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ABSTRACT 

 

 Thin films with the ability to control gas permeability are crucial to packaging 

and purification applications. The addition of impermeable nanoparticles into neat 

polymers improves barrier/separation properties by creating a tortuous pathway, but 

particle aggregation occurring at high filler loading can reduce transparency of these 

composites as well as barrier/separation improvement. Layer-by-layer (LbL) assembly 

allows full control of morphology at the nanoscale, so barrier/separation properties can 

be precisely controlled and the films remain flexible and transparent. 

 A three component recipe, consisting of polyvinylamine, poly(acrylic acid) and 

montmorillonite clay was deposited as repeating PVAm/PAA/PVAm/MMT quadlayers 

(QL) via LbL assembly. By adjusting solution pH and varying the placement of 

polycation layers, polymer interdiffusion and clay concentration were controlled, as well 

as oxygen barrier. 

 Another QL assembly, with a PEI/PAA/PEI/MMT repeating sequence, was 

deposited using LbL to create light gas barrier films. Transmission electron microscope 

images revealed a highly-oriented nanobrick wall structure. A 5 QL coating on 51 µm 

polystyrene (PS) is shown to lower both hydrogen and helium permeability three orders 

of magnitude relative to bare PS, demonstrating better performance than ethylene vinyl-

alcohol (EVOH) copolymer film and even metallized plastic. 

 Graphene oxide sheets, along with chitosan and PAA were used in a 

CH/PAA/CH/GO QL assembly. pH deviation between CH and PAA ionizes the counter 
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ion, creating a more interdiffused polymer matrix and resulting in higher GO loading. 

Thermal reduction of GO, provides improvement in barrier performance under humid 

conditions and better H2/CO2 separation behavior. 

 Finally, a PEI/PAA multilayer membrane exceeding that of the current state-of-

the-art gas separation membranes was performed. This ionically crosslinked assembly 

exhibits H2/N2 and H2/CO2 selectivities beyond Robeson’s upper-bound limit, which are 

superior to the properties of most organic, inorganic or mixed-matrix membranes 

reported in the open literature, making it a significant advance in polymeric membranes 

for gas separation. 

 In conclusion, barrier and separation behavior were improved via either a 

polymer-polymer or polymer-nanoplatelet assembly. Several treatments, including 

interdiffusion or thermal reduction proved to enhance film performance. Future works 

focus on applying LbL techniques in Bragg reflectors and CO2/N2 separation. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

 Polymer membranes are used in various technological areas such as water 

filtration,[1-3] fuel cells,[4-6] antireflection coatings,[7-9] optoelectronic devices,[10-12] tissue 

repair,[13-15] food packaging[16-18] and gas separation.[19-21] One of the most important 

properties of these membranes is the ability to control gas permeation rate, with the 

driving force being pressure or concentration. While conventional gas separation 

techniques (e.g., cryogenic distillation or an adsorption process) involve tremendous 

energy consumption, membrane gas separation does not require a phase change, making 

it more energy efficient.[22, 23] Membranes also allow gas separation to be performed in 

remote locations due to the absence of moving parts.[22] This growing technological area 

is competitive because of its simplicity, low energy cost, portability, reliability and space 

efficiency, which is why the market for membranes is expected to quintuple from 2000 

to 2020.[23] 

 While separation membrane is able to permeate gases selectively, barrier films 

are designed to block a specific penetrant. Packaging materials made with various 

barriers play a significant role in modern society. Food, beverages, cosmetics, 

pharmaceuticals and electronics all require good gas and moisture protection.[16, 24] 

According to the World Packaging Organization (WPO), global packaging sales 
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increased from 372.4 to 563.9 billion dollars from 1999 to 2009.[25] Plastic packaging 

materials such as polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC) and 

polyethylene terephthalate (PET) are extensively used for making containers, lids, 

pouches, and films due to their barrier properties, mechanical flexibility and price.[26, 27]  

 Of all the membrane materials (polymer, inorganic and mixed matrix), mixed 

matrix composite membranes combine material types to fine-tune the properties, along 

with controlling the morphology of the membrane.[22, 28, 29] Despite the commonly used 

thin film preparation techniques such as plasma enhanced chemical vapor deposition 

(PECVD)[30, 31] or solvent casting,[32, 33] layer-by-layer assembly (LbL) continues to grow 

in popularity (since the 1990s)[34] due to its simplicity and versatility. By alternately 

exposing a substrate to oppositely-charged polyelectrolyte solutions, electrostatic 

attractions between the charged ingredients result in the buildup of anion/cation bilayers 

(BL), as shown in Figure 1.1. Film thickness and other properties can be easily 

controlled by increasing the number of deposition cycles, and although rinsing and 

drying steps are often used between deposition steps, they are optional. To produce 

functional polymeric thin films with unique structures and properties, one can achieve 

these goals through adjusting concentration,[35, 36] pH/ionic strength,[37-39] temperature,[38, 

40] molecular weight[41, 42] and deposition time[35, 43, 44] of the aqueous deposition mixtures. 

In addition to electrostatic attraction,[45] hydrogen bonding[46] and covalent bonding[47] 

can also be used in a layer-by-layer fashion. The LbL technique has also been 

demonstrated for integrating multiple polymers,[44, 48] incorporating nanoparticles,[49, 50] 

inorganic clays,[51, 52] and biological molecules.[45, 53] All the advantages mentioned make 
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LbL assembly a promising candidate for drug delivery,[54-56] antireflection,[57-59] flame 

retardant,[60-62] and gas barrier/separation [63-65] layers.  

 
 
  

 

Figure 1.1. Schematic of the layer-by-layer deposition process.[44]   
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1.2 Objectives and Dissertation Outline 

 The objective of this dissertation is to understand how layer-by-layer systems 

(all-polymer and polymer-nanoplatelet) perform as either gas barrier or gas separation 

films. By creating more interactions in the thin film and increasing the distance of the 

molecular diffusion path, diffusivity of gas through the multilayer assemblies is 

effectively suppressed (while solubility remains unchanged), which reduces gas 

permeability. Thin film structure can also be fine-tuned to allow smaller gases to 

permeate through, creating a gas separation film. In this dissertation, the capability of 

improving gas barrier and separation properties via LbL coatings, with varying recipes 

and processing parameters, is demonstrated. These all-polymer and polymer-

nanoplatelet assemblies create a highly impermeable/selective nanocoating that can be 

used for packaging (e.g., food and electronics) and gas purification.   

 Chapter II is a concise review of gas transport mechanisms, barrier/separation 

technologies and layer-by-layer assembly.  The first part elaborates gas transport in 

polymer and nanocomposites, followed by the theoretical models used to describe these 

transport phenomena. The second part of the chapter covers gas barrier and separation 

films that have been studied, including polymer, inorganic and mixed matrix membranes. 

The last part illustrates the basics of LbL assembly, with special emphasis on gas barrier 

and separation behavior. 

 Chapter III describes the ability of LbL processing to tailor gas barrier of 

polymer-clay thin films. A three component recipe, consisting of polyvinylamine 

(PVAm), poly(acrylic acid) (PAA) and montmorillonite (MMT) clay was deposited as 
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repeating PVAm/PAA/PVAm/MMT quadlayers (QL). This QL assembly demonstrates 

the influence of polymer interdiffusion and clay concentration on oxygen barrier 

behavior. With the aid of ellipsometry and quartz crystal microbalance (QCM), it was 

confirmed (by varying the placement of PVAm and polyethylenimine (PEI) layers) that 

these QL assemblies can be switched from linear to exponential growth with greater clay 

deposition in each layer. Atomic force (AFM) and transmission electron microscope 

(TEM) images also revealed a high level of clay orientation. Oxygen transmission rate 

(OTR) testing was performed on coated poly(ethylene terephthalate) (PET) to analyze 

barrier behavior as a function of polymer interdiffusion and clay concentration. 

Chapter IV is an extension of Chapter III and previous work done to investigate 

the light gas barrier of PEI/PAA/PEI/MMT QL thin film.[66] Cross-sectional TEM 

images were used to examine the nanobrick wall structure while increasing the number 

of QLs deposited. TEM images and QCM confirmed the decrease of clay concentration 

as the assembly grew thicker. Hydrogen and helium transmission rate testing was 

performed on coated polystyrene (PS) to evaluate the influence of the number of QL 

deposited on barrier properties.  

 Chapter V describes a chitosan (CH)/PAA/chitosan (CH)/graphene oxide (GO) 

QL system. The influence of CH and PAA solution pH on growth, structure, polymer 

interactions and barrier was investigated. Ellipsometry and QCM were used to measure 

the growth and mass deposition as a function of QL deposited and polyelectrolyte pH, 

and to calculate composition of GO in these assemblies. Scanning electron microscopy 

(SEM) and cross-section TEM were used to examine film structure and coverage of GO 
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on top of polymer layer. Fourier transform infrared (FTIR) spectra confirmed the level 

of CH/PAA interaction for each assembly. OTR of the coated PET assemblies were 

measured under dry and humid condition with unmodified GO and thermally-reduced 

GO. Hydrogen and carbon dioxide transmission rates were also measured to quantify the 

separation behavior. 

 Chapter VI describes the exceptionally high hydrogen permselectivity and 

remarkable elastic modulus in an ionically crosslinked, LbL-assembled PEI/PAA 

membrane. These membranes perform beyond Robeson’s upper-bound limit, despite 

being made of seemingly homogenous polymer. Nanoindentation was used to investigate 

mechanical behavior of these films. Cross-sectional SEM images were taken to confirm 

the uniformity over the substrate. Gas permeation testing allowed for comparison of 

PEI/PAA with other polymer and mixed matrix membranes. 

 Chapter VII is conclusions for this work and future research directions. This 

dissertation investigated the influence of polymer interdiffusion, nanoplatelet 

concentration and types of nanoplatelet on gas barrier and separation behavior. 

Tremendous properties were demonstrated, but these multilayer assemblies are currently 

unable to separate gas pairs with similar molecular sizes. In order to improve selectivity, 

materials such as polyethylene oxide (PEO) are introduced into the assembly to increase 

solubility of specific gas (i.e., carbon dioxide). By varying the deposition solution pH, 

mechanical properties and PEO composition can be controlled, which alters permeability 

of different gas pairs and selectivity. The second work describes the use of LbL 

assembly to reproduce uniform and crack-free Bragg reflecting surfaces. The refractive 
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index (RI) of each layer was designed by combining two materials in each layer. 

Thickness of each layer was then controlled by altering the number of BL in each layer. 

The high RI layer consisted of cationic PEI and anionic vermiculate clay (VMT), 

forming a dense layer. The low RI layer contained cationic colloidal silica (SiO2) and 

anionic cellulose nanocrystals (CNCs). Due to the entirely different shape of SiO2 and 

CNCs, a porous layer with low RI is created. Cross-sectional TEM images show well-

defined high and low RI layers, which were found to have iridescent properties after six 

deposition cycles (containing hundreds of individual layers). 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Gas Diffusion Theory 

 In order to design a gas barrier or gas separation film, one needs to understand 

gas transport phenomena through a polymer membrane. The first gas permeation 

analysis is attributed to Mitchell.[67, 68] He observed that natural rubber balloons filled 

with hydrogen gas deflated over time and reasoned this was due to diffusion of gas 

through the balloon wall. In 1866, Graham measured the permeation rate of all known 

gases on every polymer membrane available.[69] His work led to Graham’s law of 

diffusion: 

𝑟 𝛼 1 √𝑀⁄                                                                (2.1) 

where gas permeation rate r is inversely proportional to the root of molecular weight M 

of penetrant.  

 Two types of membranes are used to describe gas permeation: porous or dense. 

Figure 2.1 illustrates how gases permeate through these membranes. For porous 

membranes, the gas diffusion mechanism varies according to pore size.[70] If the pores 

are relatively large (0.1 – 10 µm), gases permeate through the membrane by convective 

flow and no separation occurs.[70] If the pore size is smaller than the mean free path of 

the gas molecules (< 0.1 µm), then permeation is dominated by Knudsen diffusion.[70, 71] 

In this case, penetrants follow the Graham’s law. When the membrane pore size is below 
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10 nm, gases are separated by molecular sieving.[70] Gas transportation through this type 

of membrane is a combination of gas phase diffusion and surface diffusion.[72] Despite 

the research interest in these porous membranes, high cost and complicated processing 

limit their use, so most commercial gas separation membranes are the dense type. Layer-

by-layer assembly belongs to the dense category, and is the focus of this dissertation, so 

porous membranes will not be further reviewed here. 

 

 

 

Figure 2.1. Mechanisms for permeation of gases through porous and dense separation 

membranes.[70] 

 

 

2.1.1 Gas Transport through Polymer 

 Gas transport in nonporous dense polymer membranes is described by the 

solution-diffusion model. This model can be divided into five steps as depicted in Figure 
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2.2, which includes diffusion through the boundary layer at the upstream side, relative 

sorption of gases by the polymer membrane, diffusion of the gases inside the polymer 

membrane, desorption of gases at the permeate side, and diffusion out of the boundary 

layer of the downstream side.[73]  

In 1866, Graham postulated basic expression representing the solution-diffusion 

mechanism through a polymer membrane:[69] 

P D S= ×                                                                (2.2) 

where the gas permeability (P) (cm3 cm cm-2 s-1 Pa-1) is the product of diffusivity (D) 

(cm2 s-1) and solubility (S) (cm3(273.15K; 1.013 × 105 Pa) cm-3 Pa-1). Diffusivity is a 

kinetic factor that represents the ability of molecules to move through the polymer.[73] 

Larger penetrants generally have lower diffusivity, which is also sensitive to polymer 

chain flexibility and free volume in the polymer. Diffusivity can be defined by free 

volume theory:[74] 

𝐷 = 𝐴 𝑒𝑒𝑒(−𝐵
𝐹

)                                                          (2.3) 

where A and B are constants of the specific gas-polymer system and F represents the 

fractional free volume: 

𝐹 = 𝑉𝑡𝑡𝑡𝑡𝑡−𝑉𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑡𝑡𝑡𝑡𝑡

                                                         (2.4) 

where Vtotal is the sum of the theoretical volume of polymer (Voccupied) and the free 

volume in the system. Solubility, on the other hand, is a thermodynamic factor related to 

gas condensability (characterized by gas critical temperature, boiling point, enthalpy of 

vaporization, etc.) and gas-polymer interactions.[73] Solubility is related to local 
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concentration (C) of the gas at a given temperature and is expressed as a function of 

pressure (p): 

𝑆 = 𝐶 𝑒⁄                                                                 (2.5) 

Larger penetrants are usually more condensable, resulting in higher local concentration 

and solubility. Definition of selectivity (αA/B) is the gas permeability ratio of A to B. It 

can be influenced by the differences in diffusivity or the differences in solubility: 

𝛼𝐴/𝐵 = 𝑃𝐴
𝑃𝐵

= �𝐷𝐴
𝐷𝐵
� �𝑆𝐴

𝑆𝐵
�                                                    (2.6) 

 

The competition between diffusivity and solubility is determined by whether the 

polymer chains are at equilibrium, which will be explained in the next section.  

