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ABSTRACT

Magnesium alloys are prime potential candidates for lightweight structural ap-

plications because of their superior specific stiffness and strength. However, their

effective insertion in transportation vehicles hinges on improving their ductility and

developing cost-effective forming technologies. Here, the processes of damage ini-

tiation and accumulation to fracture are investigated at ambient temperature, ex-

perimentally and theoretically, in two Mg alloys, AZ31 and WE43. Material AZ31

exhibits strong basal texture whereas WE43 has a weak non-basal texture with quasi-

isotropic properties. The microstructural characterization is carried out on the ini-

tial materials aiming at determining the texture, the grain size/shape distribution as

well as the chemical composition, volume fraction, shape and spatial arrangement of

second-phase particles. The macroscopic plastic flow anisotropy is characterized us-

ing round tensile bars and compression pins along three principal and three off-axes

orientations. Semi-continuous measurement of diameter contraction in two orthog-

onal directions enabled the monitoring of relative volume change and strain-ratio

evolution. The data is used to model the plastic anisotropy of the materials us-

ing models from the literature. A significant increase in volume is measured during

plastic deformation. Macroscopic fracture loci, along two principal and one off-axis

directions, are obtained for each material using round notched bars of varying notch

acuity so as to study the effect of stress triaxiality and directionality on flow and frac-

ture. It was found that notched AZ31 bars exhibit higher failure strain than uniaxial

specimens. Second phase particles and deformation twins are identified as critical

sites for damage initiation. Experiments also indicate that WE43 and AZ31 display

significantly different sensitivities to stress triaxiality. Substantial drop in the failure

ii



strains of WE43 with increasing triaxiality is attributed to intergranular fracture. Im-

age analysis is performed on specimens deformed to incipient and complete fracture

to infer the distribution properties of voids and particles. A micromechanics-based

continuum damage model is used to rationalize the main experimental trends and ex-

plore conflicting hypotheses. The model has two components: (i) a shape-dependent

void growth; and (ii) a shape-dependent void/crack coalescence part. The results

provide the groundwork for understanding the effects of microstructural and loading

variables on damage and fracture in magnesium alloys.
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NOMENCLATURE

Nomenclature

ΨKB(σ; f,W, e3, h) Yield function of material with voids before mico-scale lo-

calization

ΨBL(σ;χ,W, e3) yield function of the material with voids after microscale

localization ≡ Coalescence yield function

σ̄ flow stress of the matrix

f void volume fraction

W void aspect ratio

e3 direction of the applied load which coincides with the void

axis

h Anisotropy tensor in the space of deviatoric stresses

χ ligament ratio

λ cell aspect ratio (not idependent of f , χ, W )

εf strain to failure (at onset of localization at material point

level)

T stress triaxiality ratio
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1. INTRODUCTION

1.1 Motivation

Magnesium (Mg) has the lowest density of all structural metals (1.74 g/cm3).

Mg alloys are endowed with superior specific stiffness and strength, which make

them ideal material candidates for lightweight structural applications, notably in the

transportation industries [1]. In spite of notable potential properties, there are short-

comings that prevent large-scale applications of Mg alloys in the abovementioned

industries. Among the drawbacks of Mg alloys, one could mention their reduced

mechanical properties at high temperatures (higher than 200◦C) that prevent their

use as parts such as engine blocks and transmission cases in car industries. Another

challenge facing their implementation as wrought products in load-bearing compo-

nents is their relatively low ductility and catastrophic failure after limited necking,

which limits their formability at room temperature.

Over the past decade, much experimental and modeling effort has been devoted

to tailoring the properties of Mg alloys to meet the needs of industry. This in-

cludes understanding the plastic flow and strengthening of Mg alloys [2–8], their

tension-compression asymmetry, plastic flow anisotropy and propensity for twinning

under favorable loading conditions [9–11]. These studies have provided in-depth

understanding about the active deformation mechanisms in Mg alloys when loaded

uniaxially along different directions or during processing routes such as rolling and

Equal Angle Angular Extrusion (ECAE).

Despite these studies, little research has been devoted to damage and fracture

of Mg alloys [12–14]. Although microstructural manipulations through alloying,

grain refinement or texture design [15–17] hold the promise of developing strong
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and damage-resistant alloys, in-depth incorporation of damage and fracture proper-

ties in alloy design methods is still lacking. In many cases, only the effects of carefully

designed texture or precipitates on the activation of various deformation mechanisms

are studied whereas their role in fracture, especially under complex loading schemes,

is left unexplored. In spite of several valuable studies on the deformation and frac-

ture of Mg alloys, and recently their rare earth (RE) containing family, there are

areas in which current understanding is limited and further research is necessary.

Firstly, studies on fracture of Mg alloys are almost entirely limited to uniaxial

loading. While a broad range of information could be extracted from these studies,

the effect of loading variables and hydro-static stresses on the deformation mech-

anisms in Mg alloys are left largely unexplored. It is known that motion of edge

dislocations is not significantly affected by hydro-static stresses. On the other hand,

the effect of loading conditions on the deformation twinning and motion of screw

dislocations is not fully understood. How these known deformation mechanisms in

magnesium are affected by changes in loading conditions is still unclear.

Without systematic understanding of these effects, common assumptions in ana-

lytical and computational studies could also be questioned. For example, recent work

by Kondori and Benzerga [18] showed that, unlike most material systems, there is

a significant increase in volume during both uniaxial tension and compression of

AZ31. Note that ’constant volume’ is usually assumed in crystal plasticity models,

even in those applied to Mg alloys [19]. Davidson et al. [20] studied the effect of

hydrostatic pressure on fracture of hot-extruded pure magnesium. It was observed

that ductility is initially increased linearly with pressure, a behavior attributed to

prevention of either intergranular fracture or void nucleation and growth. Following

this linear region, ductility increased drastically over a narrow pressure range while

fracture was controlled by shear bands. It was argued that pressure prohibits frac-
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ture mechanisms, which depend upon normal tensile stresses. Using a thick Al rim

surrounding Mg compression pins, Sankaran et al. [21] achieved strain of order of 2

in Mg. The high value of attained strain was attributed to the effect of compressive

hydro-static pressure and the support provided by thick Al rim. It was argued that

Al rim restrains the bifurcation of the flow into a single shear band although no

rationale was presented to support this idea.

Recently, the effect of stress-state triaxiality, T, on fracture of hot-rolled AZ31

alloy was also studied [18,22]. It was shown that failure strain (crack initiation and fi-

nal fracture) increases as the triaxiality is increased from uniaxial to triaxial loading.

This trend contrasts with what is observed in most material systems. The increased

failure strain in notched bar specimens compared to uniaxial bars was attributed to

(i) transition from slanted fracture driven by shear localization during uniaxial load-

ing to flat fracture in notched samples; (ii) transition from twin-controlled fracture in

uniaxial bars to void coalescence-dominated fracture in notched specimens; and (iii)

the effect of plastic anisotropy and activation of new deformation systems (probably

extension twinning) under traixial loading. These findings illustrate the significant

effects of loading condition on formability and ductility of Mg alloys. It is not clear

how the loading condition affects the fracture behavior of WE series alloys. Other

question is whether mere texture weakening and reduced anisotropy leads to more

ductile alloys in all loading conditions.

Another area in which further research is required is damage evolution (after

initiation and before failure). In many cases, the study of fracture in Mg alloys is

focused on the identification of damage initiation mechanisms such as deformation

twins [12,23] or second phase particles [24]. While damage initiation is an important

stage of the fracture process, it is usually the growth of these defects and their inter-

actions with each other that define ductility. Limited research has been dedicated to
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experimental study of voids and microcracks after initiation or the effect of a macro-

scopic main cracks on the deformation system in their immediate vicinity [25–28]. In

the case of RE containing alloys, fracture mechanism (including damage initiation,

growth and their interactions), even under uniaxial loading, are still unknown.

The third unexplored area in the fracture of Mg alloys, is shear localization ef-

fects. Structural instabilities could occur in alloys with strong anisotropy [29]. Most

fracture studies of magnesium alloys in the literature cover those case in which fail-

ure happens via shear localization [12, 20]. In this condition, structural instability

instead of intrinsic behavior of the material is the cause of fracture. Moreover, dam-

age zone during shear localization is limited to a very narrow region that makes the

study of damage mechanisms extremely difficult, if not impossible. Since shear lo-

calization is closely connected to plastic flow properties of the matrix, it is necessary

to fully characterize macroscopic plastic anisotropy (especially for RE-containing

alloys which very limited information is available in the literature). In addition,

void/microcrack growth is a signature of plastic deformation of the matrix. Thus,

plastic anisotropy characterization in these alloys is of utmost importance.

Finally, it should be mentioned that alloying and processing affect the anisotropic

flow properties of polycrystalline Mg. Primary processing, such as extrusion or

rolling, generally leads to a strong basal texture. This is the case in pure mag-

nesium and many Mg alloys such as AZ31 and ZK60. Alloying affects the strength,

texture and possibly the propensity for twinning, but also leads to the formation

of second-phase particles, some of which can play a role in the ductile fracture pro-

cess [13, 24, 30]. Knowledge of how texture, twinning and second-phase particles

affect the damage process across a wide range of stress states is still lacking.

These shortcomings are present while, over the past fifty years, the ductile frac-

ture community has developed various models, tool, methods and even standards
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that have been employed successfully in many industries such as nuclear, oil and

gas and aerospace. Using the knowledge from this community, this study addresses

these shortcomings as the first step towards a complete characterization of damage

initiation and progression mechanisms in Mg alloys under multiaxial stress states.

More specifically, the current study evaluates the fracture properties of two magne-

sium alloys (i.e., AZ31 and WE43) using carefully designed experiments at a range

of triaxialities. AZ31 is selected for this study because it is the most commonly used

Mg alloy in the industry and its production cost is rather low compared to other

Mg alloys. Most of the studies on wrought Mg alloys in the literature are also done

on this alloy. Thus, there is a vast collection of data available on the properties

of this alloy. WE43, which has been recently developed, offers superior room- and

high temperature mechanical properties compared to other Mg alloys. High yield

strength, allegedly isotropic plastic response and acceptable uniaxial strain to frac-

ture are among the properties that makes this alloy one of the most promising Mg

alloys for Aerospace industries [31]. One drawback of this alloys is its high produc-

tion cost due to the presence of Y, RE elements and Zr in its composition. However,

this alloys could be used in aerospace industries where performance and safety out-

point cost. Study of these two alloys offers information on the most technologically

relevant (AZ31) and the most advanced Mg alloy (WE43) up to this date.

Employing sophisticated micromechanical-based constitutive frameworks, it is

attempted to identify the microscopic fracture mechanisms active in Mg alloys and

their effect on macroscopic response. Here, the attention is focused on the evolu-

tion of damage after initiation and the interaction between voids. In addition, in

attempt to evaluate plastic anisotropy, interrupted uniaxial tension and compression

experiments are performed on the studied Mg alloys. The results of these experi-

ments provide a database for plastic anisotropy characterization. The completeness
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of data is such that it could be used to calibrate and test predictive capabilities of any

model in the literature addressing flow in anisotropic matrices. To circumvent the

difficulties associated with shear failure during deformation of Mg alloys, round and

cylindrical specimens were employed since axisymmetric deformation states decrease

the propensity for shear localization [29].

1.2 Significance of the research

Understanding the mechanisms of damage and fracture in Mg alloys could po-

tentially lead to improved alloy design methods and processing routes. This study

is focused on the ductile fracture of magnesium alloys at room temperature with

attention to the effects that loading parameters and microstructural variables have

on overall behavior. Up to this point, the literature has remained elusive about the

effect of known deformation mechanisms and microstructural features on damage

tolerance and fracture properties of magnesium. This study is the first systematic

study on the damage and fracture in Mg alloys. The knowledge acquired from this

work could be employed as a road map for development of new, damage- tolerant and

ductile magnesium alloys by improving the design of new manufacturing routs that

render materials with textures beneficial to ductility properties. The present study

on the damage and fracture properties across a wide range of stress states along

different directions enables the identification of (i) various damage mechanisms in

Mg alloy; (ii) the effect of processing texture; and (iii) the influence of directionality

in microstructure on failure properties and its mechanisms.

Although great information on the behavior of material could be extracted from

uniaxial experiments, the behavior at complex stress states should be studied as

well. The loading condition that material encounters at service is often complex and

far from uniaxial. The current study appreciates these variations and investigates
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the behavior of Mg alloys at various triaxialities. The data on plastic anisotropy of

Mg alloys in the literature could also be affected by the fact that in most studies,

e.g., [12, 14], rectangular-prismatic tensile specimens are typically used, which are

known to favor shear-like fracture, even in materials that are more ductile and less

anisotropic than Mg. Under such circumstances, the material adjacent to the slanted

fracture surface does not display much damage by cavitation or otherwise. In other

words, shear failure obscures the intrinsic damage mechanisms as it becomes increas-

ingly difficult to decouple the fracture behavior from plastic instability. One of the

advantages of this study is the attempt to circumvent the difficulties associated with

shear failure by use cylindrical specimens, since axisymmetric deformation states de-

crease the propensity for shear localization [29]; another way is avoid sear localization

to introduce a notch so as to induce a damage process zone in the specimen. This

methos is also explored in this research.

The results of the current study have far reaching applications. The alloys used

in this study could be considered as model materials for Hexagonal Close-Packed

(HCP) crystal structure. Thus, results of this project are applicable to other HCP

materials. Knowledge developed from this study could also be used in the general

framework of anisotopic material, in which anisotropy in both microscale (in the unit

cell level) and macroscale (originating from macroscopic texture) are present. In

addition, extensive microstructural investigations were also done on initial material,

fractured specimens and specimens stopped after macroscopic crack initiation using

both traditional metallography and 3D X-ray tomography (see Section 7 and 6). The

results of such studies showed that voids at failure exhibit much less longitudinal

growth compared to other material systems. This put Mg alloys in the class of

materials failing after limited void growth. Some technologically important alloys

such as high strength Al alloys and steels are also put in this class. Thus, information
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from this study could be extended to those materials as well.

Presently, there are various phenomenological and crystal plasticity-based meth-

ods for modeling plastic flow anisotropy. However, there is limited data available

for testing and validating such sophisticated approaches. (This is especially true for

materials with tension compression asymmetry.) Usually, there are several materials

parameters in the models that should be calibrated using existing experimental re-

sults. Large numbers of these parameters on the one hand and lack of experimental

under different loading conditions from other leads to exhaustion of existing data.

The situation is such that there are very limited options available to test models.

Models, in such conditions, are often tested against the data acquired under very

similar loading conditions. In some cases lack of discriminating experiments forces

the researchers to test the models against the same data employed for model cal-

ibration. This work presents the result of a series of experiments in tension and

compression along various directions of two processed magnesium alloys where flow

properties and strain ratios are reported. Such set of data could be used as an acid

test for the existing models in the literature and help improve them by identifying

their shortcomings. In addition, two commonly used models for anisotropy, i.e. Hill

1948 and Cazacu-Pluncket-Barlat (CPB), are evaluated against the data. Finally,

it should be noted that there are some studies that use methodology very close the

current one to characterize plastic anisotropy in AZ31 [32].
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Unfortunately, a closer look shows that these studies are done only in either ten-

sion or compression, never both. Some inconsistencies are also found in their data.

Considering the activity of polar deformation mechanisms such as deformation twin-

ning and significant tension compression asymmetry in Mg alloy, it seems necessary

for such experiments to be done in both tension and compression. These shortcom-

ings require a systematic study to fully characterize plastic anisotropy in Mg alloys

and extract their material parameters.

1.3 Goal

Any attempt to improve mechanical properties and room temperature formabil-

ity of Mg alloys requires fundamental understanding of their damage and failure.

Current understanding is limited to uniaxial loading and does not fully recognize the

mechanistic aspects of shear failure. This research aims at the characterization and

modeling of plastic anisotropy and stress triaxiality effects on damage and fracture

in Mg alloys. Some of the practical implications of meeting this goal may include

a better understanding of the role of plastic anisotropy in fracture, engineering this

anisotropy (through texture optimization or other microstructural manipulations)

and identifying stress states for which damage tolerance is enhanced in processing

operations and load-bearing applications.
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1.4 Objectives

With the overall goal in mind, the followings are identified as objectives of this

study.

1. Characterize the mechanical behavior of both AZ31 and WE43 alloy, with

particular attention to 3D plastic flow anisotropy.

2. Investigate the effects of stress state triaxiality on the fracture of both alloys.

3. Examine the mechanisms of damage initiation and accumulation using fractog-

raphy, quantitative metallography and high-resolution tomography.

4. Implement 3D constitutive relations for coupled plasticity and damage that

account for anisotropy as well as the nucleation, growth and coalescence of

voids and microcracks.

5. Study various scenarios for predicting the nominal fracture loci for both alloys,

guided by systematic parameter sensitivity analyses.
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2. BACKGROUND

2.1 Magnesium and its alloys: Fundamentals

2.1.1 Magnesium and its alloys: History

Magnesium is the lightest structural material with low density of ρ = 1.74 g/cm3.

Sir Humphrey Davy at 1808 was the first to isolate Mg element using electrolysis [33].

Provided it is alloyed with proper elements, magnesium can exhibit superior specific

stiffness and strength that makes it ideal material choice for lightweight structural

applications, notably in the transportation industries [1]. By application of Mg in car

industries pistons in 1921, their production started to increase in coming years before

world war II. Volkswagen Beetle (1938) and B36 United States bombers (1950s) are

among other structural applications of Mg alloys.

The use of Mg alloys after World War II, however, was dropped significantly

due to its high production cost and low corrosion resistance. Finding ways to reduce

their production cost (via low cost die-casting) and increase their corrosion resistance

(by adding Mn element), has lead to significant increase in production of Mg and

its alloys in recent years [34, 35]. Figure 1 shows the substantial increase in the

production of die-cast magnesium components in Europe in a recent seventeen-year

period. The same trend is also observed in U.S. and other developed countries.

2.1.2 Magnesium: Crystal structure

Crystalline structure of Magnesium is Hegxagonal Closed Packed (H.C.P) with

c/a = 1.624, which is very close to an idea H.C.P structure where c/a = 1.633 [36].

Although Mg exhibits elastically isotropic behavior [37], there is a significant plastic

anisotropy in its yield and flow stress as well as strain ratios. In Mg’s H.C.P structure,
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Figure 1: Increase in pressure die-cast components in Europe from 1991 to 1997 [34].

the basal planes (planes at the base of hexagon) have highest atomic compactness.

The direction of maximum atomic compactness in this material is ¡a¿≡ 〈1120〉. Other

planes and directions have considerably lower atomic compactness. Since atomic

compactness affect the motion of dislocations and other agents of deformation (such

as deformation twins) substantially, the difference in compactness properties along

various directions gives rise to a significant anisotropy in plastic response of Mg in the

scale of single crystals. In poly-crystalline materials with randomly oriented grains,

this grain-scale anisotropy is not relevant. However, deformation of Mg poly-crystals

(e.g., processing and forming) will rearrange the grains to a preferred orientation.
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This is called processing/deformation induced texture. If the texture is strong, as in

the case of most wrought Mg alloys, poly-crystal exhibit anisotropic properties similar

to that of a single-crystal. In the literature, the strong texture and its associated

anisotropy are held responsible for the limited formability/ductility of wrought Mg

alloys [38,39].

2.1.3 Alloying effect

Aluminum (Al): Aluminum, as the most favorable alloying element for mag-

nesium, improves die-castability and mechanical properties of magnesium at room

temperature without significantly raising its density. As a result, the most commonly

used magnesium alloys are those based on Mg-Al, such as AZ31, AM60 and AZ91.

These alloys constitute more than 90% of the total magnesium in the market for

structural applications. A part of the added aluminum dissolves into the matrix and

improves the mechanical properties of magnesium through solid solution hardening.

Accordion to the Mg-Al phase diagram [40] presented in Figure 2, aluminum con-

tent higher than 2wt%, leads to formation of a new β −Mg17Al12 phase as particles

and precipitates, improving room-temperature mechanical properties of the alloys by

hindering dislocation motion. Moreover, the β −Mg17Al12 phase has a low melting

point of about 437◦C, which improves die castability. However, this phase softens

readily at high temperatures (T > 130◦C) and, thus, has deleterious effects on the

creep properties.

Rare Earth: Rare earth elements improve cast-ability of magnesium and reduces

the porosity in the final cast products [41]. These elements strengthen Mg through

solid solution and precipitation hardening both at room and high temperatures [42–

44]. RE elements are effective in improving strength and corrosion resistance by

formation of stable precipitates in the Mg matrix or at its grain boundaries. Recent
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Figure 2: Mg-Al phase diagram [40].

studies indicate that the macroscopic texture is weakened through using rare earth

(RE) alloying elements [45–48]. Figure 3 shows the phase diagram of two Mg-RE

binary systems (i.e., Mg-Nd and Mg-Y).

Zinc (Zn): Zinc is the alloying element that is mostly used along with Al. No

new phases in the Mg-Al-Zn alloy system is formed when the Al/Zn ratio is over

3:1 [49]. Zing improves castability of Mg but also increases the propensity for micro-

porosity formation. The strength of Mg is increased by adding Zn via solid solution

and precipitation hardening. On the other hand, the probability of hot-shortness is

also increased as Zn is added to the system. Zinc could improve Mg’s properties by

removing impurities such as Cu and their deleterious effects [50].
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(a)

(b)

Figure 3: (a) Mg-Nd phase diagram [36] (b) Mg-Y phase diagram [51]. Here the
phase ε has the chemical composition of Mg48Y10
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Mangenese (Mn): The most important effect of Mn is to reduce solubility of

Fe in Mg by forming Mn-Fe compounds. This increases the corrosion- and creep-

resistance of Mg products. The remaining Mn will (i) form Mn rich particles or (ii)

participate in formation of Al-Mn rich particles. Phase diagram of Mg-Mn, as shown

in Figure 4, does not show any second phase particle between the two elements [52].

Strengthening effect of these elements are negligible [33,53].

Figure 4: Mg-Mn phase diagram [54].

2.2 Deformation modes

Characteristics of plastic deformation in SC Mg and textured wrought Mg alloys

are tension/compression asymmetry in yield strength, significant plastic anisotropy

(in flow strength as well as strain ratios), and S-shaped stress-strain response during
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elongation/compression ‖/⊥ to c-axis. These characteristics stem from the fact that

different deformation systems are activated each time the loading direction is altered.

Thus, to understand the anisotropy in plastic deformation and overall mechanical

response of Mg alloys, it is necessary to gain knowledge about the details of operative

deformation systems in this material. Figure 5 illustrates the most important active

deformation mechanisms in Mg alloys. Deformation twinning and dislocation glide

play important roles in the mechanical response of these alloys.

Figure 5: Various deformation systems in a magnesium signle-crystal [55].

The essentials of dislocation and twin plasticity are as follow. Dislocation plas-

ticity is mediated by individual events of dislocation glide on multiple but distinctive

“slip planes”. Each glide event takes place after the applied shear stress (resolved on

the slip plane and along the direction of Burgers vector) reaches a critical resolved

shear stress (CRSS). Dislocation glide causes a small perturbation in the lattice by
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breaking and formation of atomic bonds in the vicinity of dislocation line. Each

glide event develops small strain field in size of Burgers vector associated with the

dislocation. Cumulative effect of these strain fields leads to the overall deformation

in the crystal. Reversing the direction of applied load leads to reversing the motion

of dislocation. In contrast to slip, deformation twin produces a homogeneous shear

over a three-dimensional region. The motion preserves the crystal structure and only

changes crystal orientation [56, 57]. Unlike dislocation glide, the total strain that a

twin could produce is limited [56,57]. Twinning has a property that is called “polar-

ity”, meaning that it could get activated under a certain loading condition but not

necessarily under reversed loading [58]. Deformation twins usually exhibit a platelet

morphology which is caused by the energetic barriers against their formation [57].

Similar to the CRSS of dislocations, it is possible to associate a CRSS to a twin

system.

As mentioned before, depending on the direction of applied deformation, different

deformation systems get activated in magnesium alloys. In the following, common

deformation systems of magnesium are presented according to an ascending order

of their CRSS values. Due to its very low CRSS, basal {0001}〈1120〉 dislocation

glide becomes activated in almost any type of applied deformation and contributes

in accommodating the imposed deformation [2, 59, 60]. The CRSS of basal slip has

been experimentally and numerically determined. This value is very low [61, 62]

and could be as low as 0.5 MPa [63]. It has been argued that easy activation of

basal slip could cause shear localization in contraction {1011} < 1012 > and double

twins and lead to premature failure [12,14,23]. Basal {0001}〈1120〉 slip provides two

independent slip systems.

Extension {1012} < 1011 > twinning is the primary mode of twinning in mag-

nesium, which becomes activated when a single-crystal in elongated along its c-axis
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or compressed perpendicular to this direction. This condition is equivalent to in-

plane compression (IPC) or out-of-plane tension (OPT) in rolled poly-crystalline

Mg plates with basal texture. Activation extension twinning is the origin of ten-

sion/compression asymmetry and the S-shaped stress-strain response of many mag-

nesium alloys during IPC and OPT [39]. The matrix experience a rotation of 86◦

after undergoing extension twinning. Unlike dislocation activity, the amount of strain

produced by twinning is limited. For example, during extension twinning, the max-

imum shear strain produced in a completely twinned matrix is 0.13 [64]. This shear

strain is equivalent to 0.065 axial strain along the c-axis. Extension twinning is be-

lieved to be beneficial to ductility properties of Mg alloys by enhancing the extent of

uniform deformation [10]. These twins is easily activated if proper loading condition

is present. The CRSS of extension twins is between 25 and 35 MPa [39].

Prismatic {1010}〈1120〉 slip is an active deformation systems at both room and

high temperatures when deformation is applied perpendicular to the basal planes’

normal [65, 66]. For poly-crystalline Mg alloys, this condition is satisfied for any in-

plane deformation. Prismatic slip has lower CRSS in ploy-crystalline Mg compare to

single-crystal case and its activation becomes easier at smaller grain sizes. This CRSS

reduction is rationalized by the effects of grain boundary compatibility stresses [3].

Prismatic slip exhibit high sensitivity to temperature as well. The ratio of the CRSS

of prismatic slip with respect to basal slip drops from 87 at room temperature to 1 3 at

286◦C [66]. This temperature dependence is attributed to the narrow core structure

of these dislocations. Similar to basal slip, Prismatic {1010}〈1120〉 slip offers two

independent deformation systems. Neither basal nor prismatic dislocations produce

any shear along the c-axis of the Mg crystal.

