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ABSTRACT

This dissertation includes three essays. The first essay concerns nonparametric

kernel density estimation on the unit interval. The Kernel Density Estimator (KDE)

suffers boundary biases when applied to densities on bounded supports, which are

assumed to be the unit interval. Transformations mapping the unit interval to the

real line can be used to remove boundary biases. However, this approach may induce

erratic tail behaviors when the estimated density of transformed data is transformed

back to its original scale. I propose a modified transformation based KDE that em-

ploys a tapered and tilted back-transformation. I derive the theoretical properties of

the new estimator and show that it asymptotically dominates the naive transforma-

tion based estimator while maintains its simplicity. I then propose three automatic

methods of smoothing parameter selection. Monte Carlo simulations demonstrate

the good finite sample performance of the proposed estimator, especially for densi-

ties with poles near the boundaries. An example with real data is provided.

The second essay proposes a new kernel estimator of copula densities. The stan-

dard kernel estimator suffers boundary biases since copula densities are defined on

a bounded support and often tend to infinity on the boundaries. A transformation-

based estimator aptly remedies both boundary biases and inconsistencies due to un-

bounded densities. This method, however, might entail undesirable boundary behav-

iors due to an unbounded multiplicative factor associated with the transformation.

I propose a modified transformation-based estimator that employs an infinitesimal

tapering device to mitigate the influence of the unbounded multiplier. I establish the

asymptotic properties of our estimator and show that it dominates the original trans-

formation estimator in terms of mean squared error due to bias correction. I present
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two practically simple methods of smoothing parameter selection. I further show

that the proposed estimator admits higher order bias reduction for Gaussian copulas

and provides outstanding performance for Gaussian and near Gaussian copulas. This

appealing feature makes our estimator particularly suitable for financial data anal-

yses. Extensive simulations corroborate our theoretical analysis and demonstrate

outstanding performance of the proposed method relative to competing estimators.

Three empirical applications are provided.

The third essay studies nonparametric estimation of crop yield distributions and

crop insurance premium rates. Since U.S. crop yield data are typically available at

county level for only a few decades, nonparametric estimation of yield distribution

for individual counties suffers from small sample sizes. The fact that nearby coun-

ties share similarities in their yield distributions suggests possible efficiency gains

through information pooling. I propose a weighted kernel density estimator sub-

ject to selected spatial moment restrictions. The weights are calculated using the

method of empirical likelihood and the spatial moments are specified based on the

consideration of flexibility and robustness. I further extend the proposed method to

the adaptive kernel density estimation. My simulations demonstrate the outstanding

performance of the proposed methods in the estimation of crop yield distributions

and that of crop insurance premium rates. I apply these methods to estimate corn

yield distributions and crop insurance premium rates for the ninety-nine counties in

Iowa.
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NOMENCLATURE

iid identically and independently distributed

cdf cumulative distribution function

pdf probability density function

KDE standard Kernel Density Estimator

TKDE/TKE Transformation-based Kernel Density Estimator

MTK Modified Transformation-based Kernel Density Estimator

WMISE Weighted Mean Integrated Squared Error

CV Cross Validation

GRP Group Risk Plan

NASS National Agricultural Statistics Services

EL Empirical Likelihood

ELK Empirical Likelihood Kernel Density Estimator

AKDE Adaptive Kernel Density Estimator

ELAK Empirical Likelihood Adaptive Kernel Density Estimator
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1. INTRODUCTION

Econometric problems are described using probability models. The observed data

are viewed as a realization of a random vector associated with some true distribution.

To understand the economic data, one often needs to identify this true distribution

that governs the underlying data generating process. Two approaches have been com-

monly adopted for estimating econometric models. One is called parametric method.

That is, we assume the true distribution comes from some parametric family with a

finite dimensional vector of unknown parameters. Then the problem becomes seeking

the value of these parameters. Standard routines such as Maximum Likelihood Es-

timation and Generalized Method of Moments can be used for estimation. However,

this parametric method is inconsistent if the parametric assumption is misspecified.

Motivated primarily by the problem of misspecification error, the other approach

called nonparametric method serves as a complement. Nonparametric method is

consistent under some minimal assumptions such as smoothness. Since nonparamet-

ric method does not require a parametric assumption, it is flexible, though it takes

the risk of slower convergence rate. Nowadays, nonparametric method has gained its

popularity not only in econometrics itself but also in finance and insurance applica-

tions. Therefore, in this dissertation, I propose some nonparametric estimators for

general purpose as well as for some specific cases in finance and insurance.

The three essays in this dissertation are motivated by some interesting finance

and insurance applications. The first example is about recovery rate on defaulted

bonds or loans. In credit risk portfolio models, there are two key elements: one is

probability of default and the other is recovery probability given default. Therefore,

estimating the density function of recovery rate is practically important. Recovery
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rate is expressed in the form of a percentage ratio. Thus, its density function is

defined on the support [0, 1]. This example motivates the first essay on the topic of

nonparametric kernel density estimation on a bounded support. The second example

is the role of copula in risk management. Since the last decade, copula has become

a powerful tool in modeling losses of a portfolio of multiple securities. The paramet-

ric Gaussian copula was once dominant in pricing Collateralized Debt Obligations

(CDOs). However, after the 2007 credit crisis, both researchers and practitioners

realized that Gaussian copula might not be adequate to describe the dependence

among financial returns. Nonparametric copula estimation arises naturally as a more

flexible and reliable alternative. The third example concerns estimating crop yield

distribution and crop insurance premium rate. Crop insurance program is one of the

most expensive federal policies. Actuarially fair premium rate is key to the welfare of

farmers, vitality of the crop insurance industry and efficiency of the crop insurance

program. The literature had a long time debate on the most suitable parametric

family for yield distribution, yet, reached no agreement. Some studies opted to using

nonparametric method for yield density estimation. However, a practical problem is

that yield data is usually limited. This motivates the third essay to aim at improving

the accuracy of nonparametric yield density estimation when sample size is small.

This dissertation tries to propose some nonparametric kernel estimators to ad-

dress the above motivating applications. In the first essay, I propose a new kernel

estimator to estimate densities with bounded support [0, 1]. The second essay pro-

poses a new kernel estimator of copula densities. The second essay can be viewed as

an extension of the ideas in the first essay. Extensive simulation experiments con-

firm both estimators have better overall performance than the existing competing

estimators. The third essay proposes a weighted kernel density estimator subject to

selected spatial moment restrictions. This method is shown to improve the accuracy

2



of estimated premium rate.

In the rest of text, each essay will form a separate chapter. Some technical proofs

are gathered in the appendices.
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2. AN IMPROVED TRANSFORMATION-BASED KERNEL ESTIMATOR OF

DENSITIES ON THE UNIT INTERVAL∗

2.1 Introduction

This paper concerns with kernel type estimation of densities on bounded sup-

ports, which without loss of generality are assumed to be [0, 1]. Given a sample

{X1, . . . , Xn} of observations from a univariate distribution FX with a density fX ,

the standard kernel density estimator (KDE) is given by

f̂X(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
=

1

n

n∑
i=1

Kh (x−Xi) ,

where K is the kernel function usually taken to be a symmetric and unimodal density

defined on R or some finite interval, Kh(x) = K(x/h)/h and h is the bandwidth.

When applied to densities with bounded supports, the standard KDE is known to

suffer boundary biases since it cannot detect the boundaries of the support and thus

places positive weight outside the support. For general treatments of the KDE and

the boundary bias problem, see e.g. Wand and Jones (1995) and Simonoff (1996).

Various boundary bias correction methods have been proposed. Schuster (1999)

and Cline and Hart (1991) considered the reflection method, which is most suitable

for densities with zero derivatives near the boundaries. Boundary kernel method

and local polynomial method are more general without restrictions on the shape

of densities. Local polynomial method can be seen as a special case of boundary

kernel method and draws much attention due to its good theoretical properties.

Though early versions of these methods might produce negative estimates or inflate

∗This dissertation is derived in part from an article published in the Journal of the American
Statistical Association, available online:
http://www.tandfonline.com/doi/abs/10.1080/01621459.2014.969426#.VSZ IPD OCg.
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variance near the boundaries, remedies and refinements have been proposed; see e.g.

Müller (1991), Jones (1993), Jones and Foster (1996), Cheng (1997), Zhang and

Karunamuni (1998, 2000) and Karunamuni and Alberts (2005). Cowling and Hall

(1996) proposed a pseudo-data method that estimates density functions based on the

original data plus pseudo-data generated by linear interpolation of order statistics.

Zhang, Karunamuni, and Jones (1999) combined the pseudo-data, transformation

and reflection methods.

A second strand of the literature eschews explicit boundary correction and uti-

lizes instead globally modified kernel estimators. Marron and Ruppert (1994) consid-

ered transformations via the empirical distribution function. Hall and Park (2002)

presented an alternative “empirical translation correction” method. Chen (1999)

proposed beta kernel estimators that use the beta density as the kernel function.

Jones and Henderson (2007) presented a Gaussian copula based estimator. Geenens

(2014) combined transformation and local likelihood estimation. These estimators

share a commonality of employing effectively varying local bandwidths induced by

the transformation of data or flexible kernel functions.

In this paper I adopt the transformation approach and propose a new esti-

mator that is shown to improve upon the conventional transformation estimator.

Transformation-based kernel density estimation (TKDE) was originally proposed by

Wand, Marron, and Ruppert (1991). Let g be some smooth and monotonically in-

creasing function and define Yi = g(Xi). Denote the density of Yi by fY , which can be

estimated by the standard KDE f̂Y (y) = 1
n

∑n
i=1Kh (y − Yi). The transformation-

based estimator of fX is then obtained, via a back-transformation, as

(2.1) f̂X,T (x) =
1

n

n∑
i=1

g′(x)Kh

(
g(x)− g(Xi)

)
,

where g′(x) = ∂g(x)/∂x. With a proper transformation function, fY may be satis-
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factorily estimated by the standard KDE and this benefit is likely to be retained in

the subsequent estimator f̂X,T in the X-domain.

When estimating a density defined on [0, 1], if we use a transformation mapping

the unit interval to the real line, the density of the transformed data Yi’s can be

estimated by the standard KDE free of boundary biases. The original density fX ,

obtained via a back-transformation of fY , can then be estimated without boundary

biases as well. A commonly used family of transformations from the unit interval to

the real line is the quantile functions of distributions defined on the real line. Similar

to Geenens (2014), I consider the Probit transformation g(x) = Φ−1(x), where Φ is

the standard normal distribution function. I have experimented with transformation

via the logistic distribution and obtained results essentially identical to those from the

Probit transformation. In this paper, I focus on the Probit transformation because

when used in conjunction with the Gaussian kernel function, it permits a simple

analytical form for the proposed estimator, which I shall show below (see Chaudhuri

and Marron (2000) for a discussion on many appealing properties of the Gaussian

kernel).

Under the Probit transformation, the TKDE (2.1) for a density defined on [0, 1]

takes the form

(2.2) f̂X,T (x) =
1

n

n∑
i=1

Kh

(
Φ−1(x)− Φ−1(Xi)

)
φ(Φ−1(x))

, x ∈ [0, 1],

where φ is the standard normal density function. As x approaches 0 or 1, the

multiplication factor {φ(Φ−1(x))}−1 tends to infinity, resulting in possibly erratic

tail behaviors in f̂X,T (x). My new estimator is inspired by the observation that the

drawback associated with the multiplication factor can be alleviated by tapering

the multiplication factor when x is close to the boundaries. Denote the Gaussian

density with mean µ and variance σ2 by φµ,σ. I shall suppress the subscripts µ
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and/or σ if µ = 0 and/or σ = 1 for simplicity. I note that one natural way to

deflate {φ(Φ−1(x))}−1 for x near 0 or 1 is to replace it with {φσ(Φ−1(x))}−1, where

σ > 1. In addition, it is desirable that this tapering device is allowed to differ

across the two tails if the underlying densities have asymmetric tails. This is made

possible by further introducing a location parameter µ, resulting in a tapered and

tilted back-transformation {φµ,σ(Φ−1(x))}−1 with two tuning parameters µ and σ.

The modified transformation-based kernel density estimation, which is called

“MTK” below for simplicity, is formally defined as

(2.3) f̂X,M(x) =
1

nĉ

n∑
i=1

Kh

(
Φ−1(x)− Φ−1(Xi)

)
φµ,σ(Φ−1(x))

, x ∈ [0, 1],

where ĉ is a normalization constant, which admits a simple closed form under the

Probit transformation. I derive the theoretical properties of the MTK and propose

three automatic methods of smoothing parameter selection. I demonstrate the good

finite sample performance of the MTK via numerical simulations and present an

application to real world data.

The proposed MTK for densities with bounded supports possesses several desir-

able properties. First, like the TKDE and several other boundary bias corrected

estimators, it is free of boundary biases. At the same time, it is shown to domi-

nate the TKDE in terms of the asymptotic mean integrated squared error. Second,

some methods of boundary bias correction require complicated data-driven trans-

formations or local bandwidths. In contrast, the MTK uses a fixed transformation

and maintains the simplicity of the TKDE with a single global bandwidth. Third,

the MTK produces a bona fide density that is non-negative and integrates to unity.

Fourth, with the proposed automatic smoothing parameter selection methods, it is

easy to implement and computationally inexpensive. Lastly, the MTK is shown

to significantly outperform the TKDE and several other competing estimators for
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densities with poles near the boundaries.

The rest of the text is organized as follows. Section 2.2 presents the modified

transformation-based kernel density estimator, followed by its theoretical properties

in Section 2.3. Section 2.4 proposes three methods of automatic smoothing parameter

selection. Sections 2.5 and 2.6 report Monte Carlo simulations and an example on

real data. Some technical details are gathered in Appendix A.

2.2 Modified transformation-based kernel estimator

Using transformation in kernel type density estimations has a long history in

the literature. The standard KDE is marked by a single global bandwidth, which

may not be suitable for densities with varying degree of roughness or complicated

features. Wand, Marron, and Ruppert (1991) proposed the transformation based

kernel density estimator given in (2.1). With a proper transformation function Y =

g(X), fY may be satisfactorily estimated by the standard KDE f̂Y and this benefit

can be retained by the subsequent estimator f̂X,T in the X-domain. For instance,

Wand, Marron, and Ruppert (1991) applied the shifted-power transformation to

skewed data, which is shown to improve the subsequent kernel density estimation

of the original data. This transformation approach in kernel density estimation has

been further developed by, among others, Marron and Ruppert (1994), Ruppert and

Cline (1994), Yang and Marron (1999), Karunamuni and Alberts (2006), Koekemoer

and Swanepoel (2008), and Geenens (2014).

Under a transformation that maps the unit interval to the real line, the TKDE

(2.2) provides a viable way to alleviate boundary biases in kernel density estima-

tion as discussed above. To understand the essence of this approach, consider a

given x ∈ (0, 1). A Taylor expansion of Φ−1(Xi) around x in (2.2) yields f̂X,T ≈

n−1
∑n

i=1{hφ(Φ−1(x))}−1K{(x−Xi)/(hφ(Φ−1(x)))}. Thus the TKDE behaves sim-
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ilarly to a KDE with a local bandwidth h(x) = hφ(Φ−1(x)). Since φ(Φ−1(x))→ 0 as

x→ 0 or 1, the effective bandwidth near the boundaries becomes increasingly small

and no smoothing goes beyond the boundaries.

The transformation approach for kernel estimation of densities with bounded sup-

ports, however, suffers from one particular drawback. Since the multiplication factor

{φ(Φ−1(x))}−1 in the TKDE f̂X,T (x) becomes increasingly large as x approaches

the boundaries, small bumps at the tails of f̂Y may be magnified through the back-

transformation, resulting in erratic fluctuations of f̂X,T near the boundaries. Gee-

nens (2014) proposed a local log-polynomial estimator of the TKDE for densities

with bounded supports. In this study, I propose an alternative estimator that en-

tails simple modification of the back-transformation in the TKDE. The Modified

Transformation-based Kernel Density Estimator (MTK), given in (2.3), introduces

a multiplicative bias reduction of the TKDE while maintaining the simplicity of the

TKDE with a single bandwidth.

To ensure that the MTK integrates to one, the normalization constant ĉ is given

by

ĉ =
1

n

∫ 1

0

n∑
i=1

Kh

(
Φ−1(x)− Φ−1(Xi)

)
φµ,σ(Φ−1(x))

dx.

For small h, ĉ can be closely approximated by

c̃ =
1

n

n∑
i=1

φ(Φ−1(Xi))

φµ,σ(Φ−1(Xi))
.

Furthermore if I use the Gaussian kernel, i.e. setting K(·) = φ(·), the normalization

constant admits a simple analytical form

ĉ =
σ2

nη

n∑
i=1

exp

(
−σ

2 − 1

2η2
{Φ−1(Xi)}2 − µ

η2
Φ−1(Xi) +

µ2(h2 + 1)

2η2

)
,

where η =
√
σ2 + h2σ2 − h2. For the rest of the text, I focus on the case of Gaussian
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kernel estimator.

Next define

J(x;h, µ, σ) =
φ(Φ−1(x))

ĉφµ,σ(Φ−1(x))
.

The MTK can be rewritten as

(2.4) f̂X,M(x) = J(x;h, µ, σ)f̂X,T (x).

Thus it is seen that the MTK introduces a multiplicative adjustment to the TKDE.

The adjustment factor is controlled smoothly by two tuning parameters µ and σ. In

particular, σ(> 1) tapers the multiplication factor of the TKDE and this tapering is

further ‘tilted’ by µ. When µ = 0 and σ = 1, J(x;h, µ, σ) = 1 and the MTK reduces

to the TKDE.

2.3 Asymptotic properties

In this section I investigate the theoretical properties of the MTK. In addition

to the usual conditions that h → 0 and nh → ∞ as n → ∞, I also assume that

µ → 0 and σ → 1 as n → ∞. The construction (2.4) facilitates our analysis: the

multiplication factor J(x;h, µ, σ) is relatively simple and the properties of f̂X,T have

been well established in the literature. To ease notation, I shall denote Φ−1(Xi) and

Φ−1(x) by Yi and yx respectively in this section.

2.3.1 Asymptotic bias and variance

Consider first a fixed x ∈ (0, 1). A Taylor expansion of J(x;h, µ, σ) with respect

to µ at zero and σ at one yields

(2.5) J(x;h, µ, σ) = 1 + (E[Y1]− yx)µ+ (E[Y 2
1 ]− y2

x)(σ − 1) + o(µ) + o(σ − 1).

10



The asymptotic bias of the TKDE is given by Wand, Marron, and Ruppert (1991):

(2.6) E[f̂X,T (x)] = fX(x) +
h2

2

f ′′Y (yx)

φ(yx)
+ o(h2).

It follows that

(2.7) abias{f̂X,M(x)} = {(E[Y1]− yx)µ+ (E[Y 2
1 ]− y2

x)(σ − 1)}fX(x) +
h2

2

f ′′Y (yx)

φ(yx)
.

Below I shall show that the optimal µ and σ − 1 are both of order h2. Thus the

optimal MTK has the usual h2 order interior bias.

Here I offer a heuristic argument on how the MTK improves the boundary bias

of the TKDE. I rewrite the asymptotic bias of the MTK as follows:

(2.8)
abias{f̂X,M(x)} ={(E[Y1]− yx)µ+ (E[Y 2

1 ]− y2
x)(σ − 1)}fX(x)

+
h2

2

{
fX(x)(y2

x − 1)− 3f ′X(x)yxφ(yx) + f ′′X(x)φ2(yx)
}
,

where the second term is the asymptotic bias of the TKDE expressed in theX-domain

density. Consider for example a U-shape density on [0, 1] whose tails go to infinity.

Since y2
x →∞ and φ(yx)→ 0 as x→ 0 or 1, the second term of (2.8) is dominated by

h2

2
fX(x)(y2

x− 1), resulting in a positive bias of the TKDE for x near the boundaries.

For σ > 1, the dominant term in the first term of (2.8) is −y2
x(σ − 1)fX(x), which

is negative and counters the positive boundary bias of the TKDE. Interestingly, the

KDE is known to suffer negative boundary biases if the densities go to infinity near

the boundaries. The TKDE, in contrast, overcompensates the boundary biases of

the KDE because the multiplication factor {φ(yx)}−1 →∞ as x→ 0 or 1. The MTK

fine-tunes the TKDE to correct for the overcompensation at the boundaries.

