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ABSTRACT 

The Vapor Compression Cycle (VCC) is the fundamental thermodynamic 

principle behind most Heating, Ventilation, Air Conditioning and Refrigeration 

(HVACR) systems. HVACR systems account for a vast majority of the energy used in 

residential and commercial buildings. There is a growing need to make these VCC 

systems and their respective components more energy efficient. This thesis proposes a 

prototype pilot expansion device. Preliminary results have shown that this prototype 

expansion valve outperforms most of the expansion devices currently being used in 

HVACR applications. 

Valve hunting and superheat control are very important elements in the operation 

of expansion valves. They reduce system efficiency and increase energy consumption. 

To address these problems, the combination of conventional expansion valves with other 

expansion devices or components is still a relatively unexplored area. This approach has 

the potential to improve the energy efficiency of HVACR systems thus reducing cost of 

operation. This thesis discusses the development, design and proof-of-concept testing of 

a Prototype Pilot Expansion Valve (PPEV). 

 A number of tests were designed and carried out in order to objectively compare 

the performance of the PPEV to that of an Electronic Expansion Valve (EEV) and a 

Thermal Expansion Valve (TEV) under a variety of operational conditions. These tests 

involve a superheat change test, startup test and external fluid flow rate test, all carried 



iii 

out at varying compressor speeds. The tests were carried out on a custom-built 

modulated water chiller system and a residential heat pump system. 

The results obtained from these tests validated that the PPEV performed 

significantly better than the EEV and the TEV. It was able to provide more cooling, 

better superheat control and consistently higher Coefficient of Performance (COP). In 

addition, this thesis also provides and proves the validity of a mathematical model for 

the Prototype Pilot Expansion Valve. 

Furthermore, an additional test was carried out to prove the possibility of an 

integrated design that will enable to PPEV to not rely on any external component to 

operate. This test demonstrates the possibility to use the compressor inlet and outlet to 

operate the PPEV thus confirming the possibility of a truly integrated design. 
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NOMENCLATURE 

Units Explanation 

Pi [kPa] Net inlet Pressure 

Ps [kPa] Spring Force 

Pe [kPa] Evaporator Pressure 

Ad [m
2
] Diaphragm Area 

mv [kg/s] Mass flow rate 

x0 [m] Initial compression of spring 

Ks [N/m] Spring Constant 

 x [m] Net axial spring movement 

P0 [kPa] Nominal Pressure 

C1 [m
2
/N] Valve parameter #1 

C2 [m
2
/N] Valve parameter #2 

ρ [kg/m
3
] Density 

Pc kPa Condenser Pressure 

A1 [m
2
] Valve inlet area 

A2 [m
2
] Valve outlet area 
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CHAPTER I  

INTRODUCTION  

 

As of 2013, the Department of Energy estimates that residential and commercial 

buildings account for 40% of the energy used in the United States [1]. Of these, air 

conditioning and refrigeration systems account for about 14% of the energy used in 

residential buildings and about 12% of the energy used in commercial buildings as 

shown in Figure 1 and Figure 2.  This data only considers buildings and therefore does 

not account entirely for the use of HVACR system in the United States. HVACR 

systems are also heavily used in other sectors such as transportation and industry.  

 

 

 
Figure 1: Energy consumption by end use in residential buildings [1]
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Figure 2: Energy consumption by end use in commercial buildings [1] 

 

 

With increasing population growth and urbanization, there is a consequential 

increase in the demand for energy, but not an equivalent increase in the supply of this 

energy. As such, using the available energy efficiently is of great importance. This 

implies minimizing the amount of energy used in HVACR systems while meeting 

comfort, operational and user requirements.  

 

Background 

The Vapor Compression Cycle (VCC) is the fundamental thermodynamic 

principles behind most HVACR systems. The VCC consists of four main components; a 

compressor, a condenser, an expansion valve and an evaporator. The amount of energy 

consumed by a VCC system is directly dependent on the performance of these four 
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components. With the use of a refrigerant as a medium, the VCC absorbs and removes 

heat from a space to be cooled. This cycle operates from four main processes as shown 

in Figure 3. 

 

 

 

Figure 3: The vapor compression cycle [2] 

 

 

 From a pressure perspective, this cycle can be broken down into two sides; the 

high pressure side also referred to as high side and the low pressure side also referred to 

as low side. In Figure 3, the high side of the cycle goes from state 2 to state 3 and is 

represented by the red arrows while the low side goes from state 4 to state 1 and is 

represented by the blue arrows. The flow of refrigerant across the Vapor Compression 

Cycle shown is as described below. 
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 Process 1-2: Isentropic compression. A superheated vapor from the evaporator 

comes into the compressor where it is compressed and attains a higher pressure 

and consequently a higher temperature. It then enters the condenser. 

 Process 2- 3: Isobaric condensation. The superheated from the compressor enters 

the condenser where heat rejection occurs and the superheated vapor refrigerant 

is condensed into a saturated liquid. 

 Process 3-4: Isenthalpic expansion: The saturated liquid from the condenser is 

routed to the expansion valve where it goes through a throttling process. This 

expansion process reduces the temperature of the exiting liquid and vapor 

refrigerant mixture to the point where it is lower than the temperature of the 

enclosed space to be refrigerated. This expansion is achieved without the 

absorption or the rejection of heat. 

 Process 4-1: Isobaric evaporation. The liquid and vapor refrigerant mixture at 

state 4 moves into the evaporator where a heat extraction process occurs and the 

refrigerant exits as a saturated vapor at state 1. This saturated vapor then once 

again enters the compressor where isentropic compression occurs and the cycle 

starts all over again. 

 

 This Vapor Compression Cycle can be represented by a Pressure-Enthalpy (P-h) 

diagram as shown in Figure 4. In this figure, the red curve represents the saturated liquid 

line on the left and saturated vapor line and the right. Under this curve, the refrigerant 

exists as a mixture of vapor and liquid. On the left of the saturated liquid line, the 
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refrigerant exists as a sub-cooled liquid while on the right of the saturated vapor line it 

exists as a superheated vapor. The line from 2 to 3 represents the cooling form of the 

refrigerant from being a superheated vapor to be a saturated liquid.  

 

 

 

 

Figure 4: P-h diagram of the vapor compression cycle [2] 

 

 

The expansion valve has two main roles: serve as a metering device for the flow 

of refrigerant through it and convert the high pressure liquid refrigerant at its inlet into 

low pressure two-phase refrigerant at its outlet. The roles of expansion valves have been 

potentially overlooked in the research to improve the energy efficiency of VCC [3]. This 

project seeks to capitalize on the opportunities for improvement of the energy efficiency 

of VCC systems which are provided by expansion valves.  
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One of the main issues affecting the performance of VCC systems is valve 

hunting. Valve hunting is a phenomenon whereby the expansion valve exhibits an 

oscillatory behavior in its opening as it tries to find a stable opening position. This 

behavior is highly undesirable and has been plaguing expansion valves from the 

beginning of their existence [4]. Valve hunting negatively affects the performance of the 

expansion valve as well as the energy efficiency of VCC systems [4].  

Another factor which affects VCC systems is evaporator superheat control. 

Superheat refers to the difference between the temperature of the refrigerant at the outlet 

of the evaporator and the saturation temperature of the refrigerant. Through its metering 

role, the expansion valve is directly responsible for maintaining the level of superheat. A 

VCC system’s cooling capacity is directly dependent on the two-phase flow to the 

evaporator, so controlling this flow effectively leads to better superheat control and 

system efficiency.  

Expansion valves typically struggle to deal with the issues of superheat control 

and hunting. Both poor superheat control and hunting negatively affect the performance 

of VCC systems [5]. Yet, they are very common in the day to day operation of 

expansion valves [6]. The expansion valve developed in this project tackles both of these 

problems and provides considerable improvements to the performance of VCC systems 

as will be discussed later. 
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 Literature Review 

The basic concepts of air conditioning can be traced as far back as ancient Egypt 

[7]. At that time, the Egyptian people made use of evaporative cooling to cool the 

interior of their houses by hanging wet cloths and reeds on the doorways and windows. 

As wind blew through the doorway and windows, the air in the room would be cooled. 

Similarly, in ancient Rome, wealthy Roman citizens would build aqueducts in the walls 

of their houses through which cold water would flow in order to provide interior cooling 

[7]. Air conditioning slowly evolved throughout the centuries. A Chinese inventor 

named Ding Huane built a manually powered rotary fan in the second century [8] and in 

1758 Benjamin Franklin carried out several experiments with evaporation and alcohol to 

attain freezing temperatures [8]. However, the industrial revolution of the 18
th

 century 

led to the inventions of the various parts and components of what are collectively known 

as Heating, Ventilation and Air Conditioning (HVAC) systems. The modern air 

conditioner is widely credited as an invention of Wills H. Carrier in 1902. Carrier’s air 

conditioning system sent air through coils filled with cold water, cooling the air while at 

the same time removing moisture to control room humidity. During the 1950s and 1960s 

there was a rapid growth in the popularity of residential air conditioning systems in the 

United States and as of 2009, approximately 87% of the households in the country have 

been equipped with an air conditioner [9]. 

 As the demand for HVAC systems soared, so did the amount of energy needed 

to operate them. However, the supply of this energy struggled to match the rapidly 

growing demand. This situation led to a widespread interest to make HVAC systems 
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more energy efficient. The energy efficiency of a VCC system is directly dependent on 

the performance of all of its individual components. However, expansion valves have 

been overlooked with regards to the potential they have to help improve the energy 

efficiency of VCC systems [3]. This project seeks to further explore the impact of 

expansion valve performance on VCC systems energy efficiency.   

Superheat control is arguably one of the key factors affecting the performance 

and efficiency of VCC systems. By controlling the flow of refrigerant, expansion valves 

are also directly responsible for controlling the level of superheat.  In the process of 

controlling superheat, expansion valves often experience hunting. Valve hunting is an 

oscillating behavior of valve opening (and refrigerant flow) in search of the desired 

superheat setpoint. This highly undesirable behavior has been plaguing expansion valves 

from the beginning of their existence. Expansion valves are known to exhibit less 

hunting behavior at higher superheat set points. However, just this information is not 

sufficient to solve the problem of valve hunting because of the other factors in play such 

as compressor speed and evaporator pressure.  Operating valves only at relatively high 

superheat set points would considerably limit their use. This is because under these 

conditions high levels of cooling cannot be achieved thus leading to a loss in cooling 

capacity. Thermal expansion valve research has been geared towards modeling these 

expansion valves in order to prevent them from hunting. Broersen and Van der Jagt [4] 

discussed the undesirable impacts of valve of hunting and linked the hunting of the valve 

to the evaporator. Their proposed solution was to vary the heat resistance between the 

thermal expansion valve’s sensing bulb and the evaporator wall. Their experiments 
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showed that increasing the resistance made the bulb dynamics slower and showed 

improvement in hunting behavior. The problem with this approach is that the added 

thermal resistance caused considerable problems for the system at startup. Further work 

to model the TEV and help curb the hunting of these devices was carried out by K. 

James [10] and by G. A. Ibrahim [11] who examined the effects of a deviation in the 

external parameters on a refrigeration system whose evaporator was controlled by a 

TEV. There has however been no experimental validation included in his study. 

Electronic expansion valves soon emerged as a viable alternative to thermal 

expansion valves. Electronic expansion valve research has been geared towards 

improving superheat control. Outtagarts et al [12] investigated the behavior of an 

evaporator fed through an electronic expansion valve at transient conditions and 

compared its performance to that of one which was fed with a thermal expansion valve. 

These tests were carried out on a fixed refrigerating machine with a cooling capacity 

below 9 kW with constant condensation conditions and variable evaporating temperature 

and variable compressor speeds. Lazzarin et al [13] carried out a similar experiment by 

performing a one year experimental survey comparing the performances of TEVs and 

EEVs for use in supermarket refrigerator cabinets. The devices were installed in several 

different types of refrigeration cabinets and the superheating, subcooling, isentropic 

efficiency and pressure drop at suction and discharge lines data were recorded 

throughout the year for both types of device. Subcooling refers to the difference between 

the temperature of the refrigerant at the outlet of the condenser and the saturation 

temperature of the refrigerant. These tests were also carried out in different geographical 
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settings with different climates (cold, mild and hot) across the year. Both of these 

experiments ([12] and [13]) showed that that the EEV performance in superheat 

regulation was superior to that of the TEV. The EEV was shown to yield considerably 

higher energy savings than the TEV. The challenge with EEVs remains in their relative 

complexity, cost and fragility [14].  

Nonetheless, while EEVs represented an upgrade to TEVs, there was still a 

considerable “gap” in the search for a device that would provide satisfactory superheat 

control and be free of hunting. Most of the research was geared towards modelling TEVs 

in order to eliminate hunting or control optimization of EEVs in order to have better 

authority over superheat. “Hybrid” valve designs involving the combination of 

conventional expansion valves with other expansion valves or components soon began to 

be researched as an alternative solution. Kim, Braun and Groll [15] proposed a hybrid-

individual superheat control approach to improve the distribution of refrigerant in 

evaporators. The two approaches proposed by this method were upstream refrigerant 

flow balancing and downstream refrigerant flow balancing. These tests showed the 

benefits of controlling individual refrigerant flow rates for superheat control which were 

also validated by a simulation model. The problem with this test, however, is while it 

was very successful with upstream refrigerant flow balancing; it was not as successful 

with downstream refrigerant flow balancing control due to the large pressure drop at the 

end of the circuit. 

Furthermore, Elliott et al [16] proposed a solution to the unending superheat 

control issues by the use of a hybrid device that uses two control mechanisms. An inner 
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mechanism that controls the pressure at the evaporator and an outer mechanism that 

adjusts the desired pressure to regulate evaporator superheat. This hybrid express valve 

(HEV) seemed to solve the problem of regulation at transient conditions because it made 

use of quantities (temperature and pressure) that address the two sources of superheat 

variation individually and also due to collocation of actuator for the pressure control 

loop. This HEV was not subject to valve hunting unlike TEVs. It did not flood or starve 

the evaporator at off conditions unlike AEVs, and required less control while providing a 

longer motor service life than EEVs. This valve provided a significant contribution but 

was big and clunky.  

With advancements in technology, the use of microvalves like the one used in 

this project, have become more popular in the HVACR industry [17]. The strength of 

microvalves is their quick actuation time. The rise of this type of technology referred to 

as Micro Electro Mechanical Systems (MEMS) was discussed by Ameel et al. [17] and 

Henning [18]. Both of these publications discussed the opportunities brought by MEMS 

including increased performance, decreased size and increased reliability. They also 

discuss the challenges faced by these microvalves for HVAC and refrigeration 

applications. One of these challenges is that thermally activated microvalves have 

trouble operating with refrigerant liquids due to the fact that the refrigerant’s 

thermodynamic state is prepared to be just on the edge of flashing and so the valve itself 

must impart little or no heat. Also, consideration of these scaling effects and the 

fabrication and material limitations often produce systems that are significantly different 

from their macroscale counterparts. Yet, if the potential of these microvalves was 
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harnessed properly, then the potential for significant improvement in superheat control 

was considerable. 

