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ABSTRACT 

 

Though drought is a recurrent natural disaster in Texas, little attention has been so 

far paid to the preparedness of drought for spatial drought risk assessment. This study 

presents a methodology for spatial assessment of drought hazard, vulnerability, and risk 

in the Edwards Aquifer (EA) region. A conceptual data-based framework for drought 

hazard and vulnerability was developed in this study. Standardized Precipitation Index 

(SPI) and Effective Drought Index (EDI) methods were used to identify Drought Hazard 

Index (DHI) in different time steps, while the GIS environment was used to map the spatial 

extents of drought hazards. Drought Vulnerability Index (DVI) was identified by using 

different social and physical consequences of drought and a thematic map was prepared 

on the county level for vulnerability assessment. The risk, as a result, was computed as the 

product of intersection between both the DHI and DVI. Very high drought risk was found 

by 9 and 24-month SPI and EDI in Bexar (9.8% of the area). The highest percentage of 

the area in high level drought risk was detected by 1 and 12-month SPI as 32.3% of the 

area and 3-mont SPI found the highest moderate percentage of the area (79.5%). Bexar 

was found under drought risk based on all time scale SPI and EDI (very high drought risk 

based on 9, 24-month SPIs and EDI). Medina, furthermore, was detected in high drought 

risk in terms of all time scale SPI (except 3-month SPI) and EDI. In general, drought risk 

is higher in counties of the southern part of the area. The results confirmed that higher 

drought risks are found where both high hazard and high vulnerability coincide. 
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1. INTRODUCTION  

 

1.1 Background 

Drought affects more people than any other natural hazard and it is considered by 

many to be the most complex but least understood of all natural hazards (Hagman, 1984). 

Even if a universal definition of drought is difficult to specify, the general meaning of 

drought can be expressed as “deficit of water.” Drought is a creeping, slow-onset 

phenomenon that is normal part of all climatic regimes for all regions in the world. 

Drought is considered a meteorological fact which is a result of meteorological anomaly 

(e.g., temperature, moisture, and precipitation) and abnormal water deficiency. Bryant 

(1991) ranked hazard events by characteristics and impacts, and drought was ranked first 

among damaging natural hazards (e.g., tropical cyclones, regional floods, earthquakes, 

tornados, and volcanos). Drought has largely non-structural characteristics and damages 

larger geographical areas when compared with other natural hazards. The impacts of 

drought are often categorized as hydrologic, agricultural, economic, social, health, 

ecological, and environmental. Besides, some of these impacts are difficult to quantify 

because of the non-structural nature of droughts. Drought preparedness planning should 

be considered to minimize the effects of drought on people and resources. For this goal, 

drought components, called hazard and vulnerability, have to be quantified. While hazard 

is the probability of occurrence of the event, vulnerability refers to the exposure to the 

hazard. As a result, risk is the product of hazard and vulnerability. In this way, drought 
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risk assessment is the most essential part of the drought risk management and to response 

to drought on time.  

Drought is a recurring natural phenomenon in Texas that has faced notable 

droughts since the 1930s. The longest drought event observed in the 1950s in Texas, was 

as a seven- year drought. However, the drought in 2011 was the driest in the state history. 

Precipitation was only 267 mm from October 2010 to September 2011. Agrilife Extension 

economists compiled economic drought losses from 1998 to 2011 as $2.4 billion, $223 

million, $1.1 billion, $316 million, $4.1 billion, $1.4 billion, $3.6 billion, $5.2 billion for 

1998, 1999, 2000, 2002, 2006, 2008, 2009, 2011, respectively (Agrilife, 2011). Texas also 

faced a drought which started in 1995 and the drought carried over from western to eastern 

part in 1996. The losses due to this drought in Texas were reported as $5 billion (Fohn, 

1996). The Edwards Aquifer Conservation District issued warnings to cut the water usage 

by 20 percent because of excessive consumption of groundwater supplies after that 

drought disaster (U.S. Water News Online, 1996). Cutting water usage was enforced to 

protect and manage the groundwater which reached a critical level (Edwards Aquifer 

Authority, 1996). Because Edwards Aquifer (EA) is the most prolific artesian and 

permeable aquifer in the USA, the Edwards Aquifer Authority (EAA) was established in 

May 1993 by the 73rd Texas Legislature to manage, protect and enhance the groundwater 

resource. The water cut or pumping limitation has lasted to the present and now to preserve 

water resources 30-40 percent water cut (for municipal, agricultural and industrial aims) 

have been in force since April, 2014 by EAA.  
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Texas Water Development Board (TWDB, 2014) reports that groundwater 

provides 60 percent of water used in Texas and this shows that groundwater is a major 

source of water in Texas. There are 9 major aquifers in Texas (Carrizo–Wilcox, Edwards, 

Edwards–Trinity, Gulf Coast, Hueco–Mesilla Bolsons, Ogallala, Pecos Valley, Seymour, 

and Trinity) and the EA is one of the major aquifers in the state. The EA is a crucial water 

source for municipal, agricultural, and industrial users in the region. Because of the 

climate change and increasing regional water demand, water storage and also flora-fauna 

species are under the risk due to the deficit of water. In this regard, meteorological drought 

risk assessment was addressed in the EA region and the relation of groundwater and 

rainfall due to drought was examined. This study will help determine which area is more 

vulnerable to drought and detect the area under risk due to drought. Besides, areal extent, 

severity, and duration of drought are used for drought preparedness and planning (Mishra 

and Singh, 2011). Hence, spatial drought risk assessment in the EA region will be the key 

for mitigation and drought preparedness planning.  

 

1.2 Objectives 

The overall objective of this thesis is to quantify the spatial drought risk in the 

Edwards Aquifer region which is located in the south-central part of Texas by using 

“standardized precipitation index” and “effective drought index.” The thesis will focus on 

a conceptual risk model which is explained in the “Methodology” section.  For this aim, 

drought hazard assessment and drought vulnerability assessment will be quantified to 



 

4 

 

identify drought risk by using hydro-meteorological and socio-economic data. In light of 

the above, the following specific objective will be addressed: 

1. Determine the missing precipitation data and fill in the missing data by using the 

normal ratio method. 

2. Calculate the Standardized Precipitation Index (SPI) by using the probability 

density function (gamma distribution) for seven different time-steps (1, 3, 6, 9, 12, 

24, and 36 months). 

3. Calculate the Effective Drought Index (EDI) from effective monthly precipitation. 

4. Classify drought characteristics (such as duration, magnitude, and intensity) based 

on SPI and EDI for each rain gauge station. 

5. Map the spatial extent of drought characteristics for each SPI and EDI in a GIS 

environment by using the kriging interpolation method and natural breaks method.  

6. Quantify drought hazard by calculating the drought occurrence probability for each 

station. 

7. Determine drought vulnerability factors and calculate drought vulnerability by 

using local indicators. 

8. Quantify drought risk which is the product of hazard and vulnerability and map its 

spatial extent 

9. Depict “drought hazard assessment,” “drought vulnerability assessment” and 

“drought risk assessment” from regional to county level. 

10. Determine the relation between meteorological drought and groundwater level in 

the Edwards Aquifer. 
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2. LITERATURE REVIEW 

 

2.1 Drought definitions 

There is no unique and universal definition of drought. Drought is a stochastic 

phenomenon that can be interpreted from several perspectives. Even though the central 

meaning in all of the definitions of drought is the shortage of water, there are more than 

150 published definitions of  drought (Wilhite and Glantz, 1987).  For instance, while the 

American Heritage Dictionary (1976) defines drought as “a long period with no rain, 

especially during a planting season,” Random House Dictionary (1969) defines drought 

as “an extended period of dry weather, especially one injurious to crops.” Drought 

definitions have been categorized into conceptual (definitions formulated with general 

terms) and operational by Wilhite and Glantz (1987).  Drought has conceptual and 

operational meanings, because drought is a complex phenomenon that can be defined from 

person to person (Hisdal and Tallaksen, 2003). Conceptual definitions-those stated in 

relative terms (e.g., a drought is a long, dry period), whereas operational definitions, on 

the other hand, attempt to identify the beginning, severity, and end of a drought. Mostly, 

the operational definition of a drought can be used to identify drought frequency, severity, 

and duration for a given return period (Mishra and Singh, 2010). Some of the common 

definitions of drought are given below: 

 Drought was defined as ‘Drought as the smallest annual value of daily stream flow’ 

by (Gumbel, 1963). 
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 Palmer (1965) expressed ‘Drought as a significant deviation from the normal 

hydrologic condition of an area.’ 

 World Meteorological Organization (WMO) (1986) defines drought as: ‘Drought 

means a sustained, extended deficiency in precipitation.’ 

 United Nations Convention to Combat Drought (UN Secretariat General, 1994) 

describes: ‘Drought means the naturally occurring phenomenon that exists when 

precipitation has been significantly below normal recorded levels, causing serious 

hydrological imbalances that adversely affect land resource production systems.’ 

 Definition given by Schneider (1996) states that ‘An extended period—a season, 

a year, or several years—of deficient rainfall relative to the statistical multi-year 

mean for a region.’ 

  ‘Drought is an insidious natural hazard that results from a deficiency of 

precipitation from expected or “normal” that, when extended over a season or 

longer, is insufficient to meet the demands of human activities and the 

environment’ (Wilhite and Buchanan-Smith, 2005). 

From the above definitions it can be understood that drought is mainly concerned 

with the considerable deficit of water. Drought has been categorized, to grasp drought 

phenomenon, in different classes which are discussed below. 
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2.2 Classification of droughts 

Droughts are generally classified into four major categories, based on the nature 

of water deficit (American Meteorological Society (AMS), 2004; Hennessy et al., 2008; 

Wilhite and Glantz, 1985) which include: 

1. Meteorological drought is the least severe form and occurs as a result of any 

unexpected shortfall of precipitation. Meteorological drought has been commonly 

analyzed by using monthly precipitation data.  

2. Hydrological drought occurs when natural stream flows or groundwater levels are 

sufficiently reduced to adversely impact water resources. Hydrological drought is 

assessed by using surface water area and volume, streamflow, infiltration, and 

groundwater level fluctuations. 

3. Agricultural drought, usually, refers to a period with declining soil moisture and 

consequent crop failure without any reference to surface water resources. The 

severity of agricultural drought has been commonly assessed, based on soil 

moisture or as indirectly by PDSI.  

4. Socio-economic drought is associated with the failure of water resources systems 

to meet the water demands, thus associating droughts with supply of and demand 

for an economic good (water). 

While the socio-economic drought is considered as a water resources systems 

drought, the first three categories are referred to as environmental droughts (Wilhite, 2000) 
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2.3 Impacts of drought 

Drought causes a complex web of impacts that traverse many sectors of economy 

and reaches well beyond the area experiencing physical drought. The impacts of drought 

are generally classified as economic, environmental, and social (Wilhite, 1992). Effects of 

a drought can be categorized as direct or indirect because of the dynamic nature of drought. 

Some direct impacts of drought can be given, such as reduced crop, forest productivity, 

increased fire hazard, reduced water levels, increased livestock and wildlife mortality 

rates, and so forth. Indirect impacts are the consequences of these direct impacts. As an 

illustration, reduced income for farmers and agri-business, increased prices for food and 

timber, unemployment, increased crime, migration and so on are the indirect impacts of 

drought phenomenon. Figure 1 shows the relationship between different types of drought 

and their impacts. 

 

2.4 Drought indices 

Drought indices are used to characterize and quantify drought severity by 

assimilating data from one or several variables, such as precipitation and soil moisture. 

The number of drought indices which have been proposed so far are more than one-

hundred. Drought indices are commonly categorized, based on types of drought impacts, 

such as meteorological, agricultural, and hydrological. Drought Preparedness Council 

(DPC) has developed three types of functional assessment in State of Texas Drought 

Preparedness Plan which was released in 2005: climatological assessment, agricultural, 

and water availability assessment. The DPC uses twelve different drought indices for 
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climatological, agricultural, and water availability assessments. Some popular drought 

indices which are used for meteorological, agricultural and hydrological droughts can be 

listed as follows: 

 Standardized precipitation index (SPI) 

 Palmer drought severity index (PDSI) 

 Effective drought index (EDI) 

 Crop moisture index (CMI) 

 Surface water supply index (SWSI) 

 Vegetation condition index (VCI) 

 Standardized runoff index (SRI) 

 Percent of normal (PN) 

 Rainfall decile based drought index (RDDI) 

 Normalized difference water index (NDWI) (remote sensing based) 

 China-Z index (CZI) 

 

In this work, SPI and EDI were used to characterize drought and quantify drought 

hazard and for risk assessment. Therefore, the following section discusses the SPI and the 

EDI and their limitations and advantages. 
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Figure 1. Relationship between various types of drought and duration of drought 

events, data source: (National Drought Mitigation Center, University of Nebraska-

Lincoln, U.S.A.) 

 

 

2.4.1 Standardized precipitation index 

The Standardized Precipitation Index (SPI) was developed by McKee et al. (1993) 

to identify and monitor local droughts. The SPI is based on the probability of precipitation 

for multiple time scales. Short-term or long-term drought and dry or wet conditions can 

be defined by using the SPI for different timescales (1, 3, 6, 9, 12, 48 month SPI, etc.). At 

least 20-30 years of data are required to calculate the SPI (Guttman, 1994). Long-term 

precipitation record for any desired time scale is fitted to a gamma probability distribution 

and then transformed into a normal distribution. As a result, the SPI reflects the number 
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of standard deviations that a particular event deviates from the normal conditions. The SPI 

is one of the most popular drought indices used worldwide: Turkey, Greece, China, Italy, 

North Africa, India, Spain, Europe and so forth. The U.S. National Drought Mitigation 

Center and the U.S. Western Regional Climate Center compute the SPI for monitoring 

drought and they advocate the SPI over the traditional PDSI (Redmond, 2000). 