It is tempting to set µ∗ = 0 and σ∗ = 1 + h2

2
(y2
x − 1)/(y2

x − E[Y 2
1 ]) so that

the asymptotic bias is reduced to h2

2

{
−3f ′X(x)yxφ(yx) + f ′′X(x)φ2(yx)

}
. This strat-

egy, motivated by pointwise bias reduction, does not correspond to any optimality

11



consideration. Moreover, it is not defined on the entire support of y (e.g., when

y2
x = E[Y 2

1 ], σ∗ is not defined). My numerical experiments show that this approach

does not provide satisfactory performance compared with competing methods. It is

also noted that σ∗ ≈ 1 + h2/2 for large y2
x. This alternative simplification has been

investigated in my simulations and was found to be dominated by other methods as

well. I note that a similar observation regarding this ‘infeasible’ asymptotic refine-

ment is made by Geenens (2014), who proceeded to advocate a local log-polynomial

estimator.

Let us now consider the asymptotic variance. The asymptotic variance of the

TKDE, given by Wand, Marron, and Ruppert (1991), is

avar{f̂X,T (x)} =
fY (yx)

2
√
πnhφ2(yx)

=
fX(x)

2
√
πnhφ(yx)

.

It follows that

avar{f̂X,M(x)} =avar{J(x;µ, σ, h)f̂X,T (x)}

≈{1 + (E[Y1]− yx)µ+ (EY 2
1 − y2

x)(σ − 1)}2avar{f̂X,T (x)}

=avar{f̂X,T (x)}, for x ∈ (0, 1),

(2.9)

since µ→ 0 and σ → 1 as n→∞.

Next I consider the boundary scenarios. Suppose that x/hm → δ or (1−x)/hm →

δ for some δ,m > 0. Using that Φ−1(x) ∼ −
√
−2 log x for x→ 0 and Φ−1(1− x) ∼

−
√
−2 log(1− x) for x→ 1, I can show that

abias{f̂X,M(x)} ∼ Cmh2 log h−1fX(x), avar{f̂X,M(x)} ∼ fX(x)√
2nh1+mδ

,

where C is a finite positive constant.

Like the TKDE, the MTK suffers an increase in the order of bias and variance

12



over a small region close to the boundaries. The inflation of boundary variance is

a common phenomenon. Both the beta kernel estimator by Chen (1999) and the

Gaussian-copula estimator by Jones and Henderson (2007) share the same property

and the boundary variance of the latter is identical to that of the MTK. Neverthe-

less, as indicated by Chen (1999) and Jones and Henderson (2007), the influence of

slightly-increased orders in the boundary region upon the global property is negligi-

ble. In practice it does not compromise the good performance of the MTK, which is

demonstrated by my simulations below.

2.3.2 Mean integrated square error

I shall now explore the global properties of the MTK, focusing on the weighted

mean integrated squared error (WMISE). Let w(x), x ∈ [0, 1], be some non-negative

weight function. The WMISE is defined as

(2.10) WMISE(f̂X,M) = E

[∫ 1

0

{f̂X,M(x)− fX(x)}2w(x)dx

]
.

Following Jones and Henderson (2007), I set w(x) = φ(Φ−1(x)) to insure the integra-

bility of the MISE. In fact, the WMISE in the X-domain with this particular weight

function is equivalent to the (unweighted) MISE in the Y -domain. Wand, Marron,

and Ruppert (1991) noted that good performance in the Y -domain often translates

into that in the X-domain, which is a main motivation of taking the transforma-

tion approach in the first place. This observation is confirmed by many numerical

investigations, including my own simulations reported below.

To ease exposition, I define Θ = [µ, σ − 1]T . Plugging the asymptotic bias (2.7)

and variance (2.9) of the MTK into the WMISE yields

WMISE(f̂X,M) ≈
∫ 1

0

[{abias(f̂X,M(x))}2 + avar(f̂X,M(x))]w(x)dx

13



=ΘTA1Θ + h2ΘTA2 +
h4A3

4
+

1

2
√
πnh

,

(2.11)

where

(2.12)

A1 =

∫ ∞
−∞

[EYi − y, EY 2
i − y2]T [EYi − y, EY 2

i − y2]f 2
Y (y)dy,

A2 =

∫ ∞
−∞

[EYi − y, EY 2
i − y2]TfY (y)f ′′Y (y)dy,

A3 =

∫ ∞
−∞

{
f ′′Y (y)

}2
dy.

The optimal smoothing parameters, which minimize the asymptotic WMISE

(2.11), are then given by

h0,M =(2
√
π)−1/5

(
A3 −AT

2A
−1
1 A2

)−1/5

n−1/5,

(2.13)

Θ0,M =− h2

2
A−1

1 A2.

(2.14)

It follows that the optimal asymptotic WMISE of the MTK is

(2.15) WMISE0(f̂X,M) =
5

4
(2
√
π)−4/5

(
A3 −AT

2A
−1
1 A2

)1/5

n−4/5.

I show in Appendix A.1 that A3 − AT
2A

−1
1 A2 ≥ 0 with equality when fX is the

uniform distribution.

Note that the optimal parameters for the TKDE, as a special case of MTK with

Θ = 0, are readily obtained as

h0,T =(2
√
π)−1/5A

−1/5
3 n−1/5,

(2.16)
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WMISE0(f̂X,T ) =
5

4
(2
√
π)−4/5A

1/5
3 n−4/5.

(2.17)

Since A1 is positive semi-definite, I have A3 ≥ A3 −AT
2A

−1
1 A2. Thus the MTK has

the usual convergence rate of kernel density estimators and dominates the TKDE

in terms of the WMISE (2.10). Since the two estimators share the same asymp-

totic variance, it is understood that the reduction in the WMISE comes from the

asymptotic bias reduction discussed above.

2.4 Selection of smoothing parameters

It is well known that the performance of kernel density estimations depends cru-

cially on the bandwidths (see, e.g., Jones, Marron, and Sheather (1996a,b) for com-

prehensive reviews of the selection of bandwidth in kernel density estimations). The

MTK requires the selection of smoothing parameters (h, µ, σ). In this section, I

present three automatic methods of smoothing parameter selection.

2.4.1 Plug-in method

I have derived the optimal smoothing parameters (2.13) and (2.14) that minimize

the asymptotic WMISE. One natural course to proceed is to use their sample analogs

in the estimation. This requires estimating the quantities A1,A2 and A3 specified

in (2.12).

Define Gs,t(Y ) = (E[Y s]− Y s)(E[Y t]− Y t) with Gs,0(Y ) = (E[Y s]− Y s), and

(2.18) A
(r)
s,t = E[Gs,t(Y )f

(r)
Y (Y )],

where f
(r)
Y (y) = ∂rfY (y)/∂yr. For simplicity, I denote A

(0)
s,t by As,t. Assuming that
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fY is sufficiently smooth, I can establish via integration by parts that

(2.19) A1 =

A1,1 A1,2

A2,1 A2,2

 , A2 =

[
A

(2)
1,0 A

(2)
2,0

]T
, A3 = A

(4)
0,0.

I opt to estimate these quantities nonparametrically. In particular, they can be

estimated as follows:

(2.20) Â
(r)
s,t =


1

n2br+1

∑n
i=1

∑n
j=1Gs,t(Yi)K

(r)
(
Yi−Yj
b

)
, if (s, t) = (0, 0);

1
n(n−1)br+1

∑n
i=1

∑
j 6=iGs,t(Yi)K

(r)
(
Yi−Yj
b

)
, otherwise,

where K(r)(x) = ∂rK(x)/∂xr and b is the bandwidth. My numerical investigations

suggest that A3 = A
(4)
0,0 is the most difficult to estimate among all A

(r)
s,t ’s. I therefore

choose, according to the rule of thumb, a bandwidth that is optimal for the estimation

of A3, which is given by

b =

(
16
√

2

5

)1/7

× s× n−1/7,

where s =
√

1/n
∑N

i=1(Yi − Ȳ )2 with Ȳ = 1/n
∑n

i=1 Yi. Technical details on the

derivation of the plug-in bandwidth calculation are given in Appendix A.2.

2.4.2 Cross validation

Cross validation is a commonly used method to select smoothing parameters

of kernel estimators. I consider the least square cross validation, whose objective

function is given by

(2.21) CV (h, µ, σ) =

∫ 1

0

(
f̂X,M(x)

)2

w(x)dx− 2

n

n∑
i=1

f̂−iX,M(Xi)w(Xi),

where w(x) is a weight function and f̂−iX,M(Xi) is the “leave-one-out” version of my

proposed estimator f̂X,M evaluated at data point Xi (see, e.g., Wand and Jones

(1995)). As discussed above, setting w(x) = 1 leads to the usual (unweighted)
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cross validation on the X-domain density, while the weighted cross validation, with

w(x) = φ(Φ−1(x)), amounts to conducting the cross validation on the Y -domain

density.

My experiments indicate that in most cases, the weighted and unweighted cross

validation methods tend to yield comparable results, confirming Wand et al’s (1991)

observation that there exists little practical difference in conducting bandwidth se-

lection in the X or Y domain. One notable exception is that when the densities have

poles at the boundaries, the weighted cross validation performs considerably better,

demonstrating the merit of transformation and the benefit of conducting bandwidth

selection in the Y -domain.

I henceforth focus on the weighted cross validation with w(x) = φ(Φ−1(x)). The

second term of (2.21) can be evaluated straightforwardly. Taking the kernel function

K to be the standard Gaussian density, the first term, after some tedious algebra, is

shown to admit the following analytical form:∫ 1

0

(
f̂X,M(x)

)2

φ(Φ−1(x))dx

=

√
h2σ2 + σ2 − h2

2
√
πhσ

/ n∑
i=1

exp

{
−(σ2 − 1)Y 2

i + 2µYi − µ2(h2 + 1)

2(h2σ2 + σ2 − h2)

}2

×
n∑
i=1

n∑
j=1

exp

{
−
σ2(Y 2

i + Y 2
j )− 2h2µ2

2h2σ2
+

[σ2(Yi + Yj)− 2µh2]2

4h2σ2(σ2 + h2σ2 − h2)

}
.

The weighted cross validation is then undertaken by minimizing the objective func-

tion (2.21) with respect to h, µ and σ under the restrictions that h > 0, σ > 0 and

σ2 + h2σ2 − h2 > 0. Note that the last condition is satisfied trivially if σ > 1, which

holds in all my numerical experiments.

Compared with the plug-in method, the cross validation is completely data driven

and does not require estimating unknown quantities. On the other hand, it is com-
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putationally more expensive due to the numerical optimization.

2.4.3 Profile cross validation

I next present a hybrid method of smoothing parameter selection that combines

the benefits of the plug-in and cross validation methods and at the same time is

computationally less demanding.

Recall that among the quantities in (2.12), A3 is the most difficult to estimate.

Also note that A3 is only present in the optimal bandwidth h0,M given by (2.13),

but not in the optimal tuning parameters Θ0,M given by (2.14). This observation

motivates a profile cross validation approach, in which I first solve for Θ0,M (h) as a

function of h and then conduct the cross validation with respect to h alone. Below

I provide a step-by-step description of this approach:

1. Estimate A1 and A2, which do not involve A3, according to (2.19) and (2.20);

2. For a given h, calculate µ(h) and σ(h) according to (2.14);

3. Plug µ(h) and σ(h) into the cross validation objective function (2.21); conduct

cross validation with respect to h.

The advantage of this profile approach is that it avoids the difficulty of estimating

A3 and lowers the dimension of optimization from three in the full cross validation

to one, reducing the computational burden considerably. Regarding the preliminary

bandwidth required in the estimation of A1 and A2, I found that the usual rule of

thumb provides essentially identical results to those obtained under more complicated

selection rules. Hence I used the rule of thumb bandwidth to estimate A1 and A2

in the first step.
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2.5 Simulations

I investigate the finite sample performance of the MTK using Monte Carlo simula-

tions and compare it with the TKDE. I also consider the second beta kernel estimator

of Chen (1999), which is shown to perform better among the two he proposed, and

the Gaussian copula based estimator of Jones and Henderson (2007). I focus my

comparison on these two competing estimators since they are in spirit similar to the

transformation-based estimators in the sense that they all involve locally varying

kernel functions. For the MTK, I experiment with all three methods of smoothing

parameter selection discussed above. The optimal plug-in bandwidth (2.16) is used

for the TKDE. I use the rule of thumb bandwidths, derived by Jones and Henderson

(2007), for the beta kernel estimator and the Gaussian-copula kernel estimator.

I consider eight distributions with bounded support [0, 1]. This set of distribu-

tions, illustrated in Figure 2.1, are designed to capture a wide range of shapes and

features such as asymmetry, skewness, multi-modality, sharp peak and poles at the

boundaries. One may refer to Appendix A.3 for their constructions. I categorize

these distributions into two groups to facilitate the interpretation of simulation re-

sults. The first group includes four distributions whose densities and derivatives

of densities are bounded such that there are no poles throughout their supports.

Density 1 is a bell-shaped symmetric density that vanishes toward the boundaries.

Density 2 is skewed and has more probability mass near the boundaries compared to

density 1. Density 3 is symmetric and bi-modal. Density 4 has a sharp peak in the

middle. The second group contains densities with poles at the boundaries. Density

5 is symmetric with both tails tending to infinity. Density 6 is asymmetric with an

unbounded left tail. Density 7 is bounded with unbounded derivatives at both tails.

It is also asymmetric and bi-modal. Density 8 is bounded, asymmetric and has an
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Figure 2.1: Density plot of distributions used in the simulations

unbounded derivative at the right boundary.

For each distribution, I conduct simulations with sample sizes n = 100 and n =

500. Each experiment is repeated 1,000 times. I evaluate the mean integrated square

errors of the estimators on an equally spaced grid on [0.001, 0.999] with an increment

of 0.001. The MISE of each estimator, averaged across 1,000 repetitions, are reported

in Table 2.1. The corresponding standard deviations are reported in parenthesis. For

each experiment, the estimator with the minimum average MISE is highlighted in

bold font.

Consistent with my theoretical analysis, the MTK generally dominates the TKDE

in my experiments. Among all estimators, the MTK provides the best performance

for six out of eight densities when n = 100, and in seven densities when n = 500. The

20



Table 2.1: Simulation results: Average MISE (all numbers are multiplied by 1,000
to improve readability)

Densities

1 2 3 4 5 6 7 8

Panel 1: n=100

f̂X,T
37.22 58.08 107.33 105.48 106.60 91.06 207.75 40.53

(25.29) (45.83) (43.1) (52.73) (84.44) (82.66) (117.36) (29.62)

f̂X,C2

29.80 26.86 533.95 126.56 317.03 324.50 260.74 35.06

(20.08) (18.83) (53.75) (56.9) (49.42) (61.9) (63.16) (18.93)

f̂X,GC
32.19 27.14 394.08 246.38 110.16 93.03 552.04 24.77

(23.41) (18.56) (40.52) (81.07) (70.15) (78.2) (107.45) (17.39)

f̂X,M , plug-in
30.67 40.50 106.92 93.42 75.07 75.22 206.38 29.96

(24.85) (35.41) (45.11) (40.36) (69.12) (74.98) (109.81) (23.23)

f̂X,M , CV
38.67 36.33 93.65 101.62 81.81 98.03 147.76 31.69

(49.46) (43.33) (76.74) (90.74) (87.23) (121.13) (106.48) (41.66)

f̂X,M , profile CV
38.43 35.96 96.95 101.49 97.94 109.46 164.67 33.96

(41.48) (43.38) (80.27) (87.33) (103.46) (106.13) (115.9) (41.32)

Panel 2: n=500

f̂X,T
11.07 16.21 26.55 30.12 29.49 27.00 52.06 11.63

(6.65) (9.77) (10.87) (12.09) (22.54) (23.12) (27.53) (6.65)

f̂X,C2

8.82 14.26 315.87 53.83 213.39 223.30 125.34 13.24

(5.52) (6.28) (40.00) (18.47) (21.92) (25.72) (22.4) (5.53)

f̂X,GC
10.22 8.92 229.06 137.77 33.43 29.08 253.58 7.98

(6.72) (5.38) (20.39) (34.99) (21.84) (22.86) (37.89) (5.41)

f̂X,M , plug-in
8.16 10.16 26.13 28.09 18.80 17.26 50.99 7.67

(5.76) (6.62) (10.88) (11.92) (16.73) (15.45) (24.65) (5.05)

f̂X,M , CV
7.79 9.73 24.25 28.47 17.71 24.78 42.26 5.51

(9.89) (7.03) (15.15) (15.41) (17.15) (20.72) (27.1) (5.82)

f̂X,M , profile CV
9.69 9.37 24.45 28.57 20.34 24.63 41.41 7.42

(9.9) (9.39) (13.07) (17.05) (27.29) (20.88) (24.41) (8.04)
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three methods of smoothing parameter selection provide comparable performance in

many cases. When n = 100, the plug-in method stands out, while when n = 500,

the cross validation methods provide better overall results.

Comparison across individual experiments provides some useful insights into the

relative strength of the estimators. When n = 100, the beta estimator outperforms

others for the first two densities, which are “well behaved” in the sense that they

are smooth, uni-modal and have no poles in the density or its derivative. (This is

consistent with an observation by Jones and Henderson (2007) that the beta kernel

estimator is most suitable for smooth bounded densities.) The MTK estimators

outperform the others substantially in densities 3 and 4, which are marked by abrupt

features. For the densities in group two with unbounded tails or derivatives, the MTK

estimators clearly outperform their competitors in densities 5-7. Not surprisingly,

the Gaussian copula estimator provides the best performance in density 8, which is

a conditional Gaussian copula density. Nonetheless, the Gaussian copula estimator

outperforms the MTK estimators only slightly. These results confirm my analyses

that the MTK is particularly suitable for densities with poles at the boundaries.

The overall pattern remains similar in experiments with n = 500, wherein the

MTK estimators score the best performance in seven densities. The only exception

is density 2, where the Gaussian copula estimator slightly outperforms the MTK

estimators. Remarkably, the MTK estimators perform best in density 8, for which

the Gaussian copula density is expected to be the most competitive estimator. For

illustration, I plot in Appendix A.4 a random example of estimated densities with

n = 500. Since the MTK estimates resulted from different methods of bandwidth

selection are rather similar, I report only those obtained from the profile bandwidth

selection.

In summary the MTK dominates the TKDE and provides comparable and often
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superior performance compared with two competing estimators. The three proposed

methods of smoothing parameter selection appear to perform satisfactorily. Since

the plug-in method has the smallest variation and is computationally inexpensive,

it is recommended for general purpose applications, especially when the same size is

small.

2.6 Empirical example

In this section I apply the MTK and other estimators to a real data set. The data

contain the ratio of white student enrollment of 56 public schools in Nassau County,

New York for the 1992-1993 school year. Estimating the density of white student

enrollment ratios has been of interest to assess the common perception in the US in

the 90’s that public schools were still strongly segregated by race, despite political

effort to integrate them. Since ratios are restricted on the [0, 1] interval, this data

set was used as an example to illustrate boundary bias problem in Simonoff (1996)

and investigated by, among others, Geenens (2014) to compare kernel estimators of

densities with bounded supports.

The same set of kernel estimators and methods of smoothing parameter selection

as used in the simulations are applied to the school ratio data. The estimated

densities are plotted in Figures 2.2 and 2.3 below, superimposed on the histogram

of the data with individual observations marked on the horizontal axis. Tabulation

of the data shows that 50% of the data fall in the interval of [0.85, 0.96], which is

captured by the apparent peak of the histogram around 0.9. Only 7% of the data

are larger than 0.96 with a maximum at 0.976, causing a sharp decline of the density

toward the top end of the distribution. There are two schools with exceptionally low

white student ratios (less than 1%), suggesting a minor peak near the low end of the

distribution. The estimated densities by the MTK with three different bandwidth
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selection methods, which are plotted in Figure 2.2, all capture the sharp peak and

abrupt decline of the density near the right boundary. The two estimates obtained

under the plugin and the profile-CV methods show a minor peak at the low end,

while that under the CV method fails to do so. These results are consistent with my

findings in the simulations that the plugin and profile CV methods tend to perform

better than the full CV method when the sample size is small.

student ratio
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Figure 2.2: MTK estimates

Figure 2.3 reports the results from the TKDE and the beta and Gaussian copula

estimators. The overall shape of the TKDE estimate is rather similar to those from

the MTK, except for the explosion at the low end. As discussed above, this erratic

tail behavior is caused by the multiplication factor of the TKDE, which tends to
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Figure 2.3: Other estimates

infinity towards the boundaries. The beta estimator appears to oversmooth the

data, underestimating the mode around 0.9 and the minor peak near the low end

while overestimating the density near the right boundary. The Gaussian copula based

estimator captures both tails of the densities well, but appears to underestimate the

mode of the density.
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3. CONSISTENT TRANSFORMATION KERNEL ESTIMATION OF COPULA

DENSITIES

3.1 Introduction

Copula has been extensively used in statistics and econometrics nowadays. Given

a bivariate random vector (X, Y )>, denote its associated joint cumulative distribution

(cdf) by F and the corresponding marginal distributions by FX and FY . According

to Sklar’s theorem (Sklar 1959), we have

F (x, y) = C
(
FX(x), FY (y)

)
,

where C is termed copula function. If FX and FY are continuous, then C is unique.