DunAn Microstaq soon came up with a MEMS based Pilot Direct Acting Valve 

(PDAV) that attempted to provide solutions to several of the challenges faced by 

expansion valves [19]. The valve developed by Microstaq is compact, light, efficient, 

and compatible with all HCFC and HFC refrigerants. It also has a quick actuation time 

of about 250 milliseconds [20] compared to the Sporlan EEV which has a full motion 

transit time of 7.5 seconds [21]. This valve provides a good solution to the problems of 

size and actuation time but still faces some challenges including the fact that it does not 

work well with open loop systems, has no mechanical feedback mechanism, consumes 

more power when open and has a lower flow rate than conventional thermal expansion 

valves due to the smaller internal surface area required by the spool.  This research 

project seeks to fill the gap left by this PDAV by proposing a valve design that makes 

use of the strengths of Microstaq’s PDAV and conventional TEVs without the main 

challenges faced by these valves.  The following sections will discuss in more details the 

objectives and tasks of these project as well as the methods, equipment used and results 

obtained. 

There are several types of expansion valves used in HVACR applications. The 

most common types include; Thermal Expansion Valves which are also referred to as 

Thermostatic Expansion Valves (TEV), Automatic Expansion Valves (AEV) which are 

pressure regulating valves and Electronic Expansion Valves (EEV). TEVs struggle to 

deal with rapidly changing cooling loads (transient conditions) while AEVs tend to 
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starve the evaporators when the load is high due to their tendency to close (so as to 

maintain the outlet pressure) when the evaporator pressure increases [7]. EEVs are 

usually able to keep up with both rapidly and slowly changing conditions but are 

complex, expensive and subject to component failure [8]. The Prototype Pilot Expansion 

Valve (PPEV) developed in this project operates in a fashion similar to that of TEVs. 

Figure 5 shows a conventional TEV and Figure 6 shows the internal workings of a TEV.  

 

 

 
 

Figure 5: Conventional thermal expansion valve 
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Figure 6: Internal workings of a conventional thermal expansion valve [23] 

 

 

The TEV is used to control the flow of refrigerant into the evaporator and also 

convert high pressure liquid refrigerant from the condenser into lower pressure two-

phase refrigerant which is then fed into the evaporator. It operates at varying pressures 

and temperatures. The flow of refrigerant across the TEV is achieved by the balancing 

effect of three forces of the diaphragm. Two of these forces act at the bottom of the 

diaphragm and through their action, they close the valve. These closing forces are 

created by the evaporator inlet pressure and the spring pressure. The third force acting on 

the top of the diaphragm arises as a result of the sensing bulb pressure on the spring. 

This is an opening force as it causes the valve to open. The sensing bulb is filled with a 

fluid similar to the refrigerant in the system. This sensing bulb is attached to the outlet of 

Tube to 
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Valve Outlet

Spring

Valve Inlet
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the evaporator. When there is an increase in the temperature of the refrigerant at the 

outlet of the evaporator, the temperature and pressure of the fluid in the sensing bulb 

also increase. The increase in the pressure of the fluid inside the sensing bulb causes a 

force to act at the top of the diaphragm and this causes an increase in the valve opening 

and refrigerant flow rate across the valve. The increase in refrigerant flow across the 

expansion valve and into the evaporator will lead to a decrease in the temperature at the 

outlet of the evaporator and as that temperature decreases, so do the bulb pressure, valve 

opening and refrigerant flow rate until the system reaches a point of steady state. 

Through this operation, the TEV is able to operate over a wide range of loads and 

temperatures. It is also less adversely affected by variations in refrigerant charge, 

especially in smaller systems, than AEVs [23]. However, TEVs are often victims of 

hunting and they struggle to deal with rapidly changing conditions [6]. 

The PPEV consists of a combination of a conventional TEV and a pilot 

microvalve as shown in Figure 7. The flow of fluids across the Pilot Direct Acting Valve 

(PDAV) is regulated by a direct acting microvalve known as Ventilum chip as shown in 

Figure 8 [22]. The pilot microvalve used in this project is DunAn Microstaq’s PDAV, 

which in addition to its fast actuation time [20], is small and would be ideal when 

moving to an eventual integrated design.  

The PDAV is a pilot expansion valve which is electronically controlled and is 

based on Micro Electro Mechanical Systems (MEMS). This MEMS base consists of a 

pilot microvalve as shown in Figure 7 that is designed to control flow rate or pressure. 

The PDAV is a normally closed, single flow directional valve that is compatible with all 
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HCFC and HFC refrigerants. It provides effective closed loop control and has an 

actuation time of 0.25 seconds.  Its two-stage hybrid valve design and aforementioned 

characteristics enable it to provide rapid response to changing loads and precise 

superheat control. However, the PDAV faces some challenges. It is designed to work 

with closed loop systems and so does not work well with open loop systems due to its 

dependence on an electronic feedback to operate. Thus it would not be a good option for 

a system in which the output is neither measured nor fed back for comparison with the 

input. This dependence on electronic feedback also means that the PDAV does not have 

any secondary (mechanical) feedback and so failure of electronic feedback would 

completely stop its operation. Furthermore the PDAV has a relatively lower flow rate 

due to the smaller internal area of its spool. 

 

 

 

Figure 7: DunAn Microstaq’s Proportional Direct Acting Valve (PDAV) 
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Figure 8: Direct acting ventilum chip inside PDAV [22] 
 

 

 

In combining the PDAV with a conventional TEV, the PPEV is able to harness 

the strengths of the PDAV and the TEV but avoids the same challenges that they face 

individually. The PPEV provides both electronic and mechanical feedback and is able to 

achieve higher flow rates than the PDAV alone. The details of the PPEV’s superior 

performances will be discussed later in this thesis. 

 

Research Objectives and Tasks 

The objective of this research project is to develop and test a proof-of-concept 

physical model Prototype Piloted Expansion Valve (PPEV). This PPEV consists of a 
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combination of a conventional Thermal Expansion Valve (TEV), developed and sold by 

Sporlan and a two Pilot Direct Acting Valves (PDAV) manufactured and sold by DunAn 

Microstaq. TEVs are responsible for regulating the level of evaporator superheat in 

Vapor Compression Cycle (VCC) systems and are widely used in industry alongside 

Electronic Expansion Valves (EEVs). The PPEV developed in this project operates in a 

fashion similar to that of TEVs.  

This research project also endeavors to demonstrate the superior performance of 

the PPEV in comparison to TEVs and EEVs through modeling and experimental data. 

This will be achieved by carrying out a number of tasks. These tasks include developing 

a mechanism to be used by the PPEV, prototyping a design, developing and providing a 

proof-of-concept model, determining which tests are to be carried out to effectively 

evaluate PPEV performance and carrying out these tests to evaluate the PPEV’s reaction 

to changes in system loads and operating condition. These tests will all be carried out on 

a modulated water chiller system and a direct exchange split heat pump system. These 

systems vary widely in terms of the refrigerant used, the operating pressure ranges, the 

available compressor speeds and other various conditions. These tests are intended to 

provide a fairly accurate picture of the how the PPEV compares to other valves.  The 

tests described in the previous section were first carried out on a water chiller system and 

then on a residential split heat pump system and are summarized in Table 1. 

The first test to be carried out is a superheat change test. This test is designed to 

assess the valve’s speed of response. The superheat change test involves letting the 

system’s superheat reach the designed setpoint from startup. Once it reaches the 
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superheat set point, the setpoint is then increased or decreased. This is done while 

keeping track of the system’s response and how quickly it reaches the new setpoint. This 

test is carried out at different compressor speeds to further assess the system response 

under varying conditions. Reaching the superheat set point quickly and remaining there 

indicates a higher cooling capacity. For the modulated water chiller system, the initial 

superheat setpoint was 5°C; it was then progressively changed to 10°C, 15°C and back 

10°C. This was all done at a compressor speed of (2,000 revolutions per minute (RPM). 

The same sequence (5°C to 10°C to 15°C to 10°C) was then carried out again. However, 

this time, the compressor speed was increased to 4,000 RPM. Both the EEV and PPEV 

were subjected to this test. The TEV was excluded from this test because it operates on 

mechanical, not electronic feedback. Furthermore, the superheat setpoint on a TEV is 

changed manually at the stem of the valve unlike the EEV and PPEV in which the 

superheat set point can be changed using computer software while the valve is operating.  

 

 

Table 1: Summary of tests carried out 

Test Number Modulated Water Chiller System 

1 Superheat change test for PPEV 

2 Startup test for PPEV 

3 External fluid flow rate change test for PPEV 

4 Superheat change test for EEV 
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Table 1 Continued 

 

 

 This test is carried out on the direct exchange split heat pump system under the 

same conditions as with the water chiller system. The next test to be carried out is the 

startup test. This test is designed to evaluate the system’s response from startup. VCC 

systems typically experience a spike in energy consumption at startup so they should be 

Test Number Direct Exchange Split Heat Pump System 

5 Startup test for EEV 

6 External fluid flow rate change test for EEV 

7 Startup test for TEV 

8 External fluid flow rate change test for TEV 

 Direct Exchange Split Heat Pump System 

9 Superheat change test for EEV 

10 Startup test for EEV 

11 External fluid flow rate change test for EEV 

12 Startup test for TEV 

14 Superheat change test for PPEV 

15 Startup test for PPEV 

16 External fluid flow rate change test for PPEV 
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able to reach operating conditions from start-up in the shortest amount of time possible. 

This translates to more cooling and less energy spent to achieve that cooling. For the 

water chiller system, after startup, the compressor was allowed to run for three minutes. 

After these three minutes, the compressor was shut down and was allowed to remain off 

another three minutes. This on-off cycle was repeated three times and all three valves 

were subjected to the test. For the direct exchange split heat pump system, the on cycle 

was nine minutes and the off cycle was one minute. 

The third test to be carried out is the external fluid flow rate change test. This test 

is designed to evaluate the system’s ability to respond to quick load changes. The change 

in external fluid flow rate simulates a change in the system load. In practical 

applications, most VCC systems are subject to random and sometimes rapidly changing 

loads. Consequently, they have to quickly adapt to these changing loads.  Water is the 

external fluid for the water chiller system and air is the external fluid for the direct 

exchange split heat pump system. The water chiller system’s heat pumps have a capacity 

of 115 gallons per hour (GPH). At startup, the water flow rate is set to 23 GPH and the 

compressor speed is set to 2000 GPH. The water flow rate is then progressively 

increased to 69 GPH and then to 115 GPM while the compressor’s speed is kept at 2,000 

RPM. At the end of this cycle, the water flow rate is changed back to 23 GPM and the 

compressor speed is increased to 4,000 RPM. The water flow rate is then once again 

progressively increased to 69 GPM and 115 GPM while the compressor speed is kept 

constant at 4,000 RPM. 
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 For the direct exchange split heat pump system, at startup, the evaporator fan is 

set to produce and air flow rate of 1700 ft/min and the compressor speed is set to low 

(first stage). After 7 minutes, the air flow rate is then increased to 2200 ft/min while the 

compressor speed is kept at low. After another 7 minutes, the air flow rate is increased to 

2700 ft/min while the compressor speed is kept at low. At the end of this cycle, the air 

flow rate is changed back to 1700 ft/min and the compressor speed is increased to high 

(second stage). The air flow rate is then once again progressively increased to 

2200ft/min and 2700 ft/min while the compressor speed is kept constant at high. The 

PPEV, EEV and TEV were all subjected to this startup test on both systems. 

Furthermore, an additional test was carried out to prove the possibility of an 

integrated design which will enable to PPEV to not rely on any external component to 

operate. In the aforementioned superheat change test, startup test and external fluid flow 

rate test, the PPEV relies on an external pressure source (a nitrogen tank), and the ability 

to vent the extra nitrogen to the atmosphere in order to operate. The final test for this 

thesis work demonstrates possibility of using the high pressure from the compressor 

outlet to provide the pressure needed to the PPEV to operate and that the extra 

refrigerant can be vented into the compressor inlet thus confirming the possibility of a 

truly integrated design. 
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CHAPTER II 

EXPERIMENTAL SYSTEMS 

 

Two experimental systems were used in this project; a custom-built modulated 

water chiller system and a direct exchange split heat pump system. The water chiller 

system is a three-evaporator system connected to a compressor and a condenser, while 

the direct exchange split heat pump system is a split system with an indoor and an 

outdoor component. This Chapter is intended to give an overview of both systems 

including the details of their components and the software and data acquisition systems 

used. The heat pump system is a standard unit manufactured and sold by Trane.  Due to 

the fact that the modulated water chiller system is custom built, the next section will go 

into a more detail regarding the system’s main components.  

 

Modulated Water Chiller System 

The modulated water chiller system is a custom-built system used to replicate the 

cooling process for a three-room system. It is equipped with three 0.5 ton evaporators. 

The refrigerant used here is R-134A and the system is equipped with a brushless DC 

variable speed compressor with a range of 1800 RPM to 6500 RPM. This system has a 

cooling capacity of 5.6 kW. Details regarding the components of this system are 

discussed later in this chapter. Figure 9 shows the water chiller system and Figure 10 

shows a schematic of this system. 
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Figure 9: Modulated water chiller system 
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Figure 10: Schematic of modulated water chiller system [24] 
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Details of Modulated Water Chiller System Components 

Compressor 

The compressor installed on this system is a Masterflux compressor, specifically 

a Sierra model. It is intended for use with systems operating on R-134A, uses a 48 Volts 

direct current supply, voltage input and is a variable speed compressor with an operating 

range of 1800 RPM to 6500 RPM. It has a total cooling capacity of 1.5 tons. The 

compressor’s tachometer provides active feedback regarding the compressor’s speed. 

The tachometer does this by sending out a square wave signal which is directly 

proportional in frequency to the speed of the compressor which is measured. This square 

wave signal is later converted to a 0-5V DC voltage signal. The compressor is shown in 

Figure 11. 

 

 

 

Figure 11: Masterflux sierra compressor 
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Thermocouples 

The system is equipped with 12 type T thermocouples to measure the 

temperature at various points across the system. To do this, the thermocouples are 

immersed in the fluids whose temperature they measure. These thermocouples are 

connected to a PCI thermocouple board on the system’s computer. They have an 

accuracy of ±1°C. One of the thermocouples is shown in Figure 12. 

 

 

 

Figure 12: Type T thermocouple 

 

 

Refrigerant Flow Transducers 

There are three McMillan transducers in the system used to measure the flow of 

refrigerant across the system. These transducers have an operating range of 50-

500mL/min, an output range of 0-5V and an accuracy of ±1%. One of these transducers 

is as shown in Figure 13. 
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Figure 13: McMillan refrigerant flow transducer 

 

 

Pressure Transducers 

There are five Cole-Parmer pressure transducers across the system. Three of 

them are used to measure the pressures at the outlet of the evaporators and have an 

operating range of 0-100 psig, one of them measures the pressure at the outlet of the 

condenser and the fourth measures the pressure of the PPEV diaphragm. The diaphragm 

pressure transducer and the condenser outlet pressure transducer both have an operating 

range of 0-300 psig. All five have a voltage output range of 1-5V and an accuracy of 

±0.4%. One of the pressure transducers is as shown in Figure 14. 
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Figure 14: Cole-Parmer pressure transducer 

Power Components 

The system’s compressor is powered by two 800 W DC power supplies. These 

power supplies receive a 208 Volts AC supply and output up to 16 amps at 48 Volts DC. 