 

2.4.2 Effective drought index 

The Effective Drought Index (EDI) was developed by Byun and Wilhite (1999) 

for the purpose of defining and monitoring drought and its onset, end, and accumulated 

stress. Effective precipitation concept was defined to calculate the EDI. The EDI is 

calculated originally at a daily timestep (Akhtari et al., 2009; Kim et al., 2009). However, 

it can be calculated from monthly rainfall data, even though its original form is computed 

from daily data (Dogan et al., 2012; Pandey et al., 2008). The EDI is not as popular a 

drought index as is the SPI. Its calculation has some complexity and difficulties in 

calculation. Dogan et al. (2012) state that the EDI is preferable for monitoring long term 

droughts, even if the input data is monthly rainfall.   

 

2.4.3 Strengths and limitations of the EDI and the SPI 

The only input parameter is precipitation for the SPI. This can be a strength or a 

limitation of the SPI based on different points of view. The SPI can be computed on a 

monthly or yearly time scale, provides monitoring of drought and helps assess the drought 

severity. The SPI is less complex than many other drought indices like the Palmer drought 



 

12 

 

severity index. It is flexible for multiple timescales and easy to compute. However, soil 

water-balance component and evapotranspiration (or potential evapotranspiration) are not 

used to calculate and this can be viewed as a weakness of the SPI. Furthermore,   the 

probability distribution due to the length of data plays an important role for the calculation 

of the SPI (Mishra and Singh, 2010). 

The EDI is a time independent index and can computed both daily and monthly. 

The EDI overcomes to identify the onset and end of a drought and calculates drought 

duration (Byun and Wilhite, 1999). Similar to the SPI, long term precipitation is the only 

input data for the EDI. 

 

2.5 Drought risk assessment 

Risk assessment of a natural hazard is often difficult and complicated. Although 

some studies have attempted to address risk assessment, they are still limited in literature. 

A methodology to identify and measure disaster risk has not yet been developed (Du and 

Lin, 2012). In a seminal work Kates and Kasperson (1983) worked on risk assessment that 

has corroborated later by Smith (1996), Wilson and Crouch (1987), and O'Brien (2000). 

Risk assessment is composed of three components: 

(i) Identification of hazard, 

(ii) evaluation  of social consequences, and  

(iii) estimation of risk and vulnerability  

 

Hazard and vulnerability components can be used to identify drought risk (Wilhite, 

2000). Although drought risk is difficult and complex, it can be quantified from both 
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“hazard” and “vulnerability.” Hazard analysis mainly determines the probability of a 

natural disaster occurrence, while vulnerability analysis focuses on environmental, social, 

or physical factors. Even though, hazard and vulnerability assessments have been made 

by some researchers, there are still considerable shortcomings in their combinations (Du 

and Lin, 2012). 

 Kim et al. (2013) worked on drought a risk concept in South Korea by using the 

EDI. They focused on the combination of drought hazard and vulnerability to quantify 

drought risk. Drought hazard was detected from the probability of occurrence by using 

daily EDI. Vulnerability was analyzed using various inflation factors to normalize 

vulnerability indicators which were selected for the study area.  An index was generated 

for each hazard and vulnerability to obtain a drought risk index by multiplying both hazard 

and vulnerability. 

 Sonmez et al. (2005) analyzed spatial and temporal dimensions of meteorological 

drought vulnerability in Turkey by using 3, 6, 12, and 24 month SPI. The SPI was 

computed by the classical gamma distribution approach which is explained by Guttman 

(1999). The frequency of drought occurrence and its spatial distribution were used to 

identify drought- prone areas and vulnerability.  The study defined a threshold rainfall to 

determine the minimum moisture input required for non-drought conditions. 

 Chen et al. (2001) addressed a regional model, based on both hydrological and 

economic activities, and water resource availability in the San Antonio EA region. The 

Canadian Climate Center Model (CCC) and the Hadley Climate Center Model (HAD) 

were run by using greenhouse gas and sulfate emission scenarios published by 
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Intergovernmental Panel on Climate Change. Historical temperature and precipitation data 

from period 1966 to 1995 were used. Climate conditions in the EA were forecasted for the 

period 2001 to 2100 by using the CCC model and the HAD model. Results showed that 

changing climatic conditions reduced the water source and increased water demand in the 

EA region. Besides, regional welfare loss of $2.2-$6.8 million per year arose due to the 

climate change and pumping could be reduced by 9-20 % to maintain the desired level for 

spring flows. 

 Zelenakova et al. (2012) investigated precipitation-temperature trends by using the 

non-parametric Mann-Kendall test for drought risk. They claim that there is high 

correlation between drought and these parameters. Meteorological drought was assessed 

by the non-parametric Mann-Kendall test. This test is simple, robust and copes with 

missing values and values below a detection limit. Ferrier and Haque (2003) proposed a 

standardized framework for hazards risk assessment for mitigation of natural hazards. The 

framework includes numerical ranking of the frequency of the event in a specific 

community, based on the potential impact characteristics of a worst scenario.  Dilley et al. 

(2005) projected relative levels of risks of disaster-related mortality, and economic losses 

were calculated for the population and gross domestic product (GDP) (based on 2.5’ x 2.5’ 

latitude-longitude grid cells). Results showed that drought risk areas were much more 

spatially extensive, with mortality risks and risks of economic losses in proportion to GDP. 
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3. METHODOLOGY 

 

In this study, setting a conceptual risk model was aimed for regional drought that 

separates assessment into three sections: hazard analysis, vulnerability assessment, and 

risk assessment based on Standardized Precipitation Index (SPI) and Effective Drought 

Index (EDI). This section outlines the methodology used in the study. Drought risk 

assessment consists of two parts: drought hazard analysis and vulnerability analysis. 

Drought hazard index (DHI), in this study, was determined separately for two different 

drought indices which are the SPI and the EDI. A schematic presentation of the 

methodology that has been followed as shown in Figure 2.  

 

3.1 Drought characteristics 

Some quantities of drought need to be analyzed in order to monitor, quantify, and 

interpret a drought. These quantities are known as duration (D), severity, magnitude (M), 

frequency, and intensity (I). There is not a universal usage of these terms. Meaning and 

usage of these terms have been switched at one time or another. For instance, while 

Yevjevich (1967) uses the terms of run-sum, run-length, and run-intensity, Dracup et al. 

(1980) use severity, duration, and magnitude. In this study, the mostly adopted 

terminology was used, such as duration, magnitude, and intensity. A drought begins any 

time when the drought index (DI) (the drought index, in this section, refers to the SPI or 

the EDI) is continuously negative and reaches an intensity of -1.0 or less. 
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Figure 2. Procedure for calculating hazard-vulnerability and risk index 

 

Drought ends when the DI becomes positive. Duration is defined as the period 

between drought onset and end time. Magnitude is the accumulated deficit of water (e.g. 

precipitation) during the drought. In other words, magnitude is defined as the positive sum 

of the DI for all the months within a drought event. Intensity is defined as the drought 
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magnitude by dividing the duration. Return period (R) is the duration between two 

consecutive drought events and interarrival time (T1 and T2) refers to the period of time 

from the onset of a drought to the onset of a next drought event, as shown in Figure 3. 

Drought classifications of drought indices are shown in Table 1 (Dogan et al., 2012; Kim 

et al., 2009). 

 

 

Figure 3. Drought characteristics and drought terms (source: modified from 

Dogan, S., Ph.D. Thesis (2013) 

 

Table 1 Drought category according to drought indices 

Drought 
Index 

Extreme 
Drought (ED) 

Severe 
Drought (SD) 

Moderate 
Drought (MD) 

Near 
Normal (NND) 

SPI ≤ -2.00 (-1.99) - (-1.50) (-1.49) – (-1.00) (-0.99) – (0.99) 
EDI ≤ -2.00 (-1.99) - (-1.50) (-1.49) – (-1.00) (-0.99) – (0.99) 
*Wet condition is not shown. 
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3.1.1 Calculations of drought indices 

In this chapter, the method of calculations of drought indices which are used in the 

thesis study will be shown. There are 31 rain-gauge stations located in the EA. The SPI 

and the EDI analysis was addressed, based on these rain-gauge stations. The SPI and the 

EDI calculations constitute the first part of the risk assessment model which is called the 

hazard assessment.  

 

3.1.1.1 Standardized precipitation index 

The SPI calculation is based upon the long-term precipitation data for different 

time steps (the time steps used in this study are 1, 3, 6, 9, 12, 24, 36 months). In the 

classical approach of obtaining an SPI, the cumulative distribution function of 

precipitation totals is formed from the fitted frequency distribution. Then the probabilities 

from the fitted cumulative distribution function are transformed to the standard normal 

distribution by using the inverse standard normal distribution. The method, therefore, 

consists of a transformation of one probability distribution (e.g., gamma or Pearson type 

III) to another (standard normal distribution). 

This study used the gamma distribution which is defined by its probability density 

function: 

 
𝑔(𝑥) =

1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒−𝑥 𝛽⁄ ,    for 𝑥 > 0   (1) 

   

where α >0 is α shape parameter, β >0 is a scale parameter, and x >0 is the amount of 

precipitation. Γ(α) is the gamma function. Fitting the distribution to the data requires α 
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and β to be estimated for each station, for each time-scale of interest (1, 3, 6, 9, 12, 24, 

and 36 months). Using the approximation (the maximum likelihood method) of  Thom 

(1958), these parameters were estimated as follows: 

 

 
𝛼 =

1

4𝐴
(1 + √1 +

4𝐴

3
)  𝑎𝑛𝑑  𝛽 =

�̅�

𝛼
 (2) 

 

 
𝐴 = ln(�̅�) −

∑ ln (𝑥𝑖)𝑛
𝑖=1

𝑛
 

(3) 

     

where n is the number of observations, and �̅�  is the mean of observed values. These 

parameters were then used to find the cumulative probability of an observed precipitation 

for the given time scale. Integrating the probability density function with respect to x 

yields the following expression G(x) for the cumulative probability: 

 

 
𝐺(𝑥) = ∫ 𝑔(𝑥)𝑑𝑥 =

1

𝛽𝛼Γ(𝛼)
∫ 𝑥𝛼−1

𝑥

0

𝑥

0

𝑒−𝑥 𝛽⁄ 𝑑𝑥 (4) 

 

Equation (4) is the incomplete gamma function. Thom (1966) used tables of the 

incomplete gamma function to define G(x), the cumulative probability. It is possible to 

have several zero values in a sample set and the gamma distribution is undefined for zero 

values. Thus, the cumulative probability was defined as 
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 𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥) (5) 

where q is the probability of a zero precipitation value. If m is the number of zeros in a 

given dataset of n values, then q can be estimated by m/n (Thom, 1966). H(x), the 

cumulative probability, was transformed to the standard normal random variable Z (or the 

SPI value). The SPI value, which is obtained from the standard normal distribution has 0 

mean and variance of 1. This transformation is illustrated in Figure 4. Besides, the standard 

normal distribution has to be defined to understand the transformation concept and the 

relation between the SPI and the z-score.  Abramowitz and Stegun (1965) provided an 

approximation to convert the cumulative probability to the standard normal random 

variable Z as 

 

 
𝑍 = − (𝑡 −

𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2

1 + 𝑑1𝑡 + 𝑑2𝑡2 + 𝑑3𝑡3
) for 0 < 𝐻(𝑥) ≤ 0.5 (6) 

 

 
𝑍 = + (𝑡 −

𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2

1 + 𝑑1𝑡 + 𝑑2𝑡2 + 𝑑3𝑡3
) for 0.5 < 𝐻(𝑥) ≤ 1.0 (7) 
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Figure 4. Example of equiprobability transformation from fitted gamma distribution to the standard normal distribution 
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where 

 𝑡 = √𝑙𝑛 (
1

(𝐻(𝑥))2
) for 0 < 𝐻(𝑥) ≤ 0.5 (8) 

 

 𝑡 = √𝑙𝑛 (
1

(1 − 𝐻(𝑥))2
) for 0.5 < 𝐻(𝑥) ≤ 1.0 (9) 

 

𝑐0 = 2.515517 
𝑐1 = 0.802853 
𝑐2 = 0.010328 
𝑑1 = 1.432788 
𝑑2 = 0.189269 
𝑑3 = 0.001308 

(10) 

 

Z in equations (6) and (7) refers to the SPI value. Figure 5 shows the standard 

normal distribution for the SPI with mean of zero and variance of 1. 1-month (January) 

SPI for the Blanco station was calculated to illustrate and explain the SPI calculation 

which is detailed above. First of all, all January average rainfall values were picked out 

from between 1948 and 2013. Then, A, α, and β parameters were estimated. In this way, 

to compare the results for this estimation, three different tools were used: MATLAB 

programming, @RISK software, and by formula. The results for the shape and scale 

parameters of gamma distribution are as follows: 
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Figure 5. Standard normal distribution for the SPI (expected value and variance are 

0 and 1, respectively) (source: contributed by Keyantash) 

 

Table 2 Parameter estimation of gamma distribution 

Parameters MATLAB @RISK Formula* 
α (shape) 1.1627 1.2314 1.2337 
β (scale) 43.7302 41.5780 41.2174 

*Parameters for formula: mean=50.85 mm, n=66 (years), A=0.46 

 

Then, to obtain results, the incomplete gamma function has to be solved, based on 

the estimated parameters. Matlab programming, for this goal, was used to solve 

incomplete gamma function. After the cumulative probability G(x) was obtained, the 

cumulative probability H(x) values were found for transforming to the standard normal 

distribution.  