Copula eases multivariate modeling by two independent and convenient steps: first

modeling each marginal distribution and second using a copula to couple them for

the desired joint distribution. It is also known that copula characterizes the full

dependence structure between the components of (X, Y )>. As a result of these

advantages, copula has found widespread applications in modern quantitative finance

and insurance. See Joe (1997) and Nelsen (2006) for comprehensive introductions of

copula method.

A bivariate copula function C is defined on the support I = [0, 1]2 and is a

cumulative distribution function of the random vector (U, V )> where U = FX(X)

and V = FY (Y ). This definition comes naturally from the above Sklar’s theorem in

conjunction with the probability integral transformation which implies both U and V

are uniformly distributed, i.e. U[0,1]. If C is absolutely continuous, then its associated

density function (pdf) exists and it admits the form

c(u, v) =
∂2C

∂u∂v
(u, v),
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where c is called copula density. Frequently, researchers choose to model c directly

due to its desirable merits. For example, Geenens, Charpentier, and Paindaveine

(2014) highlight that copula density is “more readily interpretable” in many aspects;

moreover, in copula goodness-of-fit problems, Fermanian (2005, 2012) find it is easier

to focus on copula density to design distribution-free tests. Based on an observed

bivariate random sample
{

(Xi, Yi)
>, i = 1, · · · , n

}
, estimating copula density c es-

sentially amounts to fitting a bivariate distribution. In practice, the estimation pro-

cedure depends on how strong assumptions we are willing to make. The main body

of the literature adopts parametric or semiparametric methods, where one assumes a

parametric family to the copula density and choose to treat the marginal distributions

either parametrically or nonparametrically, see for example, Nelsen (2006), Genest,

Ghoudi, and Rivest (1995) and Chen, Fan, and Tsyrennikov (2006). However, they

may lack flexibility and induce misspecification error. Therefore, the flexible non-

parametric method, which is free of any distributional assumption, is needed as a

complement. For these reasons, I attempt to address nonparametric estimation of

copula density c in this article. To date, various nonparametric techniques have

been adapted to this area, to name a few, splines methods (Shen, Zhu, and Song

2008; Kauermann, Schellhase, and Ruppert 2013), wavelets (Hall and Neumeyer

2006; Genest, Masiello, and Tribouley 2009; Autin, Pennec, and Tribouley 2010),

Bernstein polynomials (Bouezmarni, Rombouts, and Taamouti 2010; Bouezmarni,

El Ghouch, and Taamouti 2013; Janssen, Swanepoel, and Veraverbeke 2014), and

maximum penalized likelihood (Qu and Yin 2012).

Kernel type copula density estimators seem to be less developed in the literature.

Recall that c is the density function of the
(
U = FX(X), V = FY (Y )

)>
. Typically,

a genuine sample
{

(Ui, Vi)
>, i = 1, · · · , n

}
is unavailable because FX and FY are

unknown. In the copula literature, it is a common practice to use the “pseudo-
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sample” instead, namely

(3.1) Ûi =
n

n+ 1
F̂n,X(Xi) and V̂i =

n

n+ 1
F̂n,Y (Yi),

where F̂n,X(x) = 1
n

∑n
i=1 1{Xi≤x} is the empirical distribution of FX , and similarly

is F̂n,Y defined of FY . The rescaling factor n
n+1

is placed here to guarantee all the

data points lie in the interior of I. In other words, the pseudo-sample is formed by

the ranks of
{

(Xi, Yi)
>, i = 1, · · · , n

}
divided by n + 1, thus always takes values in{

1
n+1

, 2
n+1

, · · · , n
n+1

}
for each margin. The pseudo-sample

{
(Ûi, V̂i), i = 1, · · · , n

}
is

then treated as if actually observed for estimation. From the pseudo-sample, the

standard kernel estimator is given by

(3.2) ĉ(u, v) =
1

n|H|1/2
n∑
i=1

K

H−1/2

 u− Ûi

v − V̂i


 ,

whereH is a symmetric positive-definite bandwidth matrix andK is bivariate kernel

function. See Wand and Jones (1995) for details. However, at least two reasons fail

the standard kernel estimator for copula density estimation. First, copula density

admits the bounded support I. It is well known that the standard kernel estimator

is inconsistent on the boundaries of I, especially in the four corners; see Charpen-

tier, Fermanian, and Scaillet (2006) for explicit asymptotic bias formulas. Second,

many parametric copula densities are unbounded; for example, the commonly used

Gaussian copula density is unbounded in two corners if certain correlation is present.

This unboundedness feature violates the assumptions of standard kernel estimator

and thus leads to inconsistent estimates.

To correct boundary biases, an early mirror reflection estimator is adopted in Gi-

jbels and Mielniczuk (1990). It tries to obtain some artificial data points by mirror

reflecting the sample with respect to all borders and corners. However, this method
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only works well when the underlying copula density has null first derivatives on

boundaries. Transformation-based kernel estimator (TKE) arises as a natural solu-

tion for boundary biases correction and it is considered in Charpentier, Fermanian,

and Scaillet (2006) and is further improved in Geenens, Charpentier, and Paindav-

eine (2014). This transformation idea dates back to Wand, Marron, and Ruppert

(1991) and Marron and Ruppert (1994) in density estimation. Specifically, it is

a two-step procedure. First, it employs the Probit transformation that maps the

bounded support I to the unbounded support R2, where the transformed density

is finite and the standard kernel estimator can be applied free of boundary biases.

Second, the desired copula density estimator is obtained after the back transforma-

tion. The TKE is shown to be asymptotically consistent, however in most cases, it

suffers erratic tail behaviors caused by the unbounded multiplier on the boundaries

associated with the back transformation. This is a serious concern in practice since

copula analyses are mostly used in risk management, in which reliable tail estimates

are of crucial importance.

In this article, I propose a modified transformation-based kernel estimator (MTK)

to overcome this drawback of the TKE. My solution employs a smooth infinitesimal

tapering device to mitigate the unpleasant influences of the unbounded multiplier.

Moreover, it incorporates an interaction parameter to further allow directional ta-

pering since copula densities are often stretched along the diagonals of I. I derive

the asymptotic properties of the MTK and demonstrate that it dominates the TKE

in terms of asymptotic mean integrated square error. Based on my theoretical anal-

yses, I propose two practical methods of selecting optimal smoothing parameters,

which are computationally simple. I further conduct Monte Carlo simulations to

demonstrate its superior finite sample performance. The MTK produces a bona fide

density. One appealing property is that it retains the simplicity of the TKE with the
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fixed Probit transformation and a single global bandwidth, in contrast to data driven

transformation or locally varying bandwidths. The other particularly appealing prop-

erty is that for Gaussian copulas, the MTK obtains a higher order convergence rate.

Consequently, it yields outstanding performance when the underlying copulas are

Gaussian or near Gaussian, which are practically plausible scenarios in the analyses

of financial data. Therefore, my method provides a simple copula density estimator

for the practitioners who seek both flexibility and excellent performance.

The rest text proceed as follows. In Section 3.2, I briefly describe the TKE and

then formally introduce the MTK under diagonal bandwidth matrix. In Section 3.3,

I derive the asymptotic properties of the MTK, followed by two practical methods

to select the optimal smoothing parameters in Section 3.4. I show the properties of

the MTK under Gaussian copulas in Section 3.5. Extensions of the MTK to non-

diagonal bandwidth matrix are considered in Section 3.6. I report simulation results

in Section 3.7 and apply the MTK to three real world datasets in Section 3.8. Some

proofs are gathered in Appendix B.

3.2 Estimator

3.2.1 Preliminaries

Copula density c is the pdf of random vector (U, V )>, which admits the bounded

support I = [0, 1]2, thus the standard kernel estimator suffers boundary biases prob-

lem. The transformation-based kernel estimator (TKE) is hereby proposed and its

properties are discussed in Charpentier, Fermanian, and Scaillet (2006) and Geenens,

Charpentier, and Paindaveine (2014).

Consider the Probit transformation, i.e.

S = Φ−1(U) and T = Φ−1(V ),
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where Φ is the cdf of standard Gaussian distribution and Φ−1 is the corresponding

quantile function. Let g be the joint pdf of (S, T )>. The simple change of variable

yields

(3.3) g(s, t) = c(Φ(s),Φ(t))φ(s)φ(t), ∀(s, t) ∈ R2

where φ is the pdf of standard Gaussian distribution. Since U and V are U[0,1], both S

and T follow the standard Gaussian distribution. Though this does not imply (S, T )>

is distributed to bivariate Gaussian distribution (only when C is Gaussian copula), we

expect g well-behaved and easy for estimation. Based on the transformed genuine

sample
{(
Si = Φ−1(Ui), Ti = Φ−1(Vi)

)
, i = 1, · · · , n

}
, the density g in ST -domain

can be estimated by standard kernel estimator, denoted by ĝ, free of boundary bias

for two reasons. First, the support of the transformed random vector (S, T )> becomes

the unconstrainedR2. Second, even though cmay be unbounded, under Assumptions

1-3 provided in Appendix B.1, g together with its partial derivatives up to the second

order are uniformly bounded on R2 (Geenens, Charpentier, and Paindaveine 2014,

Lemma A.1). Then according to (3.3), the TKE is readily restored after the back

transformation and I have

(3.4) ĉt(u, v) =
ĝ
(
Φ−1(u),Φ−1(v)

)
φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

) , ∀(u, v) ∈ (0, 1)2.

(Geenens, Charpentier, and Paindaveine 2014, Section 2.1) note that many desirable

properties of ĝ, such as uniformly weak or strong asymptotic consistency, are retained

to ĉt after the back transformation. If ĝ performs reasonably well, then ĉt shall

produce acceptable estimates.

Since the genuine sample
{

(Ui, Vi)
>, i = 1, · · · , n

}
is unavailable, one has to

use the transformed pseudo-sample

{(
Ŝi = Φ−1(Ûi), T̂i = Φ−1(V̂i)

)
, i = 1, · · · , n

}
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instead. Formally, the TKE is defined as

(3.5) ĉt(u, v) =
1

n|H|1/2 φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

) n∑
i=1

K

H−1/2

 Φ−1(u)− Ŝi

Φ−1(v)− T̂i


 ,

whereH is a symmetric positive-definite bandwidth matrix, |H| is the corresponding

determinant, andK is a bivariate kernel function. The influence by working with the

pseudo-sample instead of the genuine one is asymptotically negligible. This is intu-

itively understandable because the empirical distribution function is
√
n-consistent,

thus converges faster than the subsequent kernel density estimator. In practice,

some consequences should be expected, sometimes even in an advantageous manner.

For example, obviously the pseudo-sample is more “uniform”; this usually leads to

smaller variance of the estimate at a given point. One may refer to Charpentier,

Fermanian, and Scaillet (2006) and Genest and Segers (2010) for detailed demon-

strations.

3.2.2 Modified transformation-based kernel estimator

Despite that the TKE is designed to address the boundary biases issue induced

by the bounded support, it seems inadequate for satisfactory estimates and needs

further improvement. This can be noticed by looking at the multiplier associated

with the back transformation; from (3.4), it has the form
(
φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

))−1

.

It is obvious that, when u → 0 and/or v → 0, the multiplier grows unboundedly,

resulting in possibly erratic behaviors for the TKE. For instance, in practice, even

slight biases of ĝ at the tails will be magnified greatly by the multiplier; therefore

large biases could be introduced and we may observe ĉt exploding on the boundaries,

especially in certain corners of I.

This motives us to propose a modified transformation-based kernel estimator
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(MTK) which implements further bias correction upon the TKE and at the same

time maintains its simplicity. This new estimator is inspired by the idea that the

undesirable consequences induced by the multiplier may be alleviated by the ta-

pering method. Let φ1+θ1(·) be the pdf of the Gaussian distribution with mean

0 and standard deviation 1 + θ1. Specifically, I deflate the values of the original

multiplier on the boundaries by replacing it with an infinitesimal tampered factor(
φ1+θ1

(
Φ−1(u)

)
φ1+θ1

(
Φ−1(v)

))−1

where θ1 > 0 and I assume θ1 → 0 as the sample

size n→∞. In order for a simplified form for analysis, I resort to its equivalent by

noting that

(
φ1+θ1

(
Φ−1(u)

)
φ1+θ1

(
Φ−1(v)

))−1

∼
exp

(
−θ1

(
{Φ−1(u)}2 + {Φ−1(v)}2

))
φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

) .

Since the copula density is often stretched along one of the diagonals of I if some

dependence of (X, Y )> is present, it is desirable that the degree of tapering adapts

to the orientation of the copula density. This motivates us to further introduce

an interaction term that allows directional tapering. Therefore, I finally have my

tapered multiplier as

exp
(
−θ1

(
{Φ−1(u)}2 + {Φ−1(v)}2

)
− θ2Φ−1(u)Φ−1(v)

)
φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

) .

Similarly, I require θ2 → 0 as n→∞. Intuitively, this tapering effect is negligible in

the interior of I and only affects the estimates near the boundaries. The two tuning

parameters Θ = (θ1, θ2)> smoothly control the amount of tapering thus need to be

chosen carefully for good performance.

From this tapered multiplier, my proposed MTK is formally defined as, for any
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(u, v) ∈ (0, 1)2,

ĉm(u, v) =
exp

(
−θ1

(
{Φ−1(u)}2 + {Φ−1(v)}2

)
− θ2Φ−1(u)Φ−1(v)

)
nη|H|1/2 φ

(
Φ−1(u)

)
φ
(
Φ−1(v)

)
n∑
i=1

K

H−1/2

 Φ−1(u)− Ŝi

Φ−1(v)− T̂i


 ,

where H is the symmetric positive-definite bandwidth matrix and K is a bivariate

kernel function. To ensure ĉm actually integrates to one, the normalization term η

is thus defined as

η =

∫
I

exp
(
−θ1

(
{Φ−1(u)}2 + {Φ−1(v)}2

)
− θ2Φ−1(u)Φ−1(v)

)
n|H|1/2 φ

(
Φ−1(u)

)
φ
(
Φ−1(v)

)
n∑
i=1

K

H−1/2

 Φ−1(u)− Ŝi

Φ−1(v)− T̂i


 dudv.

A common choice for K is the Gaussian kernel function, i.e.

(3.6) K(x) = (2π)−1 exp

(
−1

2
x>x

)
.

Gaussian kernel function have many appealing properties; see, for example, Chaud-

huri and Marron (1999) in the univariate setting. Specially in my case, it provides an

analytical form for the normalization term η, as we will see in the following. There-

fore, I stick to Gaussian kernel function in this article. This choice is also in line

with Charpentier, Fermanian, and Scaillet (2006) and Geenens, Charpentier, and

Paindaveine (2014).

For simplicity and tractability, I first consider H = h2I for some h > 0. This

setup eases the subsequent theoretical analysis and at the same time is qualitatively

no different from a more general non-diagonal H , which will be revisited in Section
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6. Then the MTK is simplified as

(3.7)

ĉm1(u, v) =
exp

(
−θ1

(
{Φ−1(u)}2 + {Φ−1(v)}2

)
− θ2Φ−1(u)Φ−1(v)

)
nηh2φ

(
Φ−1(u)

)
φ
(
Φ−1(v)

)
n∑
i=1

φ

(
Φ−1(u)− Ŝi

h

)
φ

(
Φ−1(v)− T̂i

h

)
,

and after some tedious algebra, the normalization factor is

η =
1

nδ

n∑
i=1

exp

{
−(4h2θ2

1 − h2θ2
2 + 2θ1)(Ŝ2

i + T̂ 2
i ) + 2θ2ŜiT̂i

2δ2

}
,

where

δ =
√
h4(4θ2

1 − θ2
2) + 4h2θ1 + 1.

3.3 Asymptotic properties

The asymptotic properties of the ĉm1 are derived. To proceed, some notations

are introduced. Let ĉt1 be the simplified TKE under H = h2I. Define ĉ∗m1 and ĉ∗t1

analogously to ĉm1 and ĉt1 respectively but use the transformed genuine sample{(
Si = Φ−1(Ui), Ti = Φ−1(Vi)

)
, i = 1, · · · , n

}
. These two genuine versions, though

infeasible, facilitate my theoretical analysis. Given a function f(x, y), denote its

partial derivative by f (r1,r2)(x, y) = ∂(r1+r2)f(x, y)/∂xr1∂yr2 if it exists.

Some known properties about the TKE in the literature are re-stated here since

they are closely related to the MTK as I will show shortly. Charpentier, Fermanian,

and Scaillet (2006) first provide analyses of the ĉ∗t1 and then Geenens, Charpentier,

and Paindaveine (2014) formally study the ĉt1. From their results, if the Gaussian

kernel function (3.6) is used and under Assumptions 1-3 and 5, the following point-

wise asymptotic normality results hold. First, in the ST -domain,

(3.8)
√
nh2

(
ĝ(s, t)− g(s, t)− bg(s, t)

) d−→ N
(

0, σ2
g(s, t)

)
, ∀(s, t) ∈ R2,
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where bg(s, t) =
h2(g(2,0)+g(0,2))(s,t)

2
and σ2

g(u, v) = g(s,t)
4π

. This immediately implies

that, in the UV -domain,

(3.9)
√
nh2

(
ĉt1(u, v)− c(u, v)− bt1(u, v)

) d−→ N
(
0, σ2

t1(u, v)
)
, ∀(u, v) ∈ (0, 1)2,

where bt1(u, v) =
h2(g(2,0)+g(0,2))(Φ−1(u),Φ−1(v))

2φ(Φ−1(u))φ(Φ−1(v))
and σ2

t1(u, v) = c(u,v)
4πφ(Φ−1(u))φ(Φ−1(v))

. Note

that bt1(u, v) and
σ2
t1(u,v)

nh2
are exactly the asymptotic bias and variance for the ĉ∗t1, as

shown in Charpentier, Fermanian, and Scaillet (2006). These results formally prove

the effect of resorting to the pseudo-sample is asymptotically negligible. For detailed

proofs, one may refer to (Geenens, Charpentier, and Paindaveine 2014, Proposition

3.1 and Theorem 3.1).

Now define

(3.10) J(u, v;h,Θ) =
1

η
exp

(
−θ1

(
{Φ−1(u)}2 + {Φ−1(v)}2

)
− θ2Φ−1(u)Φ−1(v)

)
.

Then the MTK can be rewritten as

(3.11) ĉm1(u, v) = J(u, v;h,Θ)ĉt1(u, v).

Thus, it is seen that the MTK introduces a multiplicative adjustment to the TKE.

The adjustment J(u, v;h,Θ) is controlled by the tuning parameters Θ. In particular,

when Θ = 0, J(u, v;h,Θ) = 1 and the MTK reduces to the TKE.

Consider first the ĉ∗m1. The construction (3.11) is readily adapted to ĉ∗m1(u, v) =

J∗(u, v;h,Θ)ĉ∗t1(u, v) which eases the analysis. Given a fixed point (u, v) ∈ (0, 1)2, a

Taylor expansion of J∗(u, v;h,Θ) with respect to Θ at zero yields

(3.12) J∗(u, v;h,Θ) = 1 + Θ>B
(
Φ−1(u),Φ−1(v)

)
+ o (Θ) ,
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where

B(s, t) =

 2− s2 − t2

ESiTi − st

 .

Since the asymptotic properties of ĉ∗t1 are known, then it follows that

(3.13)

abias
{
ĉ∗m1(u, v)

}
= bm1(u, v)

≡
h2
(
g(2,0) + g(0,2)

) (
Φ−1(u),Φ−1(v)

)
2φ(Φ−1(u))φ(Φ−1(v))

+ Θ>B
(
Φ−1(u),Φ−1(v)

)
c(u, v),

and

(3.14) avar
{
ĉ∗m1(u, v)

}
=
σ2
m1(u, v)

nh2
≡ c(u, v)

4πnh2φ(Φ−1(u))φ(Φ−1(v))
.

