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ABSTRACT

Adipose tissue macrophages (ATMs) are pivotal regulators for adipose tissue

function, specifically contributing to the homeostasis of the adipose niche. Signifi-

cantly increased ATMs and their altered activation patterns are causal factors to the

pathogenesis of adipose tissue inflammation, and subsequently, obesity associated

cardiovascular risks, type II diabetes and other metabolic syndromes. Macrophages

primarily display an anti-inflammatory M2 status in lean adipose tissues whereas

a proinflammatory M1 state in adipose tissues of obese individuals. Modulatory

networks governing ATMs polarized activation have been investigated but the full

picture remains vague. To understand the genome wide signaling networks in con-

trolling ATM polarization, we generated transcriptome profiles from macrophages

with various activation statuses- M0, M1 and M2. Among 23400 aligned unique loci

from the RNA-sequencing results, around 3500 displayed differential expression pat-

tern during macrophage polarization. The most enriched Gene Ontology terms in

the category of KEGG pathways are allograft rejection and Type I diabetes mellitus

pathways in M1 macrophages. IFNg was found to be one of the top upstream reg-

ulator in M1 playing pivotal role in different functional pathways. In addition, the

anti-inflammatory regulator miR-223 was found to be one of top upstream regulator

in M2 datasets and playing role in important functional pathways.Understanding of

the complex network of interactions among different factors involved in state of po-

larization of macrophages would be of great advantage in finding solutions to major

health issues.
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1. INTRODUCTION AND REVIEW OF LITERATURE ∗

In the last several decades, lack of balanced diet both in terms of quality and

quantity has led to a rapid progression of obesity throughout the world; resulting in

a major pandemic situation attracting the attention of many nations. The severity

of obesity has been associated with many chronic diseases. Obese patients are prone

to conditions like inflammation and insulin resistance which are causal factors in the

pathogenesis of life threatening diseases like Type II Diabetes Mellitus, cardiovascu-

lar diseases and many more [1, 2, 3]. Recent studies have demonstrated that obesity

is a disease status characterized as chronic, low-degree tissue inflammations, which

can result from elevated infiltration of macrophages into obese tissues, and more im-

portantly, activation status shifts from an anti-inflammatory to a proinflammatory

status [1, 4, 5, 6, 7, 8, 9]. Impairment in the immune system makes it more difficult to

treat these disease conditions. Macrophages are key cellular components in the innate

immune system. They play an essential role in responding to invading pathogens by

triggering elaborate immuno-inflammatory reactions that ultimately results in the

elimination of the pathogen and reinstatement of normal conditions. In response to

microenvironmental cues like pathogenic and tissue-derived molecules, macrophages

undergo profound phenotypic changes and provide appropriate responses by adapt-

ing to their microenvironment [4, 10, 11]. Understanding these adaptive changes’

will provide pivotal information to open the gate for development of new clinical

therapies for treating chronic diseases within the proper context. Recent studies

have shown that microRNAs have a profound influence on immune cell functions,

including macrophage activation [12, 13].

∗Reprinted with permission from S Kanameni, W Ying and B Zhou. Mir223- a Potent Regulator
of Macrophage Polarization. J Nutr Food Sci, 3, 2013. Copyright 2013 Omics Publishing Group.
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1.1 Macrophage Polarization and Its Diverse Functions

Macrophages play several pivotal roles in innate and adaptive immune response,

tissue repair and remodeling and many more. Of the many key traits of macrophages,

a major one is their functional diversity [14, 15]. This key feature could be attributed

to their capability of responding to diverse stimuli and in turn exhibit diverse phe-

notypes and functional roles. Macrophages undergo two unique activation programs,

classical (M1) and alternate (M2) activation, and a full spectrum of intermediate

phenotypes between those two extremes in status [10, 14, 15]. In response to stim-

Figure 1.1: Classical and Alternative Activation In Macrophages.Schematic represen-
tation of classical versus alternative activation of macrophages depicting the stimuli,
their effects on cellular function, and surrounding tissue physiology. Proinflammatory
M1 macrophages contribute to bactericydal activity and production of inflammatory
cytokines. Antiinflammatory M2 with induced arginase levels is a crucial component
for tissue repair and angiogenesis.
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uli provided by bacterial infections like lipopolysaccharide (LPS) and interferon-γ

(IFN-γ), or palmitate fatty acid in the context of obesity, macrophages adopt a

classical activation strategy and a proinflammatory phenotype and become highly

phagocytotic, as well as exerting the bactericidal activity, and secreting proinflam-

matory cytokines and chemokines to further protect against invading pathogens. On

the other hand, signals from interleukins(IL) like IL-4 and IL-13 promote alternative

activation of macrophages which have role in parasite elimination, tissue remodeling

and repair, and inhibition of tumor progression [6, 14, 16, 17] [Fig 1.1]. The phe-

nomenon of activation of M1 and M2 macrophage polarization has been investigated

intensively in recent decades as it could lead into pathways for treatment of many

important disease conditions.

Genomic and transcriptional studies, and other phenotypic analyzes of M1 and

M2 macrophages provided immense knowledge on several distinct characteristics ex-

tending from traits inherent in their chemokinome to metabolome [18]. For exam-

ple, M1 macrophages express the Th1-attracting chemokines such as Chemokine

(C-X-C Motif) Ligand 9 (CXCL9) and CXCL10, whereas M2 macrophages express

the chemokines Chemokine (C-C Motif) Ligand 17 (CCL17), CCL22 and CCL24

[10, 18, 19, 20, 21, 22, 23]. In the same fashion, M1 and M2 macrophages dis-

play different functional phenotypes in response to glucose, amino acid, lipid and

iron metabolism [10, 14, 15]. Even though the macrophage polarization was studied

and defined in vitro using conventional methods, numerous studies have shown such

polarization states in vivo, under physiological and pathological conditions. Of a

note, macrophages stimulated in response to parasite infection, allergy and many

tumor types resemble a large extent an M2-or M2-like phenotype [24, 25]. But it

is to be considered that, in vivo conditions are often complex to interpret as other

cues involved both M1 and M2 macrophages which may show a mixture of multi-
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ple functional phenotypes [4, 17, 26]. Further, many study that cues which induce

polarization in vivo are due to interactions among various immune and non-immune

cell types like lymphocytes, dendritic cells, fibroblasts, and mesenchymal stem cells

[7, 10, 17, 27] and several other factors including non-coding Ribonucleic acids (ncR-

NAs) [28, 29, 30]. These factors make the study on macrophage polarization in

relation to these diverse cell types important. As mentioned, macrophages show func-

tional diversity ranging from inflammation, phagocytosis, immunoregulation, tissue

remodeling and even metabolism. The contribution of macrophages to inflammation

is one of its most well-documented functions. In contrast to its pro-inflammatory

functions, macrophages also contribute to the dampening of inflammation through

their immunoregulatory properties [15, 31, 32]. Phagocytosis is a defining feature

of macrophages. Macrophages not only play roles in killing pathogens but also in

the elimination of dead cells and remnants of cells that is important for resolution

of inflammation. In fact, it is known that phagocytosis of apoptotic cells polarizes

these cells into an anti-inflammatory mode that supports their immunoregulatory

functions [33].

