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ABSTRACT

Petroleum reservoir parameter inference is a challenging problem to many of the

reservoir simulation workflows, especially when it comes to real reservoirs with high

degree of complexity and non-linearity, and high dimensionality. In fact, the process

of estimating a large number of unknowns in an inverse problem lead to a very

costly computational effort. Moreover, it is very important to perform geologically

consistent reservoir parameter adjustments as data is being assimilated in the history

matching process, i.e., the process of adjusting the parameters of reservoir system

in order to match the output of the reservoir model with the previous reservoir

production data. As a matter of fact, it is of great interest to approximate reservoir

petrophysical properties like permeability and porosity while reparameterizing these

parameters through reduced-order models. As we will show, petroleum reservoir

models are commonly described by in general complex, nonlinear, and large-scale, i.e.,

large number of states and unknown parameters. Thus, having a practical approach

to reduce the number of reservoir parameters in order to reconstruct the reservoir

model with a lower dimensionality is of high interest. Furthermore, de-correlating

system parameters in all history matching and reservoir characterization problems

keeping the geological description intact is paramount to control the ill-posedness of

the system.

In the first part of the present work, we will introduce the advantages of a novel

parameterization method by means of higher order singular value decomposition

analysis (HOSVD). We will show that HOSVD outperforms classical parameteri-

zation techniques with respect to computational and implementation cost. It also,

provides more reliable and accurate predictions in the petroleum reservoir history
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matching problem due to its capability to preserve geological features of the reser-

voir parameter like permeability. The promising power of HOSVD is investigated

through several synthetic and real petroleum reservoir benchmarks and all results

are compared to that of classic SVD. In addition to the parameterization problem,

we also addressed the ability of HOSVD in producing accurate production data com-

paring to those of original reservoir system. To generate the results of the present

work, we employ a commercial reservoir simulator known as ECLIPSE.

In the second part of the work, we will address the inverse modeling, i.e., the reser-

voir history matching problem. We employed the ensemble Kalman filter (EnKF)

which is an ensemble-based characterization approach to solve the inverse problem.

We also, integrate our new parameterization technique into the EnKF algorithm

to study the suitability of HOSVD based parameterization for reducing the dimen-

sionality of parameter space and for estimating geologically consistence permeabil-

ity distributions. The results of the present work illustrates the characteristics of

the proposed parameterization method by several numerical examples in the sec-

ond part including synthetic and real reservoir benchmarks. Moreover, the HOSVD

advantages are discussed by comparing its performance to the classic SVD (PCA)

parameterization approach.
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NOMENCLATURE

V vector

U matix

T tensor

A cross sectional area normal to flow, [ft2]

� the Kronecker product between two matrices

φ porous medium rock porosity, fraction

B oil formation volume factor, [ bbl
STB

]

cR reservoir rock compressibility, [psi−1]

co oil compressibility, [psi−1]

cw water compressibility, [psi−1]

µ viscosity, [cp]

K permeability, [Darcy]

co oil compressibility, [psi−1]

p pressure, [psia]

∇p pressure gradient, [psia
ft

]

q production rate or flow rate, [ bbl
day

]

t time, [days]

γ specific gravity, [psia
ft

]

ρ density, [ lb
ft3

]

h thickness, [ft]

re Peaceman effective radius, [ft]

rw well radius, [ft]

s skin factor
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1. INTRODUCTION AND LITERATURE REVIEW

There is an increasing global demand for energy for upcoming decades based on

a recent research study by ExxonMobil Corporation [39, 40]. Moreover, oil, gas and

coal are significant source of the energy that is delivered for global consumption

(Fig. 1.1). On the other hand, owing to the fact that oil and natural gas are non-

Figure 1.1: World energy consumption. From [40]

renewable resources, it will become more challenging to keep current production rate

in order to fulfill this increasing global demand for energy. In fact, the majority of

current oil and gas fields are produced for a long time, e.g., their production rates is

decreasing each year now on, and there is a low chance of discovering new large fields.

Therefore, it is of high interest to optimize the production costs while maximizing

oil recovery in order to fill the gap between global demand for energy and decreasing

resources [39].
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Closed-loop control has been introduced in the upstream side of the exploration

and production (E&P) field life-cycle of the Oil and Gas industry in the form of

closed loop reservoir management (CLRM) [68, 81]. The upstream sector is com-

prised of the fossil fuel reservoirs together with the network of wells and the near

surface infrastructure [77]. The central idea of the CLRM paradigm is to optimize

reservoir production (e.g., hydrocarbons) by delaying water production and mini-

mizing fluid injection during the reservoir life-cycle. This can be accomplished by

setting up a model-based optimization and parameter estimators for proper account

of uncertainties. To this end, CLRM has been shown to significantly impact the

amount of hydrocarbons extracted and, in turn, the volume of global reserves by

increasing the recovery factor of conventional reservoirs.

Real-time closed loop control is routinely applied in the downstream sector (re-

fineries) of the hydrocarbon production [13, 8, 110]. Nonlinear plants can be con-

trolled using model-based control and identified dynamical systems [80, 128, 3]. Al-

though the behavior of these nonlinear systems are complex on their own right, the

solution time for the control evaluation and their practical implementation is usually

small (milliseconds). However, the deployment of the CLRM concept to realistic

reservoirs has been minimal. In reservoir management, the time scales are not as

severe as in the upstream examples, yet the problems that one faces in control-

ling petroleum systems are more complex in the sense that one deals with highly

non-linear and uncertain models, which are described mathematically, by large-scale

dynamical systems - millions of state-variables are very often needed and massive

computational machinery are required for simulation and optimization. Further-

more, porous media properties such as conductivity or permeability contains many

small scales and uncertainties. For example, in fractured media, the small scales can

be much smaller compared to the field scales. For this reason, it is computationally

2



expensive to solve forward problems directly, and, in particular, it is prohibitively

expensive to solve many such forward problems as in the case of uncertainty quan-

tification and controller design.

In this work, we will focus on developing model reduction strategies that can be

incorporated into the parameter estimation processes amenable for reservoir control

[20, 23, 25, 69]. In the petroleum industry, parameter estimation is often called

history matching. The central issue in history matching is to construct a reservoir

model to predict accurately future reservoir production utilizing observation data.

Several parameters describe a reservoir model which each of those parameters may

convey a huge amount of data. Some parameters are specified per grid block like

permeability and porosity and others for the entire model or a particular layer such

as relative permeability and capillary pressure. History matching is a highly under-

determined, nonlinear and ill-posed problem owing to insufficiency and complexity

of observed data from reservoir [104]. This means there is a possibility of obtaining

reservoir models that match observed measurements but then provide incorrect pre-

dictions. Many workflows in uncertainty quantification and history matching rely on

massive computations, and the availability of computing resources is still seen as a

limiting factor. Considering that large-scale computer-based simulation provided the

only feasible method for producing quantitative predictive information about com-

plex behavior, novel ways to reduce the computational burden related to simulations

need to be developed.

A number of studies have been conducted to reduce computational efforts in

reservoir simulation and history matching [67, 51, 22, 1, 129]. The methodologies

basically worked in two fronts: reducing the number of states using model reduction

techniques, and reducing the number of unknown parameters in a process known

as parameterization [119]. Among all of these methods, a common approach that

3



is applied to history matching is proper orthogonal decomposition (POD) [132, 7],

which in different areas, is also known as principal component analysis (PCA) and

Karhunen- Loève Decomposition (KL). In the standard PCA (POD), it is necessary

to carry out an eigen-decomposition of the random field covariance matrix which is

expensive for large models. Furthermore due to the vectorization of the snapshots

data in the POD computation, many features may be lost in the reduced space [11,

86, 90]. In this dissertation, we introduce the multi-linear algebra based approach,

namely the high-order singular valued decomposition (HOSVD) [86, 90, 130], to

reduce dimensionality representation of reservoir properties, such as permeability,

taking into account an ensemble of models. We treat property ensembles as a high-

dimensional tensor, and by means of tensor algebra (HOSVD) we show that the

reduced models preserve better geometric features keeping them more intact during

the reduced basis computations. This is of great importance in the case of reservoirs

as the properties in consideration have geological meaning.

Developing efficient and accurate history matching workflows is a daunting task

to be performed using grid-based simulation due to the large-scale nature of the

reservoir models and the several calls of the simulator. This is due to the fact

that large number of gridblocks is needed to accurately represent the continuous

solution of the underlying partial differential equations of multi phase flow in porous

media, leading to large number of uncertain parameters representing the geological

description of the reservoir [27].

Having a reliable and accurate reservoir model is of high interest in reservoir

engineering field. However, obtaining such a model requires a fine detailed descrip-

tion of the reservoir which results in a large scale underdetermined inverse problem.

Thus, it is crucial to reduce the dimensionality of the actual model for the sake of

computational time and cost. The objectives of this dissertation is to provide a novel

4



reservoir parameterization method through introducing higher order singular value

decomposition (HOSVD) algorithm in order to obtain a reservoir model of lower

dimension [65, 58, 35]. In other words, we employ HOSVD capability to reduce di-

mensionality representation of reservoir properties, such as permeability, taking into

account an ensemble of models. We treat property ensembles as a high-dimensional

tensor, and by means of tensor algebra (HOSVD) we show that the reduced models

preserve better geometric features keeping them more intact during the reduced basis

computations [2, 60].

To this end, model-order reduction techniques have been used to mitigate the

high cost of performing these simulations by means of two different thrusts: (1)

parameterization of the geological description, e.g., permeability and porosities, in

few parameters to be estimated; and (2) reduction on the number of states, i.e.,

pressures and saturations to be computed in each simulation call. Although there

is not a consensus in which direction one should follow to efficiently and accurately

represent the geological model, both thrusts share a common framework: subspace

projection. In what follows, a brief introduction to model reduction by projection is

given. It should be pointed out that for the exposition given below we will assume

two-phase immiscible (oil-water) flow [67, 51, 68].

This dissertation is organized as follows. Section 2 describes tensor algebra in

details and provides most important definitions and theorem regarding the appli-

cation of multilinear algebra in reservoir simulation problems. We will also, in-

troduce higher order singular value decomposition (HOSVD) method as a param-

eterization algorithm (dimensionality reduction method) and also best rank–1 and

rank–(R1, R2, · · · , RN) approximation of a tensor will be explained. Section 3, briefly

establishes the reservoir simulation framework and explain permeability parameteri-

zation problem in reservoir simulation and history matching. Moreover, a two phase

5



reservoir simulation example is provided to show how the performance of our in-house

reservoir simulator. eager reader could refer to [54, 24, 18, 17] for more detail on

reservoir simulation and optimization. Furthermore, we present an introductory dis-

cussion on ensemble Kalman filter (EnKF) as a strong parameter estimation method

[34]. Section 4 discusses permeability field parameterization using higher order sin-

gular value decomposition. In fact, it provides the results based on geostatistical

permeability realization including a description for permeability field parameteriza-

tion and dimensionality reduction using HOSVD. We also include results of efficient

geology preserving reservoir parameterization through HOSVD and summarize im-

portant points on HOSVD based parameterization as well as providing results for a

real benchmark reservoir model known as SPE 10 in order to show the performance

of the proposed parameterization method and in comparison to other common pa-

rameterization methods such as classic SVD. In section 5 we integrate the EnKF

parameter estimation method with HOSVD based parameterization in order to in-

vestigate the performance of the new parameterization method in a real inverse

problem, i.e., history matching problem. In fact, the last Section describes reser-

voir parameter distribution inference through HOSVD parameterization for a SPE

10 benchmark. Finally, section 6 summarizes the present work and provides some

interesting area for further investigation and as future research studies.
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2. INTRODUCTION TO TENSOR ALGEBRA

This section briefly presents basic material on tensor algebra which are necessary

to understand the fundamental ideas and tools of the present work. As a matter of

fact, we need to establish the basic concept of multilinear algebra in order to intro-

duce the higher order tensor decomposition concept in a proper manner. We start

with definitions and theorems of tensor algebra and continue with briefly explaining

tensor operations and matrix representation. Finally, we conclude this section by

reviewing classic singular value decomposition (SVD) and illustrate the higher order

singular value decomposition (HOSVD) method as the main tool in model reduction

for parameterization purposes in the present work. Many of these definitions and

theorems proof can be found in the following papers and book [4, 15, 21, 42, 85].

2.1 Basic Definitions

In multilinear algebra, tensor is a multi-dimensional array. In fact, tensor is a

higher order matrix (array) with a dimension more than 2. A more theoretically

precise definition of a high order tensor is as follows:

Definition 2.1.1: Assume P Euclidean vector spaces A1, A2, · · · , AP all with

finite dimensions J1, J2, · · · , JP . Given P vectors Bi ∈ Ai and any arbitrary vector

Yi for all i ∈ 1, 2, · · · , P , we define a multilinear map on A1×A2×· · ·×AP as follows:

(
B1 �B2 � · · · �BP

)(
Y1, Y2, · · · , YP

)
= 〈B1, Y1〉A1〈B2, Y2〉A2 · · · 〈BP , YP 〉AP . (2.1)

wherein 〈Bi, Yi〉Ai indicates the scalar product in Ai.

Definition 2.1.2: The tensor product space over A1, A2, · · · , AP is referred to

as the space created by all the elements of the stated multilinear map. And each
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member of the tensor product space is called a tensor.

2.2 Tensor Products, Orthogonality and Norm

To better understand the concept of higher order singular value decomposition

(HOSVD) method, a few basic operations within the tensor product space are defined

in this section.

Definition 2.2.1: The inner product of two arbitrary tensors P ∈ CI1×I2×···×IN

and Q ∈ CJ1×J2×···×JM , is defined element wise as :

(
〈P ,Q〉n,m

)
i1i2···in−1in+1iN j1j2···jm−1jm+1jM

≡
∑
in,jm

pi1i2···in···iN · qj1j2···jn···jM . (2.2)

Definition 2.2.2: The outer product of two arbitrary tensors P ∈ CI1×I2×···×IN

and Q ∈ CJ1×J2×···×JM , is expressed element wise as :

(
P ∗ Q

)
i1i2···inj1j2···jN

≡ pi1i2···in · qj1j2···jM . (2.3)

Definition 2.2.3: Multiplication of a tensor T ∈ CI1×I2×···×IN by a matrix

U ∈ CJ×In which is called mode-n product results in a tensor of size I1 × I2 × · · · ×

In−1 × J × In+1 × · · · × IN and defined as follows:

(
T ×n U

)
i1i2···in−1jin+1···iN

=
∑
in

ti1i2···iNujin . (2.4)

Definition 2.2.4: The scalar product of two arbitrary tensors P ,Q ∈ CI1×I2×···×IN

is defined as:

〈P ,Q〉 ≡
∑
i1

∑
i2

· · ·
∑
iN

q∗i1i2···iN · pi1i2···iN . (2.5)

Note that the tensor scalar product is generalized version of the classic scalar
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product of two vectors.

Definition 2.2.5: If the scalar product of two tensors is zero, then they are

mutually orthogonal.

Definition 2.2.6: The Frobenius norm of a tensor is defined as follow:

‖T ‖ ≡
√
〈T , T 〉. (2.6)

Definition 2.2.7: Mathematically, the number of dimensions of tensor T ∈

RI1×I2···×IN is referred to as the order (modes) of a tensor.

Definition 2.2.8: A slice of a tensor is obtained by varying two indices while

fixing all others. Figure 2.1, shows lateral, frontal and horizontal slices of a three-way

tensor.

Definition 2.2.9: The dimension of the vector space spanned by n − mode

vectors of a tensor is its n–rank.

The other significant difference between matrices and tensors is that the different

n–rank of a tensor might not be same. Thus, one way to define rank of a tensor is to

count the number of rank–1 terms which one could decompose that specific tensor.

Moreover, it would be mentioned that a tensor has rank 1 if it could be written as

the outer product of N vectors[43, 45]. Therefore, the following definition resulted

for the rank of an arbitrary tensor

Definition 2.2.10: The minimum number of rank–1 tensors that linearly com-

bined to construct a high order tensor is the rank of that tensor.

2.3 Unfolding Higher Order Tensor

The unfolded form of a tensor are generated by stacking all mode–n slices next

to each other into a matrix [43, 45, 44].

Definition 2.3.1: Given tensor T ∈ CP1×P2×···×PP , the mode–n realization of
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tensor T includes tensor element tp1,p2,··· ,pP with corresponding index of (pp, q) which:

q = 1 +
P∑

n=1,n 6=P

(
in − 1

)
Qn (2.7)

wherein

Qn =
P∏

m=1,m 6=P

Pm (2.8)

In other words, based on the previous illustration of tensor order and considering

definition 2.3.1, mode–n realization of a tensor are easily defined as column vectors

of unfolded tensor T in the mode n denoted by T(n). For instance, mode–1 matrix

resulted from unfolding a matrix (second-order tensor) is equivalent to the original

matrix and its mode–2 unfolded matrix is actually its transposed form. Thus, an

N -th order tensor has N unfolded matrices. Example 2.3.1 perfectly illustrate the

concept of unfolding realization of a tensor. We generated a simple tensor in order

to make process easy to follow.

Example: Assume tensor T ∈ R4×3×2 contains the two frontal slices as follows:

T (:, :, 1) =



0.1 0.2 0.3

0.4 0.5 0.6

0.7 0.8 0.9

1.0 1.1 1.2


T (:, :, 2) =



2.1 2.2 2.3

2.4 2.5 2.6

2.7 2.8 2.9

3.0 3.1 3.2


Now, unfolded realizations would be as follows:
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T(1) =



0.1 0.2 0.3 2.1 2.2 2.3

0.4 0.5 0.6 2.4 2.5 2.6

0.7 0.8 0.9 2.7 2.8 2.9

1.0 1.1 1.2 3.0 3.1 3.2


T(2) =


0.1 0.4 0.7 1.0 2.1 2.4 2.7 3.0

0.2 0.5 0.8 1.1 2.2 2.5 2.8 3.1

0.3 0.6 0.9 1.2 2.3 2.6 2.9 3.2



T(3) =

0.1 0.2 0.3 0.4 · · · 0.8 0.9 1.2

2.1 2.2 2.3 2.4 · · · 2.8 2.9 3.2


Figure 2.1 visualizes the unfolding process of a (J1× J2× J3)–tensor and depicts

all corresponding unfolded realizations.

Figure 2.1: Visualization of unfolding an arbitrary three-way tensor T . Adapted

from [41].
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Definition 2.3.2: The Kronecker product of two matrices U ∈ RM×N and

V ∈ RP×Q is defined as follows:

U �V ≡



u11 ·V u12 ·V · · · u1N ·V

u21 ·V u22 ·V · · · u2N ·V
...

...
. . .