These are connected in parallel to produce the power needed and used by the compressor 

and they are switched individually. 

Furthermore a 24 Volts DC power supply is used to power the some of the 

system’s transducers including the compressor current, differential pressure and 

refrigerant flow. 

The water chiller system’s main components are listed in Table 2. 
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Table 2: Main components of water chiller system 

Component Quantity Manufacturer Model Number 

EEV 3 Sporlan SEI 0.5-10-S 

Compressor 1 Masterflux Sierra 0.-0982Y3 

Thermocouple 12 Omega GTMQSS-062U-6 

Mass Flow Meter 3 McMillan 102 Range 5 

Pressure Transducer 6 Cole-Parmer 07356-04 

DAQ Software 1 Quanser WinCon 5.0 

Direct Exchange Split Heat Pump System 

The direct exchange split heat pump system is a 3 ton Trane XL 16i model. It 

provides two-stage cooling and has a Seasonal Energy Efficiency Ratio (SEER) rating of 

16.0. It operates using R-410A refrigerant and has a cooling capacity of 36,000 BTU/H 

(10.5kW). This system is equipped with a two stage constant speed scroll compressor. 

The mass flow rate of air over the condenser and evaporator can be adjusted by varying 

the fan’s speed. The compressor installed on this system is a Climatuff scroll 

compressor. It is a 230 volt, 160 Hz compressor which has two operating speeds. The 

system is equipped with a propeller outdoor fan with a diameter of 23 inches. It also has 

a direct-type drive with two speeds and its motor speed is a constant 825 RPM. The 

system is shown in Figure 15 while Figure 16 shows a schematic of the system. 
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Figure 15: Trane XL16i direct exchange split heat pump system 

Figure 16: Schematic of Trane XL16i direct exchange split heat pump system 
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The system is also equipped with three thermocouples which are manufactured 

by Omega, three flow meters which are manufactured by McMillan, and two pressure 

transducers which are manufactured by Omega. The main components are listed in Table 

3. 

Table 3: Main components of direct exchange split heat pump 

Component Quantity Manufacturer Model Number 

EEV 1 Parker 020432-00 

Compressor 1 Climatuff Sierra 0.-0982Y3 

Thermocouple 3 Omega GTMQSS-062U-6 

Mass Flow Meter 3 McMillan 102 Range 8 

Pressure Transducer 2 Omega PX309-500G5V 

DAQ Software 1 Quanser WinCon 5.0 

Data Acquisition and Software 

Both systems use the same data acquisition system (DAQ) to record data and 

provide control. The system consists of four DAQ boards which are installed on a 

windows computer. The software used to run the experiments and record the data 

obtained is WinCon. WinCon operates simultaneously with Simulink and Matlab. 
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CHAPTER III 

PROTOTYPE PILOT EXPANSION VALVE DESIGN 

The Prototype Pilot Expansion Valve (PPEV) is a combination of a EBSSE2C 

Thermal Expansion Valve (TEV) by Sporlan and two Pilot Direct Acting Valves 

(PDAV) by DunAn Microstaq (DMQ). The PDAV has a relatively lower flow rate due 

to the smaller internal area of its spool. The PPEV is therefore able to use the PDAVs’ 

fast response time and the TEV’s ability to handle much larger flow rates than the 

PDAV. This Chapter will discuss the steps taken to design and implement the PPEV 

physical model used in this project. 

Implementation of Prototype Pilot Expansion Valve Design 

The first step in the process of building the PPEV is to cut the TEV’s sensing 

bulb into two and void it of the sensing bulb fluid. The open end of the sensing bulb is 

then attached to a spool on which two PDAVs are fitted. The tube relaying the 

diaphragm to the sensing bulb is then cut in the middle and a Cole-Parmer 07356-04 

pressure transducer was then fitted on it as shown in Figure 17. 



34 

Figure 17: Pressure transducer inserted between cut sensing bulb and diaphragm 

This pressure transducer was used to measure the measure the pressure acting on 

the top of the diaphragm. One of the two PDAVs was connected to a Nitrogen tank 

which provided the pressure that was regulated by the PDAVs as it acted on the top of 

the diaphragm. Figure 18 illustrates the PPEV setup and Figure 19 is a diagram showing 

the setup and working of the PPEV. 
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Figure 18: Picture of PPEV setup 

Figure 19: Schematic of PPEV setup and operation 
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The TEV’s role of refrigerant flow control is directly dependent on the three 

forces acting on the diaphragm. The spring pressure (Ps) and evaporator pressure (Pe) 

both act at the bottom of the diaphragm and contribute to close the valve. The net inlet 

pressure (Pi) acts on the top of the diaphragm and is responsible for opening the valve 

and increasing the flow of refrigerant to the evaporator. The pressure balance on the 

diaphragm can be represented by the equation Pi = Ps + Pe. The two PDAVs were 

controlled by the use of two Model 400 Pulse-width Modulation (PWM) controllers 

which were set up to work with the DAQ as discussed in Chapter II. A controller was 

implemented on Simulink which controlled the opening of both PDAVs. The controller 

uses an electronic feedback mechanism which is based on the measured superheat of the 

system to adjust the opening of each of the valves. One of the PDAVs can be described 

as a supply valve (PDAV1) while the other can be described as a relief valve (PDAV2). 

The nitrogen tank was set to provide a fixed pressure of 150 psi. The net inlet pressure to 

the top of the diaphragm is then varied accordingly. The PPEV regulates the superheat as 

described below. 

 Low superheat: When the system’s superheat is lower than desired, the supply

valve closes while the relief valve opens and vents the excess pressure. As the net 

inlet pressure to the diaphragm reduces, the flow rate of refrigerant into the 

evaporator decreases and the superheat increases. When the superheat reaches the 

desired level, the supply valve closes and the relief valve opens up accordingly to 

keep the rate of refrigerant flow constant. This constant flow keeps the superheat 

at the desired setpoint. 
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 High superheat: When the system’s superheat is higher than desired, the supply

valve immediately opens while the relief valve closes. These actions increase the 

net inlet pressure to the top of the diaphragm. As the net inlet pressure to the 

diaphragm increases, the flow rate of refrigerant into the evaporator increases 

and the superheat decreases. When the superheat reaches the desired level, the 

supply valve opens and the relief valve closes accordingly to keep the rate of 

refrigerant flow constant. This constant flow keeps the superheat at the desired 

setpoint. 

Advantages of Prototype Pilot Expansion Valve Design 

The PPEV design enables it to make use of the strengths of both the PDAV and 

the TEV without being handicapped by the same challenges that these valves face. The 

design provides several advantages over TEVs, EEVs, and AEVs. These advantages are 

as described below. 

 Operation: The PPEV is simple to set up and operate. Once the PPEV is set up, it

is able to provide automated control of refrigerant flow and superheat level. It is 

able to operate in a wide variety of environmental and load conditions. It can also 

be used with any HCFC or HFC refrigerant. 

 Response: Due to the PDAV’s quick actuation time (0.25 seconds), the PPEV is

able to react very quickly to changes in load conditions or desired operating 

conditions. 
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 Superheat: The PPEV provides improved superheat control. Any deviation of the

system’s superheat from the desired level is quickly adjusted by varying the flow 

of refrigerant to the evaporator accordingly. It is able to reach low superheat set 

points without hunting, unlike the EEV and the TEV. 

 Efficiency: The PPEV is more efficient than the EEV and the TEV. Due to its

quick response time it is able to reach desired operating conditions in a 

considerable shorter time than the TEV, AEV or EEV. As a result of this, the 

compressor use is reduced and optimized thus saving energy. 

 Robustness: The TEV operates using a mechanical feedback mechanism while

the PDAV and EEV rely on an electronic feedback mechanism for their 

operation. However the PPEV relies on both mechanical and electronic feedback 

mechanisms. In case of failure of one of these mechanisms, the PPEV’s 

operation is not completely compromised unlike the EEV, TEV or PDAV 

These advantages will be illustrated in Chapter V of this thesis. Chapter V will 

discuss the experimental results of the tests carried out on the PPEV, TEV and EEV. 
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CHAPTER IV 

MODELING APPROACH 

The Thermal Expansion Valve (TEV) is responsible for regulating the level of 

evaporator superheat in a Vapor Compression Cycle (VCC) system. To do this, it uses a 

mechanical feedback mechanism which consists of a sensing bulb placed at the outlet of 

an evaporator. The Prototype Piloted Expansion Valve (PPEV) developed in this project 

operates in similar fashion. However, with the PPEV, refrigerant flow across the valve is 

not controlled by a sensing bulb. The PPEV consists of a combination of a conventional 

TEV and two PDAVs. The pilot valve is DunAn Microstaq’s Proportional Direct Acting 

Valve (PDAV) which in addition to its fact actuation time is small and would be ideal 

when moving to an eventual integrated design. The schematic used for this derivation is 

as shown in Figure 19 in Chapter III. 

Modeling Assumptions 

This model is based on principles of the Bernoulli equation, the Continuity 

equation, Hooke’s law and geometry. The PPEV model was based from the basic 

modeling principles of a TEV. However in this case, the bulb dynamics on the 

diaphragm is replaced by the net inlet pressure downstream of the two PDAVs.  The 

following assumptions were taken to derive this model. 

 Incompressible and laminar flow
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 TEV inlet line (Thermal Sensing bulb and capillary tube) are horizontal and 

straight. 

 The pipe wall friction is negligible. 

 Fluid is non-viscous. 

 No spring compression at start-up. 

 At steady state conditions, force on diaphragm is equal to force on spring. 

 TEV inlet and outlet areas are equal. 

 Flow control between the TEV inlet and outlet modelled as flow through a 

gate valve. 

 Refrigerant used is R-134A. 

 

Model Derivation for the Prototype Pilot Expansion Valve 

 The derivation of this model requires that the thermodynamic properties of the 

refrigerant be known. In this case, the derivation is based on R-134A refrigerant. The 

valve’s mechanism is modeled by carrying out a force balance at the diaphragm. The 

inlet pressure, is the net pressure acting at the top of the diaphragm as shown by the 

equation Pi = PPDAV1 – PPDAV2. Table 4 shows the symbols and names of the parameters 

used in this model derivation. 
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Table 4: Parameters used in model derivation 

Symbol Name 

Pi Net inlet Pressure 

Fs Spring Force 

Pe Evaporator Pressure 

Ad Diaphragm Area 

mv Mass flow rate 

x0 Initial compression of spring 

Ks Spring Constant 

 x Net axial spring movement 

P0 Nominal Pressure 

C0 Valve parameter 

ρ Density 

Pc Condenser Pressure 

A1 Valve inlet area 

A2 Valve outlet area 

The force balance on the diaphragm is as follows: 

                      (1) 

where: 

   
             

  
  (2) 

Recall that at a specific operating condition, the area of the valve opening is 

directing proportional to the displacement of the valve head. Thus; 
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              (3) 

Assuming that at startup, there is no initial compression and considering equation 

3, which is the equation for the net axial movement of the spring, the following equation 

is obtained: 

     (   
             

  
) (4) 

This simplifies to: 

     (
    

  
  

      

  
) (5) 

The equation for the mass flow rate through the valve’s outlet orifice is as shown 

in equation 6 and equation 7 where: 

Valve Inlet:          (6) 

Valve Outlet:          (7) 

Equation 8 is derived from Bernoulli’s equation  [25]: 

    
  

  
 

  
 

 
     

  

  
 

  
 

 
(8) 

where the left hand side of equation 8 represents the valve inlet (condenser outlet) and 

the right hand side of the equation represent the valve outlet (evaporator inlet). This 

simplifies to: 

  

  
 

  
 

 
 

  

  
 

  
 

 
(9) 
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Thus: 

  
    

   (
     

 
) (10) 

The following is obtained by performing a mass balance: 

             (11) 

Considering that the density is constant: 

   
  

  
  (12) 

Substituting equation 12 in equation 10, the following equation is obtained: 

  
  (

  

  
)
 

  
   (

     

 
) (13) 

Equation 13 can be simplified to obtain equation 14: 

   √
        

 (  (
  
  

)
 
)

(14) 

The relationship between mass flow rate, evaporator pressure and condenser 

pressure is as can be obtained by combining equations 5, 7and 14: 

       (
    

  
  

      

  
)√

        

 (  (
  
  

)
 
)

(15) 

Implementation of Model in Matlab/Simulink 

The model derived was implemented into a single model consisting of a 

compressor and a heat exchanger. The details of the derivation of this model have in 
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included in Appendix A and Appendix B. The equations and model were implemented 

in Matlab and Simulink as shown in Table 5, Table 6, Table 7 and Table 8. 

Table 5: Input variables 

Variable Description Units 

Pero Evaporator Outlet Pressure kPa 

Pcro Condenser Outlet Pressure kPa 

Tero Evaporator Outlet Refrigerant Temperature °C 

Teri Evaporator Inlet Refrigerant Temperature °C 

Tewo Evaporator Outlet Water Temperature °C 

Tewi Evaporator Inlet Water Temperature °C 

Tcro Condenser Outlet Refrigerant Temperature °C 

Tcri Condenser Inlet Refrigerant Temperature °C 

Teao Evaporator Outlet Air Temperature °C 

Teai Evaporator Inlet Air Temperature °C 

Tcao Condenser Outlet Air Temperature °C 

Tcai Condenser Inlet Air Temperature °C 

Pdia Diaphragm Pressure kPa 
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Table 6: Physical parameters 

Variable Description Units 

C1 Valve Parameter #1 - 

C2 Valve Parameter #2 - 

Table 7: Operating conditions 

Variable Description Units 

Pv_ri Refrigerant pressure at valve inlet kPa 

Pv_ro Refrigerant pressure at valve outlet kPa 

Hv_ri Refrigerant enthalpy at valve inlet kJ/kg 

m_valve_exp Refrigerant mass flow rate across valve kg/s 

Pv_diaphragm Diaphragm pressure kPa 

Table 8: Support files 

Variable Type Description 

RefProp_R134a mat-life Refrigerant property maps for interpolation. 
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Validation of Model and Simulation Results 

 Two experimental systems are used in this thesis project.  However, only the 

modulated water chiller system is used to validate the model. The model described in 

this Chapter is then implemented in Simulink and the results obtained are compared to 

that obtained from experimental tests carried out on the modulated water chiller system. 

These results are as shown in Figure 20. 

Figure 20: Refrigerant flow rate across valve in two startup cycles 
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 CHAPTER V 

EXPERIMENTAL RESULTS 

As discussed in Chapters I and III, three tests are used to compare the 

performances of the PPEV, EEV and TEV relative to one another. These tests are carried 

out on two different systems; a modulated water chiller system which operates using R-

134a refrigerant and a direct exchange split heat pump system which operates using R-

410a. After the tests are complete, an analysis of each of the tests is done to determine 

and compare valve performances with regards to variables such as superheat, mass flow 

rate, evaporator outlet pressure, condenser outlet pressure and cooling capacity. The 

cooling capacity information is then used with the system’s energy consumption to 

determine the coefficient of performance (COP).  These are calculated as follows. 

