x,

and the sum of weights W
(i)
j is 1, giving rise to I(Mi > x)RRimp = 1.

Because I(M
(i)
j > x) is monotone in x and the weights are non-negative, this

RRimpS estimator is always monotone, which is a desirable property for a survival

estimator. In contrast, an improved survival function estimator of costs, ZTS, first

developed by Zhao and Tsiatis (1997) in the context of quality-adjusted survival

time, and later applied to cost estimation (Zhao et al., 2012), cannot be guaranteed

to be monotone (Huang and Louis, 1998). From subsequent simulation studies and

the real example, we see that the RRimpS estimator is also more efficient, in many

practical situations, than both the SW estimator and the ZTS estimator.

Unfortunately, unlike the SW and the ZTS estimators, this RRimpS estimator is

not always consistent. An intuitive reason for this inconsistency is as follows. We

replace I(Mj > x) by I(M
(i)
j > x) in the RRimpS estimator. Since Mj(Ci) and

Mj − Mj(Ci) are dependent, while Mi(Ci) and Mj − Mj(Ci) are independent, the

distribution of replaced cost M
(i)
j = Mi(Ci) + Mj − Mj(Ci) is different from the

distribution of the true cost Mj = Mj(Ci) +Mj −Mj(Ci). As a result, the RRimpS

estimator performs worse when there is a high correlation among costs accumulated

in different periods. Nonetheless, the simulation studies show that the bias is quite

small, even for the worst-case scenario with a high correlation.

III.5 Simulation Studies

We conduct simulation studies under several different settings to evaluate the

survival function estimators for costs. We generate survival times using an expo-
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nential distribution T ∼ exp(10), and a uniform distribution T ∼ Unif(0, 15). The

survival time is truncated at L=10. We generate censoring times using a uniform

distribution: C ∼ Unif(0, 22), for light censoring (25%-30%), and Unif(0, 15), for

heavy censoring (37%-44%). The sample size is set to be 100, and the number of

simulations is 1000.

We consider U-shaped sample paths for the cost distribution, similar to the sim-

ulation settings of Lin et al. (1997); Bang and Tsiatis (2002); Zhao et al. (2012). We

partition the entire time period of 10 years into 10 equal intervals. Each individual’s

costs consist of initial diagnostic costs incurred at time 0, terminal costs incurred

during the last year before the failure time, fixed annual costs, and random annual

costs (which vary from year to year). The diagnostic costs, fixed annual costs, ran-

dom annual costs, and terminal costs are generated using a log normal distribution

with parameters (10, 0.2452), (6, 0.2452), (4, 0.2452), (9, 0.6322), respectively. We es-

timate the survival function of costs using the SW/RRS estimator, the ZTS estimator

from Zhao and Tsiatis (1997), and our RRimpS estimator, under the four different

simulation scenarios. We also examine the naive survival estimator of (10) for one

of the settings.

Figure 4 shows the true survival function for costs and the average of the survival

curves from the 1000 simulations using different estimators, for the setting with heavy

censoring and exponential survival time. As expected, the SW/RRS estimator and

the ZTS estimator are both unbiased since they almost coincide with the true survival

curve. However the naive estimator, obtained by using the replacement costs as the

true costs, is severely biased. We observe similar biases for the naive method under

other scenarios.

Figure 5 and Figure 6 display the mean and sample variances of different survival

function estimators for costs based on 1000 replications, under four simulation sce-
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Figure 4. The mean of estimated survival estimators for costs based on 1000
replications with exponential survival time under heavy censoring. The solid curve
is the true survival function; the dashed curve is the SW/RRS estimator; the dot-
dashed curve is the ZTS estimator; the dotted curve is the naive estimator.
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narios. The SW/RRS and ZTS estimators are consistent as in Figure 4, since these

almost coincide with the true survival curve. Although from a theoretical point of

view the new proposed RRimpS estimator is not always consistent, its average sur-

vival curves follow the true survival curves very well, for all the settings considered

here. This indicates that the bias of the RRimpS survival estimator is relatively

small. In the plots of the sample variances, we find that the ZTS estimator is more

efficient than the SW/RRS estimator. More importantly, our RRimpS estimator out-

performs both SW/RRS and ZTS estimators under all four of these scenarios, with

more efficiency gain under heavy censoring. Hence, the RRimpS survival function

makes a significant improvement in efficiency. This improvement is achieved without

sacrificing the monotonicity property, unlike in the case of the ZTS estimator.

Since the RRimpS survival estimator performs worse when there is a high cor-

relation between costs accumulated in different periods, we design an extreme case

in order to examine how biased the RRimpS estimator could be. We generate the

fixed annual costs using a log normal distribution with parameters (8, 0.2452), while

setting the diagnostic costs, random annual costs, and terminal costs to be 0. All

other parameters stay the same. Figure 7 displays the mean survival curves and the

mean squared errors (MSE = sample variance + bias2), for the case with exponen-

tial survival time and heavy censoring, and for different sample sizes (n = 100, 400).

We observe similar trends for other simulation settings. The bias for the RRimpS

estimator is noticeable now, albeit very small. The MSE for the RRimpS estima-

tor remains mostly the smallest among the three methods available, even when the

sample size is as large as 400. In general, as the sample size gets larger, the variance

becomes smaller but the bias stays the same. We expect the gain in terms of MSE

for the RRimpS estimator will be most prominent when the sample size is small, or

when the censoring rate is high.
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Figure 5. The mean of estimated survival estimators for costs based on 1000
replications. The solid curve is for true survival function; the dashed curve is for
SW/RRS estimator; the dot-dashed curve is for ZTS estimator; the dotted curve
is for RRimpS estimator. Panel (a) shows the scenario with exponential survival
time under light censoring. Panel (b) shows the scenario with exponential survival
time under heavy censoring. Panel (c) shows the scenario with uniform survival time
under light censoring. Panel (d) shows the scenario with uniform survival time under
heavy censoring.
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Figure 6. The sample variance of estimated survival estimators for costs based
on 1000 replications. The solid curve is for SW/RRS estimator; the dashed curve
is for ZTS estimator; the dotted curve is for RRimpS estimator. Panel (a) shows
the scenario with exponential survival time under light censoring. Panel (b) shows
the scenario with exponential survival time under heavy censoring. Panel (c) shows
the scenario with uniform survival time under light censoring. Panel (d) shows the
scenario with uniform survival time under heavy censoring.
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Figure 7. The mean and MSE of estimated survival estimators for costs under the
extreme case based on 1000 replications with exponential survival time under heavy
censoring. Panel (a) shows the mean of estimated survival estimators for costs with
sample size 100. Panel (b) shows the MSE of estimated survival estimators for costs
with sample size 100. Panel (c) shows the mean of estimated survival estimators for
costs with sample size 400. Panel (d) shows the MSE of estimated survival estimators
for costs with sample size 400.
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III.6 A Real Data Example: MADIT-II

The Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II) was

one of a series of studies designed to examine the potential survival benefit of a

prophylactically implanted defibrillator in patients with a prior myocardial infarction

and other selection criteria (Moss et al., 2002). Patients were recruited into the study

over time and were randomized into either the implantable cardiac defibrillator (ICD)

arm or the conventional therapy (CONV) arm, with a ratio of 2:1. After the trial was

completed, it was shown that the risk of death in the ICD group was lower (hazard

ratio=0.69, pvalue =0.016).