1.2 Adipose Tissue Macrophages (ATMs) are Major Contributors to Obesity

Associated Inflammation

The central feature of obesity which aggravates the progression of insulin re-

sistance is chronic low-grade inflammation due to the infiltration of adipose tissue

by macrophages [1, 4]. The dysfunction of adipose tissue with respect to main-

taining energy homeostasis is associated with obesity, inflammation and metabolic

complications [34]. In addition, in the case of obese people, weight loss is linked

to improved insulin sensitivity and their risk of cardiovascular diseases is decreased.

The inflammatory condition in obese patients is different from inflammation caused
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by classical activated macrophages which are stimulated by pathogens. In response

to nutrient excess and its relatively chronic in nature, adipose tissue in obese indi-

viduals has an enhanced production of pro-inflammatory cytokines, infiltration by

immune related cells, especially ATMs and the formation of crown like structures

where apoptotic or soon to be apoptotic adipocytes and their remnants accumulate

and cluster around phagocytic macrophages [5, 35, 36]. In lean mice, the ATMs

are mainly the alternatively activated M2 macrophages and when these mice were

subjected to high fat diet there is seen a phenotypic switch in macrophage polar-

ization towards a pro-inflammatory type in mouse adipose tissue [27]. Polarized

macrophages play an important role in lipid metabolism and homeostasis. Studies

showed ATMs from tissues of lean subjects and ATMs during weight loss to resemble

M2 macrophage and found to express high levels of the anti-inflammatory cytokine

IL-10 [19, 37, 38]. It is believed that these ATMs maintain adipose tissue home-

ostasis by protecting from inflammation in response to high-fat concentrations [39].

As explained, obesity is associated with increased accumulation of macrophages as

well as with enhanced switching in polarization of ATMs from an anti-inflammatory

(M2) to a pro-inflammatory (M1) state [6]. This change in polarization could be re-

lated to pathogen interference and could be specified by the targeted grouping of M1

macrophages around adipocytes that are apoptotic and having necrotic like struc-

tures [40]. Interestingly, some studies suggested that in people who are experiencing

weight loss, there is a reduction in the infiltration of inflammatory macrophages into

the adipose tissue and an improvement in the inflammatory response and oxidant

profile of adipocytes as well as the circulating monocytes[30].
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1.3 MicroRNAs are Important for Adipose Tissue Function

Compelling evidence suggested critical roles of microRNAs in regulating adi-

pose tissue function in the context of obesity [41]. The discovery of microRNAs,

a class of 21-23-nucleotide non-coding RNAs revealed a new layer of gene regula-

tion in almost every aspect of biological processes, including those of the immune

systems [12, 13]. MicroRNAs are short non-coding RNAs that are approximately

22-nucleotide in length and bind to target messenger RNAs (mRNAs) and regu-

late gene expression. The microRNA pairs to its target mRNAs typically result in

their degradation and/or repression of translation [42]. MicroRNAs are expressed

in a tissue- and cell-type specific manner and play important roles in many molec-

ular and biological processes, including proliferation, apoptosis, development, and

differentiation[12, 42, 43, 44]. During adipogenesis, microRNAs are modulating the

formation and function of adipose tissue from various aspects. microRNA-33a and

microRNA-33b target genes are related to metabolism [45, 46] and microRNA-103,

and microRNA-107 regulate insulin sensitivity and glucose homeostasis by modu-

lating the abundance of caveolin-1 in adipocytes [47, 48]. Furthermore, microRNAs

have been associated with inflammation, oxidative stress, impaired adipogenesis and

insulin signaling, and apoptosis and angiogenesis in relation to obesity. All of these

processes contribute to the development of type 2 diabetes, atherosclerosis, and as-

sociated cardiovascular disorders [30, 41, 49, 50, 51]. However, their association

with these processes does not necessarily imply a causal role. Each microRNA can

have different roles in various conditions. For instance, microRNA-17-92 cluster,

microRNA-21, microRNA-103, miR-143, microRNA-371, and miR-378/378* have

shown to increase adipogenesis [47, 48, 52, 53, 54, 55, 56, 57]. This is evidenced

by increased concentrations of triglycerides in circulation and enhanced expression

6



of adipogenic markers [33, 52, 54, 56, 57]. The microRNA-17-92 cluster induces

and accelerates adipocyte differentiation by suppressing expression of the pivotal

cell cycle regulator Retinobalstoma2 (Rb2/p130) [52]. In addition, let-7, microRNA-

27, microRNA-130, microRNA-138, microRNA- 369-5p, and microRNA-448 inhibit

adipogenesis which results in a decrease in triglycerides and down-regulation of

adipogenic factors [53, 58, 59, 60]. Similarly, microRNA-21 stalls adipogenesis by

inhibiting the Transforming Growth Factor beta (TGF-β) signaling pathway and

microRNA-143 acts in a similar fashion through down-regulating ERK-5 function

[54]. The let-7 microRNA inhibits adipogenesis by targeting high-mobility group AT-

hook 2 (HMGA-2)[53], whereas microRNA-27 and microRNA-130 functions through

suppressing peroxisome proliferator activated receptor γ directly [61, 62].

