

A COLLISION DEFORMER FOR AUTODESK MAYA

A Thesis

by

WEI WANG

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Tim McLaughlin

Committee Members, Ann McNamara

 John Keyser

Head of Department, Tim McLaughlin

May 2015

Major Subject: Visualization

Copyright 2015 Wei Wang

ii

ABSTRACT

Believable physical interactions involving collisions between objects are

essential in motion graphics and video games. The most common approach to create

such effect is to employ dynamics simulation. However, to create a simple collision

effect, dynamics simulation is time-consuming and lacks artistic control. This paper

presents a custom deformer for creating simple collision effects in Autodesk Maya. The

deformer determines intersection between objects by performing inclusion tests for

selected vertices, and approximates the elastic behavior of the soft body in response to

collisions by applying a controllable deforming algorithm to the object surface. No

physics simulation is required in this process. The deformer supports interacting with

multiple collider objects and at the same time provides artistic control for the user to

manage the deformation. The deformer has proven successful for creating plausible

deformation of simple collision interactions in a fast, controllable manner.

iii

DEDICATION

To my parents

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to offer my sincerest gratitude to my committee

chair, Prof. Tim McLaughlin for his excellent guidance. This thesis would not have been

possible without his help and encouragement. Great thanks go to my committee

members, Dr. Ann McNamara and Dr. John Keyser for their immense support and

sharing of knowledge throughout the course of this research.

Thanks also go to all the department faculty, staff and former students for

making my time at Texas A&M University an extremely rewarding experience. I have

gained much more than just knowledge in the past three years.

I also want to extend my gratitude to my Viz companions, Sean Low, Siran Liu,

Kelly Kin, Rachel Wang, Will Kung, Qiao Wang for their tremendous help and valuable

suggestions.

Finally, thanks to my parents for their constant love and support.

v

NOMENCLATURE

3D Three-Dimensional

FEM Finite Element Method

AABB Axis-Aligned Bounding Box

SDK Software Development Kit

API Application Programming Interface

MEL Maya Embedded Language

GUI Graphical User Interface

TBB Threading Building Blocks

vi

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

NOMENCLATURE ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

1. INTRODUCTION .. 1

2. BACKGROUND .. 3

2.1 Soft Body Dynamics .. 3

2.2 Morph Target Animation ... 4

2.3 Deformers ... 5

3. CORE ALGORITHM .. 8

3.1 Collision Detection ... 8

3.2 Collision Response ... 12
3.3 Artistic Control ... 16

3.4 Multiple Interactions .. 18
3.5 Post-deformation Smoothing ... 19

4. IMPLEMENTATION .. 21

4.1 Implementation Environment ... 21

4.2 The Collision Deformer Plugin .. 22
4.3 Optimization ... 29

5. RESULTS ... 32

5.1 Example Applications .. 32
5.2 Limitations ... 41

vii

6. CONCLUSION .. 43

REFERENCES ... 44

viii

LIST OF FIGURES

Page

Figure 1 Examples of collision interactions. (a) Snapshot from Shrek Forever After.

(2010). DreamWorks Animation. (b) Snapshot from Up. (2009). Pixar

Animation Studios .. 1

Figure 2 Spheres modified by Maya deformers: lattice deformer, shrink wrap

deformer and squash deformer (from left to right). ... 6

Figure 3 Common types of bounding volumes (Langetepe & Zachmann, 2006) 9

Figure 4 Pseudo code for an AABB intersection test ... 10

Figure 5 Point-bounding box containment tests can preclude calculations for

vertices that are outside the geometry. ... 11

Figure 6 Point in polygon test: the ray originating from the white point has an odd

number of intersections with the edges of the polygon; therefore it is

inside the polygon. ... 12

Figure 7 Example of direct deformation .. 14

Figure 8 Example of indirect deformation ... 15

Figure 9 The shape of the bulge effect can be manipulated using the curve control. .. 17

Figure 10 Example of multiple interactions: an elastic sphere colliding with a torus

and two spheres .. 18

Figure 11 Deforming process for multiple colliders .. 19

Figure 12 The smoothed position of a point is determined by the positions of the

points that are connected to it. .. 20

Figure 13 Node connections for a collision deformer affected by two collider objects 25

Figure 14 Weight values can be interactively painted to the surface of the deforming

mesh using the Maya Paint Tool .. 26

Figure 15 AETemplates for the collision deformer node. (Left) the Maya default

template without customization (Right) custom template. 27

ix

Figure 16 Maya scene used to test the performance of the deformer. 30

Figure 17 Profiling data collected using the Maya DG Profiler..................................... 31

Figure 18 Screenshots from Sleddin’, directed by John Pettingill 33

Figure 19 The falloff curve of the bulge effect .. 33

Figure 20 (Left) rough deformation with noticeable sharp edges. (Right) final result

after smoothing. .. 34

Figure 21 Screenshots from animation project W A K E. (Top left) the character’s

sleeve is intersecting with the bed sheet. (Top right) Close up on the

intersection area. (Bottom left) same animation frame with the collision

deformer applied. (Bottom right) close up on the sleeve with intersection

eliminated. .. 35

Figure 22 The collision deformer setup in W A K E. (Left) vertices outside the

intersecting areas were painted 0 for deformer weight. (Right) a proxy

geometry was created as the collider object. .. 36

Figure 23 Nano Hunter rig. Retrieved from Digital Tutors (Digital Tutors, 2014). 37

Figure 24 (Left) the deformer only affects the fleshy parts of the feet. (Right) falloff

curve of the bulge effect on the feet. .. 37

Figure 25 (Left) the original foot rig. (Right) the collision deformer flattens the

bottom of the foot as it contacts the ground, and adds a subtle bulge to the

side of the foot. ... 38

Figure 26 The Boris character. Retrieved from Digital Tutors (Digital Tutors, 2014). . 39

Figure 27 (Left) before collision. (Middle) a sphere is colliding with the belly.