Figure 4 illustrates the transformation from the fitted gamma to the standard 

normal distribution to obtain the SPI values. In this example, 1-month SPI (January) was 

calculated for 66 years between 1948 and 2013. Two transformation examples are shown 
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in Figure 4. The numbers are given 1 and 2 for the rows, line dash and solid, respectively. 

25 mm and 99.1 mm observed precipitation values were used to determine the SPI values. 

Finding the SPI value for the 25 mm precipitation, go vertically upwards from the 25 mm 

mark on the x-axis on the left of Figure 4 until the curve is intersected. Then go 

horizontally to the right until the standard normal cumulative distribution curve is 

intersected. Then, keep on vertically downward to the x-axis on the right of Figure 4. 

Results of this transformation are roughly -0.42 and +1.13 for the 25 mm and 99.1 mm 

precipitation observation, respectively. Other time-scales were calculated by moving 

average in the same way. For instance, 3-month SPI for March: January, February, and 

March precipitation amount was used. 6-month SPI for March: October, November, 

December, January, February, and March. 

 

3.1.1.2 Effective drought index 

Long term precipitation data was used to calculate the EDI like the SPI. The EDI, 

however, is calculated only once, because the EDI is a time step independent index. The 

EDI is a function of the precipitation necessary to the return to normal condition (PRN). 

The EDI is calculated as follows. The first step is to compute the monthly effective 

precipitation (EP): 

 

 
𝐸𝑃 = ∑ [(∑ 𝑃𝑖

𝑚

𝑖=1

) 𝑚⁄ ]

𝑁

𝑚=1

   (11) 
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where 𝑃i is the precipitation and N is the duration of the preceding period. 

Then the mean EP (𝐸𝑃̅̅ ̅̅ ) is calculated to compute the deviation of effective precipitation 

(DEP) 

Mean EP (𝐸𝑃̅̅ ̅̅ ) is an EP calculated by using the averaged precipitation for 30 years. 

 𝐷𝐸𝑃 = 𝐸𝑃 − 𝐸𝑃̅̅ ̅̅       (12) 

 

                                                       

PRN is determined from 

 
𝑃𝑅𝑁 = 𝐷𝐸𝑃 ∑

1

𝑖

𝑁

𝑖=1

⁄    (13) 

 

 

Finally, the EDI is calculated as 

 𝐸𝐷𝐼 = 𝑃𝑅𝑁 𝜎𝑃𝑅𝑁⁄                      (14) 

  

where 𝜎𝑃𝑅𝑁  is the standard deviation of the PRN values (for relevant months). EDI was 

developed normally for the daily time-steps. Therefore, monthly EDI program code was 

used for calculation of monthly time-step EDI.    

     

3.2 Mapping and auxiliary tools 

Mapping is an essential part of the illustration of spatial drought as a visual and 

effective tool to compare and depict how drought is distributed in a region. All drought 
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maps in this study, based on SPI and EDI, were created by using the Arc GIS 10.1 

(ArcMap, ArcCatalog, ArcView) software. Three techniques, such as kriging interpolation 

method, natural breaks method and the Thiessen polygon method, were used to generate 

drought mapping in hazard assessment, and vulnerability analysis. 

 

3.2.1 Kriging interpolation method  

The kriging interpolation method used in hydro-science for interpolation and 

spatial analysis has proven quite accurate (Delhomme, 1978). Kriging is a useful spatial 

statistical technique, such as a point interpolation technique, to evaluate groundwater 

levels, estimate missing precipitation values, and so on. The kriging method is used mostly 

in geology and soil science. An example of kriging, which was created by using ArcMap 

10.1 is shown in Figure 6. 

 

3.2.2 Natural breaks method 

The natural breaks method (NBM) is a classification method and generates a best 

arrangement of data for different classes.  The NBM counts similar values and classifies 

similar arrangements. The NBM method works as an iterative process. The process uses 

some steps, such as calculation of the sum of squared deviations between ranges and 

calculation of the sum of squared deviations from the array mean. An accurate 

classification can be generated by using the NBM.  
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3.2.3 Thiessen polygon 

The Thiessen polygon approach is probably the most common method used in 

hydrometeorology. Polygons are generated from a set of sample points. Each Thiessen 

polygon defines an area of influence around its sample point, so that any location inside 

the polygon is closer to that point than any other sample points. The GIS environment was 

used to determine the spatial extent of each rain gauge station. The Thiessen polygon 

method, in this study, was used to obtain the effective area of each rain gauge station. This 

effective area of each station was used to obtain the DHI as an auxiliary tool. 

 

 

Figure 6. Probability of severe drought occurrence based on the EDI 
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3.2.4 Spatial variation 

The EA region includes 12 counties and only one county (Bandera) is totally 

within the EA while Medina, Kendall, Kerr, Real, and Comal counties are mostly located 

in the EA. In this study, therefore, creating three spatial variations was aimed at by using 

the NBM to generate the hazard map. The EA was divided into 3 regions, based on the 

rainfall distribution, by using the NBM. In this way, each region has an accurate average 

rainfall range which is created by using an algorithm (the natural breaks method). Figure 

7 illustrates the EA regions which are created by using the NBM. While the east of the EA 

has the highest average precipitation, the west of the EA has the lowest average rainfall 

distribution. 

 

 

Figure 7. Spatial variations of the Edwards aquifer region 
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3.3 Drought hazard assessment 

 After the calculation of the SPI and the EDI, the next step is to determine the 

drought occurrence probability and then to define the weights and the ratings to create the 

drought hazard index (DHI). In this study, drought occurrences in the EA were examined, 

based upon the frequencies of events for each drought category for different time steps. 

“The percentages of drought occurrence are obtained by taking the ratio of drought 

occurrences in each time step to the total drought occurrences in the same time step and 

drought category” (Sonmez et al., 2005). The drought occurrence probabilities were 

calculated by using each drought event for all stations in the EA. 

In this study, to quantify drought hazard by using the occurrence probability and 

severity, ratings and weights were assigned. First, the weights, from 1 to 4, were assigned 

according to the SPI and the EDI, based on Table 1. The assigned weights for the DIs are 

shown in Table 3. 

 

Table 3 Assigned weights for the SPI and the EDI 

Drought 
Index 

Extreme 
Drought (EDw)* 

Severe 
Drought (SDw) 

Moderate 
Drought (MDw) 

Near 
Normal (NNDw) 

SPI 4 3 2 1 
EDI 4 3 2 1 

* “w” is abbreviation the weight as shown subscript 

 

Second, the ratings were assigned from 1 to 4 by evenly dividing the range of 

occurrence probabilities. Finally, DHI was calculated by combining the weights and the 

ratings as follows: 
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 𝐷𝐻𝐼 = (𝑁𝑁𝐷𝑟 × 𝑁𝑁𝐷𝑤) + (𝑀𝐷𝑟 × 𝑀𝐷𝑤) + (𝑆𝐷𝑟 × 𝑆𝐷𝑤) + (𝐸𝐷𝑟 × 𝐸𝐷𝑤) (15) 

 

This formulation was applied to both the SPI and the EDI in order to calculate the 

DHI. Then, the DHI based on the SPI and the EDI was abbreviated as DHISPI and DHIEDI, 

respectively.  All drought categories, which are shown in Equation 15, were abbreviated 

with drought category and subscript denoting ratings and weights, for example, rating of 

near normal was abbreviated as 𝑁𝑁𝐷𝑟 and weight of severe drought as 𝑆𝐷𝑤. If the rating 

is 1 for all drought conditions, NND, MD, SD, and ED, the minimum DHI would be 10 

(=1x1+1x2+1x3+1x4). If the rating is 4 for the all conditions, the maximum DHI would 

be 40 (=4x1+4x2+4x3+4x4). Then, DHI was re-scaled throughout the normalization 

method from 10-40 range to 0-1, as shown in Equation 16: 

 

 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑒𝑖) =

𝑒𝑖 − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
 

(16) 

 

where 

Emin  = the minimum value for variable E 

Emax  = the maximum value for variable E 

ei = normalized value 

 

Then, the DHI was classified into four classes, such as “Low”, “Moderate”, “High”, and 

“Very High” as shown in Table 4. 
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Table 4 DHI classification by range 

DHI range DHI classes 

0≤DHI<0.25 Low 

0.25≤DHI<0.50 Moderate 

0.50≤DHI<0.75 High 

0.75≤DHI<1.0 Very High 

 

3.4 Drought vulnerability assessment 

Vulnerability has different definitions like drought for different communities and 

disciplines. International Strategy for Disaster Reduction (UN/ISDR) defines vulnerability 

as ‘The conditions determined by physical, social, economic, and environmental factors 

or processes, which increase the susceptibility of a community to the impacts of hazards.’ 

Vulnerability is difficult to define because of its dynamic character and its changing nature 

from region to region. Therefore, vulnerability indicators are defined, based on local 

context and the particular hazard  (United Nations Development Programme, 2004). Seven 

drought vulnerability indicators were selected based on socio-economic and physical 

effects after careful consideration of obtainable and quantifiable indicators in the EA 

region. The indicators which were defined for the study area are population density, 

poverty level, irrigated land, municipal water, industrial water, agricultural water, and 

market value of products. 

The assumptions regarding vulnerability to each of the indicators are described as 

follows: 
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1. Population density (PD): Population density represents a measurement of 

population per square mile. Natural disasters will affect more people when they 

happen in high population areas compared to less populated areas.  

2. Poverty level (PL): Poverty level, in this study, is defined as the percentage of 

people who live below the lower poverty level in the area. There is a high link 

between poverty level and vulnerability. When poverty level decreases, 

vulnerability of people who have lower poverty level would increase. 

3. Irrigated land (IL): Irrigated land is the area in acres used by farmers in each 

county. There is a high correlation between irrigated land and water demand. In 

the EA region, groundwater and surface water are used for irrigation, and the 

availability of these water resources is related to the meteorological drought. 

4. Municipal water (MW): Municipal water is supplied from the Edwards Aquifer 

for the people who live in the region. Therefore, fluctuation in water resources due 

to drought is crucial for the people who live in that area. 

5. Industrial water (IW): Industrial water, in this study, represents the total of 

manufacturing, mining, and steam electric power water uses in the region. 

6. Agricultural water (AW): Agricultural water represents the sum of irrigation and 

livestock water usage. Water availability is directly related to agricultural use and 

water scarcity affects the crop yield. That means that the area, which demands 

more water use for agriculture, is more vulnerable than others. 

Note: Total water (groundwater + surface water) input data was used for municipal, 

industrial, and agricultural water vulnerability indicators. The total water use in the 

region is 81 % groundwater and 19 % surface water 

. 

7. Market value of products (MVOP): The market value of products illustrates the 

livestock sales and crop sales in the US Dollars. While some counties have higher 

livestock sales (e.g., Bandera livestock sales: 89%-$9,925,000, crop sales: 11%-

$1,263,000), others can be have higher crop sales as a percentage (e.g., Bexar 

county livestock sales: 24%-$17,682,000, crop sales: 76%-$54,705,000) (National 
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Agricultural Statistics Service of USDA, 2012). However, Bexar has higher 

livestock sales in US dollars, although Bandera has a higher percentage of 

livestock sales. Therefore, the use of percentage can lead to errors for the 

vulnerability assessment.  In this regard, to use the total market value of products 

sold in monetary units is more realistic instead of the percentage of the product 

sold.     

Four classes, ranging from the lowest to the highest values, were selected for the 

indicators which have been discussed above. The natural breaks method was used for 

grouping the classes. For all the indicator classes, higher values are given higher ratings 

and vice versa for lower ratings. The natural breaks method counts similar values and 

classifies similar ranges according to an algorithm that uses the average of each range to 

distribute the data more evenly across the ranges. ArcMap 10.1 was used to identify and 

analyze the natural breaks points in the data with the GIS software. The highest rating was 

4, while the lowest rating was 1. After the all indicators are given ratings, the composite 

drought vulnerability index (DVI) of the integrated layers was defined from the indicators 

as follows: 

 

DVI =
PDr + PLr + ILr + MWr + IWr + AWr + MVOPr

Number of indicators
 

(17) 

 

The rating of population density (PD) was abbreviated as PDr, and all other ratings 

of the indicators were abbreviated similar to PDr. Based on the DVI calculation in equation 

(17), the maximum DVI would be 4 (=28/7), and the minimum DVI would be 1 (=7/7). 

This range was normalized from 1-4 to 0-1 by using equation (16). After normalization of 
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the values, DVI would be between 0 and 1. Figure 8 shows ranges for the percentage of 

people living below poverty level in the region for four classes.  

 

 

Figure 8. County level drought vulnerability indicator, percentage of people living 

below the poverty level 

 

Based on this classification, ratings poverty levels in each county are shown in Table 5. 