1.4 Significance of MicroRNAs in Regulating Adipose Tissue Macrophage

Activation

MicroRNAs are now accepted as important posttranscriptional regulators of gene

expression in immune cells like monocytes and macrophages [12, 13]. Varieties

of inflammatory signals stimulate microRNA expression induction like LPS, Tu-

mor Necrosis factor alpha (TNFα) or IL-1β and these tunes down TLR4/IL-1R

signaling pathways in macrophages/monocytes [12, 13]. A decrease in microRNA-

17, microRNA-92a and microRNA-155 is associated with an increase in monocyte/

macrophage proliferation and enhanced TLR-4 activation [63, 64, 65]. Similarly,

microRNA-424 expression in endothelial cells is increased from hypoxia and switches

pathway to regulate monocyte/macrophage differentiation [66, 67]. For example,

different studies have shown that microRNA-146, microRNA-125b, microRNA-155

and microRNA-9 are induced by LPS and subsequently inhibiting TLR4/IL-1R sig-

naling pathway by posttranscriptional regulation of the pathway components levels
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[68, 69, 70, 71]. In a similar fashion, some studies suggested microRNAs can directly

regulate production of type 2 cytokine productions during macrophage activation,

for example, microRNA-98 and microRNA-21 can control the expression of IL-10 in

macrophages and monocytes that in turn inhibit induction of expression of inflamma-

tory genes [60, 72]. Recent study found that let-7c regulates bactericidal and phago-

cytic activities of macrophages, two functional phenotypes implicated in macrophage

polarization [29]. Based on these evidences, it may be hypothesized that, in the con-

text of obesity, the switching of inflammatory macrophages to an anti-inflammatory

phenotype could be promoted by microRNAs. A study by Zhuang et.al identified

that microRNA-223 acts as an important regulator of ATMs polarization and fur-

ther demonstrated that it plays a significant role in modulating obesity associated

insulin resistance [28]. microRNA-223 is differentially expressed during macrophage

polarization, and microRNA-223deficient macrophages were hypersensitive to LPS

stimulation and exhibited delayed responses to IL-4 compared with controls. Fur-

thermore, there is an increase in M1 and decrease in M2 polarization biomarkers in

microRNA-223 deficient macrophages indicated suppressive effects on activation of

pro-inflammatory macrophages and a stimulatory effect on anti-inflammatory activa-

tion. microRNA-223deficient mice displayed enhanced adipose tissue inflammatory

responses and decreased adipose tissue insulin signaling accompanied by inappropri-

ate adipokine expression, which are indicators for adipose tissue dysfunction. These

results support the hypothesis that microRNA-223regulated macrophage polariza-

tion, likely acting through suppressing a pro-inflammatory gene Pknox1, is important

for adipose tissue function. These studies provided profound knowledge in a complex

interaction in the macrophage-mediated adipose tissue inflammatory responses and

metabolic regulation as well as indicating the possibility of targeting microRNAs

for treatment of metabolic disorders and disease resulting from insulin resistance.
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These are excerpts from the review that was published in Journal of Nutrition and

Food Sciences collectively signified the importance of microRNAs in diverse roles

of macrophage polarization with specific focus on the dysfunction of adipose tissue

and its disorders. Impairment in the normal functioning of adipocytes leads to an

inflammatory phenotype, with enhanced expression of pro-inflammatory adipocy-

tokines and down regulation of expression of anti-inflammatory adipocytokines. The

roles played by polarized macrophages are immense, and the significant contribution

by microRNAs could not be ignored as well.

1.5 Transcriptional Profiling of Macrophage Polarization

ATMs are major inflammatory mediators in white adipose tissue (WAT) of obese

individuals. Increased levels of chemokines secreted from adipose tissues recruit

circulating macrophages and other immune cells into fat depots of obese individu-

als [12]. ATMs display heterogeneous activation statuses that are associated with

various functions. Classic (M1) activation of ATMs leads to the production of pro-

inflammatory cytokines such as TNF-α, IL-1β, and IL-6; whereas alternative ac-

tivated macrophages (M2) produce anti-inflammatory cytokines such as IL-10 and

IL-13 [3]. In adipose tissue of the obese individuals, macrophages mainly display pro-

inflammatory M1 responses that contribute to systemic insulin resistance [23]. Clin-

ical studies suggest that the anti-inflammatory treatments can benefit patients with

systemic insulin resistance [5]. However, major questions related to how macrophage

polarized activation is regulated remain unanswered. To unveil the mechanisms un-

derlying polarized activation of macrophages, it is necessary to generate transcrip-

tome profiles so that valuable information can be extracted to depict the crosstalk

of signaling pathways that controlling ATM responses to various stimuli. This is the

major goal of my research. We adopted RNA-sequencing methodology to construct
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total RNA libraries from macrophages in M0, M1, and M2 status. RNA sequenc-

ing datasets analysis revealed that several genes are differentially expressed, and

signaling pathways are altered during macrophage polarization.
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2. MATERIALS AND METHODS

2.1 Bone Marrow Isolation and Macrophage Differentiation

Protocols used for generation of Bone marrowderived macrophages (BMDMs)

were similar to previously described [28]. In brief, bone marrow cells from wild

type (WT) mice (C57Bl6) were collected. They were then treated with ammonium

chloride (Stem Cell Technologies) for erythrocyte lysis, and then seeded in 100 mm

plates at a concentration of 2x106 cells per 1 mL. Differentiation to monocytes of cells

was done with Iscoves Modified Dulbeccos Media (IMDM) medium having 10% Fetal

Bovine Serum (FBS) and 15% L929 culture supernatant for 7 days. The medium

was replaced on Day 3. Using flow cytometry, the generation of mature monocytes

was assessed on day 7 with fluorescence-conjugated antibodies against CD11b and

F4/80 [Fig 2.1a and b].

2.2 Macrophage Polarization

BMDMs were induced by lipopolysaccharide (LPS; 100 ng/mL) and Interferon

gamma (IFNG; 10ng/ml) or interleukin (IL-4) (10 ng/mL) and IL13 (10ng/ml) to

evaluate macrophage polarization. Using flow cytometry, surface antigens, CD69,

CD80, and CD86, were observed at 24 hours after stimulation [28]. Total RNAs were

extracted from these activated BMDMs at the similar time points and subjected to

gene expression study.
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Figure 2.1: Experimental Design for In-vitro Macrophage Polarization(A). Bone mar-
row cells are isolated and cultured for 7 days in the presence of M-CSF. Mature
macrophages are them subjected for stimulation with LPS and IFN-g for M1 and
IL4 and IL13 for M2. Macrophage maturation was evaluated using flow cytometry
(B). Total RNAs were extracted from activated macrophages and subjected to RNA
seq analysis.

2.3 Next Generation Sequencing Data Processing

Equal amounts of RNA from LPS and IFNg treated (M1), IL4 and IL13 treated

(M2) and untreated Macrophages (M0) from 5 sets of mice were pooled and the sam-

ples were used for high throughput RNA sequencing[Fig 2.2]. A total of 120 million

with 40 bps single-end Illumina reads were obtained from a multiplexing run on a sin-

gle lane. Reads filtered for adapter sequences and trimmed based on sequence qual-

ity (threshold of Q20) using ea-utils toolkit (https://code.google.com/p/ea-utils/).