Pyramidal 〈c + a〉 ({112̄2} 〈1̄1̄23〉) slip is a dislocation system that provides

deformation along the c-axis of Mg crystals. It is a difficult system to activate at
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room temperature because of (i) its high CRSS [67,68] and (ii) easy dissociation into

sessile {c} dislocations, which suppresses continuous slip [69]. Similar to prismatic

dislocations, motion of pyramidal 〈c + a〉 dislocations is sensitive to temperature.

The CRSS of this slip system is significantly reduced at elevated temperatures. Easy

activation of dislocation slip on non-basal planes leads to reduced flow stress and

increased formability [9, 70].

Contraction ({1011} < 1012 >) and double twins {1011} − {1012} < 1011 > are

other deformation twin variants that could be activated in Mg alloys. These twins

do not often form in the microstructure unless the strain in the matrix is higher

than 5%. These twin systems are deemed as detrimental for ductility properties

because of two reason. As a result of favorable orientation of the crystal inside

contraction and double twins, localized activity of basal slip in the twinned regions

triggers shear localization and leads to premature failure [4, 23, 71, 72]. Significant

accommodation strains and formation of large surface steps are also proposed as the

origins for deleterious effects of contraction and double twins on ductility [14, 23].

2.3 Some of the yield functions used to describe anisotropy in Mg alloys

Yield models such as Tresca (1864), which is based on the maximum shear stress,

and von Mises (1913), based on distortion energy, are applicable to isotropic materi-

als. Although these models offer many capabilities and are useful in understanding

plastic deformation of materials, they are not applicable to materials with anisotropic

properties such as wrought and textured materials as well as directionally reinforced

composites. The first model to describe yield in an incompressible anisotropic ma-

trix was proposed by Hill [73]. Hill formulated the von Mises criterion for a material

with orthotropic axis of symmetry. This quadratic criterion is originally presented
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as follows:

f(σ) = F (σy−σz)2 +G(σx−σz)2 +H(σx−σy)2 +2Lτ 2yz +2Mτ 2xz +2Nτ 2xy = 1 (2.1)

where F, G,...,N are the materials constant. If stresses are expressed along the

principal axis of orthotropy, it is the case that:

F (σ2 − σ3)2 +G(σ1 − σ3)2 +H(σ1 − σ2)2 = 1 (2.2)

It is also possible to introduce anisotropy as a linear transformation of the Cauchy

stress acting on the material [74]. Benzerga and Besson [75] re-derived Hill (1948)

yield criterion as a linear transformation, based on the framework proposed in Ref.

[76]. Hereafter, this model is referred to as Hill48. The yield function in this model

takes the following form:

F =
3

2
σ : p : σ − σ̄2 =

3

2
σ

′
: h : σ

′ − σ̄2 (2.3)

where:

σ
′
= σ − 1/3 tr(σ)I: The stress deviator;

p: The forth order Hill deviatoric anisotropy tensor;

h: The forth order macroscopic anisotropy tensor in the space of deviatoric stresses;

σ̄: The flow stress in an arbitrarily chosen reference direction (in this study we will

use L as a reference flow stress).

The relationship between p and h is as follows:

p = J : h : J (2.4)
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where J is the forth-order deviatoric projection operator J = I − 1
3
I
⊗

I with I and

I being the forth- and second-order identity tensors, respectively.

The anisotropy of the material is therefore fully characterized by identifying the

coefficients of the anisotropy tensor, i.e. p or h. Equation 2.6 shows an example of

simplified deviatoric anisotropy tensor for the case of an orthotropic material with

no tension–compression asymmetry.

h =



h11 h12 h13 0 0 0

h12 h22 h23 0 0 0

h13 h23 h33 0 0 0

0 0 0 h44 0 0

0 0 0 0 h55 0

0 0 0 0 0 h66


(2.5)

For the principal axis of orthotropy, the anisotropiy tensor h becomes:

h =



hL 0 0 0 0 0

0 hT 0 0 0 0

0 0 hS 0 0 0

0 0 0 hTS 0 0

0 0 0 0 hLS 0

0 0 0 0 0 hLT


(2.6)

Using normality flow rule, one can also identify material parameters for this

yield criterion based on strain ratios. The advantage of this model is that it is

analytically simple and identification of its material parameters is easy. In fact, all

the parameters could be identified using uniaxial tests. Despite the fact that this

criterion renders an elliptical yield surface and works well for many materials such
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as BBC metals, it has several shortcomings. Using this model leads to error in

representation of (i) earing during deep-drawing of FCC metals, (ii) yield surface

in material showing tension/compression asymmetry [77] and (iii) yield surface in

materials where non-schmid effects are present [78]. In spite of these disadvantages

and due to its simplicity, Hill quadratic anisotropic criterion is widely used in metal

forming industry and is adopted for analytical works requiring a description of plastic

anisotropy [75,79].

To take into account the effect of tension/compression asymmetry and strength

differential effects, Cazacu et al. [80] proposed an extension to Drucker’s isotropic

yield criterion. In addition to the second invariant of stress deviator, this model

takes the third invariant into account. This yield function is as follows:

f(Lσ
′
) =

(∣∣∣(Lσ′
)1

∣∣∣− k(Lσ
′
)1

)2
+
(∣∣∣(Lσ′

)2

∣∣∣− k(Lσ
′
)2

)2
+
(∣∣∣(Lσ′

)3

∣∣∣− k(Lσ
′
)3

)2
(2.7)

where σ
′ i

is the principal value of Cauchy stress deviator. L is the linear transfor-

mation that incorporates the anisotropy of the matrix. Using Voigt’s notation, the

components of L are:

[L] =



L11 L12 L13 0 0 0

h12 L22 L23 0 0 0

L13 L23 L33 0 0 0

0 0 0 L44 0 0

0 0 0 0 L55 0

0 0 0 0 0 L66


(2.8)

The (Lσ
′
)is (i = 1, 2 and 3) are the principle stresses of the transformed ap-
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plied Cauchy stresses. The parameter k represents the effect of tension/compression

asymmetry and is defined as follows:

k =
1− h

(
σT
σC

)
1 + h

(
σT
σC

) (2.9)

where

h

(
σT
σC

)
=

√√√√√√ 2−
(
σT
σC

)2
2
(
σT
σC

)2
− 1

(2.10)

Here, σT is yield stress in tension while σC is its compressive counterpart. From

Equation 2.10, it follows that for the parameter k to be real, 1/
√

2 6 σT
σC

6
√

2. This

model requires more than ten fitting parameters to fully characterize the anisotropy

of the matrix. This prevents its application to industrial problems. In addition, the

presence of absolute functions in the formulation requires a systematic study on the

possibilities for each (Lσ
′
)i, which has not been done, up to this date. It is also

claimed that this model is able to accurately predict the yield function in materials

with tension/compression asymmetry, especially with H.C.P structure. Up to this

date, however, the model has been tested against limited experiments such as in-

plane loading where anisotropy is marginal. In other occasions, the stress state of

the experiments used to test this model is identical or similar to those used for model

calibration.

2.4 Fracture in Mg alloys

2.4.1 Fracture in Mg alloys with strong basal texture

A commonly accepted understanding of fracture under uniaxial tensile loading

perpendicular to the c axis is as follows [4]. Subsequent to basal slip, anisotropic

plastic flow leads to stress concentrations, for example at grain boundaries, which are
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then accommodated by {101̄2} extension twinning [64]. Concomitant with prismatic

〈a〉 slip, the latter produces a strain transverse to the loading direction but normal

to the c axis. While some details pertain to the hardening behavior that ensues, it

is clear that a transverse strain along the c axis can only be produced by so-called

contraction twins and, to some extent, 〈c+ a〉 dislocations. The former concentrate

large shears which lead to failure by strain incompatibility at the twin boundaries or

inside the twins. Clear evidence of twin-sized microcracks parallel to {101̄1} {101̄2}

contraction double twins has recently been documented in different alloys [12,14].

It is emphasized that the above mechanisms pertain to uniaxial loading condi-

tions. How the plastic anisotropy plays out under more complex triaxial loading

states, which are encountered during processing or in service, remains unexplored.

In addition, in most studies, e.g., [12, 14], rectangular-prismatic tensile specimens

are typically used, which are known to favor shear-like fracture, even in materials

that are more ductile, and less anisotropic than Mg. Under such circumstances, the

material adjacent to the slanted fracture surface does not display much damage, by

cavitation or otherwise. In other words, shear failure obscures the intrinsic damage

mechanisms as it becomes increasingly difficult to decouple the fracture behavior

from the plastic instability. Furthermore, ductility is often invoked to mean the ten-

sile elongation of an initially smooth bar. In materials with limited post-necking

deformation, this property is more a measure of the hardening capacity of the alloy

than it is a measure of the material’s resistance to damage accumulation and crack-

ing. To our knowledge, there has been no systematic study of load triaxiality effects

on the ductile fracture of Mg alloys.
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2.4.2 Fracture in Mg-RE alloys

Traditionally, this lack of ductility is attributed to their HCP crystal structure [9].

It is argued that HCP crystal structure offers limited number of independent defor-

mation systems which gives rise to incompatible strains and results in low ductility.

Similar effects are postulated for polycrystalline magnesium alloys exhibiting strong

texture [38, 81], although some contributions from grain boundaries to activation of

non-basal slip [3], deformation twinning, grain boundary sliding (GBS) [4] and, thus,

overall ductility are rationalized. In short, lack of sufficient slip systems is generally

held responsible for the limited formability/ductility of wrought Mg alloys [38, 39].

However, the literature remains elusive on the issue of how plastic anisotropy affects

ductility for triaxial loading conditions.

According to this rationale, many research works in magnesium community have

been dedicated to texture weakening using rare earth (RE) alloying elements to re-

duce the anisotropy in formed magnesium alloy [45–48]. Other researchers have tried

to change the CRSS of different deformation systems via addition of various alloying

elements to form solid solution [67, 82] or precipitates on certain crystallographic

planes [83, 84] and achieve better ductility and formability. The latter method also

includes, but is not limited to, using RE alloying elements. For example, using ex-

periments on AZ91 and Z5 alloys and utilizing simple Orowan-based calculation,

Robson et al. [82, 85] showed that development of plate-like precipitates on basal

planes (i.e. basal plates) is effective in prohibiting twin growth and, thus, reducing

tension-compression asymmetry and plastic anisotropy. Up to this date, development

of RE containing alloys stands out as the most promising route for producing ductile

and formable Mg alloys for structural application. At dilute limits, RE containing

alloys suffer from low yield strength (∼ 60 MPa) although exhibit remarkable strain
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to failure under compression parallel to rolling direction (strain to maximum load

higher than 0.50) and tensile ductility close to that of AZ31 (between 0.13 and 0.22

depending on the used RE element) [48]. To achieve higher strength, yttrium (Y)

and higher concentrations of RE elements are used [31]. Strain to failure of these

Y- and RE-concentrated alloys under uniaxail loading is, however, reduced to values

comparable or slightly inferior to that of AZ31 with similar heat treatment condi-

tion (compare results in Ref. [9, 13, 22] with those in Ref. [86, 87]). Combination of

very high specific strength (ultimate strength of ∼400 MPa) and acceptable uniaxial

fracture strain (∼0.15) makes these alloys attractive candidates for aerospace and de-

fense applications where manufacturing cost is of limited importance. Added cost of

alloying elements and their required manufacturing specifications, makes automotive

industries reluctant to utilize these alloys.

Microscopically, contraction and double twinning are proposed as the main ori-

gins of damage in Mg alloys [12, 14]. Under uniaxial tension, deformation in pure

magnesium and Mg alloys such as AZ31 with strong basal texture is accommodated

by 〈a〉 type basal and prismatic dislocations in addition to extension twins, depend-

ing on the direction of load. Contraction and double twinning and 〈c+a〉 dislocations

are also active, although with much less intensity. It is argued that because of strong

basal texture and favorable orientation of slip planes inside contraction and double

twins, localized activity of basal slip in the twinned regions triggers shear localiza-

tion and leads to final failure [4, 23, 71, 72]. Significant accommodation strains and

formation of large surface steps are also proposed as the origins for deleterious effects

of contraction and double twins on ductility [14, 23]. It is while extension twins are

proposed as beneficial for ductility properties by increasing the extent of uniform

deformation prior to shear localization and fracture in slanted mode [10,23]. On the

other hand, in RE containing Mg alloys where the texture is less pronounced and
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anisotropy is not as significant, contraction twins are active with higher intensity.

As a result, numerous regions with localized shear form while each region has less

intense localization compare to pure Mg and AZ31 [88]. In this condition, the failure

in shear band, supposedly, happens at significantly higher strains. Higher activity

of prismatic slip and its effect on the deformation twinning could also lead to less

catastrophic shear band formation in these alloys as well [47,89].

Incorporation of damage and fracture properties in design methods, in an in-

depth fashion, is still lacking. In the case of Mg alloys, usually the effect of carefully

designed texture or precipitates only on the activation of various deformation mech-

anisms are studies and their role in fracture specially under complex loading schemes

are left unexplored. The case of WE alloy series is a good example of this shortcom-

ing. In spite of several valuable studies on the deformation and fracture of Mg alloys,

and recently their RE containing family, there are still unexplored areas which limit

our understanding of ductility in Mg alloys. One could divide these area into three

major ones:

This work is focused on the study deformation, fracture and its mechanisms in

an RE rich Mg alloys, WE43. Processing texture in this alloys is weakened due to

high concentrations of Y and RE elements. By preforming a series of interrupted

uniaxial tension and compression experiments, the plastic anisotropy in WE43 is

characterized. Round uniaxial and notched bar specimens are used to study the

effect of loading condition (i.e. stress state triaxiality) on fracture strain of these

alloys. Anisotropy in fracture properties is also characterized by performing frac-

ture experiments along various directions. Finally, connection between macroscopic

response and damage at microscopic scale is established.
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2.4.3 Need for modeling

To guide alloy development attempts, understanding of the fundamental mech-

anisms leading to damage and fracture is essential. Failure to account for fracture

properties could lead to development of alloys with unexpected fracture properties

to an extend that its application to real-world situation is jeopardized. Up to this

point, most of studies in the Mg community have been focused on deformation mech-

anisms in magnesium alloys and adopted the viewpoint in which fracture is a mere

consequence of attaining a critical strain. Other research efforts are dedicated to

the identification of damage initiation mechanisms such as deformation twins [12,23]

or second phase particles [24]. Although damage initiation is an important stage in

the fracture process, it is usually the growth of these defects and their interactions

with each other that determines the fracture strain and ductility. Limited studies

are dedicated to experimental study of voids and microcracks after initiation or the

effect of a macroscopic main cracks on the deformation system in their immediate

vicinity [25–28]. In this regard, fracture mechanics community has developed so-

phisticated models for ductile failure in the past several decades [79, 90, 91, 91–93].

Some of these models are able to accurately predict the interaction of voids and mi-

crocracks in anisotropic media and render valuable insight on how fracture proceeds

after damage initiation. These types of studies have not been carried out in the case

of magnesium alloys. It is the case that observation of deep dimples that covers

most of the fracture surfaces [18, 23] partially justifies the application ductile frac-

ture models. In addition, failure in Mg alloys under uniaxial loading (even in round

specimens [18]) happens by shear localization [12, 20]. In this condition, structural

instabilities instead of intrinsic behavior of the material is the cause of fracture. It

is crucial to separate structural instabilities from intrinsic fracture behavior of Mg
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alloys. In spite of the existence of advanced models, simulating the observed trends

in Mg fracture experiments is still challenging. Identification of variables that lead

to failure strains close to the experimentally observed ones could shed light on the

underlying mechanisms for fracture.

In this thesis, the mechanisms of damage accumulation to fracture during defor-

mation is studied. No attempt has been devoted to evaluating the fracture toughness

or investigating crack propagation in a boundary value problem. Instead, fracture

strain, as a property that represents ductility, is studied. One of the most important

variables that influence the fracture strain of the material is stress state triaxiality.

Thus, the fracture locus (i.e., fracture strain in a range of triaxialities) are studied.

Note that fracture locus is neither, in general, unique nor considered an intrinsic

property of the studied material. Under strictly proportional loading (when stress

triaxiality remains constant), however, the fracture locus is intrinsic to the material.

The intrinsic fracture locus is considered here. It is worth noting that the intrinsic

fracture locus is not directly accessible to experimental measurements because it is

almost impossible to achieve proportional loading, all the way to fracture in labo-

ratory condition. The complex stress state in front of a freshly formed crack and

developed neck during uniaxial tension are examples of non-proportionalities devel-

oped inside material during loading. The closest condition to a proportional loading

is achieved by using notched bars in which triaxiality variations are minimal. The

fracture locus in such experiments (and their associated range of triaxialities) are

close to the intrinsic one. Thus, the results form notched bar experiments are used

in the study of fracture strains.

The objective of the current modeling effort is to study the effect of various

microstrucutal parameters such as matrix plastic anisotropy, void shape and dis-

tribution on the overall fracture properties of materials. Such studies help better
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understanding of failure in materials via ductile fracture mechanisms. The results

are used as a guide to understand fracture in materials with anisotropic matrix such

as magnesium alloys. Finally, the mistrostrucutal parameters of the current AZ31

and WE43 alloys are employed to predict the fracture strains of these alloy at various

triaxialities and rationalize the experimentally measured fracture locus.

2.5 Ductile fracture in metals: Fundamentals

The most common mechanism responsible for failure in metals at ambient tem-

perature is Ductile fracture. This mechanism involves nucleation, growth and coales-

cence of microvoids. Ductile failure usually takes place after significant deformation

(i.e. considerable void growth prior to coalescence). There are, however, cases where

fracture occurs after limited strain, as low as 1%. This is the case for materials with

significant impurity, high strength alloys and metal matrix composites. Figure 6

presents schematics of different stages of ductile fracture process where the initial

material with second phase particles is deformed. Nucleation of voids usually occur

at second phase particles (Figure 6b).

After void nucleation, continued plastic deformation of the matrix around nu-

cleated voids leads to void growth (Figure 6c). Void growth can be, thus, viewed

as signature of plastic deformation of the matrix. Void growth continues until it is

terminated by coalescence where the localized growth or shear localization in the

inter-void ligaments kicks in. Multiple voids could coalesce and lead to formation of

a macroscopic crack after which load-bearing capacity of the material is diminished

significantly. This manifests itself as a sudden macroscopic load drop (Figure 6d).

In the following subsections, various stages of ductile fracture are described in more

details.
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Figure 6: Schematic of different stages of ductile fracture. (a) Initially void-free
matrix containing second phase particles. (b) Void nucleation by particle cracking
or particle/matrix interface de-cohesion. (c) Void growth. (d) Coalescence of voids.

2.5.1 Ductile fracture in metals: Nucleation

Pioneering work on fracture via ductile fracture [94–96] showed that in structural

materials in where alloying elements and second phase particles are present, void

nucleation usually occurs after some straining and by particle/matrix interface de-

cohesion (Figure 7a) or particle cracking (Figure 7b). If the material is very pure
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Figure 7: Void nucleation by (a)particle/matrix interface de-cohesion, (b) particle
cracking [97].

and does not contain second phase particles, voids can initiate at the intersection

of slip bands where dislocations from different slip systems meet. Vacancies could

cluster and form voids, as well.

Depending on the properties of matrix, particles and their interface, the mode of

nucleation could change. Table 1 summarizes these effects. Experimental studies to

define the nucleation criterion have led to stress- [95,97,98] and strain-based criteria

[96,99]. The modeling activities in this area include those assuming perfect bonding

between matrix and particles to investigate the local distribution of plastic strain

and stresses [97, 100]. Cohesive separation (as proposed by Needleman) [101, 102]

and no bonding at interface [103,104] have also been studied.
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Table 1: Effect of materials and loading parameters on microscopic mode of
void nucleation.

Parameter Type
Trend

Decohesion Cracking

Matrix Yield Strength ↘ ↗

Matrix hardening exponent ↘ ↗

Particle elongation ↘ ↗

Particle stiffness ↗ ↗

Load orientation Axial ↘ ↗

Transverse ↗ ↘

Load Triaxiality ↗ ↘

2.5.2 Ductile fracture in metals: Growth

In ductile materials void growth is responsible for most of the elongation before

failure. Continued plastic deformation of the matrix after void nucleation usually

results in volumetric growth of voids (shear and compressive loading are instances

where it is not true) and change in their shapes [105]. Although it is a very important

stage of ductile fracture, void growth usually has a very weak effect on the overall

macroscopic response. Stress triaxiality has a strong influence on the void growth

and evolution of its shape. Triaxiality, which is the ratio of hydrostatic stress to the

von Mises equivalent stress, is defined as follows:

T =
σm
σeq

(2.11)
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where σm is the hydrostatic stress and σeq is the von Mises equivalent stress defines

as σeq =
√

(3/2)σ′ : σ′ . Here σ
′

is stress deviator.

The rate of void growth is reported to increase exponentially with increasing tri-

axiality [106]. In general, most of triaxiality effects in ductile fracture originates from

its influence on void growth. Void growth could be studied experimentally by optical

or scanning electron microscopy of interrupted experiment. Three dimensional (3D)

X-ray tomography (both ex-situ and in-situ) could also provide extensive information

about void growth.

Because of the relationship between material porosity and ductile failure, the

ability to accurately describe the evolution of voids in a ductile metal is crucial

in order to accurately predict the failure of the material. The first attempts to

study void growth was done by McClintock and Rice & Tracey [107, 108] which

were limited isolates voids in an infinite medium. Unfortunately, computational

constraints make it prohibitively expensive to model each of the micro-voids in most

engineering structures; therefore, the method of explicitly tracking the evolution of

each micro-void is not practical at this time. An alternative to explicitly tracking the

evolution of each void (i.e., tracking microscopic, or local, quantities) is to incorporate

the effects of the micro-voids into the macroscopic, or average, properties (such as

macroscopic stress, strain, yielding, etc). Since the rate of dilatation of the porous

solid is related to the void growth rate, plastic potentials for the porous solid must

be developed in order to describe the void growth. The most widely used plastic

potential for porous solids was proposed by Gurson [90]. This model is limited to

cylindrical and spherical voids in an isotropic, perfect plastic solid. To derive an

analytic expression for the plastic potential (and, thus, the yield criterion, assuming

associated plasticity), Gurson performed a limit load analysis on a RVE. The void

growth models used in this dissertation are extensions of the Gurson’s model [90] to
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account for matrix plastic flow anisotropy and void shape. In Gurson’s analysis, it

was assumed that the virgin material (void-free) obeys the classical von Mises yield

criterion. To obtain the plastic potential, Gurson minimized the plastic energy for

a specific velocity field compatible with uniform strain -rate boundary-conditions.

Thus, the obtained criterion was an upper bound of the exact plastic potential (since

the plastic energy was minimized for only one velocity field rather than complete set

of kinematically admissible velocity fields).

Note that the original Gurson’s model is for single voids in a RVE in the shape

of a sphere or cylinder. The details of this model are as follow:

1. Geometry:

The RVE is a hollow spheroid containing a confocal spheroidal cavity. In such

an RVE, microstructural variables are porosity volume fraction f , void aspect

ratio, W , and void axis, e3.

2. Plasticity model:

The orthotropic, associated Hill flow theory is used for the matrix, cf. equa-

tions (8.1). The orthotropy axes are not necessarily aligned with the voids.

Here, L, T and S refer to the principal directions of plate.

3. Velocity fields:

∀x ∈ Ω\ω, vi(x) = AvAi (x) + βijxj, (2.12)

As above, scalar A and symmetric tensor β are parameters (with βkk = 0).

Here, β is not necessarily axisymmetric if one admits the ensuing approxima-

tions.

A widely used modification of Gurson’s spherical yield criterion was suggested in
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Tvergaard [109, 110] based on comparisons with finite element calculations of shear

band instabilities (where the instability is determined by a loss of ellipticity of the

governing equations). Calculations by Tvergaard were meant to represent a peri-

odic array of spherical voids that were arranged such that hexagonal representative

volume elements (RVEs) could be fit together to form the structure. (The cylin-

drical RVE used in the calculations was an approximation of the hexagonal RVE.)

Recent extension of this model enables detailed materials behavior such as void

shape [92, 111, 112] and anisotropy of matrix [75, 79] being taken into account. A

quite similar yield function for porous medium to that of Gurson could be obtained

using general thermodynamic principles [113].

2.5.3 Ductile fracture in metals: Coalescence

Consideration of failure by void growth (where voids grow till they touching

each other, “void impingement”, leads to substantial overestimation of ductility.

Physically, void growth continues till a critical configuration is attained. After this

critical stage, entitled as onset of “coalescence”, localized and directional growth of

voids interrupts the homogeneous and stable one. The localized flow in the inter-void

region leads to substantially higher rate of void growth. Coalescence could occur via

internal necking in the ligaments between voids, shear band formation called “void-

sheet” coalescence and necklace coalescence. There are many attempts to model

coalescence

Micromechanical evidence for internal necking were first provided using cell model

calculations using finite element calculations [114, 115] where elastic unloading of

the regions above and below voids leads to very high growth rates in the intervoid

ligaments. The first attempt to model coalescence by internal necking was done by

Thomason [116] in two dimensions. Tvergaard and Needleman [91] attempted to take
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coalescence into account by modifying Gurson’s spherical yield criterion to develop

GTN model. Attempts to develop heuristic and purely analytical closed form yield

function for coalescence in three dimensions (Such as Ref. [93, 117, 118]) are those

that account for discontinuity in the velocity gradient fields in the to-be-homogenized

RVE.
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3. EXPERIMENTAL APPROACH

3.1 Starting materials and characterization of initial microstructure

Two alloys are used in this study. The first alloy is a 1.25” (32 mm) thick

hot-rolled AZ31B plate (2.5-3.5% Al, 0.7-1.3% Zn, 0.2-1.0% Mn) provided by Mag-

nesium Elektron company in the H24 condition (strain hardened and partially an-

nealed) [119]. The other alloy is a 1.5” (38 mm) thick hot-rolled WE43 (3.7-4.3% Y,

2.4-4.4% RE, 0.4% Zr min) plate, also provided by Magnesium Elektron company, in

the T5 condition (strain hardened, solid solution and artificially aged). The plates are

reported to three principal directions, rolling or longitudinal (L), transverse (T) and

short-transverse or through-thickness (S); see Figure 8b. To study the mirostruc-

ture of the material, metallographic samples from different planes were cut using a

diamond saw, ground with SiC paper and fine polished using 1, 0.3 and 0.05 µm

alumina suspensions. Water was used during grinding only. Isopropyl alcohol was

used for rinsing and sometimes acetone as ultrasonic cleanser. For etching, acetic

picral solution (4.2 g picric acid, 10 ml acetic acid, 70 ml ethanol and 10 ml water)

was used for 5s. In some occasions, Nital solution (5% concentration) was also used

to reveal microstructure of WE43 alloy. Optical Microscopy (OM) and Scanning

Electron microscopy (SEM) were both used for microstructural observations.