(Right) the belly jiggles after the collider is moved away. 40

Figure 28 Multiple collider objects interacting with the character. 41

Figure 29 Open shapes cannot be used as collider objects. ... 42

 1

1. INTRODUCTION

Believable deformation of a soft body caused by collision interactions with other

objects is essential in motion graphics and video games. In practice, the most common

approach to create such effect is to employ soft body dynamics. As a physically based

method, soft body dynamics is capable of producing realistic collision responses for

large-scale, complex interactions.

Figure 1 Examples of collision interactions. (a) Snapshot from Shrek Forever After.

(2010). DreamWorks Animation. (Mitchell, 2010) (b) Snapshot from Up. (2009). Pixar

Animation Studios (Docter, 2009)

However, there are many scenarios where the intended collision response is

simple or subtle rather than complex, such as a baseball hit by a baseball bat, or leaving

footprints on snow-covered ground. In these cases, expensive, time-consuming physical

simulation becomes less desirable as the ease of use and flexibility to control are valued

more upon physical accuracy.

 2

An ideal solution for creating simple collision response on a soft body should

meet the following requirements:

 Interactive: collision response should be calculated interactively as the user moves

the objects in the scene. This method should be independent of time and allow the

user to access the animation frames in an arbitrary order.

 Simulation-free: the method should be capable of creating fast and reliable collision

deformation without the need to perform time-consuming physics simulations.

 Controllable: artistic control over the resulting deformation should be provided to

allow the user to achieve a particular look of the deformation.

 This thesis presents a deformer-based approach to address these animation needs.

The deformer uses an efficient, parallel algorithm to check collisions and reposition the

points on the deforming mesh to eliminate penetration. The user can directly specify the

appearance of the deformation by adjusting a series of parameters provided. The

deformer supports interacting with multiple collider objects and offers an optional

smoothing function to relax the deformed mesh. The tool developed as part of this

research is integrated into Autodesk Maya as a plugin.

The remaining sections of this thesis are organized as follows. Section 2 reviews

the background of this research to provide a fundamental understanding to the reader.

Section 3 explains the core algorithm of the deformer in detail. Section 4 describes the

aspects of how the tool was implemented. Section 5 illustrates some visual results of the

research and discusses of the limitations of the approach. The conclusion of the research

is provided in the last section of the thesis.

 3

2. BACKGROUND

2.1 Soft Body Dynamics

Soft body dynamics is the most common approach for creating collision effects

for deformable objects. In this method, the collision animation is achieved by applying

forces to the particles that control the shape of the soft body.

 In computer graphics, many methods have been proposed to model soft bodies.

Most of these methods fall into two categories: mass-spring meshes and finite element

methods (FEM). Mass-spring systems model a deformable object as a set of point

masses connected by elastic springs governed by some variant of Hooke's law (Nealen,

Müller, Keiser, Boxerman, & Carlson, 2006). Mass-spring systems are widely used for

one or two-dimensional structures such as hair and cloth (House & David, 2000). The

finite element method is considered to be the most physically accurate approach to

simulate deformation of colliding solids, and it is relatively more complex than the

mass-spring model.

 3D Animation packages usually provide dynamics toolsets for performing

simulations, such as Maya’s nDynamics and 3ds Max’s MassFX system. The user can

use a combination of rigid body, cloth, and other types of solvers to simulate the motion

and properties of deformable objects.

 The advantage of physically based simulation is that the resulting interactions are

automatically realistic, as the simulation is driven by laws of physics. The animator only

needs to specify the physical parameters and initial conditions of the simulation, and

http://en.wikipedia.org/wiki/Hooke%27s_law

 4

does not need to concern with defining the detailed motions and behavior of the

simulated objects.

The drawback of this approach is that dynamics simulation involves complex

logic to evaluate, therefore it is computationally expensive. The animator does not have

direct control over the result deformation, but instead is exposed to a series of

parameters that affects the physics simulation which generates the collision response.

Finding the right parameters requires an understanding of the underlying mechanics of

the physics simulation, and usually involves a tedious process of trial and error, as the

visual impact of changing a parameter can be difficult to predict. Because the complete

simulation needs to be recalculated each time a parameter is changed, the process of

achieving desired collision response might be time-consuming.

Unlike Animators working in scientific fields such as engineering or medical

visualization that have greater concern for the physical accuracy of the simulations,

animators for visual effects and animation are primarily concerned with controlling the

visual results. As physically based simulation must obey the physics equations to stay

realistic, it may be difficult for the artist to achieve the desired deformation that follows

a particular art style.

2.2 Morph Target Animation

An alternative approach for creating collision response is to employ morph target

animation, which is also known as blend shapes. In this method, the collision response is

achieved by gradually morphing the source shape to match a manually defined result

shape, which can be one or a linear combination of multiple targets.

 5

This approach could be seen as a two-step process. The first step is to determine

a mapping between the boundaries of the source and the target shape. The mapping is

commonly one-to-one, which means the target shape and base shape should share the

same topology. The second step is to define paths for each pair of corresponding points

on the boundaries to calculate the in-between shapes.