Filtered reads less than 40 bps in length was discarded. Spliced alignment was per-

12



Figure 2.2: RNA-Sequencing.Briefly, long RNAs are first regenerated into a library
of cDNA fragments through either RNA fragmentation or DNA fragmentation. Se-
quencing adaptors (dark blue) are later on attached to each cDNA fragment and
using high-throughput sequencing technology, a short sequence is generated from
each cDNA.

formed against the mouse genome mus-musculus 10 (mm10) using tophat2 (TopHat

2.0.10) without allowing any mismatches to reduce the number of false positives and

the resultant alignments were further processed using cufflinks2 (Cufflinks 2.2.1) to

perform reference annotation based transcript assembly with bias and multi-read

correction.

Differential expression analyses were performed using cuffdiff2, and the pictorial

representation of it was achieved through cummeRbund (CummeRbund 2.6.1). Out-

put data from tophat and cufflinks were converted to browser extensible data (BED)
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files for viewing in the UCSC genome browser.

2.4 Gene Ontology Analyses

Functional enrichment analysis was executed using Ingenuity Pathway Analysis

(IPA) version 2.0 software (Ingenuity Systems Inc., Redwood City, CA). To perform

IPA analysis, all expressed genes (Fragments Per Kilobase Of Exon Model Per Million

Mapped Reads (FPKM) ≥ 0.05) in M0, M1and M2 were uploaded into three columns

for purpose of generating illumina probe Id and a column core analyses was performed

on each dataset. As the next step, for the purpose of performing a comparison core

analysis, all differentially expressed genes (fold change of 2) in M1vsM0, M2vsM0

and M1vsM2 were uploaded separately along with FPKM values and log fold change

values and analyses were done. By convention, genes that were up-regulated in each

dataset are shown in red and genes that were down-regulated are shown in green.

During IPA analysis, by default, the molecules present in the dataset and associated

with the Ingenuity Knowledge Base repository (Ingenuity Systems Inc.) were only

considered. The biological functions and diseases that were most important to the

dataset were identified using Functional Analysis. The significance of the association

with the dataset and the specific pathways of interest were determined in three ways:

(1) the activation z-score infers the activation state (Decreased or Increased), (2) a

P value was calculated using Fisher’s exact test which determines the probability of

the association between the genes in the pathway of interest and the dataset could

be explained by chance alone, and (3) ratio of the number of molecules in the dataset

that mapped to the pathway to that of the total number of molecules that linked

to the Ingenuity Knowledge Base pathway. Based on relationships in the molecular

network, he derivations of the z-scores are calculated which represent observed causal

associations in experiments between genes and those functions. Canonical pathway
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study was used to identify networks that are present in the IPA library which were

most significantly moderated across anatomical sites. Significance of the relationship

between each dataset and the canonical pathway was evaluated in 2 ways: (1) a P

value was calculated using Fisher’s exact test which determines the probability that

the association between the genes in the pathway of interest and the dataset could

be explained by chance alone, and (2) ratio of the number of molecules in the dataset

that mapped to the pathway to that of the total number of molecules that linked to

the canonical pathway.

2.5 RT-qPCR

The total RNA from the isolated cells was extracted using Trizol extraction pro-

tocol according to the manufacturers instructions. For gene expression analysis, ac-

cording to the manufactures protocol, quantitative RT-PCR (qPCR) was performed

with iScript One-Step RT-PCR kit with SYBR Green (Bio-Rad) on Bio-Rad CFX384

(Bio-Rad). Gene specific primer pairs were used. The data obtained represents the

mean of 2-δδCt from at least three independent experimental repeats. Beta-actin

reference gene was used for normalization [28].

2.6 Data and Statistical Analyses

Tukey post-test and One-way ANOVA were used to analyzed the dataset for

each factor at individual times. Each data point represents an average of 3 technical

replicates and presented as the meanSEM. Graphpad Prism version 5.01 software

was used to perform the data analysis [28]. P ≤ 0.05 was considered statistically

significant.
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3. RESULT AND DISCUSSION

3.1 Transcriptomic Analyses Revealed Almost Similar Number of Gene Expression

Our aim was to compare the transcriptomic expression profile of different acti-

vation states of macrophages. Accordingly, M0, the unactivated macrophages, and

the two activated states Classical M1 and alternate M2 states were chosen. Total

RNA was collected from these samples. The RNA sequencing of these samples was

performed using the Illumina platform, generating total 40 million high-quality raw

reads for each sample. The reads were aligned against the Ref-Seq mGRC38 (mouse

Genome Reference Consortium 38) mm10 reference [Table 3.1] genome using TopHat.

Cufflinks, a well-established transcript assembler, was used to perform the reference

genome-guided transcript assembly of the aligned reads. Based on the abundance of

the transcripts and their overall relative abundances that were expressed in all three

types of macrophages on each chromosome were binned and were compared using

cuffdiff.

Table 3.1: MM10 Reference Database: GRCm38 (C57Bl/6J). mm10 Database was
constructed by Genome Reference Consortium in 2012. It includes all 22 chromo-
somes. There are total 31805 transcripts which includes mRNAs, non coding RNAs
and also isoforms.

The assembled transcripts and their abundances were used to perform the fol-
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Table 3.2: 95% of RNA Sequencing Reads Mapped. RNA-seq reads obtained are
first filtered to filter out the shorter reads of less than 40bp in length, repetitive
sequences and others.

lowing statistical and secondary analyses. The transcripts that were differentially

expressed among the three macrophage groups and the pairwise comparison of all

3 individual samples were identified using cuffdiff. The statistical analysis is done

using the square root of the Jensen-Shannon divergence computed on the relative

abundances of the coding sequences, and the significance of differential expression

was based on uncorrected P-value and Benjamini-Hochberg correction for multiple-

testing.

Among the 40 million high quality single end raw reads for each sample, 95.06%,

95.43% and 95.21% of the reads were mapped [Table 3.2] to the mouse genome

mGRC38 for M0, M1 and M2 respectively. In each of the sample, the aligned reads

supported an average of 31800 transcripts including isoforms, mRNAs and non- cod-

ing RNAs (p value and FDR less than 0.05) that were identical to previously anno-

tated mm10 database.

Interestingly, average of 23434 distinct gene loci per sample was detected, indi-

cating the diversity introduced by isoforms of various genes. From the total of 3

sequenced samples, approximately 94000 known transcripts were identified, compris-

ing 69012 and 26403 genes and isoforms, respectively [Fig 3.1].
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Figure 3.1: RNA-Seq Bioinformatics Analysis Workflow

With all of our sequence reads, we assessed the expression levels of genes in M0,

M1 and M2 samples. Expression levels are measured in fragments per kilobase of

exon model per million mapped reads (FPKM), and the sum of the FPKM values

of its isoforms defines the expression level for a gene. Volcano plot showed the

distribution of gene expression values is left-skewed [Fig 3.2a]; the median and mean

FPKM values for M0 are 0.54836 and 34.11, respectively. Median and mean for M1

(0.5377, 45.7966) and M2(0.57498, 35.253) respectively showed the three datasets

have approximately similar median.