Given the huge costs associated with the defibrillator and the implantation pro-

cess, a cost-effectiveness analysis was conducted based on patients from the US cen-

ters, with 664 patients in the ICD arm and 431 in the CONV arm (Zwanziger et al.,

2006). The follow-up time varied from 11 days to 55 months, and the average was

22 months. As in their original paper, we examine the costs accumulated over 3.5

years. The estimated survival function for medical costs for the ICD and CONV

groups, based on SW/RRS, ZTS and RRimpS estimators, are shown in Figure 8. As

mentioned earlier, the ZTS estimator is not monotone, while both the SW/RRS and

the RRimpS estimator are monotone. Our RRimpS survival estimator for cost is also

smoother than the SW/RRS and ZTS estimators. Figure 9 displays the standard er-

rors of the estimators obtained by the bootstrap method. Similarly to the simulation

studies, the standard errors of RRimpS are mostly the smallest for different costs,

and SW/RRS are the largest. Therefore, our proposed RRimpS method might be a

good alternative for smooth and efficient estimation of the survival function of costs.
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Figure 8. Estimated survival function for medical costs for the MADIT-II study.
Panel (a) is for the ICD arm. Panel (b) is for the CONV arm.
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Figure 9. Standard errors (SEs) of the survival estimators for costs obtained by
200 bootstrap replications for the MADIT-II study. Panel (a) shows the SEs for the
ICD arm. Panel (b) shows the SEs for the CONV arm.
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III.7 Conclusions

In this chapter we extend the research of Zhao et al. (2011), who provided a link

between a theoretically justified mean cost estimator based on the inverse probability

weighting techniques, that is the BT estimator, and an intuitive replace-from-the-

right estimator, the RR estimator. We propose a modified replace-from-the-right

algorithm, the RRimp estimator, which utilizes the cost history process and therefore

is generally more efficient than the RR estimator. We establish a mathematical

equivalency between the RRimp estimator and an improved mean cost estimator,

the ZT estimator. In doing so we provide an intuitive explanation for how the ZT

estimator works, and thereby engender a better understanding of the theoretically

derived mean cost estimators, the BT and ZT estimators. Meanwhile, this paper also

gives justification for the simple, intuition-based RR and RRimp estimators. Without

the theoretical background for a full understanding of the BT and ZT estimators,

some practitioners may hesitate to use these. With a facilitated interpretation of the

RR and RRimp estimators, and an established equivalency between these estimators

and the BT and ZT estimators, we believe the proposed estimators can become more

accessible and useful to practitioners.

Deriving an intuitive estimator for the survival function of costs proves to be

a tougher problem. We show that a naive method using the replaced cost as the

true cost in an empirical survival function gives rise to a biased estimator. Resort-

ing to the original redistribute-to-the-right idea (Efron, 1967) derived for explaining

the Kaplan-Meier estimator, we construct an RRS survival estimator which can be

shown to be equivalent to the SW survival estimator for costs. We also propose an

RRimpS survival estimator which has the desirable property of being monotone, and

is usually more efficient than the SW/RRS survival estimator in many simulation
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studies and the real example we conducted. Unfortunately, this estimator is not

always consistent. Judging from many simulations we conducted, the bias seems to

be quite small however. It may be considered as an alternative survival estimator

for costs in a real setting when cost history information is available, especially when

the sample size is not very large, or the censoring rate is high.

Both the replace-from-the-right and the redistribute-to-the-right algorithms can

be viewed as special cases of imputation of missing data. Our work may motivate

more research in the area of censored marked variables; quality-adjusted survival time

and repeated events are two additional examples. Even though we demonstrated

that the proposed RRimpS estimator was more efficient than the SW estimator in

realistic settings, we did not provide theoretical justifications. In our future research

we will attempt to develop the standard error estimate of the RRimpS estimator and

to provide theoretical justification for its greater efficiency. We also aim to find a

survival estimator for costs that is monotone, consistent, and efficient, if possible.
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CHAPTER IV

AN IMPROVED SURVIVAL ESTIMATOR FOR CENSORED MEDICAL COSTS

WITH A KERNEL APPROACH

IV.1 Introduction

Rising health care costs in an environment of limited resources have sharpened

the focus on economic evaluation of new treatments. Cost-effectiveness analysis

usually aims at evaluating competing therapies in the hope of finding an effective

treatment that does not cause too much financial burden on individuals or society. In

clinical trials and observational studies, survival time and medical costs are frequently

censored for administrative reasons, since not all patients can be observed until

events such as deaths or disease relapses occur. Censoring poses a unique problem

for cost estimation due to the “induced informative censoring” problem, first noted

by Lin et al. (1997). Traditional survival analysis methods are only valid under the

assumption that the censoring time is independent of the survival time (conditional

on some covariates). However, in costs analysis, the costs at censored times are

no longer independent of the potential uncensored costs. For example, a healthier

patient will accumulate costs more slowly, and therefore will have lower costs at both

the censored time and at the potential event time (Lin, 2003). Thus, many standard

approaches for survival analysis, such as the Kaplan-Meier estimator, or the Cox

regression model, are not valid for the analysis of cost data.

Cost data are often highly skewed, with most patients incurring relatively low

costs, but a few people accumulating huge costs. It is often desirable, therefore, to

estimate the median and other quantiles of the costs. These quantities are readily

available if we can estimate the survival function of costs. The survival function
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can provide information about costs, such as medians and quartiles, which are more

robust to outliers.

Due to the presence of censoring, the marginal distribution of costs may be

nowhere identifiable without making some parametric assumptions (Huang, 2002).

Thus, we focus on estimating time-restricted medical costs, i.e., the costs accumu-

lated within a time limit. A simple weighted (SW) survival estimator for costs (Zhao

and Tsiatis, 1997; Zhao et al., 2012) can be constructed easily using the inverse

probability weighting technique. Although it is consistent, and asymptotically nor-

mally distributed, it is not efficient due to not using cost history data. Meanwhile, a

more efficient ZTS survival estimator (Zhao and Tsiatis, 1997; Zhao et al., 2012) was

first proposed in the setting of estimating quality-adjusted survival time, but it can

be applied to the censored costs problem. Unfortunately, this estimator cannot be

guaranteed to be monotone. Later, Chen and Zhao (2013) considered a generalized

redistribute-to-the-right (RR) algorithm for providing an intuitive explanation for

SW estimator, and they proposed a new improved estimator, the RRimpS estimator.

The RRimpS estimator is usually more efficient than the SW and ZTS estimators,

and always monotone, but unfortunately it is not consistent. In this paper we propose

a kernel based survival estimator RRimpK , which is based on the RRimpS estimator.

We will show that this new estimator overcomes the deficiency, while preserving the

desirable properties of RRimpS (efficiency).

The remainder of this chapter is organized as follows. In Section IV.2, we review

previous survival estimators for costs, and then propose the RRimpK estimator, a

kernel-based improved survival estimator for costs. The asymptotic unbiasedness

and bandwidth selection for the proposed estimator are also discussed. In Section

IV.3, we conduct simulation studies to examine the finite sample properties of the

new estimator, and compare it with the SW survival estimator, the ZTS estimator,
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and the RRimpS estimators. In Section IV.4, we apply the survival estimators to a

real data example. Finally, we discuss our findings in the Conclusion section.