 Morph-target animation is demonstrably art-directable. The artist has direct

control over how the deformation appears, because the individual positions of the

vertices on the deforming mesh can be defined within each animation frame.

However, in contrast to physically based simulation where realistic collision

response happens automatically, the artist needs to manually animate the collision

interaction. This process may be labor-intensive because the timing and trajectory of the

objects must be carefully specified to ensure the deformation and the collision appear

simultaneously.

2.3 Deformers

In animation packages, deformers are push button functions that can be applied

to an object to modify its shape. (O'Neil, 2008). A deformer manipulates the shape of the

target geometry by performing a certain algorithm on the low-level components (such as

vertices and control points) of the geometry. The resulting deformation can be controlled

by tuning the influences of the attributes provided within the deformer.

 Animation packages provide a broad range of deformers to be used in various

scenarios. Some of them can be used as modeling tools to shape objects. For example,

you can model a screw by applying a twist deformer to a cylinder. Some deformers are

 6

used as animation tools more often such as the squash deformer and the cluster

deformer. There are also deformers designed for more specific tasks like cleaning up

simulation results, correcting bad animation or prototyping character rigs, just to name a

few. Figure 2 illustrates some of the native deformers in Autodesk Maya.

Figure 2 Spheres modified by Maya deformers: lattice deformer, shrink wrap deformer

and squash deformer (from left to right).

In practice, artists can apply multiple deformers to a same object to achieve the

desired result. The final deformation depends on the order that the deformers are

evaluated. Deformers are also commonly used in combination with other deformation

techniques such as skeletal animation and physically based simulations.

Although the function and underlying algorithm of a deformer vary from one to

another, most deformers have the following features in common:

 High-level. A deformer alters the shape of the deforming object by applying an

algorithm to the low-level components of the object. The user does not access the

low-level components directly, but instead manages the output of the deformer

 7

by adjusting high-level attributes that control the values of the variables used in

the algorithm.

 Time-independent. In opposition to physically based simulations, the results

produced by deformers are usually independent of time. The deformation is

calculated individually for each animation frame and independent of frames

before and after. This means that the artist is able to adjust the deformation for a

given frame without affecting the shapes on any other frames.

 Interactive. When modeling or animating objects using a deformer, artists want

to see the updated shape instantaneously as they make changes. Thus, in most

cases, it is important that the deformer can run at interactive rates. The

effectiveness of a deformer is compromised if interactive performance could not

be achieved.

 8

3. CORE ALGORITHM

Collision detection and collision response are the two core components of the

deformation algorithm. Collision detection determines intersection between the soft

body and the colliders, and reports a list of penetrating points. Collision response applies

the deformation to the points on the soft body to resolve the intersection.

3.1 Collision Detection

Detection of collision between polyhedral objects is a very common problem in

3D computer graphics. One intuitive method is to check if any vertex of one object is

contained in the other one. If so, the collision happens. The process of determining

whether a point lies inside a polygon is usually known as the inclusion test, or

containment test, which has significant applications in computer graphics and physics

simulations.

The polygon models we work with usually consist of thousands of vertices.

Without applying any acceleration method, the collision detection procedure can be

highly inefficient, as the deformer has to perform intense brute force inclusion tests for

each vertex-polygon pair whenever the objects change in shape or size, or move in

space. The running time for this process can increase exponentially with each additional

object. To reduce the computational cost of these tests, our method adapts a two-phase

approach for the collision detection process.

 9

3.1.1 Broad-Phase Collision Detection

The broad-phase collision detection uses bounding volumes to quickly cull away

pairs of objects that are far away from each other. A bounding volume is a simple

volume that contains one or more objects completely. The contained objects cannot

collide if their bounding volumes do not overlap. Figure 3 (Langetepe & Zachmann,

2006) illustrates some common types of bounding volumes.

Figure 3 Common types of bounding volumes (Langetepe & Zachmann, 2006)

Axis-aligned bounding boxes (AABB) are chosen as the bounding volumes for

objects. An AABB is specified by two points that describe the minimum and maximum

corners of the box. In Maya, the computational cost for constructing and updating an

AABB is low, as the world space coordinates of the maximum corner and the minimum

corner can be queried from the object.

In 3D space, two AABBs intersect only when they overlap in x, y and z.

Therefore, intersection of two AABBs can be determined by respectively comparing the

 10

minimum points and the maximum points of the two AABBs along the three axes (see

Figure 4).

Figure 4 Pseudo code for an AABB intersection test

3.1.2 Narrow-Phase Collision Detection

The result of the broad-phase collision detection is a list of collider objects that

are potentially colliding with the deformable mesh. In the narrow phase, the exact result

of contact will be determined, and the points where the two objects are interpenetrating

will be found, if there is a collision.

The basic idea is to perform a containment test for each vertex in the deformable

mesh against the collider object. If the result is true, the tested vertex is inside the

collision region and needs to be moved in the next stage to resolve the collision. If all

test results are false, collision does not happen.

In practice, instead of directly running tests for all vertices, we first do a point-

AABB containment test to quickly rule out those that are outside the collider’s bounding

 11

box. Implementing this step can noticeably reduce the running time especially when the

deformable object has a dense mesh.

Figure 5 Point-bounding box containment tests can preclude calculations for vertices

that are outside the geometry.

The last step of this phase is the containment test. One of the most well-known

methods for this test is the ray crossing algorithm (Hormann & Agathos, 2001). In this

method, the containment is determined by casting a ray from the tested point along any

fixed direction, and counting the number of times the ray intersects the polygon. If the

number is even, the point is outside the polygon, otherwise, the point is inside the

polygon (see Figure 6).