                                                       (16) 

For modulated water chiller: 

             
                

               (                )
 (17) 

For direct exchange split heat pump system: 

             
                

                                     
 (18) 

where: 
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The cooling capacity values show how much cooling of the external fluid is 

actually achieved by the system while the COP value shows how much work the 

compressor does to achieve this cooling. For the modulated water chiller system, the 

energy consumption used to calculate COP is determined by using the thermal work 

done by the compressor while on direct exchange split heat pump system, it is 

determined by using the electrical energy input to the compressor. 

Superheat Change Test 

This test is designed to assess how much superheat control the valve is able to 

offer. The superheat set point was changed progressively from 5°C to 10°C to 15°C and 

back to 10°C. This was done at 2,000 RPM then all over again at 4,000 RPM. 

Modulated Water Chiller System 

Figure 21 illustrates how the compressor speed signal changes throughout the 

superheat change procedure. The system responses comparing the superheat and 

superheat setpoint for the EEV and PPEV to these changes in superheat set point are as 

shown in Figure 22 and Figure 23 while Figure 24 and Figure 25 show the system’s 

response comparing the superheat to the compressor speed for the same changes in 

superheat setpoint for the modulated water chiller. 
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Figure 21: Superheat change test - compressor speed signal 

Figure 22: Superheat change test – superheat vs superheat setpoint using EEV on 

water chiller system 

Figure 23: Superheat change test - superheat vs superheat setpoint using PPEV on 

water chiller system 

Reaches superheat setpoint 

236s after startup 

Reaches superheat 

setpoint 68s after startup 
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From startup, the PPEV reaches the superheat setpoint 68 seconds after startup 

while the EEV reaches the superheat setpoint 236 seconds after start-up. This indicates a 

quicker response time and ability to reach operating conditions quicker thus minimizing 

compressor use. Figure 24 and Figure 25 illustrate how changing the compressor speed 

affects the level of superheat control by the valve. The compressor speed was 2,000 

RPM for the first cycle and then it was increased to 4,000 RPM for the second cycle. 

Figure 24: Superheat change test – superheat vs compressor speed using EEV on 

water chiller system 

Figure 25: Superheat change test – superheat vs compressor speed using PPEV on 

water chiller system 
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As shown in Figure 24 and Figure 25, when the EEV is used and the compressor 

speed is increased, the system’s superheat becomes disrupted and oscillates a little 

before finally settling back at the setpoint. This disruption causes a decrease in system 

efficiency. However, in the other case, the PPEV is able to respond fast enough to the 

change in the compressor speed that the level of superheat remains undisturbed in spite 

of the change in the operational conditions. The mass flow rates associated with these 

tests are as shown in Figure 26 and Figure 27. 

As seen in these figures, the mass flow rate across the EEV fluctuates 

considerably while the mass flow rate across the PPEV is more stable. This translates 

into more efficiency and more energy savings as will be demonstrated in the evaluation 

of the respective COPs. The condenser outlet pressures and evaporator outlet pressures 

associated with these tests are as shown in Figure 28 and Figure 29. These figures also 

show that there are dips in the evaporator outlet pressure when the EEV is used. This is 

bad for the system as it indicates that more energy is used to maintain operating 

conditions. However, when the PPEV is used, these dips do not occur. The evaporator 

and condenser outlet pressures are more stable and consequently the system operates 

more efficiently. 
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Figure 26: Superheat change test – mass flow rate using EEV on water chiller 

system 

Figure 27: Superheat change test – mass flow rate using PPEV on water chiller 

system 
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Figure 28: Superheat change test – condenser and evaporator outlet pressures 

using EEV on water chiller system 

Figure 29: Superheat change test – condenser and evaporator outlet pressures 

using PPEV on water chiller system 

Cooling capacity and COP are the two main factors that are ultimately used to 

assess the performance of a VCC system. For each of the tests carried out in this project 

the cooling capacity and COP were calculated. Figure 30 and Figure 31 illustrate the 

cooling capacity results from the superheat change test on the water chiller system. 
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Figure 30: Superheat change test – cooling capacity using EEV on water chiller 

system 

Figure 31: Superheat change test – cooling capacity using EEV on water chiller 

system 

As can be seen, the cooling capacity using the PPEV is more stable and 

fluctuates less than that using the EEV. Due to its better performance, the PPEV is able 

to achieve more cooling using less compressor work as shown by the COP values on 

Table 9. The experiment was broken down into eight sections of 90 seconds and the 

COP at each of these sections was evaluated independently in order to provide a fair and 
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accurate evaluation of each valve’s performance. Figure 32 and Figure 33 illustrate the 

breakdown of the sections used to calculate and compare the COP values. 

Figure 32: Superheat change test – section breakdown of EEV data for COP 

analysis on water chiller system 

Figure 33: Superheat change test – section breakdown of PPEV data for COP 

analysis on water chiller system 

1 6 2 3 4 5 7 

1 6 2 3 4 5 7 
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Table 9: COP values for superheat change test on water chiller system 

Section PPEV EEV 

1 

CC (kW) 0.79 0.54 

Work (kW) 0.27 0.21 

COP 2.92 2.57 

COP Improvement (%) 13.6 

2 

CC (kW) 0.98 0.60 

Work (kW) 0.32 0.24 

COP 3.1 2.50 

COP Improvement (%) 24 

3 

CC (kW) 1.17 1.05 

Work (kW) 0.38 0.37 

COP 3.01 2.83 

COP Improvement (%) 14.8 

4 

CC (kW) 1.28 0.77 

Work (kW) 0.41 0.29 

COP 3.12 2.65 

COP Improvement (%) 17.7 

5 

CC (kW) 1.21 0.41 

Work (kW) 0.39 0.17 

COP 3.10 2.41 

COP Improvement (%) 28.6 

6 

CC (kW) 1.18 0.47 

Work (kW) 0.38 0.18 

COP 3.11 2.61 

COP Improvement (%) 19.2 

7 

CC (kW) 1.22 1.31 

Work (kW) 0.39 0.49 

COP 3.13 2.67 

COP Improvement (%) 17.3 

Time (s) 90 90 

Direct Exchange Split Heat Pump System 

Figure 34 shows how the compressor speed signal changes across the test. The 

system responses to these changes in superheat setpoint are as shown in Figure 35, 

Figure 36, Figure 37 and Figure 38 for the direct exchange split heat pump. 
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Figure 34: Superheat change test - compressor stage signal 

 

 

 

Figure 35: Superheat change test – superheat vs superheat setpoint using EEV on 

heat pump system 

 

 

 

Figure 36: Superheat change test – superheat vs superheat setpoint using PPEV on 

heat pump system 

 

 

Reaches superheat setpoint 

187s after startup 

Reaches superheat setpoint 

282s after startup 
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As shown in Figure 35 and Figure 36, from startup, the PPEV reaches the 

superheat setpoint 187 seconds after startup while the EEV reaches the superheat 

setpoint 282 seconds after start-up. Just like on the modulated water chiller system, this 

indicates quicker response time and ability to reach operating conditions quicker thus 

minimizing compressor use. Figure 37 and Figure 38 illustrate how changing the 

compressor speed affects the level of superheat control by the valve. The compressor 

speed was 2,000 RPM for the first cycle and then it was increased to 4,000 RPM for the 

second cycle. 

When the EEV is used and the compressor speed is increased, the system’s 

superheat becomes disrupted and oscillates briefly starts hunting before finally settling 

back to the setpoint. The negative impact of hunting on the system’s energy efficiency 

has been extensively discussed [4], [10], [11], including in this thesis. However, when 

the PPEV is used in the same conditions, it is able to respond fast enough to the change 

in the compressor speed that there is just a slight disruption in the level of superheat and 

no hunting behavior is observed in spite of the change in the operational conditions. The 

mass flow rates associated with these tests are as shown in Figure 39 and Figure 40. 
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Figure 37: Superheat change test – superheat vs compressor speed using EEV on 

heat pump system 

 

 

 

Figure 38: Superheat change test – superheat vs compressor speed using PPEV on 

heat pump system 
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Figure 39: Superheat change test – mass flow rate using EEV on heat pump system 

 

 

 

Figure 40: Superheat change test – mass flow rate using PPEV on heat pump 

system 

 

 

As seen in these figures, the refrigerant flow across both valves is steady and 

responds well to changes in the superheat set points. However, when the compressor 

speed is increased the mass flow rate across the EEV starts fluctuates considerably 

before settling while the mass flow rate across the PPEV is more stable. This translates 

into more efficiency and more energy savings as will be demonstrated in the evaluation 

of the respective COPs. The condenser outlet pressures and evaporator outlet pressures 

associated with these tests are as shown in Figure 41 and Figure 42. 
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Figure 41: Superheat change test – condenser and evaporator outlet pressures 

using EEV on heat pump system 

 

 

 

Figure 42: Superheat change test – condenser and evaporator outlet pressures 

using PPEV on heat pump system 

 

 

As seen in the aforementioned figures, the flow of refrigerant using the PPEV is 

more stable and the outlet pressures reach operating conditions more rapidly when the 

PPEV is used. Figure 43 and Figure 44 illustrate the cooling capacity results from the 

superheat change test on the water chiller system. 
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Figure 43: Superheat change test – cooling capacity using EEV on heat pump 

system 

 

 

Figure 44: Superheat change test – cooling capacity using EEV on heat pump 

system 

 

Thus, the cooling capacity using the PPEV is more stable and fluctuates less than 

that using the EEV especially when the compressor speed is increased.. Due to its better 

performance, the PPEV is able to achieve more cooling using less compressor work as 

shown by the COP values in Table 10. The experiment was broken down into seven 

sections of 300 seconds as shown in Figure 45 and Figure 46. The COP at each of these 

sections was evaluated independently as shown in Table 10. This was done in order to 

provide a fair and accurate evaluation of each valve’s performance. This COP is based 
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on the power input to the compressor and is calculated as shown earlier in this Chapter 

in Equation 18.  

 

 

 

Figure 45: Superheat change test – section breakdown of EEV data for COP 

analysis on heat pump system 

 

 

 

Figure 46: Superheat change test – section breakdown of PPEV data for COP 

analysis on heat pump system 

 

 

  

 

     

1 2 3 4 5 

  

6 7 

 

     

1 2 3 4 5 

  

6 7 



 

64 

 

Table 10: COP values for superheat change test on heat pump system 

Section 
 

PPEV EEV 

1 

CC (kW) 5.51 4.98 

Power (kW) 3.25 3.17 

COP 1.71 1.57 

COP Improvement (%)  9.1 

2 

CC (kW) 4.99 4.32 

Power (kW) 2.81 2.7  

COP 1.78 1.60 

COP Improvement (%)  6.1 

3 

CC (kW) 5.42 7.89 

Power (kW) 3.12 5.22 

COP 1.74 1.51 

COP Improvement (%)  10.1 

4 

CC (kW) 9.48 7.58 

Power (kW) 5.63 4.95 

COP 1.68 1.47 

COP Improvement (%)  12.4 

5 

CC (kW) 9.11 7.28 

Power (kW) 5.43 4.95 

COP 1.68 1.47 

COP Improvement (%)  12.4 

6 

CC (kW) 7.88 6.38 

Power (kW) 4.57 4.16 

COP 1.72 1.53 

COP Improvement (%)  11.0 

7 

CC (kW) 8.74 7.22 

Power (kW) 4.97 4.66 

COP 1.76 1.55 

COP Improvement (%)  11.8 

Time (s)  300 300 
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Startup Test Results 

 This test is designed to assess how quickly the system is able to reach the set 

operating conditions.  From startup, the system was allowed to run for three minutes, 

then the compressor was shut down for three minutes and the on/off cycle was repeated 

two more times.  

 

Modulated Water Chiller System 

Figure 47, Figure 48 and Figure 49 illustrate the system’s superheat in response 

to a given superheat setpoint for this test. As shown in these figures, from startup, the 

PPEV reaches the superheat setpoint 82 seconds after startup while the EEV reaches the 

superheat setpoint 131seconds after start-up and the TEV reaches the setpoint 153 

seconds after startup. The mass flow rates associated with these tests are as shown in 

Figure 50, Figure 51 and Figure 52. 
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Figure 47: Startup test – superheat vs superheat setpoint using TEV on water 

chiller system 

 

 

 
 

Figure 48: Startup test – superheat vs superheat setpoint using EEV on water 

chiller system 

 

 

 

Figure 49: Startup test – superheat vs superheat setpoint using PPEV on water 

chiller system 
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Figure 50: Startup test – mass flow rate using TEV on water chiller system 

 

 

 

Figure 51: Startup test – mass flow rate using EEV on water chiller system 

 

 

 

Figure 52: Startup test – mass flow rate using PPEV on water chiller system 
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Figure 53, Figure 54 and Figure 55 show the pressures associated with these tests. 

 

Figure 53: Startup test – condenser and evaporator outlet pressures using TEV on 

water chiller system 

 

 

 

Figure 54: Startup test – condenser and evaporator outlet pressures using EEV on 

water chiller system 

 

 

 

Figure 55: Startup test – condenser and evaporator outlet pressures using PPEV on 

water chiller system 
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Figure 56, Figure 57 and Figure 58 illustrate the cooling capacity results from the 

superheat change test on the water chiller system. 

 

 

Figure 56: Startup test – cooling capacity using TEV on water chiller system 

 

 

 

Figure 57: Startup test – cooling capacity using EEV on water chiller system 

 

 

 

Figure 58: Startup test – cooling capacity using PPEV on water chiller system 
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 As shown in the figures, the PPEV is able to reach operating conditions much 

faster than the EEV and TEV and so it is able to provide the required cooling using less 

energy than the EEV and the TEV as shown by the calculated COP values in Table 11. 

When the PPEV is used the overall cooling obtained during these startup cycles is 

higher. The experimental data was broken down into three sections of 180 seconds as 

shown in Figure 59, Figure 60 and Figure 61. The cooling capacity, electrical energy 

input and COP at each of these sections were evaluated independently in order to 

provide a fair and accurate evaluation of each valve’s performance.  