IV.2 Method

IV.2.1 Notation and Assumptions

For the ith individual in the study, i = 1, 2, . . . , n, we define Ti as the survival

time from the beginning of the study until the occurrence of some event, e.g. death

or disease relapse. The censoring time for the ith individual is denoted as Ci. We can

observe either the survival time or the censoring time, whichever is shorter, i.e. we

observe the follow-up time Xi = min(Ti, Ci) and the indicator variable ∆i = I(Ti ≤

Ci). We define Mi(t) as the accumulated cost of patient i from time 0 to t. In some

applications, we observe only the total cost Mi = Mi(Xi), whereas in other studies,

we may know the accumulated costs over the entire history, Mi(t), (0 < t < Xi). We

assume the censoring time C is independent of the survival time T and cost process

M(t), (0 < t < T ). This assumption is usually reasonable in well-conducted clinical

trials or observational studies where censoring is mainly caused by administrative

reasons.

Due to the presence of censoring, the marginal distribution of costs may be

nowhere identifiable without making some parametric assumptions (Huang, 2002).

Thus, we adopt an approach that focuses on the accumulated costs by a time limit L,

where L is chosen such that a reasonable number of subjects are still being observed

at that time. A consequence of applying such a restriction is that a survival time

longer than L can be considered equivalently as having an event at time L, i.e. we

can redefine the survival time as TL
i = min(Ti, L). However, we still use Ti instead

of TL
i for notational convenience.

We consider the problem of estimating the survival function of costs, S(x) =
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Pr{Mi(Ti) > x}, for costs accumulated to a time limit L. For subsequent methodol-

ogy development, we also need to define the survival function for the event time

T as ST (t) = Pr(Ti > t), and the survival function for the censoring time as

K(t) = Pr(Ci > t).

IV.2.2 Review of Survival Estimators for Costs

Following the work of Zhao and Tsiatis (1997) and Zhao et al. (2012), a simple

weighted (SW) estimator for the survival function of costs can be obtained by using

the inverse probability weighting technique:

ŜSW (x) =
1

n

n∑

i=1

∆i

K̂(Ti)
I(Mi > x),

where K̂(Ti) is the Kaplan-Meier estimator for the survival function of the censoring

variable C, K(t) = Pr(C > t), evaluated at Ti. The main idea is that one uncensored

observation Ti represents potential 1/K(Ti) people that might have been observed.

The SW estimator is good for the case when only the total accumulated costs,

instead of the cost history, are available to us. Clearly the SW estimator is not effi-

cient since it does not use the total costs from censored people, nor the cost histories

from either censored or complete observations. Meanwhile, a more efficient survival

estimator, the ZT estimator (Zhao and Tsiatis, 1997; Zhao et al., 2012), was first

proposed for the setting of quality-adjusted survival analysis, but was applied to esti-

mating of the survival function of costs. It used cost history to redefine the endpoint

for each person so that the cost information from some censored observations can also

make contributions to the cost estimation. For a fixed x, if Mi exceeds x, then this

would be known at any time s such that s ≥ si(x), where si(x) = inf [s : Mi(s) ≥ x].
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Redefine T ∗
i (x) = min{Ti, si(x)}, ∆

∗
i (x) = I(T ∗

i (x) ≤ Ci), the ZTS estimator is

ŜZT (x) = n−1

n∑

i=1

∆∗
i (x)

K̂{T ∗
i (x)}

I(Mi ≥ x).

The ZTS estimator is usually more efficient than the SW estimator, however, it

cannot be guaranteed to be monotone.

Generalizing the algorithm of redistribution-to-the-right (RR), which was first

discovered for estimating the survival function for failure time with censored data

(Efron, 1967), Chen and Zhao (2013) proposed RRimpS estimator for survival func-

tion of costs S(x). It builds on the simple RR estimator which was shown to be

equivalent to the SW estimator. The RRimpS estimator can be written as

ŜRRimp(x) =
1

n

n∑

i=1

{∆iI(Mi > x) + (1−∆i)I
RRimp
i },

where

IRRimp
i =

n∑

j=1

∆jI(Tj > Ci)W
(i)
j I(M

(i)
j > x),

M
(i)
j = Mi(Ci) +Mj −Mj(Ci), W

(i)
j are adjusting weights,

W
(i)
j =

1

nŜT (Ci)K̂(Tj)
,

where ŜT (t) is the Kaplan-Meier estimator for survival function of survival time

Pr(T > t), and K̂(t) is the Kaplan-Meier estimator for survival function of censoring

time Pr(C > t).

The RRimpS survival estimator consists of two parts. The first part is the con-

tribution from complete observations. The second part comprises of censored obser-

vations indicated by i, whose cost information are borrowed from subjects who have
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complete cost information and who are still alive at these censored times, with their

replacement costs and weights.

The RRimpS estimator is always monotone, and it has been shown to be gener-

ally more efficient than the ZTS estimator from many simulation studies and a real

example (Chen and Zhao, 2013). However, The RRimpS survival estimator is not

consistent, and its performance deteriorates when there is a high correlation between

costs accumulated in different time periods.

IV.2.3 Improved Survival Estimator for Costs Using a Kernel Method

The idea of our kernel-based estimator is to improve the precision by incorporat-

ing a kernel weight based on the degree of similarity between the complete observation

j and the censored observation i, in the second part of the the RRimpS estimator.

We define the similarity as the the distance (difference) of a complete observation’s

accumulated costs at a censored time, Mj(Ci), from to the censored cost. Specifically,

our proposed kernel improved estimator (RRimpK) is

ŜRRimpK(x) =
1

n

n∑

i=1

∆iI(Mi > x)

+
1

n

n∑

i=1

[(1−∆i)
n∑

j=1

w̃
(i,j)
h {Mi(Ci)−Mj(Ci)}I(M

(i)
j > x)],

where

w̃
(i,j)
h {Mi(Ci)−Mj(Ci)} =

∆jI(Tj > Ci)wh{Mi(Ci)−Mj(Ci)}W
(i)
j∑n

k=1∆kI(Tk > Ci)wh{Mi(Ci)−Mk(Ci)}W
(i)
k

are Nadaraya-Watson type weights, and wh(x) =
1
h
w(x

h
) is the kernel function with

bandwidth h.
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Here the sum of weights in RRimpK estimator is 1:

n∑

j=1

w̃
(i,j)
h {Mi(Ci)−Mj(Ci)} = 1.

As a result, ŜRRimpK(0) = 1 can be guaranteed.

It is easy to see that our kernel-based estimator is monotone, since it is a weighted

sum of non-increasing indicators. Moreover, the RRimpS estimator can be viewed as

a special case of our RRimpK estimator with a flat kernel function. In other words,

the RRimpS estimator is an infinite-bandwidth version of our RRimpK estimator

(given certain conditions on the kernel function). As a result, the RRimpK estimator

is always expected to perform not worse than RRimpS estimator.

IV.2.4 Asymptotic Property of the RRimpK Estimator

Assume following conditions hold:

(i) For a given censored subject i with censored costs Mi(Ci) and another subject

j who is alive at Ci, denote the difference between their accumulated costs at Ci as

u = Mi(Ci) −Mj(Ci). The conditional joint density f(Tj,Mj , u|Ci,Mi(Ci)) for the

jth subject exists and is bounded. Moreover, f is continuous near u = 0 for any T

and M .

(ii) Assume Markov type property for the cost process, i.e., the conditional dis-

tribution of M(T )−M(t) given M(t) is the same for all possible costs accumulation

process M(s), 0 ≤ s ≤ t.

(iii) Positive Kernel
∫
w(u)du < ∞

(iv) Bandwidth hn → 0 as n → ∞.