 12

Figure 6 Point in polygon test: the ray originating from the white point has an odd

number of intersections with the edges of the polygon; therefore it is inside the polygon.

The collision detection method adopted in the deformer is an extension of the

crossing algorithm in 3D space. The intersection ray is defined using the vertex position

as the origin, and the vertex normal as the travel direction. We utilize the

AllIntersections() function provided with the mesh function set in Maya API to

determine the number of intersections between the ray and the collider object. To speed

up this operation, we specify a uniform voxel grid structure for the collider object before

the intersection routines begin. Maya can automatically determine the number of voxel

cells for the grid based on the density of the mesh, and the grid will be cached with the

mesh until the entire operation is done.

3.2 Collision Response

The task of this stage is to apply deformation to the deformable object in

response to collisions. There are two components of the deformation: direct deformation

and indirect deformation. Direct deformation suppresses the interpenetration by

deforming the soft body according to the shape of the interacting collider. This process is

spontaneous and not directed by the user. Indirect deformation adds on top of direct

 13

deformation to reflect the elastic properties of the soft body. In opposition to direct

deformation, this process allows more user inputs to achieve a particular look for the

deformation.

3.2.1 Direct Deformation

Using the method explained in section 3.1, we can find the vertices of the

deforming object that are inside the collider. The direct deformation is achieved by

pushing these vertices to their closest points on the surface of the collider. This creates a

compression effect at the spot where the collision happens (see Figure 7). To find the

closest points, we make use of the MMeshIntersector class in Maya API.

The MMeshIntersector class contains methods for efficiently finding the closet

point on a mesh. Internally, when the class is initialized, the mesh intersector will

tessellate the polygon mesh and build an octree for the triangles to accelerate the

evaluation process. The octree structure will be cached for reuse, and will automatically

rebuild if the shape of the polygon mesh changes.

 14

Figure 7 Example of direct deformation.

When vertices on the deformable mesh are found inside a given collider, a mesh

intersector will be initialized for that specific collider mesh, if it hasn't already been.

Then the intersector evaluates each penetrating vertex 𝑉𝑖 in a loop and finds its closest

point 𝑃𝑖 on the collider surface. Finally, the deformer updates the position of vertex 𝑉𝑖

using the following equation:

𝑃𝑖 = 𝑃𝑖 + (𝑃′𝑖 – 𝑃𝑖) ∙ 𝑤𝑖 ∙ 𝑒,

Where 𝑃′𝑖 – 𝑃𝑖 is the offset vector, 𝑤𝑖 is the weight value assigned to the vertex, and 𝑒 is

the envelope value of the deformer. In each loop, we also compute the displacement of

the vertex, which is the length of the offset vector. Thus at the end of the iterations, the

maximum displacement for direct deformation 𝑑𝑚𝑎𝑥 can be determined. This value will

be used to compute indirect deformation for the soft body.

 15

3.2.2 Indirect Deformation

Direct deformation results in a compressed surface and a loss in volume. In

reality, many elastic deformable materials are highly incompressible. Indirect

deformation is applied to the deforming object to express the elastic properties of a soft

body.

Figure 8 Example of indirect deformation.

The effect of the indirect deformation is to bulge out the surface around the

newly formed region of collision (see Figure 8). Indirect deformation is applied to all the

vertices that are not directly penetrating the interacting collider. These vertices will be

pushed along their vertex normal directions by different magnitudes. The offset vector 𝑡𝑖

for repositioning a given vertex 𝑉𝑖 is defined by:

𝑡𝑖 = 𝑛𝑖 ∙ 𝑎 ∙ 𝑑𝑖

 16

In this equation, 𝑛𝑖 is the vertex normal of 𝑉𝑖; 𝑎 is bulge strength, which is a user-

specified value for scaling the overall bulge effect; 𝑑𝑖 is the displacement of 𝑉𝑖. The

determination of 𝑑𝑖 will be discussed in section 3.3.

Thus the final position of vertex 𝑉𝑖 can be determined:

𝑃𝑖 = 𝑃𝑖 + 𝑡𝑖 ∙ 𝑤𝑖 ∙ 𝑒,

Where 𝑤𝑖 is the weight value assigned to vertex 𝑉𝑖, 𝑒 is the envelope value of the

deformer.

3.3 Artistic Control

It is important that the user has the flexibility to decide how the final deformation

will appear. User control of the deformer is provided in the form of attributes which

define the value of the variables in the deformation equations. This section explains how

these attributes can be used to adjust the resulting deformation.

Strength: this attribute is introduced to the offset equation to allow the user to

control the amplitude of the bulge effect.

Distance: the distance of bulge is a float number attribute that determines how

far the bulge effect can extend on the surface of the deformable mesh.

Shape Curve: this attribute is provided to the user with great flexibility for

manipulating the shape of the bulge within the bulge distance. As shown in Figure 9, the

curve is defined by a set of positions, values, and interpolation types. The horizontal axis

of the curve represents positions on the soft body relative to the bulge distance. For a

given vertex 𝑉𝑖, its relative position 𝑝𝑖 is defined by:

𝑝𝑖 = 𝑠𝑖/𝑟

 17

Where 𝑠𝑖 is the distance between 𝑉𝑖 and its closest point on the collider surface, 𝑟

is the bulge distance value set by the user. The vertical axis of the curve represents the

relative bulge displacement at the given position 𝑝𝑖. For vertex 𝑉𝑖, the actual

displacement is defined by multiply the maximum displacement by this relative value:

𝑑𝑖 = 𝑓(𝑝𝑖) ∙ 𝑑𝑚𝑎𝑥

Figure 9 The shape of the bulge effect can be manipulated using the curve control.