...

uM1 ·V uM2 ·V · · · uMN ·V


(2.9)

The first part of this section summarized all basic concepts and definitions in re-

gard with tensor algebra and specifically higher order tensors. Also, some important

tensor operators are described in this section. In the next part, we will introduce

higher order singular value decomposition for higher order tensors and will review

some interesting properties of this decomposition as well. Eager reader can refer to

[121, 126, 127, 101, 89, 41] for more details on tensor algebra.

2.4 Higher Order Singular Value Decomposition (HOSVD)

This subsection briefly presents multilinear singular value decomposition (SVD)

basics and introduces concepts of SVD for higher order tensors. The multilinear

singular value decomposition, also known as Higher Order Singular Value Decompo-

sition (HOSVD), is the main tool in the present work and is utilized to introduced a

novel parameterization and model reduction method with applications in petroleum

reservoir simulation and characterization. This section is arranged as follows. Sub-

section 3.1 introduces higher order singular value decomposition along with its pivotal

properties. In subsection 3.2 the HOSVD computation algorithm is explained in de-

tails. Subsections 3.3 states the problem of finding best rank–1 approximation of a

tensor proceeds by a generalization of this problem in subsection 3.4 on calculating

best rank–(R1, R2, · · · , RN) approximation of a tensor.
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2.4.1 Definition and Properties

This subsection provides matrix singular value decomposition and proceeds to

multi linear singular value decomposition. In fact, the HOSVD concept is established

utilizing that of classic SVD[85, 70, 46, 44, 45, 43, 38].

Theorem 3.1: For all matrix A ∈ CN1×N2 , the following matrix decomposition

holds

A = USVH = S×1 U×2 VH (2.10)

now let U1 denotes U and U2 denotes VH , then

A = S×1 U1 ×2 U2 (2.11)

Moreover, the following statements hold as well

� U1 =
(
U1

1U
1
2 · · ·U1

N1

)
is a unitary matrix of size N1 ×N1.

� U2 =
(
U2

1U
2
2 · · ·U2

N2

)
is a unitary matrix of size N2 ×N2.

� S is a pseudo-diagonal and ordered matrix of size N1×N2. In other words, the

matrix S contains all singular values of matrix A in a descending order.

Figure 2.2 shows matrix SVD visualization.

Figure 2.2: Visualization matrix SVD.
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Given theorem 3.1 and definitions presented in section 2, one could represent

a (J1 × J2 × · · · × JM)–order tensor in the same fashion as classic singular value

decomposition for matrices provided in theorem 3.2 as follows.

Theorem 3.2: For all tensor T ∈ CN1×N2×···×NM , the following can be expressed

as tensor decomposition

T = C ×1 U1 ×2 U2 × · · · ×M UM (2.12)

Also, the following statements hold as well

� Um =
(
U1

1U
1
2 · · ·Um

Nm

)
is a unitary matrix of size Nm ×Nm.

� C is a tensor of size N1 × N2 × · · · × NM , referred to as core tensor which

represents coefficients matrix in classic matrix SVD and contains sub-tensors

that are all orthogonal and ordered tensor. Sub-tensor Cnm=α can be acquired

by fixing index m to α. Here, all orthogonality means that for all m, α and

β, sub-tensors Cnm=α and Cnm=β are orthogonal with α 6= β. Furthermore, the

following holds for the m–mode singular values of tensor T , ‖Tnm=j‖, denoted

by σmj

‖Tnm=1‖ ≥ ‖Tnm=2‖ ≥ · · · ≥ ‖Tnm=Nm‖ ≥ 0. (2.13)

In other words, once horizontal slices of tensor T are jointly orthogonal in terms of

tensor inner product, then the sub-tensors are all orthogonal. Reader must note that

core tensor C, unlike the classic matrix SVD, is not pseudo-diagonal which means it

is a full tensor that satisfy the all orthogonality condition. Ums are the bases (factor)

matrices (which are orthogonal) and can be thought of as the principal components

in each mode as well. Also, one could derive a matrix representation form of HOSVD
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as follow:

T = Um · Cm ·
(
Um+1 � Um+2 � · · · � UM � U1 � U2 � · · · � Um−1

)
. (2.14)

in which � denotes Kronecker product of two matrices. Due to the orthogonality

property, HOSVD is essentially unique. The Frobenius norms of (M − 1)th–order

of the sub-tensors act as the same way as singular values in classic matrix SVD.

Figure 2.3 visualizes higher order singular value decomposition of a three-way tensor.

Moreover, the following holds for the tensor HOSVD product in theorem 3.2

‖T ‖2 = ‖C‖2. (2.15)

Figure 2.3: Visualization matrix HOSVD for a three-way tensor. Adapted from [41].

2.4.2 HOSVD Computation Algorithm

In the present subsection, an iterative algorithm is derived for computing higher

order singular value decomposition of a high dimension tensor. Considering theorem

3.2 and the m–mode product commutative property, one can simply rewrite equation
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2.12 as follows

C = T ×1 U1H ×2 U2H × · · · ×M UMH
. (2.16)

Now, by assuming the unfolded representation of a tensor from equation 2.14 and

Kronecker product one can easily relate the link between classic matrix SVD and

HOSVD of a tensor. First of all, since C is all orthogonal and ordered so as is Cm with

Frobenius norms equivalent to σmj with respect to its jointly orthogonal rows. Second,

one should note that the Kronecker product, Um+1�Um+2�· · ·�UM�U1�U2�· · ·�Um−1,

is orthogonal due to orthogonality property of all Ums. Thus, if one define matrix Σm

and a column wise orthogonal matrix Vm as in equations 2.12 and 2.12 respectively

Σm =



σm1 0 · · · 0

0 σm2 · · · ...

...
...

. . . 0

0 0 · · · σmJm .


(2.17)

Vm =
(
Um+1 �Um+2 � · · · �UM �U1 �U2 � · · · �Um−1

)
ĈHm . (2.18)

Wherein, ĈHm is normalized replicate of CHm . Then the result, equation 2.12, is matrix

SVD of unfolded form of tensor T .

Tm = UmΣmVmH . (2.19)

As a mater of fact, the m-mode singular matrix Um can simply be found by calcu-

lating the left singular matrix of unfolded form of T . Thus, computing HOSVD is

equivalent to reapplying SVD, M times. Eventually, using the equation 2.14, one

could simply compute the core tensor C. All steps are summarized in algorithm 2.1

as follows.
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Algorithm 2.1 Higher Order SVD Computation Procedure [41]

1: procedure HOSVD
2: Input: m–order tensor T
3: Output: core tensor C and basis U1,U2, · · · ,UM

4: for m = 1 to M do
5: Calculate Tm . unfolded versions of tensor T
6: Apply classic SVD to Tm . unfolded versions of tensor T
7: end for
8: C ← T ×1 U1H ×2 U2H × · · · ×M UMH

. compute core tensor
9: return: core tensor C and basis U1,U2, · · · ,UM

10: end procedure.

A number of various research studies have been conducted in order to apply

HOSVD in different fields of science and engineering like signal processing [91] , face

recognition [131], data and chemical analysis [71], among others. The application

of HOSVD to flow problems has been minimal due to the lack of fast and reliable

tools for the decomposition computations. In recent years, however, new tools and

algorithms have been developed that show promising results in large-scale multilinear

algebra computations [9, 123].

In terms of computation of the HOSVD terms, one can use the so-called Alter-

nating Least Squares (ALS) Method [87], [91] and [9]. Making the analogy of the

approximation of a matrix by one of lower rank using SVD, one can come up with

a truncated HOSVD in similar fashion. Indeed, in order to reduce the order of a

given tensor, one can select only those basis that conserve more energy in each mode,

which always are corresponded to the larger singular values in SVD. Thus, the prob-

lem of finding the larger mode-n singular values of a tensor turns into the problem

of finding the best lower rank approximation of a tensor which is a optimization

problem. Unlike the regular SVD, this problem does not have a closed form solution.

A very common approach to obtain a truncated HOSVD is to use the alternating
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least squares (ALS) method.

2.4.3 Best Rank–1 Approximation

As mentioned in the previous subsection, the goal here is to approximate a higher

order tensor by one of the lower rank in an efficient fashion with respect to an

optimal least square scenario. There are two different way to do so: (1) estimating a

tensor using a rank–1 tensor referred to as rank–1 approximation; (2) by specification

of mode–m ranks at the beginning and providing a rank–(R1, R2, · · · , RM) tensor

approximation. Furthermore, unlike the classic matrix SVD, approximating a tensor

with one of the lower rank might not results in a globally optimum solution. However,

by selecting a good initial guess the algorithm may yields in the best rank–1 or

rank–(R1, R2, · · · , RM) tensor approximation locally. Therefore, the following two

subsections are organized to provide essential materials on finding best rank–1 and

rank–(R1, R2, · · · , RM) tensor approximations using higher order power method and

alternative least square method respectively.

The problem is to find a scalar γ and normal vectors U1,U2, · · · ,UM so that

the following statement holds

minimize
T̂

f(T̂ ) ≡ ‖T − T̂ ‖2
F . (2.20)

wherein, T̂ ≡ γ.U1 ∗U2 ∗ · · · ∗UM is a rank–1 tensor that minimizes the objective

function in equation 2.20 which is a straightforward least square loss function. The

stated optimization problem can be solved utilizing Lagrange multipliers method.

Eager reader can refer to [41, 45] for details on the solution of this optimization

problem. Here, we only summarized the algorithm called higher order power method

or HOPM, that we employed to find Lagrange multipliers and corresponding deriva-

tives. The Lagrange multipliers corresponding to the problem stated in equation
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2.20 are as follows

T ×1 U1H × · · · ×m−1 Um−1H ×m+1 Um+1H · · · ×M UMH
= γ.Um, (2.21)

T ×1 U1H ××2U
2H × · · · ×M UMH× = γ, (2.22)

‖Um‖ = 1. (2.23)

Now, we may employ Alternating Least Square (ALS) method in order to find local

minimum of objective function in an iterative single step algorithm. In fact, we

can obtain optimum Lagrange multiplier γ and the normalized vector Um in each

iteration step independently as we fix all other vectors. The procedure continues

until convergence. Algorithm 2.2 sums up the steps of higher order power method.

Algorithm 2.2 Higher Order Power Method (HOPM) [41]

1: procedure HOPM
2: Input: m–order tensor T
3: Output: vectors U1,U2, · · · ,UM

4: initiate U1
0,U

2
0, · · · ,UM

0 . left singular vectors of Tm
5: while not converge do
6: Ûm

i = T ×1 U1
i−1 × · · · ×m−1 Um−1

i−1 ×m+1 Um+1
i−1 · · · ×M UM

i−1;

7: γmi = ‖Ûm
i ‖;

8: Um
i = Ûm

i /γ
m
i ;

9: end while
10: end procedure.

2.4.4 Best Rank–(R1, R2, · · · , RN) Approximation

This subsection describe an extension to the best rank–1 approximation of a ten-

sor to a case that we are interested in estimating a given higher order tensor with one

of lower rank. As a matter of fact, we want to find the best rank–(R1, R2, · · · , RM)
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approximation of a assumed tensor which means reducing each tensor mode to a spe-

cific rank Rm. Thus, making the analogy of the approximation of a matrix by one of

lower rank using SVD, one can come up with a truncated HOSVD is similar fashion.

Indeed, in order to reduce the order of a given tensor, one could select only those

basis that conserve more energy in each mode, which always are corresponded to the

larger singular values in SVD. Mathematically, given the tensor T ∈ RJ1×J2···×JM , we

seek to find

min
T̂
‖T − T̂ ‖2

F . (2.24)

wherein, T̂ ∈ RJ1×J2···×JM is the approximated tensor of the order of (r1, r2, · · · rM)

which ri < Ji. Therefore, the problem of finding the larger mode–m singular values

of a tensor turns into the problem of finding the best lower rank approximation of a

tensor which is a optimization problem. Unlike the classic SVD, this problem does

not have a closed form solution. A very common approach to obtain a truncated

HOSVD is to employ the alternating least squares (ALS) method, proposed by Kroo-

nenberg and de Leeuv [87] which is referred to as higher order orthogonal iteration

method (HOOI). Input of the algorithm is a tensor T of rank (J1× J2 · · · × JM) and

its output is an approximated lower rank tensor T̂ ∈ RJ1×J2···×JM with a reduced

rank of (r1, r2, · · · rM). The purpose is to find the best reduced rank approximation

through computing left singular matrices of the input tensor in a iterative manner

until algorithm converged. The approach contains three steps. First step is initial-

izing the factor matrices by applying HOSVD to the input. In second step, which

is the iteration part of algorithm, left singular matrices corresponding to each mode

are estimated independently and separately. In other words, least mean square min-
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imization leads to maximizing function f over Um, which are orthonormal:

f = ‖Umi ×m UmH‖2
F . (2.25)

wherein,

Umi ≡ T ×1 U1H × · · · ×m−1 Um−1H ×m+1 Um+1H · · · ×M UMH
. (2.26)

Thus, in each iteration one factor matrix is optimally estimated and other matrices

considered as constant. Last step of algorithms is to reconstruct the estimated lower

rank tensor after convergence. Algorithm 3.2 summarizes all steps of higher order

orthogonal iteration method (HOOI) through an alternating least square method.

Figures 2.4 and 2.5 show test experiments to compare the classic SVD and HOSVD

in terms of compression for face recognition applications [115]. All images are taken

from AT&T Laboratories Cambridge [19]. Eager readers would also refer to [87],

[91] and [9] for more details on ALS and some other refined algorithms on truncation

HOSVD.
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Figure 2.4: Comparison Compressed face images in different expressions and view-
points using SVD and HOSVD.
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Figure 2.5: Comparison Compressed face images in different expressions and view-
points using SVD and HOSVD.
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Algorithm 2.3 Higher Order Orthogonal Iteration (HOOI) [41]

1: procedure HOOI
2: Input: m–order tensor T
3: Output: core tensor C and matrices U1,U2, · · · ,UM

4: initiate U1
0,U

2
0, · · · ,UM

0 . left singular matrices of Tm
5: while not converge do
6: Ûm

i = T ×1 U1
i−1 × · · · ×m−1 Um−1

i−1 ×m+1 Um+1
i−1 · · · ×M UM

i−1;

7: maximize
Um∈RJm×Rm

f ≡ ‖Umi ×m UmH‖;

8: γmi = f
((

Um
i

)
max

)
;

9: Um
i =

(
Um
i

)
max

;

10: end while
11: end procedure.
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3. POROUS MEDIA FLOW MODELING

Constructing mathematical model for a petroleum reservoir needs thorough un-

derstanding of reservoir components including reservoir rock and fluid (oil, water,

and gas) and geological description of the environment. Reservoir rock properties

including permeability and porosity are of high interest. Furthermore, reservoir fluid

properties such as fluid densities, viscosity and formation volume factors depend on

fluid pressure and relative permeability and capillary pressure are tied to saturation

of fluids within the reservoir. This section briefly presents essential reservoir simu-

lation basics and backgrounds on permeability parameterization as well as ensemble

Kalman Filter (EnKF) algorithm for reservoir history matching, which are necessary

to understand the motivations and results of the present work[69, 23, 24].

3.1 Petroleum Reservoirs

Hydrocarbons, i.e., oil and natural gas, were formed as a result of subsiding

animals and plants in presence of high temperature and pressure buried at a depth

between 3000 - 15000 ft for millions of years. A reservoir rock, porous medium, is

the one which contain oil or natural gas in its pores, i.e., void spaces inside the

rock, and it has some specific physical characteristics in order to be able to hold and

flow the petroleum fluid within the rock. Two of the primary variables related to

the fluid dynamics in porous media are the porosity, φ, and permeability, K. The

porosity accounts for the amount of void spaces in the porous media that can store

the hydrocarbon fluids. In other words, porosity is the ratio of void pore volume to

the total rock volume and is stated as a percentage. As a matter of fact, porosity is
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a measure for expressing rock storage capacity and is defined as follows:

φ =
pore volume

bulk volume
. (3.1)

On the other hand, if the void spaces are not connected, the fluid cannot be moved

from one region to the other. The ability to transmit the fluid within the rock is

refer to as permeability and depends on whether the pores are connected within

the rock or not and how well they are actually interconnected. In other words,

permeability accounts for how easier is to transfer fluid inside the reservoir. Henry

Philibert Gaspard Darcy [36, 113] was the first scientist who found out about this

characteristic during his studies of water flow through filter beds, and proposed the

following mathematical definition for single phase, three dimensional fluid flow called

Darcy’s law :

q = −k
µ

(
∇p− γ∇Z

)
. (3.2)

wherein, q is Darcy’s flux, k is the intrinsic permeability of the medium, ∇p is

pressure gradient and µ is viscosity of fluid. ∇Z is elevation gradient as well. Next

subsections describe in details single and multi-phase flow equations using Darcy’s

law. Usually, the hydrocarbons can be produced by drilling a producing well and by

pressure differential the fluid can reach the surface. However, only 5 − 10% of the

recoverable hydrocarbons can be retrieved in this manner. Therefore, one usually

drill an injection well, and inject some form of fluid to push out the remaining oil/gas.

This is called secondary production and often known as water flooding in the case of

water injection. Figure 3.1 depicts a very simplified schematic of a real production

system in an oilfield.
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Figure 3.1: schematic of a real production system, Edited from [118]

3.2 Reservoir Fluid Flow Modeling

In order to demonstrate the main concepts developed here, we will pose the

reservoir simulation problem as a dynamical system. Thus, we will first consider

the flow equation in its mathematical form and show how one can arrive at the

system description. We start by describing it via a single phase flow diffusion in

a media. Reservoir engineers need to acquire more accurate information about the

performance of a assumed petroleum reservoir in order to to estimate its future

production precisely at various operating conditions. Having such a reliable reservoir

model helps to understand the behavior of the reservoir and its properties including

the properties of reservoir rock and fluid within the reservoir. Also, providing a

precise reservoir model improve the reservoir management plans by minimizing the

development cost and maximizing the future production of the reservoir[61, 122, 108,

6, 106, 30].
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3.2.1 Mass Conservation for Fluid Flow in Porous Media

For developing fluid flow equation we need to derive mass continuity or mass

conservation law equation first. Then, combining material balance equation, state

equations, and Darcy’s law we will come up with the diffusion equation for fluid flow

in porous media[36, 88, 10, 113]. We assume reservoir fluid flows through porous

media with a constant volume V in the direction x from point x − δx
2

to x + δx
2

in

δt and consider a perpendicular cross section to the fluid flow with area xy as well.