 

Table 5 Drought vulnerability ratings in county level for percentage of people living 

below the poverty level 

County Rating 
Kinney, Uvalde 4 
Bexar, Edwards, Medina, and Real 3 
Bandera, Hays, and Kerr 2 
Blanco, Comal, and Kendall 1 
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3.5 Drought risk assessment 

In this study, a conceptual risk model was developed by using observed 

precipitation data and socio-economic data in the EA region. Risk depends on both hazard 

and vulnerability. Therefore, drought risk index (DRI) was calculated my multiplying 

drought hazard index (DHI) and drought vulnerability index (DVI) as follows(Blaikie et 

al., 1994; Downing and Bakker, 2000; Wilhite, 2000): 

 

 DRI = DHIxDVI (18) 

 

Four discrete classes were used for both hazard and vulnerability: low (0-0.25), 

moderate (0.25-0.50), high (0.50-0.75), and very high (0.75-1.00). Correspondingly, risk 

was classified into four classes using the same description but different value ranges, as 

shown in Table 6. 

 

Table 6 Classification of hazard (H), vulnerability (V), and risk (R) for the spatial 

drought risk assessment 

Class R=H×V H V 
Low 0.000-0.0625 0.00-0.25 0.00-0.25 
Moderate 0.0625-0.250 0.25-0.50 0.25-0.50 
High 0.250-0.5625 0.50-0.75 0.50-0.75 
Very High 0.5625-1.000 0.75-1.00 0.75-1.00 

 

The drought risk can be represented by plotting hazard versus vulnerability (Figure 

9). The risk was divided into four classes by using three hyperbolas: H=0.0625/V, 

H=0.250/V, and H=0.5625/V.   
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Figure 9. Drought risk classification 
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4. STUDY AREA AND DATA 

4.1 Study area 

The Edwards Aquifer (EA), shown in Figure 10, is a unique groundwater system 

and one of the most prolific artesian aquifers in the world that provides water resources 

for nearly 2,000,000 people in south-central Texas. Furthermore, the aquifer provides 

water for agricultural, industrial, recreational and domestic needs throughout the aquifer 

region; approximately 54 percent is used for municipal supply. The EA which is also 

known as the Edwards (Balcones Fault Zone) aquifer is located in an area of about 8,000 

square miles. This area represents, twelve counties in the EA region.  

 

 

Figure 10. The Edwards Aquifer Region (divided by contributing, recharge, 

transition and artesian zones). (source: http://www.edwardsaquifer.net/) 

 

 

http://www.edwardsaquifer.net/glossary.html#groundwater
http://www.edwardsaquifer.net/glossary.html#artaquifer
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4.1.1 Geology 

The EA is a karst aquifer which is an intensely faulted and fractured carbonate 

limestone (Edwards Aquifer Authority, 2013). The dynamics and size of this geologic 

anomaly make it one of the most miraculous aquifers in the nation, by virtue of its storage 

capacity, flow characteristics, water producing capabilities and efficient recharging 

ability. Most of the south-central Texas region is from subjacent cretaceous age, which 

forms the Edwards Plateau. East and south of the plateau are upper cretaceous chalk, 

limestone, clay, and dolomite with the extensive EA system, marking the boundary 

between the Edwards Plateau and the Gulf Coastal Region (Arnow, 1963). The topography 

consists of a gently rolling plain to the east and moderately hilly country to the west. The 

altitude of the land surface ranges from about 152.4 m (500 feet) above mean sea level 

near the Colorado River in Austin to about 457.2 m (1,500 feet) above mean sea level in 

Uvalde County. 

 

4.1.2. Climate and meteorology 

Texas has been divided into 10 separate climatic regions and most of the EA is 

within the Edwards Plateau. The south-central Texas region consists of three climatic 

divisions in Texas as the Edwards Plateau, and the South-central and Upper Coast 

divisions. The climate of the region is classified as humid subtropical. Summers are mostly 

hot and humid and winters are often near normal and dry. The hot weather is quite 

persistent from late May through September. The cool season starts beginning about the 

first of November and extending through March and is typically the driest season of the 
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year as well. Winters are generally short and mild with most of the precipitation falling as 

drizzle or light rain. Any accumulation of snow is a rare occurrence. The average annual 

precipitation ranges from about 559 mm (22 inches) in the west to about 864 mm (34 

inches) in the east (USGS). 

Most of Texas has pronounced bimodal regimes with peak levels of rainfall 

occurring both during May-June and September-October based on reports of NDMC 

(National Drought Mitigation Center, http://drought.unl.edu/). Figure 11 shows the 

average monthly precipitation for the EA, where peak levels are in May-June and 

September-October. 

 

 

Figure 11. Distribution of precipitation throughout the years, Edwards Aquifer 

Region 
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4.2 Data 

The material which is used in this study is monthly precipitation data set that 

pertains to stations which are located in the EA region. Selection of stations is aimed at 

the thirty-one spatially distributed stations in the EA. There are 12 counties within the EA 

and there have been more than three hundred stations in these counties, based on the 

National Oceanic and Atmospheric Administration (NOAA) database system. Some 

stations, however, are not active and most of the stations started to record in the last ten 

years. A minimum of 20 years of data is needed for statistical analysis (Guttman, 1994). 

Wu and Wilhite (2004) say that the longer the length of data set used in drought index 

calculation, the more reliable drought index values will be. Location of thirty-one stations, 

shown in Figure 12, were obtained from the NOAA.   

 

 

Figure 12. Location of rain gauge stations, Edwards Aquifer, Texas 
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Not all stations have accurate data, and some of them have missing data. All 

missing data were filled in by using the normal ratio method which is explained in the next 

section. Hondo station which is located in the artesian zone of the EA has the longest data 

of 113 years. Thirteen stations have more than 50 years of data set, while eleven stations 

have less than 30 years (at least 20 years). All precipitation data have at least 20 years of 

historical records and all records that have been used are till 2013. While some counties 

have only one station, such as Kinney, Bexar, and Blanco, other counties have two or more 

stations. Comal county has the most number of stations as five stations.  

 

4.2.1 Estimation of missing data 

Many rain gauge records do not have complete data. Gap lengths may change from 

one or two days to several years. Estimates of missing data were made, in order to keep 

continuity of the monthly precipitation time series for this study. Several techniques have 

been used to fill the gaps (missing observations) in data. Several methods have been used 

for estimating missing data, including arithmetic mean method, normal ratio method, 

Inverse distance method, modified inverse distance method, linear programming, areal 

precipitation ratio method, isohyetal method, and Lagrange method. 

The normal ratio method is one of the most popular methods for estimating 

precipitation data (De Silva et al., 2007). In this study, the normal ratio method has been 

used to fill in missing data of the rain gauge stations. If any surrounding gauges have the 

normal annual precipitation exceeding 10 % of the considered gauge, this method is used.  
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 The missing data are estimated as 

 

 
𝑃𝑥 =
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 (19) 

 

where, Px  = The missing precipitation value for the station X, Pi   = The precipitation values 

at surrounding stations, Nx = The normal annual precipitation of station X, Ni  =The normal 

annual precipitation of surrounding stations, and m = The number of surrounding stations 

(m is usually 3). 
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5. RESULTS AND DISCUSSION 

 

In this section, analysis of drought hazard, vulnerability and risk assessment are 

described. First, drought analysis by using SPI and EDI is explained for each station which 

is located in the EA region. Then, drought characteristics and probability of drought 

occurrences are addressed. After that regional drought assessment is illustrated and finally 

county level hazard and vulnerability quantification is assessed to depict drought risk 

assessment.  

 

5.1. Drought assessment  

Drought is a natural phenomenon detecting its onset and end time. Drought 

characterizations were detected to analyze drought hazard and next sections discuss 

drought assessment in the EA region that has been investigated based on the SPI and EDI. 

 

5.1.1. Standardized precipitation index 

There are 31 rain-gauge stations located in the EA and SPI calculation was 

addressed based on these stations. Drought quantifications based on SPI were identified 

according to the method described in section 3.1.1.1. As an illustration, Blanco rain-gauge 

station (see Appendix for the stations and referring to numbers) SPI results have been 

shown in Table 7 and Table 8, respectively, for 12-month and 24-month time scales.   
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Table 7 Drought characteristics based on SPI-12, Blanco station 

Onset End D* M* I* Drought  

Severity 

Interarrival 

Time 

(month) 

Year Month Year Month      

1948 12 1949 4 4 3.52 0.88 Moderate  
1953 11 1957 4 41 65.41 1.60 Extreme 59 
1962 7 1965 2 31 25.46 0.82 Severe 104 
1966 12 1968 1 13 12.47 0.96 Severe 53 
1970 10 1972 5 19 18.96 1.00 Extreme 46 
1977 9 1979 1 16 6.89 0.43 Moderate 83 
1980 2 1980 11 9 4.34 0.48 Moderate 29 
1982 6 1983 8 14 7.41 0.53 Moderate 28 
1984 2 1985 3 13 7.8 0.60 Moderate 20 
1988 6 1990 9 27 12.4 0.46 Moderate 52 
1995 10 1997 2 16 12.93 0.81 Severe 88 
1999 9 2000 11 14 21.26 1.52 Extreme 47 
2005 10 2007 5 19 25.84 1.36 Extreme 73 
2008 5 2010 1 20 31.98 1.60 Extreme 31 
2011 3 2012 9 18 22.7 1.26 Extreme 34 

*Abbreviations refer to “D: Duration in month, M: Magnitude, I: Intensity”   

 

Table 7 explains the drought starting and ending time as a year and month. 

Duration, magnitude, and intensity identify the drought characteristics and finally 

interarrival time refers to the period of time between the beginning of a drought and the 

beginning of the next one. For example, the first drought event begins in December 1948 

and the next consecutive drought event begins in November 1953 and the interarrival time 

is 59 months. Non-drought duration also can be inferred by using “drought duration” and 

“interarrival time.” Interarrival time is the sum of drought duration and non-drought 

duration. For instance, non-drought duration is 54 (=59-4) months for first consecutive 

drought event (Table 7). The total drought event is 30 based on 12-month SPI at Blanco 

station since 1948 to 2013, the drought during 1953-1957 is the longest drought (41 
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months) with highest magnitude (65.41) and the highest intensity (1.60). This is a 

coincidental circumstance for all highest values belonging to the same drought event. 

Since drought event (between 2008 and 2010) has also highest intensity (1.60) even if 

duration and magnitude don’t have the highest value.  According to the historical reports, 

Texas has faced drought problem in the 1950s and the problem appeared in the last decade. 

Table 7 shows that there were four extreme drought events observed in last 14 years and 

last two drought event have pretty short non-drought duration. Figure 13 illustrates 

drought events 12-month and 24-month SPI versus years as visual. Figure 13a shows 

clearly the extreme drought event between 1953 and 1957 and other severe, moderate and 

wet conditions. Moderate and extreme drought events have equal occurrences while severe 

drought occurrence has half of these events.  

 

Table 8 Drought characteristics based on 24-month SPI, Blanco station 

onset 
end 

D* M* I* Drought  

Severity 

Interarrival 

Time 

(month) year month year month 

1951 1 1952 9 20 17.21 0.86 Moderate  
1954 9 1957 11 38 77.58 2.04 Extreme 44 
1963 2 1965 7 29 31.13 1.07 Severe 101 
1970 12 1973 2 26 20.18 0.78 Moderate 94 
1983 3 1986 5 38 14.35 0.38 Moderate 147 
1989 6 1991 9 27 14.85 0.55 Moderate 75 
1994 3 1997 6 39 21.63 0.55 Moderate 57 
1999 9 2001 9 24 18.71 0.78 Moderate 66 
2006 6 2007 9 15 17.14 1.14 Extreme 81 
2008 4 2010 9 29 30.34 1.05 Extreme 22 
2011 4 2013 10 30 26.83 0.89 Severe 36 

*Abbreviations refer to “D: Duration in month, M: Magnitude, I: Intensity”   
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Table 8 illustrates 24-month SPI values and the highest intensity (2.04) and 

magnitude (77.58) were detected between 1954 and 1957 with 38-month duration as 

extreme drought. The highest duration was detected in 1994 with 39 months duration and 

drought character was moderate in that duration.  

 

 

Figure 13. Time series of SPI values for station Blanco for (a) 12-month, (b) 24- 

month between 1948-2013 

 

The longest interarrival time was monitored between 1970 (December) and 1983 

(March) as 147 months for a 24-month SPI, while 104 months was the longest interarrival 

time observed between 1953 (November) and 1962 (July) for a 12-month SPI. The longest 
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time interval without drought was observed from February of 1973 to March of 1983 as 

121 months for a 24-month SPI while this value was 64 months non-drought from May of 

1972 to September of 1977 for a 12-month SPI.  

The most drought type which was observed at Blanco based on a 24-month SPI 

was moderate drought. While severe drought was detected only one in 1963 (29 months), 

an extreme drought was monitored in 1954, 2006, and 2008 and their durations were 38, 

15, and 29 months, respectively. On the other hand, moderate drought and extreme 

drought were monitored equally for 12-month SPI, while severe drought half of these 

moderate and extreme droughts. All other SPI calculations for multiple time scales have 

been shown in Figure 14 for the station Blanco.  

Table 7 and Figure 13 show only one station and one SPI time-scale (12-month) 

results. Here, on the other hand, the regional representative of SPI for the EA region was 

addressed and analyzed for multiple time-scales for all 31 stations. Due to these results, 

maps were created by using average drought quantifications such as average magnitude, 

average duration, and average intensity. The map was created by using the kriging 

interpolation method in ArcMap 10.1. 24-month SPI, in other words 2-year drought, 

results which have been shown in Figure 15 are tabulated in Table 9 for all stations to 

illustrate the average duration, magnitude and intensity.  