Similarly, the effect of the pseudo-sample goes unnoticed asymptotically for ĉm1 as

well, which is summarized in the following theorem.

Theorem 1. Under Assumptions 1-5, the MTK estimator ĉm1 is such that for any

(u, v) ∈ (0, 1)2,

√
nh2

(
ĉm1(u, v)− c(u, v)− bm1(u, v)

) d−→ N
(
0, σ2

m1(u, v)
)
,

where bm1(u, v) and σ2
m1(u, v) are defined as above.

Proof. See Appendix B.2.

Compared to the ĉt1, it is seen that the ĉm1 introduces an additional bias cor-

rection term that involves the tuning parameters Θ here. The asymptotic variance,

however, remains the same. Interestingly, the variance formula is shared by may other

copula density estimators, such as the kernel estimator c̃(τ,1) in Geenens, Charpen-

tier, and Paindaveine (2014) as well as the Beta kernel estimator and the Bernstein

estimators derived in Janssen, Swanepoel, and Veraverbeke (2014).
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I explore the global properties of the MTK, focusing on the weighted mean in-

tegrated squared error (weighted MISE). Let w(u, v) be some non-negative weight

function, then the weighted MISE is defined as

(3.15) wmise {ĉ} = E
{∫
I

(
ĉ(u, v)− c(u, v)

)2
w(u, v)dudv

}
.

In this article, I set w(u, v) = φ(Φ−1(u))φ(Φ−1(v)) to guarantee the integrability of

the weighted MISE. In fact, the weighted MISE in the UV -domain with this partic-

ular weight function amounts to the unweighted MISE in the ST -domain. Wand,

Marron, and Ruppert (1991) note that the good performance in the transformed

domain is usually translated into the original domain. This observation has been

confirmed by many numerical experiments, including my simulations reported be-

low. It is known that the asymptotic weighted MISE is equal to the sum of weighted

integrated squared bias and weighted integrated variance. Thus, I have

(3.16) wmise {ĉm1} ≈
h4

4
Γ3 + h2Θ>Γ2 + Θ>Γ1Θ +

1

4πnh2
,

where

(3.17)

Γ1 =

∫
R2

B(s, t)B(s, t)>g2(s, t)dsdt

Γ2 =

∫
R2

B(s, t)g(s, t)
(
g(2,0)(s, t) + g(0,2)(s, t)

)
dsdt

Γ3 =

∫
R2

(
g(2,0)(s, t) + g(0,2)(s, t)

)2

dsdt.

Then the optimal smoothing parameters, which minimize (3.16), are given by

(3.18) h0,m1 =

[
1

2π(Γ3 − Γ>2 Γ−1
1 Γ2)

]1/6

n−1/6,

and

(3.19) Θ0,m1 = −
h2

0,m1

2
Γ−1

1 Γ2.
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It follows that the optimal asymptotic weighted MISE is

(3.20) wmise0 {ĉm1} ≈
1

4
(2π)−2/3 (Γ3 − Γ>2 Γ−1

1 Γ2)1/3n−2/3.

In Appendix B.2, I show that Γ3 − Γ>2 Γ−1
1 Γ2 ≥ 0; therefore, h0,m1 is generally well-

defined. Moreover, h0,m1 and Θ0,m1 satisfy the conditions required for Theorem 1.

The related results for the TKE, as a special case of the MTK with Θ = 0, are

readily obtained as

h0,t =

[
1

2πΓ3

]1/6

n−1/6

wmise0 {ĉt} ≈
1

4
(2π)−2/3 Γ

1/3
3 n−2/3.

Since Γ1, by construction, is positive-semidefinite, it follows that Γ>2 Γ−1
1 Γ2 ≥ 0.

Therefore, the MTK dominates the TKE in terms of the asymptotic weighted MISE

(3.16), and has the usual convergence rate in bivariate kernel density estimation.

Since the two estimators share the same asymptotic variance, it is understood that

the reduction in the asymptotic weighted MISE comes from the bias correction term

mentioned above.

3.4 Smoothing parameters selection

3.4.1 Plug in method

It is well known that smoothing parameters are crucial for kernel density esti-

mators. The MTK, more precisely ĉm1 here, requires the selection of bandwidth h

together with tuning parameters Θ. I have derived the optimal h0,m1 and Θ0,m1, see

(3.18) and (3.19), which minimize the asymptotic weighted MISE (3.16). Thus, an

immediate plug in method is replacing the unknown quantities there by the corre-

sponding sample analogs. This requires estimations of Γ1, Γ2 and Γ3 specified by

(3.17) in ST -domain.
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The estimation of Γ3 has been studied in Wand and Jones (1995) and Duong

and Hazelton (2003). Define ψr1,r2 =
∫
R2 g

(r1,r2)(s, t)g(s, t)dsdt. Then Γ3 can be

decomposed as

Γ3 = ψ4,0 + ψ0,4 + 2ψ2,2.

This formulation is based on the fact that

∫
R2

g(r1,r2)(s, t)g(r′1,r
′
2)(s, t)dsdt =


(−1)r1+r2ψr1+r′1,r2+r′2

if
∑

i=1,2 ri + r′i is even

0 otherwise

if the density g is sufficiently smooth; see Wand and Jones (1995) for the proof. Since

ψr1,r2 admits the expectation form E
(
g(r1,r2)(Si, Ti)

)
, this motives us to estimate it

nonparametrically as

ψ̂r1,r2 =
1

n2

n∑
i=1

n∑
j=1

K
(r1)
b

(
Ŝi − Ŝj

)
K

(r2)
b

(
T̂i − T̂j

)
,

where b is the associated preliminary bandwidth, Kb(x) = K(x/b)/b and K
(r)
b =

drKb(x)/dxr. Following Duong and Hazelton (2003), I use the product kernel for

simplicity, moreover, the univariate Gaussian kernel K(x) = φ(x) is used as usual.

Then Γ3 can be estimated term by term as above, and I have

(3.21)

Γ̂3 =
1

n2

n∑
i=1

n∑
j=1

{
K

(4)
b

(
Ŝi − Ŝj

)
Kb

(
T̂i − T̂j

)
+ 2K

(2)
b

(
Ŝi − Ŝj

)
K

(2)
b

(
T̂i − T̂j

)
+Kb

(
Ŝi − Ŝj

)
K

(4)
b

(
T̂i − T̂j

)}
The estimations of Γ1 and Γ2 are easier. Both can be easily written as

Γ1 = E
(
B(Si, Ti)B(Si, Ti)

>g(Si, Ti)
)

Γ2 = E
(
B(Si, Ti)(g

(2,0)(Si, Ti) + g(0,2)(Si, Ti))
)
.
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Thus I have them estimated nonparametrically by

(3.22) Γ̂1 =
1

n2

n∑
i=1

n∑
j=1

B
(
Ŝi, T̂i

)
B>

(
Ŝi, T̂i

)
Kb

(
Ŝi − Ŝj

)
Kb

(
T̂i − T̂j

)
and

(3.23)

Γ̂2 =
1

n2

n∑
i=1

n∑
j=1

B
(
Ŝi, T̂i

){
K

(2)
b

(
Ŝi − Ŝj

)
Kb

(
T̂i − T̂j

)
+Kb

(
Ŝi − Ŝj

)
K

(2)
b

(
T̂i − T̂j

)}
,

where b, Kb and K
(2)
b are similarly defined as above.

Consequently, the desired smoothing parameters choices are given by

(3.24) ĥ0,m1 =

[
1

2π(Γ̂3 − Γ̂>2 Γ̂−1
1 Γ̂2)

]1/6

n−1/6 and Θ̂0,m1 = −
ĥ2

0,m1

2
Γ̂−1

1 Γ̂2.

Since Γ3 is the most difficult to estimate, the choice of b is directed to Duong and

Hazelton (2003), which is optimal for Γ̂3. Meanwhile this choice provides precise

enough Γ̂1 and Γ̂2. Note that I use the same preliminary bandwidth b in Γ̂−1
1 , Γ̂2

and Γ̂3. This is to avoid the situations where Γ̂3 − Γ̂>2 Γ̂−1
1 Γ̂2 is negative, and thus

makes ĥ0,m1 invalid (Duong and Hazelton 2003).

3.4.2 Profile weighted cross validation

I provides an alternative way to select the smoothing parameters for the MTK.

Least square cross validation is a commonly used tool for kernel density estimators,

whose objective function is given by

(3.25) WCV (h, λ,Θ) =

∫
I

(
ĉm(u, v)

)2
w(u, v)dudv − 2

n

n∑
i=1

ĉ−im

(
Ûi, V̂i

)
w
(
Ûi, V̂i

)
,

where w(u, v) is a weight function and ĉ−im

(
Ûi, V̂i

)
is the “leave-one-out” version of

the ĉm evaluated at the pseudo-data point
(
Ûi, V̂i

)
. As discussed earlier, setting

w(u, v) = 1 leads to the unweighted cross validation in the UV -domain, while set-
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ting w(u, v) = φ(Φ−1(u))φ(Φ−1(v)) amounts to the unweighted cross validation in

the ST domain. My numerical experiments indicate that, for copula density esti-

mation, the weighted cross validation performs considerably better, demonstrating

the merit of smoothing parameters selection in the ST -domain. Therefore, I use

the weight function w(u, v) = φ(Φ−1(u))φ(Φ−1(v)) hereafter. The second term of

(3.25) can be evaluated straightforwardly. If taking the Gaussian kernel (3.6), the

first term is shown to admit an analytical form, which is presented in Appendix B.3.

However, a direct implementation of the weighted cross validation with respect to

(h,Θ) seems impractical because it requires a difficult 3-dimensional minimization

procedure. This motivates us to propose the profile weighted cross validation.

The profile weighted cross validation can be considered as a hybrid method that

combines the weighted cross validation and the theoretical asymptotic results. Recall

that I have derived Θ0,m1 = −h20,m1

2
Γ−1

1 Γ2. If in the first place, I have Γ1 and Γ2

estimated as in (3.22) and (3.23), then I can treat Θ0,m1 as a known function of h

and conduct the weighted cross validation with respect to h alone. Below I provide

a step-by-step description of this method:

• set Θ0,m1(h) = −h2

2
Γ̂−1

1 Γ̂2;

• plug Θ0,m1(h) into (3.25), conduct the minimization with respect to h and

obtain ĥ0,m1.

This procedure lowers the dimension of numerical optimization from three to one,

reducing the computational burden considerably.

3.5 Higher order improvement for Gaussian copulas

If the underlying copula C is Gaussian copula, the transformed density g in the

ST -domain is the pdf of bivariate Gaussian distribution. Let ρ be the associated
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correlation coefficient. If I set Θ = −h2

2
Γ−1

1 Γ2 according to (3.19), namely

(3.26) θ1 =
1 + ρ2

(1− ρ2)2

h2

2
and θ2 = − 4ρ

(1− ρ2)2

h2

2
,

it is easy to check that the asymptotic bias term bm1(u, v) in (3.13) vanishes for any

(u, v) ∈ (0, 1)2 regardless of the value of h. In fact, under Gaussian copulas, the

ĉm1 reduces the asymptotic bias from the order O
(
h2
)

to the order O
(
h4
)
. To see

this, I first consider the ĉ∗m1 as usual. Note that the bivariate Gaussian density is

sufficiently smooth; thus it guarantees the subsequent higher order approximations

are legitimate. Following the arguments in Charpentier, Fermanian, and Scaillet

(2006), the asymptotic bias of ĉ∗t1 can be extended by

(3.27)

abias
{
ĉ∗t1(u, v)

}
= b

(G)
t1 (u, v) ≡

h2
(
g(2,0) + g(0,2)

) (
Φ−1(u),Φ−1(v)

)
2φ(Φ−1(u))φ(Φ−1(v))

+
h4
(
g(4,0) + g(0,4) + 2g(2,2)

) (
Φ−1(u),Φ−1(v)

)
8φ(Φ−1(u))φ(Φ−1(v))

,

where the terms up to the fourth order are explicitly stated. Similarly, Taylor ex-

pansion for J∗(u, v;h,Θ) up to the second order yields

(3.28)

J∗(u, v;h,Θ) ≈ 1+Θ>B
(
Φ−1(u),Φ−1(v)

)
+h2Θ>A1+

1

2
Θ>A2

(
Φ−1(u),Φ−1(v)

)
Θ,

where

A1 =

 2

0


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and

A2(s, t) =

 (s2 + t2 − 2)2 − 4(1 + ρ2) (st− ρ)(s2 + t2 − 2)− 4ρ

(st− ρ)(s2 + t2 − 2)− 4ρ (st− ρ)2 − (ρ2 + 1)


Combine the above results as I did previously and plug (3.26) in, one may easily find

that

abias
{
ĉ∗m1(u, v)

}
= b

(G)
m1 (u, v) ≡ h4R

(
Φ−1(u),Φ−1(v); ρ

)
,

which is of order O
(
h4
)

since the terms associated with h2 are all canceled out. The

explicit form of R(·, ·; ρ) is given by

R(s, t; ρ) = c
(
Φ(s),Φ(t)

){−(1 + 3ρ2)(s2 + t2) + 2ρ(ρ2 + 3)st+ 2(1− ρ4)

2(1− ρ2)3

}
.

The asymptotic variance, of course, remains the same. To summarize, the following

theorem is presented.

Theorem 2. If the underlying copula C is Gaussian copula and let Θ be selected

according to (3.26), under Assumptions 1-4 and 6, the MTK estimator ĉm1 is such

that for any (u, v) ∈ (0, 1)2,

√
nh2

(
ĉm1(u, v)− c(u, v)− b(G)

m1 (u, v)
)

d−→ N
(
0, σ2

m1(u, v)
)
,

where b
(G)
m1 (u, v) is defined above and σ2

m1(u, v) is described in (3.14).

Proof. See Appendix B.2.

Likewise, the global properties of the MTK under Gaussian copulas are studied.

The weighted MISE (3.15) is hereby approximated by

wmise(G) {ĉm1} ≈ h8Λ +
1

4πnh2
,

where Λ =
∫
R2 R

2(s, t; ρ)φ2(s)φ2(t)dsdt. From its first order condition, the optimal
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bandwidth is given by

h
(G)
0,m1 = (16πΛ)−1/10 n−1/10,

which obviously satisfies the assumptions for Theorem 2. Then, together with the

Θ choices in (3.26), the optimal asymptotic weighted MISE has the form

wmise
(G)
0 {ĉm1} ≈

5

16π
(16πΛ)1/5 n−4/5.

It is seen that, when the underlying copula is Gaussian copula, the convergence rate

of ĉm1 in terms of weighted MISE is O
(
n−4/5

)
, which is faster than the usual rate

O
(
n−2/3

)
.

Consider the smoothing parameters selection under Gaussian copulas. Obviously,

ĉm1 requires the optimal bandwidth h
(G)
0,m1 that has different convergence rate from

the h0,m1 defined in (3.18). The profile weighted cross validation method is adaptive,

thus obtains the optimal bandwidth rate automatically. The plug in method derived

under the lower order asymptotic analysis ceases to be optimal, but it remains viable

in practice. My simulation experiments indicate that it still delivers performance

better than or comparable to other competing copula density estimators, though it

is dominated by the profile weighted cross validation method.

The merit that the MTK enjoys higher order convergence rate for Gaussian cop-

ulas has many practical implications. In finance, the Gaussian copula family has

been widely used in managing risks and pricing portfolios, however, this parametric

method is criticized for restrictiveness in practice. In fact, the copulas embedded

in many financial data (specially the residuals obtained after some pre-processing

models), although unlikely exactly Gaussian, are near Gaussian with deviations such

as asymmetry, fat tails, etc. Intuitively, the MTK shall provide superior performance

for near Gaussian copulas as well. This is confirmed in my simulation experiments.
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Therefore, the MTK is an appealing copula density estimator for such situations.

3.6 Extension to non-diagonal bandwidth matrix

It is often desirable to keep the bandwidth matrix H non-diagonal since the

off-diagonal element controls the direction towards which the smoothing is placed.

This is sensible in copula density estimation (Geenens, Charpentier, and Paindaveine

2014; Duong and Hazelton 2005). Consider the bandwidth matrix

(3.29) H = h2

 1 λ

λ 1

 ,

where −1 < λ < 1. Note that I use the same bandwidth for the two margins here;

this is mainly for simplicity consideration. Then the MTK becomes, if similarly

Gaussian kernel (3.6) is used,

(3.30)

ĉm2(u, v) =
exp

(
−θ1

(
{Φ−1(u)}2 + {Φ−1(v)}2

)
− θ2Φ−1(u)Φ−1(v)

)
nηh2φ

(
Φ−1(u)

)
φ
(
Φ−1(v)

)
n∑
i=1

φ2

(
Φ−1(u)− Ŝi

h
,
Φ−1(v)− T̂i

h

)
,

where φ2 is the bivariate Gaussian density

φ2(x, y) =
1

2π
√

1− λ2
exp

(
−x

2 + y2 − 2λxy

2(1− λ2)

)
.

In this case, the normalization term η admits the form

η =
1

nδ

n∑
i=1

exp

{
−(4h2θ2

1 − h2θ2
2 + 2θ1)(Ŝ2

i + T̂ 2
i ) + (2λh2θ2

2 − 8λh2θ2
1 + 2θ2)ŜiT̂i

2δ2

}
,

where

δ =
√
h4(1− λ2)(4θ2

1 − θ2
2) + 2h2(2θ1 + λθ2) + 1.
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The properties of the ĉ∗m2 computed on
{

(Si, Ti) , i = 1, · · · , n
}

are examined and

then extended to the feasible ĉm2 informally. The asymptotic bias and variance of

the ĉ∗m2 for any (u, v) ∈ (0, 1)2 are given by

(3.31)
abias

{
ĉ∗m2(u, v)

}
=
h2
(
g(2,0) + g(0,2) + 2λg(1,1)

) (
Φ−1(u),Φ−1(v)

)
2φ(Φ−1(u))φ(Φ−1(v))

+Θ>B
(
Φ−1(u),Φ−1(v)

)
c(u, v)

and

(3.32) avar
{
ĉ∗m2(u, v)

}
=

c(u, v)

4πnh2
√

1− λ2φ(Φ−1(u))φ(Φ−1(v))
.

Similarly, the first term in (3.31) is the asymptotic bias of ĉ∗t2, which denotes the

TKE under the bandwidth matrix (3.29). The second term is introduced for bias

correction. This adjustment term is the same as that for the ĉ∗m1 case since the Taylor

expansion of J∗(u, v;h,Θ) here is identical to (3.12). For the asymptotic variance

(3.32), it is again a duplicate of the corresponding counterpart for ĉ∗t2.

Intuitively, the asymptotic properties of the ĉm2 can be inferred from (3.31) and

(3.32) by neglecting the effect of pseudo-sample since the ĉm2 with non-diagonal

bandwidth matrix is qualitatively equivalent to the ĉm1. Then for global properties,

the weighted MISE as defined in (3.15), is approximated by

(3.33) wmise {ĉm2} ≈
h4

4
Γ3(λ) + h2Θ>Γ2(λ) + Θ>Γ1Θ +

1

4πnh2
√

1− λ2
,

where Γ1 is defined in (3.17) and

Γ2(λ) =

∫
R2

B(s, t)g(s, t)
(
g(2,0)(s, t) + g(0,2)(s, t) + 2λg(1,1)(s, t)

)
dsdt

Γ3(λ) =

∫
R2

(
g(2,0)(s, t) + g(0,2)(s, t) + 2λg(1,1)(s, t)

)2

dsdt.

It is noted that when λ = 0, ĉm2 reduces to ĉm1, moreover Γ2(λ) and Γ3(λ) become

Γ2 and Γ3 defined in (3.17). To minimize the asymptotic weighted MISE (3.33), the
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optimal smoothing parameters are given by, in parallel to (3.18) and (3.19),

h0,m2 =

[
1

2π
√

1− λ2
(
Γ3(λ)− Γ2(λ)>Γ−1

1 Γ2(λ)
)]1/6

n−1/6

and

Θ0,m2 = −
h2

0,m2

2
Γ−1

1 Γ2(λ).

The first order condition with respect to λ is complicated but it is equivalent to the

following minimization problem. The optimal λ, denoted by λ0, is given by

minimize
λ

Γ3(λ)− Γ2(λ)>Γ−1
1 Γ2(λ)

1− λ2

subject to − 1 < λ < 1.