 

 

 

Figure 2.2. Schematic presentation of gas permeation steps across polymer membranes 

according to the solution-diffusion mechanism.[73]  
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2.1.1.1 Transport through a Rubbery Polymer 

 When gas molecules permeate through a polymer membrane, the interactions 

between the penetrant and polymer change the physical state of the polymer. Both 

diffusivity and solubility depend greatly on whether the polymer membrane is above or 

below its glass transition temperature (Tg).[75] If the polymer is at equilibrium at room 

temperature (RT) (Tg < RT), segments of polymer chains have sufficient thermal energy 

to allow limited rotation. This motion changes its mechanical properties, and the 

polymer is defined as rubber. Gas transport behavior in rubber can be sufficiently 

explained using the solution-diffusion model, as long as it doesn’t contain crystalline 

phase that acts as a barrier to the gas molecules.[26, 73] For rubbery polymers, the 

solubility term is usually dominant over diffusivity, so gas permeability increases with 

increasing penetrant size (without considering additional penetrant-polymer 

interactions).[76-78] 

2.1.1.2 Transport through a Glassy Polymer 

 Gas diffusion in a glassy polymer (Tg > RT) is more complicated because the 

sorption sites are unique. For a glassy polymer, changes in gas permeability as a function 

of pressure is often explained by a dual-mode model, which was first proposed by 

Barrer[79] and later modified by Petropoulos and Koros.[80, 81] The basic assumptions of 

this model are: dissolution of gas in the polymer matrix by Henry’s law and adsorption 

of gas molecules in holes (or cavities) on the surface (or inside) the polymer matrix by 

Langmuir’s law. The pressure dependence of solubility can be described as: 
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𝑆 = 𝑘𝐷 + 𝐶′𝐻𝑏
1+𝑏𝑏

                                                          (2.7) 

where kD is Henry’s law constant, C’H is the Langmuir capacity constant, and b is the 

Langmuir affinity constant. C’H indicates the level of unrelaxed free volume in the 

glassy polymer. This term is used to determine the nonequilibrium nature of glassy 

polymers. The affinity constant describes the specific nature of a given penetrant to sorb 

into the excess unrelaxed volume in the nonequilibrium glassy polymer matrix. It was 

found that the balance between the diffusivity term and the solubility term in Equation 

2.6 is different for glassy and rubbery polymer.[78] The diffusivity term is usually 

dominant for a glassy polymer, so gas permeability decreases with increasing penetrant 

size. The nonequilibiurm state of glassy polymers can also be affected by process 

parameters such as temperature, pressure and penetrant-polymer interactions.[73] 

2.1.2 Transport in Nanocomposites  

Nanocomposites are two phase systems that consist of a polymer matrix and 

dispersed particles of nanometer scale. Adding inorganic nanoparticles into a polymer 

matrix has been shown to successfully increase elastic modulus. The coupling between 

large surface area nanoparticles and a polymer matrix facilitates stress transfer to the 

reinforcing phase, so tensile strength and toughness are also increased.[82-85] These 

impermeable nanoparticles can also increase flame retardancy of the polymer matrix,[86-

88] while also forming a tortuous pathway to reduce gas permeability.[89-91] The most 

common nanoparticles belong to the family of 2:1 phyllosilicates (i.e., clays). Their 

crystal structure, shown in Figure 2.3, consists of an aluminum or magnesium hydroxide 
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octahedral sheet sandwiched between two silicon oxide tetrahedral sheets.[83, 92] The 

layer thickness of each clay platelet is 1 nm and their lateral dimensions vary from 30 

nm to several microns, making the aspect ratio (α) range from 30 to several 

thousands.[85,93]  

 

 

 
Figure 2.3. Montmorillonite clay chemistry and structure.[92] 

 
 

Simple mixing of polymer and nanoplatelets does not always result in the 

generation of a nanocomposite, but rather the dispersion of larger stacked aggregates. 

This aggregation is due to the weak interactions between polymer and inorganic 

component, which results in poor properties relative to a fully exfoliated 

nanocomposite.[94] Depending on the strength of the interfacial interactions, three types 

of morphology are possible in polymer-clay nanocomposites:[95] (1) phase separated 

composite - clay platelets have the same basal plane spacing d001 as the theoretical value, 

suggesting the polymer chains did not enter the gallery of the platelets (Fig. 2.4a), (2) 
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intercalated composite - d001 is increased by the entering polymer, but the clay platelets 

remain stacked in parallel with each other (Fig. 2.4b), and (3) exfoliated composite - d001 

is greater than 10 nm, clay sheets are pushed apart irregularly by polymer or organic 

species (Fig. 2.4c). There are different factors controlling the extent of clay exfoliation, 

including concentration,[94] interfacial interactions[96] and temperature.[97]  

 

 

 
Figure 2.4. Schematics of the three different clay-filled composite morphologies.[95]  

 
 
 Gas diffusion through nanocomposites can be viewed as a solution-diffusion 

process. In the absence of adsorption by the filler, or effects of the filler on the 

surrounding polymer,[98] solubility of the composite can be described as: 

𝑆 = 𝑆0(1 − 𝜙)                                                            (2.8) 

where S0 is the solubility of the pure polymer matrix and 𝜙 is the volume fraction of 

filler in the matrix. In this case, solubility does not depend on morphology of the 
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polymer and the filler.[98] Diffusion is more complicated because fillers act as 

impermeable barriers and force penetrant to follow an elongated (tortuous) pathway to 

diffuse through the composite. 

 𝐷 = 𝐷0𝑓                                                                (2.9) 

f is the tortuosity factor where D0 is the diffusivity of the neat polymer. Tortuosity factor 

depends on the volume fraction of the filler, aspect ratio of the filler (α), and its 

orientation in the polymer matrix. Combining Equation 2.8 and 2.9 gives 

𝑃 = 𝐷𝑆 = 𝑆0𝐷0𝑓(1 − 𝜙) = 𝑃0𝑓(1 − 𝜙)                                  (2.10) 

or 
𝑓 = 𝑃

𝑃0(1−𝜙)
                         (2.11) 

where P0 is the gas permeability of neat polymer. A simple permeation model for a 

regular arrangement of platelets has been proposed by Nielsen and is presented in Figure 

2.5.[99] The platelets are evenly dispersed and considered to be rectangular with finite 

width (L) and thickness (W). Their orientation is perpendicular to the diffusion direction. 

Nielson also proposed that tortuosity (𝜏), the reciprocal of tortuosity factor, is a function 

of α (= 𝐿
2𝑊

) and 𝜙: 

𝜏 = 1 + 𝛼𝜙 = 1 + 𝐿
2𝑊

𝜙 = 1
𝑓
                                           (2.12) 

Combining Equation 2.11 and 2.12, the gas permeability of nanocomposites becomes:  
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0 0

1 1
1

P PP αφ αφ
φ

= ≈
+ +
−

                                           (2.13) 

Nielsen’s model describes a composite with low filler volume fraction (𝜙 ≪ 1) which 

makes the filler in the composite a “dilute suspension”. The denominator of Equation 

2.13 can be simplified as shown above. 

 

 

 

Figure 2.5. Schematic of gas transport through a polymer-platelet composite via a 

tortuous path.[99] 

 

 

 A more advanced tortuous path theory was later proposed by Cussler.[100] The 

difference between the Nielsen and Cussler models is the former failed to describe 

higher concentration regimes in the composite. Cussler’s model states the relationship 

between the gas permeability of a filled polymer matrix and neat polymer as: 

( )
0

2 21 / 1
PP

µα φ φ
=

+ −
                                                  (2.14) 
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where µ is a geometric factor representing the shape of the filler. It describes gas 

diffusion phenomena when the filler concentration in the composite is “semi-dilute” 

(𝜙 ≪ 1 and 𝛼𝜙 < 1).[90, 101] The distribution of platelets in a polymer composite can also 

affect gas permeability. When the platelets are in a regularly spaced array, µ = 1. When 

the platelets are in a randomly distributed array, µ = 4/9. These possible geometries of 

platelets in the composite are shown in Figure 2.6. 

 

 

 
 
Figure 2.6. Geometries of regular and random arrays for platelet-filled polymer 

composites. 

 

 

2.1.3 Limitations of Gas Separation Using Polymer Membranes 

 The best gas separation membrane should have high gas permeability and high 

selectivity. In reality, there are strong trade-offs between gas permeability and selectivity 

that are not easily broken.[102-105] It is believed that this trade-off behavior for specific 

gas pairs is unique and related to the nature of the gas molecules. Robeson proposed a 

selectivity-permeability relationship for polymer membranes and various gas pairs in 
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1991 and revised it in 2008.[20, 21] The transport parameters, selectivity (αA/B) and gas 

permeability (PA), were plotted to generate an upper-bound line, Figure 2.7. In general, 

rubbery polymers have higher flux, while glassy polymers exhibit better selectivity. The 

following empirical equation was proposed to explain the upper-bound lines for given 

gas pairs: 

𝑙𝑙𝑙𝛼𝐴/𝐵 = 𝑙𝑙𝑙𝛽𝐴/𝐵 − 𝜆𝐴/𝐵𝑙𝑙𝑙𝑃𝐴                                        (2.15) 

where 𝜆𝐴/𝐵 is the slope of the upper-bound, which depends only on the size of the gas 

pair and 𝑙𝑙𝑙𝛽𝐴/𝐵  being the intercept at 𝑙𝑙𝑙𝑃𝐴  = 0 (depends on gas condensabilities). 

Development of better membrane materials is an ongoing research topic, making further 

revision of the upper-bound necessary in the future. 

 

 

 

Figure 2.7. Upper-bound line of CO2 permeability and CO2/CH4 permselectivity.[20] 
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2.2 Gas Barrier/Separation Films  

 Transparent and flexible thin films with high barrier properties are important for 

packaging. Lack of metallic components is also vital for microwavability and 

recyclability,[106] which explains the strong interest in using nanoplatelets as 

impermeable fillers.[107-110] In contrast, gas separation films require high flux and 

selectivity.[16, 70, 73] Flux can be increased by increasing surface area of the separation 

module, while selectivity is controlled by film structure and gas-polymer interactions.[23, 

70, 111-113] These properties are necessary for packaging, electronic displays and gas 

purification/separation.[19, 22, 114-116] The gas barrier and separation technologies reviewed 

in this section have been developed to satisfy these applications. Polymer films, whether 

as a blend or bulk material, are the most studied and commonly used for 

barrier/separation application (see Section 2.2.1).[16, 117-119] A new approach for 

barrier/separation films is by depositing a thin barrier layer on top of the polymer 

substrate, which offers advantages such as light weight, low cost and design freedom.[116, 

120] Inorganic films, which contain impermeable inorganic nanoparticles and polymer 

matrix have been studied for their low gas. The inorganic materials can be deposited on 

flexible substrate to reduce gas permeability (Section 2.2.2.1),[17, 121] used as a separation 

film itself (Section 2.2.2.1)[122, 123] or coated as a metal oxide layer (Section 2.2.2.2).[124-

126] Finally, mixed matrix membranes combine the benefits of the previous systems 

(Section 2.2.3), enabling properties to be tailored by choosing the materials necessary 

and controlling the morphology of the membrane.[22, 28, 29, 127, 128]  
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2.2.1 Polymers  

High barrier polymers, such as ethylene vinyl alcohol (EVOH), polyvinylidene 

chloride (PVDC) and polyethylene naphthenate (PEN), act as fillers when laminated 

with polymers like polyethylene (PE),[129] polypropylene (PP)[117, 130] and poly(ethylene 

terephthalate) (PET).[131] The gas barrier can be improved 2 to 10 times relative to the 

neat commodity polymer.[16] This improvement is not significant relative to other 

techniques, but inexpensive processing has made it one of the most prevalent forms of 

commercial packaging material.[27]  

As for bulk polymer membranes, they made their debut in commercial gas 

separation in 1980. Starting with the hydrogen-separating Prism® (polysulfone), other 

membranes such as Cynara (cellulose acetate) and Separex (cellulose acetate) were 

introduced to remove carbon dioxide from methane in natural gas.[118, 132, 133] More 

recently, work by Dow, Ube and DuPont has expanded the market and made membrane 

separation more competitive than conventional gas separation techniques.[70] Other 

materials, such as silicon-based and high-temperature polymers have also been studied. 

Due to their chain flexibility, large free volume and low glass transition temperature (Tg 

of polydimethylsiloxane (PDMS) is -123oC), silicon-based polymers have high gas and 

vapor permeability.[134, 135] Their excellent thermal and chemical resistance is suitable for 

separation of high value organic vapors from industrial waste streams. For instance, a 

PDMS-blended membrane operating at 35 oC and 1 atm exhibited an oxygen 

permeability 250 times higher than polyimide membranes, while O2/N2 selectivity 

remained similar. High-temperature polymer membranes, such as polybenzimidazole 
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(PBI) or polyimides (PI), with Tg over 400 oC and decomposition temperature near 600 

oC, have also received more attention.[136-139] High Tg polymer increase the operating 

temperature up to 300 oC, which increases flux while maintaining high selectivity 

(H2/CO2 = 20) relative to rubbery polymers, as shown in Figure 2.8.[73] 

2.2.2 Inorganic Films 

 Two types of inorganic films will be introduced, the metalized films and metal 

oxide films. 

 

 

 
Figure 2.8. Permeance as a function of temperature for H2 and CO2 permeating through 

PBI membranes.[136] 

 
 

2.2.2.1 Inorganic Films: Metalized Plastics and Metal Films  

 Traditional flexible barriers consist of polymer film with a thin layer of 

aluminum, ranging from ten nanometers to few micrometers.[17, 121, 140] Although 

metalized film provides barrier properties (oxygen transmission rate [OTR] = 1.4×10-14 
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cm3 cm-2 s-1 Pa-1) unrivaled by any other flexible packaging, the smaller thickness is 

susceptible to the formation of pinholes and other stress induced fractures.[17] 

Additionally, metalized film cannot be recycled, is opaque and cannot be microwaved. It 

is for these reasons that eliminating the metal layer has become an important aspect of 

package design. Metal is also used in gas separation, mostly in high-temperature 

membrane reactors for the preparation of pure hydrogen.[141] For instance, hydrogen 

permeable palladium and its alloy membranes are extremely selective, with hydrogen 

permeability often 10-100 times higher than polymer membranes.[122, 123] These metal 

membranes must be operated at a high temperature (>300 oC) to obtain useful gas 

permeability and to prevent cracking by absorbed hydrogen, which limits their industrial 

applications.[142]  

2.2.2.2 Inorganic Films: Metal Oxide Films and Ceramic/Zeolite Films 

 Thin glass-like metal oxide films can be produced by physical vapor deposition 

(PVD), or plasma-enhanced chemical vapor deposition (PECVD), to dramatically reduce 

gas permeability of polymer substrates, as shown in Table 2.1.[143-146] The development 

of these technologies started in the 1980s for PVD and 1900s for PECVD. Silicon oxide 

(SiOx) and aluminum oxide (AlyOz) are the most commonly deposited materials, both of 

which are transparent, water-resistant, microwavable and exhibit barriers comparable to 

metalized films. Oxide layers are a foil (i.e., metal) replacement for food and 

pharmaceutical packaging.[124-126] Major problem with oxide layers are limited flexibility, 

poor crack resistance and the relatively high production costs.[147, 148] During the past few 

years, ceramic- and zeolite-based films have been used for commercial separations.[149, 
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150] These films consist of a selective ceramic or zeolite layer on a microporous support. 

Extraordinarily high selectivity (H2/N2 = 275) has been reported for these films.[150] 

Their ceramic nature allows operation at high temperature, which means high gas 

permeability during separation. Despite their promise, the cost of these films ($3000/m2), 

is currently too high to be commercialized for most applications.[23, 70] 

 

 

Table 2.1 Oxygen transmission rates of bare and SiOx-coated polymer substrates. 

Substrate 
Coating OTR  

(cm3 m-2 day-1 atm-1) Ref. 
Technique Thickness 

Polyethylene  
(PE) bare 12µm 8525 [143] 

 PECVD 40nm 300 [143] 
Oriented Polypropylene 

(OPP) bare 25µm 2500 [143] 

 PVD 70nm 218 [144] 

 PECVD 90nm 9 [145] 
Poly(ethylene terephthalate) 

(PET) bare 12µm 120 [143] 

 PVD 70nm 2.18 [146] 

 PECVD 40nm 1 [143] 

 

 

2.2.3 Mixed Matrix Membranes 

 The introduction of nanoparticles into a continuous polymer matrix has improved 

mechanical and thermal stability of conventional polymer membranes as well as their 

gas barrier/separation performance. Nanoparticles mixed within polymer matrix can be 

classified into two categories: porous particles, such as zeolites,[151, 152] and nonporous 
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platelets, such as graphene-based materials and clay.[82, 128, 153, 154] The addition of 

nanoparticles can improve gas barrier and/or selectivity by increasing the diffusion 

pathway for gases, as shown in Figure 2.9.[127] Clay-filled polyurethane,[155] epoxy,[156] 

polyolefin,[157] polyamide[89] and biodegradable polymers[158] have all exhibited 50% to 

90% improvement in barrier. As noted earlier, the simple mixing of polymer and 

nanoparticles does not always result in a nanocomposite. In the case of clay, this is due 

to the Na+ and K+ ions that are more compatible with hydrophilic polymers.[85] 

Nanoparticles also tend to aggregate when a threshold concentration is achieved (≤ 10wt 

%),[91] restricting the possibility for further barrier and separation improvement. Layer-

by-layer assembly was proposed to solve this problem. The strong electrostatic 

interactions that accompany this deposition technique can efficiently decouple single 

clay platelets, allowing for the creation of dense composites with high concentration and 

exfoliation of nanoplatelets.[159]  

 

 

 
Figure 2.9. TEM images of Polylactide/ Montmorillonite (MMT) nanocomposite 

film.[160]  
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2.3 Layer-by-Layer Assembly 

 In order to induce higher functionality and performance, one needs to control 

molecular orientation of composites on nanoscale, as their properties strongly depend on 

the local environment.[34, 161-164] Langmuir-Blodgett (LB) deposition accomplishes this 

by consecutively depositing single molecular layers.[165-167] Unfortunately, the LB 

technique requires expensive equipment and is limited with respect to substrate size.[34, 48] 

It is also difficult to obtain high quality multilayer films due to the high steric demand of 

covalent or coordination chemistry, making it desirable to have an alternate method for 

fabricating nanostructured films. The electrostatic attraction between cationic and 

anionic molecules is a straightforward driving force to build up multilayer thin films. Iler 

was the first to propose the concept in 1966,[168-170] but it was more than twenty years 

later that Decher and coworkers popularized layer-by-layer (LbL) assembly.[34] In this 

case, multilayer films are built up by alternately dipping substrates into oppositely 

charged polyelectrolyte solutions, as shown in Figure 2.10.[34, 171, 172]  Over the past two 

decades, the LbL assembly technique has received significant attention due to its precise 

tailorability of thin film structure through adjustment of concentration,[35, 36] pH/ionic 

strength,[37-39] temperature,[38, 40] molecular weight[41, 42] and deposition time[35, 43, 44] of 

the aqueous deposition mixtures. Although electrostatic attraction is the most common 

bonding type for LbL, hydrogen bonding[46, 173, 174] and covalent bonding[175-177]  can also 

be used to grow multilayer thin films. LbL films are now being used for a variety of 

applications, including antireflection,[57-59] regular/stretchable gas barrier,[174, 178] flame 

resistant[60-62] and drug delivery.[54-56] Another advantage of this multilayer assembly 
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technique is the large nanoparticle concentration that can be achieved relative to bulk 

composites,[65, 66, 179] which provides high performance with a much thinner coating. The 

free volume of the polymer matrix or distance between each deposited nanoplatelet layer 

can be tailored to control the diffusivity of different permeating gases. This will be 

described in more detail in Sections 2.3.1 and 2.3.2. 