The average grain size and its distribution were determined using the line inter-

cept method [120] and ImageJ image analyzing software. Compositional variations in

the microstructure and the identification of second phase particles were determined

using energy dispersion spectroscopy (EDS) and wavelength dispersion spectroscopy

(WDS) in SEM. Crystallographic texture measurements were carried out using a

Bruker-AXS D8 X-ray diffractometer (XRD) with Cu Kα radiation on a sample
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from the plate’s mid-section in the L–S plane to get (0002) and (101̄0) pole figures

using a 5◦ grid size and an 85◦ sample tilt.

3.2 Mechanical behavior characterization

Compression and tension specimens were cut out along the three principal direc-

tions (i.e., L, T and S directions) in addition to three off axis ones (i.e., 45◦ between

pairs of principal directions). A schematic of the specimen orientation with respect

to the plate is shown in Figure 8b. The specimens were deformed either to crack

initiation or complete fracture. One of the principal directions was systematically

marked on both ends of each specimen to enable tracking of the microstructural

orientations with respect to the sample geometry. Cylindrical specimens were used

exclusively so as to deconvolute, as much as possible, structural instability effects

from material’s intrinsic properties. Specimens’ geometry is sketched in Figure 8a.

The same experiments enabled to measure (i) the yield and flow behavior of the

material; (ii) the evolution of plastic anisotropy with plastic strain; and (iii) the

strains to failure. At least two specimens were used for each type of test. To increase

confidence when scatter was large, up to two additional tests were carried out.

3.2.1 Uniaxial compression

Compression tests were carried out on a servo-hydraulic MTS machine (Model

318.25) with a load cell capacity of 250kN at a strain rate of 10−3s−1. A pure nickel

anti-seize lubricant was used to prevent early barreling. Each test was interrupted at

regular strain intervals and the specimen was unloaded to enable the measurement of

its current height, H, and two lateral diameters along the principal directions(ΦX).

The associated strain to these measurements are calculated according to the following

equations.
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(a) (b)

Figure 8: (a) Geometry of the specimens for uniaxial tension and compression ex-
periments. (b) Various directions along which uniaxial tests were carried out.

εaxial = ln

(
H

H0

)
; εX = ln

(
ΦX

Φ0

)
, (3.1)

where ΦX stands for lateral diameter along L, T, S, LT, LS or TS and the superscript

0 refers to initial values. The accuracy on lateral strains (εX) is 0.1%.

An example is presented in the following. For compression along L direction and

after each unloading, current height (H) and diameters (ΦT and ΦS) were measured.

True axial and lateral strains were defined as:

εL = ln

(
H

H0

)
; εX = ln

(
ΦX

Φ0

)
. (3.2)

Here ΦX stands for lateral diameter along T and S direction. Anisotropy ratio in

such tests could be used to quantify the plastic anisotropy. For loading parallel to L

direction, this ratio is defined as:

RL =
εT
εS

(3.3)
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Similar definitions are introduced for experiments along other directions, ac-

cording to a permutation between L, T, and S. In the case off-axis experiments,

anisotropy ratio is always defined as lateral strain along the off-axis direction di-

vided by the lateral strain along the principal direction. The followings are the

definition of anisotropy ratio for experiments along T, S, LT, LS and TS direction.

RT =
εS
εL
, RS =

εL
εT
, RLT =

εTL

εS
, RLS =

εSL
εT

, RTS =
εST
εL

(3.4)

Most compression tests were continued until the pins failed in shear. A distinct

load drop was observed before the specimen split in two pieces. The value of axial

strain at the load drop is taken as a measure of strain to failure initiation, εi. In

addition, a strain to complete fracture, εf , was defined on the basis of cross-sectional

area variation:

εf = ln

(
Af

A0

)
≡ εX1

∣∣∣
f
+ εX2

∣∣∣
f

(3.5)

where X1 and X2 are the measured lateral diameters. As an example, strain to

fracture for loading along L direction is:

εf = ln

(
Af

A0

)
≡ εT

∣∣∣
f
+ εS

∣∣∣
f
. (3.6)

Here, the area of the fractured specimen, Af , was measured post-mortem in OM.

Also, εT
∣∣
f

and εS
∣∣
f

are the lateral strains in (3.1)2 taken at failure. The identification

in (3.6)2 assumes an elliptical shape for the fractured cross-section. An alternative

measurement of Af assuming an oval shape led to small differences in evaluating εf .

3.2.2 Uniaxial tension

Uniaxial tension experiments were carried out at an initial strain rate of 10−3s−1

on a servo-hydraulic MTS machine (Model 380.50) equipped with a 250kN load cell.
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True axial strain was measured prior to necking using a laser extensometer over a

gauge length of ∼ 30 mm. Also, a radial extensometer (of which details will follow)

was used to measure the diameter reduction in real time. This measurement was

made along a certain direction depending on the loading direction (diameter along

S, S, L, S, T and L were measured for loading parallel to L, T, S, LT, LS and TS,

respectively). In addition, each test was paused at regular strain intervals in order

to measure the lateral diameters using a caliper (accuracy better than 0.005mm).

This method expedited measurements of plastic anisotropy as compared with the

unloading–reloading method used in the compression tests. True axial and lateral

strains were defined similar to Equation (3.1) substituting the gauge length l for H

in (3.1)1. All AZ31 tensile specimens failed in shear. However, this occurred after

necking. In the case of WE43 uniaxial bars, necking was much limited and some

of the specimen showed flat mode of failure depending on their loading direction.

Although post-necking deformation is small, it is generally important to distinguish

between failure initiation and complete fracture as in the case of compression. Ideally,

the strain to failure initiation is defined as:

εi =

∣∣∣∣ln(Ai

A0

)∣∣∣∣ ≡ |εX1|
∣∣∣
i
+ |εX2|

∣∣∣
i

(3.7)

where X1 and X2 refer to two perpendicular directions subject to measurement. For

instance, during loading parallel to L direction, the above equations become:

εi =

∣∣∣∣ln(Ai

A0

)∣∣∣∣ ≡ |εT|∣∣∣
i
+ |εS|

∣∣∣
i

(3.8)

A robust estimate of εi thus requires a measurement of Ai (the area of the cross-

section at the neck at crack initiation). To interrupt a tensile test at incipient
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cracking is quite challenging. Therefore, in most tests the last value recorded for the

axial strain was used as a lower-bound estimate of εi. In general, this identification

can lead to errors because of necking. Exceptionally, one test along LT direction was

interrupted successfully at the load drop (i.e., at crack initiation). This case enabled

to estimate the error made by identifying εi with the last recorded value of εL at

about 4%.

(a)

T

S

c

L

(b) (c)

Figure 9: (a) Geometry and (b) orientation of round specimens used. (c) Custom-
made knives for a radial extensometer, here mounted on the RN2 specimen.
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3.2.3 Notched bar experiments

Notched bars are usually employed in fracture studies because (i) a triaxial stress

state is developed in the notched region and effect of triaxialoty on fracture prop-

erties could be investigates; (ii) Notch introduces a damage zone which facilitates

investigation of different fracture mechanisms; Finally (iii) in strongly anisotropic

materials such as Mg, the introduction of notch enables the investigation of the ef-

fect of triaxial loading on plastic anisotropy [121, 122]. In order to study the effect

of stress triaxiality on the deformation and fracture of AZ31, round notched (RN)

specimens with three different notch geometries (to provide a range of triaxialities)

were used [121].

Inside the notch, the stress state is triaxial. In addition to the major axial stress,

Σ, there are two equal minor (principal) stresses, each denoted by σ < Σ. Let

θ ≡ σ/Σ. Each notched bar is essentially characterized by a certain level of θ. The

stress triaxiality, T , is defined as the ratio of the hydrostatic stress to the von Mises

effective stress. For axisymmetric loading, T is related to θ through:

T ≡ 1

3
sign Σ

2θ + 1

|1− θ|
. (3.9)

Alternatively, each bar is labeled based on the notch severity parameter, ζ, equal

to ten times the notch radius to specimen diameter at the notch. Three values of

ζ were explored and the corresponding specimens are denoted by RNζ, Figure 9a.

There is a direct relation between notch severity and stress triaxiality. The lower the

value of ζ the higher the levels of stress triaxiality, as inferred from finite-element

calculations [122]. Taking the notch height as a gauge length, a nominal strain rate

of 3 × 10−4s−1 was imposed in all cases. In the notched bars, the use of an axial

extensometer would be pointless unless the gauge is restricted to the height of the
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notch, which is difficult given the size of our specimens. Instead, the instantaneous

diameter along a certain direction (for example, S direction for loading along L) was

continuously measured thanks to a custom-made radial extensometer. The latter

consists of two knives (Figure 9c) made of a superalloy material mounted on an

MTS clip-on displacement gage 632.02E-20 (not shown), which is commonly used

in standard fracture toughness tests. As in the compression of pins, some notched

bar experiments were interrupted and the specimens were unloaded several times to

measure the anisotropy ratios, especially at incipient macroscopic crack formation.

Unlike the situation in initially smooth tensile bars or compression pins, the plastic

strains are spatially nonuniform in the gauge section of a notched bar. Hence, the

following definitions are typically adopted; see Ref. [121]:

ε̄X = ln

(
ΦX

Φ0

)
, (3.10)


RL =

ε̄T
ε̄S
, RT =

ε̄S
ε̄L
, RS =

ε̄L
ε̄T
,

RLT =
εTL
ε̄S

, RLS =
εSL
ε̄T

, RTS =
εST
ε̄L

(3.11)

ε̄f = εT

∣∣∣
f
+ εS

∣∣∣
f
, ε̄i = εT

∣∣∣
i
+ εS

∣∣∣
i
, (3.12)

where the bar stands for spatial averaging over the minimum-diameter section (ab-

solute values taken where appropriate). These definitions are the counterpart of

equations (3.1)1 and (3.4)–(3.7) in uniaxial bars. Most tests were stopped after

crack initiation and before final fracture (after detecting a significant macroscopic

load drop) but some were continued to final fracture. Crack initiation is detected by
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a sudden drop in the load-displacement curve where is it marked by a black dot in

some load-deflection graphs (see Figure 2.9 in Ref. [123] for further background on

this identification). For each notch geometry, one specimen was taken to complete

fracture then subsequent ones were interrupted at crack initiation.

3.3 Fractography and post deformation microstructural analyses

In the literature, two methods are typically used to identify damage initiation

sites [123]. The first, more straightforward, consists of observing fracture surfaces

in SEM. If void formation from second phase particles occurs and there is residual

void–particle contact post-mortem, as would prevail in low triaxiality fracture, par-

ticles would be observed at the bottom of dimples. This is the standard method

for identifying second-phase particles inside dimples by means of dispersion spec-

troscopy. The second, more tedious, consists of interrupting mechanical tests and

subsequently sectioning the specimens using Electric discharge machining (EDM)

and searching (in OM or SEM) for some evidence of void formation [121]. Each

method has its advantages. The disadvantage of the first is that mere observation of

particles on the fracture surface does not necessarily inform on the extent to which

they were involved in the fracture process. The disadvantage of the second is that

it only samples through two-dimensional sections. In general, a combination of both

is necessary to obtain a full picture. This has been accomplished in the present

study. In material systems where particles are larger than, say 1µm, X-ray com-

puted microtomography [124] and laminography [125] present obvious advantages

over the destructive methods used here. It would be difficult, however, to rely on

these methods for identifying damage initiation sites at lower length scales, such

as twinning-induced cracks. To prevent oxidation, the fracture surfaces of broken

specimens were sprayed immediately after testing with a silicone mold release spray
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then placed and held in a vacuum desiccator prior to being examined in SEM. It

is worth noting that, even with extreme care, oxidation is such a major problem in

magnesium that fracture surfaces can only be observed once. For this reason, the

testing campaign has been paced to accommodate SEM observations of oxide-free

fracture surfaces. Occasionally, EDS and WDS spectra of the second phases on the

surface were recorded.

In addition to the SEM fractographs, the tensile (smooth and notched) speci-

mens that were deformed until failure initiation (see above) were cut longitudinally

using wire EDM. Observations were then made in optical microscopy and SEM in

L–S and L–T planes, i.e., sections that contain the loading direction (L) and the

short-transverse (S) or transverse direction (T), respectively. Samples containing the

damage process zone were subsequently mounted in an epoxy resin to prepare met-

allographic sections. The method described for microstructural observations (Sec-

tion 3.1) was followed. Magnesium and its alloys are among the most difficult metallic

samples to prepare for microstructural examination. This is particularly true in heav-

ily deformed specimens with features such as microcracks, microvoids and eventually

macroscopic cracks. Extra care was thus taken to prepare the sections for damage

observations.

3.4 Microtomography analysis

Tomography, which is based on radiography, employs similar principles as medi-

cal scanners but uses synchrotron radiation. Using numerical procedures, 2D scans

could be utilized to reconstruct a 3D image of the microstructure with sub-micron

resolutions. These 3D maps provide such rich information, which are instrumental

for the understanding of a wide range of phenomena. Microtomography analysis was

performed on notched bar specimens loaded along the T direction. The specimens
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with highest (RN2) and moderate triaxiality (RN10 specimens, where the maxi-

mum strain to failure is obtained) are used for microtomography analysis. Samples

were obtained form interrupted tests after incipient macroscopic crack formation.

The specimens were cut longitudinally (‖ to T and along the L direction) to obtain

samples from notch root (close to surface) and its middle (central) section. The

tomography analysis was done as part of a collaborative study on fracture of mag-

nesium alloys with Dr. T. Morgeneyer at Centre des Matriaux MINES, Paristech.

The analyses were performed at the European Synchrotron Radiation Facility (ID19

line) using photon energy 19 keV to get high resolution images with the voxel size of

0.7 µm. Synchrotron radiation leads to a parallel beam geometry. For each section,

1500 radiographs are recorded to build a 3D image of the microstructure using fil-

tered backprojection algorithm. The time required to take each radiograph is 0.7 s.

The open-source image analysis software “ImageJ” is used to adjust the micrographs

and 3D microstructure reconstruction.

This experiments enable investigating the effect of stress state triaxiality on dam-

age initiation, its location with respect to notch geometry, prominent direction of

macroscopic crack growth and state of damage at the onset of macroscopic crack

initiation. The dependence of damage initiation location with respect to the notch

geometry and local variation of triaxiality is facilitated using specimens from the

center of the notch and its root.
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4. INITIAL MICROSTRUCTURE

4.1 Initial microstructure: AZ31

Figure 10a shows 3D OM representation of initial microstructure of AZ31 plate.

Analyses the size of 997 grains in different planes of the plate, using ImageJ im-

age analysis software, revealed that the initial microstructure of the current AZ31

exhibits a dual grain size distribution with diameter of small grains approximately

3 − 4µm and large grains ∼ 10 − 12µm. A histogram of grain size distribution in

this alloy is presented in Figure 11. Small and recrystallized grains (formed during

hot rolling at elevated temperature) are usually lumped together and form band-

like features, which hare elongated perpendicular to S direction in L-S and T-S

planes. Distribution of recrystallized grains in L-T plane is rather random, giving a

transverse-isotropic appearance to this plane. Second phase particles (black colored)

are also discernible in the microstructure. As a result of hot-rolling process, these

particles are broken and elongated along the L direction. Few deformation twins are

observed in the initial microstructure. Macroscopic texture measurement, shown in

Figure 10b, indicates that the hot-rolled AZ31 plate exhibits a strong basal texture

with c-axis of most grains aligned parallel to the S direction.

Figure 12 shows 3D SEM micrograph of the AZ31 plate. The preferred orien-

tation of second phase particles (along the rolling direction) is clearly depicted in

this figure. Three types of second-phases particles were observed in undeformed

samples. The first type consists of intermetallic Al–Mn rich, probably Al8Mn5 dis-

persoids [126]. They appear as stringers elongated in the rolling direction or as

isolated particles. Their composition was ascertained using EDS; See Figure 13a.

The second type of particles consists of Mg17Al12 intermetallics with a cubic struc-
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(a)

(b)

Figure 10: (a) Three dimensional representation of the initial microstructure of hot-
rolled AZ31B plate exhibiting a dual grain size distribution. (b) XRD pole figures
corresponding to (0002) and (101̄0) planes.
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Figure 11: Grain size distribution in AZ31 plate. The histogram is obtained by
measuring the size of ∼1000 grains in L–T, L–S and T–S plane.
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Figure 12: Three dimensional SEM representation of the initial microstructure of
hot-rolled AZ31B plate showing preferred orientation of second-phase particles in
the microstructure of the as-rolled material.

ture. They are present in two forms: fine, often sub-micron lamellar precipitates

and larger equiaxed particles. The fine precipitates form most likely during cooling

form hot-rolling temperatures. They appear mostly in regions of high Al content and

decorate grain boundaries. On the other hand, the particles form during solidifica-

tion. While larger than the precipitates, their number frequency is much smaller. As

shown in Figure 13b, they can be found at grain boundaries or in the grain interior.

The presence of both Al–Mn and Mg17Al12 intermetallics is expected in Mg–Al–Zn–

Mn alloy systems [52]. A third type of particles was occasionally observed. They

appeared as equiaxed and darker in SEM. The presence of an O peak in the EDS

spectra suggests that these particles might be MgO oxides mixed with Mg–Al parti-

cles. The presence of oxide/intermetallic particles has recently been reported in [24]

and will be further ascertained on fracture surfaces. There are also contrast bands

in the microstructure, observed parallel to the rolling direction. Based on WDS

52



(a) (c)

Figure 13: Various second phase particles with different morphology in the mi-
costrucutre of as-received AZ31 alloy. The EDS analysis of particles, which are
marked by lines, are presented below each micrograph.

micro-analysis, the variations in Al content is identified as the origin of these con-

trast bands. The observed compositional variation is assumed to be caused by high

rates of solidification during casting.

4.2 Initial microstructure: WE43

Figure 14a shows the 3D OM representation of WE43 initial microstructure along

the principal directions of the hot-rolled plate (namely L, T and S direction). As it

is depicted in this figure, the distribution of grain size varies in different planes. For

instance, some grains in the L–S plane are compressed in S direction and elongated

along the rolling direction whereas L–T plane exhibits equiaxed grains. T–S plane

has mainly equiaxed grains although few of its grains show squeezed morphology. In

addition, grains in the T–S plane have considerable fluctuation in their size to such

an extent that a dual grain size distribution is easily discernible in this plane. Other

planes also accommodate a range of grain sizes although their grain size variations is
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less intense. Second phase particles in the matrix or at grain boundaries (GB) can be

observed as tiny black dots and bright points depending on their composition, lighting

direction and microscope settings. The results of macroscopic texture measurement

on the initial material, parallel to the T direction is presented in Figure 14b, where

pole figures for two planes, i.e., (101̄0) and (0002), are shown. As it is depicted in this

figure, the presence of Yttrium (Y) and RE elements in WE43 leads to significant

texture weakening compare to pure Mg and traditional Mg alloys such as AZ31.

THenominal chemical composition of the WE43 plate are presented in Table 2.

Table 2: Nominal chemical composition of WE43 alloy used in this study
[31].

HH
HHH

HHH
HH

Alloy

Element
Yttrium Rare Earth Zirconium Magnesium

WE43 3.7–4.3 (%) 2.3–3.5 (%) 0.2 (%) min. bal.

The basal pole in WE43 is also shifted towards the rolling (L) direction. Texture

weakening at the presence of Y and Nd is expected based on the previous studies

[46,127,128]. Grain size measurement was done utilizing ImageJ software. Figure 14c

shows the grain size distribution in WE43 alloys, acquired by measuring the area of

352 grains in different planes. Noted that the reported grain diameters are calculated

by assuming circular grains. According to this figure, WE43 exhibits a dual grain

size distribution with diameter of small grains D ∼ 10µm and large grains around

D ∼ 25µm.
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Figure 14: (a) Three dimensional optical microscope representation of initial mi-
crostructure of WE43 hot-rolled plate. (b) The XRD pole figures corresponding to
(101̄0) and (0002) planes. (c) Grain size distribution in the microstructure of WE43
alloy. This data is based on measuring the size of 352 grains.
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Figure 15 shows 3D SEM micrograph of WE43 plate. The preferred orientation

of second phase particles (along the L direction in the L–S plane and parallel to T

direction in the T–S plane) is clearly depicted in this figure. As it is shown, the L–T

plane has a uniform distribution of second phase particles. Closer look reveals that

the grain boundaries in this alloy are decorated with very fine particle. In addition

to this GB particles, there are some large, round and bright particles, located at

both grain interiors and at the vicinity of GBs. Utilizing EDS, the particles in this

alloy are identified as those faceted particles that contain Mg-Y, Mg-Nd, Mg-Y-

Nd. In addition, there are irregular-shaped, fine Mg-Zr particles which appear as

clusters or individuals located in close proximity of each other. Ratio between the

elements’ peaks, phase diagrams’ information (Mg-Nd and Mg-Y) and data from the

literature [36,129–131] are used to qualitatively identify these particles as Mg41Nd5,

Mg2Y, Mg24Y5, β − Mg14Nd2Y and Mg − Zr. These particles are distributed in

an α − Mg matrix and its grain boundaries. High number density of particles at

GBs is in accord with other experimental observations [87] and could rationalized

by segregation of alloying elements at these interfaces [47]. It is worth noting that

there might be nano-sized precipitates, such as Mg2NdY and Mg3Nd, present in the

matrix which are not visible in the current SEM micrographs [87,132].

Several regions with white contrast are also observed in the L–S and T–S planes.

EDS mapping, presented in Figure 16 indicates that these bands are regions of Zr

rich solid solution (Figure 16d). As shown in part (a) of this figure, the boundary

of these contrast bands are also decorated with second phase particles, rich with Nd

element. Nd is also present in the matrix as solid solution element although with

lower concentration; see figure 16c for details of Nd distribution. According to part

b of this figure, Yttrium element (Y) is uniformly distributed in matrix and second

phase particles of this part of the microstructure.
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Figure 15: Three dimensional SEM representation of WE43 initial microstructure
and spatial distribution of its second phase particles.
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(a)

(b)

(c)

(d)

Figure 16: (a) SEM micrograph of WE43 alloy showing a typical contrast band in
L–S plane. The boundaries of these contrast bands are decorated with second phase
particles. EDS map of (b) Y, (c) Nd and (d) Zr.
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5. MECHANICAL BEHAVIOR CHARACTERIZATION∗

5.1 Flow behavior and anisotropy of AZ31

Typical nominal stress versus nominal strain responses of AZ31 in tension and

compression parallel to the rolling (L) direction are shown in Figure 17a. This

figure illustrates the unloading parts for the measurement of anisotropy ratios. The

corresponding true stress–strain curves, depicted in Figure 17b, exhibit the usual

tension–compression asymmetry. True-stress corrections were made so as to keep the

same hardening rate as before necking. Better corrections are possible [133] but were

not pursued here because the post-necking deformation is small. The compressive

yield strength is considerably lower than in tension but the ultimate strengths are

comparable.

Figure 18 shows typical results of plastic anisotropy evolution in AZ31 alloy for

data presented in Figure 17. In compression along L direction, the relatively easy

activation of extension twinning renders the material significantly more deformable

along S (i.e., parallel to the c-axis) than along T (Figure 18a). The lack of deforma-

bility along T up to a strain of ∼ 5% is a strong indicator of the limited number of

deformation systems that are active post-yield. In fact, the formation of extension

twins at the onset of plastic deformation also results in an unusual lateral contrac-

tion along the T direction; notice the initial decrease in εT in the inset of Figure 18a.

This phenomenon is consistent with recent observations [134]. In subsequent stages

of plastic flow, accumulated activity on other deformation systems, such as basal and

prismatic 〈a〉 slip, induces enough plastic strain along T to overcome the negative

∗Reprinted with permission from “Fracture strains, damage mechanisms and anisotropy in a
magnesium alloy across a range of stress triaxialities” by Kondori, B. and Benzerga, A. A., 2014.
Experimental Mechanics 54, 493-499, Copyright, Society for Experimental Mechanics 2013
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Figure 17: (a) Typical nominal stress versus nominal strain curves of AZ31 loaded
parallel to L direction depicting full and partial unloadings in compression and ten-
sion, respectively, for R-value measurements. (b) True stress–strain curves. The
arrow indicates the onset of necking. Post-necking corrections were applied keeping
a similar hardening rate.

strain produced by extension twins and thus results in a net positive strain along

this direction.
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In tension parallel to L, on the other hand, the maximum lateral strain is along T

(Figure 18b). This change is rationalized as follows. Under in-plane tensile loading,

the polarity of extension twinning is such that it is not activated as easily as in

compression. Instead, basal and prismatic slip are active from the outset of plastic

deformation. These mechanisms, however, cannot accommodate the lateral strain

along the S direction, only along T. To accommodate the lateral straining along S,

i.e., the contraction along the c axis, contraction twinning and/or pyramidal slip must

occur. The fact that the critical resolved shear stresses of these systems are relatively

high explains the delay in their activation so that the T direction experiences more

strain than the S direction. It is important to note that all deformation systems (slip

and twinning) must be active in the early stages of plastic flow because some net

deformation along S is measured from the outset.

The evolution of the anisotropy ratio RL with strain is shown in Figure 18c, where

the inverse of RL is plotted for convenience. The error in R ratio measurement is large

at strains below 0.1% (of order of R itself), but decreases rapidly (0.2R at εL = 0.005

and 0.02R at εL = 0.05). For this reason, the ordinate axis is truncated for clarity.

Also the inset shows the negative anisotropy ratio shortly after yielding. Figure 18c

reveals two essential aspects of plastic flow anisotropy in AZ31B: (i) the existence

of a steady state after a transient regime; and (ii) the extreme behavior during the

transient. For instance, in compression values of 1/RL in excess of 10 are amenable

to the lack of deformability along T (see Figure 18a). In tension ‖ to L direction,

the S direction is actually more deformable (RL < 1 as in compression) during the

transient. In steady state, however, the anisotropy ratio is about 1.8 in tension and

0.35 in compression. The fact that RL < 1 in compression and RL > 1 in tension

is consistent with the rationales provided above in what concerns the evolution of

lateral strains.
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Figure 18: Lateral strain (along T or S as labeled) versus axial strain along L in (a)
compression and (b) tension. Dotted lines point to a reference isotropic response.
Inset in (a) shows the negative (contraction) strain along T in the early stages of
compression. The necking strain is indicated by the vertical dashed line in (b). (c)
Anisotropy ratio versus axial strain showing the transient and steady states. A detail
of the transient (negative anisotropy ratio) is depicted in the inset. Values of 1/RL

larger than unity mean a greater ability to deform along S (parallel to the c-axis).