The goal is to derive material balance equation for the center of an arbitrary cubical

volume in figure 3.2. Material balance states that the difference between inflow mass

and outflow mass is accumulated mass in porous media. Therefore, considering mass

flux of fluid in direction x which is ρux the following holds for inflow mass flux across

the xy area in direction x in δt

(
ρux
)
x− δx

2
,y,z
δyδzδt, (3.3)

and for outflow mass flux as follows

(
ρux
)
x+ δx

2
,y,z
δyδzδt. (3.4)

and the same correlations for direction y

(
ρuy
)
x,y− δy

2
,z
δxδzδt, (3.5)

(
ρuy
)
x,y+ δy

2
,z
δxδzδt. (3.6)

and z direction as well (
ρuz
)
x,y,z− δz

2

δxδyδt, (3.7)
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(
ρuz
)
x,y,z+ δz

2

δxδyδt. (3.8)

where, ρ is reservoir fluid density. Also, we have the following from material balance

Fluxinflow − Fluxoutflow = Accumulation = Massafter −Massbefore. (3.9)

Now, combining these correlations together using material balance we get

((
ρux
)
x− δx

2
,y,z
−
(
ρux
)
x+ δx

2
,y,z

)
δyδzδt

+
((
ρuy
)
x,y− δy

2
,z
−
(
ρuy
)
x,y+ δy

2
,z

)
δxδzδt

+
((
ρuz
)
x,y,z− δz

2

−
(
ρuz
)
x,y,z+ δz

2

)
δxδyδt

= m(t+ δt)−m(t). (3.10)

wherein, m(t) is accumulated mass inside the rock. We can write the following for

accumulation

m = ρφδxδyδz. (3.11)

Assuming that cross sectional area is constant and equal for all directions and divide

both sides by δxδyδzδt we may rewrite the equation 3.10 as follows

(
ρux
)
x− δx

2
,y,z
−
(
ρux
)
x+ δx

2
,y,z

δx

+

(
ρuy
)
x,y− δy

2
,z
−
(
ρuy
)
x,y+ δy

2
,z

δy

+

(
ρuz
)
x,y,z− δz

2

−
(
ρuz
)
x,y,z+ δz

2

δz

=
ρφt+δt − ρφt

δt
. (3.12)
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now, getting the limit of both side, we arrive at

lim
δx→0

(
ρux
)
x− δx

2
,y,z
−
(
ρux
)
x+ δx

2
,y,z

δx

+ lim
δy→0

(
ρuy
)
x,y− δy

2
,z
−
(
ρuy
)
x,y+ δy

2
,z

δy

+ lim
δz→0

(
ρuz
)
x,y,z− δz

2

−
(
ρuz
)
x,y,z+ δz

2

δz

= lim
δt→0

ρφt+δt − ρφt
δt

. (3.13)

and finally we get the conservation mass equation for single phase fluid flow as follows

∂(ρφ)

∂t
= −∇.(ρu) + q. (3.14)

wherein, q is sink or source flow, usually from well, and u is Darcy’s velocity.

Figure 3.2: Mass conservation law for 1D fluid flow.
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3.2.2 Diffusion Equation

Understanding the nature and behavior of any dynamic system requires to de-

velop a mathematical description that express the physics of the system precisely

in a mathematical manner. In studying reservoir fluid flow, governing equations of

transient fluid flow through the porous medium is a set of time dependent partial

differential equations referred to as diffusion equation[36, 92, 124]. As discussed pre-

viously, in order to obtain the diffusion equation, we combine mass conservation,

state equation, and Darcy’s law. We may rewrite Darcy velocity in 3D dimension as

follows

u = − 1

µ
k
(
∇p− ρg∇Z

)
. (3.15)

wherein, k is reservoir rock absolute permeability tensor, γ = ρg is specific gravity,

and ∇Z is elevation gradient. Now, if we substitute equation 3.15 in the mass

conservation equation 3.14, we arrive at the general equation for single phase flow in

porous media as follows

∂
(
φρ
)

∂t
+ q = ∇.

(ρ
µ

k
(
∇p+ γ∇z

))
. (3.16)

3.3 Numerical Solution to Diffusion Equation

As one can see, the diffusion equation is a time dependent partial differential

equation (PDE) which is first order in time and second order in space. Due to their

complex and nonlinear nature such equations are very hard, if not impossible, to solve

analytically. Thus, one has to employ numerical methods such as finite difference

and finite element in order to find a solution to these equations. Here, in this work,

in order to simulate the reservoir behavior, and therefore solve the diffusion equation,

we utilize the finite difference method[54, 109, 16, 32].
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The main idea of finite difference method is to solve PDE by estimating spatial

derivatives using a finite grid network and through truncating higher order terms in

a Taylor series expansion. In reservoir simulation, we are interested in approximating

pressure and saturation of fluids inside the porous media. Performing finite differ-

ence properly yields a linear system of algebraic equations which can be solved by

matrix computations. Since, the PDEs are time and space dependent, so we need to

apply finite difference twice to tackle the problem. First, we perform finite difference

to PDEs in space for estimating spatial derivatives which yields a system of ordinary

differential equations (ODE). Second, we apply it to the resulted ODE system in or-

der to approximate time derivatives and this last one results in a system of nonlinear

equations. Also, the reader notes that due to employing grid network, the solution

is not continuous and is known only at grid points. Next two sessions will describe

the discretization process and performing finite difference in order to solve diffusion

equation for single and two phase flow system respectively[125, 112, 122, 133, 103].

3.4 Numerical Solution to Single Phase Flow System

The purpose of this subsection is to provide a brief introduction to utilizing finite

difference method in solving a single phase fluid flow equation. As mentioned before,

there are two types of discretization, one in space and the other in time.

In finite difference method, one may estimates derivatives in a partial differential

equation using a linear combination of values of function at mesh grid points. Thus,

for a given function f first order derivatives are defined as follows

∂f

∂x
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x
(3.17)

and one can choose to expand the Taylor series to the right or to the left for function

32



f at points xi = i∆x as follows

f(xi + ∆x) = f(xi) + ∆x
(∂f(xi)

∂x

)
+

(∆x)2

2

(∂2f(xi)

(∂x)2

)
+ · · · , (3.18)

f(xi −∆x) = f(xi)−∆x
(∂f(xi)

∂x

)
+

(∆x)2

2

(∂2f(xi)

(∂x)2

)
− · · · . (3.19)

These two equations are referred as forward and backward finite differences. To this

end, substitution equations 3.18 and 3.19 into equation 3.17 and letting f(xi+∆x) =

fi+1 and f(xi−∆x) = fi−1, we arrive to an approximation for first order derivatives

of function f(x) called central differences as follows

(∂f(x)

∂x

)
i

=
fi+1 − fi−1

2∆x
(3.20)

These discretization in space can be shown to yield good approximation for the

PDE. The reader can see [54, 36] for an account of accuracy and convergence of

these methods. We also have a time derivative term in the diffusion equation so we

need to apply a time discretization as well in order to convert PDE to a system of

nonlinear equations. We have to note that time and space derivatives are decoupled

which means we can discretize these terms independently. So, for the single phase

fluid flow PDE equation after discretization in space and time, we have

−
(
Ti±1/2,j,k + Ti,j±1/2,k + Ti,j,k±1/2

)
pi,j,k

+ Ti±1/2,j,kpi±1,j,k + Ti,j±1/2,kpi,j±1,k

+ Ti,j,k±1/2pi,j,k±1 + qi,j,k = Ci,j,kVi,j,k
dpi,j,k
dt

. (3.21)
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wherein,

Ci =
φct
B
, (3.22)

and

Ti± 1
2
,j,k = 0.001127

kx∆y∆z

∆x

1

B0µ0

, (3.23)

Ti,j± 1
2
,k = 0.001127

ky∆x∆z

∆y

1

B0µ0

, (3.24)

Ti,j,k± 1
2

= 0.001127
kz∆x∆y

∆z

1

B0µ0

. (3.25)

NOTE 1: The terms 0.001127 kx∆y∆z
∆x

1
B0µ0

are the transmissibilities, Ti± 1
2
,j,k,

and are required at the gridblock boundaries. The transmissibility is a measure of

how easy fluid can transfer through the porous medium. The transmissibility is

proportional to geometry and permeability. In fact, the transmissibility links flow

to the pressure difference between two adjacent gridblocks. The reader notes that

all gridblocks assigned properties can vary with respect to heterogeneity in actual

reservoir. For instance, each gridblock may have different thickness or permeability

and porosity. Moreover, the permeability can vary in different directions. Now,

in order to compute transmissibility at gridblock boundaries, we need to utilize

harmonic average between gridblock properties [54].

NOTE 2: The subscribed term ±1
2

refer to interface connection between plus or

minus direction of the grid. The first part of transmissibility term, which is called

geometric transmissibility, is constant. The second term contain fluid properties and

change over time with changes in pressure, thus, this term would be updated in every

time step. Finally, coefficient 0.001127 is conversion factor, translating units to the

field units in petroleum engineering [54].

NOTE 3: In order to compute the properties at the faces , i.e., gridblocks
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boundaries, we first calculate the volumetric average pressure at the grid interface

(interfaces perpendicular to x, y, and z direction). Then, in order to find fluid

properties we use the look up table, that is provided, for formation volume factor

and viscosity u against pressure. In addition, we interpolate to calculate the new

values of FVF and viscosity. One could instead compute everything in the center

of grids and then calculate harmonic average to get the results [54]. Moreover, the

coefficient Ci in accumulation term can be written as follows:

Ci =
φ0cR

Bn+1
i

+
φncf
B0

. (3.26)

Additionally, gravity term has to be included in the LHS by

−→
∇Φ =

−→
∇p− γ

−→
∇Z. (3.27)

Now, taking all of these into account and adding gravity effects, the diffusion equation

becomes

−
(
Ti± 1

2
+ Tj± 1

2
+ Tk± 1

2

)
pn+1
i,j,k

+ Ti± 1
2
pn+1
i±1 + Tj± 1

2
pn+1
j±1 + Tk±1/2pk±1 + · · ·

−
(
Ti± 1

2
γi± 1

2
+ Tj± 1

2
γj± 1

2
+ Tk± 1

2
γk± 1

2

)
Zi,j,k

+ Ti± 1
2
γi± 1

2
Zi±1 + Tj± 1

2
γj± 1

2
Zj±1

+ Tk± 1
2
γk± 1

2
Zk±1 + qi,j,k = RHS. (3.28)

Wherein, for the sake of simplicity we just write the subscripts that change in each
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grid. For the right hand side (RHS) discretization results in following:

(
φ0cR
Bn+1
i

+
φncf
B0

)
Vi

∆t

(
pn+1
i − pni

)
. (3.29)

Term qi,j,k can be pressure or rate control. By using Peaceman equation [8], one can

write

q = Jw
(
p− pwf

)
, (3.30)

where Jw is a productivity index that depends on pressure.

(3.31)

Now, we may apply time discretization to complete the discretization step. We have

choices to evaluate each term, at either time step n or n + 1. This leads to the two

different approach for finding the pressure that will be explained in the next session.

3.4.1 Lagging Coefficient Method

This method simplifies the calculation by assuming all coefficient terms except

pressure are interpreted at time n (not n + 1). Considering this assumption, the

only unknown term in the set of flow equations is pressure at the next time step

(n+ 1) and the pressure solution can be obtained by any linear system solver, such

as Gaussian elimination method or iterative techniques. To illustrate the method, the

flow equation from the previous subsection can be re-written with lagging coefficient

assumption as
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Transmissibility Matrix

−
(
T n
i± 1

2
+ T n

j± 1
2

+ T n
k± 1

2

)
pn+1
i,j,k

+ T n
i± 1

2
pn+1
i±1 + T n

j± 1
2
pn+1
j±1 + T n

k± 1
2
pk±1 + · · ·

−
(
T n
i± 1

2
γn
i± 1

2
+ T n

j± 1
2
γn
j± 1

2
+ T n

k± 1
2
γn
k± 1

2

)
Zi,j,k

+ T n
i± 1

2
γn
i± 1

2
Zi±1 + T n

j± 1
2
γn
j± 1

2
Zj±1

+ T n
k± 1

2
γk± 1

2
Zn
k±1 = RHS. (3.32)

Accumulation Term (
φ0cR
Bn+1
i

+
φncf
B0

)
Vi

∆t

(
pn+1
i − pni

)
. (3.33)

Sink/Source Term

q = Jnw
(
pn+1
i − pwf

)
. (3.34)

(3.35)

The set of equation can be formulated in matrix form as

[
T
]
N×N

[
P n+1
N

]
N×1
−
[
G
]
N×1

[
Z
]

=
[
B
]
N×N

[
P n
]
N×1

+
[
Q
]
N×1

(3.36)

Here, the transmissibility matrix structure is heptadiagonal (7 bands) and is depicted

in figure 3.3. The accumulation matrix, on the other hand, is diagonal. One could

simply check that any change in ordering may results in a changes in the transmis-

sibility matrix.
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0
0
0

0
0
0

lmn

lmn21

2

l + 1

l + 1

lm+ 1

lm+ 1

Figure 3.3: Transmissibility matrix trend for single phase flow.

3.4.2 Fully Implicit Method

This method will evaluate all terms at the n + 1 time level, which means the

system of equations become more complex and cannot be solved directly like the

lagging coefficient method. After discretization, the fully implicit version of the

diffusion equation 3.16 can be stated as follows

R(pn, pn−1, Qn) = Tnpn −An
(
pn − pn−1

)
−Qn = 0. (3.37)

wherein, R(.) is the residual vector and is desired to be zero. T is heptagonal

transmissibility matrix and A is a block diagonal accumulation matrix. Matrix Q

denotes the sink/source terms. All of these matrices depend on p and are updated

at each iteration of every time step. The equation 3.37 is in fact, a nonlinear set

of algebraic equations and could be solved by applying the Newton Raphson (NR)

iteration until the norm of residual term gets close to zero in following equation

Jδ = −R. (3.38)
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where, J is the Jacobian matrix defined by Jij = ∂Ri/∂pj and δi = pn,ki − pn,k−1
i

that k and k+ 1 specify NR iteration step. The eager reader may refer to [24, 8] for

more details on the fully implicit method. The steps of NR method is summarized

in algorithm 4.1 as follows

Algorithm 3.1 Fully Implicit Method, Newton Raphson Iteration

1: Construct Residual matrix [R]
2: Construct Jacobian matrix [J ]
3: Calculate delta matrix by [D] = [J ] − [R]
4: Update new pressure from delta matrix
5: while ‖R‖ ≤ 0.1 do
6: Recalculate matrix [R]

7: end while

To illustrate the algorithm machinery , we write all the matrices for the 1D case.

The generalization to the three dimensional case follow easily from analogy.

T n+1
i− 1

2

(
pn+1
i−1 − pn+1

i

)
+ T n+1

i+ 1
2

(
pn+1
i+1 − pn+1

i

)
+ T n+1

i− 1
2

γn+1
i− 1

2

(
Zi−1 − Zi

)
+ · · ·

+ T n+1
i+ 1

2

γn+1
i+ 1

2

(
Zi+1 − Zi

)
−

(
φ0cR
Bn+1
i

+
φncf
B0

)
Vi

∆t

(
pn+1
i − pni

)
− · · ·

− Gw

Bnµn
(
pn+1
i − pwf

)
= 0 (3.39)
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and from the residual matrix we can compute Jacobian as follows:

δRi

δpn+1
i−1

= T n+1
i− 1

2

+
(
pn+1
i−1 − pn+1

i

)δT n+1
i− 1

2

δpn+1
i−1

+
(
Zi−1 − Zi

)(
T n+1
i− 1

2

γn+1
i− 1

2

δpn+1
i−1

− γn+1
i− 1

2

T n+1
i− 1

2

δpn+1
i−1

)
,

(3.40)

δRi

δpn+1
i+1

= T n+1
i+ 1

2

+
(
pn+1
i+1 − pn+1

i

)δT n+1
i+ 1

2

δpn+1
i+1

+
(
Zi+1 − Zi

)(
T n+1
i+ 1

2

γn+1
i+ 1

2

δpn+1
i+1

− γn+1
i+ 1

2

T n+1
i+ 1

2

δpn+1
i+1

)
,

(3.41)

δRi

δpn+1
i

= −T n+1
i− 1

2

+
(
pn+1
i−1 − pn+1

i

)δT n+1
i− 1

2

δpn+1
i

+
(
pn+1
i+1 − pn+1

i

)δT n+1
i+ 1

2

δpn+1
i

+

−

(
φ0cR
Bn+1
i

+
φncf
B0

)
Vi

∆t
−
(
pn+1
i − pni

) Vi
∆t
crφ

0 δ
(

1
Bn+1

)
δpn+1

i

−Gw/Bµ+

+
(
Zi−1 − Zi

)(
T n+1
i− 1

2

γn+1
i− 1

2

δpn+1
i

− γn+1
i− 1

2

T n+1
i− 1

2

δpn+1
i

)
+

+
(
Zi+1 − Zi

)(
T n+1
i+ 1

2

γn+1
i+ 1

2

δpn+1
i

− γn+1
i+ 1

2

T n+1
i+ 1

2

δpn+1
i

)
. (3.42)

3.5 Numerical Solution to two Phase Flow System

Similarly, as we have done for the case of single-phase flow in previous subsec-

tion, we can generalize the algorithms for two-phase flow system. The general PDE

equation for two-phase flow considering here, oil-water, is

∂
(
φρlSl

)
∂t

+ ql = ∇.
(ρlkrlk

µl

(
∇pl − γl∇Z

))
, l = o, w. (3.43)

Where So + Sw = 1. Here, we ignore capillary pressure defined as (Pc = Po − Pw).

To this end, we are looking for grid’s pressures and saturations of each phase as the

solution in order to account for the flow dynamics into the porous media. We can

transform above equation into the standard condition[8] and to get the following
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equation

∂

∂t

(φSl
Bl

)
+
ql
Bl

= ∇.
(ρlKKrl

µlBl

(
∇pl − γl∇Z

))
. (3.44)

As pointed out before, we need to discretize this equation in space and time.

First we discretize second derivatives in the left hand side using finite difference

approximation(discretization in space) and then discretize first order time derivatives

in the right hand side (discretization in time). This will be shown next.