Elasticity: this attribute defines the elastic behavior of the soft body. Options

include “elastic” and “plastic”. When set to elastic, the soft body will restore to its

original shape when the collider is moved away. When set to plastic, the deformation

will be kept on the soft body for a permanent deformation effect.

 In addition to those attributes that are specific to the collision deformer, general

attributes inherited from the base class of Maya deformer are also available to the user:

Weight: the weight for a vertex is arbitrarily specified by the user to control how

much the vertex is influenced by the deformer. With the artisan-based Paint Tool in

 18

Maya, the user can interactively paint weights on the deformable object to specify

various intensity values for different deform regions.

Envelope: envelope is an attribute which controls the overall influence the

deformer has on the deforming object. The attribute ranges from 0 to 1 and the value

defines the proportion of the final deformation to be added to the object.

3.4 Multiple Interactions

One of the most important features of the deformer is the support for interacting

with multiple colliders such as shown in Figure 10.

Figure 10 Example of multiple interactions: an elastic sphere colliding with a torus and

two spheres.

When dealing with only one collider object, the process is straightforward: we

first determine intersection between the soft body and the collider, and then perform the

deformation if a collision is detected. In multiple-collider situations, instead of checking

 19

collisions for all collider objects at once and deforming the soft body using a union of

shapes of the intersecting colliders, we evaluate only one collider each time and deform

the soft body as needed. Then we treat the updated shape as the new deformable mesh

and repeat the same routine with the next collider. Using this method, the resulting shape

is completely independent of the order in which the colliders are evaluated, and frequent

initializations and updates of acceleration structures can be avoided. Figure 11

demonstrates the deforming process for multiple colliders.

Figure 11 Deforming process for multiple colliders

3.5 Post-deformation Smoothing

Sometimes when the deforming mesh is dense, collision interactions may result

in sharp edges inside the collision area. To solve this problem, a weighted Laplacian

Deform
Soft body

Next
Collider

Collider
Mesh

Soft Body
Mesh

Collision
Detection

False

 Start loop
W

True

 20

mesh smoothing method was added to the deformation algorithm. This method

determines the smoothed position of a point by averaging the weighted positions of the

points that are connected to it (see Figure 12).

Figure 12 The smoothed position of a point is determined by the positions of the points

that are connected to it.

For a given vertex 𝑉𝑖, the smoothed position 𝑃′𝑖 after 1 iteration is defined by:

𝑃′𝑖 =
1

∑ 𝑑𝑖𝑗
𝑁
𝑗=1

∑ 𝑃𝑗

𝑁

𝑗=1

𝑑𝑖𝑗

Where N is the set of neighbor vertices connected to 𝑉𝑖 , 𝑃𝑗 is the position of the j-th

neighbor 𝑉𝑗, 𝑑𝑖𝑗 is the distance between 𝑉𝑖 and 𝑉𝑗.

 21

4. IMPLEMENTATION

4.1 Implementation Environment

4.1.1 Developing for Autodesk Maya

The collision deformer plugin was developed for Autodesk Maya 2015 SP2.

Autodesk Maya is an industry standard animation suite which offers a rich set of tools

for 3D content creation. The Maya Software Development Kit (SDK) contains a

powerful C++ Application Programing Interface (API) which provides access to Maya’s

internal functionality. Using the Maya API, developers can create plugins to manipulate

existing Maya objects as well as to extend Maya’s capabilities.

In addition to the C++ API, programming access is also provided through the

Maya Embedded Language (MEL) and Python. MEL is a Maya-specific scripting

language which provides access to all of the built-in Maya commands. Most actions that

can be done through Maya’s Graphical User Interface (GUI) can also be accomplished

using MEL to enhance workflow and productivity. Python is a widely used high-level

programming language that has been supported in Maya since version 8.5 (Mechtley &

Trowbridge, 2011). Using the Maya Python module, developers can execute the same

native Maya commands as they can do with MEL but at the same time take advantage of

the robust, object-oriented design and extensive libraries of Python.

4.1.2 Additional Libraries

PySide was used for building custom GUIs for the plugin. PySide is a Python

binding to the Qt library, which is a cross-platform framework for application and UI

 22

development. As the Maya interface (after version 2010) is built using the Qt framework

(Autodesk, n.d.), custom widgets created with PySide can be seamlessly blended with

the Maya native interface.

Intel Threading Building Blocks (TBB) was used to parallelize the deformation

algorithm to enhance the performance of the deformer. TBB is a widely used C++

template library which comprises a rich set of components for developing software

programs that take advantage of multi-core processors (Popovici, 2008). TBB was

chosen for two reasons: 1) TBB is available on all platforms that Maya supports. 2) TBB

enables the developer to specify logical tasks instead of threads and let the library map

the tasks onto threads dynamically and efficiently (Reinders, 2007). This allows

parallelizing without having to change existing code structure too much.

4.2 The Collision Deformer Plugin

The collision deformer plugin comprises two major components: the deformer

class and an auxiliary script. The deformer class defines the core deform function as well

as methods for registering the deformer node with Maya. The auxiliary script contains

functions for initializing user controls and establishing connections for the deformer

node and its associated objects.