As can be seen in Table 11, in all three sections, the system produces the most 

cooling when it is equipped with the PPEV. It is also when it is equipped with the most 

cooling that it consumes the most energy. However the ratio for the amount of cooling 

produced to the amount of energy consumed is evaluated, the PPEV comes ahead of the 

EEV and the TEV. For the various sections considered when the compressor was 

running at first stage, the PPEV’s COP is about 17% higher than that of the EEV about 

35% higher than that of the TEV. 
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Figure 59: Startup test – section breakdown of TEV data for COP analysis on 

water chiller system 

 

 

 
 

Figure 60: Startup test – section breakdown of EEV data for COP analysis on 

water chiller system 

 

 

 

Figure 61: Startup test – section breakdown of PPEV data for COP analysis on 

water chiller system 
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Table 11: COP values for startup test on water chiller system 

Section 
 

PPEV EEV TEV 

1 

CC (kW) 1.17 0.87 0.31 

Work (kW) 0.54 0.47 0.22 

COP 2.17 1.85 1.40 

COP 

Improvement (%) 
 17.3 55 

2 

CC (kW) 1.16 0.91 0.47 

Work (kW) 0.53 0.49 0.29 

COP 2.19 1.86 1.62 

COP 

Improvement (%) 
 17.7 35.2 

3 

CC (kW) 1.13 0..88 0.45 

Work (kW) 0.51 0.48 0.27 

COP 2.22 1.83 1.67 

COP 

Improvement (%) 
 21.3 32.9 

Time (s)  180 180 180 

 

 

Direct Exchange Split Heat Pump System 

Figure 62, Figure 63 and Figure 64 illustrate how the system’s superheat 

responds to three cycles of startup for compressor startup for nine minutes and 

compressor shutdown for one minute when it is equipped with the TEV, EEV and PPEV 

respectively. 
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Figure 62: Startup test – superheat vs superheat setpoint using TEV on heat pump 

system 

 

 

 
 

Figure 63: Startup test – superheat vs superheat setpoint using EEV on heat pump 

system 

 

 

 

Figure 64: Startup test – superheat vs superheat setpoint using PPEV on heat pump 

system 
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As shown in these figures, from startup, the PPEV reaches the superheat setpoint 

179 seconds after startup while the EEV reaches the superheat setpoint 334 seconds after 

start-up and the TEV reaches the setpoint 204 seconds after startup. The mass flow rates 

and pressures associated with these tests are as shown in Figure 68, Figure 69 and Figure 

70. 

Similar to the results obtained from the test on the water chiller system, at startup 

for both the EEV and the PPEV, the superheat first spikes and goes beyond the superheat 

setpoint before eventually coming back down and settling at the setpoint of 10°C. 

However in the case of the TEV, this does not occur. The superheat gradually increases 

till it reaches the superheat setpoint and then it settles there. In spite of their initial 

overshoot, the EEV and the PPEV are able to produce much more cooling than the TEV 

in at startup.  The mass flow rates associated with these tests are as shown in Figure 65, 

Figure 66, and Figure 67.  Similarly, Figure 68, Figure 69 and Figure 70 illustrate how 

the condenser outlet pressures and the evaporator outlet pressures react in these startup 

cycles. 

 

 
 



 

75 

 

 

Figure 65: Startup test – mass flow rate using TEV on heat pump system 

 

 

 

Figure 66: Startup test – mass flow rate using EEV on heat pump system 

 

 

 

Figure 67: Startup test – mass flow rate using PPEV on heat pump system 
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Figure 68: Startup test – condenser and evaporator outlet pressures using TEV on 

heat pump system 

 

 

 

Figure 69: Startup test – condenser and evaporator outlet pressures using EEV on 

heat pump system 

 

 

 

Figure 70: Startup test – condenser and evaporator outlet pressures using PPEV on 

heat pump system 
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Figure 71: Startup test – cooling capacity using TEV on heat pump system 

 

 

 

Figure 72: Startup test – cooling capacity using EEV on heat pump system 

 

 

 

Figure 73: Startup test – cooling capacity using PPEV on heat pump system 
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 Figure 71, Figure 72 and Figure 73 illustrate the cooling capacity results from the 

superheat change test on the water chiller system. The PPEV is able to reach operating 

conditions much faster than the EEV and TEV and so it is able to provide the required 

cooling using less energy than the EEV and the TEV as shown by the calculated COP 

values in Table 12. When the PPEV is used the overall cooling obtained during these 

startup cycles is higher. The experimental data was broken down into three sections of 

300 seconds as shown in Figure 74, Figure 75 and Figure 76. The cooling capacity, 

electrical energy input and COP at each of these sections were evaluated independently 

in order to provide a fair and accurate evaluation of each valve’s performance.  

As can be seen in Table 12, in all three sections, the system produces the most 

cooling when it is equipped with the PPEV. It is also when it is equipped with the most 

cooling that it consumes the most energy. However the ratio for the amount of cooling 

produced to the amount of energy consumed is evaluated, the PPEV comes ahead of the 

EEV and the TEV. For the various sections considered when the compressor was 

running at first stage, the PPEV’s COP is about 13% higher than that of the EEV about 

22% higher than that of the TEV. 
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Figure 74: Startup test – section breakdown of TEV data for COP analysis on heat 

pump system 

 

 

 
 

Figure 75: Startup test – section breakdown of EEV data for COP analysis on heat 

pump system 

 

 

 

Figure 76: Startup test – section breakdown of PPEV data for COP analysis on 

heat pump system 
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Table 12: COP values for startup test on heat pump system 

Section 
 

PPEV EEV TEV 

1 

CC (kW) 5.81 4.82 2.50 

Power (kW) 3.74 3.47 1.94 

COP 1.55 1.39 1.28 

COP Improvement 

(%) 
 11.5 21.1 

2 

CC (kW) 5.56 4.78 2.58 

Power (kW) 3.45 
3.3 

9 
1.97 

COP 1.61 1.41 1.31 

COP Improvement 

(%) 
 14.1 22.9 

3 

CC (kW) 5.54 4.77 2.56 

Power (kW) 3.46 3.43 1.97 

COP 1.60 1.39 1.30 

COP Improvement 

(%) 
 15.1 23.1 

Time (s)  300 300 300 
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External Fluid Flow Rate Change Test Results 

 This test is designed to assess how the system responds to sudden changes in 

load during operation. The change in the flow rate of the external fluid is a good 

representation of the load changes that can occur to a VCC system in practical 

application such as the door of a refrigerator being opened. The water flow rate is 

progressively increased from 23 GPH to 115 GPH at 2,000 RPM and the same was done 

at 4,000 RPM.  

Modulated Water Chiller System 

Figure 77, Figure 78 and Figure 79 illustrate how the system’s superheat 

responds to changes in the flow rate of the external fluid (water) across the evaporator 

when it is equipped with a TEV, EEV and PPEV respectively. As shown in these 

figures, from startup, the PPEV reaches the superheat setpoint 218 seconds after startup 

while the EEV reaches the superheat setpoint 448 seconds after start-up and the TEV 

reaches the setpoint 424 seconds after startup.  Furthermore as the compressor speed is 

increased the TEV starts hunting and the EEV is quite disturbed but is eventually able to 

restore operational conditions. Meanwhile the PPEV remains relatively undisturbed. 

This is due to the quick action of the PPEV’s PDAVs which enable to quick adapt to the 

change in compressor speed. These observations are as shown in Figure 80, Figure 81 

and Figure 82. 
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Figure 77: External fluid flow rate change test – superheat vs superheat setpoint 

using TEV on water chiller system  

 

 

 
 

Figure 78: External fluid flow rate change test – superheat vs superheat setpoint 

using EEV on water chiller system  

 

 

 

Figure 79: External fluid flow rate change test – superheat vs superheat setpoint 

using PPEV on water chiller system  

 

Reaches superheat setpoint 

218s after startup 

Reaches superheat setpoint 424s 

after startup 

Reaches superheat 

setpoint 448s after startup 
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Figure 80: External fluid flow rate change test – superheat vs compressor speed 

using TEV on water chiller system 

 

 

 

Figure 81: External fluid flow rate change test – superheat vs compressor speed 

using TEV on water chiller system 

 

 

 

Figure 82: External fluid flow rate change test – superheat vs compressor speed 

using TEV on water chiller system 

 



 

84 

 

The next figures illustrate how much trouble the TEV has after the compressor 

speed is increased. The TEV hunts a little bit after start up but is eventually able to reach 

the operating conditions. However, once the compressor speed is increased, the TEV 

starts hunting. This causes big fluctuations in refrigerant mass flow rates as shown in 

Figure 83 as well as condenser outlet pressure as shown in Figure 86. This negatively 

impacts the system’s energy consumption. 

The EEV takes a little while to reach the superheat setpoint and finally does so 

after 448 seconds. From then, it is able to easily maintain the operating conditions. 

However, when the compressor speed is increased, the system experiences a 

considerable amount of disruption but the EEV is slowly able to get back on track and 

restore the superheat to its setpoint. These are as shown in Figure 84 and Figure 87. 

The PPEV on the other hand reaches the superheat setpoint in about half the time 

that the two other valves take to reach it. Once it does, it maintains the superheat at its 

setpoint. When the compressor speed is increased, it is able to react so quickly that the 

mass flow rate, condenser pressure and evaporator outlet pressure do not start to 

oscillate. These are as shown in Figure 85 and Figure 88.  

.  
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Figure 83: External fluid flow rate change test – mass flow rate using TEV on water 

chiller system 

 

 

 

Figure 84: External fluid flow rate change test – mass flow rate using EEV on water 

chiller system 

 

 

 

Figure 85: External fluid flow rate change test – mass flow rate using PPEV on 

water chiller system 
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Figure 86: External fluid flow rate change test – condenser and evaporator outlet 

pressures using TEV on water chiller system 

 

 

 

Figure 87: External fluid flow rate change test – condenser and evaporator outlet 

pressures using EEV on water chiller system 

 

 

 

Figure 88: External fluid flow rate change test – condenser and evaporator outlet 

pressures using PPEV on water chiller system 
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The superior performance of the PPEV when compared to the TEV and EEV is 

best illustrated in terms of the amount of cooling it is able to achieve. Figure 89, Figure 

90 and Figure 91 show that the PPEV consistently produces more cooling than the TEV 

and the EEV. Here we see that when the TEV is used at a compressor speed of 2000 

RPM and the water flow rate is gradually increased, it has a little bit of trouble at startup 

and after that it is able to provide fairly stable and constant cooling of about 1.2 kW.   

However, when the compressor speed is increased, the valve starts hunting and 

consequently the refrigerant mass flow rate and cooling capacity start oscillating. This is 

bad for the system as it leads to increased compressor use and loss of efficiency. The 

EEV deals well with those changes as the increase in compressor leads to an increase in 

cooling and energy use but the valve is able to avoid hunting. Through the quick action 

of its microvalves, the PPEV is able to quickly adjust to the increase in compressor 

speed and so it able to maintain a good amount of cooling without compromising energy 

efficiency. 
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Figure 89: External fluid flow rate change test – cooling capacity using TEV on 

water chiller system 

 

 

 

Figure 90: External fluid flow rate change test – cooling capacity using EEV on 

water chiller system 

 

 

 

Figure 91: External fluid flow rate change test – cooling capacity using PPEV on 

water chiller system 
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The cooling capacity using the PPEV is more stable and fluctuates less than that 

using the EEV. Due to its better performance, the PPEV is able to achieve more cooling 

using less compressor work as shown by the COP values in Table 13. The experimental 

data was broken down into five sections of 180 seconds as shown in Figure 92, Figure 

93 and Figure 94. The cooling capacity, electrical energy input and COP at each of these 

sections were evaluated independently in order to provide a fair and accurate evaluation 

of each valve’s performance.  

As can be seen in Table 13., in all five sections, the system produces the most 

cooling when it is equipped with the PPEV. It is also when it is equipped with the most 

cooling that it consumes the most energy. However ratio for the amount of cooling 

produced to the amount of energy consumed is evaluated, the PPEV comes ahead of the 

EEV and the TEV. For the various sections considered when the compressor was 

running at first stage, the PPEV’s COP is about 12% higher than that of the EEV about 

20% higher than that of the TEV. However, when the compressor speed is increased to 

second stage, the PPEV’s COP is about 16% higher than that of the EEV while it is 

about 25% higher than the COP of the TEV. 
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Figure 92: External fluid flow rate change test - section breakdown of EEV data for 

COP analysis on water chiller system 

 

 

 

Figure 93: External fluid flow rate change test - section breakdown of EEV data for 

COP analysis on water chiller system 

 

 

 

Figure 94: External fluid flow rate change test - section breakdown of PPEV data 

for COP analysis on water chiller system 
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Table 13: COP values for external fluid flow rate change test on water chiller 

system 

 

Section 
 

PPEV EEV TEV 

1 

CC (kW) 1.47 1.08 0.99 

Work (kW) 0.46 0.38 0.37 

COP 3.20 2.84 2.66 

COP 

Improvement (%) 
 12 20.3 

2 

CC (kW) 1.45 1.10 1.04 

Work (kW) 0.44 0.39 0.39 

COP 3.29 2.82 2.67 

COP 

Improvement (%) 
 16.7 23.2 

3 

CC (kW) 1.59 1.31 1.10 

Work (kW) 0.48 0.44 0.38 

COP 3.31 2.97 2.89 

COP 

Improvement (%) 
 11.5 14.5 

4 

CC (kW) 1.50 1.29 1.15 

Work (kW) 0.47 0.47 0.45 

COP 3.19 2.74 2.55 

COP 

Improvement (%) 
 16.4 25.1 

5 

CC (kW) 1.53 1.27 1.13 

Work (kW) 0.48 0.47 0.44 

COP 3.19 2.70 2.57 

COP 

Improvement (%) 
 18.2 24.1 

Time (s)  180 180 180 

 

 

Direct Exchange Split Heat Pump System 

Figure 95, Figure 96 and Figure 97 illustrate how the system’s superheat 

responds to changes in the flow rate of the external fluid (air) across the evaporator when 

it is equipped with a TEV, EEV and PPEV respectively. 
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Figure 95: External fluid flow rate change test Test – superheat vs superheat 

setpoint using TEV on heat pump system 

 

 

 

Figure 96: External fluid flow rate change test – superheat vs superheat setpoint 

using EEV on heat pump system 

 

 

 

Figure 97: External fluid flow rate change test – superheat vs superheat setpoint 

using PPEV on heat pump system 

Reaches superheat 

setpoint 261s after startup 

Reaches superheat 

setpoint 559s after startup 

Reaches superheat 

setpoint 195s after startup 
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As shown in these figures, from startup, the PPEV reaches the superheat setpoint 

195 seconds after startup while the EEV reaches the superheat setpoint 261 seconds after 

start-up and the TEV reaches the superheat setpoint 559 seconds after startup. Similar to 

the results obtained from the test on the water chiller system, as the compressor speed is 

increased from first stage to second stage, the TEV starts hunting. It is never able to 

regain stable superheat control. The EEV is able to deal better with the change in 

compressor speed and is not very disturbed. It is able to maintain stable superheat 

control throughout these changes in operational conditions. Meanwhile the PPEV 

experiences a little disruption in superheat but is able to quickly adjust. This is due to the 

quick action of the PPEV’s PDAVs which enable to quick adapt to the change in 

compressor speed. These observations are as shown in Figure 98, Figure 99 and Figure 

100. Mass flow rate, evaporator pressure and condenser pressure are also observed for 

this test. 
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Figure 98: External fluid flow rate change test – superheat vs compressor stage 

using TEV on heat pump system 

 

 

 

Figure 99: External fluid flow rate change test – superheat vs compressor stage 

using EEV on heat pump system 

 

 

 

Figure 100: External fluid flow rate change test – superheat vs compressor stage 

using PPEV on heat pump system 
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 Figure 101, Figure 102 and Figure 103 illustrate how the system’s mass flow 

rate changes as the external fluid flow rate and compressor speed  

 

 

Figure 101: External fluid flow rate change test – refrigerant mass flow rate using 

TEV on heat pump system 

 

 

 

Figure 102: External fluid flow rate change test – refrigerant mass flow rate using 

EEV on heat pump system 

 

 

 

Figure 103: External fluid flow rate change test – refrigerant mass flow rate using 

PPEV on heat pump system 
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Figure 104: External fluid flow rate change test – condenser and evaporator outlet 

pressures using TEV on heat pump system 

 

 

 

Figure 105: External fluid flow rate change test – condenser and evaporator outlet 

pressures using EEV on heat pump system 

 

 

 

Figure 106: External fluid flow rate change test – condenser and evaporator outlet 

pressures using PPEV on heat pump system 
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Figure 107: External fluid flow rate change test – cooling capacity using TEV on 

heat pump system 

 

 

 

Figure 108: External fluid flow rate change test – cooling capacity using EEV on 

heat pump system 

 

 

 

Figure 109: External fluid flow rate change test – cooling capacity using PPEV on 

heat pump system 
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Figure 104, Figure 105 and Figure 106 show how the condenser outlet pressure 

and the evaporator outlet pressure react to the aforementioned changes. Similarly, Figure 

107, Figure 108 and Figure 109 illustrate the cooling capacity results from the superheat 

change test on the water chiller system. The cooling capacity using the PPEV is more 

stable and fluctuates less than that using the EEV. Due to its better performance, the 

PPEV is able to achieve more cooling using less compressor work as shown by the COP 

values in Table 14. The experimental data was broken down into five sections of 180 

seconds as shown in Figure 110, Figure 111 and Figure 112. The cooling capacity, 

electrical energy input and COP at each of these sections were evaluated independently 

in order to provide a fair and accurate evaluation of each valve’s performance.  