62



Interestingly, the evolution of anisotropic deformation is accompanied by a non-

negligible dilatation. Figure 19 depicts the volumetric strain εkk (the sum of the

three logarithmic strains εL + εT + εS) versus the axial strain εL. A positive value

of εkk indicates dilatation whereas a negative value indicates volume shrinkage up

to experimental errors. Similar strain measurements were done on three different

specimens in both tension and compression. The results were reproducible with

little scatter. The error bars become larger in compression after a 0.1 strain due to

barreling (not visible to the naked eye but quantified using top, center and bottom

diameter measurements). The development of dilatational strains in tension was

already evident in Figure 18b as the T-strain follows approximately the isotropic

reference line while the S-strain is smaller. In a plastically incompressible material,

the curves corresponding to the two lateral strains would be on either side of the

dotted line so that the constraint −(εT + εS) = εL is satisfied. Figure 19 shows that

there is a net increase in volume in both compression (2%) and tension (up to 6%

after necking). A number of uniaxial tension and compression tests were performed

to confirm the volume change. Result of such experiments are presented in Figure 20

indicating that increase in volume is detected in other specimens as well.

As mentioned before uniaxial experiments are performed along various directions

of the Mg plates. Figure 21(a) depicts the true-stress versus true strain of AZ31

specimens compressed along three principal direction of the plate (i.e., L, T and

S). Complex behavior of this alloy is clearly shown in this graph. The evolution of

anisotropy ratios are also shown in part (b) of this figure. In this figure and for

illustration purposes, anisotropy ratios for loading parallel to T and S are depicted

whereas the inverse of anisotropy ratio along the L direction is shown.
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Figure 19: Relative volume change versus axial strain in compression and tension.
Vertical dashed line indicates necking in tension.

Figure 20: Relative volume change versus axial strain in compression and tension for
a number of tests along rolling direction.
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(a)

(b)

Figure 21: (a) True stress–strain behavior in compression for three loading orienta-
tions. (b) Anisotropy ratios 1/RL, RT and Rs versus strain.
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A summary of the flow stresses at different axial strains during uniaxial compres-

sion and tension of AZ31 specimens along various directions are presented in Table 3

and 5, respectively.

Table 3: Flow stress of AZ31 during uniaxial compression parallel to various
directions of the plate.

PPPPPPPPPPPPPPP
Direction

Flow stress
σyield σ3% σ6% σ9% σ12% σUTS

L 104.50 125.05 172.81 295.29 331.25 341.08

T 112.50 127.39 193.40 321.53 357.94 370.88

S 173.00 249.17 305.63 306.88 - 311.00

TS 83.00 122.13 164.48 188.02 218.87 234.29

LS 96.00 127.94 176.12 226.88 240.00 240.90

LT 108.50 122.86 178.95 301.77 360.64 364.50

Table 4: Evolution of anisotropy ratios in AZ31 during uniaxial
compression parallel to various directions of the plate.

HH
HHH

HHH
HH

Direction

RX

Ryield R3% R6% R9% R12% RSS

L -0.50 0.03 0.10 0.20 0.24 0.31

T -2.52 24.38 6.14 4.11 2.72 2.66

S 0.33 1.90 1.80 1.50 - 1.55

TS 1.00 4.36 3.98 2.29 2.67 2.28

LS 7.99 16.15 10.53 8.77 7.78 6.95

LT 1.00 0.05 0.11 0.21 0.36 0.42
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Corresponding to such data, evolution of anisotropy ratios during uniaxial com-

pression and tension are also given in Table 4 and 6, respectively.

Table 5: Tensile flow stress of AZ31 during uniaxial deformation parallel to various
directions of the plate.

PPPPPPPPPPPPPPP
Direction

Flow stress
σyield σ3% σ6% σ9% σ12% σUTS

L 152.00 225.82 247.63 271.23 289.58 294.74

T 181.33 236.55 251.56 272.45 286.00 292.36

S - - - - - -

TS 58.00 123.48 185.48 - - 185.66

LS 86.00 131.84 175.30 - - 200.00

LT 184.75 239.72 273.84 286.86 295.87 306.01

Table 6: Evolution of anisotropy ratios in AZ31 during uni-
axial tension parallel to various directions of the plate.

H
HHH

HHH
HHH

Direction

RX

Ryield R3% R6% R9% R12% RSS

L 1.00 1.29 1.30 1.58 1.78 1.70

T 1.01 0.67 0.48 0.42 0.36 0.39

S - - - - - -

TS 2.35 2.31 2.16 - - 2.16

LS 2.95 3.38 2.64 - - 2.24

LT 0.87 1.39 1.66 1.94 2.20 2.01
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5.2 Flow behavior and anisotropy of WE43

Figure 22 presents the mechanical response of WE43 alloy under uniaxial com-

pression along three different directions of the plate and their associated anisotropy

ratios. The nominal stress-nominal strain response of WE43 along three principal

directions (i.e. L, T and S) is shown in Figure 22a. The final stage of each experi-

ment is accompanied with a load drop. This load-drop prior to failure in compression

is slow and it covers a relatively large range of strains before final failure by split-

ting. In contrast to the response of pure Mg and common magnesium alloys such as

AZ31 and ZK60 [22], there is no significant anisotropy in the yield and flow stress of

WE43. The well-known S-shaped flow during compression along in-plane directions

is also absent in these plots. Corresponding anisotropy ratios of these experiments

are plotted in Figure 22b. This figure indicates that although the RS is close to unity

for loading along the (S) direction (i.e. lateral strains being independent of direc-

tion), there is considerable anisotropy in lateral strains when WE43 is compressed

along the L and T directions. This anisotropy manifests itself as significant devia-

tions of anisotropy ratios from unity (See Figure 22b). Note that in Figure 22b, the

anisotropy ratios for loading along L (∼1.8) and T (∼0.5), are in fact indicative of

a transversely isotropic behavior. This means that L and T direction in WE43 are

nearly identical and the difference in their anisotropy ratios is caused by the adopted

definitions (See Equation 3.4).

The uniaxial tension and compression response along the (L) direction are com-

pared in Figure 23a. Here, the true stresses are plotted against trues strain in the

bar. The load-drop region in the compression curve is replaced by a straight line

that has the slope of flow stress immediately before the onset of softening. As it is

depicted in this figure, the tension/compression asymmetry does not exist in WE43.

68



(a)

 0

 100

 200

 300

 400

 500

 600

 0  2  4  6  8  10  12  14  16  18

F
/A

0 
(M

P
a)

 e (%)

compression-L
compression-T
compression-S

(b)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

 0  2  4  6  8  10  12  14  16  18

R
X

e (%)

compression-T

compression-LT

compression-L

Figure 22: Nominal stress-strain behavior of WE43 along three principal directions
(L, T and S) under compression. (b) Anisotropy ratios RX (i.e. RL, RT and RS)
based on nominal strains versus nominal axial strain corresponding to the curves in
part (a). The load-drop region in the compression curve is replaced by a straight
line that has the slope of flow stress immediately before the onset of softening.
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curves presented in part (a).
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Under uniaxial tension, the specimen fractures catastrophically with neither load

drop prior to fracture nor a developed neck. Although flow properties under uniaxial

tension and compression along L direction are very similar, the lateral strains and

their ratios are significantly different in the two loading conditions; see Figure 23b).

The results of this figure indicate that during tension, the lateral strains in WE43

are independent of direction and the initial circular cross-section retains its shape.

Similar to AZ31, uniaxial experiments of WE43 were done along six different

directions. Flow stress and anisotropy ratios along these directions (three principal

and three off-axis directions with 45◦ between the two principal directions) during

compression experiments are presented in Tables 7 and 8, respectively. The data for

tensile experiment is also presented in Tables 9 and 10. In addition, a summary of

mechanical properties in all experiments are presented in Table 11. As it is shown

in this table, the flow properties are more-or-less isotropic and tension/compression

asymmetry is marginal. The only cases where the difference are considerable, are

UTS data for LS and TS direction. This difference could be originated from limited

ductility exhibited by specimens along these directions.
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Table 7: Compressive flow stress of WE43 during uniaxial deformation along
various directions of the plate.

PPPPPPPPPPPPPPP
Direction

Flow stress
σyield σ3% σ6% σ9% σ12% σUTS

L 265.00 313.16 368.99 411.67 437.14 438.16

T 281.50 335.74 389.00 425.57 449.39 450.30

S 226.00 310.04 382.00 428.25 450.22 454.04

TS 228.00 310.01 358.32 394.98 416.20 409.49

LS 245.00 322.55 381.71 415.50 - 418.34

LT 263.50 313.70 367.67 398.90 423.84 434.49

Table 8: Evolution of anisotropy ratios in WE43 during uniaxial com-
pression parallel to various directions of the plate.

PPPPPPPPPPPPPPP
Direction

R-ratio
Ryield R3% R6% R9% R12% RSS

L 0.71 0.40 0.44 0.47 0.50 0.52

T 1.91 1.92 1.91 1.85 1.73 1.69

S 1.00 1.22 1.19 1.22 1.23 1.21

TS 1.13 1.42 1.41 1.42 - 1.36

LS 1.08 1.37 1.54 - - 1.43

LT 0.41 0.45 0.44 0.47 0.49 0.51
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Table 9: Tensile flow stress of WE43 during uniaxial deformation along various
directions of the plate.

PPPPPPPPPPPPPPP
Direction

Flow stress
σyield σ3% σ6% σ9% σ12% σUTS

L 231.50 334.98 369.23 395.56 406.68 418.38

T 255.00 347.38 397.41 415.60 429.06 430.61

S - - - - - -

TS 222.00 307.30 337.10 - - 337.10

LS 222.00 306.22 359.60 362.00 - 362.00

LT 254.50 359.80 393.92 425.81 437.93 439.56

Table 10: Evolution of anisotropy ratios in WE43 during uniaxial
tension parallel to various directions of the plate..

PPPPPPPPPPPPPPP
Direction

R-ratio
Ryield R3% R6% R9% R12% RSS

L 0.69 0.69 0.82 0.89 0.98 0.98

T 1.25 1.08 1.00 0.97 0.94 0.94

S - - - - - -

TS 1.00 1.00 - - - 1.00

LS 1.26 1.00 - - - 1.00

LT 0.90 0.89 0.95 0.98 1.00 1.00
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The R-values in Table 11 are those acquired at the final stages of deformation

when the R-values have reached a steady state (minimal change in their values as a

function of strain) and before fracture. The R-values in tension are all close to unity

which along with similar flow stresses at different directions suggest isotropy in this

alloy under tension. In the case of compression, however, the R-values fall in a wide

range between ∼ 0.5 and ∼1.8. These values suggest that circular cross section of

the cylindrical pins becomes oval after compression.

The volumetric strain εkk (the sum of the three logarithmic strains εL + εT + εS)

was measured in each uniaxial test. These measurements versus the axial strain

for tensile experiments carried out parallel to L, T and LT direction are reported

in Figure 24. The compressive counterpart of these measurements for all six di-

rections are presented in Figure 25. In all experiment, regardless of loading and

its direction, a non-negligible dilatation is observed. Positive value of εkk indicates

dilatation whereas a negative value indicates volume shrinkage up to experimental

errors. Further study is required to reveal fundamental origins of such increases in

volume.
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(a)

(b)

(c)

Figure 24: Relative volume change versus axial strain in tension parallel to (a) L,
(b) T and (c) LT direction.
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(a) (d)

(b) (e)

(c) (f)

Figure 25: Relative volume change versus axial strain in compression parallel to (a)
L, (b) T, (c) S, (d) TS, (e) LS and (f) LT direction.
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6. DAMAGE AND FRACTURE CHARACTERIZATION∗

6.1 Damage and fracture characterization of AZ31

In what follows the results of fracture experiments on uniaxial and notched bars

with three different notch geometries along the L direction of the AZ31B plate are

presented. The experimental observations and trends are explained and rationalized.

Finally, the results of fracture tests on AZ31 along T and LT direction are presented.

Since AZ31 with basal texture exhibits a behavior that is close to in-plane isotropy,

the rationale proposed to justify the fracture behavior along L direction could also

be applied to failure along T and LT direction.

Figure 26 shows the mechanical response of the three types of RN AZ31 specimens

along L direction. Each response is given in terms of the applied load versus diameter

reduction along the S direction (see Figure 8b above). Some expected scatter was

observed on the maximum strains before load drop but there was less scatter on the

limit loads. To illustrate the scatter in the response of different realizations, response

of three different RN2 specimens are presented in Figure 27. Two tests in this figure

were interrupted at macroscopic crack initiation. Only one test was taken to complete

rupture (solid circle). For reference, the response of the smooth bar is also provided

in Figure 26. For the the smooth bars, continuous measurement of ∆ΦS was acquired

in addition to the discrete set of values made available on the basis of the anisotropy

ratio measurements. However, since the radial extensometer is usually not located at

the necked section the change in diameter recorded post-necking constitutes a lower

bound.

∗Reprinted with permission from “Effect of stress triaxiality on the flow and fracture of Mg
alloy AZ31” by Kondori, B. and Benzerga, A. A., 2014. Metallurgical and Materials Transactions
A, 2014. 45, 3292-3307, Copyright, Minerals, Metals & Materials Society and ASM International
2014
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Figure 26: Force, divided by the initial cross-sectional area, versus relative reduction
in diameter along S for the tensile (smooth and notched) specimens loaded along L
direction. Filled symbols indicate the values used to define nominal strains at failure
initiation (abrupt load drop).

In a plastically isotropic material the axial limit load increases with increasing

the acuity of the notch as a result of notch-enhanced stress triaxiality [135]. In

AZ31B this trend is observed in Figure 26; it is however weaker. Interestingly, there

is barely any variation of the limit load between the RN4 and RN2 specimens. This

observation hints at the interplay of plastic flow anisotropy and the achievable stress

state triaxialities inside notches.

6.1.1 Effect of triaxiality on plastic anisotropy

The measured steady-state values of the anisotropy ratio RL for fracture spec-

imens are documented in Figure 28. The data for uniaxial tension bars and com-

pression pins include those analyzed in detail in Section 5.1 and Figure 18. The

values reported for the round notched specimens are according to definitions (3.10)
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Figure 27: Force, divided by the initial cross-sectional area, versus relative reduction
in diameter along S for the tensile (smooth and notched) specimens loaded along L
direction. Filled symbols indicate the values used to define nominal strains at failure
initiation (abrupt load drop).

at the abrupt load drop. The data in Figure 28 shows a clear trend of a decreasing

anisotropy ratio with increasing stress triaxiality for positive (tensile) values of the

latter. More precisely, the lateral direction of maximum deformability changes from

T, under uniaxial loading, to S under triaxial loading. This holds for any amount of

superposed lateral stress. As a consequence, RL < 1 in all notched bars. In addition,

the anisotropy is stronger in the RN2 specimen (with the sharpest notch) than in

the RN10 specimen (with the shallowest notch). For reference, the value of RL in

uniaxial tension averaged over all realizations is about 1.75.

The anisotropy ratios can also be measured post-mortem for specimens taken

to complete rupture. In this case, the notation RL
f is used. Figure 28b documents
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Figure 28: Anisotropy ratios RL for various specimens measured (a) in steady-state,
prior to crack initiation; and (b) post-mortem. For an isotropic material RL = 1
(horizontal dashed line).

the values for all specimen types. Two observations are noteworthy. First, the

post-mortem anisotropy ratio is greater than the steady-state value, i.e., RL
f > RL,

irrespective of specimen type. Second, in the notched bars the above trend is such

that RL
f > 1 whereas RL < 1. This implies, in particular, that if measurements were
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taken only after fracture one would have missed the fact that the deformability in

notched bars is actually higher along the c-axis than perpendicular to it. Also, it

must be emphasized that while RL is representative of the material’s deformation,

RL
f also measures the signature of the overall dilation associated with the anisotropic

crack growth process.

6.1.2 Fracture loci of AZ31 along rolling direction

The effect of stress triaxiality on fracture is best represented in a fracture locus.

The latter depicts some measure of fracture against stress triaxiality. Figure 29 shows

two fracture loci using either the strain to failure initiation, ε̄i of equation (3.10)4, or

the strain to complete fracture, ε̄f of equation (3.10)3. Since the history of triaxiality

evolution in the notched specimens is not known exactly, the failure strains are plot-

ted against the specimen type. In uniaxial compression and tension, the triaxiality T

(see Eq. 3.9) is −1/3 and 1/3, respectively, before barreling or necking. For notched

bars, there are more data points for ε̄i (Figure 29a) than for ε̄f (Figure 29b) since

most tests were interrupted at crack initiation to enable the observation of damage

mechanisms and ascertain the presence and location of the macroscopic crack. In

uniaxial specimens, there are more data points for ε̄f since all of them fractured.

Recall that the values of ε̄i in Figure 29a for uniaxial tension are lower-bound esti-

mates. Upper-bound estimates for ε̄i are obviously the strains to complete fracture,

ε̄f . In fact, a tighter upper-bound estimate was obtained using the smooth bar test

interrupted at incipient formation of shear failure then taking measurements inside

the neck. Thus, the values provided for ε̄i in Figure 29a for tension are at most 4%

below the actual values.

Details aside, the salient features from Figure 29 are as follows. First, the fracture

loci exhibit a maximum at moderate stress triaxiality. The maximum ductility is
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Figure 29: (a) Strain to failure initiation (nominally defined at the load drop) for all
specimens tested. (b) Strains to complete fracture measured post-mortmem using
top-view micropgaphs of failed specimens.

achieved in the RN10 specimen (shallow notch). Second, the strain to complete

fracture ε̄f is found to be greater in notched specimens than in initially smooth ones

(Figure 29b). For ε̄i the trend is similar, albeit weaker. Third, in any given specimen

there is a difference between ε̄f and ε̄i. This difference is large in notched bars and
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small in initially smooth bars (the fact that the ε̄i values in the latter are lower

bounds confirms the observation.) Finally, the strain to failure initiation does not

vary between the RN4 and RN2 specimens (Figure 29a). As was already observed in

Figure 26, the diameter reduction (at the abrupt load drop) in these two specimens

is close to that of the smooth bars. Note that the reported strains to failure initiation

account for anisotropy as per Figure 28 (i.e., ∆ΦS 6= ∆ΦT).

6.1.3 Fracture modes

Side-views of broken specimens loaded along the rolling direction (presented in

Figure 30) showed that the macroscopic fracture path is slanted in uniaxial loading

(compression and tension) and nominally flat in triaxial loading. All compression

pins broke in two pieces. The normal to the fracture plane is contained in the L–

S plane at ≈ ±45 deg from the loading axis. Other ductile metals do not break

in compression before some significant barreling. The latter usually leads to the

development of tensile stresses on the outer boundary but since the stress state

inside remains compressive, the main crack does not usually lead to the breaking of

the specimen in fully separate pieces.
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(a) (b)

(c) (d)

(e) (f)

Figure 30: Macroscopic mode of failure in compression pins (a and b), uniaxial tensile
bars (c and d), RN10 (e) and RN2 notched bars (f).
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Shear failure also prevails in the round tensile specimens. As noted above, this

is rarely observed in metals. The fracture surface in tension is rougher than in

compression. The normal to the fracture plane may be contained in the L–S plane as

in compression, or vary about that orientation leading to a somewhat conical fracture

surface. The strong propensity for shear localization in the round tensile specimens

is indicative of some destabilizing effects. The macroscopically flat fracture surfaces

of notched specimens are more rough. Also, some secondary cracks are observed

on the outer surface below and above the main crack; See Figure 99 in Appendix.I

for illustrations. Detailed SEM micrographs will be analyzed after reporting on

preferential and competing sites for damage initiation.

6.1.4 Damage initiation sites

Using the methods described in Section 3, two fundamental sites were identi-

fied for potential damage initiation: twins and second-phase particles. An attempt

was made to observe each site in longitudinal sections as well as on the fracture

surface. Figure 31 shows two examples of fully developed twin-sized voids in the

vicinity of a nascent macroscopic crack (not shown). These observations were made

in the only uniaxial tension test that was successfully interrupted prior to complete

(shear) failure. The first microcrack (Figure 31a) is located about 30µm ahead of

the macrocrack and appears to be arrested at the top and bottom grain boundaries.

The second microcrack (Figure 31b) is farther away, at a distance about 90µm from

the main crack, and seems to extend over two grains probably because of the coa-

lescence of two microcracks. As subsequently shown, observations on the fracture

surface suggest that these twin-sized voids are flat microcracks with a noncircular

base. These features are reminiscent of those reported post fracture by Barnett [12]

who indicated that the crack-like voids either consumed a region that appeared to
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(a)

(b)

Figure 31: SEM micrograph of longitudinal section of a uniaxial tensile bar stopped
at macroscopic crack formation showing (a) a twin-sized void near the tip of the
macroscopic slanted crack and (b) other twin related microcracks with different sizes
near the macroscopic crack.

have been occupied by a twin or, in rare cases, could be seen forming in the twin in-

terior. The genesis of twin-sized voids is more difficult to ascertain. They may result

from plastic strain accumulation inside the twin by basal and prismatic slip [4, 12]

or by twin-boundary failure. The observation of void embryos in regions with large
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twin frequency (white arrows in Figure 31b) suggests a correlation between twinning

and void formation. On the other hand, since voids are not observed at all twin

sites, concomitant factors may be necessary. Therefore, an alternative rationale for

void formation in twins is the stress concentration resulting from twin intersections

(Figure 31a) or twin-GB intersections. Note that the presence of crack-like voids

of different sizes in a single cross-section indicates that void formation is a continu-

ous process with a nucleation, growth and coalescence phases. The second site for

damage initiation consists of a subgroup of the second-phase particles categorized in

Section 4.1. There were enough particle residuals inside dimples to enable a limited,

yet conclusive statistical analysis of the type of particles involved. Specifically, out

of about 20 EDS analyses it was determined that about 25% were Al–Mn, 25% MgO

and 50% pure Mn particles. Hence, the data shows that most particles leading to

void formation are Mn particles; recall that none were identified on metallographic

sections of undeformed material. Also, we found no evidence that the Mg17Al12 in-

termetallic particles were active nucleation sites. Figure 32 summarizes the three

types of particles involved in void nucleation in AZ31B. Figure 32a illustrates void

initiation at a stringer of Al–Mn. The micrograph was taken from the uniaxial tensile

specimen deformed up to crack initiation. The slanted macrocrack shown is about

450µm long (the twin-sized void of Figure 31a is just ahead of its upper tip while the

free surface is at the bottom). The fact that the crack opening is so much larger at

the location of the particle than it is near the free surface suggests that the particle

might have been the initiation point then the shear lip formed. In any case, the EDS

spectrogram is actually not associated with this specific particle but with another

Al–Mn particle inside a dimple (not shown for brevity). The micrograph in Fig-

ure 32b and its associated EDS spectrum unequivocally show that the Mn particles

are involved in void nucleation. The assertion that these are pure Mn particles is
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(a)

(b)

(c)

Figure 32: Three types of particles observed inside dimples and their EDS spectro-
grams. (a) Al-Mn particles (here in a smooth bar); (b) pure Mn particles (in a RN10
specimen); (c) Oxide particle (same RN10).

based on the phase diagram of a binary Mg–Mn system [52]. Thus the Mg peak

must be the effect of the surrounding matrix. Finally, although oxidation of fracture

surfaces can be an issue, as indicated earlier, Figure 32c clearly shows the presence
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of an MgO particle (and not a film) inside the dimple.

6.1.5 Damage mechanisms

There is a clear transition in the fundamental damage mechanism with increasing

stress triaxiality. This is illustrated in Figure 33. Under predominately uniaxial

loading, the fracture surface exhibits mainly quasi-brittle features. Figure 33a shows

for instance a deep crack in the small process zone of the smooth bar. The crack

appears to have initiated at a deformation twin, such as that shown in Figure 31b. On

the other hand, at a moderately low triaxiality (RN10 specimen) microvoid growth to

coalescence becomes the dominant feature on the fracture surface, Figure 33b. This

explains the higher strains to failure attained in RN10 specimens (see Figure 29).

Upon further increase in the stress triaxiality (RN4 and RN2 specimens), the dimples

become shallower, Figure 33c. As mentioned above, another common observation in

RN4 and RN2 specimens concerns the flat facets that appear to be traces of twin-

sized cracks, Figure 33c. Here, there are two coalescing cracks each confined to a

grain. The presence of such cracks is consistent with our observation of twin-sized

voids normal to the major loading axis (see Figure 31a).

The transition between the controlling mechanisms for damage initiation does

not mean that only one of these mechanisms are active in a specific loading. In

fact, both twin induced cracks and voids created on particles are observed in all

studied deformations. The relative activity of each mechanism, however, is changed

according to the applied loading. Figure 34 shows the side-view of a fractured RN2

specimen in the L–S plane where both damage initiation mechanisms are observed.

Part (a) of this figure shows the overview of fractured specimen whereas part (b) and

(c) present high magnification micrographs of the locations where damage is created

on second phase particles or deformation twins, respectively. There are color coded
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(a)

(b)

(c)

Figure 33: Salient features of the fracture surface under (a) uniaxial tension, (b)
moderately triaxial tension (RN10), and (c) triaxial tension (RN2). The qualitative
change in features illustrates a transition in microscopic damage mechanisms.

pictures in part (b) and (c) that helps the reader to identify the location of those

specific features with respect to the fracture surface.
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(a)

(b)

(c)

Figure 34: (a) Side-view of a fractured RN2 specimen sectioned parallel to L and S
direction. Micrographs of voids nucleated on second phase particles and twin-induced
microcracks are presented in part (b) and (c), respectively. The color-codes identify
the location of some of the features with respect to the fracture surface in part (a).
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6.1.6 Macroscopic crack growth and propagation

The top-view of the fracture surfaces in smooth and notched bars, loaded along

the L direction, are presented in Figure 35. All of the fracture surfaces exhibit a

number of splits running from along the T direction. Theses splits are along and less

frequent at low triaxiality. As the triaxiality is increased, the splits become shorter

while their number density increases. The neighboring splits are connected to each

other through inclined planes, which is assumed to be related to shear localization.

Recall that the anisotropy ratios (presented in Figure28) increase significantly after

crack initiation and before fracture. This indicates that after crack initiation de-

formation along the T direction is more intense compared to that along S direction.

Based on (i) the relative increase in rate of lateral deformation along T direction after

crack initiation, (ii) the presence of splits that run parallel to T direction and (iii)

the shear-like features connecting the splits, it was hypothesized that T direction is

the direction of macroscopic crack propagation. After reaching to a critical distance,

these cracks connect via shear localization in the L–S plane in the ligament region.

To test this hypothesis, a series of fractography studies on the cracked and fractured

specimens loaded along L direction in different planes were performed.