Then at each fixed point x, we have

E{ŜRRimpK,n,hn
(x)} −→ S(x) as n → ∞.
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We provide a proof for the above result in Appendix C.

IV.2.5 Bandwidth Selections for the RRimpK Estimator

The bandwidth selection is a challenging problem in kernel-based methods. The

following three approaches are widely used.

IV.2.5.1 Rules of thumb method

For instance, a general rule of thumb selects the bandwidth as hn = ασn−1/3,

where α is a constant, n is the sample size, σ = SD{Mj(Ci)−Mi(Ci) : ∆i = 0,∆j =

1, Tj > Ci} is the standard deviation of the difference between accumulated costs

at the censored place Ci for all (i, j) pairs satisfying the conditions. However, the

constant α is unknown and may change according to different model scenarios. One

may try various values of α, and identify a range of α that works well for all sample

sizes and all model scenarios.

IV.2.5.2 Minimizing the mean integrated squared error

In simulation studies we can calculate the mean integrated squared error (MISE),

and select the optimal bandwidth that minimizes the MISE. By using the optimal

bandwidth in simulation studies, the researcher can separates the issue of estimator

quality from the bandwidth selection problem, and thus demonstrate the advantages

of kernel methods more clearly.

IV.2.5.3 Cross-validation method

Li et al. (2013) proposed a cross-validation method for estimator of cumulative

distribution function. Following their idea, we can extend their method to survival

function for censored cost data, i.e., the selected bandwidth is the one that minimizes

CV1(h) =
1

n

n∑

i=1

∆i

K̂(Ti)

∫
{I(Mi > x)− ŜRRimpK,−i(x)}

2dx, (16)
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where ŜRRimpK,−i is the survival function for costs estimated from data without the

ith subject.

In addition to CV1, we also propose another criteria CV2 to select the bandwidth

by minimizing estimated mean integrated squared error

MISE =

∫ ∞

0

E{ŜRRimpK(x)− S(x)}2dx.

Consider the integrated squared error (ISE)

ISE(ŜRRimpK) =

∫ ∞

0

{ŜRRimpK(x)− S(x)}2dx

= I1 − 2I2 + I3,

where I1 =
∫∞

0
{ŜRRimpK(x)}

2dx, I2 =
∫∞

0
ŜRRimpK(x)S(x)dx, I3 =

∫∞

0
S(x)2dx.

Since I3 does not depend on the survival estimator, we only focus on I1 and I2. A

cross-validation idea is to replace I1 and I2 by their estimates. Since I1 is known, we

base the estimator of I2 on the leave-one-out principle.

Let G(x) =
∫ x

0
ŜRRimpK(u)du, and denote F (x) = 1− S(x) as cumulative distri-

bution function of costs.

I2 =

∫ ∞

0

ŜRRimpK(x)S(x)dx

=

∫ ∞

0

S(x)dG(x)

= G(x)S(x)|∞0 −

∫ ∞

0

G(x)dS(x)

= 0 +

∫ ∞

0

G(x)dF (x).
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Therefore, I2 can be estimated by

Î2 =
1

n

n∑

i=1

∆i

K̂(Ti)
G−i(Mi),

where G−i(x) =
∫ x

0
ŜRRimpK,−i(u)du, and ŜRRimpK,−i is estimated from data without

the ith subject.

Thus, our cross-validation bandwidth is the one that minimizes

CV2(h) = Î1 − 2Î2

=

∫ ∞

0

{ŜRRimpK(x)}
2dx−

2

n

n∑

i=1

∆i

K̂(Ti)
·G−i(Mi). (17)

IV.3 Simulation

As we mentioned previously, the RRimpS estimator, which has been shown to

be usually more efficient than the SW and ZTS survival estimators, is a special case

of our proposed RRimpK estimator. The RRimpK estimator is always expected to

perform not worse than the RRimpS estimator. The main problem of the RRimpS

survival estimator is that it is not asymptotically unbiased, and the bias becomes

more severe when there is a high correlation between costs accumulated in different

time periods. Thus, we design an extreme case in order to examine how biased the

RRimpS estimator could be and how the kernel method could improves.

U-shaped sample paths for the cost distribution have been adopted by Lin et al.

(1997); Bang and Tsiatis (2002); Zhao et al. (2012),where the entire time period

of 10 years was partitioned into 10 equal intervals. Each individual’s costs consist

of initial diagnostic costs incurred at time 0, terminal costs incurred during the

last year before the failure time, fixed annual costs (which vary from individual to
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individual), and random annual costs (which vary from year to year). The diagnostic

costs, fixed annual costs, random annual costs, and terminal costs are generated using

a log normal distribution. Similar scenarios have been employed by Chen and Zhao

(2013) to show that the RRimpS estimator usually has smaller mean squared errors

(MSE) than the SW and ZTS survival estimators, especially with small sample sizes.

To ensure there is a high correlation between costs accumulated in different time

periods in the extreme case, we generate the fixed annual costs using a log normal

distribution with parameters (8, 0.2452), while setting the diagnostic costs, random

annual costs, and terminal costs to be 0. As a result, the RRimpS estimator per-

forms badly under this scenario. The survival time has an exponential distribution

T ∼ exp(10), truncated at L=10. The censoring times are generated using a uni-

form distribution Unif(0, 15) for heavy censoring (about 40%). The number of

replications is 1000. A Gaussian kernel function is chosen for the RRimpK estima-

tor wh(x) ∝ exp(− x2

2h2 ), with optimal bandwidth selected by the criteria of smallest

MISE.

We examine the performance of the SW (Zhao and Tsiatis, 1997), ZTS (Zhao and

Tsiatis, 1997), RRimpS (Chen and Zhao, 2013), and our RRimpK estimators under

this extreme case. Figure 10 displays the average survival curves (top two panels),

sample variances (middle two panels) and mean squared errors (bottom two panels),

for sample sizes of 100 (left three panels) and 400 (right three panels).

It is clear that the RRimpS estimator is biased in this case, since it does not

coincide with the true survival curve. As expected, the kernel method corrects much

of the bias and overlaps with the true survival curve. Although the variance of the

RRimpK is slightly bigger than the variance of the RRimpS at certain areas, for the

sample size of 400, it has the smallest MSE among four estimators in our simulation.

When sample size is small (n = 100), both RRimpS and our RRimpK have smaller
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Figure 10. The average survival curves (top two panels), sample variances (middle
two panels) and mean squared errors (bottom two panels), for sample sizes of 100
(left three panels) and 400 (right three panels).
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MSEs than SW and ZTS. For a relatively large sample size, e.g. n = 400, the MSE

is mainly affected by the bias, as a result, the performance of RRimpS on MSE is

worse. Meanwhile, the kernel method corrects much of the bias while still maintains

a small sample variance.

Next we examine our data-driven cross-validation (CV) criteria, CV1 by (16)

and CV2 by (17), and compare them with the MISE method in simulation studies.

Table 4 shows the MISEs and average CV values for a range of bandwidths, with the

selected bandwidths indicated in bold. On average, the selected bandwidths by CV

are the same as those selected using the smallest MISE. Moreover, our simulation

shows the kernel estimator is not very sensitive to the bandwidth choice.