3.5.1 Space Discretization

For one cell (block-centered method), we can discretize the following in x-direction

like this

∂

∂x

(
kkrl
µlBl

(∂p
∂x

))
=

∂

∂x

(
kkrl
µlBl

pi+ 1
2
,jk − pi− 1

2
,jk

∆x

)
=

1

∆x2

(
kkrl
µlBl

)
i+ 1

2
,jk

(
pi+1,jk − pijk

)
+

1

∆x2

(
kkrl
µlBl

)
i− 1

2
,jk

(
pi−1,jk − pijk

)
. (3.45)

and a similar discretization in y-dimension

∂

∂y

(
kkrl
µlBl

(∂p
∂y

))
=

∂

∂y

(
kkrl
µlBl

pij+ 1
2
k − pij− 1

2
k

∆y

)
=

1

∆y2

(
kkrl
µlBl

)
ij+ 1

2
k

(
pij+1k − pijk

)
+

1

∆y2

(
kkrl
µlBl

)
ij− 1

2
k

(
pij−1k − pijk

)
. (3.46)
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for z-direction gravity term came in

∂

∂z

(
kkrl
µlBl

(∂p
∂z
− γl∆Z

))
=

∂

∂z

(
kkrl
µlBl

(pij,k+ 1
2
− pij,k− 1

2

∆z
− γl∆Z

))
=

1

∆z2

(
kkrl
µlBl

)
ij,k+ 1

2

(
pij,k+1 − pijk

)
+

1

∆y2

(
kkrl
µlBl

)
ij,k− 1

2

(
pij,k−1 − pijk

)
− γl

((kkrl
µlBl

)
ij,k− 1

2

−
(kkrl
µlBl

)
ij,k− 1

2

)
. (3.47)

3.5.2 Discretization in Time

For the left-hand side, we discretize in time to get the following for both oil and

water.

water

∂

∂t

(φSw
Bw

)
= φSw

∂

∂t

( 1

Bw

)
+
Sw
Bw

∂φ

∂t
+

φ

Bw

∂Sw
∂t

=
φSw
Bw

(
cw + cr

)∂p
∂t

+
φ

Bw

∂Sw
∂t

=
φSw
Bw

(
cw + cr

)pn+1
ijk − pnijk

∆t
+

φ

Bw

Sn+1
w,ijk − Snw,ijk

∆t
. (3.48)

oil

∂

∂t

(φSo
Bo

)
=

∂

∂t

( φ
Bo

− φSw
Bo

)
= φ

∂

∂t

( 1

Bo

)
+

1
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Based on volume integration within the cell, ∆V = ∆x∆y∆z, we arrive at the

following for water and oil.

water

φSw∆V

Bw

(
cw + cr

)pn+1
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+
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2
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2
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Now if we define the transmissibility as follows
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2
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and according to Peaceman Equation, we have

ql = WI
(
Pijk − Pwf

)
=

2πkkrl,ijk∆z

µl
(
ln ro

rw
+ s
)(Pijk − Pwf). (3.53)

where ro = 0.14
√

∆x2 + ∆y2. Therefore, the flow equation becomes
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3.5.3 Lagging Coefficient Method

Similarly to the single-phase flow system, this method simplifies the calculation

by assuming all coefficient terms except pressures and saturations are interpreted

at time n (not n + 1). Considering this assumption, the only unknown term in set

of flow equation is pressure and saturation at the next time step (n + 1) and the
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pressure solution can be obtained using preconditioned PCG, GMRES or precondi-

tioned BiCGSTAB. To illustrate the method, the flow equation from the previous

subsection can be re-written with lagging coefficient assumption as

water

(
φnSw

n∆V

Bw
n∆t

(
cw + cr

)
+ T n

w,i± 1
2

+ T n
w,j± 1

2
+ T n

w,k± 1
2

+
WIw

n

Bw
n

)
pn+1
ijk

+
φn∆V

Bw
n∆t

Sn+1
w,ijk − T

n
w,i± 1

2
pn+1
i+1 − T nw,j± 1

2
pn+1
j+1 − T nw,k± 1

2
pk+1

=
WIw

n

Bw
n pwf − γw∆x∆y

(( kknrw
µnwBw

n

)
k+ 1

2

−
( kknrw
µnwBw

n

)
k− 1

2

)
+
φnSw∆V

Bw
n∆t

(
cw + cr

)
pnijk +

φn∆V

Bw
n∆t

Snw,ijk. (3.56)
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3.5.4 Fully Implicit Method

Similarly to the single-phase case, this method evaluates all terms at n+ 1 time

level which means the system of equations become more complex and cannot be

solved directly like the lagging coefficient method.
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oil

Ro(p
n+1, Sn+1

w ) =(
φn+1

(
1− Sn+1

w

)
∆V

Bn+1
o ∆t

(
co + cr

)
+ T n+1

o,i± 1
2

+ T n+1
o,j± 1

2

+ T n+1
o,k± 1

2

+
WIn+1

o

Bn+1
o

)
pn+1
ijk

+
φn+1∆V

Bn+1
o ∆t

Sn+1
w,ijk − T

n+1
o,i± 1

2

pn+1
i+1 − T n+1

o,j± 1
2

pn+1
j+1 − T n+1

o,k± 1
2

pk−1

− WIn+1
o

Bn+1
o

pwf + γo∆x∆y

(( kkn+1
ro

µn+1
o Bn+1

o

)
k+ 1

2

−
( kkn+1

ro

µn+1
o Bn+1

o

)
k− 1

2

)
− φn+1Sn+1

w ∆V

Bn+1
o ∆t

(
co + cr

)
pnijk −

φn+1∆V

Bn+1
o ∆t

Snw,ijk. (3.59)

Similarly to the single-phase case, we can write residual vector as follows

R =
[
RT
o , R

T
w

]T
. (3.60)

thus the Jacobian is as follows

J =
∂R

∂x
=

 ∂Ro
∂po

∂Ro
∂Sw

∂Rw
∂po

∂Rw
∂Sw

 . (3.61)
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wherein, x is system state vector and is defined as x =
(
pTo , S

T
w

)T
. Algorithm 4.2

summarizes the formulation and procedure for two phase flow equation problem.

Algorithm 3.2 Fully Implicit Method, Newton Raphson Iteration–Two Phase

1: Construct Residual vector [R]
2: Construct Jacobian matrix [J ]
3: Solve R = −Jδ . using preconditioned PCG, GMRES or BiCGSTAB
4: Update new pressure from delta matrix
5: while ‖R‖ ≤ 0.1 do
6: Recalculate matrix [R]

7: end while

3.6 Two Phase Flow Reservoir Simulation Example

In this subsection, we provide a simple two phase flow reservoir simulation exam-

ple to show the performance of our in-house reservoir simulator. Considering the two

dimensional (2D) two-phase flow of slightly compressible oil reservoir as depicted in

figure 3.4, the reservoir consists of 15 × 15 grid blocks. The permeability distribu-

tions for a 2D model is shown in figure 3.5. We assume an isotropic heterogeneous

permeability distribution, i.e., Kx = Ky = Kz. There is one producer which is in

operation with a constant bottom-hole pressure (BHP) of 2900 psi and one water

injector which has a constant rate of injection of 300bbl/day. The producer is located

at grid block (15,15) and the injector is at (1, 1). The well radius is 0.35 ft. Oil

viscosity curve is shown in figure 3.6. The reservoir properties are given in the table

3.1.

The following figures are a set of outputs of the developed reservoir simulator,

and consists of reservoir pressure and water saturation distributions (maps) in the

reservoir. These, basically are the reservoir responses to the input in a water flood-
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ing scenario. This information help us to understand better the performance of a

reservoir and more importantly, to predict the future production of a particular de-

velopment scenario. Furthermore, employing such a reservoir simulator could help

to optimize and to implement any production and reservoir management plan by

minimizing the project costs and maximizing oil and/or gas production. It also,

improves the oil recovery enhancement plans which maximize the oil production and

increase the life of a given reservoir.

Pressure and water saturation distribution maps are shown in figures 3.7 and 3.8,

respectively. Water saturation distribution map implies how the saturation of water

change from injector grid to producer gridblock in the course of the waterflooding

period, which is 365 days in this case. Pressure distribution map shows how the pres-

sure of a grid block changes during the simulation and also provide pressure trends

from injector grid to producing well. Oil production rate and total oil production

during the course of simulation are depicted in figures 3.9 and 3.10, respectively.

Once a producing well starts to produce water, this is known as breakthrough. It is

obvious from theses figures that at the beginning of the simulation, oil production

rates increases until it reach its maximum at 300 bbl/day and stay constant until

breakthrough happens; after, pressure decreases until reservoir depletes. Depletion

happens due to drop in average reservoir pressure as a result of oil production. Fig-

ures 3.11 and 3.12 show water production rate and total water production curves.

In fact, these curves indicate breakthrough time and the amount of produced water

during the simulation. Figure 3.13 present the water cut curve which is the ratio

of produced water to the total amount of produced fluids in a producing well. Fi-

nally, figure 3.14 shows injector bottomhole pressure curve. Bottomhole pressure is

the pressure at the downhole that water can be injected into the reservoir. Having

lower bottomhole pressure is of high interest in industry due to the design of surface
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equipment.

From the numerical experiments, it can be seen that changing time step results

in getting different errors which means the larger time step results in the more differ-

ence between lagging coefficient and fully implicit. The lagging coefficient method’s

performance seems to become worse than fully implicit at larger time steps(see Figs.

3.15 and 3.16). This is because of the assumption of evaluating properties at previous

time step n− 1. Therefore, for larger time steps, the old properties have to be used

for a longer time comparing to smaller time steps. However, this difference is not

clearly shown in the visualization by pressure map. Also, from the figures one could

see that wherever (in each grid block) the permeability is low the pressure map stays

high.

Figure 3.4: Reservoir configuration in two phase reservoir simulation example. The
injector is in (1, 1) grid block and the producing well is placed at (15, 15) grid block.
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Table 3.1: Reservoir and fluid properties.

Property Quantity Unit

Model Properties

Simulation Two-phase oil and water N/A

Simulation Time 6× 360 day

Grid blocks 15× 15 ft

Grid block size 10× 10 ft

Reservoir depth 4000 ft

Porosity 0.2 md

Rock compressibility 3.0E − 6 psi−1

Reservoir geometry 2D N/A

Number of injectors 1 N/A

Number of producers 1 N/A

Oil Properties

Viscosity Figure 3.6 cp

Compressibility 3.0E − 6 psi−1

Oil density 62.4 lb
ft3

Water Properties
Viscosity 1 cp

Compressibility 3.0E − 6 psi−1

Water density 62.4 lb
ft3

Initial Conditions
Pressure 3000 psi

Water saturation 0.2 N/A

3.7 Model Reduction Method

In this subsection, we briefly introduce the concept of model reduction and pa-

rameterization applied to the reservoir simulation problem. By proper selection of

input (control) and outputs (measurements), the two-phase flow equations can be

recast into a large (e.g., millions of state variables) nonlinear dynamical system given
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Figure 3.5: Permeability distribution map (configuration) in two-phase reservoir
simulation example. For this example we utilize a heterogeneous permeability dis-
tribution generated by SGSIM.

by  F (ẋ(t),x(t),u(t)) = 0

y(t) = (H(x(t),u(t))
(3.62)

where F is called the state equation, H the output equation, x is a n-dimensional

state vector, u is a b-dimensional input (or control) vector, y in a p-dimensional

output (or measurements) vector, and t represents the time span. In this case, the

control variables and measurements are usually flow rates and bottom-hole pressures

at particular wells. In order to reduce the number of variables and parameters, one

can apply model reduction techniques to 3.62. In this work, projection techniques will

be used [5]. The idea is to construct the projector P = VWT where V,WT ∈ Rn×r

with WTV = Ir, such that the reduced-order model can be obtained by projecting

the state-space equations into a much smaller subspace by
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Figure 3.9: Oil production rates. Comparison between the results of lagging coeffi-
cient, fully implicit and ECLIPSE.

Figure 3.10: Total oil production rates. Comparison between the results of lagging
coefficient, fully implicit and ECLIPSE.
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Figure 3.11: Water production rates. Comparison between the results of lagging
coefficient, fully implicit and ECLIPSE.

Figure 3.12: Total water production rates. Comparison between the results of lagging
coefficient, fully implicit and ECLIPSE.
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Figure 3.13: Water cut curves. Comparison between the results of lagging coefficient,
fully implicit and ECLIPSE.

Figure 3.14: Injection Bottomhole pressure (BHP) curves. Comparison between the
results of lagging coefficient, fully implicit and ECLIPSE.
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Figure 3.15: Fully implicit and lagging coefficient methods relative error to ECLIPSE
curves for BHP in synthetic two-phase reservoir simulation example.

 ẋr(t) = WTFr (Vxr(t),u(t))

y(t) = Hr (Vxr(t),u(t))
(3.63)

where xr ∈ Rr×1. The methodologies in the projection model reduction differ on

how one obtains the projection matrices. Some methods can deal with the nonlinear

system, whereas some can be used directly with the linearized model [5]. One may

also think of projection method, e.g., proper orthogonal decomposition (POD) or

principal component analysis (PCA) [132, 7], for a particular large-scale parameter.

In this case, one can project for instance the permeability field into a much smaller

subspace in a process called parameterization [118]. Model reduction is of highly

interest in many science and engineering fields where the order of original system is
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Figure 3.16: Fully implicit and lagging coefficient methods relative error to ECLIPSE
curves for total oil production in synthetic two-phase reservoir simulation example.

such high that makes it difficult to work with. In fact, model reduction or param-

eterization defined as reducing the dimensionality of original model to a lower one

to make a costly efficient model. In addition, in all history matching problem, in

order to reduce the ill-posedness of the problem, it is necessary to de-correlate the

parameters. Proper orthogonal decomposition (POD) as an optimal transformation

is widely used in parameterization. To obtain the bases for POD, it is necessary to

vectorize the original replicates. Therefore, the higher order statistical information

is lost due to slicing the replicates. Another approach that deals with the replicates

as they are, is high order singular value decomposition (HOSVD).
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3.8 Parameterization

Parameterization techniques have been studied in subsurface modeling since the

1960’s in the form of zonation. In a broad sense, parameterization can be divided into

two main groups: spatial and transform domain [75]. In the spatial case, one aims

at identifying spatial regions (zones) that can be thought as homogeneous pieces

of the subsurface, and this can be assigned a single constant property during the

inversion process. Although it seems logic to find such zones, problems with geologic

discontinuities at the boundary of such regions make the implementation difficult. On

the other hand, transform domain methods, can overcome these issues by means of

introducing geological spatial correlations into the parameterization process. Several

techniques have been developed in recent years [75], including the classical principal

component analysis (PCA/SVD), discrete cosine transform (DCT), and the discrete

wavelet transform (DWT methods. In all of these cases, the objective is to find an

optimal basis selection that can explain the main variability in the parameter fields

in a pre-defined norm. In this dissertation, we will address some of the shortcomings

of the PCA approach.

In the parameterization by PCA/SVD case, one writes the system parameters in

terms of smaller number of parameters using the SVD operator. One of the main

drawbacks of the SVD framework is the fact that both states and the geological

parameters need to be vectorized for the computations of what is known as the

snapshot matrix. This, in turn, leads to the loss of geological continuity when the

parameters are reconstructed for the reservoir model simulation. We will address

this issue by extending the projection framework using HOSVD techniques [2, 65],

defined in the next subsection.

As we discussed before, in order to optimize reservoir production and to provide
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an accurate future production prediction, we need to build a fine detailed reservoir

model. Having such a fine reservoir model results in a nonlinear, complex, and

large-scale system. Solving such a large-scale inverse problem, e.g., history match-

ing, requires a very expensive computational cost. In addition to computational

cost, we note that the efficiency of the solution to the history match problem can be

bounded due to numerical instabilities in solution algorithms. A common approach

to coup with instability and non-uniqueness concerns corresponding to the solution of

reservoir characterization is parameterization. The central idea of parameterization

methods is to reduce the number of unknown model parameters, such as permeability

or porosity, and to pose the inverse problem in a proper formulation by estimating

a less number of unknown model parameters [73, 78, 78, 100, 28, 48, 62, 111, 49].

In other words, field parameters uncertainty can be modeled through two-point geo-

statistics by fewer parameters utilizing parameterization [118]. The main point with

the parameterization method like HOSVD is that its parameters can be tuned con-

tinuously so that the desired underlying geostatistical explanation acquired. This

also can preserve geological realism to some extent while employing adjoint methods

for history matching. Adjoint method is very common approach in solving inverse

problems such as history matching and has been first introduced by Chen et al. [33]

and Chavent et al. [31] for single-phase problems. A number of research studies

have been directed since then, to develop the adjoint models application in inverse

problem for multi-phase reservoir problems such as Datta-Gupta [134], Zhang et al.

[135] and Reynolds et al. [111].

Efficient parameterization while solving a history matching problem allows us

to avoid geostatistical inconsistency in reservoir model parameters specially when

we employ gradient-based techniques to solve inverse problems. As a matter of

fact, field parameters space such as permeability and porosity are of higher order
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dimensionality with highly correlated parameters. Parameterization methods such

as HOSVD generate a map from this high dimensional and highly correlated space

to a uncorrelated space of lower rank. Therefore, any combination of parameters

of the new space produce a permeability field that acquires the underlying two-

point geostatistics. Moreover, these new parameters can be adjusted until a perfect

production match has been reached [118, 135].

Considering the Bayesian inverse modeling, the solution to the history match

problem can be established by integrating prior knowledge obtained from the reser-

voir measurement data prior probability density function, fΘ(θ), probability den-

sity function of reservoir model parameters, fP (p), and the reservoir forward model,

Θ = g(p), in order to obtain model parameters posterior probability density function,

ΠP (p), as follows

ΠP (p) = γfP (p)fΘ(g(p)). (3.64)

wherein, γ is a normalization factor. Although, a very common method to solve this

nonlinear inverse problem is to perform Monte Carlo random search techniques [], in

history matching problem, running forward simulation, e.g., Θ = g(p), is computa-

tionally quite expensive and time consuming. Thus, in this case we usually estimate

its probability distribution function through maximum likelihood method and for

the case that both prior probability density functions are Gaussian the optimization

approach is known as least square method. The reader may note that forward model

also is a function of reservoir model states, i.e., oil pressure and water saturation for

a two-phase reservoir problem, and some control inputs as well. Thus, the general

optimization formulation to solve history matching problem can be stated as follows

minimize
p

J =
(
p̂− p

)T
C−1
M (p̂− p

)
+

N−1∑
i=0

Nw∑
j=1

(
gij(x

i, ui−1, p)− θiobsj
σij

)2

. (3.65)
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where, CM is the parameter covariance matrix. σij is the observation standard devi-

ation and Nw is the number of wells. The optimization process has been performed

subject to reservoir forward model simulation and initial reservoir conditions that

are optimization problem constraints. As stated previously, without a proper param-

eterization method, the solution of inverse problem can be geologically inconsistent

despite of the accuracy of parameter estimation procedure. Therefore, reparameter-

izing reservoir model parameters like field permeability map, not only results in geo-

logically consistent estimated parameters, but also, significantly decrease the number

of unknown reservoir model parameters. The latter advantage of parameterization

implies that employing parameterization allows to solve a smaller size problem in an

uncorrelated space instead of solving the original ill-posed history matching problem

in high dimensional and highly correlated original space.