6.1.7 Macroscopic crack growth and propagation in RN10 specimens

The overview of the microstructure in L–T plane of an RN10 specimen after

crack initiation and before fracture is presented in Figure 36. Depicted in this figure

is a half of the specimen in which loading direction is vertical and crack is running

horizontally, along the T direction.
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Figure 35: The top-view of the fracture surfaces of smooth and notched bars loaded
along the L direction. These micrographs show the macroscopic features of the
fracture surfaces. The presence of features called as splits, running along the T
direction, are easily discernible in these graphs.
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Figure 36: L–T view of the central section of an RN10 specimen loaded parallel
to L direction, after macroscopic crack initiation and before fracture. Half of the
specimen is shown in here. The macrocrack is formed inside the specimen and
propagates toward the free surface along the T direction.
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Figure 37: High magnification of the macroscopic crack in L–T plane presented in
Figure 36 prior to etching.

Figure 38: High magnification of the macroscopic crack in L–T plane presented in
Figure 36 after etching.
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Higher magnification micrographs of the features of this plane in unetched and

etched (using both optical and SEM) condition are presented in Figures 37, 38 and

39, respectively.

Figure 39: SEM micrograph of the macroscopic crack in L–T plane presented in Fig-
ure 36 after etching. In this figure, second phase particles and (partially) deformation
twins are discernible.

From the maximum opening of the crack in these figures, it is inferred that, in

RN10 specimens, crack is formed inside the specimen and propagates towards the

surface ling the T direction.

The fracture surface of the fractured RN10 specimens was polished perpendicular

to the loading direction (here, L direction) and was observed under optical micro-

scope. The features of such surfaces after one and two rounds of metallography are

presented in Figures 40 and 41, respectively. These figures suggest that the splits

along T direction are the traces of crack propagating along the T direction. By

comparing the features on fracture surface after first and those after second round

of polishing, it is implied that some of the cracks along T direction could join each
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other to form a large one.

Figure 40: Top-view (T–S) of the fracture surface of an RN10 specimen loaded
parallel to L direction. Some of the features on the fractures surface are destroyed by
grinding and polishing perpendicular to L direction. Macrocracks propagate parallel
to T direction.
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Figure 41: Top-view (T–S) of the fracture surface of an RN10 specimen loaded
parallel to L direction. This micrograph is acquired from the sample presented
in Figure 40 after an additional set of grinding and polishing perpendicular to L
direction.
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Based on the features in Figure 35, its was implied that shear localization in the

ligament between the macrocracks lead to their coalescence. However, no clear evi-

dence was offered to justify this conclusion. Metallography in L–S plane was persued

to clarify this hypothesis. An interrupted RN10 specimen (the exact same one which

was used to acquire images in Figures 36 to 39) were cut parallel to the loading

direction and in the L–S plane to study the mechanisms by which the macrocracks

join each other. Figures 42 to fig:RN10-LS-shear21 present the micrographs of this

section. As depicted in Figure 42, zigzag cracks connected to the surface are ob-

served at the two sides of the specimen. The shape of these cracks in the L–S plane

indicates that they are driven by shear localization.

According to the micrographs shown in this section, one could rationalize the

mechanism of crack propagation in AZ31-RN10 specimens. Initially, damage initiates

inside the specimen toward the central region. Coalescence of voids and microcracks

along the T direction leads to formation of macrocracks that propagate parallel to

T direction. Growth of the macrocrack, which is closest to the notch root, leads to a

plane-strain state of deformation in the region between free surface and macrocrack

itself. Such deformation field in the ligament part promotes shear localization in L–S

plane. Thus, the macrocrack connects to the free surface via an intense shear zone.

Finally, the other macrocracks join each other by shear localization in the L–S plane

and fracture occurs.
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Figure 42: L–S view of the central section of the RN10 specimen loaded parallel to L
direction, after macroscopic crack initiation and before fracture. The same specimen
from which Figure 36 is acquired is employed to obtain this graph. Shear zones that
connect macrocracks to the free surface are easily discernible on both sides of the
specimen.
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Figure 43: High magnification of the macroscopic crack in L–S plane, on the right-
hand side of Figure 42 prior to etching.

Figure 44: High magnification of the macroscopic crack in L–S plane, on the right-
hand side of Figure 42 after etching.
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For more detail on the morphology of the cracks in Figure 42, refer to their high

magnification micrographs depicted in following figures before and after etching in

Figure 43 to 46.

Figure 45: High magnification of the macroscopic crack in L–S plane, on the left-hand
side of Figure 42 prior to etching.
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Figure 46: High magnification of the macroscopic crack in L–S plane, on the left-hand
side of Figure 42 after etching.
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6.1.8 Macroscopic crack growth and propagation in RN2 specimens

The top-view of fractured RN2 specimens loaded along L direction, after grind-

ing perpendicular to the loading direction and polishing, is shown in Figure 47. The

feature on the fracture surface of RN2 specimens exhibit significant contrast to their

RN10 counter parts although maintain some similarities. Similar to the RN10 speci-

mens, the direction of macrocrack growth in RN2 specimens is parallel to T direction.

Most of the cracks, however, are located near the notch root.

Figure 47: Top-view (T–S) of the fracture surface of an RN2 specimen loaded parallel
to L direction. This micrograph is acquired from a broken RN2 specimen after
grinding and polishing perpendicular to loading direction.

105



A schematic of the difference between formed macrocracks in RN10 and RN2

specimens loaded parallel to rolling direction is presented in Figure 48. According to

the observations, macrocracks at low triaxialities tend to form in the central region

of the specimen whereas high triaxiality promotes the formation of macrocracks near

the notch-root. In both loading condition, the main direction of crack propagation

is along the T direction.

(a) (b)

Figure 48: Schematic of macroscopic crack propagation in sample loaded parallel to
L at (a) low and (b) high triaxiality. The direction of T in these figures is vertical
whereas horizontal line represents S direction.

The side-view of the interrupted RN2 specimen loaded along L, after macroscopic

crack initiation and before fracture, in the L–S plane reveals essentially the same

information as its RN10 counterpart. The macrocracks (as shown in Figure 49, 50

and 51) indicate that macrocracks, which grow parallel to T direction connect to

the free surface by an intense shear zone. In addition, macrocracks located in close

vicinity of each other could join by shear localization.

The macroscopic mode of failure shown in Figure 30 suggests that crack prop-

agation in AZ31 uniaxial tensile bars is driven mainly by shear localization. For
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detailed micrographs in interrupted uniaxial bars and their crack morphology, refer

to Appendix.II.

Figure 49: L–S view of the central section of the RN2 specimen loaded parallel to L
direction, after macroscopic crack initiation and before fracture.

Figure 50: Higher magnification micrograph of the macroscopic crack on the left-
hand side of Figure 49 prior to etching.
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Figure 51: Higher magnification micrograph of the macroscopic crack on the right-
hand side of Figure 49 prior to etching.
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6.1.9 Salient features of the fracture surfaces

For completeness, the fractographs corresponding to the smooth, RN10 and RN2

specimens are now analyzed at higher resolutions. Figure 52 shows the salient fea-

tures in the smooth bar. The overview in (a) shows an essentially slanted surface

with a thin process zone (flat), (b) depicts a split in the thin process zone and (c)

some deep and diamond-like shallow dimples; note the shear zone to the right of the

figure. In some instances, second phase particles are observed at the center of dimples

(d) suggesting some contribution of these particles to damage under uniaxial loading.

However, this potential contribution is frustrated by the shear-like fracture and the

predominance of twinning induced damage (e). At a finer scale, smaller dimples are

seen, which appear to be the result of grain pull-out giving a granular morphology

to the surface (f). Since fine particles are observed, it is hypothesized that these

are the Mg-Al precipitates which may have caused local intergranular fracture. Such

features have been observed in the literature [136].

The characteristic features of the fracture surface of the RN10 specimen are shown

in Figure 53. The overview in (a) shows some coarse splits, one of which is shown

in (b) at a higher magnification. Splits either result from the coalescence along T

of multiple voids or from the joining of two shear cracks. Although less frequent in

RN10 specimens, the flat facets are also observed (c) surrounded by dimples. The

predominately dimpled character of the surface is evident in parts (d)–(f). In this

region, most particles inside dimples are pure Mn particles.

Interestingly, the area frequency of deep dimples decreases in the RN2 specimen,

Figure 54. Two features emerge: splits of shorter length (a) and flat facets (b). With

the introduction of a sharp notch, the ratio θ of lateral stress to axial stress increases.

One principal lateral stress is along S, which would favor the activation of softer
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deformation systems, notably extension twinning. Since flat facets are less frequently

observed at lower triaxialities, it is possible that these features originated from the

coalescence of cracks growing along the boundaries of deformation twins, mostly

extension twins, the formation of which is facilitated at higher triaxialities [22]. Other

features on the fracture surface are similar to those observed in the process zone of

the fracture surface of smooth bars. These include deep cracks with sizes close to

the size of large grains (figure 54c and d), elongated dimples (figure 54d, e and f)

and second phase particles at the center of dimples (figure 54e and f).

Figure 52: (a) Fracture surface of a smooth bar exhibiting (b) few splits, (c) diamond-
like and sheared dimples, (d) a dimple with a particle inside, (e) quasi-brittle facets
and (f) granular morphology.

110



Figure 53: (a) Fracture surface of a shallow notched bar (RN10) exhibiting (b) few
splits (c) rarely observed facets, and (d)–(f) commonly observed dimples.

Figure 54: (a) Fracture surface of sharp notched bar (RN2) showing (b) large flat
facets, (c) a magnified view of a split, and (d)–(f) other brittle-like features, including
shallow dimples.
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6.1.10 Anisotropy of fracture strains in AZ31

As it was noted before, the results presented in this section are all from loading

parallel to the rolling direction. Based on the behavior of hot-rolled AZ31 (which is

close to in-plane isotropy), however, the trends, mechanisms and justifications are

applicable to loading in any in-plane direction such as T or LT direction. Figure 55

shows the fracture strains of AZ31 in a range of triaxialities loaded parallel to L, T

and LT direction. As illustrated here, the failure strains are very close and trends

are maintained. The marginal differences in the failure strains are associated with (i)

the stochastic nature of fracture that leads to a certain degree of scatter in results;

(ii) difference in the distribution of second phase particles along different directions

of the plate and plastic anisotropy of the matrix (i.e. shift of the basal planes toward

the rolling direction in the measured texture, which is caused by processing).
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Figure 55: Fracture strains of AZ31 in a range of triaxialities loaded parallel to L, T
and LT direction.
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6.2 Damage and fracture characterization of WE43

To study the effect of stress state triaxiality on the deformation and fracture of

WE43, uniaxial and notched bar experiments are performed on WE43 specimens with

four different geometries. Applied load divided by initial minimum cross-section area

versus normalized reduction of diameter along S direction under uniaxial and triaxial

loading parallel to L direction are presented in figure 56. In these experiments, axial

flow stress gradually increases after the elastic region to reached its maximum at

fracture. Similar to the case of uniaxial tension, fracture in the notched bars oc-

curs catastrophically (other materials usually exhibit a macroscopic load drop before

fracture). Accommodated strain along S direction before final failure is reduced by

increasing the triaxiality (i.e. going from uniaxial tension to RN2 specimens). Axial

flow stress at a given reduction in diameter also increases by increasing notch acuity.

The axial nominal stress at 0.01 reduction of diameter along S direction increases

from 300 MPa to 350, 400 and 450 by going from uniaxial tension specimens to RN10,

RN4 and RN2, respectively. It is expected for the axial limit load of a plastically

isotropic material to increase with increasing notch acuity because of its enhanced

stress triaxiality [135]. Precious works showed that the increase in the flow stress

in AZ31 alloy by increasing triaxiality was much limited, an observation that was

associated with activation of new and softer deformation mechanisms (See Ref. [18]).

The effect of stress state tiaxiality on activation of different deformation systems

and eventually the macroscopic plastic anisotropy could be studied using anisotropy

ratios (RX). Anisotropy ratios are best in reflecting of these effects in polycrystalline

materials with strong texture. None the less, useful information still could be implied

from such data in WE43 with relatively weak texture. The strain ratios in specimens
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Figure 56: Force divided by initial cross-sectional area versus normalized reduction
in diameter along S direction for uniaxial and notched specimens. Some curves are
marked by a symbol at their end to make a better distinction between them.

with various geometries along L, T and LT direction are calculated post-mortem on

fracture surfaces and based on equations 3.41, 3.42 and 3.43. The data is presented

in Figure 57. As it is depicted in this figure, WE43 exhibits R-values close to unity

under tensile loading, regardless of its stress state triaxiality. During tensile loading

of WE43, there is marginal variation in lateral strains along different directions.

It means that in the case of round specimens, the cross section will preserve its

circular cross-section. Note that an isotropic material has R-value equal to unity.

Under compressive loads, however, round specimens exhibit an oval cross section after

fracture. This behavior could be related to activity of some dislocation or twinning
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Figure 57: Anisotropy ratios RX for various specimen geometries and loading direc-
tions measured postmortem. For an isotropic material RX = 1.

variants under a certain loading direction instead of all of them. In addition, the

flow stresses and R-values for loading along L, T and LT direction in compression

and tension suggest transverse isotropy (isotropy in L–T plane) in WE43 alloy. Here,

the apparent differences in the R-values originates from their definition.

Strain to fracture in WE43 alloy under various tensile loading conditions are

shown in figure 58a. Approximate triaxiality for each specimen geometry, based

on FE analysis of isotropic materials, are reported at the top horizontal scale. As

illustrated in this figure, fracture locus of WE43, regardless of loading direction in

the rolling plane, does not exhibit its maximum under uniaxial tension. This is in

contrast to the response of most materials systems.
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Figure 58: (a) Strain to complete fracture for three different in-plane direction (i.e.
L, T and LT) measured postmortem using top view micrographs of failed specimens.
(b) comparison between the fracture locus of WE43 and AZ31 in the studied range
of triaxialities.
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For each direction, by going from uniaxial tension bars to RN10 specimens with a

shallow notch geometry, the strain to failure increases slightly. Thus, the maximum

strain to failure in WE43 is achieved in RN10 notched bars with moderate triaxiality.

After this maximum, however, the strain to failure is reduced significantly to average

values as low as 4.2 % (for L direction) by increasing the stress triaxiality. This trend

is universal for all in-plane specimens and the results are very close except for slight

anisotropy in the strain to failure under uniaxial loading, where specimens along T

exhibit the lowest strain to fracture.

To compare the properties of WE43 alloy with common magnesium alloys, results

of same experiments on hot-rolled AZ31 plate with similar dimensions are presented

in figure 58b. While WE43 and AZ31 exhibit comparable ε̄f under uniaxial loading,

the strain to failure under triaxial loading is severely diminished in WE43 compared

to AZ31. For instance, RN2 specimens of AZ31 have average strain to failure ε̄f four

times higher than their WE43 counterparts. Note that AZ31 used in this comparison

is an alloy with strong anisotropy, tension/compression asymmetry and strong basal

texture (See Ref. [18, 22])while WE43 exhibits no tension/compression asymmetry,

weakened texture and isotropic behavior in tension.

6.2.1 Fractography

To explore the microstrucutral mechanisms controlling the macroscopic fracture

response of WE43, the fracture surface of different specimens are studied using SEM.

The fracture surface of WE43 under uniaxial loading, presented in figure 59, exhibits

a mixture of trans- and intergranular fracture (TGF and IGF, respectively) charac-

teristics with the latter being more dominant. Faceted features and outline of grains

on the fracture surface of WE43 alloy are clearly shown in the central region of figure

59a. These features are caused by advancement of macroscopic cracks along grain
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(a) (b)

Figure 59: Fracture surface of a uniaxial tension specimen exhibiting (a) flat surfaces
and outlines of grains on the fracture surface and (b) macroscopic cracks moving
along grain boundaries. In both micrographs, shallow dimples cover a significant
fraction of the fracture surface.

boundaries. Propagation of cracks along twin boundaries could also be responsible

for some of the observed facets, as reported in References [23, 137]. The presence of

shallow dimples covering significant portion of the studied area indicates that void

growth in this alloy is truncated by early coalescence of voids/microcracks. There

are small macroscopic cracks along the grain boundaries, as illustrated in figure 59b,

providing further evidence for intergranular fracture (IGF) in WE43.

Increasing triaxiality enhances the IGF and TGF features on the fracture surface

of WE43, as shown for the case of WE43-RN10 and RN2 specimens in figures 60 and

61, respectively. In these figures, smoother facets with high frequency are observed

at higher trixialities. The presence of grains with their smooth facets on the fracture

surface, as illustrated in figures 60b, 61a and 61b, is clear indication of IGF in the

alloy and loading condition. In addition to grain boundaries, twin boundaries could

also be preferred path for macroscopic crack advancement.

118



(a) (c)

(b) (d)

Figure 60: Fracture surface of a WE43-RN10 specimen exhibiting (a)&(c) facets with
very smooth surfaces and (b) outline of grains on the fracture surface with smooth
boundaries. (d) Second phase particles located at the end of shallow dimples and on
smooth facets.

One should bear in mind that deformation twins could also act as damage initi-

ation sites [12,18] and lead to TGF. Figures 60a, 60c and 61c show faceted features

parallel to each other suggesting twin boundaries as a preferred locations for either

crack initiation or growth. Presence of numerous second phase particles on the frac-

ture surface, as clearly depicted in figure 60d, indicates that second phase particles

are also actively involved in damage initiation process. The particles are frequently
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(a)

(b)

(c)

Figure 61: Fracture surface of a WE43-RN2 specimen showing (a)&(b) grain with
their boundaries on the fracture surface and (c) smooth facets.

observed on the fracture surface. These particles are located at the center of shallow

dimples or, sometimes, on flat and faceted features.
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Figure 62: Cleavage-like fracture with ductile ridges and possibly twinning-induced
cracks.

Figure 63: Frcture surface of a WE43-RN10 specimen showing a grain at its center.
The boundary if this grain is decorated with second phase particles suggesting the
role of these particles in intergranular fracture.
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Figure 62 presents cleavage-like facets on the fracture surface of an RN2 specimen

with ductile ridges and series of parallel cracks (most probably twinning-induced

cracks) in their vicinity. This figure clearly shows the mixed nature of the fracture

process in this alloy. The limited plasticity before final failure is evident from smooth

cleavage-like features in this image.

In addition to particles shown in figure 60d, there are particles located at corners

and edges of grains present on the fracture surfaces. This suggests that these grains

are active damage initiation sites. The central region of figure 63 depicts the fracture

surface of an RN10 specimen where the corner of the central grain is decorated with

second phase particles.

6.2.2 Qualitative rationale for fracture locus of WE43

The low failure strains in the current WE43 alloy can be explained in light of Fig-

ures 62, 63, and other features on the fracture surface. After a critical strain, voids

nucleate on the second-phase particles at appropriately-oriented GBs. The growth of

these voids is truncated soon after their nucleation by early commencement of coales-

cence due to the spatial arrangement of particles at GBs. (See initial microstructure

in Figure 64a for more details on the special arrangement of GB particles.) The

above-mentioned rationale agrees with the features found on the fracture surfaces.

Since the dependence of IGF on stress state triaxiality is known [138], one can expect

a significant reduction of failure strain as the traixialities increases, which is also ob-

served experimentally. Under uniaxial tension and compression, possible interference

from shear localization reduces the strain that material can accommodate before final

failure and leads to a maximum in fracture locus at moderate triaxialities.
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(a)

(b)

Figure 64: (a) Microstructure of WE43 in L-T plane showing second phase parti-
cles located mostly on GBs. (b) schematic of the microstructure and (c) idealized
microstructure for study of intergranular fracture using models for ductile fracture.
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The rationale proposed above is acceptable only if the ductile fracture mecha-

nisms are operative in WE43. Although ductile fracture often occurs after significant

plastic deformation, there are materials such as high strength alloys, metal matrix

composites and un-clean alloys in which ductile fracture leads to fracture strains as

low as 1% [139]. In the literature, fracture in magnesium alloys is often perceived

as quasi-brittle, a conclusion which is based on the macro- and microstructural data

from uniaxial loading experiments. Recent studies on fracture in Mg alloys [18, 22],

however, showed that fracture under uniaxial loading is affected by structural in-

stabilities, i.e., shear localization. Much higher failure strains in notched bar exper-

iments, compared to their uniaxial counterparts, were measured. Higher ductility

under such triaxial loading conditions was attributed to prevention of shear localiza-

tion due to notch geometry as well as change in fracture mechanisms. Observation

of (i) fracture surfaces covered by deep voids (Figures 11b and 13 in Ref. [18]), (ii)

flat voids with limited opening, immediately ahead of a macroscopic cracks (Figure

9 in Ref. [18]) and (iii) high strain to failures in the absence of structural instabil-

ities suggests the hypothesis that fracture in Mg alloys occurs by ductile fracture

where limited void growth is interrupted by early coalescence of voids. In the fol-

lowing, WE43 material parameters and mechanisms of ductile fracture are utilized

to rationalize experimentally observed fracture locus of WE43 via IGF.

To study ductile fracture, microstrucutre with complicated features is simplified

to a Representative Volume Element (RVE) that carries the characteristics of the mi-

crostructure in an average sense. The RVE is often characterized by parameters such

as (i) void volume fraction (f) that describes the amount of voids in microstrucutre;

(ii) void aspect ratio (W ), which represents the void shape characteristic; (iii) cell

aspect ratio (λ) that characterizes the distribution of the voids; and finally (iv) lig-

ament ratio (χ), which defines the ratio of the void diameter (perpendicular to the
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loading direction) to the cell diameter. See Figure 65 for illustrations on these param-

eters. Only three of these parameters are independent and the geometry of the cell

defines the relationship between them (e.g., for a spheroidal void inside a cylindrical

cell, χ = [3fλ/W ]
1
3 ). Accordingly and by assuming that voids could initiate on all

second phase particles, the microstructure of the WE43 in L–T plane, presented in

Figure 64a, is simplified as one where second phase particles are mostly located on the

grain boundaries (left picture in Figure 64b). Since those grains boundaries and their

associated particles that are parallel to the loading direction do not play a substan-

tial role in fracture, one could further idealize the microstructure as one presented

in the right side of the Figure 64b. Using this idealization, χ0 and λ0 in the current

WE43 alloy are calculated to be 0.25 and 1.77, respectively. The microstructure of

this WE43 is not homogeneous and these parameters, in some locations, can be as

high as of χ0 = 0.35 and λ0 = 5.25. Here, only the grain boundaries that make an

angle of 60 6 θ 6 120 degree with the loading direction are considered. In contrast

to this microstructure, there is the matrix with homogeneously distributed voids that

renders λ0 = 1. A comparison between the RVE of microstructures with homoge-

neous and heterogeneous void distribution (similar to the one observed in WE43) is

presented in Figure 65. It is clear from this picture that void nucleation from closely

arranged particles can significantly reduce the ligament region that carries the load.

The void spacing significantly affects the strain to onset of coalescence [115] and

it is the coalescence stage at the end of which fracture occurs. In fact, in many

cases, the onset of coalescence could be identified as a failure criterion owing to the

fact that material loses its load baring capacity rapidly and undergoes fracture soon

after it. A fully analytical closed-form criterion for coalescence of voids by internal

necking was recently developed by Benzerga and Leblond [93]. Using a modified

version of the model in this reference [140] and presented in Equation 6.1, the stress
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Figure 65: (a) RVE used to study coalescence of voids in fail via mechanisms of
ductile fracture. (b) Shape of the RVE for homogeneous distribution of voids. (c)
Shape of the RVE for heterogenous distribution of voids such that ductility properties
of diminished. Idealization of the second phase particles on GBs as nucleation sites
for voids in the current WE43 is close to such configuration (as shown in 64)

to the onset of coalescence (σc) normalized by the flow stress of the material (σ)

versus initial ligament ratio (χ0) is calculated and presented in Figure 66.

σc
σ

=
β√
3

[
2−

√
1 + 3χ4 + ln

(
1 +

√
1 + 3χ4

3χ2

)]
+

α

3
√

3

χ3 − 3χ+ 2

3χW
(6.1)

with

α =
(C0 + C1χ)W

1 + (C0 + C1χ)W
; β = 0.9 (6.2)

where

C0 = −0.84; C1 = 12.9 (6.3)

As it is illustrated here, a slight increase in χ0 (which is bound between 0.0 6
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Figure 66: Evolution of coalescence stress ’σc’ versus ligament parameter ’χ0’. The
trend of change in σc with χ0 is almost the same for any void shape.

χ 6 1.0) leads to a significant drop in coalescence stress. According to the relation-

ship between λ and χ, presented above, increasing λ from 1.0 (i.e., homogeneous

distribution of voids) to 5.25 (i.e., locally measured from the distribution of second
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phase particles on GBs in the current WE43 alloy) leads to a 173.8 % increase in

parameter χ0 and significant reduction of coalescence stress. Lower stresses required

for coalescence are realizable at lower strains. Therefore, the failure strain of the ma-

terials is decreased significantly. The effect of void shape is presented in this figure as

well. According to this figure, prolate voids lead to lower coalescence stress. Details

aside, the trend of change in σc with χ0 is almost the same for any void shape. Note

that in this analysis, the change in void shape could drastically change void volume

fraction, which is not kept constant. Thus, the effect of void shape presented here

should be treated with care.

To rationalize the experimentally fracture locus, the effect of triaxiality of the

evolution of microstrucutral variable should be studied. The effect of triaxiality

on the evolution of ligament ratio and void shape during deformation of a model

material is presented in Figure 67. These graphs are re-plotting of data in Ref. [79].

These graphs show the typical evolution of microstructure containing pre-existing

voids during the void growth stage (omitting both nucleation and coalescence). As

depicted in Figure 67a, the lateral growth of voids, which is manifested by increasing

parameter χ, is substantially accelerated as the triaxiality is increased.

Voids experience minimal lateral growth under low traixiality of T = 0.5. In

contrast to loading at low triaxiality, ligament ratio increases significantly at high

triaxialities, which diminishes the load-bearing capacity of the material. Thus, one

expects substantial reduction in strain to failure by increasing triaxialities, which

is universally accepted. Such changes in the void growth dynamics also manifest

themselves through evolution of void shape. As depicted in Figure 67b, the voids

tend to elongate along the loading direction at low triaxialities, leading to increase

in W. Under elevated triaxialities, however, the lateral growth of voids compared

to their longitudinal extension is such that prolate voids evolve toward oblate ones.
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This, partly, explains the deleterious effect of triaxiality on ductility. Finally, the

knowledge from the above analysis is used to qualitatively describe the process of

fracture in WE43 up to the onset of coalescence as the failure criterion. Figure 67c

presents the coalescence stress as a function of void shape for various χ0 values.