Table 4

Comparison between MISEs and average CVs for different bandwidths h in the
RRimpK estimator in simulation

n=100 n=400
h MISE CV1 CV2 MISE CV1 CV2

∞ (RRimpS) 92.21 7170.7 -12321.4 25.68 7073.4 -12382.6
30000 92.00 7170.6 -12321.5 25.56 7073.3 -12383.4
10000 90.96 7170.0 -12321.9 24.90 7072.6 -12383.4
5000 89.92 7169.5 -12322.0 23.97 7071.6 -12384.2
1500 90.47 7171.5 -12318.7 22.92 7070.6 -12385.1

500 93.78 7171.8 -12309.2 22.99 7070.8 -12384.6

IV.4 Example

In the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resyn-

chronization Therapy (MADIT-CRT), the primary goal was to determine whether

the cardiac-resynchronization therapy (CRT) with biventricular pacing would reduce

the risk of death or heart failure events in patients with mild cardiac symptoms (Moss
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et al., 2009). Patients were recruited into the study over time, and were randomized

into either the implantable cardiac defibrillator (ICD) arm or CRT with an ICD

(CRT-ICD) arm in a 2:3 ratio. After the trial was completed, it was shown that

CRT-ICD reduces the risk of the occurrence of heart failure or death, especially in

patients with left bundle branch block (LBBB) conduction disturbance (Goldenberg

et al., 2011; Zareba et al., 2011).

Due to the huge costs associated with the implantation of an ICD, a cost-

effectiveness analysis also was conducted (Noyes et al., 2013), within a four-year

time horizon. Cost data were collected and available for analysis with start and stop

dates for each entry. These were first discounted at a 3% annual rate and then spread

out evenly in the interval. Here we examine the costs accumulated over 4 years from

patients with LBBB, with 352 patients in the ICD arm and 507 in the CRT-ICD

arm.

We use the cross-validation criteria (16) and (17) to select the bandwidths for

the RRimpK estimators. Table 5 displays the results from these two cross-validation

methods for a range of bandwidth for the ICD arm and the CRT-ICD arm, with the

selected bandwidths in bold. It indicates that the selected bandwidths are h = 30, 000

for both arms.

The estimated survival functions for medical costs for the ICD and CRT-ICD

groups, based on the SW, ZTS, RRimpS and RRimpK estimators, are shown in

Figure 11. Table 6 shows the estimated medians of costs, i.e, τ = inf{x : Ŝ(x) ≤ 0.5}.

Figure 12 displays the standard errors of the estimators obtained by the bootstrap

method. Similarly to the simulation studies, the standard errors of the RRimpS

estimator (i.e., the RRimpK estimator with infinite bandwidth) are generally the

smallest, and the standard errors of the SW estimator are the largest. The standard

errors of the RRimpK estimators are similar to the RRimpS estimator. The kernel
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Table 5

CV(h) for different bandwidths h in the RRimpK estimator, for MADIT-CRT
example

ICD CRT-ICD
h CV1 CV2 CV1 CV2

∞ (RRimpS) 13502.6 -43307.0 21961.9 -45467.3
100000 13501.0 -43308.5 21959.9 -45469.3
30000 13499.8 -43309.4 21947.4 -45481.5

10000 13524.9 -43284.5 21952.5 -45476.1
5000 13535.8 -43274.3 21981.6 -45447.5

method should correct bias while sacrifices some efficiency on variance.

Table 6

Estimated medians of accumulated costs ($1000) over 4 years, for MADIT-CRT
example

SW ZTS RRimpS RRimpK

ICD 48.19 48.57 47.37 47.29
CRT-ICD 52.29 52.96 52.29 51.97

IV.5 Conclusions

In this chapter we extend the research of Chen and Zhao (2013), who provided a

survival estimator for costs, the RRimpS estimator. The RRimpS survival estimator

has the desirable property of being monotone, and is usually more efficient than some

existing survival estimators in many simulation studies. Unfortunately, the RRimpS

estimator is not always consistent, although the bias is quite small under most realist

scenarios.

In order to overcome this deficiency while preserving the nice properties of the

RRimpS estimator, we proposed an improved survival estimator, the RRimpK esti-
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Figure 11. Estimated survival functions for medical costs, for MADIT-CRT study.
The top panel is for the ICD arm. The bottom panel is for the CRT-ICD arm.
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Figure 12. Standard errors (SEs) of the survival estimators for costs obtained by
200 bootstrap replications for the MADIT-CRT study. The left panel is for the ICD
arm. The right panel is for the CRT-ICD arm.

mator, through kernel methods. The RRimpK estimator is monotone and asymptot-

ically unbiased. It includes the RRimpS estimator as a special case, and it produces

the smallest MSE in the simulation studies we conducted, when compared with

some existing estimators. When the sample size is small, both the RRimpS and the

RRimpK estimators perform quite well, producing smaller MSE than the SW and

ZTS estimators; when the sample size is relatively large, the RRimpK estimator im-

proves the RRimpS estimator substantially, by correcting the bias through the kernel

weighting method.

The new method we propose here expands the tools that are available for medical

cost estimation in practice. In the future we will attempt to make our methods

more accessible by providing software packages to people who are interested in using

these tools. It is our goal to advance the research in the cost-effectiveness field

by developing theoretically sound methods that exhibit nice properties in real life

63



applications.
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CHAPTER V

SUMMARY

In this dissertation, several innovative methods are proposed for cost estimation

and cost-effectiveness analysis with censored data. Censoring brings unique chal-

lenges to this field, since we cannot observe complete data for all the subjects in the

study. Even though it is reasonable to assume that the censoring and the potential

event time are independent (or conditionally independent) for most studies, the “in-

duced informative censoring” problem makes the cost evaluation more difficult, since

many standard methods for survival analysis are not appropriate for cost evaluation

any more.

In performing cost-effectiveness analysis with censored data, a new challenge

arises from having the different terminating events for survival and cost estimation.

Therefore, statistical inference for ICER allowing different terminating events is de-

sirable for practitioners to deal with such data. We propose a consistent estimator for

this special ICER, as well as a method to construct its CI. The conducted numerical

studies show that our method performs very well for some practical settings. Thus,

our method provides an effective way to make statistical inference for such data

and can easily be extended to obtain ICERs and construct their CIs using quality

adjusted life years as a measure of effectiveness.

We then extend the research conducted by Zhao et al. (2011) who provided a

link between the BT estimator and an intuitive RR estimator for estimating mean

costs with censored data. Our proposed RRimp algorithm utilizes the cost history

and therefore is generally more efficient than the RR algorithm. We establish the

mathematical equivalency between the RRimp algorithm and an improved mean cost
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estimator, the ZT estimator. Thus, we are able to provide an intuitive explanation

for how the ZT estimator works. We believe our effort enables a better understand-

ing of the theoretically derived mean cost estimators, the BT and ZT estimators,

and meanwhile provides justification for the simple, intuition based RR and RRimp

estimators.

It is more challenging to derive an intuitive estimator for the survival function of

costs. Motivated by the original idea of redistribute-to-the right algorithm (Efron,

1967) for explaining the Kaplan-Meier estimator, we construct a RRS survival esti-

mator, which can be shown to be equivalent to the SW survival estimator for costs.