While west of the region has higher duration and magnitude, the highest intensity 

seemed in some of the north and south part. The east part of the EA had low average 

duration and magnitude. Table 9 illustrates the results of calculation for the EA region for 
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average duration, average magnitude, and average intensity. The highest intensity (1.10) 

was detected north of the EA (station 15), while the lowest one (0.72) was monitored in  

 

 

Figure 14. Time series of SPI values for Blanco station in the EA region for (a) 1-

month, (b) 3-month, (c) 6-month, (d) 9-month, (e) 12-month, (f) 24- month SPI, and 

(g) 36- month SPI time scales 
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the middle of the region (station 30). The longest duration was calculated as 47.25 months 

in the west of the EA (station 3) and the lowest one (20.50 months) was detected in the 

north of the EA (station 14). The highest intensity and the lowest duration results have 

been seen in the same area (Figure 15). While the highest magnitude (43.66) was detected 

in the middle of the region (Station 29), the lowest magnitude (20.97) was detected in the 

east of the region (station 31). 

 

 

Figure 15. The 24-month SPI drought characterization based on average duration, 

magnitude, and intensity in the EA region 
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Table 9 Drought quantification based on 24-month SPI in the EA region for average 

duration, magnitude, and intensity 

Station Latitude Longitude 

Average 

Duration 

(month) 
Magnitude Intensity 

1 30.10 -98.42 28.64 26.36 0.92 
2 29.82 -98.75 34.50 33.41 0.82 
3 29.68 -100.45 47.25 42.82 0.85 
4 29.32 -100.42 34.80 36.04 1.02 
5 29.75 -98.45 32.22 31.21 0.89 
6 29.67 -100.02 26.55 26.31 0.85 
7 29.87 -98.20 24.91 22.93 0.90 
8 29.80 -100.67 40.67 34.02 0.81 
9 29.97 -98.90 32.33 31.02 0.83 
10 30.22 -97.98 26.80 24.15 0.90 
11 29.98 -98.27 26.18 25.10 0.82 
12 29.33 -99.15 38.50 36.77 0.92 
13 30.05 -99.52 29.33 31.96 1.05 
14 30.08 -99.23 20.50 22.73 0.98 
15 30.07 -99.12 26.80 30.14 1.10 

16 29.73 -99.77 27.25 26.76 0.72 
17 29.80 -99.25 29.25 27.72 0.95 
18 29.70 -98.12 32.20 29.57 0.81 
19 29.88 -98.65 25.50 21.20 0.84 
20 29.92 -99.77 32.57 32.25 0.91 
21 29.47 -98.87 33.78 30.20 0.84 
22 30.02 -100.22 29.25 26.42 0.88 
23 29.32 -99.47 31.22 30.91 0.99 
24 29.53 -98.47 28.09 26.37 0.83 
25 29.87 -97.95 28.43 27.93 0.88 
26 29.98 -98.72 32.33 33.20 0.83 
27 29.87 -98.38 27.90 25.13 0.89 
28 29.65 -99.25 29.00 28.28 0.84 
29 29.62 -99.52 39.50 43.66 1.06 
30 29.81 -99.58 27.75 25.35 0.72 

31 29.98 -98.05 20.83 20.97 0.99 
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5.1.2 Effective drought index 

The EDI was calculated with historical precipitation data to accurately quantify 

the exact onset and end of a drought event. Twenty stations were used to calculate the 

EDI, while thirty-one stations were used in calculation of the SPI. Droughts were 

identified by EDI according to the method described in section 3.1.1.2 (Table 10). 

 

Table 10 Drought characteristics based on EDI, Blanco station 

onset end 
D* M* I* Drought  

Severity 

Interarrival 

time 

(month) 
year month year month 

1950 9 1952 4 19 16.46 0.87 Severe  
1953 11 1957 3 40 70.47 1.76 Extreme 38 
1962 5 1964 3 22 19.46 0.88 Severe 102 
1964 4 1965 2 10 5.69 0.57 Moderate 23 
1966 10 1968 1 15 13.15 0.88 Moderate 30 
1970 10 1971 8 10 14.62 1.46 Severe 48 
1977 5 1978 8 15 7.46 0.50 Moderate 79 
1982 6 1983 3 9 6.26 0.70 Moderate 61 
1983 12 1984 10 10 8.17 0.82 Moderate 18 
1988 9 1990 3 18 12.58 0.70 Severe 57 
1995 10 1996 9 11 11.1 1.01 Moderate 85 
1999 4 2000 10 18 19.24 1.07 Severe 42 
2005 6 2007 1 19 21.92 1.15 Severe 74 
2007 12 2009 10 22 28.22 1.28 Severe 30 
2010 12 2012 3 15 16.87 1.12 Extreme 36 
2012 11 2013 5 6 4.43 0.74 Moderate 23 

*Abbreviations refer to “D: Duration in month, M: Magnitude, I: Intensity”   

 

All the highest values for drought were detected for the same time interval between 

1953 and 1957. The longest drought duration (40 months), the highest magnitude (70.47), 

and the highest intensity (1.76) were observed for the same extreme drought event. The 

longest interarrival time was observed between 1953 (November) and 1962 (May) as 102 

months, while the shortest one was monitored between 1982 (June) and 1983 (December) 
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as 18 months. The longest non-drought duration was observed as 62 (=102-40) months 

between 1957 (March) and 1962 (May), while the shortest non-drought duration was 

detected between 1964 (March) and 1964 (April) as 1 month (=23-22). Most observed 

drought types, based on EDI calculation, were severe drought and moderate drought. Both 

moderate and severe droughts were monitored seven times, while extreme drought was 

observed only two times (Figure 16).  

It can be indicated from Figure 17 that the highest values were observed mostly in 

the east part of the region (most of the east part of the EA refers to “Region 3” which is 

explained in section 3.2.3). Average magnitude was observed in more extensive area than 

average duration and average intensity. 

 

 

Figure 16. Time series of EDI values for station Blanco in the EA region between 

1948 and 2013 
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Figure 17. EDI drought characterization based on average duration, magnitude, 

and intensity in the EA region 

 

 

Table 11 illustrates the average duration, magnitude, and intensity which were 

calculated by the EDI for twenty stations in the EA region. The longest average duration 

and the highest average magnitude were observed as 20.65 months and 21.41, 

respectively, in the same area (station 2) while the highest intensity (1.04) was detected at 

station 11. The shortest and the lowest values for average duration, average magnitude, 

and average intensity were monitored as 12.60 months, 10.64, and 0.81, respectively at 

station 6, 17, and 22.  
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Table 11 Drought quantification by EDI in the EA region for average duration, 

magnitude, and intensity 

Stations Latitude Longitude 
Average 

Duration 

(month) Magnitude Intensity 

1 30.10 -98.42 16.19 17.26 0.97 
2 29.82 -98.75 20.65 21.41 0.92 
3 29.68 -100.45 18.10 17.41 0.96 
4 29.32 -100.42 14.50 12.75 0.85 
5 29.75 -98.45 16.71 17.73 0.95 
6 29.67 -100.02 12.60 11.61 0.89 
7 29.87 -98.20 14.88 13.97 0.91 
8 29.80 -100.67 18.88 16.95 0.88 
11 29.98 -98.27 16.11 19.50 1.04 

12 29.33 -99.15 15.04 13.26 0.84 
15 30.07 -99.12 14.50 12.90 0.89 
17 29.80 -99.25 12.60 10.64 0.83 
18 29.70 -98.12 18.33 18.45 0.92 
20 29.92 -99.77 14.75 12.92 0.86 
21 29.47 -98.87 17.63 17.74 0.90 
22 30.02 -100.22 15.08 12.40 0.81 

23 29.32 -99.47 13.68 12.18 0.86 
24 29.53 -98.47 16.32 19.24 0.98 
25 29.87 -97.95 13.85 13.16 0.92 
27 29.87 -98.38 14.86 15.17 1.00 

 

 

5.2 Probability of drought occurrences 

This section focuses on the calculation of the probabilities of drought occurrences 

(PDO) for different drought categories, such as extreme, severe, and moderate droughts.  

 

5.2.1 PDO based on the SPI 

The results of the PDO have been shown in Table 12 as an example for all stations 

in the EA region for a 24-month period drought.  
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The highest probability of occurrence for extreme drought (10.20 %) was 

monitored at station 23. Three stations had a higher percentage than 10 % severe drought 

occurrence probability and the highest percentage was observed at station 7 as 13.46 % 

for severe drought, while any severe drought was not monitored at five stations (stations 

2, 9, 14, 26, and 30). The highest percentage at the moderate drought was detected as 15.79 

% at station 2, while any moderate drought wasn’t observed at three stations 13, 15, and 

29. Table 12 shows that the occurrence probability of ear normal drought was higher than 

the wet condition occurrence of probability for all stations. 

 

Table 12 Drought occurrence probability based on a 24-month SPI in the EA region 

Stations Latitude Longitude 
Drought occurrence probability (%) 

Wet Near 
Normal Moderate Severe Extreme 

1 30.10 -98.42 31.15 50.82 9.84 3.28 4.92 
2 29.82 -98.75 28.95 50.00 15.79 0.00 5.26 
3 29.68 -100.45 34.78 47.83 8.70 4.35 4.35 
4 29.32 -100.42 29.17 50.00 4.17 12.50 4.17 
5 29.75 -98.45 32.73 50.91 9.09 3.64 3.64 
6 29.67 -100.02 33.33 49.21 7.94 6.35 3.17 
7 29.87 -98.20 28.85 50.00 3.85 13.46 3.85 
8 29.80 -100.67 35.14 48.65 5.41 5.41 5.41 
9 29.97 -98.90 28.57 50.00 14.29 0.00 7.14 
10 30.22 -97.98 26.09 52.17 4.35 8.70 8.70 
11 29.98 -98.27 32.26 50.00 8.06 4.84 4.84 
12 29.33 -99.15 34.12 49.41 4.71 4.71 7.06 
13 30.05 -99.52 36.36 50.00 0.00 9.09 4.55 
14 30.08 -99.23 34.78 47.83 8.70 0.00 8.70 
15 30.07 -99.12 33.33 50.00 0.00 10.00 6.67 
16 29.73 -99.77 34.62 50.00 7.69 3.85 3.85 
17 29.80 -99.25 34.00 50.00 6.00 4.00 6.00 
18 29.70 -98.12 30.61 48.98 12.24 2.04 6.12 
19 29.88 -98.65 28.00 48.00 8.00 8.00 8.00 
20 29.92 -99.77 29.41 50.00 8.82 5.88 5.88 



 

56 

 

Table 12 Continued 

Stations Latitude Longitude 
Drought occurrence probability (%) 

Wet Near 
Normal Moderate Severe Extreme 

21 29.47 -98.87 34.00 48.00 6.00 8.00 4.00 
22 30.02 -100.22 29.73 48.65 8.11 5.41 8.11 
23 29.32 -99.47 32.65 48.98 4.08 4.08 10.20 
24 29.53 -98.47 26.09 50.00 10.87 6.52 6.52 
25 29.87 -97.95 25.81 51.61 9.68 6.45 6.45 
26 29.98 -98.72 36.36 50.00 9.09 0.00 4.55 
27 29.87 -98.38 33.33 50.00 6.67 5.00 5.00 
28 29.65 -99.25 31.25 50.00 6.25 6.25 6.25 
29 29.62 -99.52 41.18 47.06 0.00 5.88 5.88 
30 29.81 -99.58 37.93 48.28 10.34 0.00 3.45 
31 29.98 -98.05 32.43 51.35 5.41 2.70 8.11 

 

 

 

 

Figure 18. Drought occurrences: (a) moderate, (b) severe, and (c) extreme drought 

at a 24-month SPI time step 
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Figure 18c reflects that the higher extreme drought was observed in the south part 

of the EA in contrast to the west region. A severe drought (Figure 18b) was monitored 

frequently in the west part of the area, while the highest moderate drought frequency 

(Figure 18a) was only observed in some part of the northeast of the EA region. The result 

of drought occurrences at 24-month SPI shows that the central south part of the area was 

most prone to extreme drought, while the west part of the region was most prone to severe 

drought. Moderate droughts occurred more frequently in the east part of the area. 

 

5.2.2 PDO based on the EDI 

The PDO was calculated for the EDI similar to the SPI based on the event 

occurrence. As mentioned in the previous sections, the PDO was created only one time 

because of the time independent index of the EDI. The highest rate of extreme drought 

was detected by EDI at station 11 (Table 13). Eight stations out of twenty didn’t face any 

extreme drought and the percentage of extreme drought was quite less than any other time 

step SPI. Figure 19c illustrates the spatial distribution of each moderate, severe, and 

extreme drought probability and most of the region had less than 0.8 extreme drought 

probability.  

The EDI estimated mostly moderate drought and the highest rate was observed at 

station 17. The central part of the area was dominated by moderate drought (Figure 19a). 