As can be seen in Table 14, in all five sections, the system produces the most 

cooling when it is equipped with the PPEV. It is also when it is equipped with the most 

cooling that it consumes the most energy. However ratio for the amount of cooling 

produced to the amount of energy consumed is evaluated, the PPEV comes ahead of the 

EEV and the TEV. For the various sections considered when the compressor was 

running at first stage, the PPEV’s COP is about 8% higher than that of the EEV about 

10% higher than that of the TEV. However, when the compressor speed is increased to 

second stage, the PPEV’s COP is only slightly higher than that of the EEV while it is 

about 30% higher than the COP of the TEV. 
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Figure 110: External fluid flow rate change test - section breakdown of EEV data 

for COP analysis on heat pump system 

 

 

 

Figure 111: External fluid flow rate change test - section breakdown of EEV data 

for COP analysis on heat pump system 

 

 

 

Figure 112: External fluid flow rate change test - section breakdown of PPEV data 

for COP analysis on heat pump system 
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Table 14: COP values for external fluid flow rate change test on heat pump system 

Section 
 

PPEV EEV TEV 

1 

CC (kW) 6.75 3.71 3.39 

Power (kW) 4.02 2.39 2.29 

COP 1.68 1.55 1.48 

COP 

Improvement (%)  
8.4 13.5 

2 

CC (kW) 6.64 3.73 3.47 

Power (kW) 3.95 2.39 2.24 

COP 1.68 1.56 1.55 

COP 

Improvement (%)  
7.7 8.3 

3 

CC (kW) 6.57 5.61 2.81 

Power (kW) 3.96 3.42 2.15 

COP 1.66 1.60 1.31 

COP 

Improvement (%)  
3.8 26.7 

4 

CC (kW) 6.54 5.74 2.78 

Power (kW) 3.96 3.63 2.42 

COP 1.65 1.58 1.24 

COP 

Improvement (%)  
4.4 33.0 

5 

CC (kW) 7.99 5.90 2.82 

Power (kW) 4.81 3.66 2.22 

COP 1.66 1.61 1.27 

COP 

Improvement (%)  
3.1 30.7 

Time (s)  180 180 180 

 

 

Integrated Design Tests 

The superheat change test, startup tests and external fluid change test results that 

have been discussed are good indicators of the ability to the expansion valve to perform 

efficiently at varying conditions. As shown by the results obtained, the PPEV 

consistently outperforms the other valves. However it is important to note that the 
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pressure source used to operate the PPEV in these tests is a nitrogen tank. This nitrogen 

tank provided a constant, steady flow of nitrogen at 150psi that was used to operate the 

PPEV. Considering the fact that it would not be practical for the use of the PPEV to be 

dependent on the availability of a nitrogen tank, this project proposes a design whereby 

the PPEV would be an integral part of the VCC. The proposed design frees the PPEV of 

dependence on any external component for its operation. The schematic of the proposed 

integrated design is illustrated in Figure 113. 

 

 

Figure 113: Schematic of proposed integrated design  

 

 

 The proposed design makes use of connections between the PDAVs and the 

compressor’s inlet and outlet. Thus instead of a nitrogen tank, the supply pressure is 



 

102 

 

tapped directly from the outlet of the compressor and instead of venting the nitrogen 

which is surplus to requirements into the atmosphere, the extra refrigerant would be 

vented back into the compressor inlet. 

 One of the main concerns expressed with this proposed design is the ability of 

the compressor outlet to produce enough pressure to generate flow across the PPEV. 

Another concern was the ability to the system to provide enough stable pressure to 

enable the valve to operate efficiently. These tests are therefore designed to see if 

effectively at start up, there is enough pressure to generate flow across the PPEV and to 

see if the pressure supplied would be stable enough to ensure that the valve does not start 

hunting. They were carried out only on the direct exchange split heat pump system. The 

schematic shown in Figure 83 was implemented as shown in Figure 114 and Figure 115. 

 

 

 

Figure 114: PDAV1 (supply) and PDAV2 (relief) connections 
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Figure 115: Compressor inlet and outlet connections 

 

 

Superheat Change Test 

After the connections were properly installed,  the system was started. The 

supply valve of the PPEV was progressively closed while the relief valve was 

progressively opened. Figure 116, Figure 117, Figure 118 and Figure 119 illustrate the 

results obtained for superheat, mass flow rate, condenser outlet pressure, evaporator 

outlet pressure and cooling capacity after a 1080 seconds run. 



 

104 

 

 

Figure 116: Superheat change test - superheat using integrated design 

 

 

 

Figure 117: Superheat change test – mass flow rate using integrated design 

 

 

 

Figure 118: Superheat change test – condenser and evaporator outlet pressures 

using integrated design 
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Figure 119: Superheat change test - cooling capacity using integrated design 

 

 

As can be seen in these results, the compressor provides enough pressure to 

generate flow with relative ease. The first six minutes of the test were with the supply 

valve fully open and the relief valve fully closed. Both valves were then each half 

opened for 6 minutes and then the supply valve was closed while the relief valve was 

fully open. These results show that the flow and indeed the superheat can be controlled 

with this set up. The valve is also able to operable rather steadily. The PDAVs used in 

the PPEV tested here are designed to leak. That combined with the high condenser outlet 

pressure account for the residual flow of refrigerant even after the valve is closed. 

Furthermore, the PDAVs are microvalves and hence there is a limit to how much flow 

they can allow. Complete superheat control can be achieved by regulation the diaphragm 

and spring constants and by adjusting the openings and the leak rates of the PDAVs.  

As with the other tests, this test was broken down into three sections and an 

analysis of the cooling capacity, electrical energy input and COP at each of these 

sections carried out. The section breakdown is as shown in Figure 120. 
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Figure 120: Superheat change test - section breakdown using integrated design for 

COP analysis 

 

 

 Table 15 shows how the cooling capacity, electrical energy input and Coefficient 

Of Performance vary for each of the three test sections considered for this analysis. As 

can be seen in this table, the system is able to achieve levels of cooling and COP which 

are on par with those obtained when a similar test was carried out with the PPEV being 

operated using pressure from a nitrogen tank. This again confirms the feasibility of the 

integrated design. 

 

Table 15: COP values for superheat change when using integrated design  

Section 
 

PPEV 

1 

CC (kW) 8.92 

Power (kW) 5.31 

COP 1.68 

2 

CC (kW) 6.37 

Power (kW) 3.74 

COP 1.70 

3 

CC (kW) 5.19 

Power (kW) 2.93 

COP 1.77 

Time (s)  180 

 

   

1 2 3 
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Startup Test 

The next test to be carried out on the integrated PPEV was a startup test. Figure 

121, Figure 122, Figure 123 and Figure 124 illustrate the results obtained for superheat, 

refrigerant mass flow rate, condenser outlet pressure, evaporator outlet pressure and 

cooling capacity for this test. The compressor was turned on for five minutes and then 

shut down for one minute.  This makes up one startup cycle and three startup cycles 

were performed for a total test duration of 1080 seconds. 

 

 

 

Figure 121: Startup test - superheat using integrated design 

 

 

 

Figure 122: Startup test - mass flow rate using integrated design 
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Figure 123: Startup test - condenser and evaporator outlet pressures using 

integrated design 

 

 

 

Figure 124: Startup test - cooling capacity using integrated design 

 

 

As can be seen in these results, again the compressor provides enough pressure to 

generate flow and make the system operational at every attempt. These results show that 

the flow and indeed the superheat can be controlled with the integrated set up. The valve 

is also able to operable steadily. The PDAVs used in the PPEV tested here are also 

designed to leak. Complete superheat control and time to reach operating conditions 

from startup can be achieved by regulation the diaphragm and spring constants and by 

adjusting the leak rates of the PDAVs.  
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This test was broken down into three sections of 180 seconds each and an 

analysis of the cooling capacity, electrical energy input and COP at each of these 

sections carried out. The section breakdown is as shown in Figure 125. 

 

 

 

Figure 125: Startup test - section breakdown using integrated design for COP 

analysis 

 

 

Table 16 shows how the cooling capacity, electrical energy input and COP vary 

for each of the three test sections considered for this analysis. Like with the superheat 

change test using the integrated design, this table shows that the system is able to 

achieve levels of cooling and COP which are not far off from those obtained when a 

similar test was carried out with the PPEV being operated by the nitrogen tank. Section 

one also indicates an unusually low COP, this is probably due to the fact that this 

experiment was carried out from a cold start and so the system was still adjusting as 

shown by the fact that the COP values obtained in sections 2 and 3 are much higher. 

 

   

1 2 3 
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Table 16: COP values for startup test when using integrated design 

Section 
 

PPEV EEV TEV Integrated 

1 

CC (kW) 5.81 4.82 2.50 3.92 

Power (kW) 3.74 3.47 1.94 3.08 

COP 1.55 1.39 1.28 1.27 

COP 

Improvement (%) 
 11.5 21.1 22 

2 

CC (kW) 5.56 4.78 2.58 4.63 

Power (kW) 3.45 3.39 1.97 2.79 

COP 1.61 1.41 1.31 1.68 

COP 

Improvement (%) 
 14.1 22.9 -4.1 

3 

CC (kW) 5.54 4.77 2.56 4.17 

Power (kW) 3.46 3.43 1.97 2.62 

COP 1.60 1.39 1.30 1.59 

COP 

Improvement (%) 
 15.1 23.1 0.6 

Time (s)  300 300 300 300 

 

 

External Fluid Flow Rate Change Test 

For the scope of this thesis project, the final test to be carried out on the 

integrated PPEV was an external fluid flow rate change test. The external fluid on this 

system is air. This test was carried out in two phases. The first phase was carried out a 

first stage compressor speed and the second phase was carried out at second stage 

compressor speed. After startup, the system reaches a superheat of 5 °C in 45 seconds. 

The airflow rate at startup was set at 1,700 fpm, after 100 seconds it was increased to 

2,200 fpm and after another 100 seconds it was further increased 2,700 fpm. This 

concluded the first phase of this test. The second stage was then immediately initiated by 

increasing the compressor speed from first stage to second stage. Once again the airflow 
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rate was progressively increased from 1,700 fpm to 2,200 fpm and then 2,700 fpm. 

Again, the time between the airflow rates increments is 100 seconds. Figure 126, Figure 

127, Figure 128 and Figure 129 illustrate the results obtained for superheat, mass flow 

rate, condenser outlet pressure, evaporator outlet pressure and cooling capacity for the 

external fluid low rate change test. 

 

 

 

Figure 126: External fluid flow rate change test - superheat using integrated design 

 

 

 

Figure 127: External fluid flow rate change test - mass flow rate using integrated 

design 

 

Increase in compressor 

speed 
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Figure 128: External fluid flow rate change test - condenser and evaporator outlet 

pressures using integrated design 

 

 

 

Figure 129: External fluid flow rate change test - cooling capacity using integrated 

design 

 

 

As shown in the figures, the system’s superheat reaches operating conditions 45 

seconds after startup. Through the quick actions of its PDAVs, the PPEV is able to 

maintain operating conditions and avoid disruption even as the airflow rate is increased. 

At the second phase of the test, when the compressor speed is increased, the superheat 

increase and condenser outlet pressure increase as well but unlike was the case with the 

EEV and the TEV; the PPEV does not start hunting. It is able to maintain operational 
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conditions. Like the other two tests performed with this design, these results confirm the 

compressor’s ability to generate flow and the PPEV’s ability to operate normally in an 

integrated design. It also proves that the superheat can be controlled with this set up.  

Furthermore, the test was broken down into five sections of 90 seconds each and 

an analysis of the cooling capacity, electrical energy input and COP at each of these 

sections carried out. The section breakdown is as shown in Figure 130. 

 

 

 

Figure 130: External fluid flow rate change test - section breakdown using 

integrated design for COP analysis 

 

 

Table 17 shows how the cooling capacity, electrical energy input and COP vary 

for each of the five test sections considered for this analysis. Like with the other two 

tests using the integrated design which have been discussed, this table shows that the 

system is able to achieve levels of cooling and COP which seem reasonable when 

compared to the results obtained with the PPEV connected to the nitrogen tank during 

operation on the residential heat pump system. Thus all three tests indicate that the 

PPEV can operate well using the suggested integrated design. 

   

1 2 5 

  

3 4 
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Table 17: COP values for external fluid flow rate change using integrated design  

Section 
 

PPEV EEV TEV Integrated 

1 

CC (kW) 6.75 3.71 3.39 4.41 

Power (kW) 4.02 2.39 2.29 2.69 

COP 1.68 1.55 1.48 1.64 

COP 

Improvement (%)  
8.4 13.5 2.4 

2 

CC (kW) 6.64 3.73 3.47 4.88 

Power (kW) 3.95 2.39 2.24 2.91 

COP 1.68 1.56 1.55 1.68 

COP 

Improvement (%)  
7.7 8.3 0.0 

3 

CC (kW) 6.57 5.61 2.81 6.94 

Power (kW) 3.96 3.42 2.15 4.31 

COP 1.66 1.60 1.31 1.61 

COP 

Improvement (%)  
3.8 26.7 3.1 

4 

CC (kW) 6.54 5.74 2.78 6.73 

Power (kW) 3.96 3.63 2.42 4.08 

COP 1.65 1.58 1.24 1.65 

COP 

Improvement (%)  
4.4 33.0 0.0 

5 

CC (kW) 7.99 5.90 2.82 6.81 

Power (kW) 4.81 3.66 2.22 4.19 

COP 1.66 1.61 1.27 1.63 

COP 

Improvement (%)  
3.1 30.7 1.8 

Time (s)  180 180 180 180 

 

 

Moreover, with help from Erik Rodriguez at the Texas A&M Thermofluids 

Controls Laboratory, a dynamic model of the heat pump system was constructed in 

Simulink to test the effects of the PPEV diaphragm pressure and spring constant on the 

valve’s ability to control superheat when using the compressor outlet pressure as the 

diaphragm pressure source. This model was created using the PPEV model derived in 
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Chapter IV of this thesis. The remaining model components, i.e. compressor, evaporator, 

and condenser, used are from the Texas A&M Thermofluids Controls Laboratory 

Modeling Library. These models have previously been validated against experimental 

data as both individual components and system level integrated components [26]. A 

schematic of the Simulink model is illustrated in Figure 131. 