We also propose a RRimpS survival estimator which has the desirable property of be-

ing monotone, and more efficient than the RRS survival estimator, but unfortunately,

this estimator is not always consistent. Based on kernel method, we further propose

an improved survival estimator of costs, the RRimpK estimator, which is naturally

monotone, asymptotic unbiased, and includes the RRimpS as a special case. The

RRimpK estimator overcomes the deficiency of the RRimpS estimator, while preserv-

ing the nice properties. Therefore, the methods we propose here expand the tools for

medical cost estimation in practice. They may be considered as alternative survival

estimators for costs in a real setting when cost history information is available.
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APPENDIX A

ESTIMATING THE COVARIANCE BETWEEN THE MEAN COST AND THE

MEAN HEART FAILURE FREE SURVIVAL TIME

For ease of notation, we confine our attention to one arm of the study. We de-

fine two martingales based on the censoring variable for the survival time and heart

failure free survival time, Ti and T F
i , respectively. For the ith individual, the mar-

tingale for the censoring variable for survival time Ti is defined as MC
i (u) = NC

i (u)−
∫ u

0
λC(t)Yi(t)dt, where λC(u) is the hazard function for C, λC(u) = limh→0

1
h
Pr(C <

u + h|C ≥ u), Yi(u) = I(Xi ≥ u), NC
i (u) = I(Xi ≤ u,∆i = 0). Similarly, the

martingale for the censoring variable for heart failure free survival T F
i is defined

as MCF

i (u) = NCF

i (u) −
∫ u

0
λC(t)Y F

i (t)dt, where Y F
i (u) = I(XF

i ≥ u), NCF

i (u) =

I(XF
i ≤ u,∆F

i = 0). The filtration F(u) is defined as the increasing sequence of

σ−algebras generated by

σ{I(Ci ≤ x), x ≤ u; I(Ti ≤ s), I(T F
i ≤ s),Mi(s), 0 ≤ s < ∞, i = 1, . . . , n}.

Using results from Zhao and Tian (2001), the improved cost estimator can be

expressed approximately by

n
1

2 (µ̂M − µM)

= n− 1

2

n∑

i=1

(Mi − µM)− n− 1

2

n∑

i=1

∫ L

0

dMC
i (u)

K(u)
{Mi −G(M,u)}

+n− 1

2

n∑

i=1

∫ L

0

dMC
i (u)

K(u)
[Mi(u)−G{M(u), u}] + op(1),

where µM is the true mean cost, G(Z, u) = E{ZiI(Ti ≥ u)}/S(u), for any random
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variable or functional Z.

The mean heart failure free survival time estimator can be approximated by

n
1

2 (µ̂F − µF )

= n− 1

2

n∑

i=1

(T F
i − µF )− n− 1

2

n∑

i=1

∫ L

0

dMCF

i (u)

K(u)
{T F

i −GF (T F , u)}+ op(1),

where µF is the true heart failure free survival time, GF (Z, u) = E{ZiI(T
F
i ≥

u)}/SF (u), for any random variable or functional Z.

To derive the covariance formula between the cost estimator and the survival time

estimator, we need to calculate the covariance between the two different martingale

processes < dMC
i (u), dM

CF

i (u) >. Define

dMC∗
i (u) = dNC∗

i (u)− λC(u)I(Ci ≥ u)du

where NC∗
i (u) = I(Ci ≤ u). We can show that

dMC
i (u) = I(Ti > u)dMC∗

i (u),

dMCF

i (u) = I(T F
i > u)dMC∗

i (u),

and

Var{dMC∗
i (u)|F(u)} = I(Ci > u)λC(u)du.

73



Hence,

Cov{dMC
i (u), dM

CF

i (u)|F(u)}

= I(T > u)I(T F > u)Var{dMC∗
i (u)|F(u)}

= Y F
i (u)λC(u)du.

The covariance between the mean cost estimator µM and the mean heart failure

free survival time estimator µF becomes

Cov{n
1

2 (µ̂M − µM), n
1

2 (µ̂F − µF )}

= Cov(Mi, T
F
i ) + E

∫ L

0

{T F
i −GF (T F , u)}{Mi −G(M,u)}

Y F
i (u)

K(u)2
λC(u)du

−E

∫ L

0

{T F
i −GF (T F , u)}{Mi(u)−G{M(u), u}}

Y F
i (u)

K(u)2
λC(u)du.

= Cov(Mi, T
F
i ) + E

∫ L

0

[{T F
i −GF (T F , u)}{Mi −G(M,u)}I(T F

i ≥ u)]
λC(u)

K(u)
du

−E

∫ L

0

[{T F
i −GF (T F , u)}{Mi(u)−G{M(u), u}}I(T F

i ≥ u)]
λC(u)

K(u)
du.

= Cov(Mi, T
F
i ) +

∫ L

0

[GF{T FM,u} −GF{M,u}GF (T F , u)]
SF (u)λC(u)

K(u)
du

−

∫ L

0

[GF{T FM(u), u} −GF{M(u), u}GF (T F , u)]
SF (u)λC(u)

K(u)
du
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This can be estimated consistently by

1

n

n∑

i=1

∆iMiT
F
i

K̂(Ti)
−

1

n2

n∑

i=1

∆iMi

K̂(Ti)

n∑

i=1

∆F
i T

F
i

K̂F (T F
i )

+
1

n

∫ L

0

dNCF (u)

K̂F (u)2
{ĜF0(T FM,u)− ĜF0(M,u)ĜF0(T F , u)}

−
1

n

∫ L

0

dNCF (u)

K̂F (u)2
{ĜF0{T FM(u), u} − ĜF0{M(u), u}ĜF0(T F , u)},

where

ĜF0(Z, u) =
1

nŜF (u)

n∑

i=1

∆i

K̂(Ti)
ZiI(T

F
i ≥ u),

Although some of G can be estimated by

ĜF (Z, u) =
1

nŜF (u)

n∑

i=1

∆F
i

K̂F (Ti)
ZiI(T

F
i ≥ u),

which seems to adopt more data information when available, using the same form of

Ĝ achieves more efficiency in numerical studies. Thus, we suggest to use the same

estimator for G.
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APPENDIX B

PROOF FOR THE EQUIVALENCY OF THE ZT MEAN COST ESTIMATOR

AND THE RRIMP METHOD

Suppose we have observed the following survival and cost history data

[{Xi,∆i,Mi,Mi(tj), j = 1, · · · , J}, i = 1, · · · , n],

where i denotes individuals, tj(j = 1, · · · , J) denotes the ordered distinctive censor-

ing times. Let Yj indicate the number of people who have observation times greater

than tj (i.e., Yj =
∑n

i=1 I(Xi > tj)), and nj represent the number of people who are

censored at time tj . If an event occurs at a censoring time tj , we assume this event

happens shortly before tj . Therefore, the set {Xi = tj} consist only of censored data.

First, for the subject i who is censored at tj (note that we allow multiple subjects

who are censored at time tj), define δMi(tj) as the difference between the observed

cost at time tj for the ith subject and the average accumulated cost at tj for subjects

who are still alive at tj:

δMi(tj) = Mi(tj)−M(tj) = Mi(tj)−

∑
i:Xi≥tj

Mi(tj)

Yj + nj

.

Define M∗(tj) as the sum of δMi(tj) over all subjects who are censored at tj :

M∗(tj) =
∑

i:Xi=tj

δMi(tj) =
∑

i:Xi=tj

Mi(tj)− njM(tj)

=
∑

i:Xi=tj

Mi(tj)−
nj

Yj + nj

∑

i:Xi≥tj

Mi(tj).

Starting from the largest censoring time tJ , there are YJ subjects who have com-
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plete costs and whose survival times are greater than tJ . Hence, the RRimp cost for

the kth subject censored at tJ is

MRRimp
J,k = Mk(tJ) +

1

YJ

∑

i:Xi>tJ

{Mi −Mi(tJ)}.