3.8.1 Efficient Permeability Parameterization Through HOSVD

As mentioned before, the main idea in reservoir model parameter estimation is

to approximate the original high dimensional space of correlated unknown and un-

certain model permeability with one of the lower rank while preserving geological

consistency of the model parameters by capturing the most significant permeability

characteristics [118, 99, 1, 2]. A very common parameterization method for perform-

ing history matching in petroleum engineering is Karhunen Loeve Transform (KLT)

[84, 96]. Although, KLT yields a precise estimation, it is not efficient with respect

to implementation cost. Another classical option to obtain parameterization for his-

tory matching purposes is singular value decomposition (SVD). It has been shown

that SVD and KLT transforms convey similar concept considering the problem of

multivariate statistical analysis and given same approximation of column covariance

matrix [63]. Moreover, considering multivariate stochastic process, the SVD and the
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KLT are computationally equivalent. Implementation of classic SVD requires vec-

torizing input field permeability map and stacking them up into a matrix in order

to perform SVD. This is the other significant drawback with SVD which may result

in losing some important features due to vectorizing and consequently yields a weak

prediction. In fact, vectorizing may lead to a solution that honors observation data

while geologically is inconsistent. This is the main motivation in the present disser-

tation to perform a parameterization that not only provides a geologically consistent

predictions, but also, reduces the cost of implementation. The higher order singu-

lar value decomposition (HOSVD) is the techniques that is employed here in order

to fulfill the objectives of the work. The discrete cosine transform (DCT) is a new

method in performing parameterization for inverse problem in petroleum engineering

and discussed in [76].

In the present work, we utilized transform based image compression idea through

HOSVD approach to perform efficient low dimensional parameterization for history

matching problem in petroleum reservoir simulation field. A linear transformation

defines a map between two vector spaces so that conserves the adding and scalar mul-

tiplication operators [117]. The central idea is to find a orthonormal transformation

between original permeability space and the low dimensionality uncorrelated perme-

ability space. In other words, we would like to represent the original permeability

space by a set of orthonormal bases. This set of bases represents the original space

and can conserve the signal energy while preserves the most important features of

the original space. It also provides a uncorrelated representation of the original space

that has strong energy compaction property [76]. Other interesting property of such

a transform is that one can reconstruct any member of the space using truncated set

of the bases through inverse transform [76, 117]. Therefore, one can characterize the

original space utilizing a low dimensional estimated version of it while keep the most
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important features of the original space.

The reader notes that there is an important difference between the case of image

compression and reservoir parameterization problems. As a matter of fact, in image

compression problem, the original space is a known image that we desire to reduce its

dimensionality by truncating the its bases set for the sake of transmission and storage.

However, it is not the case in general parameterization problem for reservoir history

matching. Since, in history matching problem the original field permeability map

is unknown that we would like to estimate. Thus, instead of reducing the unknown

original space, we apply HOSVD analysis to a set of a known prior permeability

maps called training set, in order to find a set of bases that could convey the most

important features of the original space. It is believed that this training set may

share important characteristics with the unknown permeability field. The idea is to

estimate the unknown permeability by utilizing a truncated version of the training

set bases [118, 99, 1, 2].

3.9 History Matching Through EnKF

In real reservoir simulation problems the actual permeability or porosity maps are

unknown. In order to make the reservoir model more accurate, it is of high interest

to provide a reliable estimation of these system parameters. In other words, having a

reliable and accurate model requires a well understanding of reservoir rock flow prop-

erties. Therefore, in a reservoir simulation problem, in addition to parameterization

to reduce the dimensionality of the system, one needs to estimate unknown reservoir

parameters such as petrophysical properties including permeability and porosity as

well. In this section, we introduce a well-known parameter estimation method in the

petroleum industry, known as the ensemble Kalman filter (EnKF)[105, 59, 58].

Predicting reservoir geological properties like permeability and porosity especially
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in a heterogeneous rock flow environment is referred to as reservoir characterization.

The task in reservoir parameter inference is to estimate millions of unknown ge-

ological and petrophysical properties using few and sparse measurements data in

hand that resulted in a highly nonlinear and ill-posed inverse problem due to the

underdetermined nature of the problem. As a matter of fact, in a reservoir charac-

terization problem the goal is to identify reservoir parameters knowing the reservoir

states and outputs such as reservoir production history including oil and water pro-

duction rates and bottomhole pressure at injectors. Thus, it is an identification or

inverse problem, as it is known in reservoir simulation studies, at which the number

of unknowns are bigger than the number of measurements by order of magnitudes

that makes the problem highly underdetermined and nonlinear[116, 72, 98]. In ad-

dition, the ill-posedness nature of reservoir characterization problem leads to many

different solutions that all express system properties and behavior accurately while

providing dissimilar future reservoir production forecast. This section describes the

EnKF method in detail starting with classic Kalman filter definition and proceed-

ing to the fundamentals of EnKF as well as stating history matching, i.e., reservoir

characterization, problem and application of EnKF in reservoir parameter inference.

[74, 105, 59, 26, 27]

3.9.1 The Classic Kalman Filter

The Kalman filter estimates important parameters of a given system utilizing

noisy observations or measurements in a recursive manner in order to treat measure-

ments real time and as they are available [83, 29, 82]. In general, for a Gaussian

noise, the Kalman filter minimizes the difference between estimated parameter and

its actual value in a least square criterion known as minimum mean square error

(MMSE).
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For any linear stochastic process, the state-space modeling process is described

as follows

x(n) = A(n− 1)x(n− 1) + B(n− 1)u(n− 1) + w(n− 1), (3.66)

y(n− 1) = C(n− 1)x(n− 1) + v(n− 1). (3.67)

wherein, xn represents state vector of the system at current time step, un is the

current control input vector, yn−1 is the modeling process or the observation vector,

A(n − 1) is the state transition matrix, and B(n − 1) and C(n − 1) are input and

output (observation model) matrices respectively. Also, w(n − 1) and v(n − 1) are

assumed to be uncorrelated Gaussian white noise processes (zero mean) known as

process and observation noises respectively which imply the following properties with

the linear system assumption

E[x0] = 0, (3.68)

cov
(
vn, x0

)
= cov

(
wn, x0

)
= 0, (3.69)

cov
(
x0, x0

)
= Π0. (3.70)

Also, the correlation matrix for vector Nn =

v(n)

w(n)

 is defined as follow considering

the fact that vn and wn processes are uncorrelated

cov
(
Nn, Nn

)
=

V δij 0

0 Wδij

 (3.71)

Thus, the problem is to estimate system states given initial state and covariance

matrix employing the Kalman filter in an optimum manner. The Kalman filter
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provides state estimation as well as state error covariance estimation. In other words,

the Kalman filter estimates posterior density of states, i.e., x̂(n|n− 1), and the error

covariance matrix posterior density, i.e., Π(n|n−1), given all previous measurements

including the current one through a recursive process by minimizing the Bayesian

least square loss function [74, 82]. Following are the integrated update steps for the

Kalman filter procedure

x̂(n+ 1|n+ 1) = x̂(n+ 1|n) + K(n+ 1)Y (n+ 1), (3.72)

Π(n+ 1|n+ 1) = Π(n+ 1|n)−K(n+ 1)M(n+ 1)KT (n+ 1). (3.73)

wherein K(n+ 1) is the Kalman filter gain, Π(n+ 1|n+ 1) is the updating step for

state covariance matrix, and Y (n+ 1) is the updated measurement error. Algorithm

3.3 summarizes all steps within the process.

In order to utilize standard Kalman filter, the problem requires to honor three

important condition. First, Kalman filter is well defined for linear systems. Second,

it is assumed that all states and parameters of system have Gaussian probability

distribution, i.e., are Gaussian stochastic process. And the last important assump-

tion in stating a problem in the Kalman filter formulation is that the covariance

function of error is known so the Gaussian process can be simply expressed by a

mean and covariance matrix. However, as discussed before, this is not the case in

reservoir parameterization and history matching problem. First of all, inverse prob-

lem is highly nonlinear with high dimensionality which means that it can not be

stated by the standard Kalman filter formulation since the relation between states

of system and input and output of the system are not linear anymore and nonlinear

functions relate states of the system as well as its input and outputs. Furthermore,

the large-scale nature of inverse problem leads to estimate a very large covariance
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matrix which is computationally too expensive. For the second one, in real reservoir

characterization problem, probability field permeability maps are usually not from a

Gaussian distribution while the main assumption in the Kalman filter is that states

and parameters are Gaussian process. Therefore, we need to restate the standard

Kalman filter formulation in a way to consider the stated conditions. This leads us

to employ the ensemble Kalman filter (EnKF) [74].

Algorithm 3.3 The Classic Kalman Filter

1: Input: x̂(n|n), u(n), Π(n|n− 1)
2: Output: x̂(n+ 1|n+ 1), Π(n+ 1|n+ 1)
3: procedure State Estimation
4: Time update
5: x̂(n+ 1|n) = A(n)x̂(n|n) + B(n)u(n) . state prediction
6: ŷ(n+ 1|n) = H(n)x̂(n+ 1|n) . measurement prediction
7: Measurement update
8: Y (n+ 1) = y(n+ 1)− ŷ(n+ 1|n) . measurement residual
9: x̂(n+ 1|n+ 1) = x̂(n+ 1|n) + K(n+ 1)Y (n+ 1) . updated state

10: end procedure
11: procedure State Covariance Estimation
12: Π(n+ 1|n) = A(n)Π(n|n)AT (n) + V(n) . state prediction covariance
13: M(n+ 1) = C(n+ 1)Π(n+ 1|n)CT (n+ 1) + W(n+ 1) . measurement
14: prediction covariance
15: wherein,
16: K(n+ 1) = Π(n+ 1|n)CT (n+ 1)M−1(n+ 1) . Kalman gain
17: Π(n+ 1|n+ 1) = Πe(n+ 1|n)−K(n+ 1)M(n+ 1)KT (n+ 1)

18: end procedure

3.9.2 The Ensemble Kalman Filter (EnKF)

The ensemble Kalman filter (EnKF) is a recursive Monte Carlo method that has

been proposed and utilized for solving petroleum reservoir characterization problems

which was established by Lorentzen et al study in 2001. Since then, it has been
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developed and modified for applications in high dimensional reservoir assisted history

matching by Evensen et al and Aanonsen et al. works [55], [56], [57], [102], and [114].

As mentioned before, the ensemble Kalman filter is an adjusted version of the

classic Kalman filter and is a suitable tool for large scale, nonlinear geophysical

problems at which the covariance matrix is unknown and so approximated by sam-

ple covariance matrix instead [124, 92, 53]. Technically speaking, the EnKF employs

Bayesian update in order to estimate a covariance matrix, which is replaced by a

sample covariance calculated from the ensembles, while integrating new observations

given the joint distribution of the reservoir states, geological/prior knowledge of the

system, including pressure and saturation, and the data likelihood. There are sev-

eral classical techniques to tackle the data assimilation problem such as conjugate

gradient or quasi-Newton method for the optimization step. There are also sev-

eral different methods to calculate the gradient of the squared data misfit function,

i.e., cost function of inverse problem optimization, including adjoint and sensitivity

equations. Moreover, few other options for approximating the Hessian matrix like

Broyden-Fletcher-Goldfarb-Shanno (LBFGS)[95, 94]. One should take this point into

account that using gradients are not feasible, i.e., too expensive implementation, for

high dimensional problems, e.g., predicting reservoir petro-physical properties such

as permeability or porosity. Thus, an important advantage of EnKF, comparing to

other optimization schemes, is that this method does not involve adjoint gradients of

objective function, which actually is the difference between observed and estimated

data, in its update step [93], and [97].

As a matter of fact, the EnKF approximates each member of ensemble inde-

pendently simply by updating mean and covariance of the joint probability density

function (pdf) of reservoir states and data likelihood stated beforehand. Finally, the

posterior joint pdf will be empirically approximated utilizing new updated ensem-
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ble [50, 74, 79]. We have to underscore significant assumptions for implementing

EnKF as follows: (1) prior joint pdf must have multivariate Gaussian probability

distribution, otherwise EnKF does not yield an accurate estimate of geological prop-

erties in hand for the reservoir; (2) EnKF presumes linearity in the system, thus

reservoir system equations, including states, parameters and observations, have to

be linearly posed in order to get EnKF well performed. Therefore, assuming lin-

earity and having Gaussian distribution are the essential conditions in performing

EnKF to obtain results that are geologically consistence with the geological prior

knowledge from the reservoir. In other words, these conditions entail an adjustment

in standard EnKF formulation if one wants to apply EnKF to non-Gaussian systems

as well. Eager reader can refer to [102] to find various approaches proposed for com-

mon non-Gaussian reservoir models. One can estimate reservoir parameters such

as permeability and porosity by matching the production data through the EnKF

optimization involving a two stages procedure referred to as forecast and update.

As discussed previously, the EnKF replaces state pdf covariance matrix by sample

covariance matrix or simply by an ensemble of members ,X i =
(
xi1, x

i
2, · · · , xiN

)
that

generates samples from a prior distribution. That is to say that the central idea of the

EnKF is to propagate an ensemble of initial guesses, of the reservoir model param-

eters, in time in order to integrate observation data and to employ statistics of the

model parameters at each iteration level for updating the model covariance matrix.

These ensemble members can be generated by stacking the rock/flow properties in

each gridblock and production data up to a state vector called reservoir model state

vector and denoted by xij [95, 94, 74, 102]. The EnKF algorithm contains two steps.

The first step is to run reservoir forward simulation in order to construct forward

forecast. Reservoir states and production data are replaced in the predicted state

vector in the first step. The second step in the EnKF methodology is to update the
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model through adjusting ensemble members in order to honor measurement data.

One could simply write the following for a nonlinear stochastic process and for

all i = 1, 2, ·, N

xi(n+ 1|n) = fn

(
xi(n|n), α(n), wi(n)

)
, (3.74)

yi(n+ 1|n) = gn

(
xi(n+ 1|n)

)
+ vi(n+ 1). (3.75)

wherein α(n) is time dependent control variables, wi(n) and vi(n + 1) are ith state

and observation errors at current time step, and nonlinear functions fn and gn are

state and observation transition functions as well. Again, in a similar fashion to the

classic Kalman filter, the EnKF utilizes predicted ensemble to estimate mean and

covariance through a least square optimization step for each sample of ensemble.

The update equations in the EnKF are established as follows

x̂i(n+ 1|n+ 1) = x̂i(n+ 1|n) + Ke(n+ 1)Y i(n+ 1), (3.76)

where the Kalman gain is

Ke(n+ 1) = Πe(n+ 1|n)CT (n+ 1)M−1(n+ 1) (3.77)

Πe(n+ 1|n+ 1) = Πe(n+ 1|n)−Ke(n+ 1)M(n+ 1)KeT (n+ 1). (3.78)

Employing update equation in 3.76 and given the initial guess for the ensemble of

states, one can easily perform the EnKF for a nonlinear large scale problem such

as reservoir permeability of porosity estimation. Algorithm 3.4 summarizes all steps

within the process. Section 5 explains the process of permeability characterization

and provides with a real field reservoir example to show the performance of the EnkF
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along with HOSVD parameterization for predicting reservoir permeability. Eager

readers can refer to [74, 105, 82] for more details on the EnKF and its implementation

process.

Algorithm 3.4 The Ensemble Kalman Filter (EnKF)

1: Input: ensemble of samples X̂ i

2: Output: X̂ i, Πe(n+ 1|n+ 1)
3: procedure State Estimation
4: x̂i(n+ 1|n+ 1) = x̂i(n+ 1|n) + Ke(n+ 1)Y i(n+ 1)
5: Ke(n+ 1) = Πe(n+ 1|n)CT (n+ 1)M−1(n+ 1)
6: Πe(n+ 1|n+ 1) = Πe(n+ 1|n)−Ke(n+ 1)M(n+ 1)KeT (n+ 1)
7: wherein,
8: M(n+ 1) = C(n+ 1)Π(n+ 1|n)CT (n+ 1) + W(n+ 1) . measurement
9: prediction covariance

10: end procedure
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4. EFFICIENT GEOLOGY PRESERVING RESERVOIR

PARAMETERIZATION USING HIGHER ORDER SINGULAR VALUE

DECOMPOSITION (HOSVD)∗

Parameter estimation through reduced-order modeling plays a pivotal role in de-

signing real-time optimization schemes for the Oil and Gas upstream sector through

the closed-loop reservoir management framework. Reservoir models are in general

complex, nonlinear, and large-scale, i.e., large number of states and unknown pa-

rameters. Thus, having a practical approach to reduce the number of reservoir

parameters in order to reconstruct the reservoir model with a lower dimensional-

ity is of high interest. Furthermore, de-correlating system parameters in all history

matching and reservoir characterization problems keeping the geological description

intact is paramount to control the ill-posedness of the system. As mentioned in

the previous sections, in this section we will introduce the advantages of a new pa-

rameterization method utilizing higher order singular value decomposition (HOSVD)

which is not only computationally more efficient than other known dimensionality

reduction methods such as, SVD and DCT, but also provides a consistent model in

terms of reservoir geology. HOSVD power is due to its ability to supply a reliable

low-dimensional reconstructed model while keeping higher order statistical informa-

tion and geological characteristics of reservoir model. In order to understand the

capabilities of HOSVD and to compare it to other common parameterization meth-

ods such as SVD, we generated three different sets of experiments. In the first set,

∗Part of the material is published with permission from “Permeability parametrization using
higher order singular value decomposition (hosvd),” S.Afra, E. Gildin, 2013, International Con-
ference on Machine Learning and Applications (ICMLA’13), Copyright 2013 by IEEE. Also from
“Heterogeneous reservoir characterization using efficient parameterization through higher order svd
(hosvd).,” S.Afra, E. Gildin, 2014, American Control Conference (ACC’14), Copyright 2014 by
IEEE.
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dimensionality of a known field permeability maps is reduced using HOSVD image

compression idea. Then, we show promising power of HOSVD to estimate and con-

struct unknown permeability maps is investigated and results of both parts compared

to those of classic SVD. In the second set of experiments, we utilize higher order sin-

gular value decomposition (HOSVD) to reparameterize reservoir permeability and

perform several forward reservoir simulations by the resulted reduced order map as

an input. To acquire statistical consistency we repeat all experiments for a set of 1000

samples using both HOSVD and Proper orthogonal decomposition (POD). The third

experiments describes the results of applying this novel parameterization method to

the SPE10 benchmark reservoir model to show its promising parameterization per-

formance. Furthermore, to acquire statistical consistency we repeat all experiments

for a set of 1000 samples using both HOSVD and classic SVD (PCA) and provide

RMSE analysis for a better understanding in process of comparing HOSVD and SVD

in the last two sets of experiments.