 

 

 

Figure 131: Schematic of complete model 

 

 

After calibrating this model to the heat pump system’s physical parameters, two 

sets of simulations were run. The first set of simulations tested the effects of the PPEV 

spring constant by varying this parameter in the individual PPEV model component. 
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This test was conducted with 90% of the compressor outlet pressure applied to the PPEV 

diaphragm (i.e. 10% pressure vented through relief valve). The second set of simulations 

were run to test the effects of decreasing the PPEV supplied diaphragm pressure by 

increasing the amount of refrigerant vented by the pressure relief valve. Results for both 

of these simulation sets are shown in respectively. 

 

 

 
 

Figure 132: Effects of variation of diaphragm pressure 
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Figure 133: Effects of variation of valve parameter 

 

 

 

 

Results from Figure 132 show that a higher PPEV diaphragm stiffness requires a 

much larger drop in supplied diaphragm pressure to induce the a significant change in 

evaporator superheat. This suggests that the PPEV was unable to regulate superheat in 

the experimental system because the maximum amount of refrigerant vented through the 

relief valve is not enough to cause sufficient movement in the PPEV diaphragm. This is 

a physical limitation of the micro-valves; therefore adjusting the diaphragm spring 

stiffness and/or area would most likely be the preferred approach to improving the 

valve’s superheat control capabilities. Results from Figure 133 show that increasing the 

valve parameter, C2, greatly increases the valve’s ability to affect evaporator superheat 

for the same change in diaphragm pressure. This change can be implemented by 

decreasing the PPEV diaphragm stiffness or increasing the total diaphragm area. 
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CHAPTER VI  

CONCLUSION AND FUTURE WORK 

 

The research presented in this thesis makes a contribution towards the collective 

objective of improving the energy efficiency of vapor compression systems. This 

contribution is done through the proposal of a hybrid-type expansion device called a 

Prototype Pilot Expansion Valve (PPEV). The PPEV presented in this thesis is a 

combination of a conventional Thermal Expansion Valve (TEV) and two Pilot Direct 

Acting Valves (PDAVs). It is simple to operate, efficient, robust, responds very quickly 

to changes in operating conditions and is not a victim of hunting unlike that expansion 

valves used in most VCC systems. 

This work presents the design specifications of the PPEV, presents both the 

simulation and physical models of the PPEV, and discusses the various performance 

tests which were determined and carried out to evaluate the performance of the PPEV 

and compare it to that of a conventional Thermal Expansion Valve (TEV) and a 

conventional Electronic Expansion Valve (EEV). These tests involve a superheat change 

test to assess the level of superheat control that each of the valves provides a startup test 

to determine how long the system takes to reach operating conditions when equipped 

with each of the valves and an external flow rate change test to evaluate the system’s 

ability to respond to changes in operating conditions.  

These tests were carried out on two experimental systems; A modulated water 

chiller operating using R-134a refrigerant and a residential direct exchange split heat 
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pump system operating using R-410a. The results of these tests indicate that the PPEV 

outperforms the EEV and TEV in each of the tests. It is able to provide better superheat 

control, it reaches operating conditions faster from startup and it deals with changes in 

operating conditions much better than the EEV and the TEV.  

This thesis also proposes an integrated design for the PPEV and goes ahead to 

address the concern that the system pressure at startup might not be enough to generate 

flow. The PPEV was disconnected from any external pressure source and connected 

entirely to the system. A startup test was then performed which indicated that there is 

enough pressure to generate flow across the valve thus paving the way for a compact and 

efficient design to be implemented. 

Future research and tests involving the PPEV may include testing it on other 

VCC systems such as commercial refrigeration systems and testing it on systems which 

operate on refrigerants other than R-134A and R-410A. The work presented in this thesis 

is intended to serve mainly as a proof-of-concept and so future work may also involve 

improving the PPEV design by making it more compact, robust and efficient. This 

would serve the goal of ultimately making this valve commercially viable so that it can 

help improve the energy efficiency of the many HVACR systems across the world. 
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APPENDIX A 

 

 A complete derivation of the mathematical equation for the compressor modeling 

is given here. This work was done by Baskar Shenoy from the Texas A&M 

Thermofluids Control Lab [27]. The governing equations for the compressor model 

described in this section are essentially algebraic in nature. The model requires the 

refrigerant pressures at its inlet and outlet to calculate the refrigerant mass flow rate. 

This section will attempt to familiarize the user with the modeling assumptions, the 

equations governing the modeling of the components, the input and output parameters, 

the operating conditions and physical parameters and the required support files for the 

simulation of the single stage compressor models.  

 

Modeling Assumptions 

The compressor is assumed to be a positive displacement system, wherein the 

volumetric efficiency of the compressor is assumed to be a function of the ratio of the 

pressures at the exit and the inlet and the speed of the compressor. The compression 

process is assumed to be adiabatic with an isentropic efficiency.  

 

Model Derivation for the Single Stage Compressor 

The refrigerant mass flow rate is calculated from Equation (A1). Where, the 

refrigerant density    is calculated as a function of the inlet refrigerant pressure and 



 

125 

 

enthalpy [Equation (A2)]. The relationships between the inlet and outlet enthalpies are 

given by Equations (A3)-(A6). 

  ̇             (A1)  

     (           ) 
(A2) 

 
                     

        
    

(A3) 

                             (A4) 

                 
(A5) 

      
 

  
                            

(A6) 

                    
(A7) 

                  
(A8) 

 

The volumetric and isentropic efficiencies are interpolated as functions of the 

pressure ratio and compressor speed from semi empirical maps [Equation (A7)-(A8)]. 

The compressor speed is rate limited in order to capture the limitations of real 

compressors. 

 

Implementation in MATLAB/Simulink 

The following tables list the inputs, physical parameters, operating conditions 

and required support files for the single stage compressor model. 
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Table A1: Input variables 

Variable Description Units 

rpm Compressor speed     

Pk_ri Refrigerant pressure at the inlet     

Pk_ro Refrigerant pressure at the outlet     

Hk_ri Refrigerant enthalpy at the inlet       

 

Table A2: Physical parameters 

Variable Description Units 

rsr Rising slew rate for compressor speed       

fsr Falling slew rate for compressor speed       

delay Time delay for compressor speed   

upperlimit Maximum percentage valve opening    

lowerlimit Minimum percentage valve opening   

Vk Volume of compression chamber    

tau_k Time constant for evolution of the refrigerant enthalpy at 

compressor outlet 

  

RPM_vector Operating range vector of compressor speed     

P_ratio_vector Operating range vector of compressor pressure ratio   

eta_v_matrix Interpolation matrix for volumetric efficiency,      
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Table A3: Operating conditions 

Variable Description Units 

Pk_ri Refrigerant pressure at compressor inlet     

Pk_ro Refrigerant pressure at compressor outlet     

Hk_ri Refrigerant enthalpy at compressor inlet     ⁄  

Hk_ro Refrigerant enthalpy at compressor outlet     ⁄  

mdot Refrigerant mass flow rate through the compressor      

rpm Compressor speed     

 

Table A4 Support files 

Name Type Description 

CompProp mat-

file 

Compressor property maps. The user can used the sample 

maps defined in this file to point to physical parameter 

variables like RPM_vector, P_ratio_vector, eta_v_matrix, 

eta_a_matrix etc. 

RefProp_{name} mat-

file 

Refrigerant property maps for interpolation. {name} is the 

type of refrigerant used, e.g. R134a, R410a 
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APPENDIX B 

 

 

A complete derivation of the mathematical equation for the heat exchanger 

modeling is given here. This work has been included in this thesis with permission from 

Erik Rodriguez [28]. The Finite Control Volume (FCV) approach to the modeling of 

heat exchangers is available in commercial packages such as EASY5, SINDA/FLUENT 

, Modelica and e-thermal This document will explain the approach taken to provide FCV 

models compatible with MATLAB/Simulink environment. While the FCV modeling 

approach is widely believed to be able to model the heat exchanger dynamics with a lot 

of detail, thus leading to high accuracy, it is also computationally expensive with respect 

to both the simulation time and the load on the computer’s memory. The simulation time 

is also a function of the level of discretization (number of control volumes) used in the 

creation of the models, while it has been observed that for a given set of parameters (e.g. 

cross-sectional area, length of the heat exchanger, external surface area etc.) there exists 

a minimum threshold for the number of control volumes required to capture the required 

dynamics accurately. 

Figure B1 shows a FCV heat exchanger model discretized into   control 

volumes. The     control volume is assumed to have an internal surface area      

external surface area     , and a volume   . The conservation equations for refrigerant 

mass, refrigerant energy and wall energy can be applied to each of the control volumes 

and the governing equations for the heat exchangers can be derived. The goal is to derive 
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a system of equations of the form shown in Equation (B1), where   is the state vector 

shown in Equation (B2) and   is the input vector defined by Equation (B3). 

        ̇         
(B1) 

                             
(B2) 

     ̇   ̇                 ̇   
(B3) 

 

Figure B1: Finite control volume heat exchanger 

 

Modeling Assumptions 

The derivation approach uses several modeling assumptions associated with the 

refrigerant flow in the heat exchanger. The assumptions have been commonly used in 

past modeling efforts and are stated as follows: 

 The heat exchanger is assumed to be a long, thin, horizontal tube. 

 The refrigerant flow through the heat exchanger is modeled as a one dimensional 

fluid flow. 

 Axial conduction of refrigerant is negligible. 
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 Pressure drop along the heat exchanger tube due to momentum change in 

refrigerant and viscous friction is negligible (refrigerant pressure along the entire 

heat exchanger tube can be assumed to be uniform). Thus the equation for 

conservation of momentum is not used. 

As stated earlier the governing equations for the heat exchanger models can be 

derived using the unsteady state conservation equations refrigerant mass, refrigerant 

energy and wall energy. The equations for conservation of refrigerant mass, energy and 

wall energy together provide a complete characterization of the dynamics of a heat 

exchanger. Simplification along with convenience in creating a simulation model can be 

achieved by expanding the time derivative terms  ̇ and  ̇  in terms of the state variables 

defined earlier. The parameters used in the expansion of these terms are given in Table 

B1. 

 

Table B1: Parameters Used in the Expansion of Conservation Equations 

  density of refrigerant 

  pressure of refrigerant 

  enthalpy of refrigerant 

   inner perimeter (interior surface area per unit length) 

   outer perimeter (outer surface area per unit length) 

   temperature of refrigerant 

   tube wall temperature 
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   heat transfer coefficient between tube wall and internal fluid 

   heat transfer coefficient between tube wall and external fluid 

    cross sectional area of the inside of the tube 

 ̇ mass flow rate of refrigerant flowing along the tube 

(    )
 

 thermal capacitance of the tube wall per unit length 

 

 

Model Derivation for FCV Evaporator 

The modeling procedure assumes that the refrigerant entering the evaporator is a 

two phase mixture and the refrigerant exiting the heat exchanger is a superheated vapor. 

While this is done only for simplifying the documentation, the model itself will not have 

such limitations. Keeping this in mind the heat exchanger can be assumed to be broadly 

divided into two regions. To aid the modeling approach it is further assumed that the 

refrigerant gradually transitions into the superheated vapor phase from the two phase 

mixture as indicated in Figure B1. It is further assumed that the enthalpy at the outlet in 

each of the control volumes determines the state of the refrigerant in the entire region, 

i.e. if the outlet enthalpy for a region is less than or equal to the saturated vapor enthalpy 

at the evaporator pressure, then the state of the refrigerant in the entire region is assumed 

to be a two phase mixture. Conversely, if the outlet enthalpy is greater than the saturated 

vapor enthalpy, then the state of the refrigerant is assumed to be a superheated vapor. 

These assumptions lead to the presence of a transition region, wherein the refrigerant 

transitions from a two phase mixture to a superheated vapor. To preserve consistency, 
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the state of the refrigerant is determined by the original assumption which would lead to 

the refrigerant being assumed to be a superheated vapor in the case of the evaporator.  

This scenario allows for some modeling errors since the actual transition boundary might 

not be reflected by the boundary of the control volume, due to which the accuracy of the 

model is greater if the refrigerant transitions closer to the outlet boundary of the control 

region. However, increasing the number of control volume can minimize this error.  

 

Conservation of refrigerant energy 

Consider the equation for conservation of refrigerant energy for each control 

region. The rate of change of internal energy in a control region,  ̇ is given by Equation 

(B4), where  ̇   is the rate of energy entering the region,  ̇    is the rate of energy 

leaving the region by means of refrigerant mass and  ̇  is the rate of energy leaving the 

region through heat transfer to the heat exchanger wall. The fluid flow energy at a point 

is given by  ̇   ̇  where  ̇ is the mass flow rate of the fluid and   is the enthalpy of 

the fluid at that point. The wall heat transfer term for a region is defined as  ̇  

            where    is the lumped heat transfer coefficient between refrigerant and 

wall material,    is the internal surface area of the heat exchanger wall in that region,    

and    are the lumped wall temperature and refrigerant temperature in that region. 