The optimal asymptotic weighted MISE of ĉm2 follows as

wmise0 {ĉm2} ≈ min
−1<λ<1

1

4
(2π)−2/3

(
Γ3(λ)− Γ2(λ)>Γ−1

1 Γ2(λ)

1− λ2

)1/3

n−2/3.

Since the wmise0 {ĉm1} specified in (3.20) is a special case of the wmise0 {ĉm2}, I

have wmise0 {ĉm1} ≥ wmise0 {ĉm2}. Therefore, it is expected that the ĉm2 dominates

ĉm1.

When the underlying copula is Gaussian copula and let Θ = −h2

2
Γ−1

1 Γ2(λ) re-

gardless of λ value, one can easily check that the ĉm2 also reduces the asymptotic bias

from the order O
(
h2
)

to the order O
(
h4
)
. Thus, similar to ĉm1, the optimal band-

width h
(G)
0,m2 ∼ n−1/10 and the optimal asymptotic weighted MISE wmise

(G)
0 {ĉm2} is

O
(
n−4/5

)
.

The smoothing parameters choices of ĉm2 require more work as an additional λ

is introduced. To begin with, I need to estimate Γ2(λ) and Γ3(λ) in the first place,

denoted by Γ̂2(λ) and Γ̂3(λ). The estimate of Γ1 has already been given in (3.22). I
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obtain Γ̂2(λ) by a simple generalization of (3.23), namely

(3.34)

Γ̂2(λ) =
1

n2

n∑
i=1

n∑
j=1

B
(
Ŝi, T̂i

){
K

(2)
b

(
Ŝi − Ŝj

)
Kb

(
T̂i − T̂j

)
+Kb

(
Ŝi − Ŝj

)
K

(2)
b

(
T̂i − T̂j

)
+ 2λK

(1)
b

(
Ŝi − Ŝj

)
K

(1)
b

(
T̂i − T̂j

)}
.

Note that Γ3(λ) can be decomposed to

Γ3(λ) = ψ4,0 + ψ0,4 + (4λ2 + 2)ψ2,2 + 4λψ3,1 + 4λψ1,3.

Then each term is estimated separately and together they are combined to form

Γ̂3(λ) as

(3.35)

Γ̂3(λ) =
1

n2

n∑
i=1

n∑
j=1

{
K

(4)
b

(
Ŝi − Ŝj

)
Kb

(
T̂i − T̂j

)
+(4λ2 + 2)K

(2)
b

(
Ŝi − Ŝj

)
K

(2)
b

(
T̂i − T̂j

)
+Kb

(
Ŝi − Ŝj

)
K

(4)
b

(
T̂i − T̂j

)
+ 4λK

(3)
b

(
Ŝi − Ŝj

)
K

(1)
b

(
T̂i − T̂j

)
+4λK

(1)
b

(
Ŝi − Ŝj

)
K

(3)
b

(
T̂i − T̂j

)}
.

Again, I use the univariate Gaussian kernel K(x) = φ(x) and applies the same

preliminary bandwidth b, as provided in Duong and Hazelton (2003). Then the plug

in method for smoothing parameters selection is described as follows.

• obtain λ̂0 by numerically minimizing
{

Γ̂3(λ)− Γ̂2(λ)>Γ̂−1
1 Γ̂2(λ)

}/{
1− λ2

}
with the constraint that −1 < λ < 1;

• let ĥ0,m2 =

{
2π

√
1− λ̂2

0

(
Γ̂3(λ̂0)− Γ̂2(λ̂0)>Γ̂−1

1 Γ̂2(λ̂0)
)}−1/6

n−1/6;

• finally have Θ̂0,m2 = −ĥ2
0,m2Γ̂

−1
1 Γ̂2(λ̂0)

/
2.

The profile weighted cross validation is easily adapted to the ĉm2 case. A step-by-step

description is presented as
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• similarly obtain λ̂0 by following the first step in the above plug in method;

• set Θ0,m2(h) = −h2Γ̂−1
1 Γ̂2(λ̂0)

/
2;

• plug λ̂0 and Θ0,m2(h) into (3.25), conduct the minimization with respect to h

and obtain ĥ0,m2.

3.7 Monte Carlo simulation

I conduct a simulation to compare the finite sample performance of several com-

peting copula density estimators. In this section, some notations may be abused in

order for consistency with the original literature; nevertheless, this should not cause

any ambiguity. The following estimators are considered.

• The proposed MTK ĉm1 and ĉm2 based on the plug in method and the profile

weighted cross validation.

• Gijbels and Mielniczuk (1990)’s mirror reflection estimator ĉr with the band-

width matrix H = h2I, where h is selected by least square cross validation for

flexibility.

• The TKE ĉt1 and ĉt2. The required parameters are chosen analogously to

my proposed plug in method and profile weighted cross validation method by

setting Θ = 0.

• The Beta kernel estimator considered in Charpentier, Fermanian, and Scail-

let (2006) with Chen (1999)’s further bias correction. The selection of h re-

mains vague in the literature. Following Geenens, Charpentier, and Paindav-

eine (2014), I consider two arbitrary values: h = 0.02 denoted by ĉb1 and

h = 0.05 by ĉb2.
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• The penalized hierarchical B-splines estimator. The parameters d and D are

set to 4 and 8 according to Kauermann, Schellhase, and Ruppert (2013). The

vector of penalty coefficients are selected as λ = (10, 10) in ĉp1, λ = (100, 100)

in ĉp2 and λ = (1000, 1000) in ĉp3.

I simulate data from some parametric copula families with sample sizes n =

100 and subsequently n = 500. For each family, with appropriate parameters, I

look at two copula densities of which the Kendall τ ’s are 0.3 and 0.6, respectively.

Specifically, I consider two groups of parametric copula families. In the first group,

I highlight the Gaussian copulas and some near Gaussian copulas.

(A) The Gaussian copula, with parameters ρ = 0.454 and ρ = 0.809.

(B) The mixture of ω1 = 85% Gaussian copula and ω2 = 15% Clayton copula with

two pairs of parameters
(
ρ = 0.454, θ = 6/7

)
and (ρ = 0.809, θ = 3). These

mixture copulas are asymmetric and they place more dependence in the lower

tail than in the upper tail.

(C) The Student t-copula with 15 degrees of freedom, with parameters ρ = 0.454

and ρ = 0.809. These copulas are close to Gaussian copula but possesses fat

tails.

(D) The mixture of ω1 = 85% Student t-copula with 15 degrees of freedom and

ω2 = 15% Clayton copula. Similarly, I set the two pairs of parameters to be(
ρ = 0.454, θ = 6/7

)
and (ρ = 0.809, θ = 3). Thus, these mixture copulas are

featured by both asymmetry and fat tails.

In the second group, I consider some other commonly used copula families.

(E) The Student t-copula with 5 degrees of freedom, with parameters ρ = 0.454

and ρ = 0.809.
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(F) The Frank copula, with parameters θ = 2.92 and θ = 7.93.

(G) The Gumbel copula, with parameters θ = 10/7 and θ = 2.5.

(H) The Clayton copula, with parameters θ = 6/7 and θ = 3.

For each sample, the corresponding pseudo-sample is obtained for estimation.

I evaluate the performance of each competing estimator ĉ by the mean integrated

squared error (MISE). Given each combination of the estimator ĉ and the true copula

density c, I compute

ISE(ĉ, c) ≈ 1

992

99∑
k=1

99∑
l=1

(
ĉ(k/100, l/100)− c(k/100, l/100)

)2

and further estimate the corresponding MISE by averaging the obtained ISE’s over

1000 simulated samples. These approximated MISE’s are reported in Table 3.1 and

3.2. Bold values and underlined values show the minimum and the second minimum

MISE’s, respectively.

Doubtlessly, the MTK provides the overall best performance. It has improved

upon the TKE substantially, demonstrating the success of using tapering method for

further boundary biases correction. It is known that the mirror reflection estimator

is particularly appropriate when the copula density has zero partial derivatives on

the boundaries; the penalized B-splines estimator with large penalty coefficients is a

strong competitor for flat copulas; the Beta kernel estimator performs quite well when

the dependence is low but behaves badly when the copula is unbounded. However,

in general, these estimators fail to compete with the MTK. For Gaussian copulas

and near Gaussian copulas in the first group, the MTK beats all other estimators.

This is understood because it possesses higher order convergence rate for Gaussian

copulas, indicated by my theoretical results. For other common copulas in the second

group, the MTK still dominates in most cases at the usual convergence rate. Not
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Table 3.1: Simulation results n = 100

Copula ĉr
ĉt1 ĉt2

ĉb1 ĉb2 ĉp1 ĉp2 ĉp3
ĉm1 ĉm2

Plug in CV Plug in CV Plug in CV Plug in CV

A3 0.0711 0.0929 0.0888 0.0920 0.0907 0.2351 0.0781 0.0377 0.0299 0.0387 0.0501 0.0380 0.0459 0.0212

A6 0.2925 0.2016 0.1646 0.1586 0.1363 0.2081 0.1751 0.2625 0.4492 0.6666 0.1407 0.1119 0.1041 0.0751

B3 0.0768 0.0924 0.0904 0.0932 0.0917 0.2385 0.0793 0.0431 0.0366 0.0460 0.0475 0.0242 0.0470 0.0248

B6 0.3332 0.1913 0.1859 0.1715 0.1576 0.2361 0.2202 0.3086 0.4992 0.7152 0.1237 0.0933 0.1202 0.1034

C3 0.0829 0.0957 0.0933 0.0953 0.0932 0.2409 0.0815 0.0476 0.0450 0.0554 0.0498 0.0272 0.0478 0.0265

C6 0.3408 0.1830 0.1808 0.1636 0.1483 0.2222 0.2186 0.3246 0.5266 0.7438 0.1175 0.0851 0.1088 0.0933

D3 0.0896 0.0971 0.0916 0.0960 0.0939 0.2468 0.0852 0.0505 0.0497 0.0616 0.0500 0.0286 0.0490 0.0297

D6 0.3878 0.2003 0.2086 0.1799 0.1738 0.2555 0.2616 0.3730 0.5713 0.7882 0.1391 0.1113 0.1299 0.1206

E3 0.1221 0.1114 0.1065 0.1075 0.1029 0.2551 0.1012 0.0776 0.0912 0.1098 0.0615 0.0608 0.0600 0.0477

E3 0.4770 0.2364 0.2333 0.1850 0.1875 0.2830 0.3388 0.4957 0.7192 0.9391 0.1693 0.2147 0.1401 0.1626

F3 0.0509 0.0927 0.0961 0.0954 0.1019 0.2340 0.0718 0.0273 0.0159 0.0251 0.0462 0.0224 0.0475 0.0242

F6 0.1459 0.1897 0.1825 0.1738 0.1655 0.2007 0.0917 0.1007 0.2726 0.4823 0.1163 0.0769 0.1100 0.0791

G3 0.1426 0.1045 0.1082 0.1042 0.1042 0.2511 0.1130 0.0987 0.1104 0.1273 0.0693 0.0832 0.0659 0.0651

G6 0.6469 0.3098 0.3463 0.2469 0.2820 0.4034 0.5032 0.6762 0.8920 1.1118 0.2531 0.3972 0.2320 0.3028

H3 0.1793 0.1064 0.1151 0.1001 0.1103 0.2474 0.1314 0.1297 0.1564 0.1840 0.0799 0.1211 0.0757 0.0951

H6 1.2853 0.6482 0.7560 0.5488 0.6086 0.8790 1.1358 1.4016 1.6351 1.8615 0.6178 1.0193 0.5989 0.7520

surprisingly, I observe the ĉp2 provides the best performance for the Frank copula with

Kendall τ = 0.3 since it is flat enough. For the Clayton copula with Kendall τ = 0.6,

ĉt2 seems slightly outperform the MTK. This particular copula density is featured

by extremely high lower tail dependence, thus tends to infinity sharply in the (0, 0)-

corner. The MTK that tries to prevent its estimates from exploding then becomes

suboptimal for this case, as explained in Geenens, Charpentier, and Paindaveine

(2014). It is clear that all simulation results show the superior performance of my

proposed estimator.

Next I take a closer look at the MTK. In general, the ĉm2 produces more accurate

estimates than the ĉm1, confirming that non-diagonal bandwidth matrix which allows

directional smoothing is sensible for copula density estimation. Still, some exceptions

are present: when the sample size n = 100, ĉm1 hits the best performance for several
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Table 3.2: Simulation results n = 500

Copula ĉr
ĉt1 ĉt2

ĉb1 ĉb2 ĉp1 ĉp2 ĉp3
ĉm1 ĉm2

Plug in CV Plug in CV Plug in CV Plug in CV

A3 0.0299 0.0365 0.0354 0.0361 0.0358 0.0494 0.0205 0.0207 0.0203 0.0310 0.0185 0.0093 0.0180 0.0083

A6 0.1223 0.0803 0.0689 0.0701 0.0576 0.0553 0.1321 0.1711 0.3049 0.5232 0.0528 0.0443 0.0483 0.0249

B3 0.0339 0.0373 0.0363 0.0367 0.0361 0.0503 0.0229 0.0240 0.0255 0.0376 0.0191 0.0095 0.0187 0.0097

B6 0.1570 0.0882 0.0849 0.0775 0.0693 0.0812 0.1730 0.2171 0.3539 0.5723 0.0604 0.0437 0.0562 0.0418

C3 0.0366 0.0386 0.0367 0.0381 0.0376 0.0508 0.0247 0.0262 0.0303 0.0463 0.0196 0.0105 0.0195 0.0101

C6 0.1490 0.0833 0.0791 0.0742 0.0623 0.0685 0.1729 0.2286 0.3746 0.6007 0.0552 0.0338 0.0513 0.0321

D3 0.0403 0.0390 0.0381 0.0385 0.0377 0.0509 0.0271 0.0302 0.0351 0.0517 0.0202 0.0116 0.0199 0.0116

D6 0.1881 0.0952 0.0935 0.0799 0.0726 0.0965 0.2140 0.2763 0.4216 0.6453 0.0671 0.0534 0.0624 0.0500

E3 0.0582 0.0442 0.0426 0.0418 0.0402 0.0551 0.0400 0.0477 0.0642 0.0961 0.0258 0.0235 0.0241 0.0211

E3 0.2270 0.1041 0.1010 0.0851 0.0768 0.1169 0.2891 0.3831 0.5529 0.7978 0.0719 0.0976 0.0637 0.0602

F3 0.0175 0.0376 0.0379 0.0379 0.0402 0.0476 0.0153 0.0135 0.0069 0.0162 0.0191 0.0115 0.0194 0.0119

F6 0.0514 0.0824 0.0803 0.0719 0.0684 0.0468 0.0536 0.0464 0.1397 0.3419 0.0544 0.0423 0.0489 0.0384

G3 0.0758 0.0440 0.0442 0.0412 0.0415 0.0582 0.0547 0.0673 0.0859 0.1146 0.0300 0.0401 0.0297 0.0318

G6 0.3653 0.1456 0.1594 0.1125 0.1197 0.2356 0.4524 0.5554 0.7302 0.9680 0.1221 0.2462 0.1073 0.1418

H3 0.0958 0.0450 0.0470 0.0423 0.0438 0.0599 0.0716 0.0925 0.1213 0.1651 0.0367 0.0616 0.0340 0.0458

H6 0.8372 0.3778 0.3863 0.2631 0.2837 0.6956 1.0772 1.2435 1.4625 1.7118 0.3719 0.4547 0.3009 0.3501

occasions. This may be because a small sample has difficulty in detecting the opti-

mal λ. For Gaussian copulas and near Gaussian copulas, the profile weighted cross

validation method is clearly doing better than the plug in method, which again has

verified my belief that the former is adaptive but the latter is not optimal any more

since it is derived based on smaller order asymptotic approximation. Nevertheless,

the plug in method still provides good enough estimates, in most cases even bet-

ter than other estimators. For the copulas in the second group, the plug in method

seems to excel for most times. This is also understandable because it converges to the

true smoothing parameters faster than the profile weighted cross validation method,

which is well known in the literature. Since there is not a method that can totally

dominates in all cases, I suggest first trying both the plug in method and the profile

weighted cross validation method in practice and then making a choice based on
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one’s specific purposes or prior beliefs. From my experience, more often, the profile

weighted cross validation method produces more visually pleasant estimates.

3.8 Empirical applications

3.8.1 Loss and ALAE data

I first consider the classic loss and ALAE data in an insurance context, which

reports the logarithms of the indemnity payment and allocated loss adjustment ex-

pense from 1500 insurance claims. Copulas are employed to model the dependence

between these two variables. This data has been widely used in the literature to

illustrate copula fitting and goodness-of-fit testing, see Frees and Valdez (1998);

Klugman and Parsa (1999); Chen et al. (2010), among others. It is generally agreed

that the Gumbel copula with parameter 1.453 provides the best fit out of the usual

parametric copula families. I use my proposed ĉm2 to estimate the copula and select

the smoothing parameters according to the profile weighted cross validation. Then,

I compare ĉm2 with the above parametric fit as well as ĉt2. Before estimation, I

have removed 34 censored observations from the dataset, thus the sample size here

is n = 1466. The estimation results are reported in Figure 3.1. From the 3-d plots,

ĉt2 is obviously quite wiggly in the corners. On the contrary, ĉm2 has produced very

smooth estimates that are similar to the parametric fit; visually, it is difficult to dis-

tinguish between the two. This can be also seen from the MTK contour plot, where

lines almost match each other. However, several notable differences are still present.

For example, near the (1, 1)-corner, ĉm2 grows more slowly than the parametric fit

does, moreover ĉm2 estimates are not symmetric about the 45 degrees diagonal line

of I. Of course, I have no idea what the true underlying copula is. Since ĉm2 is fully

nonparametric and does not require any prior assumption, it should be closer to the

truth with confidence.

55



u0.2
0.4

0.6
0.8

v

0.2

0.4

0.6
0.8

0

1

2

3

4

5

Gumbel

u0.2
0.4

0.6
0.8

v

0.2

0.4

0.6
0.8

0

1

2

3

4

5

TKE

u0.2
0.4

0.6
0.8

v

0.2

0.4

0.6
0.8

0

1

2

3

4

5

MTK

Gumbel

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TKE

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MTK

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.1: Loss and ALAE data: in the two contour plots, black line denotes
parametric estimates and blue line denotes TKE or MTK estimates.