4.1 Introduction

The development of accurate and fast computational environments for model-

ing transport and flow in heterogeneous porous media is a problem of national and

global interest. This can be readily recognized as important applications involving

heterogeneous media arises in energy related environments, e.g, Oil & Gas reservoir

simulations and management, CO2 sequestration and storage, and weather predic-

tion and air quality management [8, 67, 36]. However, the prediction of fluid flow

through heterogeneous porous media is a daunting task to be performed with great

confidence because, although fluid properties can be determined with reasonable ac-

curacy, the dynamics of the flow is mostly driven by poorly known rock properties,

such as porosity, permeability and relative permeability [77, 8]. In this case, con-
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fidence in its behavior is only attained, typically, by repeated experience (forward

simulations) covering the entire spectrum of the uncertain parameter spaces in a pro-

cess called uncertainty quantification, or by means of conditioning reservoir model to

new information obtained from measured data streamed out of the field in a process

called history matching. In fact, the process of adapting geological properties to

fit the production data has its roots in the larger umbrella of parameter estimation

[104].

The central issue in history matching is, thus, how to construct a reservoir model

to predict accurate future reservoir production utilizing observation data. Several

parameters describe a reservoir model which each of those parameters may convey

a huge amount of data. Some parameters are specified per grid block like perme-

ability and porosity and others for the entire model or a particular layer such as

relative permeability and capillary pressure. History matching is a highly under-

determined, nonlinear and ill-posed problem owing to insufficiency and complexity

of observed data from reservoir[104]. This means there is a possibility of obtain-

ing reservoir models that fulfill observed measurements but then provide incorrect

predictions. This is mainly due to the fact that high fidelity reservoir models come

from the discretization of the underlying partial differential equations related to fluid

flow in heterogeneous media, which can lead to models of millions of gridblocks, and

therefore millions of parameters (permeability, porosity) and states variables (pres-

sure, saturations)[67, 51]. Many workflows in uncertainty quantification and history

matching rely on massive computations, and the availability of computing resources is

still seen as a limiting factor. Considering that large-scale computer-based simulation

provided the only feasible method for producing quantitative predictive information

about complex behavior, novel ways to reduce the computational burden related to

simulations need to be developed.
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In reservoir management, the problems that one faces in controlling petroleum

systems are more complex in the sense that one deals with highly non-linear and

uncertain models, which are described mathematically, by large-scale dynamical sys-

tems - fine scale discretization are very often needed, and massive computational

machinery are required for simulation and optimization. Furthermore, porous media

properties such as conductivity or permeability contains many small scales and un-

certainties. For example, in fractured media, the small scales can be much smaller

compared to the field scales. For this reason, it is computationally expensive to

solve forward problems directly, and, in particular, it is prohibitively expensive to

solve many such forward problems as in the case of uncertainty quantification and

controller design. Owing to recent achievements in reservoir engineering, simulating

petroleum reservoirs and reservoir management are getting more efficient in terms of

running time, accuracy, and using leading edge methods such as high performance

computing, than since it began in mid-1950’s [107].

A challenging problem in reservoir engineering is to estimate petrophysical prop-

erties of a reservoir such as permeability and porosity, by means of its production

history in a process called inverse modeling. Having precise predictive reservoir model

is of high importance for predicting future production profile of reservoir. The main

idea is to optimize reservoir production (e.g., hydrocarbons) by delaying water pro-

duction and minimizing fluid injection during the reservoir life-cycle. This can be

accomplished by setting up a model-based optimization and parameter estimators

for proper account of uncertainties. Thus, providing a powerful reservoir character-

ization method significantly impact the amount of hydrocarbons extracted and, in

turn, the volume of global reserves by increasing the recovery factor of conventional

reservoirs by only a small fraction.

Although, having a reliable and accurate reservoir model is highly tied to provid-
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ing a fine detailed representation of the reservoir, the high resolution model results

in a large scale inverse problem both in the parameter space (permeability, porosity)

and state-space (pressures, saturations). Therefore, it is of great importance to char-

acterize and reduce the complexity of the model in order to acquire efficiency with

respect to computational time and cost. Also, it is beneficial to perform geologically

consistent reservoir parameter adjustments as data is being assimilated in the history

matching process. This is a daunting task to be performed as one is bounded by the

number of data points, i.e., measurements, and very often the inverse problem has

more unknowns that can uniquely be estimated from the available data. To this end,

having a practical approach to reduce the number of reservoir parameters in order

to reconstruct the reservoir model with a lower dimensionality is of high interest.

A number of studies have been conducted to reduce computational efforts in

reservoir simulation and history matching [52, 51, 22, 1, 129] as well as reservoir

characterization through integrated parameterization [99, 65]. The methodologies

basically worked in two fronts: reducing the number of states using model reduction

techniques, and reducing the number of unknown parameters in a process known as

parameterization [119, 75]. Among all of these methods, a common approach that is

applied to history matching is proper orthogonal decomposition (POD) [132, 64, 66],

which in different areas, is also known as principal component analysis (PCA) and

Karhunen- Loève Decomposition (KL). In the standard PCA (POD), it is necessary

to carry out an eigen-decomposition of the random field covariance matrix which is

expensive for large models. Furthermore due to the vectorization of the snapshots

data in the POD computation, many features may be lost in the reduced space

[11, 86, 90].

Here, we introduce the multi-linear algebra based approach, namely the high-

order singular valued decomposition (HOSVD) [86, 90, 130, 2], to reduce dimension-
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ality representation of reservoir properties, such as permeability, taking into account

an ensemble of models. We treat property ensembles as a high-dimensional tensor,

and by means of tensor algebra (HOSVD) we show that the reduced models pre-

serve better geometric features keeping them more intact during the reduced basis

computations. This is of great importance in the case of reservoirs as the properties

in consideration have geological meaning. In other words, HOSVD has the ability

to reduce the size of the model and reconstruct it accurately while keeping higher

order statistical information and geological characteristics of the reservoir model. As

a matter of fact, other parameterization algorithms need to vectorize original repli-

cates in order to obtain basis in process of dimensionality reduction which results

in losing geological consistency. In HOSVD, we take the snapshots in a 2D or 3D

approach and stack them up in a tensor form, i.e. a multi-way array in multilin-

ear algebra, which leads to performing tensor decomposition as a way to obtain the

new reduced basis. Eager reader could refer to authors’ other published work on

integrating HOSVD based parameterization into history matching process [65].

This section is organized as follows. In subsections 4.2 and 4.3, we briefly re-

state the reservoir simulation framework and show how permeability is taken into

account the the porous media flow. Sections 4.4 and 4.5 describe permeability field

parameterization and dimensionality reduction using HOSVD used in the present

work as well as the simulation results of forward reservoir simulation based on the

obtained geostatistical permeability realization through HOSVD parameterization

are presented. We also apply this novel parameterization method to a reservoir en-

gineering benchmark model known as SPE 10. In subsection 4.6, we discuss the

running time of all simulation results and then finally subsection 4.7 provides several

conclusion remarks.
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4.2 The Reservoir Simulation Problem Restatement

Many existing flow and transport models in porous media can be described by a

set of partial differential equations representing conservation of mass, momentum and

energy as a function of pressure and temperature, and reconciled by the equations

of state [8]. For the case of two-phase flow systems (oil-water), the mass balance

equation for each phase is

∇ · (ρlvl) +
∂ (ρlφSl)

∂t
− ρlql = 0, l ∈ {o, w} , (4.1)

where ρl is the fluid phase density, vl is the fluid phase superficial velocity, t is time,

∇· denotes the divergence operator, φ is the porosity, Sl is fluid phase saturation,

ql is flow rate per unit volume and finally l ∈ {o, w} represents the oil and water

phases, respectively. Applying the empirical Darcy’s law, one can write

vl = −krl
µl

K (∇pl − ρlg∇h) , (4.2)

where ∇ is the gradient operator, K is the permeability tensor, µl fluid phase vis-

cosity, krl the relative permeability of each phase (which is a function of water satu-

ration) , pl is the phase pressure, g is the constant of gravity acceleration and finally

h is the depth of the reservoir.

We can consider the mass balance equation for each phase by plugging Eq. 4.2

into Eq. 4.1. This yields two equations in four unknowns: (pw, po, Sw, So). Thus,

two additional equations are required to complete the system description. These

equations are given by a closure equation which states that the sum of all fractional

saturations must always be equal to one (since the saturations are the volumetric

fractions occupied by each phase), and the oil-water capillary pressure equation,
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which gives a relation between phase pressures as function of water saturation. They

are respectively:

Sw + So = 1, (4.3)

po − pw = pc(Sw) (4.4)

Since the unknowns are not independent, we can formulated the two-phase flow

equations in terms of two state variables: po, the oil pressure, and Sw the water

saturation. yielding

−∇ ·
{
ρwkrw
µw

K

[(
∇po −

∂pc
∂Sw
∇Sw

)
− ρwg∇h

]}
+

ρwφ

[
Sw (cw + cr)

∂po
∂t

+
∂Sw
∂t

]
− ρwqw = 0,

−∇ ·
[
ρokro
µo

K (∇po − ρog∇h)

]
(4.5)

ρoφ

[
(1− Sw) (co + cr)

∂po
∂t
− ∂Sw

∂t

]
− ρoqo = 0

As can be seen from Eq. 4.5, multi-phase flow through porous media is given by a

set of weakly-nonlinear parabolic PDE’s that represents the rate of change of pres-

sure (diffusion) coupled with a set of strongly-nonlinear parabolic - hyperbolic PDE’s

which describe the rate of change in phase saturations and component concentrations

(diffusion-convection). The main idea of reservoir simulation is then to compute the

dynamics of the fluids inside the reservoir, given boundary conditions and well con-

straints, such as hydrocarbon production rates, maximum/minimum well pressures,

to name as few.

Applying spatial discretization results in a set of nonlinear ordinary differential

equations with high dimensionality. The type of spatial discretization scheme used is
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important in developing good models. In the oil industry, it is customary to discretize

the pressure and the transport (saturation) equations by means of the finite volumes

method using upstream weighting. One of the reasons is that they yield locally

conservative schemes [36].

After discretization in space and time, each grid block is related to two states

of the reservoir, that is oil pressures and water saturations. Given the fine details

of the dynamics, millions of gridblocks are necessary to describe with accuracy the

flow in the porous media. This in turn, leads to large-scale systems both in the

parameter space (permeability, porosity) and state-space (pressures, saturations).

Two of the primary variables related to the fluid dynamics in porous media are

the porosity, φ, and permeability, K. The porosity accounts for the amount of

void spaces in the porous media that can store the hydrocarbon fluids. On the

other hand, if the void spaces are not connected, the fluid cannot be moved from

one region to the other. In other words, permeability accounts for how easier is to

transfer fluid inside the reservoir. So it is of great importance to characterize correctly

the permeability of the reservoir. As pointed out before, due to the large number

of gridblocks used in the discretization process, permeability can have millions of

variables in its representation. Model reduction or parameterization is a necessary

step in devising fast and accurate reservoir simulation models.

4.3 Permeability Field Parameterization

As pointed out in the previous sections, the reduction in the number of gridblocks

in the description of permeability information is of central importance in reservoir

simulation. Indeed, model reduction in this case can be achieved by parameteriz-

ing the permeability field or transforming it to a lower dimensional space as if the

permeability parameterization is treated as an image compression problem.
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A map from space of correlated variables into an uncorrelated space of lower di-

mension is known as multilinear analysis. Generally speaking, working with uncorre-

lated space of lower rank is often easier than the original one. For image compression

purposes, multilinear techniques are applied to a single known image and the com-

pressed form of image obtained by truncating basis in the lower dimension space. A

significant task in image processing procedures is preserving important features of

image along with keeping best basis and achieving an efficient compression ratio.

In history matching and reservoir characterization problems, the input perme-

ability image is unknown and has to be estimated through history matching process.

Hence, finding a set of basis is impossible. In the present work with the assumption

of two-point geostatistics, the unknown permeability field is a random sample from

a multivariate Gaussian distribution defined by a variogram or covariance function.

A variogram or covariance function define the underlying geological continuity in the

formation. Attaining realistic basis function from a large finite number of samples

that are drawn from a specific high dimensional Gaussian distribution is very likely.

These basis geologically describes unknown permeability field.

Here, we apply HOSVD-ALS first for dimensionality reduction and then for es-

timating an unknown permeability map to investigate the ability of HOSVD-ALS

for supplying a low-dimensional practical and reliable estimated permeability map

in a geological sense and how much this estimated model is appropriate for history

matching.

4.4 Experiment A: Permeability Parameterization Using HOSVD

For the first example, two different experiments have been conducted in order to

show the ability of HOSVD-ALS, first as a method to compress known permeability

maps, and second as an approach to estimate unknown maps using basis obtained
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from a training set of permeability samples. In the present work, we used an ensemble

of 500 permeability realizations as our training set.

A two-point geostatistical simulation algorithm called Sequential Gaussian Sim-

ulation (sgsim) [47] is utilized to generate 1000 permeability realizations. A specific

variogram model properties is also used to represent the geological structure. Each

realization contains 45 × 45 grid blocks. To run simulations, the first 500 samples

are considered as training set of known permeability maps and all other samples

constructed the unknown test set used for permeability field estimation.

4.4.1 Dimensionality Reduction

We performed HOSVD-ALS for the first 500 permeability replicates as training

set to find basis function employed to reduce the dimension of original images for

compression purposes. First, HOSVD-ALS is utilized to provide truncated basis ma-

trices and coefficient core tensor. Based on the HOSVD-ALS approach, the reduction

procedure requires the selection of basis which express the map with higher accuracy.

Here, we perform three different setups. In the first one, we choose k = 70 and found

the best (25, 25, 140)−rank representation of original tensor. In the second setup

we decrease the order of tensor’s third mode from 140 to 70. Eventually, for the

last simulation we run HOSVD to find the best (45, 45, 70)−rank approximation and

again fixed k at 70. Kronecker product is performed in all simulations to compute

required coefficients for reconstruction part. Utilizing truncated basis results in a

compressed reconstructed version of known permeability maps (3 arbitrary samples

drawn from training set). In these experiments, for regular PCA, we first vectorized

each sample and then stacked all the vectorized training samples into a matrix.

Figure 4.1 shows that HOSVD not only outperforms PCA in the measure of

RMSE, but also overcome it in perceptual sense. Moreover, the capability of reduc-
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ing rank in all modes is assisting HOSVD to become more efficient than PCA in

the manner of memory and computational costs as well. Although, RMSE increases

while the number of basis decreases, it is obvious from Fig. 4.2 that HOSVD still has

perceptually better performance and quality in comparison to PCA. Figure 4.3 shows

the results for the similar setup in both methods. As expected, in the same simula-

tion setup PCA functions exactly as same as HOSVD which leads to equal RMSE.

Therefore, it is evident from the results that HOSVD-ALS has a promising power to

compress an image while preserving geological features along with spacial character-

istics of permeability maps. Even with small number of significant coefficients large

scale features, low and high permeability regions are preserved in reconstructed repli-

cates compared to the true permeability maps. In addition to preserving the most

important features, the low computational cost is the other significant capability of

HOSVD. In fact, in the real reservoir parameterization problems which the system

is of order of million, low computational cost and the ability to reduce to a lower

rank become important.

4.4.2 Unknown Permeability Field Estimation

Thus far, we investigated the compression power of HOSVD-ALS and showed

comparisons between its results and regular POD. Having reliable compression power

is a required necessity for a useful compression method in history matching. However,

it is not sufficient since, as it was mentioned previously, the permeability image in

reservoir history matching problem is unknown.

The other important characteristic of a useful compression method for reservoir

history matching is capability of the basis to reconstruct an unknown image with

optimum coefficients. Moreover, in the present experiments, basis are obtained using

prior knowledge of reservoir permeability. In other words, we use a set of training
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samples to compute required set of basis that is necessary for reconstruction and

estimation part. In the second set of experiments, we employ HOSVD-ALS and

regular POD to estimate unknown permeability samples using basis obtained from

prior knowledge (training set).

The coefficients required for reconstructing unknown permeability maps are es-

timated utilizing the truncated basis computed by applying the HOSVD-ALS or

regular PCA methods to the training ensemble of permeability replicates. There-

fore, using the basis from the reduced dimension space we could do both estimation

and dimensionality reduction of the unknown permeability maps at the same time.

In this work, we set k to 300 in PCA and found the best (15, 15, 500)−rank. Results

of HOSVD-ALS are compared to those of regular PCA (see Fig. 4.4). Again, here the

advantage of lower compression rate along with a better performance is evident. As

mentioned before, we repeated experiment for all samples to validate our results and

corresponding RMSE PDFs are discussed in authors’ other submitted work. Here,

we only presented randomly selected samples to compare the results.

4.5 Experiment B: Heterogeneous Reservoir Forward Simulation using Efficient

Parameterization through HOSVD

Having a reliable compression method is paramount in history matching. How-

ever, it is not sufficient since, as it was mentioned previously, the permeability image

in reservoir history matching problem is unknown. The other important characteris-

tic of a useful compression method for reservoir history matching is the capability of

the basis to reconstruct an unknown image with optimum coefficients. In the present

experiments, the basis are obtained using prior knowledge of the reservoir perme-

ability. In other words, we use a set of training samples to compute the required set

of basis that is necessary for reconstruction and estimation. Using the basis from
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Figure 4.1: Compressed permeability of 3 samples using HOSVD and PCA and
corresponding RMSEs for k = 70 for PCA. The rank of reduced space using HOSVD
is 25× 25× 140.
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Figure 4.2: Compressed permeability of 3 samples using HOSVD and PCA and
corresponding RMSEs for k = 70. The rank of reduced space using HOSVD is
25× 25× 70.
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Figure 4.3: Compressed permeability of 3 samples and corresponding RMSEs for
k = 70.
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Figure 4.4: Estimated unknown 3 different permeability samples using HOSVD and
PCA and corresponding RMSEs for k = 300. The rank of reduced space is 15×15×
500.
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the reduced dimension space allow us to do both estimation and dimensionality re-

duction of the unknown permeability maps at the same time. Here, we repeated

the experiments for all samples to validate our results and the corresponding RMSE

PDFs are discussed next. Furthermore, an appropriate permeability parameteriza-

tion and compression method not only has to yield consistent permeability maps

but also should result in the similar response of the highly nonlinear and complex

reservoir system.

4.5.1 Statistical Analysis

Two different sets of experiments have been conducted in order to demonstrate

the ability of HOSVD-ALS as a parameterization method to reduce the dimension-

ality of the original permeability map and to show the capability of the obtained

reduced map to reproduce similar system response to that of original permeability.