The arrows in this figure schematically illustrate the evolution of microstructural

variables during the course of deformation under Low (LT), High (HT) and Very High

Triaxiality (VHT). There are two sets of arrows corresponding to (i) material with

homogeneous distribution of voids (blue arrows) and (ii) matrix with heterogeneous

distribution of voids similar to present WE43 alloy (red arrows). Both materials

start with a similar void shape while the heterogeneous material has higher χ0 and,

consequently, lower coalescence stress. At low triaxialities (LT), plastic deformation

leads to void elongation and significant increase in void aspect ratio (W). In this

condition, lateral growth of voids are limited and χ does not change considerably. At

high triaxiality (HT), lateral growth of voids is such that it balances their elongation

and, as a result, W does not increase significantly while χ increases (switching from

one line to others with lower coalescence stress). Under very high triaxialities (VHT),

voids become flattened and χ is increased considerably. In WE43, voids nucleate on

the closely spaced second phase particles at GBs. The newly nucleated voids have

high χ and λ and reach the coalescence condition after limited deformation. At

high traixiality, faster increase in χ leads to lower failure strain compared to low

triaxiality cases. Finally, it is worth noting that, similar to the case of AZ31 [18],

there are contributions from shear localization (although with less intensity). As for

AZ31, the contribution from shear localization could be invoked to partically justify

the experimentally observed maximum in failures strain at moderate triaxialities.
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Figure 67: (a) Evolution of ligament parameter ’χ’ during deformation under low,
high and very high triaxialities. (b) Evolution of void ratio ’W’ during deformation
under low, high and very high triaxialities. (c) Effect of varying χ on the evolution of
σc versus W. The blue and red arrows indicate the evolution of microstructure (W and
χ) and σc for isotropic and heterogeneous distribution voids (on GBs), respectively.
(VHT:=Very High Triaxiality, HT:=High Triaxiality and LT:Low Triaxiality)
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7. MICROTOMOGRAPHY ANALYSIS

The fractography work presented in previous section, showed that, in AZ31, there

is diffuse damage in the microstructure at incipient crack formation and after frac-

ture. Second-phase particles and deformation twins were identified as the sites for

void/microcrack initiation. It was shown that void near the fracture surface are not

axially extended as it is expected based on information from most materials system

such as copper and low-carbon steels. In addition, from the features on the fracture

surface, which were mainly along the T direction, it was implied that direction of

crack propagation in AZ31 alloy is parallel to the T direction. Metallography on

the interrupted specimens in L–T and L–S corroborated this hypothesis. It was con-

cluded that when macroscopic cracks reach to a critical distance from free surface or

another crack, connect to it via shear localization in L–S plane.

Although valuable information are drawn from fractography data, their statistical

representativeness could be questioned. It is especially important in the study of

fracture, which is a stochastic phenomenon. In addition, the fractography data is

in two dimensional by nature. Connecting such 2D data to the 3D state of damage

in the material is not trivial. A three dimensional study on the state of damage

at different triaxialities could provide further insight in the mechanism of damage

and fracture. Therefore, microtomography analysis were performed on specimens

loaded at different triaxialities. Samples for X-ray computed microtomography were

prepared by sectioning notched specimens deformed up to incipient fracture along

T direction. These samples are stopped at macroscopic crack initiation, which is

identified by a sudden load-drop in the load-deflection curves. The specimens were

cut in L–T planes into sections (i) close to the free surface and (ii) close to the center
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Figure 68: Schematic describing the location of each tomographic section and the
order of images in the representation of results.

of the bar. Data from these analyses were used to acquire better understanding of

void/microcrack growth and their interactions at coalescence,

Investigating the microstructure of RN10 and RN2 notched bars enabled the

study of triaxiality effects on void/microcrack initiation, growth and coalescence.

Tomography studies render a resolution of 0.7µm in which most second-phase par-

ticles are distinguishable. In this analysis, however, grain- and twin boundaries are

not discernible. A schematic of the surface and central sections, plane of view and

the order in which the micrographs are presented with respect to the geometry of

the notched bars are shown in Figure 68. In this section, micrographs in each figure

are ordered based on their closeness to the center of the bar (along the normal to the

plane of view; i.e., S direction). For instance, in a single figure with four sub-figures,

migcrograph in part (a) is taken from a location close to center of the bar whereas

part (d) captures the microstructure close to the surface, which its normal is the S

direction.
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7.1 State of damage in AZ31 at moderate triaxialities

Figure 69 illustrates the microstructure of an AZ31-RN10 specimen.

(a)

(b)

(c)

(d)

Figure 69: State of damage in an RN10 specimen loaded parallel to T direction
and unloaded after macroscopic crack initiation. The micrographs are taken from a
section near the free surface (black region). This section is similar to the one in part
(a) of Figure 68. The width of each micrograph is 1435 µm.
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(a)

(b)

Figure 70: Formation of sheear lips in RN10 specimen. The microcracks connect to
free surface when they reach to a critical distance from each other. The width of
each micrograph is 1435 µm.
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This figure depicts the microstructure near the notch root, similar to the schematic

(a) in Figure 68. As depicted in these micrographs, most voids and the macroscopic

crack in RN10 specimens are formed near the center of the specimen. Closer look

indicates that majority of these voids are related to second-phase particles. When

the macroscopic cracks get close to the free surface, large shear-lips (as shown in

Figure 70 connects them to each other. Shear-lip formation usually occurs near the

surface and in the L–S direction.

Micrographs of the central part of the RN10 specimen in the L–T plane is pre-

sented in Figure 71. Schematic (b) in Figure 68 illustrates the location of these

micrographs. As described before and shown in part (a) of this figure, damage is

more pronounced in the central region of these micrographs. It is possible for cluster

of voids/microcracks to coalesce on each other and form macrocracks at separate

regions of the sample. These macrocracks then connect to each other by shear local-

ization and form a large macrocrack. Formation of such macrocracks via localization

is depicted in Figure 71b-d. The micrographs in this section clearly show the extent

of which damage is present in the last stages of deformation in Mg alloys. In addi-

tion, the importance of second-phase particles in damage initiation is demonstrated

in all micrographs. Although there is limited axial voids growth, the number density

and distribution of voids in the microstrucutre shows the ductile nature of fracture

in this alloy.
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(a)

(b)

(c)

(d)

Figure 71: State of damage in an RN10 specimen loaded parallel to T direction
and unloaded after macroscopic crack initiation. The micrographs are taken from a
section near the center of the notched bar. This section is similar to the one in part
(b) of Figure 68. The width of each micrograph is 1435 µm..
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7.2 State of damage in AZ31 at high triaxialities

Tomography data of RN2 specimen is presented in this section. Similar to the

previous section, microstructure near the notch root, similar to the schematic (a) in

Figure 68, is shown in Figure 72.

(a)

(b)

(c)

(d)

Figure 72: State of damage in an RN2 specimen loaded parallel to T direction
and unloaded after macroscopic crack initiation. The micrographs are taken from a
section near the free surface (black region). This section is similar to the one in part
(a) of Figure 68. The width of each micrograph is 1435 µm.
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(a)

(b)

(c)

(d)

Figure 73: State of damage in an RN2 specimen loaded parallel to T direction
and unloaded after macroscopic crack initiation. The micrographs are taken from a
section near the center of the notched bar. This section is similar to the one in part
(a) of Figure 68. The width of each micrograph is 1435 µm.
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The central region of the bar in L–T planes are also shown in Figure 73; see the

schematic (b) in Figure 68 for the location of these pictures with respect to the bar.

The most important observation in this set of micrographs is the frequent obser-

vation of voids with limited opening, even voids that are very close to the macro-

scopic crack. Compared to other materials system, where voids are significantly

extended along the rolling direction, the voids/microcracks remain relative penny-

shaped. Note that these features are captured after macroscopic crack initiation and

close the final failure. The same was observed in the RN10 specimen but to a lesser

extent. These micrographs indicate that there is limited void growth in AZ31 prior

to failure.

As shown in Figure 72a and in contrast to the RN10 specimens, damaged regions

are located near the free surface of RN2 specimens. Small cracks form near or on

the surface. Moving along the S direction (normal to the plane of study) which is

equivalent of going form Figure 72a to 72d, the cracks are extended towards the

central region of the studied plane. As it was the case for RN10 specimens, void

are mostly related to the second-phase particles. The micrographs in this figure

also indicate that voids undergo limited axial growth before final failure. No large

shear-lip was formed in RN2 specimens. There are, however, situations in which

small microcracks with limited axial opening link up via very short shear region

(Figure 72b and c). Similar trends were observed when the central region of the L–T

section in RN2 specimens were studied. For more details, see Figure 73.

Investigating the voids in all of the presented micrographs suggests that, prior

to coalescence, voids in AZ31 do not experience extensive axial growth compared to

other material systems. This observation puts Mg in the class of technologically im-

portant materials in which fracture is controlled by early coalescence. High strength

steels and Al alloys are among materials that fail with similar mechanism. Tomog-
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raphy data also corroborated the conclusions of fractography on AZ31. Schematic

illustration of the arrangement of microcracks in RN10 and RN2 specimens are re-

called from Section sec:frac-AZ in Figure 48. In RN10 specimens loaded along T di-

rection, damage forms predominantly in the central area of the sample and connects

to the free surface via shear-lip formation. The direction of crack growth is along

the L direction. Shear localization also connects the existing cracks. Microstrucutral

investigations in L–T plane presents the best opportunity for observing crack growth

and damage propagation. Alternatively, T–S planes’ micrographs best illustrate the

linkage of existing cracks by shear localization. In RN2 bars, however, damage is

dominantly formed near notch root and macrocracks are formed near surface. These

macrocracks propagate along L direction and connect to each other via shear zones.

The mechanism of crack propagation and its trace, presented in Figure 48, is also

proposed in previous sections based on tedious metallography.

7.3 Damage initiation from the surface

As previously mentioned, second-phase particles are the main mechanism for

void and crack initiation. This contribution in creation of voids was illustrated in

micrographs presented in the previous two sections. Figure 74 shows the role of

second phase particles in initiation of surface cracks and their propagation. Part a of

this figure shows the formation of a surface crack in an RN10 specimen at the location

of second-phase particles. Figure 74b depicts a cracked formed in an RN2 specimen

where a severely damaged cluster of second-phase particles are present. Figure 74c

and d show the same figure presented in part b where second phase particles are

present in the crack path.
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(a)

(b)

(c)

(d)

Figure 74: Tomograph of AZ31-RN10 specimen. Here, the role of second phase
particles in initiation and propagation of surface cracks are illustrated. The width
of each micrograph is 1435 µm.
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8. CONSTITUTIVE MODELING OF PLASTIC ANISOTROPY

8.1 Identification of plastic anisotropy using Hill’s 1948 criterion

Since void growth is a signature of plastic deformation of the matrix surrounding

the voids, plasticity and ductile fracture are closely related. The HCP crystal struc-

ture and processing texture leave wrought magnesium alloys with a strong anisotropic

behavior. Anisotropy of the matrix in Mg alloys is often invoked to justify their low

ductility and poor formability [141]. However, recent analysis by Keralavarma and

Benzerga showed that, when ductile fracture by void growth and coalescence it active

in the material, certain types of matrix plastic anisotropy could significantly increase

the strain to failure initiation [79]. Thus, accurate prediction of damage initiation

and accumulation requires a proper constitutive model for plastic anisotropy. As

mentioned before in Section 2.1, despite elastic isotropy [37], magnesium exhibits

significant plastic anisotropy in its yield and flow strength as well as anisotropy ra-

tios. Therefore, this section is dedicated to identifying the plastic anisotropy in the

AZ31 and WE43.

To model yield and flow properties, a re-formulation of Hill’s 1948 (Hill48) crite-

rion [73] is adapted here. Among the advantages of Hill48 criterion are its simplicity

and the fact that it could be fully identified base solely on the uniaxial experiments.

For more details on the derivation of the model, see Section 2.3 and Ref. [75]. The

yield function in this model reads as follows:

F =
3

2
σ : p : σ − σ̄2 =

3

2
σ

′
: h : σ

′ − σ̄2 (8.1)

where:
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σ
′
= σ − 1/3 tr(σ)I: The stress deviator;

p: The forth order Hill’s deviatoric anisotropy tensor;

h: The forth order macroscopic anisotropy tensor in the space of deviatoric stresses;

σ̄: The flow stress in an arbitrarily chosen reference direction.

In the equation 8.1, the relationship between p and h is as follows:

p = J : h : J (8.2)

where J is the forth-order deviatoric projection operator J = I − 1
3
I
⊗

I with I

and I being the forth- and second-order identity tensors, respectively. The plastic

anisotropy of the matrix is, therefore, fully characterized by identifying the coef-

ficients of the either of the anisotropy tensors (i.e., p or h). Equation 8.3 shows

the most general form of the deviatoric anisotropy tensor (h) for the case of an

orthotropic material with no tension–compression asymmetry.

h =



h11 h12 h13 0 0 0

h12 h22 h23 0 0 0

h13 h23 h33 0 0 0

0 0 0 h44 0 0

0 0 0 0 h55 0

0 0 0 0 0 h66


(8.3)

For the current labeling of the plate, the directions 1, 2, 3, 4, 5 and 6 are assigned

to L, T, S, TS, LS and LT, respectively. Assume that the principle directions of the

plate (i.e., L, T, and S) coincide with the principle axes of orthotropy in the material.

A direct consequence of this assumption is that off-diagonal components of anisotropy

tensor vanish. Thus, it is the case that:
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h =



hL 0 0 0 0 0

0 hT 0 0 0 0

0 0 hS 0 0 0

0 0 0 hTS 0 0

0 0 0 0 hLS 0

0 0 0 0 0 hLT


(8.4)

In order to identify the anisotropy of the matrix using Hill48 model, all compo-

nents of h matrix should be identified. There are two methods for such identification,

(i) stress-based; and (ii) anisotropy ratio-based. The stress-based method utilizes the

flow stresses as follows.

3

2



σ
′
1

σ
′
2

σ
′
3

√
2σ

′
4

√
2σ

′
5

√
2σ

′
6





hL 0 0 0 0 0

0 hT 0 0 0 0

0 0 hS 0 0 0

0 0 0 hTS 0 0

0 0 0 0 hLS 0

0 0 0 0 0 hLT





σ
′
1

σ
′
2

σ
′
3

√
2σ

′
4

√
2σ

′
5

√
2σ

′
6


= σ̄2 (8.5)

Here, shear components of the stress tensor are multiplied by
√

2 due to the fact

that stress tensor is symmetric (i.e., σij = σji) and they appear twice in the original

tensorial calculations. In the Voigt’s notation, however, only three shear components

are present and this difference is accounted for by the pre-factor. For material loaded

along one of the principle axes of orthotropy (e.g., L direction), the yield criterion
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becomes:

3

2
σ2



2/3

−1/3

−1/3

0

0

0





hL 0 0 0 0 0

0 hT 0 0 0 0

0 0 hS 0 0 0

0 0 0 hTS 0 0

0 0 0 0 hLS 0

0 0 0 0 0 hLT





2/3

−1/3

−1/3

0

0

0


= σ̄2 (8.6)

This equation leads to the following relation:

4hL + hT + hS = 6(
σ̄

σL
)2 (for Loading ‖ L) (8.7)

Applying the same analysis to loading parallel to other principal directions (i.e.,

T and S), it is the case that:

hL + 4hT + hS = 6(
σ̄

σT
)2 (forLoading ‖ T) (8.8)

hL + hT + 4hS = 6(
σ̄

σS
)2 (forLoading ‖ S) (8.9)

The off-axis loading of the material along directions other than the axis of or-

thotropy allows the identification of shear components of anisotropy tensor. Com-

ponents of the stress tensor, equivalent to those developed in the material during

uniaxial loading along off-axis directions (45◦ between pairs of principal directions)

could be calculated using simple rotation of a second order matrix. Example of

loading along LT direction is presented in what follows.
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σ = σ



1/2

1/2

0

0

0

−1/2


(8.10)

Since σm = 1
3
σ, the deviatoric stress is, thus, as the following.

σ
′
= σ



1/6

1/6

−2/6

0

0

−3/6


(8.11)

Using the Hill48 yield criterion, it is the case that:

3

2
σ2



1/6

1/6

−2/6

0

0

−
√

2× 3/6





hL 0 0 0 0 0

0 hT 0 0 0 0

0 0 hS 0 0 0

0 0 0 hTS 0 0

0 0 0 0 hLS 0

0 0 0 0 0 hLT





1/6

1/6

−2/6

0

0

−
√

2× 3/6


= σ̄2

(8.12)
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The above equation leads to the following relation.

hL + hT + 4hS + 18hLT = 24(
σ̄

σLT
)2 (forLoading ‖ LT) (8.13)

Similarly, one could also derive the relations for loading along LS and TS direc-

tion.

hL + 4hT + hS + 18hLS = 24(
σ̄

σLS
)2 (forLoading ‖ LS) (8.14)

4hL + hT + hS + 18hTS = 24(
σ̄

σTS
)2 (forLoading ‖ TS) (8.15)

Solving equation 8.7 to 8.15, simultaneously, the components of h (i.e. hi) are

calculated as follows:

hL =
σ̄2

3

(
5

σL2
− 1

σT 2
− 1

σS2

)
(8.16)

hT =
σ̄2

3

(
− 1

σL2
+

5

σT 2
− 1

σS2

)
(8.17)

hS =
σ̄2

3

(
− 1

σL2
− 1

σT 2
+

5

σS2

)
(8.18)

hTS =
σ̄2

3

(
4

σTS2
− 1

σL2

)
(8.19)

hLS =
σ̄2

3

(
4

σLS2
− 1

σT 2

)
(8.20)

hLT =
σ̄2

3

(
4

σLT 2
− 1

σS2

)
(8.21)

Using the above equations along with the data on yield/flow stresses from uniaxial

tension or compression tests (presented in Section 5), the anisotropy of matrix could

be characterized. This method requires six experiments along L, T, S, TS, LS and

LT directions.

Another method to characterize the anisotropy of the matrix using Hill48 cri-
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terion is to use anisotropy ratios. In the following, the derived equations for such

identification is presented. In the Hill’s model for anisotropy, an associative flow rule

is considered. Using this flow rule, the Hill48 criterion leads to the following relations

for the strain rate.

d =
3

2

deq
σeq

p : σ =
3

2

deq
σeq

J : h : J : σ (8.22)

Applying the above relation to uniaxial loading parallel to one of the principle

directions of orthotropy (e.g., L direction), the strain rate tensor is identified as

follows:

dL =
3

2

deq
σeq
× σ

2/3 −1/3 −1/3 0 0 0

−1/3 2/3 −1/3 0 0 0

−1/3 −1/3 2/3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





hL 0 0 0 0 0

0 hT 0 0 0 0

0 0 hS 0 0 0

0 0 0 hTS 0 0

0 0 0 0 hLS 0

0 0 0 0 0 hLT





2/3

−1/3

−1/3

0

0

0



=
3

2

deq
σeq

σ

9



4hL + hT + hS

−2hL − 2hT + hS

−2hL + hT − 2hS

0

0

0


(8.23)

According to the anisotropy ratio defined in Section 3.3 and 3.4, The anisotropy
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ratios for each of the loading directions are calculated as follows:

RL =
−2hL − 2hT + hS
−2hL + hT − 2hS

(8.24)

RT =
hL − 2hT − 2hS
−2hL − 2hT + hS

(8.25)

RS =
−2hL + hT − 2hS
hL − 2hT − 2hS

(8.26)

RTS =
18hTS − (4hL + hT + hS)

2(4hL + hT + hS)
(8.27)

RLS =
18hLS − (hL + 4hT + hS)

2(hL + 4hT + hS)
(8.28)

RLT =
18hLT − (hL + hT + 4hS)

2(hL + hT + 4hS)
(8.29)

In the above identifications, it is assumed that the ratio of the lateral strain

rates are equal to the ratio of lateral strains. By solving a set of five equations (two

parallel to principle and three along off-axis directions) from the equation 8.24 to

8.29, simultaneously, the following relation are extracted for the components of h

tensor (i.e. hi). Here the Equation 8.26 is not considered, which removes the need

for experiments along the S direction.

hT
hL

=1− 3(RLRT − 1)

RLRT − 2RL − 2
(8.30)

hS
hL

=1− 3RL(RT − 1)

RLRT − 2RL − 2
(8.31)

hTS
hL

=− 1

2

(2RTS + 1)(RL + 1)

RLRT − 2RL − 2
(8.32)

hLS
hL

=− 1

2

(2RLS + 1)(RL + 1)RL

RLRT − 2RL − 2
(8.33)

hLT
hL

=− 1

2

(2RLT + 1)(RLRT + 1)

RLRT − 2RL − 2
(8.34)
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Using the experimental data presented in Section 5 and the above relations, the

components of h tensor could be identified.

8.2 Application of Hill48 to Mg alloys

Using the relation derived in the previous section, the h tensor and its evolution

during the course of deformation were identified for both AZ31 and WE43. It is

worth noting that Hill48 is not able to account for tension/compression asymmetry.

Thus, h tensor was identified for tension and compression, separately.

Table 12: Components of the h tensor and their evolution with deformation
for AZ31, calculated based on anisotropy ratios, under uniaxial tension.

@
@
@
@
@

hi

after yield ε = 3% ε = 6% ε = 9% ε = 12% Steady State

hL 1.00 1.08 1.15 1.16 1.18 1.17

hT 1.00 0.96 0.82 0.91 0.93 0.92

hS 1.00 0.71 0.56 0.45 0.36 0.40

hTS 1.90 1.95 1.84 1.88 1.74 1.78

hLS 2.31 2.43 1.82 1.72 1.66 1.60

hLT 0.92 1.02 1.02 1.05 1.07 1.03

h 1.80 1.81 1.91 1.92 1.95 1.95
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Table 13: Components of the h tensor and their evolution with deformation
for AZ31, calculated based on flow stresses, under uniaxial tension.

@
@
@
@
@

hi

after yield ε = 3% ε = 6% ε = 9% ε = 12% Max Stress

hL 0.73 0.28 0.66 - - 1.08

hT 0.13 0.10 0.60 - - 1.11

hS 2.96 4.80 2.77 - - 0.57

hTS 3.83 3.58 2.33 - - 3.03

hLS 3.93 3.61 2.34 - - 2.56

hLT 0.20 0.10 0.41 - - 0.99

h 2.60 3.65 2.08 - - 1.79

Table 14: Components of the h tensor and their evolution with deformation
for AZ31, calculated based on anisotropy ratios, under uniaxial compression.

@
@
@
@
@

hi

after yield ε = 3% ε = 6% ε = 9% ε = 12% Steady State

hL -0.35 0.93 0.95 0.88 0.98 0.91

hT 0.69 0.19 0.28 0.56 0.43 0.66

hS 6.70 2.09 1.91 1.90 1.65 1.70

hTS 1.00 3.24 2.98 1.86 2.11 1.85

hLS 8.61 6.96 4.89 5.17 4.01 4.35

hLT 4.53 0.58 0.60 0.72 0.76 0.86

h 2.55 1.95 1.92 1.83 1.84 1.77
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The results of these identifications, using both stress- and anisotropy ratio-based,

are presented in Table 12 to 18.

Table 15: Components of the h tensor and their evolution with deformation
for AZ31, calculated based on flow stresses, under uniaxial compression.

@
@
@
@
@

hi

after yield ε = 3% ε = 6% ε = 9% ε = 12% Max Stress

hL 1.26 1.26 1.29 1.08 1.00 0.98

hT 0.98 1.19 0.89 0.76 0.72 0.68

hS -0.01 -0.23 -0.07 0.93 1.27 1.39

hTS 1.78 1.06 1.14 2.96 2.72 2.49

hLS 1.29 0.95 1.02 1.98 2.25 2.39

hLT 1.12 1.30 1.14 0.97 0.75 0.77

h 2.18 2.46 2.36 1.80 1.84 1.83

Table 16: Components of the h tensor and their evolution with deformation
for WE43, calculated based on anisotropy ratios, under uniaxial tension.

@
@
@
@
@

hi

after yield ε = 3% ε = 6% ε = 9% ε = 12% Steady State

hL 0.87 1.01 - - - 1.03

hT 1.21 0.80 - - - 0.91

hS 1.33 1.15 - - - 0.97

hTS 1.00 1.00 - - - 1.00

hLS 1.37 0.89 - - - 0.94

hLT 1.07 1.01 - - - 0.97

h 1.89 2.03 - - - 2.03
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Table 17: Components of the h tensor and their evolution with deformation
for WE43, calculated based on anisotropy ratios, under uniaxial compression.

@
@
@
@
@

hi

after yield ε = 3% ε = 6% ε = 9% ε = 12% Steady State

hL 0.73 0.95 0.95 - - 0.95

hT 1.54 0.71 0.70 - - 0.77

hS 1.55 1.49 1.48 - - 1.41

hTS 1.00 1.32 1.33 - - 1.24

hLS 1.62 1.05 1.20 - - 1.17

hLT 0.90 0.83 0.80 - - 0.83

h 1.87 1.98 1.97 - - 1.97

Table 18: Components of the h tensor and their evolution with deformation
for WE43, calculated based on flow stresses, under uniaxial compression.

@
@
@
@
@

hi

after yield ε = 3% ε = 6% ε = 9% ε = 12% Steady State

hL 0.91 1.04 1.06 1.05 - 1.04

hT 0.69 0.78 0.86 0.92 - 0.93

hS 1.66 1.08 0.92 0.89 - 0.90

hTS 1.47 1.03 1.08 1.12 - 1.19

hLS 1.26 0.97 0.95 1.00 - 1.15

hLT 0.89 0.99 1.03 1.11 - 1.05

h 1.91 2.02 2.02 1.98 - 1.95
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Note that no uniaxial tension tests were done along the S direction. Since the

stress-based method requires a set of six experiments, it is not possible to identify

the h in tension based on the stresses. For AZ31 alloy, the compression flow stresses

along the L direction was used as a replacement for tension along the S direction,

since these two tests are almost equivalent in AZ31 with strong basal texture. In the

anisotropy ratio-based method, only five set of experiments are sufficient and there

is no need for results along the S direction.

8.3 Development of shear strains during off-axis uniaxial loading

During the loading of an anisotropic material parallel to directions other than

principle axes of orthotropy, material could experience rotation, which is rooted in

the anisotropy of the matrix. Development of such shear strains inside the material

could introduce significant error in identification of anisotropy components from off-

axis experiments. In the current study it was assumed that that no shear strains

are developed in off-axis experiments along 45◦ between pairs of principle direction.