In order to avoid all the transcripts with FPKM values that are very close to 0,

we set the lower bound of 0.05 as an FPKM value in our subsequent analyses. Using

this criterion, we detected 14353, 14389 and 14358 transcripts expressed in our M0,
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M1 and M2 cells [Table 3.3].

Figure 3.2: Intensity and Total Number of Expressed Genes are Comparable in
Macrophages at Various Activation Status. The gene expression among M0, M1 and
M2. Density plot shows that most of the genes are expressed between 0.5 and 2
value of log10(FPKM). More number of genes are expressed in M2 in the range of
0.75 to 1.5 log10(FPKM). Box plot showing distribution of the expression profiles of
the three differently activated macrophages. Each box is based on 24000 genes based
on their FPKM values. Median FPKM values are denoted by black solid lines and
the top and bottom box edges denote the first and third quartile of FPKM values
comprising genes. Whiskers represents the largest and smallest data within 1.5 times
that of the interquartile range of FPKM.

Table 3.3: Genes are Considered Expressed with FPKM Value Greater than 0.05. In
the three datasets, approximately 14000 genes expressed.
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The transcript abundance was calculated based on the FPKM, and all expressed

transcripts were further binned on the basis of their abundance (FPKM). Based on

these grouping, it was revealed that the majority of the assembled transcripts were

low in abundance, i.e., below 10 FPKM. We classified genes into groups based on

their FPKM values: Not expressed (FPKM < 0.05), low expressed (0.05 ≤ FPKM

< 10), medium expression (10≤ FPKM < 100), and high expression (FPKM ≥ 100)

[Fig 3.3].

Figure 3.3: Distribution of Expression Pattern of Genes Based on FPKM. Classified
genes into groups based on their FPKM values- Not expressed (FPKM < 0.05), low
expressed (0.05 ≤ FPKM < 10), medium expression (10 ≤ FPKM < 100), and high
expression (FPKM ≥ 100).

In general, the transcripts expressed were higher in M2 than in the other two

groups. However, the overall number of transcripts and their expression profile in all
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three macrophages followed a similar trend [Fig 3.2b]. In agreement with the Box

plots, MA plots also showed similar outliers and similar expression pattern in all the

three samples [Fig 3.4a,b and c].

Figure 3.4: MA Plot Visualizing the Values of M1, M2 and M0 Genes Compared
to Each Other.Log10(M1/M0) indicates the fold-changes in the abundances of an-
notated genes between the two samples; (log2(M0)+log2(M1))/2 shows the average
abundance of an annotated genes.

Together, these analyses demonstrate the deviation in individual transcript ex-

pression levels, which is probably due to a great number of low abundance transcripts

in all of the samples, an occurrence generally witnessed in RNA sequencing data

studies.
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Figure 3.5: Cluster Analysis of Differentially Expressed Genes. Macrophage polar-
ization related gene expression is summarized from profiles in M1 or M2 comparing
to M0. A total of 1934 genes were upregulated and 1664 downregulated in M1 vs
M2.

3.2 M1 Vs M2 Macrophages Have More Number of Differentially Expressed Genes

To estimate the differentially expressed genes and transcripts between the three

macrophage groups, we set fold change of 2 as a lower bound for our subsequent

analyses [Fig 3.5] [Table 3.4]. We identified 3010 transcripts that were differentially

expressed between the M1 and M0 groups. Among the identified transcripts, 1556

transcripts exhibited a higher abundance (up-regulated) in the M1 group, and 1454

manifested lower relative abundance (down-regulated) than in the M0. When the

M2 group was compared with the M0 group, 1011 transcripts were identified as
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differentially expressed. Among these transcripts, 611 were up-regulated, and 400

down-regulated in M2. The M1 and the M2 group comparison revealed 2256 tran-

scripts that were differentially expressed and 1027 transcripts were up-regulated and

1229 down-regulated in M1.

Table 3.4: Differentially Expressed Genes Among M0, M1 and M2.Genes are con-
sidered differentially expressed with log2 fold change value greater than 1 or less
than -1. It is found that there are around 1300 differentially expressed genes in M2
compared to M0. 2400 genes were differentially expressed in M1 vs M0. About 1900
genes were highly expressed in M1 compared to M2 and around 1600 genes were
under expressed in M1 compared to M2.

The comparative analyses of these three samples at gene level [Fig 3.6] provide

a complete view of the whole transcriptomic changes among the three groups. To

further explore the pairwise relationship, regression plots were constructed which

explain that M2vsM0 have R-Square value of 0.95 when compared to 0.90 and 0.91

for M1vsM0 and M1vsM2 plots [Fig 3.7].
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Figure 3.6: Differentially Expressed Genes Among M0, M1 and M2 Macrophages.
Shown is a Volcano plot comparing the normalized expression of gene probe sets
of macrophage polarization. Each red dot indicates a gene with more than 2-fold
change and p-value less than 0.01 comparing to M0. Macrophage polarization related
gene expression is summarized from profiles in M1 or M2 comparing to M0. A total
of 1934 genes were up-regulated and 1664 down-regulated in M1 vs M2.

Figure 3.7: Regression Profiles Signify That M2 and M0 Macrophages Have a Very
High R Square Values
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There are plenty of mRNAs that are differentially expressed between M1 and M2

when compared to M0 [Fig 3.8 and Table 3.5]. Certain genes related to Antigen

presentation and Processing, P53 signaling pathways, pro-inflammatory pathways

have found to be highly expressed in M1 compared to M2. Whereas genes that a

play role in anti-inflammatory pathways, focal adhesion and Extracellular Matrix

(ECM) interaction pathways were abundantly expressed in M2 samples. This was

much evidently proved by Gene Ontology (GO) studies as well.

Figure 3.8: Cluster Analysis of Differentially Expressed mRNAs. Macrophage po-
larization related mRNAs expression is summarized from profiles in M1 or M2 com-
paring to M0. Several mRNAs are distinctly differentially expressed among the two
groups.
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Moreover, the differential expression of transcripts that resulted in more than one

assessment were separated from the bona-fide transcripts that were specific to one

comparison, i.e., the transcripts specific for M1 vs. M0 (3413 genes, 3010 mRNAs),

M2 vs. M0 (1011 mRNAs, 1286 genes) and M1 vs. M2 (2256 mRNAs, 3598 genes)

[Fig 3.9 and Table 3.6].