In both experiments, we used an ensemble of 1000 permeability realizations as

our sample set. It should be pointed out that here we work with only permeability,

but HOSVD can be used for any grid-based property, such as porosity. In our

experiments, we assume porosity is a known property, although large dimensional,

we do not perform its parameterization.

To analyze the reconstruction performance of the SVD and HOSVD we calculate

the observation root mean square error (RMSE) of the samples. In this work, RMSE

of jth observation (each well’s BHP, oil or water rate) is defined as:

RMSEj =

√√√√ 1

N

N∑
i=1

(
d̂ij − dij

)2

. (4.6)

where i is the time step index. Also, the original and estimated observation are

represented by d and d̂, respectively. In our computations, we do not subtract the
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mean of the snapshots. It has been shown that this may not make a difference in the

case of history matching [119]. Also, we work with the ln(K) and thus no negative

values of permeability is possible in our decomposition.

It is of great interest to have a single representative observation RMSE for each

permeability sample. As a matter of fact, having this parameter simplifies com-

parison of the permeability reconstruction performance of SVD and HOSVD. Since

observation RMSEs have different units, we need to make dimensionless RMSEs.

To achieve this purpose we utilized the original observation’s L2 norm. Finally, we

define the total dimensionless observation RMSE as follows:

RMSEtotal =
∑
j

RMSEj
‖dj‖2

. (4.7)

To explore HOSVD-based parameterization properties and compare its capability

and power in permeability parameterization with classic SVD, we perform two sets

of experiments. In the first experiment a synthetic 2D model is utilized and for the

second experiments a 3D model is generated using the first top 5 layers of SPE 10

benchmark [37].

4.5.2 Experiment B-1: Synthetic Model

The synthetic model is generated utilizing the two-point geostatistical simulation

algorithm, namely the Sequential Gaussian Simulation (sgsim) [47]. In fact, 1000

permeability realizations are generated employing a specific covariance function to

represent the geological structure. An exponential variogram model is employed with

same correlation length properties of 60 in the x and y directions. Each permeability

realization is a 45 × 45 map of 30 × 30 × 30 feet grid block size and the reservoir

assumed to act as a 2D two-phase flow of slightly compressible oil reservoir. For-
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ward simulations are performed using ECLIPSE [120]. Overall, we conducted three

distinct sets of forward simulation experiments. In the first setup the ensemble of

original permeability samples are used as an input to the simulator and the other

two setups are implemented for ensembles of reduced order permeability samples

using SVD and HOSVD respectively. Therefore, we performed three sets of 1000

forward reservoir simulations. Two randomly drawn permeability realizations along

with corresponding reduced ordered representatives using classic SVD and HOSVD

are shown in Fig. 4.5. Four producers are operating with a constant bottom-hole

pressure (BHP) of 2900 psi and one water injector with a constant injection rate

of 300 bbl/day, all operating in an inverted five-spot waterflooding scenario. As

stated previously, porosity is not parameterized in this work and therefore is fixed at

0.22. Furthermore, 1 pore volume of water is injected through the simulation time

of 1 year. Table 1 summarizes all information regarding simulation description and

reservoir specifications.

In simulating a reservoir system, permeability realization is the input and pro-

duction data is the output of this system. The production data includes bottom

hole pressure (BHP) of injection wells, oil and water rate of production wells. In

this synthetic model experiment, there are 4 production wells and one injection well

resulting in 9 different observations where each observation is available in 12 time

steps (of 30 days). Consequently, one could come up with a total 9 × 12 distinct

observation values in each experiment.

We performed HOSVD-ALS employing permeability replicates as a training set

to find the basis function employed to reduce the dimension of the original images

for compression purposes. First, HOSVD-ALS is utilized to provide truncated basis

matrices and a coefficient core tensor. Based on the HOSVD-ALS approach, the re-

duction procedure requires the selection of basis which express the map with higher
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accuracy. Here, the following scenario is performed to obtain re-parameterized per-

meability representatives. In parameterization with the classic SVD, all samples are

vectorized and stacked into a matrix namely the training set, and SVD is performed

to find the space basis required for the reconstruction. Then, the singular vectors

associated with the largest 55 singular values of the covariance matrix, which con-

serve the most of the energy, are selected as reduced order space’s basis. In the SVD

case we used those selected basis to compute reduced order version of the original

permeability maps to reduce the dimensionality of original space. This is not the

case in the HOSVD, as we keep the snapshots as it is. For the HOSVD parameteri-

zation, the best (15, 15)−rank representation of the original tensor is approximated

and then Kronecker product is performed in all simulations to compute required coef-

ficients for the reconstruction step. Utilizing truncated basis results in a compressed

reconstructed version of known permeability maps.

Figures 4.5a and 4.8a show that HOSVD not only outperforms classic SVD in

the measure of RMSE, but also overcomes it in perceptual sense. One can see that

HOSVD-based parameterization is able to better capture the high and low perme-

ability edges comparing to the SVD-based method. It is evident from the results

that HOSVD-ALS has a promising power to compress an image while preserving

geological features along with spacial characteristics of permeability maps. In ad-

dition to preserving the most important features, the low computational cost is the

other significant capability of HOSVD. In fact, in practical reservoir parameterization

problems with system of order of millions, low computational cost and the ability to

reduce to a lower rank become important. Eager reader can refer to [1, 2] for more

detailed analysis and discussion about the capabilities of HOSVD parameterization.

Figures 4.5b and 4.8b demonstrate bottom hole pressure curves for the injector.

One could undoubtedly see that for the first sample classic SVD curve can not follow
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the trend of original response of the system and for the second sample the HOSVD

method response lay exactly on the original response. Actually, performing HOSVD-

based parameterization yields better reduced order versions perceptually and in terms

of RMSE and generates similar responses to that of original maps as well.

Comparing oil production rate curves in Figs. 4.6 and 4.9 illustrate the advan-

tage of using HOSVD over the classic SVD even more particularly for the second

sample that the SVD response could not follow the trend of original response cor-

rectly. For instance,in the producers 2 and 4 in Fig. 4.9 and producer 2 in Fig.

4.6, the SVD-based results are way off in values and trend comparing to those of

original and HOSVD-based. Figures 4.7 and 4.10 present water production rates as

well. Interestingly, in producer 2, the SVD based parameterization method causes

a breakthrough while in the original response no breakthrough happens during the

simulation time in that specific producer and one can see that the HOSVD curve

exactly fit to the true system response as expected.

An important characteristic of a powerful compression method for reservoir his-

tory matching is the capability of the basis to reconstruct an unknown image with

optimum coefficients. Moreover, in the present experiments, basis are obtained using

prior knowledge of reservoir permeability. In other words, we use a set of training

samples to compute required set of basis that is necessary for reconstruction and

estimation part. As mentioned before, we repeated experiment for all samples to

validate our results and corresponding RMSE PDFs are discussed in the next sub-

section. Here, we presented two randomly selected samples to compare the results.

In order to statistically demonstrate the advantage of HOSVD over SVD we ap-

plied both methods to 1000 permeability samples. Also, we repeated the forward

reservoir simulation for all 1000 permeability samples to perform statistical analysis

for comparing the performance of HOSVD-based and classic SVD-based parameter-
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ization. Figure 4.11 which includes permeability RMSE PDFs clearly shows that

HOSVD results in considerably less reconstruction error than SVD in the parame-

terization process. This convey the fact that HOSVD-ALS has a promising power to

compress an image while preserving geological features along with spatial character-

istics of the permeability map. Figure 4.12 express the probability density function

of total dimensionless observation RMSE using the results of all 1000 forward simu-

lations. Statistics of these PDFs are concluded in table 4.2. It should be noted that

90% of total dimensionless observation RMSE values lay within the shown interval

in Fig. 4.12.

4.5.3 Experiment B-2: SPE10 Model

To probe the advantages of the proposed HOSVD parameterization method, we

employ the top 5 layers of SPE 10 benchmark [37]. Analogous to the synthetic

model, two-point geostatistical simulation algorithm is utilized to generate 1000 per-

meability realizations. Here, to represent the geological structure, we incorporated

patterns from top 5 layers of SPE 10 to an exponential variogram model with corre-

lation length properties equal to 100 and 80 in the x and y directions, respectively.

Moreover, a proper permeability covariance matrix is assumed in order to assure each

map includes the desired permeability range in the top 5 layers of SPE 10 model.

Each permeability realization is a 60×220×5 map of 33×33×33 feet grid block size.

We run ECLIPSE reservoir simulator for a 3D two-phase (oil and water) black oil

during 360 days or 6 time intervals of 60 days. All the simulation setup and param-

eterization procedure are done in a similar fashion to the synthetic example. Again,

we conducted three distinct sets of forward simulation experiments for original, clas-

sic SVD, and HOSVD parameterized maps. Two randomly drawn true permeability
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realizations along with corresponding reduced ordered representatives using classic

SVD and HOSVD are shown in Figs. 4.13 and 4.17. Eight producers are operating

along with 15 injectors constructing a network of eight inverted 5 spot configuration

all in a waterflooding scenario. As stated previously, porosity is not reparameterized

in this work and therefore is fixed at 0.22. Furthermore, 1 pore volume of water is

injected through the simulation time of 6 year. Table 4.1 summarizes all information

regarding simulation description and reservoir specifications for both experiments.

Even with small number of significant coefficients, large scale features and high/low

permeability regions are preserved in reconstructed replicates compared to the true

permeability maps. Although HOSVD has a higher overhead in terms of basis com-

putations, it yields models with higher compression ratios, and thus, lower compu-

tational cost for using the reduced models.
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Table 4.1: Reservoir description and fluid properties for experiments 1 and 2.

Property 45x45 SPE 10

Simulation Two-phase Two-phase

Simulation Time 1× 360 day 6× 360 day

Number of grid blocks 45× 45 60× 220× 5

Grid block size 30× 30× 30 ft 33× 33× 33 ft

Porosity 0.22 uniform 0.22 uniform

Rock compressibility 3.0E − 6 psi−1 3.0E − 6 psi−1

Reservoir geometry 2D 3D

Reservoir depth 2000 ft 4000 ft

Number of injectors 1 15

Number of producers 4 8

Oil Viscosity 1 cp 1 cp

Oil density 62.4 lb
ft3

62.4 lb
ft3

Water Viscosity 1 cp 1 cp

Initial reservoir pressure 3100 psi 6000 psi

Producers constant BHP 2900 psi 5900 psi

Water saturation 0.3 0.3

Figures 4.13-4.22 summarize all results for two randomly picked replicates of SPE

10 ensembles. We plotted bottom hole pressure for 9 selected injectors and oil and

water production rates for 6 producers for the sake of simplicity to compare results

and values for these two representative samples. The two permeability maps have

both low and high permeability regions. With respect to trend, the first sample has
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a significant high perm region in the middle of the map; However, the second one

has two distinct high perm regions at the sides and near the boundaries along with

a recognizable low perm area at the middle. Overall, the first permeability sample

has a more complex trend comparing to the second one.

Similar to the synthetic example, Figs. 4.13 and 4.17 illustrate that HOSVD

not only outperforms SVD in terms of permeability RMSE, but also overcomes it in

perceptual sense. Moreover, the capability of reducing rank in all modes is assisting

HOSVD to become more efficient than SVD in the manner of memory and computa-

tional costs as well even more than the previous example due to the higher dimension

nature of the second example. Figures 4.14 and 4.18 show the bottom hole pressure

curves for the original samples and corresponding HOSVD-based and SVD-based

reparameterize versions. In all injectors the corresponding results of HOSVD-based

parameterization tends to follow the trend of original response both in shape and val-

ues. Furthermore, for the first sample, in injector number 3, 12 and 13 the HOSVD

response perfectly fits to the true response. For the second sample, one easily could

see the same trend and perfect fit in more injectors due to lower complexity of per-

meability map. In fact, it is obvious from the results that utilizing HOSVD-based

parameterization not only result in better reduced order versions perceptually and in

terms of RMSE, but also produces similar responses to that of original maps which

is more important for our purpose.

Oil production rates are depicted in figures 4.15 and 4.19. One can simply com-

pare the HOSVD method results with that of SVD method. Again, it is apparent

form the results that even for the simpler permeability map with a non-complex

trend, HOSVD-based parameterization curves outperforms those of classic SVD pa-

rameterization. For instance,in the producers 1, 2 and 7 for the first case and 2, 5,

6, and 7 for the second case, the SVD-based results are way off in values and trend
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comparing to those of original and HOSVD-based. Figures 4.16 and 4.20 display

water production rate curves as well. In contrast to the first example, we do not ob-

serve breakthrough in any of the producers during the simulation period. Although,

no breakthrough happened in the experiments, the difference between HOSVD and

classic SVD is noticeable specifically for more complex trends in permeability maps.

As mentioned previously, in order to statistically demonstrate the advantage of

HOSVD over SVD we applied both methods to 1000 permeability samples. Also, we

repeated the forward reservoir simulation for all 1000 permeability samples to per-

form statistical analysis for comparing the performance of HOSVD-based and classic

SVD-based parameterization. Figure 4.21 which includes permeability RMSE PDFs

clearly shows that HOSVD results in considerably less reconstruction error than SVD

in parameterization process. Which clearly convey the fact that HOSVD-ALS has

a promising power to compress an image while preserving geological features along

with spacial characteristics of permeability map. Figure 4.22 express the probabil-

ity density function of total dimensionless observation RMSE using the results of

all 1000 forward simulations. Statistics of these PDFs are concluded in Table 3. It

should be noted that 90% of total dimensionless observation RMSE values lay within

the shown interval in Fig. 4.22. As matter of fact, the advantage of HOSVD over

SVD in terms of system response and reconstruction capability are also illustrated

by Figs. 4.21 and 4.22 and table 4.2.

108



Table 4.2: Error distribution statistical parameters summary for the experiments.

Method Mean Median Mode

45x45
HOSVD 14.3467 0.1919 0.132

Classic SVD 77.5178 0.7971 0.6154

SPE 10
HOSVD 0.3437 0.3274 0.3232

Classic SVD 0.7382 0.7204 0.6873

4.6 Running Time Comparison

Comparison between classic SVD and HOSVD with respect to running time is

of high importance in order to evaluate their performance as well as their efficiency.

As mentioned previously, we generate two ensemble of 1000 permeability realizations

employing two-point geostatistical simulation algorithm (SGSIM) and an exponential

variogram with specific assumed covariance and correlation parameters. It should be

noted that variogram properties are set independently for 45× 45 and SPE 10 cases.

In order to perform the present simulations, all 1000 samples in each ensembles are

considered as training sets of known permeability maps. Then, we apply classic SVD

and HOSVD based parameterization method to the ensembles and observe running

time of each scheme first for computing basis and coefficients of the parameter space

and second for compression process (reducing the order of each map). The results are

summarized in the table 4.3. One must note that for SPE 10 example we repeated

the noted process for each layers of each realization separately and independently

and then the mean of all running times is reported to acquire statistical consistency.

Results show that HOSVD method outperforms classic SVD with respect to run time
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in computing the basis and coefficients as well as reconstructing step. Considering

the fact that running time for classic SVD is roughly 10 times that of HOSVD in

an experiment of lower dimensionality comparing to a real reservoir problem, the

HOSVD has a promising performance concerning running time efficiency.

Table 4.3: Running time comparison between HOSVD and classic SVD (in seconds).

Method Computing Time Reconstructing Time

HOSVD 2.0639 37.1983

Classic SVD 39.5381 456.4611

4.7 Summary

The results of this experiments illustrate the promising power of HOSVD-ALS to

compress known permeability realizations. Furthermore, the results are compared

to classic SVD approach. In addition to the compressing capability, this section

indicates that HOSVD-ALS can successfully estimate unknown permeability maps

utilizing truncated basis obtained from prior knowledge. Although, classic SVD has

lower root mean square error in comparison to HOSVD-ALS, it has a poor perceptual

quality. Furthermore, the approach employed in the present section can strongly

capture all important spatial features and all spatial geological characteristics in an

efficient manner. As a matter of fact, classic SVD cannot preserve spatial features due

to the snapshots vectorization. In conclusion, the present work shows that HOSVD-

ALS provides a mean for permeability parameterization in reservoir characterization

required for history matching processes.
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Figure 4.15: Oil production rate curves of all producers for the first sample. System
responses are plotted for original map, classic SVD and HOSVD based parameterized
maps. SPE10 example.
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Figure 4.16: Water production rate curves of all producers for the first sample.
System responses are plotted for original map, classic SVD and HOSVD based pa-
rameterized maps. SPE10 example.
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Figure 4.19: Oil production rate curves of all producers for the second sample. Sys-
tem responses are plotted for original map, classic SVD and HOSVD based param-
eterized maps. SPE10 example.
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Figure 4.20: Water production rate curves of all producers for the second sample.
System responses are plotted for original map, classic SVD and HOSVD based pa-
rameterized maps. SPE10 example.
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5. EFFICIENT INFERENCE OF RESERVOIR PARAMETER DISTRIBUTION

UTILIZING HIGHER ORDER SINGULAR VALUE DECOMPOSITION

REPARAMETERIZATION∗

Reservoir parameter inference is a challenging problem to many of the reservoir

simulation workflows, especially when it comes to real reservoirs with high degree of

complexity and non-linearity, and high dimensionality. In a history matching prob-

lem that adapts the reservoir properties grid blocks, the inverse problem leads to

an ill-posed and very costly optimization schemes. In this case, it is very important

to perform geologically consistent reservoir parameter adjustments as data is being

assimilated in the history matching process. Therefore, ways to reduce the number

of reservoir parameters need to be sought after. In this section, we introduce the

advantages of a new parameterization method utilizing higher order singular value

decomposition (HOSVD) which is not only computationally more efficient than other

known dimensionality reduction methods such as, SVD and DCT, but also provides

a consistent model in terms of reservoir geology. HOSVD power is due to its ability

to supply a reliable low-dimensional reconstructed model while keeping higher order

statistical information and geological characteristics of reservoir model. In HOSVD,

we take the snapshots in a 2D or 3D approach, i.e., do not vectorize original repli-

cates, and stack them up into a tensor form, i.e. a multi-way array in multilinear

algebra which leads to implementing tensor decomposition. Technically, we per-

formed HOSVD to find the best lower rank approximation of this tensor that is an

optimization problem utilizing alternating least square method. This results in a

∗Part of the material is published with permission from “Efficient Inference of Reservoir Param-
eter Distribution Utilizing Higher Order Singular Value Decomposition Reparameterization,” S.
Afra, E. Gildin, 2014. ECMOR XIV-14th European conference on the mathematics of oil recovery,
Sicily, Italy, Copyright 2014 by EAGE.
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more consistent reduced basis. We applied this novel parameterization method to

the SPE10 benchmark reservoir model to show its promising parameterization per-

formance. We illustrate its advantages by comparing its performance to the regular

SVD (PCA) in a history matching framework using EnKF, as well as characteri-

zation performance of the ensemble-based history matching approaches along with

HOSVD. Overall, HOSVD outperforms SVD in terms of reconstruction and estima-

tion performance.