Here, this assumption is tested. Consider uniaxial loading of a sample in the e1-e2

plane along a direction that makes angle θ with axis e1. Here, e1, e2 and e3 are the

principle asex of orthotropy in the material. The stress state inside the gauge section

due to such macroscopically applied deformation is as follows:

σ =


σ 0 0

0 0 0

0 0 0

 (8.35)
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where the coordinates coincide with the direction of the applied load. This stress

in the coordinates system coinciding with the principle axes of orthotropy is calcu-

lated as follows:

σ
′
= RTσR (8.36)

where

R =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (8.37)

σ = σ


cos2 θσ − sin θ cos θσ 0

− sin θ cos θσ sin2 θσ 0

0 0 0

 (8.38)

According to Equation 8.39, the strain rate tensor in Hill48 model is as follows.

d =
3

2

deq
σeq

J : h : J : σ (8.39)

=
3

2

deq
σeq



2
3
h1 −1

3
−1

3
0 0 0

−1
3

2
3
h2 −1

3
0 0 0

−1
3
−1

3
2
3
h3 0 0 0

0 0 0 h4 0 0

0 0 0 0 h5 0

0 0 0 0 0 h6





cos2 θ − 1
3

sin2 θ − 1
3

−1
3

0

0

− cos θ sin θ


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Thus

d =
3

2

deq
σeq



(2
3
cos2θ − 2

9
)h1 + (−1

3
sin2θ + 1

9
)h2 + 1

9
h3

(−1
3
cos2θ + 1

9
)h1 + (2

3
sin2θ − 2

9
)h2 + 1

9
h3

(−1
3
cos2θ + 1

9
)h1 + (−1

3
sin2θ + 1

9
)h2 − 2

9
h3

0

0

− cos θ sin θh6


(8.40)

The rate of shear deformation developed in the material for uniaxial loading

parallel to a direction making a θ angle between the two principle directions is as

follows:

dθ12 =
3

2

deq
σeq

[
cos 2θd12 +

1

2
sin 2θ(d22 − d11)

]
(8.41)

=
3

2

deq
σeq

[
cos 2θd12 +

1

2
sin 2θ

(
1

3
h1 − cos2 θh1 −

1

3
h2 + sin2 θh2

)]
=

3

2

deq
σeq

[
−1

2
cos 2θ sin 2θh6 +

1

2
sin 2θ

(
−1

6
h1 +

1

6
h2 −

h2 + h1
2

cos 2θ

)]
=

3

2

deq
σeq

[
−1

2
cos 2θ sin 2θh6 +

1

2
sin 2θ

(
h2 − h1

6
− h2 + h1

2
cos 2θ

)]

For the maximum shear strain to be zero, it is the case that:

cos 2θ =
h2 − h1

6h6 + 3(h2 + h1)
(8.42)

Table 19 shows the components of h tensor in compression and tension at steady

state, identified using anisotropy ratio method. This data is used in Table 20 to

calculate the angle at which shear strains are zero. The results in Table 20 indicated

that θ is always close to π/4. Therefore, no significant shear strain is developed inside

the material. Generally and in order to avoid such rotations, it is a good practice to
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use loading configurations that allow the rotation of grips during off-axis loading.

Table 19: Components of the h tensor and their evolution with
deformation for AZ31, calculated based on steady state anisotropy
ratios, under uniaxial compression and tension.

hi Compression Tension

hL 0.91 1.17

hT 0.66 0.92

hS 1.70 0.40

hTS 1.85 1.78

hLS 4.35 1.60

hLT 0.86 1.03

h 1.77 1.95

Table 20: The angle θ (in degree) for which the shear strain in a uni-
axially loaded specimen along an off-axis direction between pairs of L,
T or S direction is zero.

direction LT LT LS LS TS TS

loading Comp Ten Comp Ten Comp Ten

cos 2θ -0.0254 -0.0202 0.0234 -0.0539 0.0573 -0.0355

cos−1(2θ) 1.5962 1.5910 1.5474 1.6247 1.5135 1.6063

2θ(deg) 91.4535 91.1565 88.6598 93.0874 86.7151 92.0316

θ(deg) 45.7268 45.5782 44.3299 46.5437 43.3576 46.0158
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9. CONSTITUTIVE MODELING OF DUCTILE FRACTURE

The modeling strategy adopted in this work follows the philosophy put forth by

Benzerga and Leblond [123]. It follows both the local [135] and, more generally,

top-down approach [142] to fracture while improving previous methods; for example

it offers a yield criterion for the onset microcrack/microvoid coalescence based on a

fully analytical model. This strategy is similar to the Gurson-Tvergaard-Needleman

modeling approach, which is applicable to isotropic materials only.

The utilized framework (KB model for void growth and LB model for void coa-

lescence) relies on 3D constitutive relations in which anisotropic plasticity is coupled

with anisotropic damage. To account for relevant ductile fracture mechanisms, the

model evaluates criteria for growth and coalescence of voids inside an aniotropic

matrix. Grounded in experimental evidence and literature data, pre-existing voids

are considered in here. Parameter-free micromechanical models of void growth and

coalescence will be used. The current modeling effort aims to study the effect of

various microstrucutal parameters such as matrix plastic anisotropy, void shape and

distribution on the overall fracture properties of materials under proportional load-

ing condition (i.e., constant triaxiality). A series of parametric studies are performed

to shed more light on the effect of such parameters on strain to failure via ductile

fracture mechanisms. The range of triaxiality chosen for such studies are closed to

those accessible via notched bar experiments (0.5 6 T 6 1.5. The reason for such

choice is that loading of notched bars leads to the closest experimentally-achievable

stress state to a proportional loading with constant triaxiality during deformation

prior to fracture. The mistrostructural parameters of the current AZ31 and WE43

alloys are used to predict the fracture strains of these alloy at various triaxialities and
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rationalize the experimentally measured ones. To achieve this, the evolution laws for

micostrucutal variables of a material with pre-existing voids before microscale lo-

calization (that leads to void coalescence) is integrated for a material point. The

integration continues until the yield function for void growth is equal to that of co-

alescence. An effective measure of accumulate strain is considered as failure strain

(εf )

εf =

√
2

3
ε : ε (9.1)

An important step in this modeling approach is material’s parameter identifica-

tion. This pertains to anisotropic plasticity and void nucleation. In addition, ex-

perimental observations are needed to determine the initial values of microstructural

parameters (such as void aspect ratio at initiation, initial particle volume fraction

and shape), after which the micromechanical models will prescribe their evolution

laws. Thus, the richness of the models will enable many parameter-sensitivity anal-

yses to be conducted so as to formulate hypotheses on active damage mechanisms

through detailed comparisons with experiments.

9.1 Plastic anisotropy

Since void growth is a signature of plastic deformation of the matrix surrounding

the voids, plasticity and ductile fracture are closely related. HCP crystal structure,

grain orientation, and the processing texture give magnesium alloys a pronounced

anisotropic behavior. Anisotropy of the matrix in Mg alloys is often invoked to jus-

tify their low ductility and poor formability [141]. Recent analysis by Keralavarma

and Benzerga [79], however, showed that if fracture is controlled by void growth and

coalescence, certain types of anisotropy could be beneficial to ductility properties.

Thus, accurate prediction of damage initiation and accumulation requires a consti-

tutive model for plastic anisotropy that capture essential physics of the deformation.
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The present study, utilizes a phenomenological description of yield based on mod-

ified Hill 1948 criterion [73], as presented in Ref. [75] and reviewed in Section 8.

It is worth noting that Hill48 model is unable to account for tension/compression

asymmetry, which is present in Mg alloys. However, in the current study where pro-

portional loading in strictly tensile regime is utilized, Hill48 (characterized only by

tensile experiments) could be employed to account for the matrix plastic anisotropy.

More sophisticated models such as CPB06 [80] or those based on crystal plasticity

could be utilized for improved representation of matrix anisotropy.

9.2 Void nucleation

Microvoids and microcracks are either pre-existing (i.e., as manufacturing de-

fects) or induced during deformation. These microvoids and microcracks initiate on

second phase particles and deformation twins, respectively. Any model intended to

study ductile fracture requires a nucleation criterion. To account for void nucleation,

several options are available. Lower-scale calculations, such as Molecular Dynamics

(MD), could be explored to formulate physically-informed twin-crack nucleation cri-

terion [143]. It is also possible to study the microstructure of the broken material

immediately beneath the fracture surface to find voids and microcracks. The strain

associated with the location of each void/crack could also be estimated from the

lateral strains (measured using OM); this is similar to the method used in Ref [12]

to identify the evolution of twin density with strain. Alternatively, the Beremin

model, which utilizes both experiments and FE analysis with the aim of identify-

ing a macroscopic criterion for nucleation, could be applied [95, 123]. In Beremin

method, three types of circumferential notched cylindrical specimens are examined

in order to vary the stress triaxiality in the notch region. The specimens are sub-

jected to deformation to reach failure by crack initiation, which is identified by a
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sudden load drop in the load–deflection curves. To avoid the complications caused

by a developed macroscopic crack, the experiments should be stopped before crack

initiation. The specimens are then sectioned parallel to the loading axis, and the

locations of voids and their relationship to the particles are identified. The mi-

crovoids are categorized into those initiated by particle cracking and those nucleated

by debonding of particles/matrix interface to identify the effect of nucleation mode.

Finite element calculations are carried out for each specimen geometry using proper

material’s parameters to mimic plastic anisotropy and its hardening. All of the

above mentioned methods require extensive experimental and computational work

to identify a nucleation criterion. The microstructural studies on the initial material,

however, indicates that many particles are cracked because of extensive deformation

during the hot-rolling process and particles limited ductility. Therefore, pre-existing

voids are assumed to be present in the microstructure prior to loading.

9.2.1 Void growth

Because of the relationship between material porosity and ductile failure, the

ability to accurately describe the evolution of voids in a ductile metal is crucial in

order to accurately predict the failure of the material. Unfortunately, computational

constraints make it prohibitively expensive to model each of the micro-voids in most

engineering structures; therefore, the method of explicitly tracking the evolution

of each micro-void is not practical at this time. An alternative is to incorporate

the effects of the micro-voids into the macroscopic, or average, properties (such as

macroscopic stress, strain, yielding). Since the rate of dilatation of the porous solid

is related to the void growth rate, plastic potentials for the porous solid must be

developed in order to describe the void growth.

There have been attempts to take into account different types of anisotropy, e.g.,
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anisotropy in the matrix material [75,144] and void shape effect [92]. These models,

however, either did not consider both effects together or at best considered super-

position of the two effects [144]. Recent analysis by Keralavarma and Benzerga [79],

however, showed that the combined effect is more subtle than simple superposition.

Thus, the authors proposed a new model (in this document called as KB model) to

mathematically represents such strong coupling between plastic anisotropy and void

shape effect [79]. KB model, used in this study, is described bellow. The approximate

yield function ΨKB(Σ; f,W, e3,h), applicable to non-axisymmetric loadings, reads:

ΨKB = C
3

2

σ : H : σ

σ̄2
+ 2(g + 1)(g + f) cosh

(
κ
σ : X

σ̄

)
− (g + 1)2 − (g + f)2 (9.2)

where the macroscopic anisotropy tensor H is given by:

H ≡ J : h : J + η(X⊗Q + Q⊗X) (9.3)

Here, h is the anisotropy tensor in the space of deviatoric stresses (as defined in

equation 8.1) and Q, X and J are transversely isotropic tensors given by:

X ≡ α2(e1 ⊗ e1 + e2 ⊗ e2) + (1− 2α2)e3 ⊗ e3 (9.4)

Q ≡ −1

3
(e1 ⊗ e1 + e2 ⊗ e2) +

2

3
e3 ⊗ e3 , (9.5)

J = I− 1

3
J⊗ J (9.6)

For more details on the parameters in the model, see Appendix.III.

Keralavarma and Benzerga [79] supplemented yield criterion (9.2) with evolution

laws for the microstructural variables f , W and the void axis e3. The first two are

in essence similar to those used in the model presented in Ref [92], but e3 employs
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an Eshelby concentration tensor for the spin following a proposal by [145]. The

evolution laws are:

• Evolution of Porosity:

ḟ = (1− f)Λ
∂ΨKB

∂Σkk

(Σ) (9.7)

where ΨKB is the yield function and Λ is the plastic multiplier.

• Void shape evolution:

Ṡ =
3

2

[
1 +

(
9

2
− T 2 + T 4

2

)
(1−

√
f)2

α1 − αG
1

1− 3α1

]
e3 ·D

′p · e3

+

(
1− 3α1

f
+ 3α2 − 1

)
I : Dp

(9.8)

where S ≡ lnW , T is the stress triaxiality ratio and α1(f,W ) and αG
1 (f,W )

are given in Appendix.III.

• Void axis evolution e3:

ė3 = W · e3 (9.9)

which assumes that the voids rotate with the material, W being the total

material spin. This is clearly an approximation. An improved representation

may be found in [79] on the basis of earlier work by [145].

9.2.2 Void coalescence

If void growth was assumed to proceed as described by a Gurson-like model [90]

until coalescence (i.e., linkage with a neighboring void), then one could estimate void

coalescence when the lateral void diameter, transverse to the main load, reaches the

current lateral void spacing. This approach, however, leads to considerable overes-

timation of fracture properties. One of the first attempts to take into account the
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coalescence of voids was carried out by Tvergaard and Needleman [91], who mod-

ified Gurson’s spherical yield criterion to account for the onset of void coalescence

leading to final material fracture. These two authors used this modified yield crite-

rion in both numerical and finite element calculations to compare with experimental

data of a copper rod fracturing under uniaxial tension (exhibiting cup-cone fracture).

This modification by Tvegaard and Needleman on the pioneering work of Gurson is

generally referred to as the GTN criterion in the literature.

An important difference, however, between the phenomenology of void coales-

cence revealed by the cell calculations and its representation in the GTN model is

that the former points to a transition in the cell’s deformation mode, from triaxial

to purely uniaxial. For a rate-independent material, this transition is indicative of a

localization, which is due to the onset of elastic unloading in regions above and below

the void, with plastic flow being confined to the intervoid ligament. As a result, void

growth becomes highly directional until fracture takes place. Thomason [117] posed

a limit-analysis problem that was amenable to variational formulation with velocity

fields that were consistent with a postlocalization response and ,thus, appropriate

to the modeling of void coalescence. Thomason did not solve the problem in closed

form, however, obtained approximate numerical solutions to which he proposed an

empirical fit. Recently, Benzerga and Leblond [93] offered a closed form solution

for this problem. A modification of this model, which more accurately captures

coalescence in penny-shaped voids [140], is used as the criterion for onset of void

coalescence in the present study. This yield criterion is as follows:
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ΨBL(σ;χ,W ) =



(|σ33| − tΣsurf )2

b2Σvol2
+ 4

σ2
31 + σ2

32

l2τ 2
− 1 for |σ33| ≥ Σsurf

4
σ2
31 + σ2

32

l2τ 2
− 1 for |σ33| ≤ Σsurf

(9.10)

where Σvol(χ), Σsurf (χ,W ) and τ(χ) are functions of the microstructural parameters

χ and W , given by:

Σvol(χ) =
σ̄√
3

[
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

]

Σsurf (χ,W ) =
σ̄

3
√

3

χ3 − 3χ+ 2

χW

τ(χ) =
2σ̄√

3
(1− χ2)

(9.11)

with

t =
(t0 + t1χ)W

1 + (t0 + t1χ)W
; b = 0.9 (9.12)

where

t0 = −0.84; t1 = 12.9 (9.13)

When there is no shear component in the applied macroscopic load (as it is the

case in current study), the yield criterion becomes:

ΨBL(Σ;χ,W ) =
|σ33|
σ̄
− b√

3

[
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

]

+
t

3
√

3

[
χ3 − 3χ+ 2

χW

] (9.14)

165



The evolution equations are:

χ̇ =
3

4

λ

W

[
3γ

χ2
− 1

]
Dp

eq +
χ

2γ
γ̇, (9.15)

Ẇ =
9

4

λ

χ

[
1− γ

χ2

]
Dp

eq −
W

2γ
γ̇, (9.16)

γ̇ =
1

2(1− χc)
χ̇ (9.17)

where λ represents the current value of the void spacing ratio, which is updated

through:

λ̇ =
3

2
λDp

eq, (9.18)

The void and cell axes were tacitly taken to rotate with the material as per (9.9).

Here, evolution laws for coalesence are not used since the calculations are stopped

after onset of coalescence.

Proper material’s parameters pertaining to the flow in matrix are extracted from

experiments and supplied to the models. Numerical computations using the above-

mentioned framework (models for void growth and coalescence) require the intro-

duction of elasticity, which is accounted for using an additive decomposition of the

deformation rate tensor into elastic and plastic parts, D = De+Dp. Assuming small

elastic strains, a hypoelastic constitutive law may be used to write De = C−1 : σ̇,

where C denotes the tensor of elasticity. During loading and after the onset of plas-

ticity, the evolution laws for void growth are integrated for one material point. At

each loading step, both yield criterion for growth and coalescence are evaluated. The

integration continues up to the point where yield criterion for coalescence is satisfied

prior to that of void growth. The accumulated equivalent strain (
√

(2/3)ε′ : ε′ , where
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ε
′

is the deviatoric part of the total strain) at the onset of coalescence is identified as

the strain to failure initiation (εi) and the integration is stopped. Although these cal-

culations have not been implemented in a finite element software to solve boundary

value problems, they could be extremely useful for parametric studies and predict-

ing overall material behavior under various loading conditions and microstructural

variables.

9.3 Parametric study

Prior to applying the described framework to predicting the fracture behavior

of the current Mg alloys, it is employed in an parametric study to explore the ef-

fects of matrix properties and microstrucutral variables on the damage evolution

and fracture properties of a model material. For this purpose, various matrix plastic

anisotropies and their associated h tensor are utilized. The effect of various mi-

crostructural parameters, such as void shape (W) and cell aspect ratio (λ) on the

overall properties are also investigated. These studies are utilized as a guideline for

understanding fracture in anisotropic materials and its key influential parameters.

For these purpose, the method described in the previous page is used to calculate

the fracture strains and evolution of microstructural parameters.

9.3.1 Effect of anisotropy of the matrix

As it was mentioned in Section 8, plastic anisotropy of the matrix could be

characterized by the six components of the h tensor (i.e., his). Using homogenization

theory for a matrix containing spherical voids, a scalar invariant (called h) of the h

tensor is identified such that it represents the effect of anisotropy on the ductility

properties [75]. If the coordinates of the space in which the h tensor is presented are

pointing toward the principal directions of orthotropy in the matrix, then, h admits
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the following expression [75]:

h = 2

[
2

5

hL + hT + hS
hLhT + hThS + hShL

+
1

5

(
1

hTS
+

1

hLS
+

1

hLT

)] 1
2

(9.19)

According to this analysis, an isotropic matrix results in h = 2 whereas a matrix

with h > 2 offers beneficial effects for ductility (compared to an isotropic matrix).

When h associated with an anisotropy material is less than two, the ductility prop-

erties are diminished compared to an isotropic material.

In the case of spheroidal voids, the h alone is not sufficient to represent the

effects of anisotropy. The orientation of voids in this case should be also considered.

Thus, other invariants of the h tensor are introduced. These invariants are ĥa, ĥt,

and ĥq. The following equations, for a material loaded along the e3, define theses

invariants [79].

ĥa =
ĥ44 + ĥ55

2
(9.20)

ĥt =
ĥ11 + ĥ22 + ĥ66 + ĥ12

4
(9.21)

ĥq =
ĥ11 + ĥ22 + 4ĥ33 − 4ĥ23 − 4ĥ31 + 2ĥ12

6
(9.22)

where hij above denote the Voigt-condensed components of the fourth-order tensor

ĥ; see also Equation 8.3. Here, ĥ is a formal inverse of tensor h and is defined as [75]:

p̂ = J : ĥ : J; p̂ : p = p : p̂ = J (9.23)

In this section’s calculations, the his for each studied anisotropy are entered in

the calculations. As legend in the figures, different matrix anisotropies are labeled

with their associated h factor. The information for these matrices are presented in
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the tables presented after each graph.

The effect of plastic flow anisotropy of the matrix material, represented by the

h tensor, on the failure strain of a model material with f0 = 10−5, W0 = 0.05 and

λ0 = 1.5 is presented in Figure 75 (subscript zero denotes the initial value). Here, and

as described in Section 8, h = 2 represents plastic isotropy. As shown in this figure,

matrices with h < 2 lead to failure strains less than their isotropic counterparts.

These are representative of materials in which anisotropy diminishes the ductility.

Alternatively, and in contrast to the common perception in the literature, there are

situations (i.e., h > 2) in which an anisotropy matrix improves the ductility.
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Figure 75: Strain at failure initiation versus triaxiality (T) for model materials with
different matrix plastic anisitropy. Here f0 = 1.0× 10−5, W0 = 0.05 and λ0 = 1.5.
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For instance, RVE with an anisotropic matrix characterized by h = 3 exhibits fail-

ure strain 2.82 times higher than the same RVE with an isotropic matrix. These re-

sults challenge the current and commonly-accepted understanding of plastic anisotropy

in the literature, where plastic anisotropy is deemed as detrimental for ductility prop-

erties. According to the results in this figure, plastic anisotropy could be engineered

to improve ductility. Details of the matrix characteristics in each of the studied cases

are presented in Table 21.

Table 21: Details of the matrix characteristics in several matrices with various h
factors studied in Figure 75.

Material
Plastic anisotropy components Plastic anisotropy invariants

hL hT hS hTS hLS hLT ĥa ĥt ĥq h

Mater. 1 1.00 1.00 1.00 0.25 0.25 0.80 2.63 2.51 1.00 3.00

Mater. 2 1.00 1.00 1.00 0.50 0.50 0.83 1.60 1.50 1.00 2.40

Mater. 3 1.00 1.00 1.00 0.80 0.80 1.00 1.13 1.13 1.00 2.10

Mater. 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00

Mater. 5 1.17 0.92 0.40 1.78 1.60 1.03 0.80 1.07 1.04 1.95

Mater. 6 1.00 1.00 1.00 1.90 2.31 0.92 0.76 0.76 1.00 1.80

Mater. 7 0.80 1.20 1.60 1.90 2.80 1.00 0.68 0.62 1.01 1.70

Mater. 8 0.70 1.20 2.00 4.00 5.00 1.46 0.44 0.45 1.03 1.50
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Figure 76: Coalescence strain versus triaxiality (T) for model materials with different
realizations of matrix plastic anisotropy but similar h-factors (h = 1.7 and h = 2.4).
Initial microstructural variable used in this calculation are: f0 = 1.0 × 10−5, W0 =
0.05 and λ0 = 1.5. Mater. 7 and Mater. 2 are represented by N, Mater. 71 and
Mater. 22 by H, Mater. 72 and Mater. 23 by 4, Mater. 73 and Mater. 21 by 5.
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As mentioned in Section 8 and from data in Table 21, six his (h1, ..., h6) are

involved in the identification of each matrix. Thus, several sets of his can lead to

the same h factor. Therefore, multiple fracture loci might be represented by a single

h factor in Figure 75. How these variations change the observed trends should be

studied. The variation of fracture strain for materials with the same h factor but

different realizations of matrix plastic anisotropies (i.e., matrices with nonidentical

his) is explored in Figure 76. Details of the matrix characteristics in each of the

studied cases are presented in Table 22 and 23. Despite minor differences, the results

indicate that various sets of his that render a similar h factor lead to similar overall

trends. The maximum margin in the results is obtained in the middle of the studied

range of triaxialities, i.e. T = 1.1. From this figure, it could be concluded that in

the studied range of triaxialities, h factor is able to captures the essential trends

in the matrix plastic anisotropy effects on damage and fracture if ductile fracture

mechanisms are operative.

Table 22: Details of the matrix characteristics in several matrices with h = 1.7
studied in Figure 76.

Material
Plastic anisotropy components Plastic anisotropy invariants

hL hT hS hTS hLS hLT ĥa ĥt ĥq h

Mater. 7 0.80 1.20 1.60 1.90 2.80 1.00 0.68 0.62 1.01 1.70

Mater. 71 1.00 1.00 1.00 1.86 1.86 1.86 0.54 0.77 1.00 1.70

Mater. 72 1.00 1.00 1.00 1.28 2.00 3.00 0.42 0.89 1.00 1.70

Mater. 73 1.00 1.00 1.00 1.00 3.27 3.27 0.31 1.00 1.00 1.70
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Table 23: Details of the matrix characteristics in several matrices with h = 2.4
studied in Figure 76.

Material
Plastic anisotropy components Plastic anisotropy invariants

hL hT hS hTS hLS hLT ĥa ĥt ĥq h

Mater. 2 1.00 1.00 1.00 0.50 0.50 0.83 1.60 1.50 1.00 2.40

Mater. 21 1.00 1.00 1.00 1.00 0.31 1.00 1.00 2.10 1.00 2.40

Mater. 22 1.00 1.00 1.00 1.00 1.00 0.31 2.10 1.00 1.00 2.40

Mater. 23 1.00 1.00 1.00 1.00 0.48 0.48 2.08 1.00 1.00 2.40

To provide further insight on the effects of plastic anisotropy on fracture proper-

ties, the evolution of microstructural variables during deformation for materials with

different plastic ansiotropy characteristics containing initially penny-shaped voids, is

presented in Figure 77. See Table 21 for details on the matrix anisotropy. As shown

in part (a) of this figure, the softening strain is decreased by reduction of the h factor.