   

 

 

Figure 2.10. (a) Schematic of layer-by-layer assembly. (b) cross-sectional illustration of 

the nanobrickwall stricture.[110] 

 

 

2.3.1 Gas Barrier Behavior of Multilayer Thin Films 

 Anionic clay, such as montmorillonite (MMT), has been paired with cationic 

polyelectrolytes such as polyethylenimine (PEI),[110] polyacrylamide (PAm)[159] and 

chitosan (CH)[180] to create bilayer assemblies. These sub-micron assemblies reduced the 

thick polymer substrate oxygen transmission rates (OTR) by 2 to 3 orders of magnitude. 
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Texas A&M’s Polymer NanoComposites Lab[178] discovered that clay spacing, which is 

the distance between each deposited clay layers, can be controlled by varying the pH of 

polyelectrolyte solutions or the number of polymer layers deposited between clay layers, 

as shown in Figure 2.11.[110, 181] It was found that greater clay spacing improved gas 

barrier. Replacing MMT with vermiculite (VMT) clay or graphene oxide (GO) in these 

multilayers also decreased oxygen permeability (up to five times lower than MMT) due 

to higher platelet aspect ratio (4X larger than MMT), as predicted by Cussler’s model.[65, 

182] Since most LbL films are assembled from aqueous solutions, it is not surprising that 

exposure to moisture increases free volume of the film and increases gas permeability. 

Yang and Stevens suppressed moisture sensitivity by thermally reducing GO in a 

PEI/GO bilayer assembly,[65, 183] maintaining barrier under humid conditions. Schaaf and 

coworkers introduced Nafion into a clay-based assembly.[154] The addition of this 

hydrophobic fluorinated polymer preserved the OTR (97% reduction relative to 

uncoated poly(lactic acid) (PLA)) under humid condition, and reduced water vapor 

transmission rate (WVTR) by 78%. 

 Polymer-only multilayers have also been shown to exhibit high barrier 

(comparable to polymer-clay assemblies). Yang showed that altering the pH of PEI and 

PAA increased film thickness and polymer interdiffusion to create a “scramble salt” 

structure with higher density (1.13 g cm-3) than a simple polymer mixture.[63] This 

increased density was due to decreased fractional free volume, which explains why 8 BL 

of PEI/PAA (305 nm thick) exhibits the lowest oxygen permeability (3.2×10-21 cm3 cm 

cm-2 s-1 Pa-1) ever reported for a neat polymer thin film. The present dissertation explores 
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barrier properties of different gases, with a focus on decreasing free volume of the 

polymer layer and increasing the level of filler deposited (Chapter III[184] and IV). The 

influence of GO and polymer pH, on moisture sensitivity and barrier behavior, is also 

evaluated (Chapter V). 

 

 

 

Figure 2.11. Thickness of PEI/MMT as a function of bilayers deposited while varying 

pH of PEI. (b) Thickness as a function of clay layers deposited with varying numbers of 

poly(allyl amine) (PAAm)/poly(acrylic acid) (PAA) bilayers [γ] between clay 

depositions.[181]   

 

 

2.3.2 Gas Separation Behavior of Multilayer Thin Films 

          Gas separation membranes are currently used to separate hydrogen from gas 

mixtures (H2/CH4, H2/CO, H2/hydrocarbons),[22, 185, 186] recover CO2 from CH4, N2, CO 

or other hydrocarbons, and remove H2S and CO2 from biogas.[19, 187, 188] Even more than 

for barrier, gas separation requires a defect-free film, because small gas molecules will 

permeate through the smallest defect present.[189] Layer-by-layer is already known for its 
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ability to generate defect-free assemblies. Stroeve and coworkers discovered that 100 BL 

of PAAm/poly(styrene sulfonate) (PSS) exhibited high CO2/N2 selectivity (~24) at 50 

oC,[190] although this film exhibited low flux. McCarthy and coworkers reported an 

increased selectivity for H2/N2 and H2/O2 when applying 20 to 200 BL of poly 

(allylamine hydrochloride) (PAH)/PSS, but this film also has low gas permeability due 

to the formation of a dense and rigid structure.[191] Another group induced imidization 

after depositing PAH/poly(amic acid), as shown in Figure 2.12. The newly formed 

polyimide membrane exhibited comparable O2/N2 (6.9) and CO2/N2 (68) selectivity as 

conventional PI membranes.[192] Nanoparticles have also been used in LbL assemblies 

for gas separation. GO platelets were assembled with polyelectrolyte or zeolitic 

imidazolate framework (ZIF), showing a H2/CO2 selectivity of 383[65] and H2/N2 

selectivity of 90.[193] Tsapatsis and coworkers reported a zeolite/silica assembly that 

separated H2 from N2.[194] This completely inorganic assembly was under the Robeson 

upper-bound Figure 2.13, but its strong heat resistance allowed for a wide range of 

operating temperature (from room temperature to 200 oC). The present dissertation 

focuses on two types of gas separation membranes: CH/PAA/CH/GO mixed matrix 

assemblies (Chapter V) and PEI/PAA all-polymer assemblies (Chapter VI).[195]  
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Figure 2.12. Thermal imidization of PAH/poly(amic acid) assembly on a porous alumina 

support.[192] 

 

 

 

Figure 2.13. Robeson plot for a MCM-22/silica membrane (membrane A3B3), placed in 

context with other membranes for H2/N2 separation.[194] 
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CHAPTER III* 

INFLUENCE OF POLYMER INTERDIFFUSION AND CLAY CONCENTRATION 

ON GAS BARRIER OF POLYELECTROLYTE/CLAY NANOBRICK WALL   

QUADLAYER ASSEMBLIES  

 

3.1 Introduction 

Super gas barrier exhibited by some layer-by-layer assemblies has led to 

significant study.[65, 180, 196-198] Two approaches have been used to produce low oxygen 

permeability. The first is to create an extremely tortuous path by layering nanoplatelets, 

such as clay and graphene oxide.[65, 197] The impermeable gas platelets create a tightly 

packed nanobrick wall structure that significantly extends the diffusion pathway of a gas 

molecule. The best system to-date is a quadlayer (QL) system prepared by repeatedly 

depositing polyethylenimine (PEI), poly(acrylic acid) (PAA), PEI, and montmorrilonite 

(MMT) clay.[197] In this case, a 4QL film, with a thickness of 50nm, achieved an oxygen 

transmission rate of 0.005 cm3 m-2 day-1 atm-1. A second approach exploits extensive 

polyelectrolyte interdiffusion to obtain an exceptionally dense film.[198] The greatest 

oxygen barrier has been achieved with an “exponentially growing” polyelectrolyte 

combination.  

*Reprinted with permission from “Journal of Membrane Science” by Tzeng, P.; Maupin, 
C. R.; Grunlan, J. C., ”Influence of Polymer Interaction and Clay Concentration on Gas 
Barrier of Polyelectrolyte/Clay Nanobrick Wall Quadlayer Assemblies” J. Membr. Sci. 
2014, 452, 46-53, Copyright [2015] by Elsevier.  
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  Further improvement in barrier performance could be achieved by combining 

these two concepts in a single film. For instance, weak polycations are known to have a 

distinct degree of ionization at a given pH and they can ionize a neighboring polyanion 

to a given degree, resulting a more interdiffused complex.[199, 200] In the present study, 

cationic polyvinylamine (PVAm) and polyethylenimine and anionic poly(acrylic acid) 

and sodium montmorillonite were assembled as polycation/PAA/polycation/MMT 

quadlayers (QL). Various combinations of polycations were investigated, resulting in 

differences in film thickness, clay concentration (and spacing) and oxygen transmission 

rate. A six PVAm/PAA/PVAm/MMT quadlayer film has a thickness (175 nm) five times 

that of a 2 QL film, while its OTR is two orders of magnitude lower (0.009 cm3 m-2 day-1 

atm-1). Compared to bare PET with no thin film coating, the OTR is 3 orders of 

magnitude lower. These transparent and flexible gas barrier films are now more 

tailorable, allowing a film to be designed for a specific flexible electronics or food 

packaging application. 

3.2 Experimental 

3.2.1. Materials  

Branched polyethylenimine (Aldrich, St. Louis, MO) (MW ~ 25,000 g mol-1) and 

polyvinylamine (BASF, Florham Park, NJ) (MW ~ 340,000 g mol-1, >90% hydrolyzed) 

are cationic polymers that were dissolved into 18.2 MΩ deionized water to create 

independent 0.1 wt% solutions. The pH was adjusted from its unaltered value (~10.5 for 

PEI and ~6.8 for PVAm) to 10 by adding 1.0 M hydrochloric acid (HCl) or 1.0 M 
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sodium hydroxide (NaOH). Titration of PVAm revealed a pKa in the range of 7.3 - 8.5. 

pH measurements for titrating 0.1M PVAm solutions were performed using an IQ 240 

pH meter (0.01 pH unit sensitivity). 10N NaOH and HCl were used to change PVAm 

from its natural pH (~7.2) into its covalent and ionic forms (see Supporting Information). 

Poly(acrylic acid) (Aldrich) (MW ~ 100,000 g mol-1) is an anionic polymer that was 

prepared as a 0.2 wt% solution with 18.2 MΩ deionized water. The pH of PAA was 

adjusted from its unaltered value (~3.1) by adding 1.0 M NaOH. Anionic natural sodium 

montmorillonite (MMT) (trade name Cloisite Na+) (Southern Clay Products, Inc., 

Gonzales, TX) clay was prepared as a 1 wt% aqueous suspension. This suspension of 

high aspect ratio nanoplatelets (l/d is 80 to 300)[201] was used at its natural pH (~9.7). 

3.2.2. Substrates 

Single-side-polished (100) silicon wafers (University Wafer, South Boston, MA) 

were used as deposition substrates for ellipsometry and atomic force microscopy (AFM). 

Fused quartz slides (Structure Probe, Inc. West Chester, PA) were used for visible light 

transmission measurement via UV-vis spectroscopy. Both silicon wafers and quartz 

slides were piranha treated with a 3:1 ratio of 30% hydrogen peroxide to 99% sulfuric 

acid and stored in deionized water before use. Caution: Piranha solution reacts violently 

with organic material and needs to be handled properly. Prior to use, the silicon wafers 

were rinsed with acetone and deionized water. Poly(ethylene terephthalate) (PET) film, 

with a thickness of 179 µm (trade name ST505, Dupont–Teijin), was purchased from 

Tekra (New Berlin, WI). This film was rinsed with deionized water and methanol before 

use. Clean PET was then corona-treated with a BD-20C Corona Treater (Electro-
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Technic Products Inc., Chicago, IL). Corona treatment improves adhesion of the first 

polyelectrolyte layer by oxidizing the film surface.[202] Polished Ti/Au crystals, with a 

resonance frequency of 5 MHz, were purchased from Maxtek, Inc (Cypress, CA) and 

used as deposition substrates for quartz crystal microbalance (QCM) characterization.   

3.2.3. Layer-by-Layer Deposition  

The layer-by-layer process is shown schematically in Figure 3.1. A given 

substrate was first dipped into the polycation solution (PEI and/or PVAm) for 5 minutes, 

followed by rinsing with deionized water for 30 seconds and drying with a stream of 

filtered air. After the first positively-charged layer was adsorbed, the substrate was 

dipped into PAA solution for another 5 minutes, followed by another rinsing and drying 

cycle. The substrate was then dipped into polycation and MMT solutions to form one 

“quadlayer”. Starting from the second deposition cycle, the remaining numbers of layers 

were created using one minute dip times. This process was carried out using home-built 

robotic systems.[203, 204] The pH of PEI, PVAm or PAA is shown as a subscript next to 

their initials in the figures and text. For example, one quadlayer of 

PVAm(pH=10)/PAA(pH=4)/PVAm(pH=10)/MMT(unaltered pH of 9.7) is abbreviated 

as (PVAm10/PAA4/PVAm10/MMT)1. 
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Figure 3.1. (a) Schematic of the quadlayer assembly process. (b) Polyelectrolytes and 

clay used in the quadlayer assemblies and a cross-sectional illustration of the resultant 

nanobrick wall thin film. MMT structure: [201] (▲)Al3+, Mg2+, Fe3+/2+; (○) O2-; (☉) OH-; 

(●)Si4+.[184] 

 

 

3.2.4.Thin Film Characterization  

Assembly thickness on silicon wafers was measured every quadlayer with a 

PHE-101 Discrete Wavelength Ellipsometer (Microphotonics, Allentown, PA), using a 

632.8 nm laser at an incidence angle of 65°. For the (PEI10/PAA4/PEI10/MMT) system, 9 

and 10 QL films were measured by a P-6 profilometer (KLA-Tencor, Milpitas, CA) due 

to their large thickness (>1000nm). Thicknesses from 2 to 8 QL were measured by both 

ellipsometer and profilometer, which showed similar values. Mass increments were 

measured each layer with a Research Quartz Crystal Microbalance (QCM) (Inficon, East 

Sycrase, NY) using a frequency range of 3.8 - 6 MHz. The 5 MHz quartz crystal was 

inserted in a holder and dipped into the solutions. After each deposition, the crystal was 



 

37 
 

rinsed and dried and then left on the microbalance to stabilize for 5 minutes. Visible 

light transmission was obtained with a USB2000UV-vis spectrometer (Ocean Optics, 

Dunedin, FL). FTIR spectra of LbL films were measured with a Bruker Optics ALPHA-

P 10098-4 spectrometer in ATR mode. PAA peaks in its covalent (COOH) and ionic 

form (COO-) are of interest in this study to compare the ionic interaction between 

polycation and polyanion, or so called ‘degree of ionization’. The COO- and COOH 

peaks of PAA were first assumed to have similar extinction coefficients,[205] which 

allowed the fraction of ionized PAA carboxylic groups to be obtained by deriving 

Abs1560/(Abs1560+Abs1710).[206] Cross-sections of the quadlayer assemblies were imaged 

with a JEOL 1200 EX TEM (Mitaka, Tokyo, Japan), operated at 110 kV. Samples were 

prepared for imaging by embedding a piece of coated PET in epoxy prior to sectioning it 

with a diamond knife. Surface structure of the coated silicon wafers were imaged with a 

Multimode Scanning Probe Microscope (SPM) (Veeco Digital Instruments, Santa 

Barbara, CA) in tapping mode. OTR testing was performed by MOCON (Minneapolis, 

MN) in accordance with ASTM D-3985,[207] using an Oxtran 2/21 ML instrument at 

23°C and 0% RH.  

3.3 Results and Discussion 

3.3.1. Multilayer Film Growth 

Film growth of three different polyamine quadlayer recipes was measured by 

ellipsometry and profilometry, as shown in Figure 3.2. Notice that instead of being three 

times as thick, (PVAm10/PAA4/PVAm10/MMT)6 is five times thicker than 
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(PVAm10/PAA4/PVAm10/MMT)2 due to “island growth”.[208] The growth of the first few 

layers is influenced by the substrate, resulting in the thickness per layer being thinner 

than the “bulk” film. PVAm-based quadlayers exhibit a linear growth trend, while PEI-

based quadlayers exhibit exponential growth due to PEI/PAA interdiffusion.[51, 63, 197] 

Before deposition, both PEI10 and PAA4 solutions are in a low charge form in which 

polymer chains are more globular. As deposition proceeded, these pH-sensitive 

polyelectrolytes became more highly charged due to the alternating pH (i.e., PEI 

encountering a lower pH when PAA was deposited and PAA encountering a higher pH 

environment). In order to compensate the newly formed charge inside the bulk film, 

more PEI and PAA were adsorbed into the growing multilayer, resulting in exponential 

growth.[51] The large film thickness observed here may seem counterintuitive for a 

highly-charged polymer backbone, but it should be noted that charge density and 

effective pKa can differ from their solution state values within the multilayer 

assembly.[209, 210] Degree of ionization is directly linked to pKa. The pKa of PVAm 

ranges from 7.3-8.5, PEI has pKa values of 6.5-8.5,[211-213] and PAA has pKa values of 

5.5-6.5.[214, 215] Based on the fact that PEI has a slightly lower pKa than PVAm, along 

with results obtained from FTIR, PEI appears to be more responsive to changes in pH. 