All percentages of severe drought probabilities were less than 10% and the highest rate 

was monitored as 7.76% for severe drought. The highest percentage of severe drought was 

mostly observed in some part of the northwest (Figure 19b). 
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Table 13 Drought occurrence probability based on the EDI in the EA region 

Stations Latitude Longitude 
Drought occurrence probability (%) 

Wet Near 
Normal Moderate Severe Extreme 

1 30.10 -98.42 36.97 49.58 5.88 5.88 1.68 
2 29.82 -98.75 34.04 47.87 11.70 5.32 1.06 
3 29.68 -100.45 34.92 49.21 11.11 1.59 3.17 
4 29.32 -100.42 35.62 47.95 12.33 4.11 0.00 
5 29.75 -98.45 40.77 48.46 4.62 5.38 0.77 
6 29.67 -100.02 33.62 49.14 8.62 7.76 0.86 
7 29.87 -98.20 35.92 48.54 9.71 5.83 0.00 
8 29.80 -100.67 37.70 49.18 6.56 6.56 0.00 
11 29.98 -98.27 37.40 47.97 6.50 4.88 3.25 
12 29.33 -99.15 36.17 48.94 10.11 4.79 0.00 
15 30.07 -99.12 34.33 47.76 11.94 4.48 1.49 
17 29.80 -99.25 33.33 46.67 13.33 6.67 0.00 
18 29.70 -98.12 37.61 48.62 7.34 5.50 0.92 
20 29.92 -99.77 34.69 48.98 10.20 6.12 0.00 
21 29.47 -98.87 34.51 48.67 10.62 4.42 1.77 
22 30.02 -100.22 34.29 48.57 10.00 7.14 0.00 
23 29.32 -99.47 35.88 49.62 9.16 4.58 0.76 
24 29.53 -98.47 36.00 48.80 8.00 5.60 1.60 
25 29.87 -97.95 35.96 49.44 7.87 5.62 1.12 
27 29.87 -98.38 40.46 48.85 4.58 6.11 0.00 

 

Analysis of drought occurrences in different categories indicates that the central 

part of the region was most prone to severe and moderate droughts. Extreme drought was 

not observed as much as moderate and severe droughts and it is difficult to say which area 

is more prone to extreme drought based on the EDI. Figure 19c shows that the highest 

extreme drought probability was monitored in a small area in the east part and west part 

at, respectively, stations 11 and 3. (See the Appendix for spatial drought occurrence 

probability at each time scale SPI) 
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Figure 19. Drought occurrences: (a) moderate, (b) severe, and (c) extreme drought 

based on EDI 
  

5.2.3 Comparison of SPI and EDI 

This section focuses on the comparison of the SPI and the EDI calculations at 

Blanco station that were explained in the previous sections.  Figure 20 and Table 14 briefly 

explain the drought severity type based on EDI and different time steps of SPI at the 

Blanco station. The most extreme drought was observed 15 times based on 1-month SPI, 

while this type of drought was observed only one time based upon 36-month SPI. Even if 

1-month SPI has the most observed extreme drought (15), 12-month SPI has the highest 

occurrence probability for the extreme drought (7.69%) and 9-month SPI follows with 

6.45% occurrence of probability. 1-month SPI had greater total drought, severe drought, 

and moderate drought percentages than any other time step SPI and EDI. The lowest 
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extreme drought was observed as 1.68% by EDI in comparison with observation of two 

times of extreme drought. Although 9-month SPI and 12-month SPI have exactly the same 

event number (for extreme, severe, and moderate), both time scales have different drought 

occurrence probabilities because of total event occurrences.  

 

Table 14 Comparison of EDI and multiple time scales SPI at Blanco station 

Drought 
Index 

Occurrence Probability Number of the events 
Extreme Severe Moderate Extreme Severe Moderate 

EDI 1.68 5.88 5.88 2 7 7 
SPI1 4.66 8.70 12.42 15 28 40 
SPI3 6.91 5.85 7.45 13 11 14 
SPI6 6.00 6.00 7.00 6 6 7 
SPI9 6.45 3.23 6.45 6 3 6 
SPI12 7.69 3.85 7.69 6 3 6 
SPI24 4.92 3.28 9.84 3 2 6 
SPI36 2.70 5.41 10.81 1 2 4 

*Note: Wet and near normal conditions have not been shown 

 

 

Figure 20. Drought severity percentage by EDI and SPIs at Blanco station 
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5.3 Spatial drought assessment 

This section explains drought characteristics for each region. The natural breaks 

method was used to create three hydrological boundaries based on monthly rainfall 

distribution. In this way, accurate average rainfall distribution range was generated for 

each division by using the natural breaks algorithm. The oldest historical record was used 

to obtain the average precipitation for each region. 

Regions which are named region-1, region-2, and region-3 have 7, 7, and 17 

stations, respectively, for SPI analysis and have 6, 5, and 9 stations, respectively, for EDI 

analysis. Therefore, the number of stations which were used are 31 stations for SPI 

analysis, while the number of stations are 20 stations for EDI analysis. The mean monthly 

precipitation in each region has been shown in Figure 21 and shows that region-3 has the 

highest average monthly precipitation while region-1 has the lowest monthly average 

precipitation. It can be indicated from Figure 21 that the EA region has bimodal 

precipitation pattern. May is the wettest month in each region followed by September.  

 

 

Figure 21. Mean monthly precipitation (mm) in each region between 1951 and 2013. 

Solid black line represents monthly mean precipitation (mm) for the EA region 
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5.3.1 Region-1 drought assessment  

The mean annual precipitation (608 mm) record range is from 1951 to 2013 years 

for both SPI and the EDI analyses. SPI for multiple timescales was calculated for region-

1 by using the mean areal precipitation (Figure 22). The most extreme 1-month and 3-

month SPIs were detected in May 1956 and March 1954, respectively (Figure 22a and 

Figure 22b). The minimum values for both time scales for 1-month SPI and 3-month SPI 

were observed as -2.79 and -2.95, respectively. The minimum SPI values for the 6-month 

SPI and 9-month SPI were monitored within the last five years in February 2009 and June 

2011, respectively. The drought severity for both time scales SPI was detected as extreme 

and SPI values were -2.72 and -2.63 for 6-month SPI and 9-month SPI (Figure 22c and 

Figure 22d), respectively. The highest drought severities for 24-month and 36-month SPI 

were detected as extreme in September 2009 (24-month SPI=-2.56) and January 1957 (36-

month SPI=-2.46). The SPI values reached the peak 3-month and 12-month time scales as 

-2.95 and -2.94, respectively, in March 1954 and in September 2011. 
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Figure 22. Time series of SPI values for region-1 for (a) 1-month, (b) 3-month, (c) 6-

month, (d) 9-month, (e) 12-month, (f) 24- month SPI, and (g) 36- month SPI time 

scales 

 

Extreme drought event wasn’t observed, based upon the EDI analysis in region-1. 

While five “severe drought” events were detected, the region had faced mostly “moderate 
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drought” event fifteen times. The lowest EDI value was monitored as -1.96 in January 

1957. The longest drought duration was monitored between 1988 (January) and 1990 

(March) as 26 months, while the highest intensity was detected between 1955 (October) 

and 1957 (April) as 1.16. The highest magnitude was observed as a severe drought event 

between 2008 (February) and 2010 (January) as 23.44. Figure 23 illustrates that drought 

was detected more frequently during the 1950s and quite intense drought between 2008 

and 2012. Furthermore, the lowest interarrival time occurred in the 1950s (1952 and 1954) 

as 6 and 8 months. 

 

 

Figure 23. Time series of EDI values for region-1 between 1951 and 2013 

 

Figure 24 depicts the probability of drought occurrences for different drought 

classes for the EDI and different time-scale SPIs. 1-month SPI had a greater total drought 

(sum of “Extreme”, “Severe”, and “Moderate”) percentages 25.87% than any time-step 

SPI and EDI. The highest rate of extreme drought was detected by 3-month SPI, while the 
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lowest one was detected by 1-month SPI (except EDI). An interesting point of Figure 24 

illustrates that EDI underestimated extreme droughts than any SPI and any extreme 

drought wasn’t observed by EDI. Therefore, EDI had the highest rate of moderate drought 

as 12.50%. Furthermore, EDI had the lowest total drought percentages (16.67%).  

 

Figure 24. Drought class percentage by EDI and SPIs in region-1 for 1951 and 2013 
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5.3.2 Region-2 drought assessment 

The mean annual precipitation (753 mm) record range is from 1900 to 2013 years 

for both the SPI and the EDI analyses. The most extreme 1-month and 3-month SPIs were 

observed in April 1998 and January 1971, respectively (Figure 25a and Figure 25b). The 

minimum values which were indicated for both time scale SPIs were observed as -2.69 

and -3.11, respectively. The minimum 6-month SPI value (=-3.11) which was detected in 

August 2011 was the same value which was detected by 3-month SPI. The drought 

severity for three time scale (1, 3, 6 months) SPIs was detected as extreme droughts and 

their durations were 4, 10, 16 months, respectively (Figure 25a, Figure 25b, and Figure 

25c). The most extreme 9-month SPI (=-2.78) occurred in March 1925 and had an 18 

month duration (Figure 25d). The drought severity for 12-month and 24-month SPI was 

evaluated as extreme (12-month SPI=-3.03 and 24-month SPI=-2.98) in June 1925 and 

June 1956, respectively (Figure 25e and Figure 25f). The peak SPI value was detected as 

36-month time scale SPI as -3.63 in January 1957 (85-month extreme drought). 
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Figure 25. Time series of SPI values for region-2 for (a) 1-month, (b) 3-month, (c) 6-

month, (d) 9-month, (e) 12-month, (f) 24- month SPI, and (g) 36- month SPI time 

scales 

 

 

Figure 26 clearly depicts that the highest intense drought was observed in the 

1950s by EDI. The longest drought, 51-month duration, was observed between 1953 
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(January) and 1957 (April) as an extreme drought. The peak value was detected as -3.29 

by the EDI in January 1957. Furthermore, the highest magnitude and intensity were 

observed in the same extreme event as 95.83 and 1.88, respectively. Any extreme drought 

event wasn’t observed any more after this extreme drought. Two severe drought events 

which had high intensity were observed within the last six years between 2008 (February) 

and 2009 (October) and between 2010 (October) and 2012 (February). Intensities of these 

consecutive drought events were detected as 1.11 and 1.2, while observed durations were 

20 and 16 months, respectively.  

 

 

Figure 26. Time series of EDI values for region-2 between 1900 and 2013 

 

Figure 27 reflects the probability of drought occurrences for different drought 

classes for the EDI and different time-scale SPIs in region-2. The drought event numbers 

which were detected in region-2 were more than region-1 due to the time series and 
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average monthly rainfall distribution. 1-month SPI had a greater total drought, severe 

drought, and moderate drought percentages, respectively, 27.43%, 9.14%, and 13.43%, 

than any time step SPI and EDI. EDI detected 1.54% extreme drought and underestimated 

extreme droughts than did any SPI similar to the results in region-1. However, EDI 

indicated 9.74% the second highest value subsequent to 1-month SPI for moderate 

drought. The highest rates of extreme drought were detected by 6-month, 9-month, and 

12-month SPIs, respectively, as 7.73%, 7.14%, and 7.32%. Extreme drought percentages 

increased from 1-month SPI to 6-month SPI and then decreased, but 9-month SPI 

responded differently and out of this trend. 9-month and 36-month SPIs had equal 

moderate and severe drought percentages in their own time step in contrast to other SPIs 

and only 24-month SPI had low moderate drought percentage (2.15%) in comparison with 

severe drought percentage (8.60%). 
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Figure 27. Drought class percentage by EDI and SPIs in region-2 for 1900 and 2013 

 

5.3.3 Region-3 drought assessment 

The mean annual precipitation (873 mm) record range is from 1946 to 2013 years 

for both the SPI and the EDI analyses. The minimum SPI values were detected less than -

3.00 for all time step SPIs except 9-month SPI which was -2.98. The peak value was 

computed by 36-month SPI as -3.83 then 1-month SPI followed with -3.6 SPI value 

(Figure 28g and Figure 28a). The longest drought based on 1-month SPI was monitored 

between 1955 (September) and 1956 (August) as a severe drought.  
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Figure 28. Time series of SPI values for region-3 for (a) 1-month, (b) 3-month, (c) 6-

month, (d) 9-month, (e) 12-month, (f) 24- month SPI, and (g) 36- month SPI time 

scales 

 

 

The only one extreme drought event was detected by EDI between 1953 (October) 

and 1957 (April) with 42-month duration. In addition, the highest magnitude and intensity 

also were detected in this time series. The highest intensity in the EA based on the EDI 
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was observed in region-3 as 1.93, while the magnitude pretty high (80.86) but less than 

the magnitude value (95.83) which was observed in region-2.   

 

 

Figure 29. Time series of EDI values for region-3 between 1946 and 2013 
 

 

The probability of drought occurrences for different drought classes have been 

shown in Figure 29 for the EDI and different time-scale SPIs in region-3. 12-month SPI 

had equal severe and moderate drought percentage as 7.78%. Similar to region-1 and 

region-2, 1-month SPI had the highest rate of total drought event percentages 24.76% in 

region-3. EDI had the highest severe drought percentage (7.83%) when compared with 

other regions. In addition, EDI had the lowest extreme drought percentage (0.87%) similar 

to region-1 and region-2. 3-month SPI and 1-month SPI had the most extreme drought 

percentages, respectively, 8.15% and 7.62%. Not only were extreme drought event 

percentages fluttered from 1-month SPI to 36-SPI but other drought severities (severe and 
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moderate drought) also were undulated for any time step SPI so there is no any specific 

trend and there is a fluctuation.  