Figure 3.9: Analysis of Protein Coding Genes. Box plot showing distribution of the
expression profiles of the three differently activated macrophages. Each box is based
on 24000 genes based on their FPKM values. Median FPKM values are denoted by
black solid lines and the top and bottom box edges denote the first and third quartile
of FPKM values comprising genes. Whiskers represents the largest and smallest data
within 1.5 times that of the interquartile range of FPKM.

Table 3.5: Analysis of Protein Coding Genes.Most of the genes expressed are protein
coding genes.

26



Table 3.6: Differential Expression Pattern of mRNAs: It is found that there are
around1000 differentially expressed mRNAs in M2 compared to M0. 2000 mRNAs
were differentially expressed in M1 vs M0. About 1027 mRNAs were highly ex-
pressed in M1 compared to M2 and around 1229 mRNAs were under expressed in
M1 compared to M2.

Interestingly, when we compared the abundantly expressed genes in all M0, M1

and M2 (FPKMM≥100), it was revealed that 703 transcripts were highly expressed

in all three samples.

It signifies that these genes could be responsible for the basic physiological func-

tions of all the macrophages. 245 genes were abundantly expressed in M1 alone

compared to 54 and 22 in M2 and M0 [Fig 3.10].
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Figure 3.10: Genes Expressed More than 100 FPKM. Three sets of macrophage
profiles comparing M1, M2 and M0 samples were analyzed to identify genes which
are consistently upregulated (FPKM ≥ 100). Analysis revealed that 703 genes are
highly expressed (FPKM ≥ 100) in all M0, M1 and M2 samples and 22, 245 and 54
are uniquely highly expressed (FPKM ≥ 100) in M0, M1 and M2.

Figure 3.11: Validation of RNA Seq Data for Certain Genes Using qPCR. Expression
levels of PTGS2 was found to be significantly higher in m1 compared to M0 and M2.
Il10, IL1b, CDK2 and CEBPb all follow the similar expression pattern as the data
sets of RNA-seq revealed.
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We further did a qPCR analysis of certain transcripts in all the three groups M0,

M1 and M2. These observations indicate the accuracy of the RNA sequencing-based

transcript reconstruction and abundance calculation (Fig 3.11).

3.3 Crosstalk Between Signaling Pathways

To associate cellular functions with the set of differentially expressed genes, we

used DAVID Gene Ontology program and Ingenuity pathway analysis. Gene net-

works were assessed using the IPA library of canonical pathways. Specifically for

transcriptional data, the genes that were differentially expressed with at least 2-fold

enriched occupancy of M1 and M2 compared to M0 were associated with canonical

pathways using the Ingenuity Knowledge Base. Using this approach, the top canoni-

cal pathways that were found to be affected by the genes which are highly expressed

in M1 compared to M0 are Dendritic cell Maturation, Graft versus Host Disease

Signaling, Trem1 signaling and Type 1 Diabetes Mellitus [Fig 3.12].
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Figure 3.12: Gene Ontology analysis for Genes with More than 2 Folds Alteration
During Macrophage Polarization. Cellular functions of significantly altered genes
in M1 or M2 are analyzed. In M1 macrophages, several GO terms are significant
enriched (P≤ 0.001) including Type I Diabetes mellitus and Antigen Presenting and
Processing; whereas ECM receptor interaction is highly enriched in M2

This is noteworthy, because these canonical pathways are involved in all aspects

of known M1 macrophages. In upstream regulator analyses, we found that MYD88

(Myeloid differentiation Primary response 88), TICAM1 (Toll - Like Receptor Adap-

tor Molecule1), IFNG, SOCS1 (Suppressor of Cytokine Signaling1) and IFNB1 are

the top regulators in M1 compared to M0 [Table 3.7a,b and c]. Genes highly ex-

pressed in M1 datasets are also involved in some of the important disease and disor-

ders including infectious disease, immunological disease, and gastrointestinal disease

to name few. We next identified those biological functions most significantly asso-
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ciated with the M1 RNA-Seq datasets using the IPA Functional Analysis feature.

Table 3.7: M1 IPA Analyses. IPA analyses of the genes expressed in M1 showed that
TLR4, IFNg, Stat1 are some of the top upstream regulators for the different func-
tional pathways the genes expressed in M1 are involved. IFNg is found to play role in
antigen presentation and processing, allograft rejection signaling pathway and these
pathways found their position in the top KEGG terms. Right-tailed Fishers exact
test was used to calculate p-values determining the probability that each biological
function was due to chance alone.

This highlighted that inflammatory response genes were the top biological func-

tion comprising of about 109 genes. David Gene Ontology studies revealed that genes

which are highly expressed in M1 when compared to M0 enriched KEGG (Kyoto

Encyclopedia of Genes and Genomes) terms like Type I Diabetes mellitus, Antigen

Presentation and Processing, Pathways in cancer to highlight few. On the other
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hand, KEGG terms enriched by genes highly expressed in M2 when compared to M0

include Focal adhesion, calcium signaling pathway, and ECM receptor interaction to

name some [Fig 3.13].

Figure 3.13: Significantly Enriched GO Terms in M1 or M2 Activation. The fold
enrichment of the KEGG terms was analysed and was found that with the genes dif-
ferentially expressed in M1 some of the key KEGG terms with high fold enrichment
includes Antigen Presentation and Processing, Type I Diabetes mellitus, Adipocy-
tokine signaling pathway and others. Whereas the differentially expressed genes in
M2 are found to have KEGG terms with high fold enrichment like ECM-receptor
interaction, Calcium Signaling and others.

Using IPA, when M2 datasets were analyzed, it revealed that miR-223 is one

of the top upstream regulators among other significant regulators like IL4, IGF1r

(Insulin Growth Factor 1 receptor), CCR2 (Chemokine (C-C Motif) Receptor 2)

and others [Table 3.8a].

Role of miR-223 was significantly proved in previous research studies of our lab
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Table 3.8: M2 IPA Analyses.IPA analyses of the genes expressed in M2 showed
that miR223, IL4, IGF1r are some of the top upstream regulators for the different
functional pathways the genes expressed in M2 are involved. B cell receptor signaling,
protein ubiquitination pathway, molecular mechanisms of cancer found their position
in the top KEGG terms. Right-tailed Fishers exact test was used to calculate p-values
determining the probability that each biological function was due to chance alone.

[28]. Mir-223 is known to up-regulate expression of Ataxia Telangiectasia, NFIA

(Nuclear factor I/A), SLC2A4 (Solute Carrier Family 2, member 4) and others. It is

also found to down-regulate genes including STAT3 (Signal Transducer and Activator

of Transcription 3), FBXW7, IGF1R and many more. Interesting knock down mir-

223 studies showed that it also reduces the expression levels of IGF1, TLR13 (Toll

Like Receptor13), and TGFb1 to name some [Fig 3.14].