This suggests that when encountering an acidic PAA environment, PEI can be easily 

ionized and have stronger ionic interaction with PAA than PVAm.[216] Figure 3.3 shows 

mass deposited for these same assemblies. All systems exhibit the same growth trends 

observed with ellipsometry (Figure 3.2). This data also provides the clay concentrations 

for each film, which are summarized in Table 1. 
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Figure 3.2. Film thickness as a function of quadlayers deposited with three recipes: 

(PEI10/PAA4/ PEI10/MMT)x, (PVAm10/PAA4/PVAm10/MMT)x and 

(PEI10/PAA4/PVAm10/MMT)1- (PVAm10/PAA4/PVAm10/MMT)x-1.[184] 

 

 

Figure 3.3. Mass as a function of quadlayers deposited with three recipes: 

(PEI10/PAA4/PEI10/MMT)x (half-filled dots), (PVAm10/PAA4/PVAm10/MMT)x (filled 

dots) and (PEI10/PAA4/PVAm10/MMT)1- (PVAm10/PAA4/PVAm10/MMT)x-1 (hollowed 

dots). Rectangular and circular dots indicate the accumulated mass measured from the 

beginning to the specific polymer or clay layer, respectively. [184] 
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Unlike PEI-based assemblies, PVAmx grows linearly. There are a few reasons 

why PEI displays greater interdiffusion than PVAm in these assemblies. PVAm has a 

higher Tg than PEI and therefore greater chain stiffness at room temperature, which 

inhibits diffusion in the polymer assembly.[217, 218] It has been shown that chain size 

(molar mass) or structure (branched polymer) can directly influence chain diffusion.[219] 

Others have shown that by increasing film surface roughness, more surface area is 

available to adsorb additional material that produces exponential growth.[219, 220] Even 

though the thickness of a PEI quadlayer is smaller than PVAm for the first few cycles, it 

surpasses PVAm after 5 QL. With this better understanding of the assembly mechanism, 

a relation between the number of PEI layers and thickness was observed. 

(PEI10/PAA4/PVAm10/MMT)1-(PVAm10/PAA4/PVAm10/MMT)x, though containing PEI 

in the assembly, grew linearly and was thinner than PVAm-based quadlayer, as shown in 

Figure 3.2. Two reasons might explain this phenomenon: (1) PEI/PAA actually grows 

thinner than PVAm/PAA at early stages and (2) clay layers are preventing interdiffusion.  

FTIR analysis helps to explain why PEI and PVAm assemblies have such 

different properties. Infrared spectroscopy was used to compare the electrostatic 

interaction between polycations and polyanions. Figure 3.4 shows the FTIR spectra of 

(PVAm10/PAA4/PVAm10/MMT)5 and (PEI10/PAA4/PEI10/MMT)5 assemblies. For both 

systems, two peaks (1715 and 1560 cm-1 for PEI and 1671 and 1560 cm-1 for PVAm) 

and one shoulder (1630 cm-1 for PEI and 1715 cm-1 for PVAm) can be observed. It 

should be noted that the characteristic band of MMT occurs at 995 cm-1, so all peaks 

between 1400 cm-1 and 1800 cm-1 can be attributed to the polyelectrolytes. Two different 
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peaks represent the neutral (1715 cm-1) and ionic (1560 cm-1) form of PAA, 

respectively.[221, 222] The peak at 1630 cm-1 corresponds to –NH3
+ bending. For 

(PVAm10/PAA4/PVAm10/MMT)5 film, the peak at 1671 cm-1 represents carbonyl groups, 

originating from the unhydrolyzed amide groups in PVAm.[223, 224] For the 

(PEI10/PAA4/PEI10/MMT)5 film, the neutral PAA peak (1715 cm-1) decreases as the pH 

of PEI increases, which means the portion of ionized PAA (i.e., degree of ionization) 

increases.[223] The PVAm10/PAA4/PVAm10/MMT QL shows a similar trend, with the 

basic PVAm ionizing PAA. Figure 3.4(c) shows the FTIR spectra of both PEI and 

PVAm-based 5 QL film with the polycation at pH 10. It is observed that PAA in PEI-

based quadlayers is almost fully ionized, because no peak or shoulder appears at 1715 

cm-1. PVAm-based quadlayers, on the other hand, have a neutral PAA shoulder, which 

suggests a lower degree of ionization. The difference in degree of ionization of PEI and 

PVAm-based assemblies demonstrates a weaker PVAm/PAA interaction than PEI/PAA. 

The lower degree of ionization in the PVAm-based QL suggests that there is less ionic 

crosslinking inside the assembly, resulting in a lower density film, which explains the 

larger thickness of PVAm-based assemblies at a low number of quadlayers. 
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Figure 3.4. FTIR spectra of 5QL (a) PEI10/PAA4/PEI10/MMT and (b) 

PVAm10/PAA4/PVAm10/MMT at different polycation pH, and a combination of (c) both 

assemblies at polycation pH 10.[184] 

 

 

3.3.2. Nanobrick Wall Thin Film Structure 

TEM cross-sectional images of (PVAm10/PAA4/PVAm10/MMT)5 and 

(PEI10/PAA4/PEI10/MMT)5 are shown in Figure 3.5(a) and (b). The thickness observed 

in these images verifies the result obtained from ellipsometry (Figure 3.2) and looks 

strikingly similar to the schematic nanobrick wall structure (Figure 3.1) and a TEM cross 
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section from an earlier study.[197] The film in Figure 3.5(a) is a little thicker and has 

some waviness due to stress relief during sectioning and the section being cut at a slight 

angle. In this PVAm-based quadlayer, five clay layers can be clearly observed as dark 

lines, which match the number deposited. For the PEI-based quadlayer (Figure 3.5(b)), 

an ordered nanobrick wall structure is still observed, although it is difficult to identify 

each clay layer. This TEM micrograph demonstrates that clay platelets deposit in a 

highly oriented fashion, resulting in the excellent oxygen barrier behavior described in 

the next section. AFM height images of (PVAm10/PAA4/PVAm10/MMT)5 and 

(PEI10/PAA4/PEI10/MMT)5 are shown in Figure 3.5(c) and (d). The cobblestone-like 

structure in both assemblies reveals that the platelets are tightly packed, which agrees 

with previous studies of polymer-clay assemblies.[36, 110, 159, 197] It is this combination of 

tight packing and near perfect orientation of clay platelets that produces low gas 

permeability when these films are deposited onto thick plastic films (e.g., PET) 

commonly used for packaging. 
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Figure 3.5. TEM cross sectional images of (a) (PVAm10/PAA4/PVAm10/MMT)5 and (b) 

(PEI10/PAA4/PEI10/MMT)5, deposited on PET substrate. AFM height images of (c) 

(PVAm10/PAA4/PVAm10/MMT)5 and (d) (PEI10/PAA4/PEI10/MMT)5 films.[184] 

 

 

In many applications, optical transparency is as important as gas transmission 

rate for barrier films. Visible light transmission (390-750nm) of PVAm-based 

quadlayers is shown in Figure 3.6(a). As the number of quadlayers increase from 2 to 6, 

light transmission decreases only slightly, from 98.3% to 96.8%. Compared to the 

change in film thickness, light transmission was expected to decrease more rapidly. This 

same phenomenon has been observed in previously studied polymer/clay thin films.[36, 
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110, 159] Such high transparency after 6 QL is likely due to the fact that clay platelets are 

near perfectly aligned and well separated from each other through the film thickness, as 

shown in Figure 3.5. Images of PVAm-based quadlayers on PET film, shown in Figure 

3.6(b), reveal how transparent and defect free these nanobrick walls are over a 

significant area (100 cm2). The LbL technique allows for high clay loading (>24wt %) 

without the same clay aggregation issues associated with conventional polymer/clay 

composite films.[225, 226]  

 

 

 

Figure 3.6. (a) Visible light transmission as a function of wavelength for PVAm-based 

QL on fused quartz slides. (b) Image of (PVAm10/PAA4/PVAm10/MMT)x thin films 

deposited on 179μm PET.[184] 
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 3.3.3. Oxygen Barrier of Quadlayer Assemblies 

The nanobrick wall structure of these quadlayer assemblies creates an extremely 

tortuous pathway that significantly extends a permeating molecule’s diffusion time.[159, 

225, 226]  Because the clay platelets are densely packed, they reroute the diffusion length 

perpendicular to the thickness direction of the film, which lowers the gas transmission 

rate.[227] Figure 3.7(a) shows the oxygen transmission rate (OTR) of PVAm-based 

quadlayers coated on 179μm PET film. Though the OTR of a 

(PVAm10/PAA4/PVAm10/MMT)2 coated PET film is similar to bare PET film (~8.6 cm3 

m-2 day-1 atm-1), 3QL of this recipe is able to lower the OTR by two orders of magnitude, 

while only increasing PET thickness ~0.04%. As the number of QL increases to six, 

OTR decreases to 0.009 cm3 m-2 day-1 atm-1). Compared to other thin, clay-based barrier 

films, this 6QL nanocoating is two orders of magnitude lower in both OTR and 

thickness.[196, 228, 229] Additionally, this (PVAm10/PAA4/PVAm10/MMT)6 assembly has a 

comparable thickness to SiOx nanocoatings, but one order of magnitude lower OTR.[230-

232] It is three orders of magnitude below the OTR of 25 μm thick EVOH film.[233] When 

compared on the basis of permeability, which normalizes thickness, these quadlayers 

have even better barrier. Figure 3.7(a) shows that permeability decreases as a function of 

QL deposited on PET.  Each new polymer and clay layer not only increases film 

thickness, but also the residence time of permeating molecules due to a more tortuous 

pathway. With an oxygen permeability of 3.7×10-21 (cm3(STP) cm cm-2 Pa-1 s-1)) for 

(PVAm10/PAA4/PVAm10/MMT)6, this transparent, 175 nm thick coating has a 

permeability comparable to metalized plastic film.[234, 235]  
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Figure 3.7. (a) Oxygen transmission rate and oxygen permeability as a function of 

PVAm-based quadlayers deposited on 179μm PET. (b) Oxygen transmission rate as a 

function of quadlayer recipe and number deposited on 179μm PET.[184]  
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Table 3.1. Oxygen transmission rate, film thickness, and clay concentration of quadlayer thin films deposited on 179 μm 

PET.[184]  

 
OTR 

(cm3 m-2 day-1 atm-1) 
Film thickness (nm) 

Clay 

(wt%) 

Oxygen Permeability 

(10-16cm3(STP)  cm cm-2 Pa-1 s-1) 

 
Coatinga Total 

179 μm PET 
    

17.50 

(PVAm10/PAA4/PVAm10/MMT)2 6.122 33.7 35.0 0.0169 12.52 

(PVAm10/PAA4/PVAm10/MMT)3 0.164 64.4 27.5 0.00025 0.34 

(PVAm10/PAA4/PVAm10/MMT)4 0.071 101.2 25.6 0.00017 0.15 

(PVAm10/PAA4/PVAm10/MMT)5 0.014 145.4 24.6 0.000046 0.03 

(PVAm10/PAA4/PVAm10/MMT)6 0.009 175.2 24.1 0.000037 0.02 

(PEI10/PAA4/PVAm10/MMT)1- 

(PVAm10/PAA4/PVAm10/MMT)2 
0.037 51.3 40.4 0.000044 0.08 

(PEI10/PAA4/PVAm10/MMT)1- 

(PVAm10/PAA4/PVAm10/MMT)3 
0.026 72.6 34.0 0.000043 0.06 

(PEI10/PAA4/PEI10/MMT)3 2.267 28.3 48.6 0.002 4.64 

(PEI10/PAA4/ PEI10/MMT)4 <0.005b 50.9 36.7 ≤0.000005 b ≤0.001 b 

 

aThe quadlayer thin film permeability was decoupled from the total permeability using a previously described method.[229] bThe 

low-end  OTR detection limit for an Oxtran 2/21L module is 0.005 cm3 m-2 day-1 atm-1. 
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The OTR values of (PEI10/PAA4/PEI10/MMT)x, 

(PVAm10/PAA4/PVAm10/MMT)x and (PEI10/PAA4/PVAm10/MMT)1-

(PVAm10/PAA4/PVAm10/MMT)x-1 at 3 and 4 QL are compared in Figure 3.7(b) and 

Table 3.1. (PEI10/PAA4/PEI10/MMT)x is undetectable at 4QL while 

(PVAm10/PAA4/PVAm10/MMT)x exhibits barrier performance that may be good enough 

for food packaging, LEDs and photovoltaic encapsulation at just 3QL.[236] As for 

(PEI10/PAA4/PVAm10/MMT)1-(PVAm10/PAA4/PVAm10/MMT)x-1 at 3 and 4 QL, OTR is 

reduced by a factor of 4 (3QL) and 2 (4QL) compared to the PVAm-only assembly. 

There are two contributing factors to the OTR difference in these systems. First, for a 

constant number of QL, replacing PVAm with PEI causes more interdiffusion to occur at 

the interface with PAA, which creates a denser film. This assertion is supported by the 

FTIR results described earlier (Figure 3.4). Another factor is greater clay concentration 

in the (PEI10/PAA4/PVAm10/MMT)1-(PVAm10/PAA4/PVAm10/MMT)x-1 assemblies, as 

shown in Table 3.1. Assuming similar clay oreintation in all quadlayer systems, 

evidenced by AFM and TEM images in Figure 3.5, it is reasonable to correlate lower 

OTR with greater clay concentration.[36, 197] Cussler’s model[227] is used to qualitatively 

explain the mechanism of our aligned, flake-filled membrane: 

𝑃0
𝑃

= 1 + 𝜇𝛼2( 𝜑2

1−𝜑
)                                                           (3.1) 

where P0, the polymer permeability, over P, the composite permeability, is a function of 

the filler aspect ratio (𝛼), geometric factor (𝜇) and volume fraction in the composite (𝜑). 

Additionally, the model is most consistent with the assumption that the filler loading is 

‘semidilute’:[101]  
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𝜑 ≪ 1                                           (3.2) 

𝛼𝜑 > 1               (3.3) 

The predicted filler aspect ratios of (PVAm10/PAA4/PVAm10/MMT)4 , 

(PEI10/PAA4/PVAm10/MMT)1-(PVAm10/PAA4/PVAm10/MMT)3 and 

(PEI10/PAA4/PVAm10/MMT)4 are 398, 542 and 752 (Table 3.2), respectively, which are 

much larger than the experimentally measured aspect ratio (~ 166).[93] The primary issue 

is that our films likely do not adequately meet the “semi-dilute” assumption of Cussler’s 

model. Our filler volume fraction is only one order of magnitude smaller than 1, and 𝛼𝜑 

is almost two orders of magnitude larger than 1, suggesting we are more filler-saturated 

than the model assumes.  It is also possible that overlap between adjacent clay platelets 

creates a much larger effective aspect ratio.  Nevertheless, the model does a good job of 

qualitatively describing the behavior we observe.  
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Table 3.2. Oxygen permeability data of PVAm quadlayers and aspect ratio prediction. 