Recall that the replacement cost from RR method for the kth subject censored at

time tJ is

MRR
J =

1

YJ

∑

i:Xi>tJ

Mi,

thus, the sum of difference between MRRimp
J,k (in RRimp method) and MRR

J (in RR

method) at tJ is

∑

k:Xk=tJ

(MRRimp
J,k −MRR

J )

=
∑

k:Xk=tJ

Mk(tJ) +
nJ

YJ

∑

i:Xi>tJ

{Mi −Mi(tJ)} −
nJ

YJ

∑

i:Xi>tJ

Mi

=
∑

i:Xi=tJ

Mi(tJ)−
nJ

YJ

∑

i:Xi>tJ

Mi(tJ)

= (1 +
nJ

YJ
)

∑

i:Xi=tJ

Mi(tJ)−
nJ

YJ

∑

i:Xi≥tJ

Mi(tJ )

= (1 +
nJ

YJ

){
∑

i:Xi=tJ

Mi(tJ)−
nJ

YJ + nJ

∑

i:Xi≥tJ

Mi(tJ)}

= (1 +
nJ

YJ
)M∗(tJ). (18)

Now we move to the 2nd largest censoring time tJ−1, where the number of subjects

surviving longer than tJ−1 is YJ−1. The RRimp cost for the kth censored subject at
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tJ−1 is

MRRimp
J−1,k

= Mk(tJ−1) +
1

YJ−1

∑

i:Xi>tJ−1

{Mi −Mi(tJ−1)}

= Mk(tJ−1) +
1

YJ−1
{

∑

i:Xi>tJ−1

∆i[Mi −Mi(tJ−1)]

+
∑

i:Xi=tJ

[MRRimp
J,i −Mi(tJ−1)]}

= Mk(tJ−1) +
1

YJ−1
{

∑

i:Xi>tJ−1

∆iMi −
∑

i:Xi>tJ−1

∆iMi(tJ−1)

−
∑

i:Xi=tJ

Mi(tJ−1) +
∑

i:Xi=tJ

Mi(tJ ) +
nJ

YJ

∑

i:Xi>tJ

∆i[Mi −Mi(tJ)]}

= Mk(tJ−1) +
1

YJ−1
{

∑

i:Xi>tJ

∆iMi +
∑

i:tJ−1<Xi≤tJ

∆iMi −
∑

i:Xi>tJ−1

Mi(tJ−1)

+
∑

i:Xi=tJ

Mi(tJ) +
nJ

YJ

∑

i:Xi>tJ

∆iMi −
nJ

YJ

∑

i:Xi>tJ

Mi(tJ)}

=
1

YJ−1
(1 +

nJ

YJ
)

∑

i:Xi>tJ

∆iMi +
1

YJ−1

∑

i:tJ−1<Xi≤tJ

∆iMi +Mk(tJ−1)

−
1

YJ−1

∑

i:Xi>tJ−1

Mi(tJ−1) +
1

YJ−1

∑

i:Xi=tJ

Mi(tJ)−
nJ

YJYJ−1

∑

i:Xi>tJ

Mi(tJ)

where the first two terms 1
YJ−1

(1 + nJ

YJ
)
∑

i:Xi>tJ
∆iMi +

1
YJ−1

∑
i:tJ−1<Xi≤tJ

∆iMi =

MRR
J−1 (Zhao et al. 2011). Thus, the sum of difference between MRRimp

J−1,k and MRR
J−1 at
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tJ−1 is

∑

k:Xk=tJ−1

(MRRimp
J−1,k −MRR

J−1)

=
∑

i:Xi=tJ−1

Mi(tJ−1)−
nJ−1

YJ−1

∑

i:Xi>tJ−1

Mi(tJ−1) +
nJ−1

YJ−1

∑

i:Xi=tJ

Mi(tJ)

−
nJ−1nJ

YJ−1YJ

∑

i:Xi>tJ

Mi(tJ)

= (1 +
nJ−1

YJ−1
)

∑

i:Xi=tJ−1

Mi(tJ−1)−
nJ−1

YJ−1

∑

i:Xi≥tJ−1

Mi(tJ−1)

+
nJ−1

YJ−1
(1 +

nJ

YJ
)

∑

i:Xi=tJ

Mi(tJ)−
nJ−1nJ

YJ−1YJ

∑

i:Xi≥tJ

Mi(tJ)

= (1 +
nJ−1

YJ−1

)M∗(tJ−1) +
nJ−1

YJ−1

(1 +
nJ

YJ

)M∗(tJ) (19)

Similarly, we have

∑

k:Xk=tJ−2

(MRRimp
J−2,k −MRR

J−2)

= (1 +
nJ−2

YJ−2
)M∗(tJ−2) +

nJ−2

YJ−2
(1 +

nJ−1

YJ−1
)M∗(tJ−1)

+
nJ−2

YJ−2

(1 +
nJ−1

YJ−1

)(1 +
nJ

YJ

)M∗(tJ) (20)

In (18), the contribution of M∗(tj) is (1+
nJ

YJ
). In (19), its contribution is nJ−1

YJ−1

(1+

nJ

YJ
). For (20), the contribution is nJ−2

YJ−2

(1 + nJ−1

YJ−1

)(1 + nJ

YJ
). If we generalize the

conclusion and sum up the equations from J to 1, we can find the contribution of

M∗(tJ) is

(
1 +

nJ

YJ

)
+

(
1 +

nJ

YJ

)
·
nJ−1

YJ−1

+ · · ·+

(
1 +

nJ

YJ

)
· · ·

(
1 +

n2

Y2

)
·
n1

Y1

=

J∏

j=1

(
1 +

nj

Yj

)
.
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Similarly, the contribution of M∗(tj) is

(
1 +

nj

Yj

)
+

(
1 +

nj

Yj

)
·
nj−1

Yj−1
+ · · ·+

(
1 +

nj

Yj

)
· · ·

(
1 +

n2

Y2

)
·
n1

Y1
=

j∏

l=1

(
1 +

nl

Yl

)
.

Hence,

µ̂RRimp

=
1

n
{

n∑

i=1

∆iMi +
∑

k:Xk=tJ

MRRimp
J,k +

∑

k:Xk=tJ−1

MRRimp
J−1,k + · · ·+

∑

k:Xk=t1

MRRimp
1,k }

=
1

n
{

n∑

i=1

∆iMi +
∑

k:Xk=tJ

MRR
J +

∑

k:Xk=tJ−1

MRR
J−1 + · · ·+

∑

k:Xk=t1

MRR
1 }

+
1

n
{

J∏

j=1

(1 +
nj

Yj
)M∗(tJ) +

J−1∏

j=1

(1 +
nj

Yj
)M∗(tJ−1) + · · ·+ (1 +

n1

Y1
)M∗(t1)}

= µ̂RR +
1

n
{

J∏

j=1

(1 +
nj

Yj

)M∗(tJ) +
J−1∏

j=1

(1 +
nj

Yj

)M∗(tJ−1) + · · ·+ (1 +
n1

Y1

)M∗(t1)}

Where µ̂RR = µ̂BT is already known, and M∗(tj) =
∑

i:Xi=tj
[Mi(tj)−M(tj)] accord-

ing to its definition. It can also be shown that the Kaplan-Meier estimator for K(tj)

is

K̂(tj) =

j∏

l=1

Yl

Yl + nl
,

which means

1

K̂(tj)
=

1∏j
l=1

Yl

Yl+nl

=

j∏

l=1

(
1 +

nl

Yl

)
.
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Thus,

µ̂RRimp

= µ̂BT +
1

n
{

∑
i:Xi=tJ

[Mi(tJ)−M(tJ )]

K̂(tJ)
+

∑
i:Xi=tJ−1

[Mi(tJ−1)−M(tJ−1)]

K̂(tJ−1)

+

∑
i:Xi=tJ−2

[Mi(tJ−2)−M(tJ−2)]

K̂(tJ−2)
+ · · ·+

∑
i:Xi=t1

[Mi(t1)−M(t1)]

K̂(t1)
}

= µ̂BT +
1

n

n∑

i=1

(1−∆i)[Mi −M(Ci)]

K̂(Ci)

= µ̂ZT .