3.8.2 Uranium exploration data

As a second illustration, I consider the uranium exploration data which was

originally studied in Cook and Johnson (1981, 1986) and later in the copula literature,

for example Genest, Quessy, and Rmillard (2006); Chen and Huang (2007). This

data was collected from water samples in the Montrose quadrangle of west Colorado

and consists of 655 concentrations measured for seven chemical elements including

uranium (U) and lithium (Li). My interest is to model the dependence between U

and Li by estimating their associated copula. Based on a Cramér-Von Mises type

test statistic, Chen and Huang (2007) conclude the Student t-copula with 59 degrees

of freedom and correlation parameter 0.17 seems to provide the best dependence

description for U and Li. Based on this parametric fit, it is reasonable to expect that

the copula of U and Li is near Gaussian and possesses fat tails. Similarly, I use ĉm2
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Figure 3.2: Uranium exploration data: in the two contour plots, black line denotes
parametric estimates and blue line denotes TKE or MTK estimates.

to estimate the copula and compare it with this t-copula fit as well as ĉt2. Figure 3.2

displays my estimation results. From the 3-d plots, ĉm2 again yields very pleasant

appearance that closely resembles the t-copula fit. In (0, 1)- and (1, 0)-corners, both

the ĉm2 and the t-copula fit tend towards 0.5 approximately, suggesting the feature

of fat tails for the underlying copula. In fact, from the MTK contour plot, it is

obvious that the ĉm2 produces even ‘fatter’ tails around the four corners than the

t-copula fit does. Not surprisingly, ĉt2 still performs badly for this data, with very

irregular behaviors. For example, it spuriously explodes upwards in the (0, 1)- and

(1, 0)-corners. As I have stressed earlier, this is caused by the unbounded multiplier

associated with back transformation. Thus, it seems that using tapering method to

mitigate the influence of this multiplier is quite successful from this application.
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3.8.3 FTSE 100 and Hang Seng indexes

Lastly I consider estimating copula to detect the dynamic relationship between

two financial time series. Specifically, I look at the weekly log returns of FTSE

100 (London Stock Exchange) and Hang Seng (Hong Kong Stock Market) indexes

covering the period from January 2010 till December 2013. In total, I have n = 729

observations. For each series rt : t = 1, · · · , n, I assume a GARCH(1,1) model,

i.e. rt = µ + ht, ht = σtεt and σ2
t = κ + αh2

t−1 + βσ2
t−1 where the standardized

residuals εt : t = 1, · · · , n are assumed i.i.d. from Student t-distribution with zero

mean and unity variance. The primary task here is to model the copula embedded in

the standardized residuals obtained from the two return series. Some related graphs

are presented in Figure 3.3. It is clear from the pseudo-sample scatterplot that the

bottom left quarter of I contains considerably more observations compared to the

top right quarter, indicating the London and the Hong Kong stock markets exhibit

stronger lower tail dependence but relatively weaker upper tail dependence. This

is consistent with our prior belief in practice: bear markets move together more

likely than bull markets do. Therefore, it is reasonable to expect the true underlying

copula should be asymmetric and its tail in the (0, 0)-corner should be higher than

the tail in the (1, 1)-corner. From the 3-d plots, both ĉm2 and ĉt2 have successfully

revealed this feature. Again, ĉm2 produces very smooth appearance and its contour

lines looks regular. In contrast, ĉt2 is less smooth with obvious bumps, which are

particularly clear from the contour plot. This financial data another time confirms

the good performance of my proposed estimator.
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Figure 3.3: FTSE 100 and Hang Seng indexes
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4. ESTIMATION OF SPATIALLY DEPENDENT CROP YIELD

DISTRIBUTIONS AND CROP INSURANCE PREMIUM RATES: AN

EMPIRICAL LIKELIHOOD KERNEL APPROACH

4.1 Introduction

Reliable calculation of crop insurance rates is essential for the US federal crop

insurance program, which has been a vital part of agricultural industry. Its utmost

importance is partly due to the policy consideration. For instance, the 2014 Farm

Act allocates $89.8 billion federal budget for crop insurance programs over the next

ten years. This massive resource is directed to help farmers pay their crop insurance

premiums. Moreover, accurate crop insurance rates are necessary to avoid moral

hazard or adverse selection, thus are fundamental for the health of crop insurance

markets. Among a variety of crop insurance plans, area-yield insurance such as Group

Risk Plan (GRP) has attracted significant attention. GRP is based on county-yield

data provided by the National Agricultural Statistics Service (NASS) of the US De-

partment of Agriculture. After participating in the plan, crop producers select the

coverage levels based on a county’s average yield and will collect indemnities if the

realized average yield is lower than a pre-specified trigger level. GRP is designed

to reduce the potential adverse selection behaviors because a single producer is con-

sidered incapable to manipulate a county’s average yield. In this article, I restrict

ourselves to GRP insurance rates estimation.

The past two decades have seen persistently increasing interest in modeling crop

yield distribution and calculating crop insurance rates. Reliable estimation of yield

distribution, or more relevantly its lower tail, is crucial in deriving accurate insurance

rates. However, as highlighted by many studies, these objectives are challenging. The
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main obstacle is essentially a data sparseness issue. In practice, crop yield data is

featured by very short panel structure: the number of counties is numerous, but

given a county of interest, the historical yield data is typically limited, only covering

around fifty years or less. Most past studies evaluated insurance rates county by

county separately, therefore the panel structure was seldom taken into consideration.

In reality, although the yield data among nearby counties are governed by different

distributions, they exhibit strong correlation and share certain similarities. These

facts may provide additional information that is beneficial to estimating the yield

distribution for a particular county of interest. Some attempts to exploit the panel

structure of yield data have been made in the literature, for example, Ker (1996);

Ker and Goodwin (2000); Ozaki et al. (2008).

This study aims to propose a new method that pools information effectively under

mild assumptions and estimates yield distributions as well as insurance rates across

counties in a given area, e.g., a state. It is recognized that the yield distributions

of nearby counties share some stylized features. If characterized properly, borrowing

information from neighbors improves statistical efficiency. To proceed, some reason-

able presuppositions are necessary for a sound pooling scheme. It is often restrictive

to make assumptions directly on the yield distribution functions of nearby counties;

nevertheless, it may be reasonable to assume their certain moments, which summa-

rize the feature of the yield distributions concisely, resemble each other. It’s well

known that given a set of similar moment conditions, the underlying distributions

still allow great flexibility in their exact functions. Under this premise, I uncover the

required moments of a county’s yield distribution by smoothing the data from all its

neighbor counties with carefully selected weight functions. Moreover, I take spatial

information into account when constructing these weight functions in order to achieve

further efficiency gains. Then the uncovered moment conditions, with extra infor-
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mation from the neighbor counties incorporated, are imposed as constraints when

estimating the yield distribution and calculating the insurance rates for a particular

county of interest.

Specifically, the empirical likelihood kernel density estimator (ELK) is employed

to estimate yield distributions for my purpose. ELK is specially designed for the

situation where extra distributional information is available. The standard kernel

density estimator (KDE), which has already been introduced in the crop insurance

literature, fails to do so because it attaches the equal probability weight to each

data point. ELK simply replaces those equal probability weights by some unequal

counterparts obtained by maximizing empirical likelihood subject to a set of moment

conditions. I present more details regarding this in the following sections. After

estimating the yield distributions based on ELK, the insurance rates are evaluated

in the usual way.

The proposed method that combines spatially smoothed moment conditions and

ELK has several desired advantages. First, like other nonparametric methods, ELK

does not require any parametric assumption for the underlying yield distribution;

thus it is flexible and free of misspecification error. Second, the performance of KDE

is hampered by small sample size, resulting in limited applications in the literature.

In contrast, ELK is able to decrease the variance significantly in small samples.

Third, with possibly erratic bumps, KDE is known to behave poorly at tails. This

difficulty aggravates the estimation of insurance rates because it only addresses the

left tail of the yield distribution. In contrast, the imposed moment conditions in the

ELK are found to have the tails regularized, resulting in more reliable tail estimates.

Fourth, the proposed method effectively pools information from neighbor counties

under less restrictive assumptions, thus the estimated insurance rates shall be more

accurate. Fifth, the proposed method is intuitively simple and easy to implement.
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Then, I apply the proposed method to Iowa corn. Iowa was chosen because it is

the largest corn planting state in the US. I estimate the yield distributions and in-

surance rates for the ninety-nine Iowa counties. My results have demonstrated that

large differences can arise solely from the proposed information pooling method.

Furthermore, I conduct an empirical simulation study and assess the performance of

each competing estimator in estimating yield distributions and insurance rates. It

suggests that, in general, the proposed method is substantially better than its coun-

terpart without information pooling. Hereby, this has demonstrated the soundness

of the proposed method for applications in practice.

The rest of text is organized as follows. In section 4.2, I outline the procedures

for estimating yield distributions and insurance rates; some existing approaches are

briefly introduced. Section 4.3 describes the empirical likelihood kernel density es-

timator. In Section 4.4, the construction of the four spatially smoothed moment

conditions and a step-by-step description of the proposed method are presented. I

report the empirical simulation in Section 4.5, followed by an application to Iowa

corn in Section 4.6.

4.2 Literature

Typically, researchers consider a two-step procedure to model yield distribution

and calculate insurance rates. In the first step, it is necessary to remove the trend

effect as crop yield is inclined to trend upwards due to technological advancement

and yield distribution should solely represent random factors. Various detrending

models have been used in the literature and they generally fall into two categories:

stochastic and deterministic approaches. Denote Yt : t = 1, · · · , T to the yield series

of a county of interest. The stochastic approach considers fitting an autoregressive

integrated moving average model to the yield series Yt, for example, see Goodwin
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and Ker (1998); Ker and Goodwin (2000). The main argument for the stochastic

approach may be best explained in (Goodwin and Ker 1998, p.143): “because drought

or excessive moisture effects may persist from year to year, it is important that any

autoregressive or moving average effects also be recognized”. Nevertheless, Harri

et al. (2009) found limited empirical evidence to support the stochastic approach.

Therefore, the recent literature opted to the deterministic approach instead. Just

and Weninger (1999) regressed Yt against a polynomial of time t up to the fifth

order. Sequential t-tests were used to select the polynomial order. Harri et al.

(2011) used a two-knot linear spline regression. The coefficients and the two knots

are treated as unknown parameters and estimated by outliers robust M-estimation

with Huber function and bisquare function. The nonparametric kernel regression was

also employed in the literature, where the trend is treated as an unknown smooth

function of the time t, i.e.

(4.1) Yt = m(t) + et.

Local linear estimator is a common choice for kernel regression, and it is used to

estimate m(t) in Claassen and Just (2011). For a general introduction of the local

linear estimator, see Fan and Gijbels (1996). This model is unrestrictive as it does

not specify any functional form for detrending. In fact, erroneously imposing linear or

nonlinear trend function may lead to false conclusions in modeling yield distribution

(Just and Weninger 1999; Atwood, Shaik, and Watts 2003). Therefore, I use (4.1)

to remove the trend effect in this article.

Many previous studies reported the obtained residuals et : t = 1, · · · , T have

violated the homoscedasticity assumption required in the detrending model. The ex-

isting literature commonly relates the source of heteroscedasticity to the fitted yield

trend Ŷt. Two primary heteroscedasticity assumptions have been extensively used in
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yield distribution modeling: one is the simple homoscedasticity assumption (Mahul

1999; Coble, Heifner, and Zuniga 2000), the other is the constant coefficient of vari-

ation assumption (Miranda and Glauber 1997; Skees, Black, and Barnett 1997; Ker

and Coble 2003), which asserts that the standard deviation of et varies proportionally

to the changes of fitted yield trend, namely

E
(
e2
t

)
= σ2

{
E (Yt)

}2
= σ2Ŷ 2

t .

Despite both the assumptions get support in the literature, neither of them holds

universally across location or crop type. Harri et al. (2011) studied the effect of

heteroscedasticity assumptions on the estimated area-yield insurance rates and their

results have revealed significant differences under different assumptions. Therefore,

the literature still remains ambiguity on this heteroscedasticity issue. In the empirical

simulation of this study, I consider both the assumptions and demonstrate that the

superior performance of the proposed method is robust to different heteroscedasticity

assumptions.

For a county of interest, let FT be the σ-algebra generated by the observed yield

series Y1, · · · , YT , then FT represents all the past information up to time T . In

the second step, the yield distribution, i.e. the density of YT+2 conditional on FT ,

needs to be estimated. This two-step ahead variable YT+2 is typical in the literature

because insurance rates are evaluated about six months before farmers purchase the

insurance contracts and plant their crops, and moreover, yield data from the NASS

has some time lag. In order for estimation, a sample is recovered by

ŶT+2 + εt, t = 1, · · · , T

where ŶT+2 is a two-period ahead forecast from the detrending model and εt : t =
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1, · · · , T are adjusted residuals defined as

(4.2) εt =


et if homoscedasticity assumption;

et
ŶT+2

Ŷt
if constant of variation assumption.

This sample is viewed i.i.d. from the yield distribution, which is estimated by some

appropriate method. Then the insurance rates, at the percentage level, are calculated

by

(4.3) Rθ = P
(
YT+2 < θŶT+2

)1−
E
(
YT+2|YT+2 < θŶT+2

)
θŶT+2

× 100%,

where θ is the coverage level and θŶT+2 is the trigger yield. Similarly, this formula

is evaluated conditionally on the past information FT .

Doubtlessly, the quality of yield distribution estimation will heavily affect the ac-

curacy of insurance rates. However, this task is challenged by sparse yield data. To

ensure statistical soundness, the majority of past studies used parametric approach.

The literature generally reported the yield distribution is non-normal: skewness and

excess kurtosis are observed. Therefore, many flexible distribution families have

been proposed, including gamma distribution (Gallagher 1987), beta distribution

(Nelson 1990), inverse hyperbolic sine transformation (Moss and Shonkwiler 1993),

log-normal distribution (Stokes 2000), weibull distribution (Sherrick et al. 2004), and

etc. In contrast, Just and Weninger (1999) pointed out that some methodology and

data limitations may have inappropriately rejected the normality hypothesis, and

they suggested calling the normal distribution back to attention. One limitation

of the parametric approach is that the distribution specification may be incorrect,

resulting in misleading insurance rates. Sherrick et al. (2004) studied various dis-

tribution specifications and concluded that unexamined specification may lead to
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significant errors in crop insurance policy. Some efforts to empirically rank the dif-

ferent distribution specifications have been made, see Norwood, Roberts, and Lusk

(2004); Ramı́rez and McDonald (2006).

In contrast, the nonparametric approach does not require any distribution speci-

fication. Goodwin and Ker (1998) introduced the standard kernel density estimator

to model yield distribution and estimate insurance rates. Ker and Goodwin (2000)

emphasized that lower tail probabilities are crucial in deriving insurance rates and

used empirical Bayes kernel density estimator with adaptive bandwidth. Ker and

Coble (2003) pursued a semiparametric way: they took normal and beta distribu-

tions as a prior guess for the yield distribution, and then used the nonparametric

kernel method to correct them. In general, the nonparametric approach has a slower

convergence rate than a parametric approach. Therefore, its performance may be

more sensitive to small samples. To overcome this potential disadvantage, exploring

the panel nature of yield data in the nonparametric context is promising. In Good-

win and Ker (1998), residuals from neighbor counties were weighted and then pooled

together to estimate the yield distribution directly. Though simple, this strategy

makes rather restrictive assumptions on the yield distributions from neighbor coun-

ties. Ker and Goodwin (2000) assumed a baseline yield distribution across counties

by a hierarchical model. Given a fixed support point, function values from the differ-

ent yield distributions deviate from the baseline according to a normal distribution.

This method requires the yield data from different counties to be independent. Thus,

in their framework, pooling is done among remote counties.

4.3 Empirical likelihood kernel density estimation

I make a detour to introducing empirical likelihood kernel density estimator

(ELK) in this section. Assume, in a general sense, I have an i.i.d. sample X1, · · · , Xn
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from a univariate distribution with density function f . The standard kernel density

estimator (KDE) gives, at a support point x,

f̂(x) =
1

n

n∑
i=1

Kh (x−Xi) ,

where Kh(·) = K(·/h)/h. The kernel function K(·) is taken to be some symmet-

ric and uni-modal density function defined on R or some finite interval. Though

Epanechnikov kernel is optimal, the choice of kernel function is of little importance

regarding the general performance of KDE. In practice, the density function of the

standard normal distribution is a common choice. The bandwidth h controls the

amount of smoothing, and is the most crucial decision one needs make. In KDE, h

is global and fixed, indicating equal smoothing over all the data points. See Wand

and Jones (1995) for a general treatment of kernel type density estimation.

KDE is essentially a weighted average of individual kernels at a given support

point; see Ker and Goodwin (2000) for a graphical illustration of this. Specifically,

for each data point Xi, two things are attached. One is the kernel Kh (x−Xi) that

centers at Xi and the other is the associated weight 1/n. KDE applies the equal

weight to all kernels, thus can not represent any additional information about the

underlying distribution f . Motivated by this, Chen (1997) introduced ELK in a

general setup, i.e.

(4.4) f̂el(x) =
n∑
i=1

wiKh (x−Xi) ,

where wi is the weight attached to Xi. The unequal weights wi’s are determined by

maximizing empirical likelihood subject to a set of constraints that reveals the extra

distributional knowledge.

Empirical likelihood (EL), originally proposed by Owen (1988, 1990), has been a

popular and powerful tool in statistics and econometrics literature. For a complete
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introduction, see Owen (2001). EL nonparametrically chooses the probability weight

wi for the ith data point Xi according to some constraints. Assume I have the

following q known moment conditions about f :

(4.5) E
{
gl(Xi)

}
= bl, l = 1, ...q,

where gl(Xi) is some well-defined function of the random variable Xi, and bl is the

corresponding moment value. Then the EL probability weights can be obtained by

the following maximization problem

(4.6)

maximize
(w1,...,wn)

n∏
i=1

nwi

subject to
n∑
i=1

wigl(Xi) = bl, l = 1, ..., q,

0 ≤ wi ≤ 1, i = 1, ..., n,

n∑
i=1

wi = 1.

Note that the moment conditions (4.5) are replaced by their sample analogs in the

above maximization problem. The objective function
∏n

i=1 nwi in (4.6) is called

empirical likelihood. EL can be seen as a nonparametric version of likelihood ratio,

which we may have been familiar with in a parametric situation. Since wi is the

probability associated with the observation Xi under those constraints, the likelihood

of observing X1, X2, ..., Xn is
∏n

i=1 wi. Owen (2001) has pointed out that, if there

is no constraint, the maximum likelihood is (1/n)n, i.e. equal probability mass 1/n

is placed at each data point. Then the likelihood ratio is
∏n

i=1wi/(1/n)n, which is

exactly the formula of EL.

In order for the notational conciseness, let J(Xi) =
[
g1(Xi)− b1, ..., gq(Xi)− bq

]>
be a q-dimensional vector of functions constructed from the moment conditions.

Then
∑n

i=1 J(Xi) = 0 is equivalent to the first set of constraints in (4.6). Also let
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their corresponding Lagrangian multipliers be λ = [λ1, ..., λq]
>. Then the solution of

(4.6) is characterized by, for i = 1, ..., n,

(4.7) wi = n−1
{

1 + λ>J(Xi)
}−1

,

and λ is the solution of

(4.8)
n∑
i=1

Jl(Xi)

1 + λ>J(Xi)
= 0.

These optimal wi’s are then plugged back into (4.4) for ELK.

We may consider KDE as a special case of ELK. If no additional prior knowledge

is available or only the in-sample information is used, ELK reduces to KDE. In

the case where we do not have those moment conditions in (4.5), the solution of

(4.6) will always be wi = 1/n, i = 1, ..., n, as said above. Also if we only use

the in-sample information such as the corresponding sample counterparts, i.e., let

bl = 1
n

∑n
i=1 gl(Xi) in (4.6), one may easily check that (4.7) together with (4.8) give

wi = 1/n too. Therefore, prior or out-of-sample information distinguishes ELK from

KDE.

The asymptotic properties of ELK are introduced in the next, compared to those

of KDE. Chen (1997) has established its bias and variance as

(4.9) bias
{
f̂el(x)

}
= bias

{
f̂(x)

}
+ o(n−1),

and

(4.10) var
{
f̂el(x)

}
= var

{
f̂(x)

}
− J(x)>Σ−1J(x)f 2(x)n−1 + o(n−1),

where Σ =
(

cov
(
Jl(Xi), Jm(Xi)

))
is a covariance matrix of J(Xi). It is obvious that

there is only o(n−1) difference between KDE and ELK in terms of bias. If considering

mean integrated squared error (MISE), this difference is negligible. Although the

70



dominant terms in the variance of KDE and ELK are the same, we do see an O(n−1)

reduction in ELK case since the coefficient of n−1 in (4.10) is negative. This confirms

the general belief that empirical likelihood decreases an estimator’s variance. As a

result of smoothing, this reduction only occurs in the small order term. Howerver, as

Chen (1997) pointed out, the extent of the reduction can be subtantial when sample

size is small or medium. Combining (4.9) and (4.10), it yields

MISE
{
f̂el(x)

}
= MISE

{
f̂(x)

}
− J(x)>Σ−1J(x)f 2(x)n−1 + o(n−1).

This suggests that a reduction in MISE is present by using extra information as well.

Here, I do not write down the explicit expressions for the asymptotic bias, variance

and MISE of KDE. For more details, one may refer to Wand and Jones (1995).

The bandwidth selection is known to be crucial in kernel type density estima-

tion problems. Since EL reduces MISE at the smaller order O(n−1), asymptotically

speaking, ELK does not require a distinct rule for the optimal h. For simplicity, we

may replicate any bandwidth selection method for KDE directly to the ELK situ-

ation. There are a variety methods available in the literature, for example, rule of

thumb, cross validation, Sheather and Jones’ plug in method, and etc. In this study,

the sample size is usually small. Therefore, following Goodwin and Ker (1998), I feel

Silverman’s rule of thumb method seems to be a reasonable choice towards robust

results. Thus, I set the optimal bandwidth of ELK to be

h = 0.9 ·min
{
σ̂, IQR/1.34

}
· n−1/5,

where σ̂ is the sample standard deviation and IQR stands for interquantile range.

Ker and Goodwin (2000) argued that the fixed bandwidth in KDE may be some-

times problematic in rating crop insurance because it often yields too much spurious

bumps in the tails. For a type of long-tailed densities, this kind of undersmoothing
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in the tails becomes particularly serious. Therefore, they recommended the adaptive

kernel density estimation (AKDE) featured by local bandwidth, namely

f̌(x) =
1

n

n∑
i=1

1

hνi
K

(
x−Xi

hνi

)
.