 

Film 
thickness 

(nm) 

Volume 
Fraction 
of filler 

Oxygen 
Permeability 

(10-16cm3(STP)  
cm cm-2 Pa-1 s-1) 

Cussler's 
aspect ratio 
predictiona 

(PVAm10/PAA4)6 96.2 
 

0.17 
 

(PEI10/PAA4)6 369c  0.057c  

(PVAm10/PAA4/PVAm10/MMT)4 101.2 0.12 0.00017 398 

(PEI10/PAA4/PVAm10/MMT)1- 

(PVAm10/PAA4/PVAm10/MMT)3 
72.6 0.16 0.000043 542 

(PEI10/PAA4/PVAm10/MMT)4 50.9 0.18 ≤0.000005b 752 
aClay aspect ratio predicted from Cussler’s model. bThe low-end  OTR detection limit 

for an Oxtran 2/21L module is 0.005 cm3 m-2 day-1atm-1. c(PEI10/PAA4)6 results obtained 

from our previous work.[184] 

 

In the 4QL assemblies, barrier improves as more PVAm layers are replaced with 

PEI, which results in a higher clay concentration. For the 3QL systems, the same trend is 

observed in (PVAm10/PAA4/PVAm10/MMT)3 and (PEI10/PAA4/PVAm10/MMT)1-

(PVAm10/PAA4/PVAm10/MMT)2, however (PEI10/PAA4/PEI10/MMT)3 has the highest 

OTR despite having the highest clay concentration. This exception is likely related to 

clay spacing.[110] The PEI-based 3QL film is almost 50% thinner than other two systems, 

resulting in a much smaller clay spacing of 4.6 nm. (PVAm10/PAA4/PVAm10/MMT)3 

and (PEI10/PAA4/PVAm10/MMT)1 - (PVAm10/PAA4/PVAm10/MMT)2 have clay spacing 

of 23.5 nm and 14.4 nm, respectively. Low OTR in LbL films seems to require a critical 

combination of minimum clay concentration, spacing and layers.[159, 181, 197]  
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3.4 Conclusions 

Quadlayer assemblies, deposited using the layer-by-layer technique, were used to 

study how polyelectrolyte interdiffusion and clay concentration influence the gas barrier 

behavior of these thin films. Positively-charged PEI and PVAm were combined with 

negatively-charged PAA and MMT to generate ‘nanobrick walls’. Highly oriented clay 

platelets, revealed with TEM and AFM, are the reason for the exceptional oxygen barrier 

exhibited by these films. As the number of polymer-clay quadlayers increase, the OTR 

of PVAm-based QL deposited on PET decreases.  Rigid PVAm molecules cause 

quadlayer growth to be linear rather than exponential, which occurs with more flexible 

PEI. This results in thinner layers for PVAm and weaker interaction with PAA relative 

to PEI. This weak interaction also seems to carry over to MMT, which results in lower 

clay concentration for PVAm-based assemblies. This study confirms the importance of 

polymer interdiffusion and clay concentration in reducing oxygen permeability in these 

nanobrick wall structures. PVAm and PEI were combined to tailor OTR by controlling 

these factors. It was found that simply switching the first PVAm layer to PEI 

simultaneously lowers the OTR and film thickness. It is now possible to simultaneously 

control OTR and thickness of a multilayer thin film barrier coating. This water-based 

nanocoating technology offers tremendous opportunity in food packaging, gas separation 

and protection of electronic devices.  
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CHAPTER IV* 

SUPER HYDROGEN AND HELIUM BARRIER WITH POLYELECTROLYTE 

NANOBRICK WALL THIN FILM 

4.1 Introduction 

Gas barrier layers have found broad application for a variety of packaging 

applications for the food/pharmaceutical,[237] flexible electronics[238] and fuel cell[239] 

industries. These films often require a combination of low permeability, optical 

transparency, mechanical strength and flexibility.[240] Current barriers include metallized 

films,[241] SiOx coatings[242] and polymer composites.[243] While these materials offer 

excellent barrier properties, they often suffer from poor substrate adhesion, undesirable 

optical quality and limited flexibility.[244] In contrast, LbL assemblies prepared with clay 

nanoplatelets have proven capable of overcoming all of these limitations.[180, 245-247] 

These nanobrick wall thin films have demonstrated undetectable oxygen transmission 

rate (OTR<0.005 cm3 m-2 day-1 atm-1) that rivals metallized films.[110] Additionally, this 

technology can be applied by spraying[248] or using a continuous immersion process.[249] 

Hydrogen (H2) is a key feedstock for the manufacture of petrochemicals, 

ammonia and methanol,[250] with H2 corrosion and/or embrittlement of process 

equipment remaining a significant safety concern.[251] Conformal H2 barrier coatings  

*Reprinted with permission from “Macromolecular Rapid Communication” by Tzeng, 
P.; Lugo, E. L.; Mai, G. D.; Wilhite, B. A.; Grunlan, J. C. “Super Hydrogen and Helium 
Barrier with Polyelectrolyte Nanobrick Wall Thin Film” Macromol. Rapid Comm. 2015, 
36, 96-101, Copyright [2015] by John Wiley and Sons.  
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would allow an extension of process equipment lifetime while reducing the risk of 

equipment failure owing to prolonged H2 exposure. The wide flammability window and 

low ignition temperature for H2 combine with an extremely high solid-state mobility, in 

both metallic and polymeric materials, to necessitate the use of thick-walled metallic 

containers for safe transport and storage of industrial scale H2.[247] Recent growth in H2-

driven fuel cell technologies, offering high efficiencies and zero point-of-use emissions 

for portable, household and vehicular power generation necessitates breakthroughs in 

size and weight reduction for H2 storage and transmission equipment,[252-254] which may 

be achieved through development of polymer nanocomposite barrier coatings. 

Helium (He) is widely used in the manufacturing sector for leak detection[255, 256] 

and as an inert gas blanket for high-temperature welding[257] and reactive chemical 

storage.[258] It is also used in the medical sector as a cryogenic for magnetic resonance 

imaging (MRI) tools.[259, 260] Additionally, He and H2 provide an excellent source of lift 

for lighter-than-air vehicles (for meteorological and aviation use).[261] Despite being the 

second-most abundant element in the universe, terrestrial supplies of helium continue to 

dwindle as released gas is sufficiently buoyant to escape the atmosphere.[262] This non-

renewable nature of terrestrial He requires further advances in He-barrier film 

technologies to ensure the continued sustainability of manufacturing and medical 

industries. A high barrier thin film could allow He and H2 to be stored, at least 

temporarily, in relatively lightweight polymeric containers. 

Commercial He gas barriers currently employ aluminized polyurethane or 

polyolefin/polyester that are capable of providing low He permeability (10-300 cm3 mm 
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m-2 day-1 atm-1),[263, 264] but are produced using complex process conditions, have poor 

optical properties and potential health hazards. Metallization of polymeric films requires 

ultra-high vacuum and high temperature conditions, resulting in a complex and energy-

intensive process. Aluminum nanocoatings are typically opaque and often have adhesion 

problems, which further limits their applicability.[116] These films also pose 

environmental and health concerns, as aluminum can contaminate the environment 

through both water or airborne transmission.[116] Current materials employed to fabricate 

H2 gas barriers include ethylene vinyl-alcohol (EVOH) copolymer and 

polyester/nanoflake composites, with reported permeabilities of 0.1-3.1 cm3 mm m-2 day-

1 atm-1.[247, 265, 266] Unfortunately, EVOH copolymers are plasticized in the presence of 

moisture, irreversibly altering morphology and creating increased free volume and 

permeability.[267] Polymer/nanoflake film properties remain difficult to control owing to 

both nanoflake dispersion and exfoliation during processing. 

In the present work, a polymer/clay composite thin film, fabricated via layer-by-

layer assembly, is investigated as a H2 and He gas barrier. The simplicity of the LbL 

assembly technique, as compared to current films employed for He and H2 barrier, make 

it an attractive alternative. The present quadlayer (QL) system was prepared by 

repeatedly depositing polyethylenimine (PEI), poly(acrylic acid) (PAA), PEI, and 

montmorillonite (MMT) clay (Figure 4.1a and 1b). This system was previously 

investigated for its super oxygen barrier,[66] but barrier to light gases (i.e., hydrogen and 

helium) was very unexpected.  Highly aligned and impermeable clay platelets create an 

extremely tortuous pathway, consisting primarily of diffusion perpendicular to the film 
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surface, extending permeate retention times and reducing even light gas transmission 

rate.[227, 268]  

 

 

Figure 4.1. (a) Schematic of the quadlayer assembly process. (b) Materials used and 

cross-sectional illustration of the thin film structure. (c) Film growth as a function of 

quadlayers deposited. (d) Mass as a function of quadlayers deposited.[269] 
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4.2 Experimental 

4.2.1. Materials  

Branched polyethylenimine (Aldrich, St. Louis, MO) (MW ~ 25,000 g mol-1) is a 

cationic polymer that was dissolved into 18.2 MΩ deionized water to create 0.1 wt% 

solutions. The pH was adjusted from its unaltered value (~10.5) to 10 by adding 1.0 M 

hydrochloric acid (HCl). Poly(acrylic acid) (Aldrich) (MW ~ 100,000 g mol-1) is an 

anionic polymer that was prepared as a 0.2 wt% solution with deionized water. The pH 

of PAA was adjusted from its unaltered value (~3.1) to 4 by adding 1.0 M sodium 

hydroxide (NaOH). Anionic natural sodium montmorillonite (MMT) (trade name 

Cloisite Na+) (Southern Clay Products, Inc., Gonzales, TX) clay was prepared as a 1 

wt% aqueous suspension. This suspension of high aspect ratio nanoplatelets (l d-1 is 80 

to 300)[201] was used at its natural pH (~9.7). The aqueous solutions were used to grow 

barrier film on a 51 µm (trade name Trycite 8001) polystyrene substrate (Dow, Midland, 

MI).  

4.2.2. Layer-by-Layer Deposition  

The PS substrate was rinsed with deionized water and methanol before use, then 

plasma-treated with a ATT0 Plasma Cleaner (Thierry Corp., Royal Oak, MI). Plasma 

treatment improves adhesion of the first polyelectrolyte layer by oxidizing the film 

surface.[202] The substrate was first dipped into the PEI solution for 5 minutes, followed 

by rinsing with deionized water for 30 seconds and drying with a stream of filtered air. 

After the first positively-charged layer was adsorbed, the substrate was dipped into PAA 
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solution for another 5 minutes, followed by another rinsing and drying cycle. The 

substrate was then dipped into PEI and MMT solutions to form one “quadlayer”. 

Starting from the second deposition cycle, the remaining layers were deposited using one 

minute dip times. This process was carried out using home-built robotic systems.[203, 204] 

The pH of PEI and PAA is shown as a subscript next to the initials in the figures and text. 

For example, one quadlayer of PEI(pH=10)/PAA(pH=4)/PEI(pH=10)/MMT(unaltered 

pH of 9.7) is abbreviated as (PEI10/PAA4/PEI10/MMT)1. 

4.2.3. Thin Film Characterization 

Assembly thickness on silicon wafers was measured every quadlayer with a 

PHE-101 Discrete Wavelength Ellipsometer (Microphotonics, Allentown, PA) in 

absorbance mode, using a 632.8 nm laser at an incidence angle of 65°. Mass increments 

were measured each layer with a Research Quartz Crystal Microbalance (QCM) (Inficon, 

East Sycrase, NY) using a frequency range of 3.8 - 6 MHz. The 5 MHz quartz crystal 

was inserted in a holder and dipped into the solutions. After each deposition, the crystal 

was rinsed and dried and then left on the microbalance to stabilize for 5 minutes. Cross-

sections of the quadlayer assemblies were imaged with a Tecnai F20 TEM (FEI, 

Hillsboro, OR), operated at 200 kV. Samples were prepared for imaging by embedding a 

piece of coated PET in epoxy prior to sectioning it with a diamond knife.  

4.2.4. Gas Permeation System 

Gas permeability coefficients of H2 and He were measured using a constant-

volume, variable-pressure method. Permeate flux was measured through a membrane by 
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monitoring the pressure increase, in a closed vessel, using a pressure transducer. The 

film was mounted in a permeation cell and the upstream and downstream volumes were 

evacuated to de-gas the film. The valve connecting the permeation cell to the vacuum 

pump was then closed and a measurement of the vacuum leak rate in the downstream 

side was taken. Once the leak rate was determined, feed gas was introduced into the 

upstream side of the membrane and the pressure rise as a function of time in the 

downstream side was recorded. Gas permeabilities PA (cm3 (STP) cm cm-2 s-1 cmHg-1) 

were calculated using the steady state pressure increase in a fixed downstream volume 

as:[270] 

𝑃𝐴 = 𝑉𝑜𝑙
𝑏2𝐴𝑅𝑔𝑇

��𝑑𝑏1
𝑑𝑑
�
𝑠𝑠
− �𝑑𝑏1

𝑑𝑑
�
𝑙𝑙𝑙𝑙

�                      (4.1) 

where Vd is the downstream volume in cm3, l is the film thickness in cm, p2 is the 

upstream absolute pressure in cmHg, A is the film area available for gas transport in cm2, 

Rg is the gas constant, T is the absolute temperature in Kelvin and (dp1/dt)ss and 

(dp1/dt)leak are the steady state rates of pressure increase in the downstream volume at a 

specific upstream pressure and under vacuum. The vacuum leak rate (dp1/dt)leak was less 

than 5% of steady state pressure increase rate (dp1/dt)ss.  

The permeation cell is a 47 mm HP Filter Holder (Millipore, Billerica, MA, USA) 

with an area of 9.6 cm2. The downstream pressure was always kept below 10 Torr in 

order to maintain an effectively constant pressure difference across the membrane. The 

pressure rise in the downstream volume was monitored using a Baratron 626B 100 Torr 

capacitance manometer (MKS, Andover, MA, USA). The calibrated downstream 

volume was 306 cm3. A relief valve was used to prevent the downstream pressure from 
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increasing above one atmosphere. This was necessary to prevent accidental over-

pressurization of the transducer in the event of membrane rupture. The upstream 

pressure was varied between 4 – 6 atm and was measured using a PX409-250 pressure 

transducer (Omega Engineering, Stamford, CT USA). Measurements were carried out at 

room temperature using UHP grade gases.  Swagelok VCR connections and VCO needle 

valve were used for downstream connections to minimize leaks. In order to achieve 

proper measurements, the leak maximum rate was kept below 10% steady state pressure 

increase rate (dp1/dt)ss for the gas being tested.  

4.3 Results and Discussion 

4.3.1. Multilayer Film Growth 

Unlike most LbL systems, which grow linearly, the exponential growth shown in 

Figure 4.1c is attributed to interdiffusion of the weak polyelectrolytes in this quadlayer 

assembly.[51, 63, 66, 184] The thin growth observed in the first few QL is strongly affected 

by the substrate, suggesting the deposited materials may not have full coverage during 

this ‘island growth’ period.[184, 271] After the initial growth, interdiffusion of PEI and 

PAA takes over because both are in their low charge state at pH 10 and pH 4, 

respectively. Clay concentration decreases as the number of QL increases, as shown in 

Table 4.1 and Figure 4.1d, attributed to the additional PEI and PAA deposited through 

interdiffusion. 
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4.3.2. Nanobrick Wall Thin Film Structure 

Figure 4.2 shows TEM cross-sectional images of PEI/PAA/PEI/MMT assemblies, 

showing how clay concentration decreases at higher numbers of quadlayers. The dark 

lines in Figure 4.2a represent individual platelets, revealing that they are oriented 

parallel to the substrate and well exfoliated. Although clay is deposited five times in this 

5 QL film, more than five clay layers are observed. Both exfoliated platelets and 

intercalated stacks can been seen, similar to the results found in other studies.[51, 66] The 

10 QL film shows similar structure to the 5 QL film in the initial quadlayers (Figure 

4.2b), but later exhibits increasing clay spacing (Figure 4.2c). The spacing reaches ~150 

nm in the final quadlayers, suggesting a decreased clay concentration. Based on these 

images, it appears that the interdiffusion of PEI and PAA is able to expand the clay 

stacks and diffuse through the layers of platelets. These TEM images confirm that a 

nanobrick wall structure is generated by this LbL deposition (Fig. 4.2).  

 

Figure 4.2. TEM cross-sectional images of (a) 5 and (b) (c) 10 PEI/PAA/PEI/MMT QL. 

(b) is the portion of the film closest to the PS substrate, while (c) is furthest away. The 

white scale bar in each figure represents 50 nm.[269] 
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Figure 4.2. Continued. 

 

 

4.3.3. Gas Barrier of Quadlayer Assemblies 

Figure 4.3 shows H2 and He permeability of quadlayer assemblies on a 51 μm 

polystyrene film. The overall He and H2 permeability is observed to decrease by three 

orders of magnitude relative to the bare substrate, while the overall film thickness 

increases by only 0.2% (Table 4.1). Increasing the number of QL from 5 to 10 does not 

improve the barrier properties. This lack of improvement may be attributed to the 

dramatically expanded clay spacing and associated concentration reduction (as 

confirmed by analysis of growth profiles and film morphology in Figures 4.1c and 4.2, 

respectively), which diminishes the tortuous path afforded by the nanobrick wall 

structure. The 5 QL nanocomposite, with a thickness of 122 nm, exhibits a H2 

permeability one order of magnitude lower than laminated EVOH film,[265] and a He 

permeability three orders of magnitude lower than metallized polyolefin/polyester.[263] 
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Figure 4.3. Permeability of (a) hydrogen and (b) helium as a function of quadlayers 

deposited on a 51 μm polystyrene substrate.[269] 

 

 Table 4.1. Permeability, film thickness, and clay concentration of quadlayer assemblies 

deposited on 51 μm polystyrene. 

  

Film 
Thickness 

(nm) 

Clay 
loading 
(wt%) 

Transmission Rate Permeability 
(cm3 m-2 day-1 atm-1) (cm3 mm m-2 day-1 atm-1) 

H2 He H2 He 
PS 

  
31000 27000 1600 1400 

3QL 48.6 54.9 170 320 8.7 16 
5QL 122 34.7 69 71 3.5 3.6 
10QL 1564.8 26.8 71 78 3.7 4.1 

4.4 Conclusions 

In summary, the present study represents the first demonstration of a layer-

by-layer deposited film with low hydrogen and helium permeability. The 

impermeable clay platelets, together with highly interdiffused PEI and PAA 

mortar, formed a nanobrick wall structure that imparts significant light gas barrier. 
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Permeability of both hydrogen and helium decreased as the number of quadlayers 

increased, showing one to three orders of magnitude improvement compared to 

commercial barriers. The uniqueness of this polymer/clay barrier thin film is due 

to the high clay loading and strong ionic interactions between polyelectrolytes. 