We have proved that the RRimp estimator is the same as the ZT estimator for

estimating the mean cost.
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APPENDIX C

PROOF OF ASYMPTOTIC UNBIASEDNESS OF THE RRIMPK ESTIMATOR

Since we focus on time-restricted costs, and set Ti = L or Ci = L if the time

exceeds L, we can assume Ti ≤ L and Ci ≤ L.

It is easy to see

E{ŜRRimpK,n,hn
(x)} = Pr(Mi > x,∆i = 1) + Pr(∆i = 0) ·

E[
E{

∆jI(Tj>Ci)

hnST (Ci)K(Tj)
w( u

hn
)I(Mj + u > x)|Ci,Mi(Ci)}

E{
∆jI(Tj>Ci)

hnST (Ci)K(Tj)
w( u

hn
)|Ci,Mi(Ci)}

+Op(
1

n
)|Ti > Ci]. (21)

For the denominator in (21), let u = hnũ, with Bounded convergence theorem,

lim
hn→0

E{
∆jI(Tj > Ci)

hnST (Ci)K(Tj)
w(

u

hn
)|Ci,Mi(Ci)}

=

∫ L

Tj
dP (Cj)

K(Tj)

∫ ∞

−∞

∫ L

Ci

∫ ∞

Mi(Ci)

lim
hn→0

w(ũ)

ST (Ci)
f{Tj,Mj, hnũ|Ci,Mi(Ci)}dMjdTjdũ

=

∫ ∞

−∞

∫ L

Ci

∫ ∞

Mi(Ci)

w(ũ)

ST (Ci)
f{Tj,Mj |Mj(Ci) = Mi(Ci)}dMjdTjdũ

=

∫∞

−∞
w(ũ)dũ

ST (Ci)

∫ L

Ci

∫ ∞

Mi(Ci)

f{Tj ,Mj|Mj(Ci) = Mi(Ci)}dMjdTj

=

∫ ∞

−∞

w(ũ)dũ.

For the numerator in (21), given ǫ > 0, divide [Mi(Ci),∞) to beD1 = [Mi(Ci), x−

ǫ] ∪ [x + ǫ,∞) and D2 = (x − ǫ, x + ǫ). Since I(Mj + hnũ > x) does not change for
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small hn given fixed ũ and Mj ∈ D1, we have

lim
hn→0

E{
∆jI(Tj > Ci)

nhnST (Ci)K(Tj)
w(

u

hn
)I(Mj + u > x)|Ci,Mi(Ci)}

=

∫ ∞

−∞

∫ L

Ci

∫

D1

lim
hn→0

w(ũ)I(Mj + hnũ > x)

ST (Ci)
f{Tj ,Mj, hnũ|Ci,Mi(Ci)}dMjdTjdũ

+ lim
hn→0

∫ ∞

−∞

∫ L

Ci

∫

D2

w(ũ)I(Mj + hnũ > x)

ST (Ci)
f{Tj,Mj , hnũ|Ci,Mi(Ci)}dMjdTjdũ

=

∫ ∞

−∞

∫ L

Ci

∫

D1

w(ũ)I(Mj > x)

ST (Ci)
f{Tj,Mj , 0|Ci,Mi(Ci)}dMjdTjdũ

+ lim
hn→0

∫ ∞

−∞

∫ L

Ci

∫

D2

w(ũ)I(Mj + hnũ > x)

ST (Ci)
f{Tj,Mj , hnũ|Ci,Mi(Ci)}dMjdTjdũ

=

∫ ∞

−∞

∫ L

Ci

∫

D1

w(ũ)I(Mj > x)

ST (Ci)
f{Tj,Mj , 0|Ci,Mi(Ci)}dMjdTjdũ+R

Let ǫ → 0, the first term becomes

lim
ǫ→0

∫∞

−∞
w(ũ)dũ

ST (Ci)

∫ L

Ci

∫

D1

I(Mj > x)f{Tj ,Mj, 0|Ci,Mi(Ci)}dMjdTj

= Pr{Mj > x,Mj(Ci) = Mi(Ci)|Ci,Mi(Ci)} ·

∫ ∞

−∞

w(ũ)dũ.

With ǫ → 0, the second term R becomes

lim
ǫ→0

R

≤ lim
ǫ→0

lim
hn→0

∫ ∞

−∞

∫ L

Ci

∫

D2

w(ũ)

ST (Ci)
f{Tj ,Mj, hnũ|Ci,Mi(Ci)}dMjdTjdũ

≤ lim
ǫ→0

lim
hn→0

∫ ∞

−∞

∫ L

Ci

∫

D2

w(ũ)B

ST (Ci)
dMjdTjdũ

= lim
ǫ→0

2ǫ(L− Ci)
B

ST (Ci)

∫ ∞

−∞

w(ũ)dũ

= 0,

where f is bounded with |f | ≤ B.
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Thus,

lim
hn→0

E{
∆jI(Tj > Ci)

nhnST (Ci)K(Tj)
w(

u

hn
)I(Mj + u > x)|Ci,Mi(Ci)}

= Pr{Mj > x,Mj(Ci) = Mi(Ci)|Ci,Mi(Ci)} ·

∫ ∞

−∞

w(ũ)dũ.

Therefore,

lim
n→∞

E[
E{

∆jI(Tj>Ci)

hnST (Ci)K(Tj)
w( u

hn
)I(Mj + u > x)|Ci,Mi(Ci)}

E{
∆jI(Tj>Ci)

hnST (Ci)K(Tj)
w( u

hn
)|Ci,Mi(Ci)}

+Op(
1

n
)|Ti > Ci]

·Pr(∆i = 0)

= lim
hn→0

∫

D

E{
∆jI(Tj>Ci)

nhnST (Ci)K(Tj)
w( u

hn
)I(Mj + u > x)|Ci,Mi(Ci)}

E{
∆jI(Tj>Ci)

nhnST (Ci)K(Tj)
w( u

hn
)|Ci,Mi(Ci)}

dP{Ci, Ti,Mi(Ci)

=

∫

D

Pr{Mj > x,Mj(Ci) = Mi(Ci)|Ci,Mi(Ci)}dP{Ci, Ti,Mi(Ci)}

=

∫

D

Pr(Mi > x)dP{Ci, Ti,Mi(Ci)}

= Pr(Mi > x, Ti > Ci)

where D = {Ci, Ti,Mi(Ci) : L ≥ Ti > Ci ≥ 0,Mi(Ci) ≥ 0}, and the last second

equality is from Marcov property of cost process.

Combining the above results with (21), we have proved the theorem.
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