From the Abramson rule, the optimal νi is equal to f(Xi)
−1/2. Thus, AKDE requires

a pilot estimate of f(Xi), and KDE may serve this purpose well. See Silverman

(1986) or Ker and Goodwin (2000) for a detailed step-by-step procedure. Compared

to KDE, AKDE typically has faster convergence rate and has more complex global

properties. To my best knowledge, there is not an empirical likelihood version of

AKDE in the literature. Still, I can construct one analogously. I call it empirical

likelihood adaptive kernel density estimation (ELAK) in the following, namely,

f̌el(x) =
n∑
i=1

wi
hνi

K

(
x−Xi

hνi

)
.

Similarly, the wi’s therein are obtained from (4.6). The properties of this ELAK

remain unclear. It is generally believed that empirical likelihood helps reduce an

estimator’s variance. Thus, I may reasonably expect that an O(n−1) variance reduc-

tion occurs in ELAK as well, compared to AKDE. Because this reduction is still of

smaller order, I generally follow the procedures used in AKDE. In this study, I also

take AKDE and ELAK into consideration for completeness.

4.4 Spatially smoothed moment conditions

A set of moment conditions is required when implementing empirical likelihood,

for this purpose, I describe the selected four moments and propose a spatial smooth-

ing procedure to uncover their values. To proceed, the panel structure of yield data

is incorporated and some notations are introduced as follows,

(1) N consists of all counties of interest and let i and j denote two distinct counties
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therein; in total, N includes N elements;

(2) Yi,t : t = 1, · · · , T are a sequence of random variables denoting the observed

yield series from county i;

(3) εi,t : t = 1, · · · , T are the corresponding adjusted residuals for county i; they

are extracted from the detrending model (4.1) and then adjusted according to

(4.2) under an appropriate heteroscedasticity assumption;

(4) Ŷi,T+2 is a two-period ahead forecast based on the detrending model for county

i; it is an estimate of the expected yield E
(
Yi,T+2

)
;

(5) fi is the yield distribution of county i; the sample Ŷi,T+2 + εi,t : t = 1, · · · , T is

constructed for its estimation;

(6) f εi is the distribution of εi,t; it can be estimated from the sample εi,t : t =

1, · · · , T ;

(7) dij is the Euclidean distance between counties i and j calculated from the

longitude and latitude data;

(8) N k
i is a set including county i and its k nearest neighbors based on the above

distance metric;

(9) X k
i is a set of adjusted residuals for all counties in N k

i ,

i.e.
{
εj,t : j ∈ N k

i , t = 1, · · · , T
}

.

It is argued that only the adjusted residuals εi,t that purely capture the random

effects share stylized similarities among nearby counties, while the fixed trend effects

Ŷi,T+2 may be quite different. Therefore, instead of targeting at fi directly, the ELK

or ELAK is used to estimate f εi as the first step in the proposed method. Then in
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the second step, the desired yield distribution is recovered by the following change

of variable formula, i.e.

(4.11) fi (y) = f εi

(
y − Ŷi,T+2

)
.

If E(ε2i,t) <∞, the four moment conditions, parallel to the form in (4.5), are specified

for each county i as

(4.12) Eg
(
εi,t
)

= E



g1

(
εi,t
)

g2

(
εi,t
)

g3

(
εi,t
)

g4

(
εi,t
)


= E



εi,t

ε2i,t(
εi,t − κ1,i

)2

+(
εi,t − κ2,i

)2

+


=



b1,i

b2,i

b3,i

b4,i


= bi,

where (x)+ = x if x > 0, otherwise (x)+ = 0. The two knots κ1i and κ2i are defined as

the sample quantiles of X k
i with probabilities 0.33 and 0.67, respectively. Following

the idea of spline, these moment conditions are piecewise defined. This construction

embraces more information than just the first two moments do, at the same time, it

avoids the difficulties of modeling higher moments, e.g., more restrictive assumptions

and numerical unstableness.

The four moment values bi need to be uncovered, based on the assumption that,

if two counties i and j are close, the specified moments bi and bj shall resemble

each other. Under this premise, the moment values for a particular county i can be

estimated by spatially smoothing over all its neighbors. Specifically, bi is estimated

by

(4.13) bi =
1

T

T∑
t=1

∑
j∈N

g(εjt)ωij.

This is essentially a weighted average procedure across all counties and all time

periods. The weight ωij is invariant across time and is solely determined by the
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distance from the targeted county i to other counties, and it admits the form

(4.14) ωij =
exp

(
−d2

ij/τ
2
i

)
1{j ∈ N k

i }∑N
j=1 exp

(
−d2

ij/τ
2
i

)
1{j ∈ N k

i }
,

where 1{a} = 1 if a is true, otherwise 1{a} = 0. It is easy to check that
∑N

j=1 ωij = 1

for any county i. Particularly, as the distance dij increases, the weight ωij becomes

smaller; moreover, if dij exceeds some threshold, the corresponding weight is set to

zero. This construction is based on the perception that, the closer a county is to the

targeted county i, the greater extent they resemble each other; if these two counties

are far away enough, we may view them mutually independent. Note that I use

the Gaussian type function exp
(
−d2

ij/τ
2
i

)
to conduct the smoothing; one can use

the exponential type function exp
(
−dij/τi

)
as well. The Gaussian type function

allocates more weights to the several closest neighbors than the exponential type

function does. Nevertheless, in my simulation experiments, I observe no significant

difference between these two options. The parameter τi serves like the bandwidth

and it controls the amount of smoothing. I employ the k-nearest neighbor idea and

relate τi to the parameter k in the following way

(4.15) τi =
1

k

∑
j∈N k

i

dij,

which is exactly the average distance between county i and its k nearest neighbors.

It is noticed that the parameter k plays a crucial role in my proposed method and I

set k to the integer that is the closest to
√
N . Though arbitrary, this selection rule

generally yields good performance in practice.

The procedure of my proposed method is briefly summarized here. For each

county i, the following steps are replicated, a) I remove the trend effect and obtain

the corresponding two-period forecast individually; b) I adjust the extracted residuals
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based on some reasonable heteroscedasticity assumption; c) I follow the four moment

conditions in (4.12) and uncover their values by the above spatial smoothing pro-

cedure; by construction, these moment values contain information from neighbor

counties; d) I use ELK or ELAK to estimate f εi based on the four moment condi-

tions; e) the desired yield distribution fi is recovered and the insurance rates are

calculated according to (4.3).

4.5 Empirical simulation

In this section, I investigate the performance of the proposed method in practice.

Two pairs of competing estimators, namely KDE and ELK, as well as AKDE and

ELAK, are used to estimate the yield distributions, respectively, and I examine if

the two empirical likelihood based estimators that pool information among neighbor

counties improve the accuracy of the estimated insurance rates.

Following the idea in Ker and Ergun (2005); Ker and Goodwin (2000), I conduct

an empirical simulation in the context of Iowa corn. The yield data from 1957 to

2010, i.e. T = 54, for all N = 99 counties in Iowa is available from the NASS.

I remove the trend effects and get the two-period ahead forecast Ŷi,T+2 for each

county i ∈ {1, · · · , N}. The extracted residuals are adjusted according to both the

homoscedasticity assumption and subsequently the constant coefficient of variation

assumption. Then, for each county i, I obtain a pilot estimate of f εi by assuming that

εi,t : t = 1, · · · , T follow the skew normal distribution. Denote each pilot estimate

by f ε,pi and it admits the form

f ε,pi (y) =
2

σi
φ

(
y − µi
σi

)
Φ

(
αi

(
y − µi
σi

))
,

where φ and Φ are the pdf and cdf of standard normal distribution, moreover µi, σi

and αi are location, scale and skewness parameters, respectively. The skew normal
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distribution is used for two reasons: first, it has a regular and smooth parametric

form; second, it allows skewness which is often highlighted in the literature. Then,

each pilot estimate f ε,pi is treated as the true f εi and used for the empirical simulation.

The proposed method has assumed that the distributions of the adjusted residu-

als among neighbor counties resemble each other, moreover the extent of this resem-

blance is negatively related to their distances. In reality, I attempt to justify these as-

sumptions empirically by examining whether the pilot estimates f ε,pi : i ∈ {1, · · · , N}

exhibit such spatial structures. Specifically, I proceed as follows.

(A) Denote hij to the Hellinger distance between f ε,pi and f ε,pj , where i and j are

two distinct counties. Consider a simple regression

(4.16) hij = β0 + β1dij + ηij.

Then, I should expect β1 positive and statistically significant.

(B) Let µ = [µ1, · · · , µN ]>, σ = [σ1, · · · , σN ]> and α = [α1, · · · , αN ]> be three

vectors of the estimated parameters. Consider fitting a spatial error model to

µ, σ and α, respectively. Take µ as an illustrating example, the spatial error

model is represented as

(4.17)
µ = m+ ζ

ζ = λWζ + ξ,

where a) m is the intercept and can be interpreted as the baseline level; b) λ

is the spatial error coefficient; if λ 6= 0, then spatial effect is present; c) W is a

N ×N spatial weight matrix; d) ξ is a N -dimensional vector of random errors

and ξ ∼ N
(
0, σ2

ξIN

)
. The spatial weight matrix W is constructed based on

the distance of each pair of counties, i.e. 1) let W∗ =
[
w∗ij

]
, where wij = 1/dij

if i 6= j, otherwise wij = 0; 2) row normalization, i.e. W =
[
wij
]
, where
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wij = w∗ij/
∑99

j=1w
∗
ij. The spatial error model has been commonly used in the

literature. I should expect all µ, σ and α possess spatial structures.

Table 4.1 briefly summarizes the estimated coefficients in the above models. The

results are as one would expect. The estimated β̂1’s are all positive and statistically

significant, indicating the distributions of nearby counties are more resembled than

those of distant counties. The estimated λ̂’s are generally around 0.9, thus strong

spatial structures are embedded in µ, σ and α. Therefore, the assumptions used in

the proposed method should be valid.

Table 4.1: Estimation results of the model (4.16) and model (4.17)

β̂0 β̂1

µ σ α

m̂ λ̂ m̂ λ̂ m̂ λ̂

homoscedasticity
0.0857* 0.0187* -3.6363 0.9536* 17.4935* 0.9543* -0.7585* 0.8719*

(0.0021) (0.0008) (3.1397) (0.0461) (4.5741) (0.0457) (0.1320) (0.1246)

const. coef. of variation
0.0892* 0.0144* -5.2234 0.9299* 26.3672* 0.9427* -0.7491* 0.8772*

(0.0019) (0.0007) (3.0826) (0.0692) (5.0547) (0.0572) (0.1236) (0.1188)

The estimated standard errors are marked in parentheses; * denotes the significance level
< 0.001.

The empirical simulation is managed as follows.

(1) I generate
{
εi,t : t = 1, · · · , T0

}
for each county i ∈ {1, · · · , N} independently,

then combine them into the panel form
{
εi,t : i = 1, · · · , N ; t = 1, · · · , T0

}
for

information pooling. Consider sample size T0 = 30 and subsequently T0 = 50

in order to highlight the small sample case.

(2) Based on the above simulated residuals and the two-period ahead forecast

Ŷi,T+2, the four competing estimators, namely KDE, ELK, AKDE and ELAK,
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are used to obtain an estimated yield distribution f̂pi and three estimated in-

surance rates R̂P
θ,i with coverage levels θ = 70%, 80% and 90%, respectively.

(3) I compare the performances of the four estimators in estimating yield distribu-

tions, based on the average MISE acrossN counties, i.e. 1
N

∑N
i=1 E

∫ (
f̂pi − f

p
i

)2

,

where fpi is the pilot yield distribution recovered from f ε,pi by the formula (4.11).

The integral is evaluated numerically and the expectation is approximated by

averaging 500 simulated samples.

(4) Finally, I consider the performances in estimating insurance rates, based on

the average MSE, i.e. 1
N

∑N
i=1 E

(
R̂p
θ,i −R

p
θ,i

)2

, where Rp
θ,i are pilot insurance

rates derived based on fpi . The expectation is approximated analogously.

The empirical simulation results are described in Table 4.2. For ease of interpre-

tation, I take KDE as the benchmark and all the reported numbers are in relative

scale. Also for reference, the exact values for the KDE are shown in italic and

parenthesis. Some conclusions are summarized here, which are robust to different

sample sizes as well as different heteroscedasticity assumptions. First, the proposed

information pooling method is confirmed to be successful. ELK and ELAK have

substantially improved upon their counterparts, namely KDE and AKDE. Second,

the performance of ELAK in estimating yield distributions is the best, while the

performance of ELK is comparable. This is understandable because adaptive kernel

method has faster convergence rate in theory. Third, in estimating insurance rates,

ELK dramatically outperforms when the coverage levels are 70% and 80%, while

ELAK dominates when the coverage level is 90%. Interestingly, it seems that ELK

has better performance in the left tail of yield distributions; in contrast, ELAK ex-

cels in the global performance. To summarize, these results have demonstrated the

potential large gains in estimating yield distributions and insurance rates based on
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Table 4.2: Empirical simulation results

KDE ELK AKDE ELAK

Panel 1: T0 = 30

homoscedasticity

yield distribution (0.0010) 0.7911 1.1904 0.7603

θ = 70% (0.0875) 0.2240 1.3672 0.5069

θ = 80% (0.3652) 0.3443 1.0305 0.4788

θ = 90% (1.1245) 0.4671 0.9406 0.4371

const. coef. of variation

yield distribution (0.0007) 0.7926 1.1862 0.7609

θ = 70% (0.8132) 0.3432 1.0042 0.5027

θ = 80% (1.8191) 0.4612 0.9250 0.4831

θ = 90% (3.1537) 0.5000 0.9577 0.4543

Panel 2: T0 = 50

homoscedasticity

yield distribution (0.0006) 0.8752 1.1680 0.8136

θ = 70% (0.0544) 0.2148 1.4537 0.6247

θ = 80% (0.2277) 0.3804 1.0370 0.5797

θ = 90% (0.7024) 0.5705 0.9149 0.5394

const. coef. of variation

yield distribution (0.0004) 0.8914 1.1664 0.8220

θ = 70% (0.5089) 0.3779 0.9855 0.6115

θ = 80% (1.1400) 0.5516 0.8877 0.5932

θ = 90% (1.9637) 0.6400 0.9225 0.5853
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the proposed method.

4.6 Example: Iowa corn

I estimate the yield distributions and derive the 2012 corn insurance rates for the

ninety-nine counties in Iowa. To be consistent with the empirical simulation, the

same dataset is used here. Similarly, I remove the trend effect for each county by

model (4.1). In practice, local linear regression and the corresponding two-period

ahead forecast can be easily implemented, for example, by the locfit package in R.

I collect the residuals after detrending and perform a simple regression based het-

eroscedasticity test that is proposed and used in Harri et al. (2011). My results

show that in 42 counties the homoscedasticity assumption has been rejected at the

significant level 5%; for the rest 57 counties, I fail to do so. In contrast, the constant

coefficient of variation assumption has been rejected in only 5 counties at the 5%

significant level. Based on this observation, I adopt the constant coefficient of vari-

ation assumption in my application, though it is difficult to be validated. Then, the

residuals are adjusted accordingly for subsequent estimation of yield distributions

and insurance rates.

For illustration, in Figure 4.1, I plot the estimated yield distributions from the

four estimators for Adair County. First consider the difference between adaptive

kernel estimates and standard kernel estimates. Clearly, both KDE and ELK suffer

a bump in their left tails. This feature seems undesirable and does not reveal the

truth. Instead, AKDE and ELAK provide more smooth tail estimates, which is

consistent with my prior beliefs. This again confirmed the observation made in

Ker and Goodwin (2000). Second, consider the difference induced by the proposed

information pooling method. Obviously, compared to their counterparts, ELK and

ELAK have reduced the likelihood around the mode but allocated more probability
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Figure 4.1: Yield distributions estimated by the four estimators for Adair County

mass along the tails, especially the right part. Admittedly, there is no way of knowing

the true yield distribution here; nevertheless, I expect ELAK produce the most

accurate estimates, according to the above empirical simulation.

To avoid lengthy report, only the coverage level 80% is considered for illustration.

I provide some histograms in Figure 4.2 and the summary statistics in Table 4.3 to

show how the estimated insurance rates are distributed across counties. The exact

numbers for the estimated insurance rates are gathered in Appendix C. The following

three major points are observed. First, on average, insurance rates by AKDE or

ELAK are 6% higher than those by KDE or ELK; specifically, this is the case in

86 counties. This is understood because adaptive kernel estimators typically place

larger amount of smoothing in the tails. Second, the proposed information pooling

method may result in significantly different insurance rates from its counterpart
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Figure 4.2: Histograms of the Iowa corn insurance rates at the coverage level 80%

Table 4.3: Summary statistics of the Iowa corn insurance rates at the coverage level
80% (all numbers are at percentage level)

Min 1st Quantile Median Mean 3rd Quantile Max

KDE 0.671 1.407 1.945 2.365 2.899 6.416

ELK 1.020 1.576 1.910 2.353 2.904 5.741

AKDE 0.799 1.599 2.082 2.449 2.957 6.104

ELAK 1.127 1.718 2.051 2.439 2.998 5.726
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from a dot plot in Figure 4.3 which visually reveals the relative differences among

the estimated insurance rates. For example, compared to KDE, ELK has increased

the insurance rates in 50 counties with percentage increase ranging from 0.2% to

109.39%; in contrast, for the rest 49 counties, ELK has decreased the insurance rates

instead with percentage decrease varying from -0.2% to -35.02%. Third, the insurance

rates estimated by ELK or ELAK are more concentrated in a narrow interval than

those estimated by KDE or AKDE, which is quite obvious from Figure 4.2 and

Table 4.3. For example, the KDE insurance rates range from 0.671 to 6.416 and

the corresponding histogram is relatively flat; in contrast, the ELK insurance rates

merely range from 1.020 to 5.741 and the histogram exhibits a obviously sharp peak

around 1.6. This reduction in variability is expected and again is the consequence

of information pooling across neighbor counties. Since ELK is demonstrated to have

the best performance in the above empirical simulation, I feel its estimated insurance

rates shall be reasonably close to the true ones with a higher degree of confidence.
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Figure 4.3: Dot plot of the Iowa corn insurance rates at the coverage level 80%
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5. CONCLUSION

In the first essay, I have proposed a modified transformation-based kernel estima-

tor for densities with bounded supports. The new estimator introduces a multiplica-

tive factor while maintains the simplicity of transformation based kernel estimator

with a single global bandwidth. I have established the theoretical properties of the

proposed estimator and shown that it dominates the conventional transformation

based estimator. I proposed three methods of bandwidth selection. My simulations

demonstrate its good finite sample performance, especially for densities with poles

on the boundaries. Extension of the proposed estimator to multivariate density

estimations and regressions will be pursued in my future work. Another possibil-

ity, as suggested by a referee, is to develop an analog of SiZer for the modified

transformation-based estimator, using the scale space ideas proposed by Chaudhuri

and Marron (1999) and Hannig and Marron (2006).

Kernel type copula density estimation seems less developed in the literature be-

cause the standard kernel estimator suffers severe boundary biases. The transformation-

based kernel estimator is a natural solution for boundary correction but may result

in erratic estimates because of the unbounded multiplier associated with the back

transformation. In the second essay, I propose the modified transformation-based

kernel estimator that employs the tapering method to mitigate the consequences of

the multiplier while maintains the simplicity of the fixed transformation and a single

global bandwidth. I establish the theoretical properties of the proposed estimator

and show it dominates the transformation-based kernel estimator. I further show

that the proposed estimator enjoys higher order convergence rate under Gaussian

copulas. Therefore, my estimator should provide outstanding performance for Gaus-
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sian copulas and near Gaussian copulas which are practically relevant in financial

data analyses. Extensions to non-diagonal bandwidth matrix are sensible and have

been briefly discussed. I propose two methods to select the optimal smoothing pa-

rameters. My simulation results demonstrate its superior finite sample performance.

I apply the proposed estimator to three real world datasets and it produces very

smooth and well-behaved estimates. Consequently, the proposed estimator should

be an appealing choice in practice.

Short yield series has limited the use of nonparametric approach to estimate

yield distributions and insurance rates. An appropriate exploitation of the panel

structure possessed by yield data is promising but not well developed in the literature.

In the third essay, I therefore have proposed a new method in response to this

demand. The proposed method begins with effectively incorporating information

among neighbor counties to construct the spatially smoothed moment conditions.