4.2.1 The Collision Deformer Class

The collision deformer class was implemented using C++, and it is the core of

the plugin. The class defines the deformer node which contains the algorithm explained

in Section 3. The collision deformer class derives the MPxDeformerNode class in the

Maya API. The MPxDeformerNode class is the base class for user-defined deformers.

 23

By deriving this class, the deformer can inherit the benefits of Maya's internal deformer

functionality such adjusting node influence, editing membership and reordering

deformation history (Autodesk, 2010).

 A deformer node in Maya is a subset of dependency node. To implement a

deformer node, the following member functions needs to be implemented:

 The initialize() function: the initialize method is where the type, name and default

values of all attributes are specified.

 The initializePlugin() function: this functions is called when the plugin is being

loaded. It registers the plugin’s information such as ID, type, name and commands

with Maya.

 The uninitializePlugin() function: this function is similar to the initializePlugin()

function. It is called when the plugin is being unloaded from Maya.

 The deform() function: this function is where the deformation takes place. It starts

with extracting data from the data block, which is a Maya object for storing data

being received by or sent from the deformer node (Autodesk, 2010). The data

includes parameters set by the user, such as strength and weights, and geometric data

of the connected objects, such as the collider meshes and bounding boxes. In the next

step, the function enters the routine of checking collisions and calculating positions

for the points. In the end, the deform() function updates the deforming mesh and

returns a signal to Maya to indicate a successful deformation, or problems that

encountered in the process.

 24

4.2.2 Auxiliary Functions

The auxiliary script is a Python script containing functions for facilitating user

interactions with the deformer. It is executed when the collision deformer plugin is

loaded into Maya. The script adds push button commands to Maya’s animation menu to

allow the user to create and edit a collision deformer and formats the attribute template

for the deformer node.

4.2.2.1 Deformer Commands

In order to create a collision response, certain node connections need to be

established between the deformable object, the collision deformer node, and the

colliders. It is very cumbersome to manage the node networks manually, as the deformer

node requires input from multiple levels of the polygon objects (see Figure 13).

Therefore, a series of commands is implemented to automate the operations of applying,

editing, and removing a Collision Deformer. These commands are provided as push-

button functions in the Create Deformers menu and the Edit Deformers menu under the

Animation menu set in Maya.

 25

Figure 13 Node connections for a collision deformer affected by two collider objects

 Create Collision Deformer: this command exists in the Create Deformers menu.

When executed, it creates a new collisionDeformer node and applies it to the

selected polygon object in the scene.

 Edit Collision Deformer: this submenu is added to the Edit Deformers menu; it

contains three commands:

 Add Collider Object: this command links a new collider object to the collider

array in the deformer node. The Bounding Box attribute from the collider’s

transform node and the WorldMesh attribute from the collider’s shape node are

connected to the Collider Info slot on the deformer node.

 26

 Remove Collider Object: this command removes an existing collider from the

collider array by breaking all the connections established between the collider

object and the deformer node.

 Paint Collision Deformer Weights Tool: this command launches the Maya

Paint Tool (see Figure 14) to allow the user to interactively specify weight values

for the vertices on the surface of the soft body.

Figure 14 Weight values can be interactively painted to the surface of the deforming

mesh using the Maya Paint Tool

4.2.2.2 Customizing the Attribute Editor Template

In addition to the menu commands, the auxiliary script also contains functions

for customizing the Attribute Editor Template (AETemplate). The Attribute Editor is a

Maya control widget that lists attributes of nodes connected to the selected object. The

 27

tabs across the top of the widget allow the user to switch back and forth between nodes

to view and change the values of attributes.

An AETemplate defines how the attributes of a certain type of node appear in the

attribute editor. Maya allows customization for AETemplates for better presentation and

more intuitive control. Using MEL and PyMEL commands, developers can format the

controllers as well as embed custom components to the template.

As shown in Figure 15, the customized AETemplate for the collision deformer

organizes the attributes in four collapsible fields.

Figure 15 AETemplates for the collision deformer node. (Left) the Maya default

template without customization (Right) custom template.

 28

The first section of the AETemplate consists of controls for solver-related

attributes, including combo boxes for collision solver and elasticity, and a slider for

envelope.

The Bulge section contains controls for adjusting the bulge effect of the

deformation, including sliders for the strength attribute and the distance attribute.

The Bulge Shape section houses a curve control for adjusting the falloff of the

bulge effect. The user can directly manipulate existing points or add more points to the

curve in the graph. The arrow button on the right expands the curve control in a separate

window to enable more precise control.

The Colliders section provides a custom widget for managing collider objects.

The list on the left displays the name of all colliders currently affecting the deforming

object. The buttons on the right side allow the user to add colliders, remove colliders and

launch the paint weight tool without having to reach to the Edit Collision Deformer

menu located on the top of the Maya window.

The Smooth Mesh section contains a slider for setting the number of iterations of

post-deformation smoothing.

All the other attributes are organized in the Extra Attributes section. These

attributes are inherited from the Maya deformer base class and do not affect the

deformation directly hence are hidden from the user by default.

 29

4.3 Optimization

Deformers are usually designed to alter the shape of an object in a controllable

manner at interactive rates. Due to the computationally intensive nature of the deform

algorithm, optimization is essential for achieving expected performance.

4.3.1 Parallelization

Multi-core processors have become standard while the speed increases of single

cores have slowed down. Normally, a program written for sequential computation runs

on a single core, where the instructions are executed one after another. To leverage the

power of a multi-core processor, the task of a program can be decomposed into a series

of smaller tasks to run on multiple cores simultaneously. Employing parallelism could

bring significant performance improvements to a program.