 

Figure 30. Drought class percentage by EDI and SPIs in region-3 for 1946 and 2013 

 

A variety of drought severity has been changing from region to region and Figure 

31 illustrates the spatial distribution of drought severities in the EA at different time step 

SPIs and EDI. It can be indicated from Figure 31 that EDI only drought index detected 

extreme drought less than any time steps SPI for each region. Region-1 has lower average 

rainfall and 3-month SPI found this region having the highest rate of extreme drought 

(9.04%) and the highest rate of severe drought was found by 9-month SPI with 13.48%. 

The highest percentage of moderate drought was detected by EDI (12.50%). Region-2 has 

the average rainfall and extreme drought was found 7.73% by 6-month SPI. 1-month SPI 
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had the highest severe and moderate drought percentages, respectively of 9.14% and 

13.43% in region-2. Region-3 has higher average precipitation than other regions and the 

highest rate of extreme drought was found 8.15% by 3-month SPI similar to region-1. EDI 

detected the highest severe drought percentage (7.83%) in contrast to the lowest rate of 

extreme drought (0.87%). 1-month SPI had the highest total drought (sum of “extreme”, 

“severe”, and “moderate”) percentage for region-1, region-2, and region-3, respectively, 

of 25.87%, 27.43%, and 24.76%. 
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Figure 31. Regional droughts found by (a) 1-month SPI, (b) 3-month SPI, (c) 6 

month SPI, (d) 9-month SPI, (e) 12-month SPI, (f) 24-month SPI, (g) 36-month SPI, 

and (h) EDI 

 

5.4 Spatial drought hazard assessment 

Drought hazard assessment, in this study, was calculated by using the probability 

of occurrence and severity based upon weight and ratings, as mentioned in section 3. The 

weights were assigned according to the SPI and EDI drought severity, while the ratings 

were assigned a range of drought occurrence probability. An effective area for each station 

was created by using the Thiessen polygon method and ratios were obtained by dividing 
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the area of station by the total area. For example, region-1 has seven stations and their 

ratios based on Thiessen polygons are 11.91%, 11.31%, 25.07%, 1.56%, 7.67%, 17.53%, 

and 24.94%, and their drought occurrence probabilities of   near normal drought (NND) 

(24-month SPI) are 47.83%, 50.00%, 49.21%, 48.65%, 50.00%, 48.65%, and 48.98%, 

respectively. Hence, the occurrence probability (OP) of NND based on 24-month SPI for 

region-1 is 49.033 

(=11.91x47.83+11.31x50.00+25.07x49.21+1.56x48.65+7.67x50.00+17.53x48.65+24.94

x48.98). Thus, OP of each condition NND, MD, SD, and ED are 49.033%, 6.021%, 

6.272%, 6.185%, respectively for region-1. The same computing was applied for each 

occurrence probability of MD, SD, and ED for each region for each time scale SPI and 

EDI. After these calculations, the EA region had OP’s range from 49.166% to 50.105% 

for the NND condition based on 24-month SPI (Table 16). OP’s ranges which were created 

by dividing the range into 4 for the MD, SD, and ED, have been shown in Table 15. 

 

Table 15 Occurrence probability for DHI based on a 24-month SPI 

Region NND MD SD ED 
1 49.033 6.021 6.272 6.185 
2 48.854 6.076 5.450 5.892 
3 50.105 9.149 3.616 5.714 
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Table 16 Weight and rate for drought severity for DHI (ex: 24-month SPI, region-1) 

Severity 
          

Weight                    
Occurrence probability 

(%) Rating 
Near Normal 1 OP<49.166 4 

49.166≤OP<49.479 3 
49.479≤OP<49.792 2 
49.792≤OP<50.105 1 

Moderate 2 OP<6.803 4 
6.803≤OP<7.585 3 
7.585≤OP<8.367 2 
8.367≤OP<9.149 1 

Severe 3 OP<4.280 4 
4.280≤OP<4.944 3 
4.944≤OP<5.608 2 
5.608≤OP<6.272 1 

Extreme 4 OP<5.831 4 
5.831≤OP<5.949 3 
5.949≤OP<6.067 2 
6.067≤OP<6.185 1 

 

The ratings for region-1 are 4, 4, 1, and 1, based on 24-month SPI of NND, MD, 

SD, and ED, respectively. As an illustration of this, NND of region-1 is 49.033% (Table 

15) and rating of NND is 4 (Table 16). Table 17 briefly summarizes the results of ratings 

and weights for each region based on the 24-month SPI. 

 

Table 17 Ultimate ratings and weights of regions for DHI (ex: based on 24-month 

SPI) 

Drought Severity Weights Ratings 
Region 1 Region 2 Region 3 

NND 1 4 4 1 
MD 2 4 4 1 
SD 3 1 2 4 
ED 4 1 3 4 

 

 

 



 

78 

 

Finally, DHI was generated by using equation (10) as follows: 

𝐷𝐻𝐼 = (4 × 1) + (4 × 2) + (1 × 3) + (1 × 4) 

𝐷𝐻𝐼 =19 

As a result, DHI was determined as 19 for region-1. Then, DHI was re-scaled 

through from 10 to 40 to obtain the range 0 to 1, and 0.3 was computed by using equation 

(11). 

DHI which was generated for all regions and for all time scales such 1, 3, 6, 9, 12, 

24 and 36-month SPIs and EDI has been shown DHI and DHI classification in Table 18 

and Table 19, respectively. 

The regions were classified according to the DHI index into four classes, such as 

“Very High” between 0.75 and 1.0, “High” between 0.50 and 0.75, “Moderate” between 

0.25 and 0.50, and “Low” between 0 and 0.25.  

 

Table 18 Drought hazard index for each region and for each time-scales SPI and EDI 

Region Drought Hazard Index  
SPI 1 SPI 3 SPI 6 SPI 9 SPI 12 SPI 24 SPI 36 EDI 

Region-1 0.70 0.33 0.20 0.30 0.60 0.30 0 0.40 
Region-2 0.40 0.27 0.57 0.67 0.67 0.67 0.70 0.73 
Region-3 0.50 0.70 0.20 0.60 0.30 0.70 0.30 0.30 

 

 

“Low” drought hazard class was no detected in region-2, and region-2 had 

relatively “High” drought classification compared to other regions (Table 19). Region-1 

and region-3 had “Low” drought hazard based on 6-month SPI. Region-1 had faced “Low” 

drought hazard based on 36-month SPI. Only region-1 had two “Low” drought classes 
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which were observed in SPI-6 and SPI-36. Table 18 illustrates that the highest DHI was 

detected as 0.73 by EDI in region-2 and the highest DHI was detected as 0.70 for 1, 3, 24, 

and 36-month SPI in region-1, region-3, region-3, and region-2, respectively. Therefore, 

“Very High” drought class was not observed for any time scale SPI and EDI in any 

regions. 

 

Table 19 Drought hazard index classifications for each region and for each time-scale 

SPI and EDI 

Region DHI classifications  
SPI 1 SPI 3 SPI 6 SPI 9 SPI 12 SPI 24 SPI 36 EDI 

Region-1 H M L M H M L M 
Region-2 M M H H H H H H 
Region-3 H H L H M H M M 

*Abbreviations refer to: L: Low, M: Moderate, and H: High 

 

Figure 32 depicts the spatial drought hazard map for the EA region. It can be 

signified from Figure 32 that although region-3 (east part of the EA) normally receives 

more than average precipitation of the study area, high level hazard was observed more 

than region-1 which has the lowest average rainfall in the area. It has been indicated that 

there exists no relation between the precipitation distribution and proneness to drought 

zones. 
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Figure 32. Drought hazard map for the Edwards Aquifer region, based on (a) 1-

month SPI, (b) 3-month SPI, (c) 6-month SPI, (d) 9-month SPI, (e) 12-month SPI, 

(f) 24-month SPI, (g) 36-month SPI, and (h) EDI 

 

5.5 County level drought hazard index  

Edwards Aquifer is located within different climatic divisions and it makes 

difficult to analyze observed precipitation data for the regional drought assessment. 
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Therefore, the EA was divided into three hydrological regions, based on the monthly 

average precipitation distribution. The region boundaries which were created accurately 

to analyze drought assessment is relative and the virtual hydrological divisions were 

transformed from region to county level. The first reason for this conversion is to address 

specifically county-based drought assessment, since county level has significant political, 

agricultural, and environmental decision making. The other reason is to overlay and 

intersect drought hazard and vulnerability in order to obtain the best matching drought risk 

map, since drought vulnerability assessment is discussed and analyzed in county level.   

 

    

 

Figure 33. Edwards Aquifer region and located counties 
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The fundamental concept used is the combination of the area ratio and the DHI which 

have counties to transform from region to county level. The main assumption in this 

process is that Edwards and Kinney counties were assumed totally located in Region-1 

(see the Appendix on the spatial average precipitation distribution at the county level). 

Thus, DHI belongs to Region-1 and was applied to these counties. The same assumption 

was applied for Blanco, Comal, Hays, and Kendall for Region-3. To compare regional 

DHI and county based DHI see Table 18 and Table 20. 

As an illustration, the how DHI computed at the county level is explained for Bandera as 

follows: 

Bandera is totally located within Region-2 and Region-3 (Figure 33). The area 

ratios for Bandera in Region-2 and Region-3 are 0.17 and 0.83, respectively. The DHI 

(12-month SPI) is 0.67 and 0.30 for Region-2 and Region-3, respectively. The adjusted 

ultimate DHI for Bandera is 0.36 (=0.67x0.17+0.30x0.83). All adjusted DHIs, based on 

equation (10), for each county, have been shown in Table 20. 

 
Table 20 Adjusted drought hazard index at county level at each time-scale SPI and 

EDI 

County SPI 1 SPI 3 SPI 6 SPI 9 SPI 12 SPI 24 SPI 36 EDI 

Bandera 0.48 0.63 0.26 0.61 0.36 0.69 0.37 0.37 
Bexar 0.41 0.32 0.53 0.66 0.63 0.67 0.65 0.68 
Blanco 0.50 0.70 0.20 0.60 0.30 0.70 0.30 0.30 
Comal 0.50 0.69 0.21 0.60 0.31 0.70 0.31 0.31 
Edwards 0.70 0.33 0.20 0.30 0.60 0.30 0.00 0.40 
Hays 0.50 0.70 0.20 0.60 0.30 0.70 0.30 0.30 
Kendall 0.50 0.70 0.20 0.60 0.30 0.70 0.30 0.30 
Kerr 0.47 0.36 0.44 0.59 0.59 0.61 0.50 0.60 
Kinney 0.70 0.33 0.20 0.30 0.60 0.30 0.00 0.40 
Medina 0.48 0.30 0.46 0.57 0.64 0.57 0.50 0.63 
Real 0.52 0.29 0.42 0.52 0.64 0.52 0.42 0.60 
Uvalde 0.63 0.32 0.29 0.39 0.62 0.39 0.17 0.48 
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The Drought Hazard Index (DHI) classification of drought hazards is illustrated in 

Figure 34, Figure 35, and Figure 36 for different time scale SPIs and EDI.  

It can be seen from Figure 34 that 1-month SPI found higher DHI in the study area by 

comparing to 3-month and 6-month SPIs. The western and north-east parts of the region 

have high level DHI while the middle of the area detected moderate DHI based on 1-

month SPI which represents a short-term drought. Besides, the east part of the study area 

has the highest average rainfall while the west part has the lowest one. The probability of 

drought occurrence of 1-month SPI (Figure 30) detected quite high level and even region-

3 has more than average rainfall and it is highly prone to short-term drought. 3-month SPI 

reflects short and medium term moisture conditions and seasonal estimation of 

precipitation. High level DHI of 3-month SPI bears a resemblance to 1- month SPI result 

for the north-east part. Blanco, Comal, Hays, and Kendall counties have the high level 

DHI based on 1-month and 3-month SPI. 6-month SPI, interestingly, has mostly different 

hazard classes than 1-month and 3-month SPI. The high DHI of 6-month drought was 

observed only in Bexar county, while the west and north-east part of the region faced a 

low hazard class.  Moderate DHI of 6-month SPI was found mainly in the central part of 

the region. 

Figure 35 shows that 9-month and 24-month SPIs perfectly matching for all DHI 

classes at the county level and DHI was detected mostly at the high level in the study area 

for both SPIs.  Bexar, Medina, Kerr, and Real have high level DHI for all 9, 12, and 24-

month time scale SPIs. Any low DHI class was not observed and regions dominated by 

high DHI based on 9, 12, and 24 month SPIs. 
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Figure 34. Drought hazard map: (a) 1-month, (b) 3-month, and (c) 6-month time 

scale SPIs 
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Figure 35. Drought hazard map: (d) 9-month, (e) 12-month, and (f) 24-month time 

scale SPIs 
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Figure 36 illustrates that 36-month SPI has three types of DHI as low, moderate, 

and high level. Low DHI was detected in the west part of the region, similar to 6-month 

SPI (except Uvalde), and moderate DHI similar to 12-month SPI (except Real). High level 

DHI was observed in only three counties, such as Bexar, Kerr, and Medina. EDI didn’t 

detect any low DHI in the region and mostly moderate DHI was observed. The high DHI 

was detected by EDI for Bexar, Kerr, Medina, and Real counties. 