Substituting the defined terms in Equation (B4) results in the equations for conservation 

of refrigerant energy for all the control regions of the heat exchanger as shown in 

Equation (B5). 
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Conservation of refrigerant mass 

The equation for conservation of refrigerant mass in each of the control regions is 

as shown in Equation (B6), which essentially states that the rate of change of refrigerant 

mass in a given control region is the difference of the refrigerant mass entering and 

leaving that control volume. All the equations in Equation (B6) can be combined 

together by adding them and are presented in Equation (B7), where  ̇ gives the rate of 

change of total refrigerant mass in the heat exchanger. 
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Conservation of wall energy 

The conservation of wall energy in a control region is given in Equation (B8) 

where  ̇  is the rate of change of total energy of the heat exchanger wall in the control 

region considered,  ̇  is the rate of energy leaving the region through heat transfer to the 
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heat exchanger wall and  ̇  is the rate of energy entering the heat exchanger wall 

through heat transfer from the external fluid. Substituting the defined terms in Equation 

(B8), the equations for conservation of tube wall energy for all the control regions of the 

heat exchanger are presented in Equation (B9). 
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(B9) 

 

State Transformation 

The conservation equation derived in sections B4, B5 and B6 can be combined to 

form Equation (B10). The equations for conservation of refrigerant energy, refrigerant 

mass and wall energy can be expressed in terms of the state vector   defined in Equation 

(B2). To this end, the internal energy is expressed in terms of the refrigerant mass and 

average internal energy as shown in Equation (B11), whereas the refrigerant mass is 

expressed in terms of the average density and internal volume as shown in Equation 

(B12). Further, the density and internal energy can be given as functions of pressure and 

enthalpy in each of the control volumes. Thus, the time derivatives of these terms can be 

expanded to include more accessible state variables as shown in Equation (B13).  
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Further simplification can be achieved by redefining enthalpy as       
 

  
 

and the partial derivatives as 
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These simplifications result in Equations (B14) and (B15). The wall energy can be 

expressed in terms of the thermal capacitance and wall temperature, the time derivative 

of which can be expressed as in Equation (B16). 
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Model in        ̇         form 

The resulting equations can be expressed in a slightly modified form of Equation 

(B1) that includes the mass flows as unknowns as shown in Equation (B17a). Code is 

included for three separate methods for calculating the state derivatives. The first method 

involves a matrix inversion to solve for the state derivatives and the intermediate mass 

flow rates simultaneously. The second method uses a transformation matrix that requires 

a smaller matrix inversion, and solves for the state derivatives first and then the 

intermediate mass flows afterwards. The third method performs the algebraic 

substitution manually (equivalent to the transformation matrix method). Each of these 

methods is theoretically and numerically equivalent but the second method is more 

computationally favorable. The elements of the        and        for the first method 

are given in Equations (B17b) to (B30). The transformation equations used to transition 

from the first method to the second method are given in Equations (B31) to (B38) and 

the resulting small matrix elements are given in Equations (B39) to (B45). 
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Implementation of Pressure Drop 

Pressure drop calculation is split into two parts: single phase and two-phase. The 

single phase pressure drop is calculated using the Darcy-Weisbach while the two-phase 

flow pressure drop is calculated using the Wattlet-Chato pressure drop correlation. The 

void fraction used in the two-phase acceleration pressure drop calculation is calculated 

using Zivi’s form of the slip-ratio-correlated equation. Pressure drop calculation is 

implemented by filling in the “Pressure drop calculation” check box in the function 

block parameters of the FCV heat exchanger model. 

 

Implementation of Flow Conditions 

The outlet temperature of the external fluid will vary depending on the flow 

condition of the heat exchanger external fluid. Conservation of energy is applied to a 

control region using Equation (B46) where the heat transfer rate from the external fluid 

is represented by   ̇   ̇            where  ̇ is the mass flow rate of the external 

fluid,    is the specific heat of the external fluid,     is the temperature of the external 

fluid at the inlet of the control region, and    is the average external fluid temperature in 
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the control region. This heat transfer rate is balanced with the heat transfer rate into the 

heat exchanger wall                    where    is the lumped heat transfer 

coefficient between external fluid and wall material,    is the external surface area of 

the heat exchanger wall in that region,     is a weighing factor for calculating average 

external fluid temperature, and    and    are the lumped wall temperature and average 

external fluid temperature in that region. Equation (B46) can be rearranged to solve for 

the average external fluid temperature in the region as shown in Equation (B47). The 

external fluid temperature at the outlet of the control region can then be determined 

using the weighted temperature equation                       and rearranging 

as shown in Equation (B48). The mass flow rate, wall temperature, and inlet temperature 

values for each control region are based on the selected flow condition. Equations (B49) 

– (B57) show the mass flow rate, average external fluid temperature, and external fluid 

outlet temperature for all control regions for cross-flow (Equations (B49) – (B51)), co-

flow (Equations (B52) – (B54)), and counter-flow (Equations (B55) – (B57)) conditions 

where  ̇      is the external fluid mass flow rate specified in the operating conditions, 

and   is the number of control regions. The final external fluid outlet temperature 

reported by the simulation block is the last value calculated for the outlet temperature for 

co-flow (      ) and counter-flow (     ), and is the mean of the outlet temperatures in 

all regions for cross-flow (
 

 
∑      

 
   ) 

 ̇                                
(B46) 



 

142 

 

    
 ̇                    

 ̇               
 

(B47) 

      
         

       
 

(B48) 

  ̇  
 ̇     

 
   

(B49) 

[
 
 
 
 
    

 
    

 
    ]

 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 ̇                                 

 ̇                        
  

  
 

 ̇                                 

 ̇                        

 
 ̇                                 

 ̇                        
 
]
 
 
 
 
 
 
 
 
 

 
(B50) 

[
 
 
 
 
     

 
     

 
     ]

 
 
 
 

 

[
 
 
 
 
 
 
 
 
               

         
  

 
               

         
  

 
               

         
 
]
 
 
 
 
 
 
 
 

 
(B51) 

  ̇   ̇        (B52) 

[
 
 
 
 
 
    

    

 
    

 
    ]

 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 

 ̇                                 

 ̇                        
  

  
 ̇                                 

 ̇                        

 
 ̇                                   

 ̇                        

 
 ̇                                   

 ̇                        
 
]
 
 
 
 
 
 
 
 
 
 
 

 
(B53) 



 

143 

 

[
 
 
 
 
 
     

     

 
     

 
     ]

 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 

               

         
  

               

         

 
                 

         
  

 
                 

         
 
]
 
 
 
 
 
 
 
 
 
 

 
(B54) 

  ̇   ̇        (B55) 

[
 
 
 
 
 

    

      

 
        

 
    ]

 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 

 ̇                                 

 ̇                        
  

  
 ̇                                       

 ̇                            

 
 ̇                                                 

 ̇                                

 
 ̇                                 

 ̇                        
 

]
 
 
 
 
 
 
 
 
 
 
 

 
(B56) 

[
 
 
 
 
 

     

       

 
         

 
     ]

 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 

               

         
  

                 

         

 
                       

         
  

 
               

         
 

]
 
 
 
 
 
 
 
 
 
 

 
(B57) 

 

 

 



 

144 

 

Implementation of Heat Exchanger Type 

The FCV Heat Exchanger model is capable of acting as either an evaporator or 

condenser depending upon the specifications set by the user in the operating conditions. 

The heat exchanger type selected affects the heat transfer coefficient correlation method 

used. The Wattlet-Chato correlation is used for an evaporator while the Dobson 

correlation is used for a condenser. Other than this the model execution remains exactly 

the same for both heat exchanger types. 

 

Implementation in MATLAB\Simulink 

The following tables list the inputs, physical parameters, operating conditions 

and required support files for FCV heat exchanger model. 

 

Table B2: Input variables 

Variable Description Units 

mdot_i Mass flow rate of refrigerant at the inlet of heat exchanger      

mdot_o Mass flow rate of refrigerant at the outlet of heat exchanger      

H_ri Enthalpy of refrigerant at the inlet of heat exchanger       

T_ai1 Temperature of external fluid at the inlet of heat exchanger    

m_air1 Mass flow rate of external fluid at the inlet of heat exchanger      
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Table B3: Physical parameters 

Variable Description Units 

Mass1 Total mass of heat exchanger    

Cpw1 Specific heat of heat exchanger material k       

Diameter1 Hydraulic diameter of refrigerant passage   

L_total1 Total length of refrigerant passage   

A_i1 Total Internal surface area of the heat exchanger    

A_o1 Total external surface area of the heat exchanger    

A_cs1 Cross sectional area of refrigerant passage    

 

Table B4: Operating conditions 

Variable Description Units 

n_1 Number of control volumes   

m_air1 Mass flow rate of external fluid      

mdot Mass flow rate of refrigerant      

P Refrigerant pressure in the heat exchanger     

H_ri Refrigerant enthalpy at heat exchanger inlet       

H_ro Refrigerant enthalpy at heat exchanger outlet       

T_ai1 External fluid temperature at heat exchanger inlet    

T_ao1 External fluid temperature at heat exchanger outlet    
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Cp_ext1 Specific heat of external fluid         

T_a_mu1 Weighting factor for calculating average external fluid 

temperature 

  

Slip Two-phase region slip ratio for calculating void fraction   

CJF_data1 Colburn J-factor data for external heat transfer for the heat 

exchanger 

  

Ext_Fluid1 Fluid data for external heat transfer for the heat exchanger   

ext_flow_var External fluid flow condition (1=cross-flow, 2=co-flow, 

3=counter-flow) 

  

HX_var Heat exchanger type (1=evaporator, 2=condenser)   

 

Table B5: Support files 

Name Type Description 

H_COLBURN_JFACTOR m-file Air side heat transfer correlation  

H_EVAP_WATTLET m-file Refrigerant side heat transfer correlation 

for evaporating two-phase flows 

H_COND_DOBSON m-file Refrigerant side heat transfer correlation 

for condensing two-phase flows 

H_1PH_GNIELINSKI m-file Refrigerant side heat transfer correlation 

for single phase flows 

F_1PH_CHURCHILL m-file Churchill friction factor correlation 
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MassEnergyBalance_FCV m-file Steady state solver 

MassEnergyBalance_FCV_solution m-file Steady state parameter calculator 

RefProp_{name} mat-

file 

Refrigerant property maps for 

interpolation. {name} is the type of 

refrigerant used, e.g. R134a, R410a 

 

 

Implementation of Heat Exchanger Type 

The FCV Heat Exchanger model is capable of acting as either an evaporator or 

condenser depending upon the specifications set by the user in the operating conditions. 

The heat exchanger type selected affects the heat transfer coefficient correlation method 

used. The Wattlet-Chato correlation is used for an evaporator while the Dobson 

correlation is used for a condenser. Other than this the model execution remains exactly 

the same for both heat exchanger types. 

 

Implementation in MATLAB\Simulink 

The following tables list the inputs, physical parameters, operating conditions 

and required support files for FCV heat exchanger model. 

Table B6: Input variables 

Variable Description Units 

mdot_i Mass flow rate of refrigerant at the inlet of heat exchanger      
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mdot_o Mass flow rate of refrigerant at the outlet of heat exchanger      

H_ri Enthalpy of refrigerant at the inlet of heat exchanger       

T_ai1 Temperature of external fluid at the inlet of heat exchanger    

m_air1 Mass flow rate of external fluid at the inlet of heat exchanger      

 

Table B7: Physical parameters 

Variable Description Units 

Mass1 Total mass of heat exchanger    

Cpw1 Specific heat of heat exchanger material k       

Diameter1 Hydraulic diameter of refrigerant passage   

L_total1 Total length of refrigerant passage   

A_i1 Total Internal surface area of the heat exchanger    

A_o1 Total external surface area of the heat exchanger    

A_cs1 Cross sectional area of refrigerant passage    

 

Table B8: Operating conditions 

Variable Description Units 

n_1 Number of control volumes   

m_air1 Mass flow rate of external fluid      

mdot Mass flow rate of refrigerant      

P Refrigerant pressure in the heat exchanger     
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H_ri Refrigerant enthalpy at heat exchanger inlet       

H_ro Refrigerant enthalpy at heat exchanger outlet       

T_ai1 External fluid temperature at heat exchanger inlet    

T_ao1 External fluid temperature at heat exchanger outlet    

Cp_ext1 Specific heat of external fluid         

T_a_mu1 Weighting factor for calculating average external fluid 

temperature 

  

Slip Two-phase region slip ratio for calculating void fraction   

CJF_data1 Colburn J-factor data for external heat transfer for the heat 

exchanger 

  

Ext_Fluid1 Fluid data for external heat transfer for the heat exchanger   

 

Table B9: Support files 

Name Type Description 

H_COLBURN_JFACTOR m-file Air side heat transfer correlation  

H_EVAP_WATTLET m-file Refrigerant side heat transfer correlation 

for evaporating two-phase flows 

H_COND_DOBSON m-file Refrigerant side heat transfer correlation 

for condensing two-phase flows 

H_1PH_GNIELINSKI m-file Refrigerant side heat transfer correlation 

for single phase flows 
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F_1PH_CHURCHILL m-file Churchill friction factor correlation 

MassEnergyBalance_FCV m-file Steady state solver 

MassEnergyBalance_FCV_solution m-file Steady state parameter calculator 

RefProp_{name} mat-

file 

Refrigerant property maps for 

interpolation. {name} is the type of 

refrigerant used, e.g. R134a, R410a 

 

 

Finite Control Volume Heat Exchangers in Series 

 

 

Simulink Icon for Finite Control Volume Evaporators in Series 

 

 

Simulink Icon for Finite Control Volume Condensers in Series 
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The model for the FCV heat exchangers in series is identical to that of the single 

FCV heat exchanger except for the addition of the following inputs, physical parameters, 

and operating conditions. 

Table B10: Additional input variables 

Variable Description Units 

T_ai2 Temperature of external fluid at the inlet of second heat 

exchanger 

   

m_air2 Mass flow rate of external fluid at the inlet of second heat 

exchanger 

     

 

Table B11: Additional physical parameters 

Variable Description Units 

Mass2 Total mass of second heat exchanger    

Cpw2 Specific heat of second heat exchanger material         

Diameter2 Hydraulic diameter of second refrigerant passage   

L_total2 Total length of second refrigerant passage   

A_i2 Total Internal surface area of the second heat exchanger    

A_o2 Total external surface area of the second heat exchanger    

A_cs2 Cross sectional area of second refrigerant passage    
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Table B12: Additional operating conditions 

Variable Description Units 

n_2 Number of control volumes for second heat exchanger   

m_air2 Mass flow rate of external fluid for second heat exchanger      

T_ai2 External fluid temperature at second heat exchanger inlet    

T_ao2 External fluid temperature at second heat exchanger outlet    

Cp_ext2 Specific heat of external fluid for second heat exchanger        

T_a_mu2 Weighting factor for calculating average external fluid 

temperature for second heat exchanger 

  

CJF_data2 Colburn J-factor data for external heat transfer for the second 

heat exchanger 

  

Ext_Fluid2 Fluid data for external heat transfer for the second heat 

exchanger 

  

 

Table B13 Additional parameters used in the accumulator/receiver conservation 

equations 

 

 ̇    rate of change of total mass of refrigerant inside accumulator/receiver 

 ̇  mass flow rate of refrigerant at accumulator/receiver inlet 

     enthalpy of refrigerant at accumulator/receiver outlet 

      external heat transfer coefficient of accumulator/receiver 

     average temperature of accumulator/receiver 
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     ambient temperature 

   vapor density of two-phase refrigerant at pressure   

   liquid density of two-phase refrigerant at pressure   

   volume occupied by vapor in accumulator/receiver 

   volume occupied by liquid in accumulator/receiver 

   mass of vapor in accumulator/receiver 

   mass of liquid in accumulator/receiver 

   vapor internal energy of two-phase refrigerant at pressure   

   liquid internal energy of two-phase refrigerant at pressure   

 

 ̇     ̇     ̇                              (B58) 

 ̇     ̇   ̇    (B59) 

The state vector,  , is expanded to include the total mass of refrigerant inside 

accumulator/receiver,     . The  ̇ element of the time derivative of the state vector is 

also expanded to include the mass flow rate of the refrigerant at the accumulator/receiver 

inlet ( ̇  . The resulting equations can be expressed in a slightly modified form of 

Equation (B17a) as shown in Equation (B60). The modified elements of        and 

       are given in Equations (B17b) to (B28). 

      

[
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Table B14 shows the additional operating conditions required for the FCV with 

accumulator/receiver model. 

Table 14: Additional operating conditions 

Variable Description Units 

V_rec Volume of the accumulator/receiver    

UA_rec External heat transfer coefficient of receiver        

minv_rec Initial mass of refrigerant in the receiver    

Tamb Ambient temperature    

 

 