Studies on mir-223 have shown that it inhibits nuclear translocation of STAT3 in

glomerular endothelial cells. STAT3 is a very important transcription factor involved
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in regulation of transcription of a variety of genes in response to cell stimuli, and thus

plays a key role in many cellular processes such as cell growth and apoptosis [73].

Genes highly expressed in M2 datasets are found to be involved in different canoni-

cal pathways including B cell receptor signaling, Glucocorticoid signaling, Molecular

mechanisms of cancer and lot more[Table 3.8b]. Macrophages activate to M2 status

are also involved in different disease and disorder conditions including cancer, in-

fectious disease, immunological disease, hematological disease and many more[Table

3.8c].

Figure 3.14: MiR223 Regulates Different Genes Which Impact Various Functional
Pathways. miR223 decreases the expression of STAT3 and IGF1r. STAT3 is a very
important transcription factor involved in regulation of transcription of a range of
genes in reaction to cell stimuli, and thus is involved in many cellular developments
such as cell growth and apoptosis. Knockdown of miR-223 decreased expression of
Tlr13, TGFb1, IGF1, Ly96 and others highlighted with blue arrow.
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3.4 Role of M1 in Diabetes Type I Mellitus is Signified by High Expression of

PPARG and IGF2bp2

IPA analysis revealed that classically activated macrophages have genes with high

expression that are involved in Diabetes mellitus. Some of the notable genes are

Pparg (Peroxisome Proliferator-Activated Receptor),FTO (Fat Mass and Obesity

Associated),Kcnj11 (Potassium Inwardly-Rectifying Channel, Subfamily J, Mem-

ber 11), Notch2,Wfs1 (Wolfram Syndrome 1),Igf2bp2,Slc30a8,Jazf1 (Jazf Zinc Fin-

ger 1),Hhex (Hematopoietically Expressed Homeobox),Cdkal1,Cdkn2a,Capn10 (Cal-

patin 10) and the research team of Shukui Wang identified two additional genes

Rapgef(Rap Guanine Nucleotide Exchange Factor) andTp53 (Tumor protein 53) re-

lated to type 2 diabetes risk. The authors suggest that Rapgefrepresents a strong

candidate because of its role in insulin signaling. In addition, theRapgefpathway may

be involved in the regulation of proglucagon gene expression in intestinal endocrine

L-cells [74], providing another mechanism for its effect on risk of type 2 diabetes.

Rapgef is very highly expressed in M1 when compared to M2 and M0. Other genes

like Pparg and Igf2bp2 are also very highly expressed in M1. Pparg is very well

known for its involvement in inducing adipogenesis and its over expression also in-

creases insulin sensitivity that is of great benefit in diabetes treatments [75]. Igf2bp2

is insulin like growth factor-2 protein which play a vital role in the regulation of

Insulin Growth Factor2 expression. IGF2B2 functions by binding to 5’UTR of the

IGF2 mRNA and regulates IGF2 translation.

3.5 High Expression of CIITA and TAP Genes Shows Role of M1 in Antigen

Presentation Pathway

Of the many different genes that are involved in antigen presentation pathway,

Some genes like CD74, CIITA (Class II, Major Histocompatibility Complex, Trans-
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activator), IFNG, PSM8 and 9, TAP1 (Transporter 1, ATP-Binding Cassette) and

2 and TAPBP are very highly expressed. CD74 is related with class II major histo-

compatibility complex (MHC) and is an significant chaperone that controls antigen

presentation for immune response [76]. Studies also revealed that It serves as cell sur-

face receptor for the cytokine macrophage migration inhibitory factor (MIF) which

initiates survival pathways and cell proliferation when bound to the encoded protein

[77]. TAP 1 and 2 are the one that hold the peptide fragments and transport it to the

endoplasmic reticulum from the cytoplasm [74]. CIITA is responsible for activation

of MHC1 and II to which CLIP protein binds and aids in the transport of peptide

fragment from ER to Golgi and then to late endosome. IFNG is very much involved

in activation of TAP1 and 2 and making them bind to the peptide fragments. It also

activates CIITA and NLRC5, which are involved in transport of peptide fragments

[78]. The expression levels of these genes in M1 signified their role in antigen presen-

tation. TAP1 and TAP2 expression levels are significantly higher in M1 with FPKM

about 331 and 343 compared to 146.1 and 94.8 in M0 respectively. High CD74 ex-

pression levels of 2228.3 in M1 compared to 713.29 in M0 reveals that classically

activated macrophages are involved in antigen presentation and processing.

3.6 Genes Related to Atherosclerosis Signaling are Highly Expressed in M2

IPA analysis revealed that alternatively activated macrophages have genes with

high expression that are involved in atherosclerosis signaling. Some of the notable

genes are involved in diabetic atherosclerosis are Ager, collagen, MMP2 (Matrix Met-

allopeptidase2), MMP9, NFKB1 (Nuclear Factor of kappa light polypeptide gene en-

hancer in B-cells), PTGS2 and RELA. Of these, MMP9, NFKB1 and PTGS2 genes

are very highly expressed signifying the role of alternate activated macrophages in

atherosclerosis. In atherosclerosis signaling, triggering of CCR2 by Low Density
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Lipoprotein (LDL) leads to monocyte-endothelial cell adhesion via ICAM-1 and

VCAM-1. MCP1 mediated transendothelial migration of monocytes into intima

is followed [79]. M-CSF produced by endothelial cells differentiates monocytes to

macrophages. In these macrophages, uptake of oxidized LDL via scavenger recep-

tors leads to lipid accumulation and foam cell formation. In foam cells, the tumor

necrosis factor receptor is activated by a ligand, which increases the expression of

IL6, IL8, MCP1 and NFKB1 to further activate MMP9 [80]. MMP proteins act on

the collagen released from the smooth muscle cells. M2 macrophages are also very

much involved in anti-inflammatory signaling and other processes.

3.7 Regulation of Expression by IFN-Gamma Play Important Role in Allograft

Rejection and Antigen Presentation

IFN-gamma plays a significant role in different functional roles. It binds to

IFNGR1, STAT receptors, JUN, CREB (Camp Responsive Element Binding Pro-

tein), NFAT (Nuclear Factor Of Activated T-Cells) and other, and regulates certain

genes like NOS2, IRF1, STAT1, CXCL10, TNF, ICAM1, MHC classII which are

involved in some of the important functional pathways involving antigen presenting

pathway, atherosclerosis signaling, allograft rejection signaling and others [Fig 3.15].
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Figure 3.15: IFNg- One of the Top Upstream Regulator. IFNg regulates expression
of several genes and further impact their role in different functional pathways. IFNg
plays a pivotal role in regulation of NFkB, Stat and TNF contributing to its role in
activation of macrophages. Some of the genes which are involved in differentiation
of macrophages are also regulated by IFNg.