 

 

Figure 36. Drought hazard map: (g) 36-month time scale SPI and (h) EDI 
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Generally, high DHI was observed, based on 1, 9, 12, and 24-month time scale 

SPIs and spatial variations of DHI differ from each other, except 9-month and 24-month 

SPIs. Bexar had the high DHI which was detected by 6, 9, 12, 24, and 36-month SPIs and 

EDI. Very high level DHI was not detected for any time scale SPI and EDI. EDI detected 

high DHI less than 1, 9, 12, and 24-month SPIs based on county level and moderate DHI 

was detected by EDI more than any time scale SPI. 

 

5.6 Drought vulnerability assessment 

Ground water is the major water resource in the region for agricultural, municipal, 

manufacturing, irrigation, livestock water use, and so on. Most of water supply for the 

region is from the groundwater source and regional water use percentage is 81% 

groundwater while the surface water use is 19% (Figure 37). Hays had the highest rate of 

surface water use as 51% in the region. Kerr, Kendall, and Comal follow with 42%, 32%, 

and 30% surface water use, respectively. The other counties had less than 30% surface 

water use in the EA.  
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Figure 37 Water use summaries for counties located in the EA (TWDB, 2012) 

 

5.6.1 Drought vulnerability indicators 

Figure 38 depicts spatial patterns of different vulnerability indicators which were 

integrated using the natural break method. Then, the Drought Vulnerability Index (DVI) 

values were classified into four classes based on the natural break classification. The 

ultimate DVI was generated by using equation (17).  

It can be observed from Figure 38a, c, and d that the percentage of population 

density, municipal water, and industrial water are the highest in the Bexar county. Higher 

percentage of people who live below the poverty level is detected mostly in the west part 

of the region that has lower population density (Figure 38a, b). Not only Kinney and 

Uvalde have low population density, but they also have the highest percentage of people 

living below the poverty level (Figure 38b). The most vulnerable counties in terms of 
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agricultural water and irrigated land were detected as Medina and Uvalde (Figure 38e,f). 

Furthermore, the percentage of market value of products was observed to be at the highest 

level for Medina and Uvalde with Bexar (Figure 38g). 

 

5.6.2 Drought vulnerability index 

DVI was calculated, based on 7 vulnerability indicators which have been shown 

in Figure 38, then thematic map was generated for 12 counties by using the GIS 

environment (Figure 39). DVI was classified into four groups and only one “very high” 

level was detected in Bexar county. In other words, Bexar is the most vulnerable county 

to drought in the region. Medina and Uvalde were observed by DVI as “high” level 

vulnerable counties. Some of these counties are located in the south-east parts of the region 

and the west and central part of the region was detected with “low” level vulnerability. It 

can be seen from Figure 39 that there exists no any specific trend to illustrate vulnerable 

regions such as east, west and so forth and it could be explained only by differences 

between vulnerability indicators which were different from county to county.  
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Figure 38. County level maps of drought vulnerability indicators: (a) population 

density, (b) poverty level, (c) municipal water, (d) industrial water, (e) agricultural 

water, (f) irrigated land, (g) market value of products (Note: (b) poverty level 

represents percentage of people who living below the poverty level) 
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Figure 39. Spatial distribution of composite drought vulnerability map for the 

counties in the EA region 
 
 

The DVI values should be grasped to analyze the vulnerability map, since the map 

shows only the intervals and classes. Therefore, Figure 40 illustrates in detail the DVI 

values and classes. It can be identified from Figure 40 that there are critical values for 

Hays and Kinney counties. Although Hays and Kinney counties were detected, 

respectively, as “moderate” and “low” vulnerability classes, the DVI values are quite close 

to the limit values. The DVI value was detected as 0.48 (limit value=0.50) and 0.24 (limit 

value=0.25) for Hays and Kinney, respectively. Their classes could be thought “high” and 

“moderate” depending on the point of view and the type of assessment to take notice of 

safety coefficient. As a result, the DVI and thematic map should be addressed together to 

eliminate errors on the drought risk evaluation. On the other hand, the original values, in 

this study, are used to assess DVI and stick to the original results.    
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Figure 40. Drought vulnerability index values by county 

 

5.7 Drought risk assessment 

Drought Risk Index (DRI) was generated by integrating DHI and DVI by using 

equation (18). However, a different classification was used for DRI which is different from 

DHI and DVI classifications (see Table 6 and Figure 9).  

 Figure 41a shows that high drought risk of 1-month SPI was detected for three 

counties, Bexar, Medina, and Uvalde, which are located in the southern parts of the region. 

It can be indicated from Figure 41b that the spatial risk distribution of droughts with a 

time scale of 3-month SPI is similar to the drought risk of a 1-month time scale SPI. On 

the other hand, the number of counties characterized by high DRI decreased and most of 

the counties were dominated by moderate DRI. Table 21 clearly shows the percentage of 

area under different drought risk categories and it can be understood that 3-month time 

scale SPI detected mostly moderate risk level in the region. The spatial distribution of the 
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drought risk of 6-month SPI indicates mostly different classification results, as shown in 

Figure 41c. The region was detected with mainly low drought risk level (53.9%) based on 

6-month time period drought. Very high level DRI was not observed for 1, 3, and 6-month 

 

 

Figure 41. Risk maps of droughts at (a) 1-month, (b) 3-month, and (c) 6-month time 

scale SPIs 
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SPIs in the region and Table 21 shows that 32.3% of the area was exposed to high risk, 

62.3% of the area to moderate risk at 1-month time step drought. Moreover, 15% of the 

area observed high drought risk, 79.5% of the area moderate drought risk as a 3-month 

time period drought. 

 

Table 21 Percentage of area under different drought risk categories for 1, 3, and 6-

month time scale SPIs 

Time scales (month) Percentage of area (%) 
Very High High Moderate Low 

1 - 32.3 62.3 5.4 
3 - 15.0 79.5 5.4 
6 - 20.1 26.0 53.9 

 

 

Figure 42d shows that only Bexar county was exposed to very high drought risk 

with 9-month time droughts. However, 9 and 24-month droughts had the same percentage 

for all types of drought risk categories (Figure 42d, f and Table 22) due to the same DHIs. 

Table 22 illustrates that 9.8% of the area was exposed to very high drought risk, 15.7% of 

the area to high drought risk, and 52.7% of the area to moderate drought risk for both 9 

and 24-month time period droughts. However, 32.3% of the area was exposed to high 

drought risk and 45.4% of the area to moderate drought risk with 12-month SPI. The 

percentage of area for low drought risk was found for each 9, 12, and 24-month droughts, 

respectively, quite near as 21.9%, 22.3%, and 21.9% (Table 22).  
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Figure 42. Risk maps of droughts at (d) 9-month, (e) 12-month, and (f) 24-month 

time scale SPIs 
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Table 22 Percentage of area under different drought risk categories for 9, 12, and 

24-month time scale SPIs 

Time scales (month) Percentage of area (%) 
Very High High Moderate Low 

9 9.8 15.7 52.7 21.9 
12 - 32.3 45.4 22.3 
24 9.8 15.7 52.7 21.9 

 

 

 

Figure 43. Risk maps of droughts at (g) 36-month time scale SPI and (h) EDI 
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The drought risk classification for 36-month drought can be seen from Figure 43g 

that most of the region was found under the low drought risk. Very high drought risk 

wasn’t observed and 20.1% of the area was found under high drought risk, 30.5% of the 

area under moderate drought risk based on a 36 month time period drought (Table 23). On 

the other hand, 9.8% of the region was exposed to very high level risk, 22.5% of the region 

to high level risk, and 45.4% of the region to moderate level risk, based on the Effective 

Drought index (EDI). The spatial distribution of drought risk categories with a 12-month 

time scale SPI was similar to the drought risk of EDI except for Bexar county (Figure 42e 

and Figure 43h). Real, interestingly, was the only county detected as low DRI for any time 

scale SPI and EDI. 

 

Table 23 Percentage of area under different drought risk categories for 36-month 

SPI and EDI 

 Percentage of area (%) 
Very High High Moderate Low 

36-month SPI - 20.1 30.5 49.4 
EDI 9.8 22.5 45.4 22.3 

 

The same concern should be thought for evaluating the DRI similar to the DVI. 

For example, Bexar county was found under high drought risk category for 36-month SPI 

with DRI=0.56 and this value is pretty close to the limit value (0.5625) of DRI. Therefore, 

this county could be settled in “very high” risk category due to the safety coefficient for 

the decision making of drought. As mentioned in the vulnerability assessment part, 

however, original results are used to analyze and stick to the all original values.  
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When all things considered, very high drought risk was found by 9 and 24-month 

SPI and EDI in Bexar county (9.8% of the area). The highest percentage of the area in 

high level drought risk was detected by 1 and 12-month SPI as 32.3% of the area and 3-

mont SPI found the highest moderate percentage of the area (79.5%). Bexar county was 

found under drought risk based on all time scale SPI and EDI (very high drought risk 

based on 9, 24-month SPIs and EDI). Medina, furthermore, was detected in high drought 

risk in terms of all time scale SPI (except 3-month SPI) and EDI.   
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

The study investigates spatial extent and impacts of droughts in the Edwards 

Aquifer region. Three main considerations were examined to assess drought risk. First, a 

non-dimensional conceptual index for drought hazard can be identified using drought 

frequency and severity. Second, drought vulnerability can be simplified by determining 

social/physical vulnerability factors on water demand and supply. Third, drought risk can 

be quantified by integrating both hazard and vulnerability. Therefore, a major outcome of 

this study is to produce a drought hazard/risk map of the Edwards Aquifer region. 

In general, drought risk is higher in counties of the southern part of the area. The 

only one county, Real, has low drought risk at Effective Drought Index (EDI) and all time 

scale (1,3, 6, 9, 12, 24, and 36-month) Standardized Precipitation Index (SPI) and shows 

that lower drought vulnerability mostly corresponds to lower drought risk, since Real has 

the lowest Drought Vulnerability Index (DVI) in the area. Besides, Bexar has the highest 

DVI and the only county is found in very high level drought risk. It can be seen from the 

results that it is difficult to propound a relation between potential drought zone and rainfall 

distribution, since region-3 has faced higher level drought hazard than region-1 and 

region-2 has faced the most high level drought hazard. The results confirmed that higher 

drought risks are found where both high hazard and high vulnerability coincide.  Most of 

the regions both east and west are found more or less prone to short term (based on 1 and 

3- month SPI) and long term drought (9, 12, and 24-month SPIs). 9-month SPI can be 
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thought of as a bridge from a short term seasonal drought to long term drought. Some part 

of the south and west part of the area are found prone to drought based on the EDI. 

Therefore, hydrological drought can be thought of as a risk for the region due to the results 

of meteorological drought analysis. Groundwater level measurements (in J-17 index well 

used by the Edwards Aquifer Authority) reflect that there is a decreasing trend in last 

decades, especially within last ten years and twenty years (Figure A.10a and b). 

 

6.2 Recommendations 

 Recommendations for the future work are listed below: 

 Precipitation observations and length of data play a key role to analyze drought 

and the more number of stations and longer historical data set used, the more 

reliable results and the confidence level with which drought risk is measured. 

 While both SPI and EDI can be used to monitor drought, EDI is found simpler than 

SPI. Thus, drought indices which are used to analyze drought should be multiple 

indices (more than one drought index) to compare and evaluate the results and EDI 

is getting to be a popular drought index because of its reliable results and 

simplicity.  

 Drought occurrence probability should be calculated as event-based such as in this 

study in order to compare effectively the results. 

 Drought vulnerability is a tricky part of drought risk assessment and indicators 

which are chosen for the vulnerability that has changed and varied from region to 

region. Therefore, it is essential to detect obtainable and quantifiable vulnerability 
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indicators. If it is possible, at least seven drought vulnerability indicators are 

suggested and indirect drought impacts also can be thought of for the vulnerability 

assessment. What is more, it is strongly suggest that DVI and the vulnerability map 

must be addressed together otherwise vulnerability can be misleading because of 

the values which are close to the critical level.  
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APPENDIX 

Table A.1 Station names and referring to numbers in Edwards Aquifer region 

 
 

 

 

 



 

107 

 

 

Figure A.1. Spatial distribution of average precipitation at the county level in Edwards Aquifer region 
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Figure A.2. Drought occurrences: (a) moderate, (b) severe, and (c) extreme drought 

at a 1-month SPI time step 
 

 

Figure A.3. Drought occurrences: (a) moderate, (b) severe, and (c) extreme drought 

at a 3-month SPI time step 
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Figure A.4. Drought occurrences: (a) moderate, (b) severe, and (c) extreme drought 

at a 6-month SPI time step 
 

 

Figure A.5. Drought occurrences: (a) moderate, (b) severe, and (c) extreme drought 

at a 9-month SPI time step 
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Figure A.6. Drought occurrences: (a) moderate, (b) severe, and (c) extreme drought 

at a 12-month SPI time step 
 

 
Figure A.7. Drought occurrences: (a) moderate, (b) severe, and (c) extreme drought 

at a 24-month SPI time step 
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Figure A.8. Drought occurrences: (a) moderate, (b) severe, and (c) extreme drought 

at a 36-month SPI time step 
(Note: Spatial distribution of severe and extreme drought occurrences at 36-month SPI was mapped based on the inverse 
distance method because of the difficulties of kriging interpolation method similar to Figure A.6) 
 

 
Figure A.9. Projected population growth in Edwards Aquifer region counties 

(Source: modified from "Water for Texas 2012 State Water Plan", TWDB, 2012) 
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Figure A.10. Groundwater hydrograph in the Edwards Aquifer (J-17 index well) 

 