The excellent performance of this thin film, combined the simplicity of layer-by-

layer deposition, makes this light gas barrier coating an exciting opportunity for 

several packaging and protective applications. 
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CHAPTER V 

IMPROVED GAS BARRIER/SEPARATION OF GRAPHENE OXIDE-BASED 

MULTILAYER THIN FILMS 

5.1 Introduction 

Improving gas barrier in packaging films is an ongoing endeavor. For the past 

two decades, technologies such as SiOx, composite films and metallized plastic films 

have been successfully used to protect various items (food, electronics, etc.) from 

oxygen and moisture.[16, 95, 127, 230, 243, 272-276] In many cases, these barrier solutions require 

complex processing conditions,[277, 278] exhibit poor optical and/or mechanical 

behavior,[279, 280] and/or suffer from pinholes.[232, 277, 280] Additionally, metal applied by 

vapor deposition can also pollute the environment and negatively impact human 

health.[279] More recently, super gas barrier thin films have been deposited from water 

using layer-by-layer (LbL) assembly.[64, 180, 197] These environmentally-friendly 

nanocoatings overcome many of the limitations described for more traditional gas 

barriers.  

High gas barrier is most often realized by using clay as one of the ingredients. [89-

91] The electrostatic interaction between polyelectrolyte and clay forces the platelets to 

deposit in a highly oriented fashion, creating a long tortuous pathway that reduces gas 

permeability,[159] but the presence of hydrophilic polymers causes plasticization in the 

presence of moisture, resulting in an increase in gas permeability.[281] More hydrophobic 

platelets, such as graphene, have been examined to reduce this moisture sensitivity.[282, 
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283] Two dimensional graphene (sp2 carbon atom) possesses excellent electrical,[284, 285] 

mechanical[286, 287] and thermal properties,[288] making it an interesting platelet for LbL 

assembly. Considering the difficulty to exfoliate graphene, due to its strong van der 

Waals interactions, graphene oxide (GO) is a more appealing starting material.[289, 290] 

The hydroxyl and carboxyl groups on the GO surface enable aqueous deposition through 

electrostatic or hydrogen bonding (see structure in Figure 5.1 (b)).[291] In most cases, GO 

is paired with a cationic material to create a “bilayer” (BL) assembly.[183, 247] These 

multilayer assemblies exhibit low gas permeability, but contain a high GO concentration 

(~90 wt%),[65] which is costly and produces strongly colored films.  

  In the present study, chitosan (CH) and poly(acrylic acid) (PAA) were used to 

fabricate a “quadlayer” (QL) assembly with graphene oxide. Discrete, equally spaced 

layers of polymer and GO were observed in a TEM cross-section of the film, indicating 

linear growth. The single polymer layer between GO is now replaced by an interdiffused 

polymer matrix. The pH deviation between CH and PAA not only influences degree of 

ionization of PAA, but creates a denser polymer layer. A 5 CH/PAA/CH/GO QL film (< 

50 nm) exhibits an oxygen permeability of 3.9 ×10-20 cm3 cm cm-2 Pa-1 s-1 under dry 

conditions. This barrier can be maintained in a high humidity environment after 

thermally reducing graphene oxide. It was discovered that this reduced GO assembly 

could also separate gas molecules with different sizes. With a H2/CO2 selectivity of 215, 

this thin film membrane outperforms most known separation membranes. The 

advantages of this quadlayer assembly, including its low GO concentration (< 50 wt%) 
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and excellent barrier/separation behavior, make it a promising system for packaging 

(food, pharmaceuticals and electronics) and gas separation. 

5.2 Experimental 

5.2.1. Materials  

Cationic chitosan (Mw 60,000 g mol-1, degree of deacetylation 95%) (G.T.C. Bio 

Corp., Qingdao, China) was dissolved into 18.2 MΩ deionized water to create a 0.1 wt% 

solution. pH was adjusted to 3.5, 4.5 and 5.5 using a previously described method.[292] 

Anionic poly(acrylic acid) (Mw 100,000 g mol-1) (Sigma-Aldrich, Milwaukee, WI) was 

used to make a 0.2 wt% solution that pH was adjusted to 3, 4 and 5. All pH values were 

adjusted by adding 1.0 M hydrochloric acid (HCl) or 1.0 M sodium hydroxide (NaOH). 

Graphene oxide (aspect ratio 300-800) (CheapTubes, Brattleboro, VT) was exfoliated in 

deionized water via sonication (10W) for 10 minutes with a MISONIX XL-2000 tip 

sonicator (Qsonica, Melville, NY). A 0.1 wt% graphene oxide suspension was used as an 

anionic component at its natural pH (~3.2). 

5.2.2. Substrates  

Single-side-polished (100) silicon wafers (University Wafer, South Boston, MA) 

were used as substrates for ellipsometry and scanning electron microscopy (SEM). 

Ti/Au quartz crystals, with a resonance frequency of 5 MHz, were purchased from 

Maxtek Inc. (Cypress, CA) and used as deposition substrates for quartz crystal 

microbalance (QCM) characterization. Silicon wafers were cleaned with a 3:1 ratio of 

30% hydrogen peroxide to 99% sulfuric acid and stored in deionized water. These 
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substrates were then rinsed with acetone and deionized water before use. Caution: 

Piranha solution reacts violently with organic material therefore needs to be handled 

properly. 179 µm thick poly(ethylene terephthalate) (PET) film (trade name ST505, 

Dupont–Teijin) was purchased from Tekra (New Berlin, WI). PET was rinsed with 

deionized water and methanol, then corona-treated with a BD-20C Corona Treater 

(Electro-Technic Products Inc., Chicago, IL) to impart a strong negative surface charge.  

5.2.3. Layer-by-Layer Deposition  

Figure 5.1 illustrates the layer-by-layer assembly procedure. A layer of CH was 

first deposited by dipping the substrate into the solution for 5 minutes, followed by 

rinsing with deionized water for 30 seconds and drying with a stream of filtered air. The 

substrate was then dipped into PAA solution for another 5 minutes, followed by another 

rinsing and drying cycle. The quadlayer was completed with one more layer of CH and 

GO. Starting from the second deposition cycle, the remaining layers were deposited 

using one minute exposures to each solution. This process was carried out with home-

built robotic systems.[204, 293] pH of CH and PAA are shown as a subscript next to their 

initials in the figures and text. For example, one quadlayer of 

CH(pH=5.5)/PAA(pH=3)/CH(pH=5.5)/GO (unaltered pH of 3.2) is abbreviated as 

(CH5.5/PAA3/CH5.5/GO)1. Quadlayer assemblies were heated at 175 ºC for 90 minutes to 

convert GO into reduced-GO (rGO). 
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Figure 5.1. Illustration of (a) LbL process (b) materials used and (c) nanobrick wall 

structure built from chitosan/poly(acrylic acid)/chitosan/graphene oxide quadlayers. 

 

 

5.2.4. Thin Film Characterization  

Film thickness was measured every quadlayer with a PHE-101 Discrete 

Wavelength Ellipsometer (Microphotonics, Allentown, PA), using a 632.8 nm laser at an 

incidence angle of 65º. FTIR spectra of LbL films were measured with a Bruker Optics 

ALPHA-P 10098-4 spectrometer in ATR mode. Origin software was used to 

deconvolute PAA peaks in its protonated (COOH) and ionic (COO-) forms to derive 

degree of ionization (DOI), as described in our previous study.[294] To avoid the 

absorbance peaks of the silicon oxide substrate and carboxylic acid of GO, 100 bilayers 

(BL) of CH/PAA (~1.5 µm) were used for FTIR analysis. Cross-sections of the 

quadlayer assemblies were prepared by embedding the film in Epofix resin (EMS, 

Hatfield, PA) overnight, followed by cutting with an Ultra 45º diamond knife (Diatome, 
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Hatfield, PA). Sections were imaged with a Tecnai G2 F20 TEM (FEI, Hillsboro, OR), 

operated at 200 kV. Surface structure of the coated silicon wafers were imaged with a 

JSM-7500F JEOL field-emission scanning electron microscope (FESEM, Tokyo, Japan). 

OTR testing was performed by MOCON (Minneapolis, MN) in accordance with ASTM 

D-3985,[207] using an Mocon Oxtran 2/21 ML instrument at 23 ºC and 0% (or 100%) RH. 

Permeation of H2 and CO2 were tested via Mocon Multi-Tran 400 and Permatran C4/41 

instruments at 23 ºC and 0% RH (according to ISO 15105 and ASTM F2476-05).[295, 296] 

Carbon bonding was characterized with a PHI Quantera XPS (ULVAC-PHI, Chanhassen, 

MN). 

5.3 Results and Discussion 

5.3.1. Film Growth  

Figure 5.2 shows the thickness of chitosan/poly(acrylic acid)/chitosan/graphene 

oxide quadlayers under varying pH combinations. The linear growth observed in these 

assemblies is verified by the cross-sectional TEM image (Figure 5.2(c)). The contrast 

between polymer and GO is low due to the low electron density in both, so resolution is 

sacrificed in order to distinguish the two. The five dark lines in this TEM image 

represent GO layers deposited, clearly showing this film to have a highly oriented 

structure. Not only does the thickness of the (CH5.5/PAA3/CH5.5/GO)5 film measured by 

TEM (~44 nm) agree with ellipsometry, GO spacing derived from the electron signal 

profile (GO located at 6, 13, 21, 27 and 33 nm in Figure 5.2(d)) also confirms linear 

growth. Figure 5.3 showed mass deposited for these quadlayer recipes, with a linear 
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trend similar to the ellipsometry results. Concentration of GO in these 5QL films were 

listed as well, all of them showing a GO concentration ~48% except for 

CH5.5/PAA5/CH5.5/GO. The low GO concentration of CH5.5/PAA5/CH5.5/GO was seen in 

the SEM images and will be presented in the following section.  

 

 

 

 

Figure 5.2. Thickness of CH/PAA/CH/GO as a function of quadlayers deposited with 

varying (a) pH of CH and (b) pH of PAA. (c) Film growth of CH5.5/PAA3/CH5.5/GO 

compared with TEM cross-section of 5QL film. (d) Electron signal profile scanned 

through the white dotted section in (c). Valley points indicate position of GO layers. 
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    (a)                                                                     (b) 

 

    (c)                       (d) 

 

    (e) 

 

Figure 5.3. Mass as a function of quadlayers deposited: (a) CH3.5/PAA3/CH3.5/GO (b) 

CH4.5/PAA3/CH4.5/GO (c) CH5.5/PAA3/CH5.5/GO (d) CH5.5/PAA4/CH5.5/GO and (e) 

CH5.5/PAA5/CH5.5/GO. Concentration of GO (5 QL) is listed as well. 
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The variation of thickness per QL increment with pH, from 4.8 to 11.0 nm per 

QL, is caused by changes in conformation of the polyelectrolytes. For the 

CH5.5/PAA5/CH5.5/GO and CH3.5/PAA3/CH3.5/GO assemblies, CH and PAA have similar 

pH, suggesting that one of the polyelectrolyte is in a lower charged state (CH at pH 5.5 

or PAA at pH3) with a globular conformation to achieve thicker growth in the former. 

The counter polyelectrolyte (PAA at pH 5 or CH at pH 3.5), being highly ionized, has a 

linear chain conformation due to the electrostatic self-repulsion.[198] With only a small 

change in environmental pH, the counter polyelectrolyte remains highly ionized, so the 

deposited polymer layer is thin. On the other hand, CH5.5/PAA3/CH5.5/GO starts the 

deposition in a pH 5.5 solution. This partially charged chitosan is deposited onto the 

substrate with a globular conformation.[198] During PAA deposition, amine groups of CH 

not involved in bonding to the substrate (or preceding layer) are likely to be ionized 

because of the acidic environment, creating additional positive charges. In this case, 

poly(acrylic acid) with only a few ionized carboxylic acid groups is also adsorbed in a 

globular chain conformation. This same process occurred again for the second CH 

deposition. Deposition of globular, lowly charged chains is the reason for the thickness 

increment to increase 100% relative to assemblies prepared with similar CH and PAA 

pH. The transition of polyelectrolytes from solution to multilayer film not only changes 

pKa (pKa of CH increased and pKa of PAA decreased), but the degree of ionization 

increases as well,[206] which will be discussed later. The additional charges generated 

during each deposition step also serves to attract more polyelectrolytes into the assembly, 

forming an interpenetrating network known as a “scramble salt” structure.[297] Formation 
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of scramble salt will influence barrier properties as well and will be elaborated in the 

following paragraphs.  

5.3.2. Film Morphology  

SEM images of 1 QL assembly surfaces are shown in Figure 5.4. The wrinkles 

confirm the presence of GO and these images suggest GO deposition is uniform over the 

surface. By fixing the pH of CH at 5.5, the level of wrinkling diminishes as the pH of 

PAA increases. In CH5.5/PAA5/CH5.5/GO, there are few observable wrinkles, suggesting 

less GO coverage. When the pH of PAA is held constant at 3, increasing CH pH from 

3.5 to 5.5 does not change the coverage of GO very much. The same trends are also 

found in the gas barrier of these films (i.e., greater GO coverage correlates to reduced 

oxygen permeability). 
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Figure 5.4. SEM surface images of one quadlayer of (a) CH3.5/PAA3/CH3.5/GO (b) 

CH4.5/PAA3/CH4.5/GO (c) CH5.5/PAA3/CH5.5/GO (d) CH5.5/PAA4/CH5.5/GO and (e) 

CH5.5/PAA5/CH5.5/GO. 
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As mentioned earlier, the interaction between chitosan and poly(acrylic acid) 

generates a scramble salt structure through interdiffusion and ionization.[199, 200] FTIR 

spectra of CH/PAA assemblies, shown in Figure 5.5, were used to compare the degree of 

interdiffusion. Degree of ionization of PAA was derived by dividing peak area of its 

ionic form (COO-) by the total area of ionic and protonated form (COOH), which are 

1550 and 1715 cm-1, respectively. The peak at 1650 cm-1 in these spectra represents 

primary amine (NH2) bending of chitosan.[298, 299] For CH3.5/PAA3 and CH5.5/PAA5, DOI 

is less than 40% because CH and PAA are at similar pH. In this case, the highly charged 

polyelectrolyte (CH at 3.5 or PAA at pH 5) is unable to ionize the counter ion. As the 

difference in pH increases to 1.5, as it does for CH4.5/PAA3 and CH5.5/PAA4, there is 

greater ability for the two polymers to interdiffuse and lock in the structure by inducing 

an increased ionization. When the pH difference is 2.5, as it is for CH5.5/PAA3, the 

initially low-charged polyelectrolytes highly interdiffuse and then highly ionize one 

another. This creates a dense polymer layer and also facilitates deposition of GO, both of 

which impart gas barrier. 
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Figure 5.5. FTIR spectra of (a) (CH3.5/PAA3)100 (b) (CH4.5/PAA3)100 (c) (CH5.5/PAA3)100 

(d) (CH5.5/PAA4)100 and (e) (CH5.5/PAA5)100. 
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5.3.3. Gas Barrier and Separation  

Oxygen transmission rates (OTR) for quadlayer films assembled with varying pH 

are summarized in Table 5.1.  All of the 5QL nanocoatings improved the oxygen barrier 

of the PET substrate (OTR = 8.4 cm3 m-2 day-1atm-1). Oxygen transmission rate 

decreases as the pH difference between CH and PAA increases in these assemblies, with 

(CH5.5/PAA3/CH5.5/GO)5 exhibiting the lowest OTR (~0.34 cm3 m-2 day-1atm-1). This 48 

nm coating reduced OTR by a factor of more than 20 because both low-charged 

polyelectrolytes ionized one another during extensive interdiffusion, forming a highly 

dense layer with uniform coverage by GO platelets. By tailoring assembly structure with 

deposition pH, oxygen permeability as low as 3.9 ×10-20 cm3 cm cm-2 Pa-1 s-1 is achieved. 

This value matches SiOx and is two orders of magnitude lower than 25µm ethylene-vinyl 

alcohol film, another commonly used oxygen barrier.[230, 231, 233]  

 

 

Table 5.1. Oxygen transmission rate and permeability of five quadlayer assemblies on 

179 µm PET film. 