 Data parallelism and task parallelism are two forms of parallelization of

computation at a high level. Data parallelism involves performing the same independent

operation to multiple data elements at the same time, such as parallel image processing

algorithms that apply a filter to each pixel. Task parallelism involves executing distinct

tasks at the same time, with the number of tasks fixed, such as a program with a compute

thread and a UI thread. The deformation algorithm is a good candidate for using the data

parallelism model, as the vertices on the deforming mesh are evaluated individually and

repeatedly in loops.

 There are three computational-intensive loops in the deformation routine: the

collision detection loop, the deformation loop, and the post-deformation smoothing loop.

These loops contain expensive vector operations on points such as the inclusion tests and

 30

the closest point operations. The loops were rewritten using the TBB template

function tbb::parallel_for to partition the original range into subranges which run on

separate threads. The operations inside the original loops were extracted into separate

classes and adapted in a way that they can be performed on multiple vertices

simultaneously without interfering with each other.

4.3.2 Performance Improvement

The performance improvement was tested using the Maya DG Profiler to collect

the timing metrics of the deformer node in the test scene before and after parallelization.

The test scene consists of three spherical colliders, each of which has 92 vertices,

animated to deform a plane which has 2601 vertices (see Figure 16).

Figure 16 Maya scene used to test the performance of the deformer.

 31

Figure 17 Profiling data collected using the Maya DG Profiler

Results (see Figure 17) show that the optimization has led to a significant

performance improvement. The deformer node runs more than 200% faster in the same

scene when parallelization is applied. The frame rate of the animation playback has been

increased from 5-8 FPS (frames per second) to 19-27 FPS.

 32

5. RESULTS

5.1 Example Applications

The collision deformer is applicable in a variety of scenarios. This section

demonstrates the effectiveness of the deformer with some examples in which it has been

employed.

5.1.1 Animating Snow Deformation

Sleddin’ is an animation short created by students from the Visualization

Department at Texas A&M University. This animation features a long sequence of a boy

sledding down a towering mountain. Interactions with snow-covered ground, such as the

character making footprints and the sled leaving trails can be seen in most of the shots,

making animating the snow deformation one of the biggest challenges in production.

The effects artists went through a laborious process to simulate these effects using soft

body dynamics in Maya.

The collision deformer provides an option to define the elastic property of the

deforming object. When the value is set to “plastic,” the object will not restore to its

original shape after the collision is resolved; deformation caused by the collision will be

kept on the surface. This example describes how the deformer was used in such a

manner to replicate the footprint animation in Sleddin’ (See Figure 18).

 33

Figure 18 Screenshots from Sleddin’, directed by John Pettingill

The primary effect in this shot is the dent in the snow, which can be

automatically generated when collision is detected. The secondary effect is the

accumulation of snow around the toe of the boot as the character rubs his foot on the

ground. To mimic this effect, a low-strength bulge was applied to the mesh and then

shaped with the falloff curve shown in Figure 19.

Figure 19 The falloff curve of the bulge effect

 34

Figure 20 (Left) rough deformation with noticeable sharp edges. (Right) final result

after smoothing.

Figure 20 (1) illustrates the deformation result with the bulge applied. The

overall shape is believable but some sharp edges can be seen inside the circled area.

This can be corrected using the post-deformation smoothing function provided within

the deformer. The final result showing in Figure 16 (2) was achieved with 5 iterations of

smoothing.

The animation achieved in this example is very similar to the simulated results,

but the implementation process is much simpler and more straightforward in comparison

with the simulation approach adopted in Sleddin’.

5.1.2 Removing Geometry Intersections

W A K E, directed by Kelly Kin, is an animated short about a boy who is coming

to terms with the fact that his sister is in a coma. There are several shots in the animation

where the main character, Dan, leans at the bedside of his sick sister. As shown in Figure

21, several areas on Dan’s sleeves are noticeably penetrating through the sheet as he

moves his arm off the bed. Geometry overlapping should be avoided as much as possible

 35

as it not only causes animation problems, but could also lead to rendering artifacts (such

as incorrect occlusion).

Figure 21 Screenshots from animation project W A K E. (Top left) the character’s sleeve

is intersecting with the bed sheet. (Top right) Close up on the intersection area. (Bottom

left) same animation frame with the collision deformer applied. (Bottom right) close up

on the sleeve with intersection eliminated.

 The collision deformer was employed in those shots to minimize the intersection

problems. In the first step, the deformer was applied to the jacket mesh. To avoid

unnecessary calculations, vertices outside the intersecting areas were painted 0 for

deformer weights. In the next step, a proxy geometry was sculpted and linked to the

collision deformer as the collider object. The proxy geometry approximates the shape of

 36

the sheet with much lower vertex density (See Figure 22), allowing faster evaluations of

collision detection and deforming.

Figure 22 The collision deformer setup in W A K E. (Left) vertices outside the

intersecting areas were painted 0 for deformer weight. (Right) a proxy geometry was

created as the collider object.

 The elasticity attribute of the deformer was set to “elastic,” thus the sleeves can

be restored to their original shapes once the arms move away from the bed.

5.1.3 Adding Squash to Foot Rig

This example demonstrates how the collision deformer could be incorporated in a

character rig to produce fast and plausible secondary deformation.

 37

Figure 23 Nano Hunter rig. Retrieved from Digital Tutors (Digital Tutors, 2014).

The deformer was applied to the Nano Hunter rig (see Figure 23) to add

automatic ground detection and squash deformation to the feet. As the deformer supports

using the ground plane as a collider, no additional collider object needs to be created. As

shown in Figure 24, deformer weights were only painted on the fleshy parts of the feet.