5.1 Introduction

In recent years, reservoir management has evolve to a more structured workflow,

in which one can optimize the reservoir production strategies and assimilate new

production information, simultaneously basically in a real-time fashion. One of very

interesting and challenging problems in reservoir engineering is to estimate petro-

physical properties, such as permeability and porosity, by incorporating production

history in an inverse process. Having an accurate geological descriptions of the reser-

voir model is of high importance for predicting future production profiles and decision

strategies. Proposing accurate predictions for reservoir history matching problems

is highly tied to the capability of data assimilation techniques that have been used

as well as data collecting methods. Although, lots of different methods of collecting

data and sensing observations can be conducted in field, their costs are still seen as

the limiting factor in deploying them into the field and thus, lack of prior knowledge

of the reservoir become a daunting challenge to be explored[12, 14, 60].

Several parameters describe a reservoir model which each of those parameters

may convey a huge amount of data. Some parameters are specified per grid block

like permeability and porosity and others for the entire model or a particular layer

such as relative permeability and capillary pressure. History matching is a highly
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underdetermined, nonlinear and ill-posed problem owing to insufficiency and com-

plexity of observed data from reservoir [104, 60]. This means there is a possibility

of obtaining reservoir models that match observed measurements but then provide

incorrect predictions. Thus, another significant task in the reservoir characterization

is reducing the number of unknown model parameters and/or states to improve the

estimation results as well as decreasing the costs of operating history matching and

data collecting methods.

A number of studies have been conducted to reduce computational efforts in

reservoir simulation and history matching [67, 51, 22] and [1, 2, 64, 65]. Of especial

interest in this section is to reduce the number of unknown parameters in a process

known as parameterization [119, 99]. There is a great number of papers devoted to

reducing the number of unknown parameters. They are broadly classified into spatial

(e.g., zonation) and transform-domain (e.g., PCA, KPCA, DCT, HOSVD) methods

[99]. Since, the central issue in this section is not to bring up a comprehensive

assessment of all of these methodologies, we will pay attention here to only SVD-

based (PCA) methods.

It is known that PCA does not provide an effective parameterization for complex

geological structures, due mainly to its intrinsic two-point statistics nature [99]. In

order to overcome this issue, Kernel PCA and other form of nonlinear versions of PCA

have been developed [119]. Here, we will take a slightly different approach, which

relies on ”higher-order” statistics with the introduction of the High-Order Singular

Value Decomposition (HOSVD) method [1, 2]. HOSVD is a multi-linear algebra-

based approach and it has been developed in the context of images reduction [86, 90,

130]. In the standard PCA, it is necessary to carry out an eigen-decomposition of the

random field covariance matrix which is expensive for large models. Furthermore, due

to the vectorization of the snapshots data in the PCA computation, many features
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may be lost in the reduced space [11, 86, 90]. This new method allows us to treat

property ensembles as a high-dimensional tensor, and by means of tensor algebra

(HOSVD) we can show that the reduced models preserve better geometric features

keeping them more intact during the reduced basis computations. This is of great

importance in the case of reservoirs as the properties in consideration have geological

meaning.

We consider the problem of data assimilation using the Ensemble Kalman Filter

[104], in such a way that the permeability of the reservoir is parameterized by the

HOSVD. We compare with the standard SVD approach in terms of accuracy and

computational efforts. As pointed out before, the we do not compare with other

forms of discretization, and thus, the conclusions taken here should be considered

within this context. A forthcoming paper is being developed in this area.

This section is organized as follows. In subsection 5.2 petroleum reservoir charac-

terization, i.e., history matching problem, through ensemble Kalman filter (EnKF).

Section 5.3 presents experiments description and provides more details on the under-

lying history matching process with and without incorporated reservoir parameteri-

zation. In subsection 5.4, experiments results are explained properly for 3 different

history matching scenarios and then all results are compared with respect to the

corresponding RMSEs. More details on EnKF can be found in subsection 3.9.

5.2 Reservoir Characterization Through Ensemble Kalman Filter

In the present work, we are interested in characterizing reservoir permeability

map and assuming that porosity is a known parameter in the model. Thus, in or-

der to perform the prediction step in EnKF scheme we simply run forward reservoir

simulation using an ensemble of reservoir unknown permeability maps as simulator

input. This ensemble of reservoir parameters can be initiated by picking random
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samples from model states such as oil pressure, water saturation. One may note that

in case of SVD or HOSVD parameterization, initial ensemble has to be generated

using the corresponding coefficients of SVD or HOSVD basis vectors or matrices (in

HOSVD parameterization scheme). Afterwards, utilizing Kalman gain in EnKF up-

date step we can adjust ensembles by measuring the difference between the observed

and simulated data. The EnKF formulation can be stated as follows:

zti =

(
mt
i gti(m

t
i) yti

)
(5.1)

Zt =

(
zt1 zt2 · · · ztM

)
(5.2)

Wherein, zti is the ith member of ensemble at time t, mt
i is the static vector which is

supposed to be fixed during prediction step, gti denotes directing reservoir simulator,

here ECLIPSE 100 is utilized, in order to obtain new updated ensemble, yti is the

observed data at time t and Zt represents the whole ensemble at time step t. Once,

forecast step of the EnKF method is completed the analysis part is conducted to

generate updated reservoir parameter realizations. The EnKF analysis equation

presented as follows:

ẑti = zti +Ke

(
yti −Hez

t
i

)
(5.3)

Where, ẑti represents updated realization, Ke denotes Kalman gain matrix calculated

by

Ke = CzH
t
e

(
HeCzH

T
e + Cy

)−1

(5.4)

Cz indicate unbiased sample covariance matrix and can be computed as follows:

Cz =
1

M − 1

(
Zt − Ẑt

)(
Zt − Ẑt

)T
(5.5)
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Where, Ẑt is the mean of reservoir parameter ensemble. Cy is actually observation

data noise covariance matrix. We perturb observation data by adding randomly

drawn sample from a zero mean normal distribution with a known covariance matrix,

Gaussian white noise, to the observation data. He is a zero or one matrix that

expresses the relation between model states and observation. One can find more

details in [93].

5.3 Experiment Description

Reducing the number of gridblocks in order to express permeability or porosity

information much more cost efficient is of high interest in reservoir simulation and

history matching problems. As a matter of fact, one can define a projection, a

map, from reservoir parameters space into a subspace of lower dimension by means

of reservoir parameterization. This can be thought of considering the permeability

and/or porosity parameterization problem as an image compression problem.

In reservoir characterization problems, the input permeability image is unknown

and has to be estimated through a history matching process. Hence, finding a set

of basis is impossible. In the present work with the assumption of two-point geo-

statistics, the unknown permeability field is a random sample from a multivariate

Gaussian distribution defined by a variogram or covariance function. A variogram

or covariance function defines the underlying geological continuity in the formation

using SPE 10 benchmark [37]. Attaining realistic basis function from a large fi-

nite number of samples that are drawn from a specific high dimensional Gaussian

distribution is very likely. These bases geologically describe unknown permeability

fields.

Here, we apply HOSVD-ALS in order to generate reduced order ensemble of initial

guesses and then performing history matching utilizing EnKF scheme to update the
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corresponding coefficients of HOSVD basis. All the steps are repeated using classical

SVD as the parameterization part.

Sequential Gaussian Simulation (sgsim) [47], a two-point geostatistical simulation

algorithm, is utilized to generate 200 initial permeability realizations. A specific

variogram model property is also used to represent the geological structure; here we

incorporated patterns from SPE 10 first layer. Each realization contains 60×220 grid

blocks. Furthermore, we conducted forward simulations using ECLIPSE reservoir

simulator [120] for a 2D three-phase flow (oil, gas and water) black oil during 2160

days or 6 time intervals of 360 days.

In the present experiment, reservoir model has 15 injectors as well as 8 producers.

We have to point out that here we work only with permeability, but HOSVD can be

used for any grid-based property, such as porosity. In our experiments, we assume

porosity is a known property, although large dimensional, we do not perform its

parameterization. Overall, we conducted three distinct sets of forward simulations

involving in history matching experiments. In the first setup the ensemble of original

permeability initial guesses are used as an input to the algorithm and the other two

setups are implemented for ensembles of initial permeability guesses randomly drawn

from a set of reduced order permeability samples generated by applying classic SVD

and HOSVD respectively. Therefore, we performed a 6-steps EnKF optimization for

three ensembles of 200 permeability realizations independently.

A true permeability realization for our 2D model is shown in Figure 1 along with

its corresponding reduced order realizations using classic SVD and HOSVD-ALS.

Table 5.1 summarizes all information regarding simulation description and reservoir

specifications.
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Table 5.1: Reservoir and fluid properties.

Property Quantity Unit

Model Properties

Simulation Three-phase N/A

Simulation Time 6× 360 day

Grid blocks 60× 220 ft

Grid block size 33× 33 ft

Reservoir depth 4000 ft

Porosity 0.22 md

Rock compressibility 3.0E − 6 psi−1

Reservoir geometry 2D N/A

Number of injectors 15 N/A

Number of producers 8 N/A

Oil Properties

Viscosity 1 cp

Compressibility 3.0E − 6 psi−1

Oil density 62.4 lb
ft3

Water Properties
Viscosity 1 cp

Compressibility 3.0E − 6 psi−1

Water density 62.4 lb
ft3

Initial Conditions
Pressure 6000 psi

Water saturation 0.3 N/A

5.4 Results and Discussion

In this subsection, we compare the performance of history matching using EnKF

through classic SVD and HOSVD parameterization for the specified reservoir de-

scription in the previous part. In fact, we investigate the capability of HOSVD

parameterization in terms of providing the best lower rank approximation of each

member of ensemble in the second step of EnKF scheme (update). In the other
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words, in each update step, we replace the exact value of predicted reservoir param-

eter, which we would like to estimate (update), with its corresponding coefficients

from the best lower rank approximation of that realization.

To obtain the corresponding coefficients of each realization, we apply HOSVD-

ALS to the ensemble of reservoir permeability realizations in order to compute the

best lower rank estimation of the tensor of permeability realizations. Thus, in each

analysis step, we simply update the corresponding coefficients, obtained from trun-

cated HOSVD parameterization, rather than the unknown parameter, in our case

permeability field map, itself.

Integrating parameterization step interestingly decreases the number of the un-

known geological parameters of the reservoir model which effectively can treat ill-

posedness of the history matching problem with respect to its under determined

nature. Technically speaking, by truncating HOSVD basis one could easily under-

line the most important features of the geological property that we are interested

in estimating. Indeed, the most important features are those that conserve more

energy and express the original map more accurately. We have to point out that in

the present work we do not perform state estimation which means we just update

the desired parameters (permeability) and not the states of the reservoir model, such

as pressure and saturation.

After updating the coefficients of the HOSVD parameterization through EnKF

analysis step, we reconstruct the permeability ensemble using these updated coef-

ficients in order to build new ensemble for the next forecast process. The same

scenario is directed for operating reservoir characterization utilizing EnKF through

classic SVD parameterization. Moreover, the same ensemble of initial guesses is

employed for all 3 history matching experiments.

For SVD we chose the coefficients associated with the largest 40 singular val-
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ues of the covariance matrix as the reduced order basis. We also found the best

(30, 90)−rank representation of each member of permeability ensemble. Kronecker

product is performed in HOSVD procedure to compute the required coefficients for

the reconstruction step. Here, we utilize the truncated basis which results in a com-

pressed reconstructed version of the original permeability maps. We can highlight

that for the regular SVD, we first vectorize each permeability map and then stack

all the vectorized samples into a matrix to be used in the SVD decomposition. This

is not the case in the HOSVD, as we keep the snapshots as it is.

Figure 5.1 depicts top five layers of the SPE 10 model in 3D. Figure 5.2 shows the

true permeability map and its corresponding reduced order reconstruction using clas-

sic SVD and HOSVD to compare their performance with respect to their ability to

represent more accurate estimation of the original map. As it was stated previously,

we integrated these projection methods as the parameterization step in the EnKF

scheme, so as to reduce the number of unknown geological properties during the up-

date step. Figure 5.3 depicts the results of regular EnKF history matching without

parameterization. Figures 5.4 and 5.5 demonstrate the permeability estimation re-

sults for EnKF history matching through classic SVD and HOSVD parameterization

scenarios respectively. For the sake of space and ease of comparison, we presented

the mean of updated permeability ensemble instead of plotting all realizations log

permeability. Figure 5.6 shows the root mean square error, RMSE, analysis of the

history matching process with EnKF through parameterization and without it. One

can observe that the results of reservoir characterization with HOSVD parameter-

ization outperform those of classic SVD parameterization in relation to geological

continuity. This demonstrates the capability of HOSVD parameterization to keep

important spatial geological features while reducing the dimensionality of parameter

space order of magnitude.
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Figure 5.1: SPE 10 benchmark configuration.

Figure 5.2: True permeability realization along with its reconstructed versions by
SVD and HOSVD. We employed SPE 10 patterns to generate permeability realiza-
tions.
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6. CONCLUSIONS AND FUTURE WORKS

In this dissertation we addressed the application of higher order singular value

decomposition (HOSVD) as a novel parameterization method for inferring reservoir

characteristics such as permeability. We also, discussed history matching problem

by estimating reservoir parameter distribution inference by the mean of ensemble

Kalman filter (EnKF) along with integrated HOSVD-based parameterization. This

chapter concludes the present work and provides recommendations for future works.

Reducing the dimensionality of parameter space (like permeability or porosity

maps) is of central interest in reservoir simulation specifically when the problem is

of very high order (millions of grid blocks). Reduction in size of parameter space

decreases the number of unknown geological properties that have to be estimated

through the reservoir history matching procedure. Furthermore, a daunting task in

reservoir characterization is to choose the principal features of the parameter space,

those that conserve most of the energy, in order to improve the estimation. One must

note that a powerful parameterization method not only provides better basis but also

does so in a time efficient manner. To this end, having a powerful parameterization

method is of high importance in reservoir simulation and characterization problems.

We introduced and developed a new parameterization technique using HOSVD

method. Employing HOSVD parameterization outperforms the other common exist-

ing parameterization algorithms such as classic SVD and KLT in terms of RMSE as

well as implementation cost. The results of the present work illuminate the promising

power of HOSVD to reparameterize and capture the important geological features

of the permeability realizations. Moreover, as a powerful parameterization and com-

pression method, HOSVD regenerates similar petrophysical property estimation, here
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permeability, as well as same response of the highly nonlinear and complex reservoir

system. In other words, the approach employed in this work can strongly capture

all important spatial features and all spatial geological characteristics in an efficient

manner, in time and performance perspectives, comparing to SVD which is unable to

preserve spatial features due to vectorization. Indeed, HOSVD re-parameterization

offers a more geological consistent reduced order version of parameter space as one

can observe from the RMSE plots.

In parameterization experiments provided, in order to acquire statistical consis-

tency all examples repeated for two different sets of 1000 permeability samples each.

Comparing running time proves that HOSVD overcomes classic SVD in running

time as well. One must note that the provided results can easily be reproduced for

the case of porosity re-parameterization. To conclude, the present work indicates

that HOSVD provides a promising tool for permeability parameterization in reser-

voir characterization required for history matching processes. Moreover, the central

idea of integrating parameterization in the update step of history matching through

EnKF is to reduced the dimensionality of the unknown parameter space. This re-

duces the rank of the original space, consequently, shrinks the number of unknown

geological properties that have to be estimated through the reservoir characteriza-

tion process. In addition, this is not the only reason for reparameterizing parameter

or state space within history matching procedure. The most important motivation

for doing parameterization is to select the most significant features of the parameter

space, those that conserve most energy, in order to improve the estimation.

The results of this dissertation, illustrate the promising power of HOSVD to repa-

rameterize and capture the important geological features of the permeability realiza-

tions. Furthermore, as a powerful permeability parameterization and compression

method, HOSVD reproduces similar petrophysical property estimation, here perme-
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ability, of the highly nonlinear and complex reservoir system. In other words, the

approach employed in this work can strongly capture all important spatial features

and all spatial geological characteristics in an efficient manner comparing to SVD

which is unable to preserve spatial features due to vectorization. Indeed, HOSVD re-

parameterization offers a more geological consistent reduced order version of param-

eter space as one can observe from the RMSE plots. Although, HOSVD outperforms

classic SVD method and provides a promising tool for reservoir parameterization in

reservoir characterization, a comprehensive investigation need to be done including

other parameterization techniques.

In this work, we only addressed 2D problems with relatively small number of

gridblocks. Also, comparing to many real reservoir simulation and history match

problems, our study models are relatively simple. In actual reservoir simulation

and history matching problems, the original reservoir model parameter and state

spaces are of orders of millions. The problem of constructing proper training set

to obtain space basis for the model reduction and parameterization purposes are

very important. Furthermore, the way that we select truncated bases to reduce the

dimensionality of original space is another important issue in parameterization of

unknown permeability maps. All these issues require further investigation.

Utilizing HOSVD method for the model reduction in developing fast reservoir

simulators as well. In fact, one needs to restate the state space equations of reservoir

system in a tensor form in order to employ HOSVD analysis and reduce the order of

this model. In other words, finding a transformation which transmit existing matrix

formulation of reservoir problem to a proper tensor formulation. This also, can be

considered as further research studies in regard with HOSVD method. It will also

be of great interest to consider the applications of HOSVD method in a production

optimization problem as well.
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[84] K. Karhunen. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. An-

nales Academiae scientiarum Fennicae: Mathematica - Physica. Universitat

Helsinki, 1947.

[85] David C Kay. Schaum’s Outline of Theory and Problems of Tensor Calculus.

McGraw-Hill, 1988.

[86] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applica-

tions. SIAM Rev., 51(3):455–500, August 2009.

[87] Pieter Kroonenberg and Jan Leeuw. Principal component analysis of three-

mode data by means of alternating least squares algorithms. Psychometrika,

45(1):69–97, 1980.

148



[88] Larry W. Lake, Steven L. Bryant, and Aura N. Araque-Martinez. Geochemistry

and fluid flow. Elsevier Science Ltd, New York, 1st ed. edition, 2002.

[89] S. Lang. Algebra. Addison Wesley, 1993.

[90] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear

singular value decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278,

March 2000.

[91] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1

and rank-(r1,r2,. . .,rn) approximation of higher-order tensors. SIAM J. Matrix

Anal. Appl., 21(4):1324–1342, March 2000.

[92] L Li, H Zhou, HENDRIKUS JOHANNES Hendricks Franssen, and J Jaime
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