Assembly OTR (Total) 
(cm3 m-2 day-1 atm-1) 

P (Film)  
(10-19 cm3 cm-1 cm-2 Pa-1 s-1) 

Film 
thickness 

(nm) 
(CH3.5/PAA3/CH3.5/GO)5 1.23 1.0 30.9 
(CH4.5/PAA3/CH4.5/GO)5 1.18 1.3 41.2 
(CH5.5/PAA3/CH5.5/GO)5 0.34 0.39 47.5 
(CH5.5/PAA4/CH5.5/GO)5 1.33 1.3 35.2 
(CH5.5/PAA5/CH5.5/GO)5 4.03 4.3 24.5 
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This exceptional gas barrier is further improved with thermal reduction of 

graphene oxide. The GO used here contains 36.2% sp2 carbon bonding (Fig. 5.6). After 

thermal reduction at 175 ºC for 90 minutes, a portion of C-O (C-OH and C-O-C) and 

carbonyl (C=O and COOH) bonding was converted to sp2 (36.2% to 49.8%), resulting in 

more hydrophobic, conjugated, two-dimensional platelets. The 

(CH5.5/PAA3/CH5.5/rGO)5 assembly OTR remained the same as 

(CH5.5/PAA3/CH5.5/GO)5 at 0% RH, but it maintained its higher barrier at 100% RH, 

while the unreduced (CH5.5/PAA3/CH5.5/GO)5 was degraded by one order of magnitude, 

as shown in Figure 5.7 (a). It is believed that rGO makes the assembly less sensitive to 

moisture, which reduces thin film swelling under high humidity. This ability to maintain 

barrier under humid conditions surpasses that observed for polymer/clay assemblies.[159, 

226] When compared to polyethyleneimine (PEI)/GO bilayer (BL) assemblies,[65] the 

quadlayer films in this study exhibit similar OTR at 0% RH with much lower GO 

concentration (90 wt% relative to less than 50 wt%). This is believed to be due to the 

greater GO platelet layer spacing created by the additional polymer layer, which causes 

gas molecules to spend more time wiggling between them.[110, 181, 197] The ionized CH 

and PAA create a denser layer that also contributes to improved barrier. 
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Figure 5.6. C1s XPS spectra of (a) graphene oxide and (b) thermally reduced graphene 

oxide. 

 

 

 

Figure 5.7. (a) Oxygen transmission rate of (CH5.5/PAA3/CH5.5/GO)5 on PET, under 0% 

and 100% RH. (b) Hydrogen and (c) carbon dioxide transmission rate of 

(CH5.5/PAA3/CH5.5/GO)5 on PET under 0% RH. 
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These same quadlayer assemblies can separate gases based on molecular size. 

Figure 5.7 shows hydrogen (H2TR) and carbon dioxide (CO2TR) transmission rates 

measured at 23 ºC and 0% RH. While H2TR was reduced ~40% for GO and rGO films, 

CO2TR was reduced from 25% to 97%, compared to the bare PET substrate, after 

thermal reduction. The more two-dimensional nature of rGO decreased the gaps between 

adjacent platelets and was enough to slow CO2 transport. Figure 5.8 shows the 

separation of 5QL CH5.5/PAA3/CH5.5/GO assemblies before and after thermal reduction. 

Quadlayer separation performance is placed in context with the Robeson’s upper-bound 

limit[20, 21] and many of the best mixed matrix membranes (MMM), zeolitic imidazolate 

frameworks (ZIFs) and metal organic frameworks (MOFs).[195] The quadlayer H2/CO2 

selectivity (α) increases from 5 to 215 after reducing GO, which outperforms the new 

Robeson’s upper-bound limit (trade-off between gas permeability and selectivity, which 

is determined by sizes and condensabilities of gas pair).[21] This high H2/CO2 selectivity 

suggests that the pore structure in this assembly (a combination of CH/PAA matrix free 

volume and voids between GO platelets)  creates a size-selective film that is able to 

separate gas molecules smaller than H2 (2.89 Å) and larger than CO2 (3.30 Å).[300] 

Excellent separation and low energy consumption should make these quadlayer films 

useful for applications requiring hydrogen recovery,[301] ammonia purge gas recovery[302] 

and carbon dioxide removal.[303] 
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Figure 5.8. H2/CO2 selectivity of 5QL CH5.5/PAA3/CH5.5/GO in relation to the best 

polymer and mixed matrix membranes (MMM), including carbon molecular sieves 

(CMS). Robeson’s upper bound for H2/CO2 separation is included to compare 

performance of membranes. 

 

 

5.4 Conclusions 

A graphene oxide-based quadlayer gas barrier/separation film was assembled 

using layer-by-layer technique. The ellipsometry and cross-sectional TEM images 

results revealed a linear growth with discrete GO layers, forming a “nanobrick wall” 

structure. pH of polyelectrolyte solutions were adjusted, eventually changing chain 

conformation and film thickness. Oxygen transmission rates were found to decrease as 

pH deviation between CH and PAA increase, which is verified by the better GO 
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coverage shown in SEM images. CH5.5/PAA3/CH5.5/GO exhibited the best barrier 

performance because CH was highly ionized by the counter ion, therefore was able to 

attract more GO into the bulk film. By thermally reducing GO, OTR of the assemblies 

became less sensitive to moisture. Reduction of GO also increased H2/CO2 selectivity, 

the transformation of GO to a more two-dimensional structure is likely to fill up gaps 

between adjacent platelets, resulting CO2 less permeable through the film. We believe 

this state-of-the-art composite film, based on its simplicity to fabricate and excellent 

barrier/separation properties bring out applications in packaging and gas separation. 
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CHAPTER VI* 

HIGHLY SIZE-SELECTIVE IONICALLY CROSSLINKED MULTILAYER 

POLYMER FILMS FOR LIGHT GAS SEPARATION 

6.1 Introduction 

 
The production of inexpensive, high purity hydrogen remains a critical challenge 

for improving the sustainability of fossil fuels and for realizing renewable and clean 

energy sources capable of displacing fossil fuels. Dramatic increases in the demand for 

purified hydrogen for sulfur- and nitrogen-removal from “sour” crude oils is predicted in 

the coming decades,[304] as traditional sources of “sweet” or low-sulfur crude oils 

dwindle. Bio-refineries for producing “green” fuels from renewable sources are expected 

to further increase global demand for purified hydrogen.[305] Hydrogen itself promises a 

universal fuel derivable from any hydrocarbon resource, which may be converted to 

electrical energy using fuel cells at energy efficiencies surpassing those of combustion-

based power systems with zero greenhouse gas emissions.[306] Industrial pressure-swing 

adsorption and cryogenic distillation processes for hydrogen purification are complex, 

energy-intensive and costly, and are incapable of satisfying purity requirements of many 

fuel cells.[307] In contrast, gas purification membranes offer a low-maintenance, energy-  

*Reprinted with permission from “Advanced Materials” by Kim, D.; Tzeng, P.; Barnett, 
K. J.; Yang, Y. H.; Wilhite, B. A.; Grunlan, J. C. “Highly Size-Selective Ionically 
Crosslinked Multilayer Polymer Films for Light Gas Separation” Adv. Mater. 2013, 26, 
746-751, Copyright [2015] by John Wiley and Sons.  
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efficient alternative to these processes and these membranes are capable of achieving 

hydrogen purities necessary for emerging energy technologies.[22] 

Polymeric gas separation membranes combining low production costs with 

robust mechanical properties have found broad industrial application for O2 and N2 

enrichment of air, upgrading of natural gas and hydrogen recovery from ammonia.[22] 

Dense polymeric membranes separate gas mixtures based upon disparities in individual 

species permeabilities, dictated by species solubility and mobility within the polymer 

material.[20, 21, 308] Size-selective polymer membranes rely upon differences in species 

mobility, which is directly related to molecular size.[308] In the absence of structure (i.e. 

in amorphous glassy or rubbery films), increasing the free volume of the polymer 

improves the permeability at the cost of reducing the permselectivity.[21, 308] In contrast, 

structured thin films assembled from molecular sieves,[309] zeolites,[310] metal-organic-

frameworks (MOFs),[311] covalent-organic frameworks[312] and carbon nanotubes[313] 

combine nano-scale pores with high free volume in a uniform, nominally defect-free 

structure to avoid the trade-off between permeability and permselectivity.  

Several strategies have been reported for incorporating structural aspects in 

polymeric systems in order to overcome the “upper bound” in separation performance, 

while retaining the traditional advantages of polymeric membranes. Mixed matrix 

membranes (MMMs) combine structural aspects of molecular sieves, zeolites or MOFs 

with homogeneous polymers.[151, 152] Polymers of intrinsic microporosity exploit 

structure and rigidity of individual macromolecules to inhibit chain packing during film 

synthesis, in turn realizing amorphous films with uniform pore structures.[314, 315] 
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Thermal re-arrangement of polymer segments in cast films allows introduction of 

tunable pore structures, combining high free volume with a “bottleneck” pore structure 

for maintaining high permselectivity.[316] Conversely, block copolymers formed from 

two or more incompatible polymers provide templates for producing highly ordered 

nanopore structures via etching of a sacrificial constituent from the as-cast film.[317] 

In the present study, a branched polyethylenimine (PEI) / poly (acrylic acid) 

(PAA) system is assembled via LbL deposition and used for investigating light gas (H2, 

CO, CO2, O2, N2) separations using a flow-through membrane apparatus. Unlike other 

LbL systems that display linear growth due to a “ladderlike” deposition structure, 

PEI/PAA assembly appears to have a “scrambled salt” structure,[297] displaying 

exponential growth. The highly ionized PEI and PAA result in a highly interpenetrating 

network in both directions (from bulk film to solution, and vice versa). High modulus 

obtained by nanoindentation suggests high density as another evidence of the 

interpenetrated structure. This highly “ionically crosslinked” film is believed to be 

denser than traditional polymer films, making it an excellent candidate for gas barrier 

applications. 

6.2 Experimental 

6.2.1. Materials  

Branched polyethylenimine (Aldrich, St. Louis, MO) (MW ~ 25,000 g mol-1) 

was dissolved into deionized water (18.2 MΩ) for making 0.1 wt% solution. The pH was 

adjusted from its unaltered value (~10.5) to 10 by adding hydrochloric acid (HCl) (1.0 
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M). Poly(acrylic acid) (Aldrich) (MW ~ 100,000 g mol-1) solution (0.2 wt%) was 

prepared with deionized water (18.2 MΩ). The pH of PAA was adjusted from its 

unaltered value (~3.1) to 4 by adding NaOH (1.0 M).  

6.2.2. Substrates  

Single-side-polished (100) silicon wafers (University Wafer, South Boston, MA) 

were used as substrates for thickness measurement. Silicon wafers were cleaned with a 

3:1 ratio of 30% hydrogen peroxide to 99% sulfuric acid and stored in deionized water. 

These substrates were then rinsed with acetone and deionized water before use. Caution: 

Piranha solution reacts violently with organic material therefore needs to be handled 

properly. 179 µm thick poly(ethylene terephthalate) (PET) film (trade name ST505, 

Dupont–Teijin) was purchased from Tekra (New Berlin, WI). PET was rinsed with 

deionized water and methanol, then corona-treated with a BD-20C Corona Treater 

(Electro-Technic Products Inc., Chicago, IL) to impart a strong negative surface charge. 

Porous stainless steel (PSS) tubes (0.5 µm grade, OD: 0.5”, porous length: 2”, Mott 

Corporation) were used as supports for a PEI/PAA assembly. PSS supports were 

pretreated by immersion in an alkaline solution (sodium hydroxide, organic detergent, 

DI water) at 60 oC for 1 hour, followed by rinsing thoroughly with DI water and then 

drying at 120 oC for 2 hours. The pretreated PSS tubes were coated with nanopowder 

alumina (Sigma-Aldrich) by a vacuum pump which was connected to one end of the 

tube immersed in a nanopowder alumina solution (nanopowder alumina: alumina sol (~ 

20%, Alfa-Aser), DI water (wt.% ratio: 1:7:0.1)), and the other end of the tube was 

plugged with a rubber stopper. After being annealed at 450 oC for 4 hours with a heating 
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and cooling rate of 3 oC/min, the PSS tubes were airbrushed with alumina gel (dissolved 

alumina in nitric acid (Mallinckrodt Baker), followed by pH titration to near-neutral 

using ammonium hydroxide (Mallinckrodt Baker)) and annealed at the same condition 

described above. 

6.2.3. Layer-by-Layer Deposition  

The alumina-coated PSS tube was first dipped into the polycation solution (PEI) 

for 5 minutes, followed by rinsing with deionized water for 30 seconds and drying with a 

stream of filtered air, as shown in Figure 6.1. After the first positively-charged layer was 

adsorbed, the substrate was dipped into PAA solution for another 5 minutes, followed by 

another rinsing and drying cycle. One deposition cycle was defined as one ‘bilayer’. 

Starting from the second deposition cycle, the remaining numbers of layers were created 

using one minute dip times. This process was carried out using home-built robotic 

systems.[203, 204] 

6.2.4. Thin Film Characterization  

Thickness of the films was measured by a P-6 profilometer (KLA-Tencor, 

Milpitas, CA). Gas permeation testing were carried out in two different ways. PEI/PAA 

multilayer films were first deposited on alumina-coated PSS tube and placed in a tube-

and-shell assembly (Figure 6.2) in which the bore of the PSS tube (sweep) was supplied 

with helium and the annulus (feed) of the system with feed gases (H2, CO, CO2, O2, N2). 

Both sweep and feed gases were humidified with DI water to 3% RH prior to entering 

the membrane system. Permeate gas composition was continuously monitored via mass 
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spectrometry (RGA 100, Stanford Research Systems). All gas permeation measurements 

were performed at room temperature (~20 oC) with permeate and retentate volumes 

maintained at atmospheric pressure. The permeance of gas species (i) is calculated 

from Equation (1),  

                                                                                            (6.1) 

where Fi  is gas (i) permeation rate (mol m-2 sec-1), t is membrane thickness (m), Pi is 

permeability (mol m-1 sec-1 Pa-1), and , are partial pressure (Pa) of gas i in the 

feed and sweep sides, respectively. Gas selectivity (αi/j) is given by the ratio of 

permeability (Pi /Pj) of two gas species (i,j). PEI/PAA assemblies were deposited on PET 

and tested by MOCON (Minneapolis, MN) as well. Gas permeation tests were 

performed in accordance with ASTM D-3985,[207] using Oxtran 2/21 ML for oxygen, 

Permatran-C 4/41 ML for carbon dioxide and Multi-Tran 400 ML for hydrogen, helium 

and methane at 23°C and 0% RH. A Hysitron TI 950 TriboIndenterTM was used to 

measure mechanical properties of 10 bilayer PEI/PAA film by a method explained 

previously.[110] The modulus and the hardness of the sample were measured in two 

different environments; 38 oC with 50% relative humidity (RH) and 25 oC with 22% RH. 

FTIR spectra of LbL films were measured with a Bruker Optics ALPHA-P 10098-4 

spectrometer in ATR mode. PAA peaks in its covalent (COOH) and ionic form (COO-) 

are of interest in our study to compare the ionic interaction between polycation and 

polyanion, or so called ‘degree of ionization’. 
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Figure 6.1. Schematic of PEI/PAA layer-by-layer gas separation membrane supported 

on an alumina-coated porous stainless steel tube.[195] 

 

 

 
 
Figure 6.2. Schematic of the tube-and-shell assembly set-up for gas permeation.[195] 

 

 

6.3 Results and Discussion 

6.3.1. Multilayer Film Growth and Structure 

Figure 6.3 presents the growth of the film thickness as the number of bilayers of 

PEI/PAA increases. The film thickness grows exponentially, indicating the ‘scrambled 

salt’ structure of the film by a highly interpenetrating network. 
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Figure 6.3. The film growth curve of the PEI/PAA films.[195] 

 

 

Figure 6.4a shows a picture of a complete membrane assembly comprising a 30 

bilayer PEI/PAA supported on an alumina coated-PSS substrate. Figure 6.4b presents an 

optical microscopic image (x50) of the porous surface of the untreated PSS substrate. 

The optical microscope images of the alumina coated-PSS tube and the PEI/PAA film 

coated over the alumina-PSS tube are shown in Figure 6.4c and d, respectively. As can 

be seen in Figure 6.4c, the bright white alumina layer formed by a vacuum assisted-

coating technique fills the large cavities and voids present on the surface of the untreated 

PSS substrate. Comparing optical microscope images of the PEI/PAA film surface 

(Figure 6.4d) with that of the alumina-coated PSS tube (Figure 6.4c), it indicates that the 

conformal PEI/PAA coating is free of macroscopic defects. Figure 6.4e shows a cross-

sectional SEM image of a 30 bilayer PEI/PAA film deposited over the alumina coated-
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PSS tube, confirming the deposition of a ~7 µm polymer membrane over the alumina-

coated PSS substrate. 