In allograft rejection signaling pathway, IFN-G stimulates macrophages to pro-

duce NO and TNF-alpha, which play a role in cytotoxicity towards the donor cell

[81]. In our datasets, TNF expression levels in M1 macrophages (FPKM= 94.83) are

significantly higher when compared to the expression levels in M1 and M0 (FPKM

7.4 and 8.83). In antigen presentation pathway, IFN-G stimulates activation of CIIA

(MHC co-activator) and NLRC5 which further stimulates the MHCII to bind to the

peptide fragment and MHCI bind to the CLIP (Cap-Gly Domain Containing Linker

Protein) (CD74 MHCII variant) [77]. Supporting this the datasets also show expres-

sion levels of CIITA found FPKM value to be around 10.825 for M1 whereas in M2

and M0 it is expressed around 6.26 and 3.28 respectively. Also, NLRC5 expression

value is 87.27 whereas the expression levels in M2 and M0 are very less about 27.88

and 30.28 respectively.
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3.8 LPS Induces Genes Responsible for Cellular Immune and Humoral Response

LPS is an endotoxin protein and binds to certain receptors including TLR4, CD14,

APCS, ITGB2 and others and induces different immune related functional pathways

[74]. Binding of LPS to TLR stimulate production of IFN-Beta that play a role in

adaptive immune response [82]. Our dataset also clearly shows that the expression of

IFN-Beta was significantly enhanced to 29.97 in M1 when compared to 0.69 FPKM of

M0. In response to LPS, TLR also stimulates IL8 and IP10, which further took part

in chemo attraction of neutrophils, TH1 cells and monocytes [82]. In addition, TLR

also enhances MIP1 production that is involved in the chemoattraction of T cells

and dendritic cells. IL12 synthesis is also increased which further enhances IL10 and

IFNG, which further play a role in the development of humoral immune response and

development of cellular immune response respectively [83]. The enhanced expression

levels of IL10 and IFNG is also revealed in our datasets showing expression levels of

FPKM 15.94 and 13.67 in M1 compared to 4.63 and 2.42 in M0 respectively. LPS also

activates P38 MAPK and JNK through TLR that together enhance IL12-P40 playing

pivotal role in signaling and production of macrophages. IL12-P40 further activates

Il12-P80 which has roles in TH1 activation and inhibition, macrophage recruitment

and DTH [84]. LPS also has role in the production of nitric oxide and reactive

oxygen species. It triggers MIK and PI3K expression which in turn play a role in

the production of nitric oxide that is important for protection against infection and

neoplasia and inflammation ageing neurotoxicity [76]. Activation of Reactive oxygen

species plays a role in innate immune response against microbes.

3.9 IL4 Aids in THh1 Response

There are certain pathways and genes that are being induced by Interleukin-4.

IL4 is a very well-studied TH2 cytokine that is involved in induction and initiation
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of various functional pathways. IL4 binds to IL4R, IL2RG, Nfat, STAT6 and oth-

ers. These binding in turn regulate certain functional pathways including allograft

rejection, T helper cell differentiation, hematopoiesis from pluripotent stem cells and

other important functional roles. In allograft rejection signaling, IL4 induces B cells

which are bound by MHCII and CD40 which further aids in alloantibody graft re-

jection by producing IgG which further plays role in Complement aided damage by

action on MHCII [85]. In crosstalk between dendritic and natural killer cell, IL4

triggers the expression of DAP12 and TREM2 (Triggering Receptor Expressed On

Myeloid Cells 2). Trem2 further regulates the action of IFN-G [77]. In IL12 signal-

ing, IL4 induces STAT6 that will further inhibit the action of STAT4 on IFN-G that

is playing important role in TH1 response in intracellular bacterial death [79].IL4

also has an important part to play in hematopoiesis from pluripotent stem cells.

3.10 Genes and Pathways Induced Through IL13

IL13 induces many important functional pathways. It binds to IL13RA1, IL4R,

STAT6, CHD4, AP1 and others. It regulates ARG1, TNF, NOS2, TGFB1, STAT6,

CCL4 and these will further regulate crucial biological functions including differential

regulation of Cytokine production in Macrophages and T Helper cells by IL17, T

Helper cell differentiation, Role of cytokines in mediating communication between

immune cells.
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3.11 Interaction Between IL4, IL13 and IFNG

Figure 3.16: IFNG, IL4 and IL13 Interaction Pattern. IFNG, IL4 and IL13 have
different impacts on different genes. IL13 increases the expression of CASP1 whereas
IFNg down-regulates its expression. Casp1 play pivotal role in apoptosis. IFNg
decreases the expression levels of IRF1 but IL4 increases its expression. Ifng decreases
the expression of insulin growth factor 1 (IGF1) and also do have an effect on the
reducing effect of insulin. Il4 induction of macrophages induces the expression of
IGF1, correlating its effect on enhancing insulin sensitivity. Ifng stimulates the
expression of Interferon regulatory factor1 .

IL4 upregulates Pparg whereas Ifng downregulates it. Pparg that plays an im-

portant role in M2 activation and also in different physiological function in which M2

is involved are regulated through Il4 and Pparg as well. Ifng decreases the expression

of insulin growth factor 1 (IGF1) and also do have an effect on the reducing effect of

insulin. Il4 induction of macrophages induces the expression of IGF1, correlating its

effect on enhancing insulin sensitivity. Ifng stimulates the expression of Interferon

regulatory factor1 [Fig 3.16].
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4. CONCLUSION AND FUTURE PROSPECTS

In summary, we have documented for the first time the gene expression profiles

for the macrophages in different activation states by correlating our data with qPCR.

Globally, approximately 3000 genes were differentially expressed among the M0, M1

and M2 states of macrophages. With regard to differentially expressed genes, a high

correlation was observed between M0 and M2 in RNA-Seq data. Gene ontology

analysis indicated abundantly expressed genes in M1 significantly impacted Type

I diabetes and antigen presentation and processing. On the other hand, focal ad-

hesion, ECM interaction signaling are influenced by genes highly expressed in M2.

Interestingly IFNG plays important role in functions related both to M1 and M2.

In conclusion, distinct combinatorial patterns of gene expression exist in classically

and alternate activated macrophages. These specific differences may explain the

differential effects of macrophages in its different roles. Future research could be

a profound understanding of the complex network of interactions among different

factors involved in state of polarization of macrophages in health and disease.
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