Figure 24 (Left) the deformer only affects the fleshy parts of the feet. (Right) falloff

curve of the bulge effect on the feet.

When the foot contacts the ground plane, the deformer squashes the bottom of

the foot and adds a subtle but natural bulge to the side of the foot (see Figure 25).

 38

Figure 25 (Left) the original foot rig. (Right) the collision deformer flattens the bottom

of the foot as it contacts the ground, and adds a subtle bulge to the side of the foot.

 39

5.1.4 Working with Other Deformers

It is very common to apply multiple deformers to a single object to achieve

certain deformation effects. In this example, the collision deformer is used together with

the jiggle deformer to create a realistic elastic effect on a character.

The Maya jiggle deformer can produce a shaking or vibrating effect on the

surface of an object as the points on the surface move. It is often used to create effects

such as hair jiggling and stomach shaking.

Figure 26 The Boris character. Retrieved from Digital Tutors (Digital Tutors, 2014).

Boris is a character that features a chubby body (see Figure 26). When animating

a character like him, the motion of fat cannot be ignored. Using the collision deformer

and the jiggle deformer, plausible fat motion caused by collision can be added to the

body with minimum effort. The collision deformer detects contacts between the body

and the colliders and deforms the body to resolve the collision. The deformation caused

 40

by the collision deformer in turn triggers the jiggle deformer to generate a shaking effect

on top of the existing deformation (see Figure 27). The whole process happens

automatically, allowing the animator to focus more on the character’s primary motions

and expressions.

Figure 27 (Left) before collision. (Middle) a sphere is colliding with the belly. (Right)

the belly jiggles after the collider is moved away.

 As the collision deformer supports interacting with multiple objects, the user can

easily add more than one collider to affect the soft body (see Figure 28).

 41

Figure 28 Multiple collider objects interacting with the character.

5.2 Limitations

a. One important principle in animation is the fact that an object’s volume remains

unchanged when squashed or stretched (Lasseter, 1987). Although the current collision

deformer allows the user to control the volume of the deforming object by manually

adjusting the strength and the falloff of the bulge effect, direct and automatic volume

preservation is not provided.

 42

Figure 29 Open shapes cannot be used as collider objects.

b. The deformation algorithm determines collision by checking if any of the points

on the deforming mesh is inside the collider object. This method is based on the crossing

number algorithm, which requires the tested polygon to have a closed surface. The

results produced by the deformer might be unpredictable if the collider object has an

open area on the mesh. Due to this limitation, shapes such as those shown in Figure 29

cannot be directly used as collider objects. To solve this problem, the user has to either

fill the open areas or use proxy geometries for the collider objects.

 43

6. CONCLUSION

The collision deformer implemented for this thesis has provided a fast and

reliable approach to create simple collision deformation on a soft body in Autodesk

Maya without performing expensive physically-based simulations. The deformer uses a

time-independent algorithm to approximate the elastic property of a soft body and at the

same time offers artistic control to the user to interactively adjust the resulting

deformation. Within the options and parameters provided within the deformer, the user

is able to adjust the elasticity, strength, bulge falloff and more of the collision effect.

 44

REFERENCES

Autodesk. (2010). MPxNode Class Reference. Retrieved 10 19, 2014, from

http://download.autodesk.com/us/maya/2010help/API/class_m_px_node.html

Autodesk. (n.d.). Maya User Guide: Customizing the Interface. (Autodesk) Retrieved 10

30, 2014, from

http://help.autodesk.com/view/MAYAUL/2015/ENU/?guid=GUID-44D81B33-

2F2B-47C9-8387-48FC4E6594E8

Digital Tutors. (2014, 11 25). The Asset Library. Retrieved from Digital Tutors:

http://www.digitaltutors.com/11/assetlibrary/

Docter, P. (Director). (2009). Up [Motion Picture]. Pixar Animation Studios

Hormann, K., & Agathos, A. (2001). The Point in Polygon Problem for Arbitrary

Polygons. Computational Geometry-theory and Applications, 20(3), 131-144.

House, D., & David, B. (2000). Cloth Modeling and Animation. Natick, MA, USA: A.

K. Peters, Ltd.

Langetepe, E., & Zachmann, G. (2006). Geometric Data Structures for Computer

Graphics. A K Peters.

Lasseter, J. (1987). Principles of Traditional Animation Applied to 3D Computer

Animation. SIGGRAPH '87 Proceedings of the 14th Annual Conference on

Computer Graphics and Interactive Techniques. New York, NY, USA.

 45

Mechtley, A., & Trowbridge, R. (2011). Maya Python for Games and Film: A Complete

Reference for the Maya Python and the Maya Python API. Morgan Kaufmann

Publishers.

Mitchell, M. (Director). (2010). Shrek Forever After [Motion Picture]. DreamWorks

Animation.

Nealen, A., Müller, M., Keiser, R., Boxerman, E., & Carlson, M. (2006). Physically

Based Deformable Models in Computer Graphics. Computer Graphics Forum,

25(4), 809-836.

O'Neil, R. (2008). Digital Character Development. Burlington, MA: Morgan Kaufmann

Publishers.

Popovici, T. W. (2008). Putting Intel Threading Building Blocks to Work. Proceedings

of the 1st International Workshop on Multicore Software Engineering. New

York, NY, USA.

Reinders, J. (2007). Intel Threading Building Blocks. O'Reilly Media, Inc.