Lower softening strains could be attributed to the higher rates of void growth in ma-

trices with smaller h factors, as depicted in Figure 77b. The evolution of cell aspect

ratio does not vary with alterations of the matrix characteristics (Figure 77c). From

the graphs presented in Figure 77d it is concluded that the evolution of ligament

ratio (χ) is in accord with increments of f . Another variable of interest is void shape

(W). Figure 78 illustrates the changes in the void aspect ratio during the course of

deformation corresponding to Figure 77. Despite the universal trend of increasing W

with strain in the current configuration (as depicted in Figure 78a), the dynamics of

growth changes from case to case. Figure 78b clearly shows that the rate of increase

in W is positive in material with h > 2 and negative in materials with h < 2. Note

that the initial voids in these calculations are penny-shaped (W0 = 0.05). Thus,
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when voids open up, significant increments in W is detected, even if the situation

promotes lateral growth more than the axial expansion.
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Figure 77: Mechanical response and evolution of microstructure with strain for mate-
rials with different matrix plastic anisotropy at triaxiality of T = 1.1 and flat oblate
initial void (W0 = 0.05). Here f0 = 1.0× 10−5 and λ0 = 1.5
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Figure 78: Details of the evolution of void shape with strain for materials with
different matrix plastic anisotropy at triaxiality of T=1.1 and flat oblate initial void
(W0 = 0.05). Here f0 = 1.0× 10−5 and λ0 = 1.5.
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Figure 79: Mechanical response and evolution of microstructure with strain for ma-
terials with different matrix plastic anisotropy at triaxiality of T = 1.1 and prolate
initial void (W0 = 2.0). Here f0 = 1.0× 10−5 and λ0 = 1.5

To clarify this effect, analysis similar to that performed in Figure 75 is carried

out on material with the same microstrucral variables, but prolate voids in which

W0 = 2.0. Results of this analysis are presented in Figure 79 and 80. Despite similar

trends in evolution of σeq, f , λ and χ of RVEs containing prolate and oblate voids,

the evolution of W is significantly altered. In the material with initial prolate voids,

h < 2 leads to extensive lateral void growth, which is substantially more detrimental

than axial extension. Voids in in materials with h > 2, however, tend to undergo axial

extension. This increased tendency for lateral void growth in anisotropic material

with h < 2 could be the origin of diminished ductility in these matrices.
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Figure 80: Details of the evolution of void shape with strain for materials with
different matrix plastic anisotropy at triaxiality of T = 1.1 and initially prolate void
(W0 = 2.0). Here f0 = 1.0× 10−5 and λ0 = 1.5
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9.3.2 Effect of λ

Distribution of second-phase particles and their associated voids after nucleation

in the microstructure could be altered by different techniques, such as adding alloy-

ing elements or performing various processing routes. Such effects are easily detected

and have been studied by metallurgists. For instance, rolling usually leads to redis-

tribution of second-phase particles and their elongation along the direction of rolling,

which causes anisotropy in the initially isotropic microstructor. The changes in the

microstructure are also reflected in the representative RVE of the material. Thus,

investigation of these effects could provide guidance in altering the ductility of mate-

rials. Koplik and Needleman [115] studied the effect of cell shape, which reflect the

influence of void distribution. The result of their analysis showed the strong influ-

ence of void spacing on the coalescence strain. It was also illustrated that the initial

stress-strain response is controlled by void volume fraction. Note that if the matrix

has a random distribution of voids, the rate of change in the void spacing upon load-

ing is zero. Thus here a regular or quasi-regular distribution of voids is assumed.

Justifications of this assumption are as follows: (i) Processed materials usually have a

orientation dependent distribution of second-phase particles and voids; and (ii) con-

sidering the physics of the problem, even if the material has a random distribution

of voids, wavelength of loading (caused by geometry of sample or loading itself) may

select a subset of voids which nominally could be considered as an ordered aggregate.

To investigate the effects of void spacing on properties of a material failing via

ductile fracture processes, strain to coalescence initiation versus triaxiality in mate-

rials with various void distribution characteristics are studied. The results of this

analysis are presented in Figure 81.
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Figure 81: Coalescence strain versus triaxiality for model materials with different
initial cell aspect ratios (λ0). Here h = 2.25, f0 = 1.6× 10−4 and W0 = 0.05.
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In this analysis, the initial microstrucutal features are h = 2.25, f0 = 1.6× 10−4

and W0 = 0.05. Note that λ0 = 1 represents an initial homogeneous distribution of

voids and an RVE with equal height and diameter. When voids are closely arranged

perpendicular to the loading direction (λ0 > 1), coalescence occurs after limited

deformation. This situation is in contrast to one in which voids are arranged such

that a RVE is ’fat’, with diameter larger than its height (λ0 < 1). As illustrated in

Figure 81, the effect of void distribution on ductility is significant and is maximized

at low triaxialities. At a triaixality of T = 0.8, coalescence strain for RVE with

λ0 = 5.0 and λ0 = 0.3 are εi = 0.866 and εi = 2.22, respectively. Substantial

increase in the failure strain is attributed to the increased distance between voids

perpendicular to the loading direction, which postpones short-range interaction of

voids and localization of deformation in the ligament between them.

To provide more details on the effect of λ, the evolution of microstructural features

for the analysis presented in Figure 81 at the triaxiality of T = 0.8 is presented in

Figure 82 and 83.
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Figure 82: Evolution of cell aspect ratio (λ) with strain for materials with h = 2.25,
f0 = 1.6× 10−4 and flat oblate initial void (W0 = 0.05) at T = 0.8.
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Figure 83: Mechanical response and evolution of microstructure with strain for ma-
terials with h = 2.25, f = 1.6 × 10−4 and flat oblate initial void (W = 0.05) at
T = 0.8.

Figure 83 indicates that the cell aspect ratio only influenced the evolution of

ligament ratio whereas other variables remain identical during deformation in all

studied cases. Thus, stress strain response and dynamics of void growth are not

affected by their distribution. In contrast, interaction between voids and onset of

coalescence are strongly influenced by void spacing. These results are in agreement

with conclusions in Ref. [115].

180



9.3.3 Effect of void shape

Void shape could also affect ductility properties. Several studies in the literature

are dedicated to investigating these effects [146, 147]. According to the relationship

between microstructural variables, changing one parameter representing the geome-

try of an RVE results in alteration of dependent parameters. Considering this fact,

There are two ways to study the effect of void shape that mimics the physical aspect

of the problem. For instance, one could choose to change void shape and maintain

the relative spacing of the voids. By adopting this view, the change in void shape

results in change in void volume fraction. This choice of variables is appropriate

for investigating the effects of different nucleation mechanisms (i.e., particle cracking

versus de-bonding at particle/matrix interface) in a fixed microstructure in which

the distribution of second-phase particles is known. Alternatively, void shape could

be changed by maintaining the void volume fraction. This choice significantly alters

the ligament ratio χ and, in fact, reflects the effects of the ligament ratio (χ). This

method facilitates studying the effect of distribution of void nucleation sites (due to

processing, directionality, heat-treatment and ...)on the fracture properties. In what

follows, these two effects are studied in further details.

9.3.3.1 Effect of void shape - constant void volume fraction

To study the effect of void shape when f is kept constant, coalescence strain for a

model material at triaxialities between 0.5 6 T 6 1.5 with h = 2.25, f0 = 1.0×10−5,

λ0 = 1.5 and various W s is predicted. The results, (presented in Figure 84), illustrate

that reducing W from unity (i.e., spherical voids) to W = 0.001 leads to a significant

drop in failure strain. This prediction could be rationalized in light of changes made

to the geometry of RVE by altering W . Among the parameters that define an RVE,

only three are independent; when one is changed, the dependent variables change
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accordingly. This relationship could be calculated based on the shape of the RVE

and its void. For example, in a cylindrical cell with a spheroidal void, it is the case

that:

χ =

[
3fλ

2W

] 1
3

(9.24)
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Figure 84: Strain to void coalescence versus triaxiality for model materials with
constant void volume fraction but different initial void aspect ratios (λ0). Here
h = 2.25, f0 = 1.0× 10−5 and λ0 = 1.5.
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Thus, changing void shape and keeping the void volume fraction (f) constant,

alters the χ parameter, which is very important for the onset of coalescence (Equa-

tion 9.14). This hypothesis is corroborated by the results presented in Figures 85

and 86 where the evolution of microstructural features during the course of defor-

mation at triaxiality of T=0.8 is plotted. As shown in these figures, initial value of

χ for different values of W is significantly altered. Note that initial f and λ remain

constant in all realizations. In addition to the changes in ligament ratios, void shape

effects the growth rate prior to coalescence.
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Figure 85: Evolution of void aspect ratio (W) with strain for materials with h = 2.25,
f = 1.0× 10−5, λ = 1.5 at T = 1.1.
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Figure 86: Mechanical response and evolution of microstructure with strain for ma-
terials with with h = 2.25, f = 1.0× 10−5 and λ = 1.5 at T = 0.8.

9.3.3.2 Effect of void shape - constant χ

Alternative to the previous section’s approach is to keep the ligament ratio con-

stant and vary the void shape. This method assumes a fixed distribution of void

nucleation sites in the material and an altered shape of the nucleated voids, which

it could be caused by various nucleation mechanisms. The change in failure strains

as a result of such void change is presented in Figure 87.
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Figure 87: Coalescence strain versus triaxiality (T) for model materials with constant
ligament aspect ratio (χ) but different initial void aspect ratios (W). Here h = 1.7,
f = 1.0× 10−5 and λ = 1.5.
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Figure 88: Evolution of void aspect ratio (W) with strain for materials with h=1.7,
f=1.0× 10−5, λ = 1.5 at T=0.5 (a) and T=1.1 (b).
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Figure 89: Mechanical response and evolution of microstructure with strain for ma-
terials with with h=1.7, f=1.0× 10−5 and λ = 1.5 at T=0.5.

The evolution of features such as flow stress, void volume fraction, void shape,

cell- and ligament-aspect ratio is presented in Figure 88, 89 (for T=0.5) and 90 (for

T=1.1). These figures demonstrate that when χ is constant, the void shape has

insignificant effect on ductility. The void shape effect of a constant ligament ratio is

maximal at low traixialities in the studied range of triaxialities. Accordingly, oblate

voids are more detrimental to ductility than their prolate counterparts. The void

effect is reversed at high triaxialities (T > 1.1), with penny-shaped cracks as less

detrimental for ductility.
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Figure 90: Mechanical response and evolution of microstructure with strain for ma-
terials with with h=1.7, f=1.0× 10−5 and λ = 1.5 at T=1.1.
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9.4 Application to magnesium alloys: AZ31 and WE43

9.4.1 Materials property identification of AZ31

To identify the material properties of AZ31 loaded along the L direction, image

analysis software ’ImageJ ’ was used. The volume fraction of the second-phase parti-

cles (fpart. = 0.0078) and their aspect ratio (Wpart. = 2.75) were measured using the

micrographs of the starting material. The cut-off area (area of the projection of the

particle on to the plane of observation), below which the particles were not considered

in these calculations, is 0.1 µm2. Voronoi’s cells were constructed on the location of

these second-phase particles. The average size of cells associated with second-phase

particles parallel and perpendicular the loading direction was measured and used to

calculate the average cell aspect-ratio. Figure 91 shows the initial microstructure

in various planes and its related Voronoi’s cell. For loading along L direction (i.e.,

current analysis), the data from the L–S plane was employed, yielding λpart. = 0.87.

The aspect ratio calculated from micrographs of the L–T plane also rendered a sim-

ilar number. The plane of study, used for identifying λ, should include the loading

direction. Thus, the information from the T–S plane (λpart. = 1.0). From these data

and utilizing Equation 9.24, the ligament ratio associate to second phase particles

was also calculated as χ = 0.155.

Tomography data and micrographs from metallography of the interrupted and

fractured specimens showed a high fraction of particles being actively involved in

damage initiation process. According to these findings, second-phase particles were

taken as the void initiation sites. This assumption leads to identical initial void-

spacing and ligament ratio between voids and second phase particles (χvoid = χpart.

& λvoid = λpart.).
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Figure 91: Microstructure (on the left) and its associated Voronoi’s cells (on the
right) for different planes in AZ31.
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Last but not least, based on the limited opening of the voids at the end of

deformation process, it was assumed that both voids or microcracks are initially

penny-shaped. Thus, a Wvoid = 0.05 was assumed. Using initial Wvoid, λvoid ]χvoid

and utilizing Equation 9.24, the initial void volume fraction was calculated (fvoid =

0.000142). A schematic of the algorithm followed for the identification of material

parameters of AZ31 is presented in Figure 92.

Based on the literature data for elastic properties of Mg, elastic modulus of

E = 45GPa and Poisson’s ratio of ν = 0.35 was used for AZ31. Assuming a power

law hardening, uniaxial tension results were used to characterize the flow properties

of AZ31 along L direction.

σ = Kεnp (9.25)

where K is material constant and equal to K = 440.0 MPa and n is hardening

exponent n = 0.18. Here, εp represents the accumulated plastic strain. Based on

the data in Section8, the characteristics of anisotropy after reaching a steady state

were employed to represent the plastic anisotropy in the matrix. The components of

anisitropic tensor employed in this model are as follows: hL = 1.18, hT = 0.93, h3 =

0.36, h4 = 1.74, h5 = 1.66, h6 = 1.07, h = 1.95.

Figure 92: Schematic of the algorithm used to calculate microstructural parameters
of AZ31.
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9.4.2 Materials property identification of WE43

In Section 6.2.2, a rationale based on intergranular fracture in the current WE43

alloy was proposed to justify the experimentally measured fracture locus. Accord-

ing to that rationale, only the second-phase particles on the grain boundaries are

contributing to damage initiation (Figure 93).

Figure 93: Microstructure of WE43 in L–T plane showing the presence of second
phase particles on the grain boundaries.

192



Such qualitative rationale, however, was based only on the initial values of ma-

terial parameters. For quantitative prediction of fracture, tracking the evolution of

microstructural parameters during deformation is required. Motivated by fracto-

graphical observations and previously discussed IGF hypothesis, χ of the second-

phase particles on the grain boundaries that make an angles of 60 6 θ 6 120◦ with

the loading direction were measured in the L–T plane (χpart. = 0.35). The Λ of the

second phase particles (λpart.) was calculated using various methods and reported.

To get λpart., one can divide the average grain size by the average distance between

particles on GBs that make an angles of 60 6 θ 6 120◦ with the loading direction

(λpart. = 5.25). Alternatively, the average grain size divided by the average distance

between particles on all GBs can be considered as the cell aspect ratio (λpart. = 4.39).

Finally, the average distance of all particles could be divided by the average distance

between particles on GBs that make an angles of 60 6 θ 6 120◦ with the loading

direction (λpart. = 1.77).

As mentioned in previous section, it is assumed that voids are initially penny-

shaped (Wvoid = 0.05) and these voids nucleate only on the second phase particles.

Thus, χpart. = χvoid and λpart. = λvoid. By comparing the predicted failure strains and

those measured in experiments, λ = 5.25 was selected as the cell aspect ratio in the

present WE43 alloys. Employing Equation 9.24, the GB’s void volume fraction was

calculated (fvoid = 0.000185). Schematic of the algorithm followed for identification

WE43 material parameters is presented in Figure 94.

Based on literature data for elastic properties of Mg, E = 44GPa, ν = 0.27

are used for WE43 in the current model. Assuming a power law hardening and

utilizing uniaxial tension experiments, flow properties of WE43 along L direction

was characterized as follow:

σ = Kεnp (9.26)
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where K is material constant equal to K = 615.0 MPa and n is hardening exponent

equal to n = 0.16. Here, εp represents the accumulated plastic strain. Based on the

data in Section8, isotropic properties were used to represent the matrix (h1 = h2 =

h3 = h4 = h5 = h6 = h = 1.00)

Figure 94: Schematic of the algorithm used to calculate microstructural parameters
of WE43.

194



9.4.3 Modeling ductile fracture in Mg alloys

The proposed framework for void growth and coalescence was employed, using

the material parameters of AZ31 and WE43, to predict the fracture locus of Mg

notched bars loaded along the L direction. Current ductile fracture models for void

growth and coalescence predict infinitely large fracture strains for uniaxial loading. In

such loading conditions, the predicted lateral growth of voids is such that coalescence

condition is never satisfied. Thus, in current analyses, the attention is focused on the

notched bars. The equation governing the evolution of void shape is also modified by

a pre-factor of η = 0.43 to match the parameter W with the experimentally measured

ones. In fact, the evolution law for changes in void shape is analytically deriven

but heuristically modified to quantitatively predict the experimental measurements.

Thus, this partially heuristic law is amenable to modification based on experimental

observations. The application of this pre-factor is justified as follows:

1. void locking: Experimental observations, presented in Figure 95, shows the

role of second-phase particles in limiting void growth. This effect is know as

void locking [103,148]

2. Effect of size on the rate of void growth: Literature data indicates that

voids smaller than a certain size, grow much slower that normal sized ones in the

same matrix. In the present Mg alloys, the initiated penny-shaped voids have

small size along the loading direction, which slows their longitudinal growth.

Thus, application of a pre-factor that reduces the change in void shape is partly

justified [149–151]

3. Plastic anisotropy of the matrix: Plastic anisotropy of the matrix can also

affect the rate of shape change by constraining growth along certain directions.
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Figure 95: Evidence of void locking in AZ31. Loading direction in this micrograph
is vertical.

The model with modified law for void-shape evolution was used to predict frac-

ture strains under loading conditions the experimentally measured results. Figure 96

shows the predicted failure strains for both AZ31 and WE43 with same model pa-

rameters. Material parameters utilized for these results were calculated in previous

two sections. The model could accurately predict the fracture behavior of WE43

alloy. Good agreement between the experimental results and current model predic-

tions along with fractographical evidence suggests that fracture in WE43 could be

represented by IGF and its microstructural features.
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Figure 96: Comparison between predicted and experimentally measured fracture
strains for AZ31 and WE43 specimens loaded parallel to L direction.

There is some mismatched between the experimentally measured and predicted

fracture strain in AZ31. It should be noted that these calculation are performed for

a material volume that do not fully account for the spatial variations in the various

fields. This includes the variation of triaxiality within the actual specimen. The role

of shear localization should also be noted. As presented in section 6.1.3, the mode

of failure in AZ31’s uniaxial bars is slanted. In such condition, shear localization

truncates the stable deformation and leads to premature failure in a slanted mode.
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Figure 97: Predicted mechanical response and evolution of microstructure with strain
for a material point with properties of AZ31 alloy used in this study.
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Geometry of the sample in notched bars, however, forces the macroscopic crack to

move along the minimum cross-section of the bar. This reduces the interference form

shear localization but does not eliminated it completely. As depicted in Figure 30,

there are large shear lips in the RN10 specimens. Although the macroscopic mode of

failure is flat in those specimen, planes with slanted character are observed even with

naked eye. As the notch becomes sharper (going form RN10 to RN2), the fracture

surface becomes flatter and rarely exhibits shear-like features. Based on the above

justification, more contribution form shear is expected at lower triaxialities. Since the

current model does not account for shear effects, a mismatch between experiments

and mode prediction at lower triaxialities is expected. Future work will focus on

implementing the model in a Finite-Element software so that the Boundary-Value

Problems (BVP) corresponding to the RN specimens can be solved, accounting for

spatial variations of different field in specimen and shear localization.

To provide more information on the fracture in AZ31 and WE43, the predicted

stress-strain response and the evolution of microstructural variables for the analysis

presented in Figure 96 are presented in Figure 97 and 98.

199



(a)

 0

 100

 200

 300

 400

 500

 0  0.04  0.08  0.12  0.16  0.2

σ e
q 

(M
P

a)

εeq

T=0.80
T=1.10
T=1.45

(b)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  0.04  0.08  0.12  0.16  0.2

f

εeq

T=0.80
T=1.10
T=1.45

(c)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.04  0.08  0.12  0.16  0.2

W

εeq

T=0.80
T=1.10
T=1.45

(d)

 1.6

 1.8

 2

 2.2

 2.4

 0  0.04  0.08  0.12  0.16  0.2

λ

εeq

T=0.80
T=1.10
T=1.45

(d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.04  0.08  0.12  0.16  0.2

χ

εeq

T=0.80
T=1.10
T=1.45

Figure 98: Predicted mechanical response and evolution of microstructure with strain
for a material point with properties of WE43 alloy used in this study.
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10. CONCLUSIONS

The processes of deformation, damage initiation and propagation to fracture in

two magnesium alloys (AZ31 and WE43) at room temperature in a wide range of

stress state triaxialities were studied. Performing experiments along different di-

rections with respect to the initial macroscopic texture allowed the investigation of

anisotropy in these properties. Detailed image analysis and fractography on cracked

and fractured specimens enabled establishing connection between microscale phe-

nomena and macroscopic response. The results yielded the following conclusions.

• Employing interrupted uniaxial tension and compression experiments along six

different orientations and by using models in the literature, the plastic flow

anisotropy of AZ31 and WE43 and their evolution during the course of de-

formation were characterized. In addition, a significant volume change during

plastic deformation of both alloys was detected.

• Fracture studies showed that magnesium alloys such as AZ31 are more tolerant

to damage compared to what was perceived based only on uniaxial experiments.

Notched bar experiments showed that under triaxial loading condition (even

in sharply notched bars), AZ31 exhibits larger strain to failure compared to its

uniaxial counterparts.

• The fracture locus of AZ31, in the triaxiality range from 0.3 to 1.5, exhibits

a maximum at moderate triaxialities. The increased ductility in notched bars

was attributed to (i) transition from slanted (shear) to flat fracture in the

macroscale; (ii) transition from twin-controlled to microvoid coalescence frac-

ture at microscale; and (iii) activation of more deformation systems at high
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triaxialities, which is a manifestation of loading effects on plastic anisotropy.

During triaxial loading, the tensile stress parallel to the c-axis of hcp crystal

structure is large enough to activate softer deformation systems (i.e. extension

twinning).

• Depending on the loading condition and geometry of samples, ductile fracture

in AZ31 could occur by either microvoid/crack nucleation to coalescence or

by mechanical instability of the specimen (i.e., shear localization). Both of

these mechanisms are important in practice. However, for the study of damage

mechanism it is preferable to have a diffuse damage zone with know location.

The damage process zone in shear failure is too small to infer any conclusive

evidence of intrinsic damage mechanisms in uniaxial bars. On the other hand

and by introduction of the notch, the fracture mode became flat, which facili-

tates the investigation of damage and fracture. This makes notched bars ideal

specimens for investigating damage in Mg alloys.

• Based on microstructural evidence, it was concluded that macrocracks in AZ31

form in different regions of notched specimen, depending on the triaxiality. In

moderate triaxialities (i.e., RN10 with shallow notch) macrocracks form in the

central region and propagate along the transverse direction of the plate. When

such macrocracks grow large enough, a plane-strain deformation state develops

in the ligament between them, which promotes shear localization. Macrocracks,

thus, join each other via shear zones in the L–S planes and final fracture follows.

At high triaxialites, however, cracks form near the free surface and propagate

parallel to the transverse direction. These cracks connect to the free surface

almost immediately by shear localization in L–S plane.

• Results of the notched bar experiments indicate that WE43 and AZ31, in the
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studied range of triaxialityies, exhibit significantly different sensitivity to stress-

state triaxiality. In contrast to AZ31, which has weak sensitivity to triaxiality,

the strain to failure in WE43 is reduced substantially when notch radius is

decreased (i.e., increase in triaxiality). Based on the features on the fracture

surface and considering the initial microstructure, the fracture locus of WE43

and its low failure strain in notched bars were justified by intergranular fracture

initiated at second phase particles located on grain boundaries.

• A micromechanics-based continuum damage model was employed to rationalize

the main experimental trends. The model has two components: (i) a shape-

dependent void growth part; and (ii) a shape-dependent void/crack coalescence

part. Parametric studies on the effects of various material-, loading- and mi-

crostructural variables were used to identify key parameters in the studied

system. Proper matrix anisotropy and void spacing were identified to be the

most important parameters in achieving high strain to failures.

• Utilizing the material and microstructural variables extracted from the im-

age analysis, the model was employed to predict and rationalize the exper-

imentally observed fracture strains and their trends. It was concluded that

failure strain in WE43 is controlled by intergranular fracture. Fracture in

notched AZ31 alloys was rationalized by early coalescence of initially penny-

shaped voids/microcracks. During uniaxial loading, AZ31 fails by shear local-

ization that truncates stable deformation of the matrix. The results provide

the groundwork for understanding the effects of microstructural and loading

variables on damage and fracture in magnesium alloys.
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APPENDIX I

SECONDARY CRACKS ON THE OUTER SURFACE OF AZ31 SPECIMENS

(a)

(b)

Figure 99: (a) Top- and (b) side-view of the fracture surface of an AZ31-RN10
notched bars showing the presence of secondary cracks on the outer surface, below
and above the main crack.
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APPENDIX II

CRACK PROPAGATION IN AZ31 UNIAXIAL BARS

Figure 100: Side-view of a macroscopic after crack initiation and before final failure.
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Figure 101: Side-view of a macroscopic after crack initiation and before final failure.
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Figure 102: Side-view of a macroscopic after crack initiation and before final failure.
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Figure 103: Side-view of a macroscopic after crack initiation and before final failure.
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Figure 104: Side-view of a macroscopic after crack initiation and before final failure.
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APPENDIX III

PARAMETERS OF THE VOID GROWTH MODEL

There are six parameters which depend on the microstructural variables f and w

and on the anisotropy tensor h: C, g, κ, η and α2, listed by order of appearance in

criterion (9.2) and α1, which appears in the evolution law of W .

g = 0 (p); g =
e32√

1− e22
= f

e31√
1− e21

= f
(1− w2)

3
2

w
(o) (10.1)

We recall that e1 and e2 are the eccentricities of the void and the outer boundary

of the RVE, respectively. Both are implicit functions of f and w. Next, the full

expression of κ was provided by [79] but can be simplified into:

κ =



3

h

{
1 +

ht
h2 ln f

ln
1− e22
1− e21

}−1/2
(p)

3

h

{
1 +

(gf − g1) + 4
5
(g

5/2
f − g

5/2
1 )− 3

5
(g5f − g51)

ln(gf/g1)

}−1
(o)

(10.2)

where shorthand notations are used for:

gf ≡
g

g + f
, g1 ≡

g

g + 1

α2 =


(1 + e22)

(1 + e22)
2 + 2(1− e22)

(p)

(1− e22)(1− 2e22)

(1− 2e22)
2 + 2(1− e22)

(o)
(10.3)
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η = − 2

3hq

κQ∗(g + 1)(g + f)sh

(g + 1)2 + (g + f)2 + (g + 1)(g + f)[κH∗sh− 2ch]
,

C = −2

3

κ(g + 1)(g + f)sh

(Q∗ + 3
2
hqηH∗)η

, sh ≡ sinh (κH∗), ch ≡ cosh (κH∗)

(10.4)

where H∗ ≡ 2
√
hq(α1 − α2) and Q∗ ≡

√
hq(1− f).

α1 =


[
e1 − (1− e21) tanh−1 e1

]
/(2e31) (p)[

−e1(1− e21) +
√

1− e21 sin−1 e1

]
/(2e31) (o)

(10.5)

Note that the expressions of α2 and α1 are identical to those given by [92] for

isotropic matrices. The dependence of the criterion parameters upon anisotropy

tensor h enters through one invariant, h, and two transversely isotropic invariants,

ht and hq, of that tensor. When expressed in the basis associated with the principal

directions of orthotropy∗, invariant h is given by (9.19) while ht and hq are given by:

ht =
1

5

[
−13

12
(ĥL + ĥT) +

8

3
ĥS + 4(ĥTS + ĥSL)− 7

2
ĥLT

]
(10.6)

and

hq ≡
2

3
Q : ĥ : Q (10.7)

Here, the ĥi are the components of ĥ expressed using Voigt’s condensation and ĥ is

formal inverse of h. hq only appears in the expressions of C and η (it was denoted

ĥq in [79]).

∗In the context of this section, this means replacing indices 1 to 6 in (9.19) with L, T, S, TS,
SL and LT, respectively.
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