 

 

 
Figure 6.4. Picture of (a) a PEI/PAA-alumina-PSS tube, optical microscopic surface 

images (x50) of (b) a untreated PSS tube, (c) an alumina layer, (d) a PEI/PAA film, and 

(e) a SEM cross-section image (x1,000) of a PEI/PAA-alumina-PSS tube.[195] 

 

 

6.3.2. Gas Separation Behavior 

Figure 6.5a shows gas flux of H2, N2, O2, CO, and CO2 through the alumina-

coated PSS tube as a function of partial pressure difference between the feed and sweep 

sides. Here, H2 permeance (a slope of the hydrogen flux) is 2.1 x 10-7 (mol m-2 sec-1 Pa-1) 

and permeance of the other gases (N2, O2, CO, CO2) is about 1.1 x 10-7 (mol m-2 sec-1 Pa-

1). After depositing PEI/PAA films over the alumina-coated PSS tube, H2 permeance 

through the PEI/PAA films decreased by about two or three order of magnitude 

compared to that of the alumina coated-PSS tube (Figure 6.5b), with a tendency of 
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reduction in H2 flux as the number of bilayers increase. In contrast, permeate partial 

pressures of all other gases studied remained below the lower detection limit of the mass 

spectrometer [corresponding to a minimum detectable permeability of CO2 of 8.5x10-18 

(mol m-1 sec-1 Pa-1)], indicating high H2 permselectivity of the supported polymer 

membrane. The same permeation behavior of the PEI/PAA films was observed using a 

coulometric detector system (Multi-Tran 400, Permatran C4/41, Oxtran 2/21 ML). Again, 

the obtained permeation rates of O2, CH4 and CO2 through the 10 bilayer PEI/PAA film 

were below the detection limit, while He and H2 gases exhibited appreciable 

permeability. Given the kinetic diameters of the gases studied [He(2.6) < H2(2.89) < 

CO2(3.3) < O2(3.46) < N2(3.46) < CO(3.76) < CH4(3.8)],[300] data confirms that the 

PEI/PAA LbL films have size-selective pore structure with a limiting diameter between 

2.89 Å and 3.3 Å. The lower detection limits for CO2 and N2 were employed to estimate 

minimum detectable H2-CO2 and H2-N2 permselectivities of 190:1 and 2350:1, 

respectively. While the extremely low CO2 and N2 permeabilities prevented a precise 

measurement of the intrinsic H2-N2 and H2-CO2 permselectivities, this minimum 

detectable permselectivity provides the most conservative basis for comparing the 

presently reported LbL film against the state-of-the-art in light gas separation polymeric 

materials.   
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Figure 6.5. (a) Gas permeation through the alumina-coated PSS tube (blank square: bare 

PSS tube without alumina coating) and (b) H2 flux through PEI/PAA membranes of 10, 

20, and 30 bilayers.[195] 
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Figure 6.6a and b present two lines representing the upper bound limits reported 

in 1991and 2008 by Robeson[20, 21] for (a) H2/N2 and (b) H2/CO2. Robeson’s upper bound 

plots were established based on data obtained from various homogeneous polymer films, 

excluding surface modified, mixed matrix, and carbon molecular sieving membranes. 

Data points in Figure 6.6 summarize the performance of a broad range of structured 

membrane materials reported in the literature.  It can be seen that several heterogeneous 

MMMs exceed the upper bound proposed by Robeson, while previously reported LbL 

films do not. In contrast, the LbL-assembled PEI/PAA films studied in this work exceed 

the upper boundary by a margin equal to or greater than any existing polymeric gas 

separation membrane, given the minimum possible H2:N2 and H2:CO2 permselectivities 

obtained from the lower detection limit analysis. When compared on the basis of 

selectivity (α) alone, not even structured porous inorganics can match these relatively 

simple, polymer-only membranes. Moreover, while existing polymeric membranes have 

overcome this “upper bound” by introducing heterogeneity and significant structural 

modification, our previous analysis of the LbL-assembled PEI/PAA film[198] indicates a 

compact, homogeneous polymer structure. Thus, this report represents the first 

successful use of a layer-by-layer polymer system to overcome Robeson’s “upper bound.”  
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Figure 6.6. Robeson’s upper bound plots ((a) H2/N2, (b) H2/CO2) of 10, 20, and 30 

bilayer PEI/PAA polymer films and various other polymer and inorganic (or mixed 

matrix) membranes (the full term for each abbreviation listed here is presented in the 

Nomenclature).[195] 
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6.3.3. Mechanical Strength of Multilayer Film 

The compactness of this polymer film can be inferred from its mechanical 

behavior. Figure 6.7 shows the average elastic modulus and hardness of 10 bilayer 

PEI/PAA films. This 1µm film has an elastic modulus of 23.4 ± 5.7 GPa and hardness of 

0.7 ± 0.3 GPa at 22 %RH, higher than most known all-polymer[318, 319] and even 

ultrastrong and stiff uncrosslinked polymer/clay LbL assemblies.[52] One reason for this 

relatively high result can be explained by FTIR (Figure 6.7c). PAA has unique peaks for 

its neutral (-COOH at 1710 cm-1) and ionized forms (-COO- at 1560 cm-1) that were 

investigated to compare the ionic interaction between polycation and polyanion, which 

can be further quantified as “degree of ionization”. In order to derive this value, charged 

carboxylate and neutral carboxylic acid peaks were first assumed to have similar 

extinction coefficients,[205] and then the fraction of ionized PAA carboxylic groups was 

calculated as Abs1560/(Abs1560+Abs1710).[206] Based on the spectrum here, the portion of 

COO- is much higher than COOH, indicating PAA is highly ionized by PEI. Before the 

film assembly, both PEI (pH10) and PAA (pH4) aqueous solutions are in neutral form in 

which the polymer chains are more globular. As deposition proceeds, these pH sensitive 

polyelectrolytes become highly charged due to the alternating pH (i.e., PEI encountering 

a lower pH when PAA was deposited and PAA encountering a higher pH environment), 

resulting in a highly ionic crosslinked and interdiffused assembly. This extensive 

ionically linked structure might also explain why the assembly maintains a high elastic 

modulus at 50% RH. Rather than plasticizing, water likely occupies free volume that 

further densifies the film.[320] 
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Figure 6.7. (a) Average elastic modulus and (b) hardness of 10 bilayer PEI/PAA films 

under different environmental conditions (error bars represent standard deviation), and (c) 

FTIR spectra of 10 bilayer PEI/PAA film.[195] 
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6.4 Conclusions 

This study demonstrates exceptionally high hydrogen permselectivity and 

remarkable elastic modulus in an ionically crosslinked, layer-by-layer assembled 

PEI/PAA membrane, which performs beyond Robeson’s upper-bound limit, despite 

being made of only homogenous polymer. This unique thin film overcomes the 

drawbacks of common polymeric membranes (i.e., low selectivity and poor mechanical 

properties), making it a significant advance in polymeric membranes for gas separation. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Multilayer Gas Barrier/Separation Assemblies 

 The goal of this dissertation work was to improve barrier and separation behavior 

of permeable polymeric substrates by depositing a thin film assembly. Polymer-polymer 

and polymer-nanoplatelet layer-by-layer assemblies either reduced gas transmission rate 

by three orders of magnitude (relative to an uncoated polymer substrate) or exhibited 

separation performance above the Robeson’s upper-bound, with coating thickness 

ranging from 50 ~ 1500 nm. Furthermore, post-thermal treatment can enhance 

hydrophobicity of graphene oxide assemblies, thereby improving oxygen barrier at high 

humidity. This work lays the foundation for the use of LbL assembly as an effective 

technology for making flexible, transparent gas barrier/separation layers that are 

important for a variety of packaging and purification applications. 

7.1.1 Influence of Polymer Interdiffusion and Clay Concentration on Gas Barrier 

 Quadlayer assemblies, deposited using the layer-by-layer technique, were used to 

study how polymer interdiffusion and clay concentration influence the gas barrier 

behavior. PEI and PVAm were combined with PAA and MMT to generate ‘nanobrick 

walls’. Highly oriented clay platelets, revealed by TEM and AFM, is the reason for the 

exceptional oxygen barrier exhibited by these films. A 6 QL PVAm-based assembly 

exhibited an OTR at the detection limit of commercial instrumentation. Rigid PVAm 
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molecules cause quadlayer growth to be linear rather than exponential. This results in 

thinner layers for PVAm and weaker interaction with PAA relative to PEI. The weak 

interaction also seems to carry over to MMT, which results in lower clay concentration 

for PVAm-based assemblies. This study confirms the importance of polymer 

interdiffusion and clay concentration in reducing oxygen permeability in these nanobrick 

wall structures. PVAm and PEI were combined to tailor OTR by controlling these 

factors. It is now possible to simultaneously control OTR and thickness of a multilayer 

thin film barrier. 

7.1.2 Super Hydrogen and Helium Barrier with Polyelectolyte Nanobrick Wall Thin 

Film 

Quadlayers of PEI/PAA/PEI/MMT were deposited on polystyrene to 

produce transparent gas barrier assemblies. The impermeable clay platelets, 

together with highly interdiffused PEI and PAA mortar, formed a nanobrick wall 

structure that imparts tremendous light gas barrier. Permeability of both hydrogen 

and helium decreased as the number of quadlayers increased, showing one to three 

orders of magnitude improvement compared to EVOH and metallized plastics. 

Increasing the number of QL from 5 to 10 does not improve the barrier properties. 

This lack of improvement may be due to the dramatically expanded clay spacing 

and associated concentration reduction. The excellent performance of this 

assembly, combined with the simplicity of LbL deposition, makes this light gas 

barrier coating an exciting opportunity for several packaging and storage 

applications. 
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7.1.3 Improved Gas Barrier/Separation of Graphene Oxide Based Multilayer Thin Films 

 Graphene oxide sheets, along with chitosan (CH) and PAA were used in a 

CH/PAA/CH/GO QL assembly. Charge density (pH) of polyelectrolytes was varied, 

resulting in different chain conformation and film thickness. Oxygen transmission rate 

was found to decrease as pH difference between CH and PAA increase, which is 

connected to the increasing GO deposition (confirmed by SEM). CH5.5/PAA3/CH5.5/GO 

exhibited the best barrier performance because CH has been highly ionized by the 

counter ion, so it was able to attract more GO into the bulk film. Additionally, GO was 

thermally reduced, which increased hydrophobicity of the film, making OTR less 

sensitive to moisture. H2/CO2 selectivity also increased from 5 to 215 after reduction of 

GO, showing a performance above the Robeson’s upper-bound limit. We believe this 

composite film, based on its ease of fabrication and excellent barrier/separation behavior, 

provides plenty of opportunity in packaging and gas separation. 

7.1.4 Highly Size-Selective Multilayer Polymer Films for Light Gas Separation 

Layer-by-layer multilayer films fabricated with two weak polyelectrolytes, PEI 

and PAA, exhibited high elastic modulus and hydrogen selectivity. Titrated by the 

oppositely charged polyelectrolyte (PEI at pH 10 and PAA at pH 4), PEI and PAA 

become more ionized and require charge overcompensation, resulting in a highly 

interdiffused network in both directions (from bulk film to solution, and vice versa). 

High modulus obtained by nanoindentation suggests high density as another evidence of 

the interdiffused structure. This highly ionically crosslinked film is believed to be denser 

than traditional polymer films, exhibiting H2/N2 and H2/CO2 selectivities more than 2350 
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and 190, respectively (above Robeson’s upper-bound limit). This unique thin film 

overcomes the low selectivity of common polymeric membranes and performs even 

better than inorganic or mixed-matrix membranes, making it a significant advance in 

polymeric membranes for gas separation. 

 7.2 Future Research Plans 

 Chapters V and VI demonstrate these LbL assemblies exhibit size-selective 

behavior. Despite their high permeation selectivity, these films are diffusivity dominant, 

which means they are unable to separate gas molecules with similar sizes (e.g., CO2 and 

N2). New approaches for making solution-selective films are needed for commercial 

applications. Additionally, the ability of LbL to precisely control assembly conditions 

(e.g., film thickness and refractive index [RI]) is suitable to create films with enhanced 

optical effects (e.g., reflecting light of specific wavelengths). Two areas of future 

research are described here as ways to accomplish these challenges. 

7.2.1 Solution-Selective Multilayer Polymer Films for CO2/N2 Separation 

 Poly(ethylene oxide) (PEO) is of considerable interest for separating gases with 

similar molecular sizes. creating solution-selective membranes. The ether oxygen in 

PEO has a strong affinity toward CO2 (quadrupolar interactions), resulting in relatively 

high solubility and permeability.[321-323] In addition, the process conditions and thermal 

history play significant roles in the PEO crystallization.[324] Generally, high molecular 

weight PEO, with high crystallinity, has lower gas permeability and better mechanical 
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properties, whereas low molecular weight PEO, with low crystallinity, has better gas 

transport properties.[325] Low molecular weight PEO exists in the liquid form and cannot 

be directly used in gas separation membranes, making the design of PEO-containing 

membranes with low crystallinity a challenge. Three approaches have been developed to 

overcome these issues: 

(1) design of phase-separated block copolymers with short ethylene oxide segments, 

(2) use of low molecular weight PEO or polyethyleneglycol (PEG) as an additive, and 

(3) synthesis of highly branched PEO that can be crosslinked. While most approaches 

require  

complex synthesis, LbL provides another route to create a film where both crystallinity 

and mechanical properties can tailored. In one example, PEO acts as a hydrogen 

acceptor while poly(methacrylic acid) (PMAA) is used as hydrogen donor to create 

hydrogen-bonded films. Film thickness varies as pH of PEO and PMAA changes, which 

is due to the change of chain conformation (Figure 7.1a). A 51 µm PS film coated with 

10 BL of PEO2/PMAA2 showed high CO2/N2 selectivity (120) and performed close to 

Robeson’s upper-bound (Figure 7.1b). Further study on the relation between elastic 

modulus and permeability is needed. 
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Figure 7.1. (a) PEO2/PMAA2 and PEO3/PMAA3 thickness as a function of number of 

BL deposited. (b) CO2/N2 separation performance of LbL (hollowed) and LbL-coated PS 

(filled) on Robeson plot. 

 

 

7.2.2 Multilayer Structural Color Films 

 Structurally colored beetles (e.g., Crysochroa rajah) possess a periodicity in the 

upper layer of their cuticles that gives rise to a photonic band gap producing brilliant 

iridescence.[326] Iridescent color is derived from multilayer photonic structures and in 

their simplest form consists of layers with alternating high and low refractive indices. 

Constructive interference of reflected light, or Bragg reflection,[327] is achieved by this 

system when the thickness of each periodic layer is on the order of λ/4 and the viewing 

angle is close to 90°. Layer-by-layer deposition is suitable to reproduce this periodicity 

and create iridescent thin films because film structure is tailorable by adjusting solution 

concentration, charge density (pH), and deposition time, which produces uniform films 

with precise thickness. The refractive index (RI) of each layer was designed by 
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combining two materials in each layer, as shown in Figure 7.2a. Thickness of each layer 

was then controlled by altering the number of BL in each layer (Figure 7.2b and c). The 

high RI layer (layer A) consisted 13 bilayers of PEI/VMT. The low RI layer (layer B) 

contained 40 bilayers of cationic colloidal silica (SiO2) and anionic cellulose 

nanocrystals (CNCs). Due to the entirely different shape of SiO2 and CNCs, a porous 

layer is created. Cross-sectional film structure of the stacks was characterized using 

SEM and TEM and compared to C. rajah beetle. Figure 7.3a is a TEM image showing 

the periodicity in the cross-section of C. rajah beetle elytra. The periodicity is derived 

from the alternating light and dark layers aligned parallel to the elytra surface. Likewise, 

cross-sectional TEM images of the assembled films presented alternating light and dark 

layers as seen in Figure 7.3c and d indicating that RI mismatched had been achieved in 

layer thicknesses on the order of visible light. Upon closer inspection (Figure 7.3d) a 

laminar arrangement of VMT (the darker lines) and PEI was seen. Figure 7.3b is a cross-

sectional SEM image of (AB)24A which provides information about the B layer structure 

that the TEM images could not and confirms the dense laminar structure of the A layers. 

The colloidal silica and the CNCs have formed an isotropic porous structure. Preliminary 

results, measured by angle resolved spectrophotometry (ARS), are shown in Figure 7.4. 

This multilayer assembly exhibited iridescent behavior, which means the peak reflection 

blue shifts as incident angle increases (Figure 7.4a). Similar results were discovered in 

the cuticles of beetles (Figure 7.4b), suggesting the color in the LbL assembly is the 

result of periodic high/low RI layers. Further study will focus on varying reflecting 
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wavelength by adjusting layer thickness and RI for applications in sensing, optical filters 

and replacement of pigment based coatings. 

 

 

 

Figure 7.2. (a) Schematic of Bragg stack LbL assembly process. Thickness and 

refractive index of (b) PEI/VMT and (c) SiO2/CNCs as a function of bilayers deposited. 

Error bars are standard deviations from the mean. 
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Figure 7.3. (a) TEM cross-section image of the elytra of a Chrysochroa rajah beetle. (b) 

SEM cross-section image of the (AB)24A film. TEM cross-section images of the (c) 

entire (AB)6A film and (d) a single A layer. Scale bars in all images represent 100 nm. 
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Figure 7.4. Reflection intensity of (a) (AB)6A film and (b) cuticle of Crysochroa rajah 

as function of wavelength and incident angle. 
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