Then, these conditions are imposed as constraints when estimating yield distributions

by well-established empirical likelihood kernel density estimator. The insurance rates

are finally calculated in the usual way. The extension to empirical likelihood adaptive

kernel estimator is also provided for completeness. Based on an empirical simulation,

I have demonstrated the superior performance of the proposed method for small

samples; moreover, the improvement in estimating insurance rates is substantial. If

a nonparametric approach is necessary for flexibility reasons in practice, I feel the

proposed method enables one to proceed with reliable results.
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APPENDIX A

APPENDIX MATERIAL FOR SECTION 2

A.1 Positive semi-definiteness of A3 −AT
2 A−1

1 A2

Define a 3× 3 matrix B by∫ ∞
−∞

[
(EY1 − y)fY (y), (EY 2

1 − y2)fY (y), f ′′Y (y)
]T

[
(EY1 − y)fY (y), (EY 2

1 − y2)fY (y), f ′′Y (y)
]
dy

It is obvious that B is symmetric and positive semi-definite and can be rewritten as

a block matrix:

B =

A1 A2

AT
2 A3,

 ,
where A1,A2 and A3 are given in (2.12).

Note that A3−AT
2 A−1

1 A2 is the Schur complement of A3. According to the Schur

complement lemma (see e.g, Boyd and Vandenberghe (2004)), the Schur complement

of A3 in B is positive semi-definite if and only if B is positive semi-definite. It can be

verified readily that if fX is uniform, fY is standard normal and A3−AT
2 A−1

1 A2 = 0.

A.2 Estimation of A1,A2, A3

The following notations are needed for the derivations in this appendix.

µs,t =

∫ ∞
−∞

Gs,t(Y )fY (y)dy,

Vs,t =

∫ ∞
−∞

G2
s,t(Y )fY (y)dy,

C
(r)
s,t =

∫ ∞
−∞

G2
s,t(y)fY (y)f

(r)
Y (y)dy,

96



D
(r)
s,t =

∫ ∞
−∞

G2
s,t(y)fY (y){f (r)

Y (y)}2dy,

θr = K(r)(0)

κr =

∫ ∞
−∞

K(r)(y)2dy.

Recall that the quantities in (2.18) are defined by A
(r)
s,t =

∫
Gs,t(y)fY (y)f

(r)
Y (y)dy.

I first consider a “non-leave-one-one” estimator

Â
(r)
s,t =

1

n2br+1

n∑
i=1

n∑
j=1

Gs,t(Yi)K
(r)

(
Yi − Yj

b

)
,

where K(r)(·) is the rth derivative of the kernel function K(·) that is taken to be the

standard normal density function. Note that Â
(r)
s,t can be decomposed into two parts

Â
(r)
s,t =

1

n2br+1

n∑
i=1

Gs,t(Yi)K
(r)(0) +

1

n2br+1

n∑
i=1

∑
j 6=i

Gs,t(Yi)K
(r)

(
Yi − Yj

b

)
.

To approximate its bias, I have

E[Â
(r)
s,t ] =

θrµs,t
nbr+1

+
n− 1

nbr+1
E

{
Gs,t(Yi)K

(r)

(
Yi − Yj

b

)}

=
θrµs,t
nbr+1

+
n− 1

nbr+1

∫ ∞
−∞

∫ ∞
−∞

Gs,t(x)K(r)

(
x− y
b

)
fY (x)fY (y)dxdy

=
θrµs,t
nbr+1

+
n− 1

nb

∫ ∞
−∞

∫ ∞
−∞

Gs,t(x)K

(
x− y
b

)
fY (x)f

(r)
Y (y)dxdy

=
θrµs,t
nbr+1

+
n− 1

n

∫ ∞
−∞

∫ ∞
−∞

Gs,t(x)K(u)fY (x)f
(r)
Y (x+ bu)dxdu

≈ θrµs,t
nbr+1

+
n− 1

n

{
A

(r)
s,t +

b2

2

∫ ∞
−∞

Gs,t(x)fY (x)f
(r+2)
Y (x)dx

}

Thus the asymptotic bias of Ĝs,t is

Abias[B̂r] =
θrµs,t
nbr+1

+
b2

2
A

(r+2)
s,t .
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To derive the asymptotic variance of Â
(r)
s,t , I have

Var[Â
(r)
s,t ] =

1

n4b2r+2
Var

∑
i

∑
j

Gs,t(Yi)K
(r)

(
Yi − Yj

b

)
=

1

n4b2r+2
Cov

∑
i

∑
j

Gs,t(Yi)K
(r)

(
Yi − Yj

b

)
,

∑
i

∑
j

Gs,t(Yi)K
(r)

(
Yi − Yj

b

)
=

1

n4b2r+2

{
nVar

(
Gs,t(Y1)K(r)(0)

)
+ 4n(n− 1)Cov

(
Gs,t(Y1)K(r)(0), Gs,t(Y1)K(r)

(
Y1 − Y2

b

))

+ n(n− 1)Var

(
Gs,t(Y1)K(r)

(
Y1 − Y2

b

))

+n(n− 1)Cov

(
Gs,t(Y1)K(r)

(
Y1 − Y2

b

)
, Gs,t(Y2)K(r)

(
Y2 − Y1

b

))

+4n(n− 1)(n− 2)Cov

(
Gs,t(Y1)K(r)

(
Y1 − Y2

b

)
,

Gs,t(Y1)K(r)

(
Y1 − Y3

b

))
I can approximate each term above using the following

Var
(
Gs,t(Y1)K(r)(0)

)
≈ θ2

r(Vs,t − µ2
s,t)

Cov

(
Gs,t(Y1)K(r)(0), Gs,t(Y1)K(r)

(
Y1 − Y2

b

))

≈ br+1θr(C
(r)
s,t − µs,tA

(r)
s,t )

Var

(
Gs,t(Y1)K(r)

(
Y1 − Y2

b

))
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≈ bκrC
(0)
s,t − b2r+2{A(r)

s,t }2

Cov

(
Gs,t(Y1)K(r)

(
Y1 − Y2

b

)
, Gs,t(Y2)K(r)

(
Y2 − Y1

b

))

≈ bκrC
(0)
s,t − b2r+2{A(r)

s,t }2

Cov

(
Gs,t(Y1)K(r)

(
Y1 − Y2

b

)
, Gs,t(Y1)K(r)

(
Y1 − Y3

b

))

≈ b2r+2(D
(r)
s,t − {A

(r)
s,t }2).

Plugging the approximations into the asymptotic variance of Â
(r)
s,t yields

Avar[Â
(r)
s,t ] =

θ2
r(Vs,t − µ2

s,t)

n3b2r+2
+

4θr(C
(0)
s,t − µs,tA

(r)
s,t

n2bb+1
+

2κrC
(0)
s,t

n2b2r+1

−
2{A(r)

s,t }2

n2
+

4(D
(r)
s,t − {A

(r)
s,t }2)

n
.

This “non-leave-one-out” estimator is mainly designed for A
(r)
s,t ’s that satisfy a

certain condition such that the leading bias can be removed. In particular, if

(A.1)
θrµs,t

A
(r+2)
s,t

< 0,

I can set

θrµs,t
nbr+1

+
b2

2
A

(r+2)
s,t = 0.

It follows that an optimal bandwidth is then given by

(A.2) b∗s,t =

−2θrµs,t

A
(r+2)
s,t

1/(r+3)

n−1/(r+3).

With this optimal bandwidth, the third term of the Avar[Â
(r)
s,t ] becomes the leading

term which is of order O
(
n−5/(r+3)

)
.

For A
(r)
s,t ’s that do not satisfy condition (A.1), I use the “leave-one-out” estimator
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to estimate them consistently, which is given by

Â
(r)
s,t =

1

n(n− 1)br+1

n∑
i=1

∑
j 6=i

Gs,t(Yi)K
(r)

(
Yi − Yj

b

)
.

The asymptotic bias and variance can be obtained in a similar manner as those of

the “non-leave-one-out” estimators. I have

Abias[Ârs,t] =
b2

2
A

(r+2)
s,t ,

Avar[Â
(r)
s,t ] =

2κrC
(0)
s,t

n2b2r+1
−

2{A(r)
s,t }2

n2
+

4(D
(r)
s,t − A

(r)
s,t }2)

n
.

An optimal bandwidth is then given by

(A.3) b∗s,t =

(4r + 2)κrC
(0)
s,t

{A(r+2)
s,t }2

1/(2r+5)

n−2/(2r+5).

Under this bandwidth, the MSE of the leave-one-out estimator is of order

O
(
n−8/(2r+5)

)
, which is larger than that of the “non-leave-one-out” estimator for

large r. Thus, the “non-leave-one-out” estimator shall be preferred if condition (A.1)

is satisfied.

Next I investigate which estimators are suitable to estimate the various A
(r)
s,t ’s

given in (2.18). Consider first A3 = A
(4)
0,0, where G0,0 = 1. I have θ4 = 3/

√
2π > 0

and A
(6)
0,0 = −

∫
{f (r)

Y (y)}2dy < 0. Thus condition (A.1) is satisfied and the “non-

leave-one-out” estimator shall be used, as recommended by Wand and Jones (1995).

For other quantities given by (2.18), it is straightforward to verify that condition

(A.1) is not satisfied and thus the “leave-one-out” estimator shall be used.

Lastly regarding the bandwidth used in these estimations, our experiments in-

dicate that A3 is the most difficult to estimate while the estimations of others are

not sensitive to the bandwidth. I therefore use the optimal bandwidth for A3 in

the estimation of all quantities in (2.18). The optimal bandwidth given by (A.2)
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requires the estimation of A4
0,0, which for simplicity is calculated using the rule of

thumb principle under the assumption of normality. Thus the optimal bandwidth is

given by

b∗ = s

[
16
√

2

5

]1/7

n−1/7,

where s is the standard deviation of the transformed data Y1, . . . , Yn.

A.3 Simulation details

I present the densities of the distributions used in our simulations in the table

below. In this table, 1{·} is the indicator function. Beta(·, ·) denotes the beta density

and Beta[a,b](·, ·) denotes the corresponding beta density rescaled to the interval [a, b].

“Truncated” means the original density is truncated to the interval [0, 1].

Table A.1: Densities used in the simulation

# fx(x), x ∈ [0, 1] Description

1 140x3(1− x)3 Beta(4,4)

2 2 exp(−2x2)[
√

2π{Φ(2)− 1/2}]−1 Truncated 2φ(2x)

3 1120
[
x3(1− 2x)31{x≤1/2} + 8(x− 1/2)3(1− x)31{x≥1/2}

]
1
2

Beta[0,1/2](4, 4) + 1
2

Beta[1/2,1](4, 4)

4 1/2 + 140(2x− 1/2)3(3/2− 2x)31{1/4≤x≤3/4}
1
2

Beta(1, 1) + 1
2

Beta[1/4,3/4](4, 4)

5
[
π
√
x(1− x)

]−1
Beta(1/2, 1/2)

6 2
[
π
√
x(2− x)

]−1
Truncated Beta[0,2](1/2, 1/2)

7 294x(1− x)19 + 33x9(1− x) 7
10

Beta(2, 20) + 3
10

Beta(10, 2)

8 c(x, 0.7; 0.7) Conditional Gaussian copula
with ρ = 0.7
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A.4 Examples of estimated densities

Below I report a random example of estimated densities for n = 500. Also

reported are the true densities and histograms of data.
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APPENDIX B

APPENDIX MATERIAL FOR SECTION 3

B.1 Assumptions

Assumption 1. The sample
{

(Xi, Yi)
>, i = 1, · · · , n

}
is an i.i.d. sample from the

joint distribution F that is absolutely continuous. The associated marginal distribu-

tions FX and FY are strictly increasing on their support.

Assumption 2. The copula C of F is such that (∂C/∂u)(u, v) and (∂2C/∂u2)(u, v)

exist and are continuous on
{

(u, v) : u ∈ (0, 1), v ∈ [0, 1]
}

, and (∂C/∂v)(u, v) and

(∂2C/∂v2)(u, v) exist and are continuous on
{

(u, v) : u ∈ [0, 1], v ∈ (0, 1)
}

. In addi-

tion, there are constants K1 and K2 such that∣∣∣∣∣∂2C

∂u2
(u, v)

∣∣∣∣∣ ≤ K1

u(1− u)
∀(u, v) ∈ (0, 1)× [0, 1]

and ∣∣∣∣∣∂2C

∂v2
(u, v)

∣∣∣∣∣ ≤ K2

v(1− v)
∀(u, v) ∈ [0, 1]× (0, 1).

Assumption 3. The copula density c exists, is positive and admits continuous second

order partial derivatives on the interior of I. In addition, there is a constant K00

such that

c(u, v) ≤ K00 min

(
1

u(1− u)
,

1

v(1− v)

)
∀(u, v) ∈ (0, 1)2.

Assumption 4. As n → ∞, Θ → 0. In particular, assume Θ ∼ h2, which is

optimal.

Assumption 5. Under the diagonal bandwidth matrix H = h2I, h ∼ n−a where

a ∈
[

1
6
, 1

4

)
.
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Assumption 6. Under the diagonal bandwidth matrix H = h2I, h ∼ n−a where

a ∈
[

1
10
, 1

4

)
.

B.2 Proofs

B.2.1 Proof of Theorem 1

Proof. First note that

ĉm1(u, v) = J(u, v;h,Θ)ĉt1(u, v)

=
(
J(u, v;h,Θ)− J∗(u, v;h,Θ)

)
ĉt1(u, v) + J∗(u, v;h,Θ)ĉt1(u, v),

and

bm1(u, v) = bt1(u, v) + Θ>B
(
Φ−1(u),Φ−1(v)

)
c(u, v),

it follows

√
nh2

(
ĉm1(u, v)− c(u, v)− bm1(u, v)

)
=
(
J(u, v;h,Θ)− J∗(u, v;h,Θ)

)√
nh2ĉt1(u, v)

+
√
nh2

(
J∗(u, v;h,Θ)ĉt1(u, v)− c(u, v)− bt1(u, v)

−Θ>B
(
Φ−1(u),Φ−1(v)

)
c(u, v)

)
≡I1 + I2.

For I1, I have

I1 =
(
J(u, v;h,Θ)− J∗(u, v;h,Θ)

)√
nh2

(
ĉt1(u, v)− c(u, v)− bt1(u, v)

)
+
(
J(u, v;h,Θ)− J∗(u, v;h,Θ)

)√
nh2

(
c(u, v) + bt1(u, v)

)
.

Both J(u, v;h,Θ) and J∗(u, v;h,Θ) are in the form of sample average. It is easy to

show that, by a simple Taylor expansion, J(u, v;h,Θ)−J∗(u, v;h,Θ) = op

(
n−1/2

)
=

op

(
(nh2)−1/2

)
. From (3.9), I have

√
nh2

(
ĉt1(u, v)− c(u, v)− bt1(u, v)

)
= Op(1);

together with the above result, the first term in I1 is op(1). Since J(u, v;h,Θ) −
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J∗(u, v;h,Θ) = op

(
(nh2)−1/2

)
, the second term in I1 is obviously op(1) as well.

Therefore, I have I1 = op(1).

Consider I2, after plugging (3.12) in, and it follows

I2 =
√
nh2

(
ĉt1(u, v)− c(u, v)− bt1(u, v)

)
+
√
nh2Θ>B

(
Φ−1(u),Φ−1(v)

) (
ĉt1(u, v)− c(u, v)

)
+
√
nh2ĉt1(u, v)o (Θ)

≡ I21 + I22 + I23.

For I21, according to (3.9), I have

I21
d−→ N

(
0, σ2

m1(u, v)
)
,

since σ2
m1(u, v) = σ2

t1(u, v). For I22, I have

I22 =
√
nh2Θ>B

(
Φ−1(u),Φ−1(v)

) (
ĉt1(u, v)− c(u, v)− bt1(u, v)

)
+
√
nh2Θ>B

(
Φ−1(u),Φ−1(v)

)
bt1(u, v).

It is easy to see that the first term in I22 is o(1) · Op(1) = op(1). Since bt1(u, v) =

O
(
h2
)

and by assumption Θ = O
(
h2
)
, I have the second term in I22 beingO

(
nh10

)
=

o(1) by the fact that h ∝ n−a where a ∈ [1/6, 1/4). Therefore, I22 = op(1). For I23,

I have

I23 =
√
nh2

(
ĉt1(u, v)− c(u, v)− bt1(u, v)

)
o (Θ)+

√
nh2

(
c(u, v) + bt1(u, v)

)
o (Θ) .

The first term in I23 is again o(1) ·Op(1) = op(1). For the second term in I23, I have

√
nh2c(u, v)o (Θ) =

√
nh6c(u, v)o(1) = o(1)

since
√
nh6 = O(1); similarly I also have

√
nh2bt1(u, v)o (Θ) = o(1). Thus, I have

I23 = op(1).
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The proof concludes by combining the above results.

B.2.2 Proof of Theorem 2

Proof. I first slightly extend the results stated in (3.9). Under the assumptions in

Theorem 2, I have, for any (u, v) ∈ (0, 1)2,

√
nh2

(
ĉt1(u, v)− c(u, v)− b(G)

t1 (u, v)
)

d−→ N
(
0, σ2

m1(u, v)
)
,

where b
(G)
t1 (u, v) is defined in (3.27). Since b

(G)
t1 (u, v) includes the higher order bias

term that is associated with h4, I can relax the condition to h ∼ n−a where a ∈

[1/10, 1/4).

Note that b
(G)
m1 (u, v) = bm1(u, v) + h4R

(
Φ−1(u),Φ−1(v); ρ

)
since bm1(u, v) = 0 in

this case and use the higher order Taylor expansion of J∗(u, v;h,Θ), see (3.28). Then

the proof is analogous to that in the Theorem 1 above, thus is omitted here.

B.2.3 Proof of Γ3 − Γ>2 Γ−1
1 Γ2 ≥ 0

Proof. Define a 3-dimensional vector q(s, t) =
(
B(s, t)>g(s, t), g(2,0)(s, t) + g(0,2)(s, t)

)>
and a matrix

Q =

∫
R2

q(s, t)q(s, t)>dsdt.

By construction, I have q(s, t)q(s, t)> is positive-semidefinite and so is Q. Note that

Q can also be written in the block matrix form, namely

Q =

 Γ1 Γ2

Γ>2 Γ3

 .

Note that Γ3 − Γ>2 Γ−1
1 Γ2 is the Schur complement of Γ3. According to Schur com-

plement lemma, see Boyd and Vandenberghe (2004), the Schur complement of Γ3

in Q is positive-semidefinite if and only if Q is positive-semidefinite. Therefore, I
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have Γ3 − Γ>2 Γ−1
1 Γ2 ≥ 0. It is easy to check that when the underlying copula is

the Gaussian copula, i.e. g is the pdf of bivariate Gaussian distribution, I have

Γ3 − Γ>2 Γ−1
1 Γ2 = 0.

B.3 Exact formula of
∫
I

(
ĉm(u, v)

)2
φ(Φ−1(u))φ(Φ−1(v))dudv

For the ĉm2 with the non-diagonal bandwidth matrix (3.29), I have∫
I

(
ĉm2(u, v)

)2
φ(Φ−1(u))φ(Φ−1(v))dudv =

1

4πn2η2h2δ
√

1− λ2

n∑
i=1

n∑
j=1

exp


α1

(
Ŝ2
i + Ŝ2

j + T̂ 2
i + T̂ 2

j

)
+ α2

(
ŜiT̂i + ŜjT̂j

)
4h2(1− λ2)δ2

+
α3

(
ŜiT̂j + ŜjT̂i

)
+ α4

(
ŜiŜj + T̂iT̂j

)
4h2(1− λ2)δ2

 ,

where

α1 = −2h4(1− λ2)(4θ2
1 − θ2

2) + 2h2((λ2 − 3)θ1 − λθ2)− 1

α2 = 4h4(1− λ2)(4θ2
1 − θ2

2) + 2h2(4λθ1 + (3λ2 − 1)θ2) + 2λ

α3 = −2h2(4λθ1 + (1 + λ2)θ2)− 2λ

α4 = 4h2((1 + λ2)θ1 + λθ2) + 2.

Then for the ĉm1, the result can be immediately obtained by setting λ = 0.
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APPENDIX C

APPENDIX MATERIAL FOR SECTION 4

Below, I present the detailed 2012 insurance rates at the coverage level 80%

estimated by the four competing estimators.
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