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ABSTRACT 
 

Distribution of Borrelia burgdorferi, the causative agent of Lyme disease in ticks across Texas. 

 (May 2013) 

Alexandra Brown 

Department of Veterinary Medicine and Biomedical Sciences 

Texas A&M University 

 

 

 

Research Advisor: Dr. Maria Esteve-Gassent 

Department of Veterinary Pathobiology 

 

 

 

The goal of this study is to determine where the Lyme disease (LD) causative agent is prevalent 

in Texas. According to the CDC, LD is the most prevalent arthropod borne disease in the US 

with 33,097 cases reported last year. In 2009 the case definition of LD was revised and 

nowadays the CDC differentiates in between confirmed and probable cases for this disease. 

Taking this into account, since 2009 Texas is the only state in the US in which the ratio of 

probable versus confirmed cases is repetitively 2:1. This can be attributed to many different 

causes, from doctors’ disregard for the disease and not testing for it or to the presence of 

genetically distinct Borrelia spp. and/or Ixodes scapularis vectors in Southern U.S. LD is 

transmitted by the bite of an infected Ixodes ticks. There are approximately 18 recognized 

genospecies of Borrelia that are present in ticks and make up the B. burgdorferi sensu lato 

complex. Only one of them has been shown to cause disease in humans in the U.S., B. 

burgdorferi sensu stricto, while B. garinii and B. afzelii have been proven to cause Lyme 

borreliosis in Europe. In addition B. spielmani, B. bissettii, B. valsiana and B. lusitane are 

currently under study in Europe to determine their implication in Lyme borreliosis (54). We have 
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collected ticks, the vectors of LD, from 23 counties in Texas and tested them for the presence of 

the bacteria pathogen, Borrelia burgdorferi sensu lato, by PCR utilizing different genetic 

markers (7, 27, 56, 58, 60) in order to determine what B. burgdorferi strains are circulating in 

Texas and how they are distributed across the state.   
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NOMENCLATURE 
 

 
LD Lyme disease 

CDC Center for Disease Control and  

 Prevention  

EM Erythema migrans  

PCR Polymerase chain reaction 

OspA Outer surface protein A 

OspB Outer surface protein B 

OspC Outer surface protein C 

IGR Intergenic region 16SrRNA-23SrRNA 

IGS Intergenic spacer 23SrRNA-5SrRNA 

FlaB Flagelar gene 

Bbss Borrelia burgdorferi sensu stricto 

Bbsl Borrelia burgdorferi sensu lato 
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CHAPTER I 

 

INTRODUCTION 

 

Lyme disease (LD), or Lyme borreliosis, is the most commonly reported arthropod-borne disease 

in the United States (12). It is caused by the spirochetal bacterial pathogen Borrelia burgdorferi 

that is transmitted to mammalian hosts by the Ixodes spp. ticks (55). According to the Centers for 

Disease Control and Prevention (CDC), there has been a gradual increase of LD cases since 

2002. Most recently, there were a total of 33,097 reported cases in 2011 with an incidence rate of 

7.8 per 100,000 people (12).  In 2009 the case definition of LD was revised and nowadays the 

CDC differentiates between confirmed and probable cases for this disease. Taking this into 

account, since 2009 Texas is the only state in the U.S. in which the ratio of probable versus 

confirmed cases is repetitively 2:1. This can be attributed to many different causes, from doctors’ 

disregard for the disease and not testing for it or to the presence of genetically distinct Borrelia 

species and/or Ixodes scapularis vectors in Southern U.S. In addition, the maintenance of the 

enzootic cycle for this pathogen might be different in the South compared to the well established 

models described in the Northeast and Midwest U.S.  

 

LD is a multisystemic disease, which can be characterized by three different stages, the first of 

which is a localized infection. Erythema migrans (EM) is the most common symptom in LD 

patients and is identifiable by a target-shaped rash and accompanied by flu-like symptoms. This 

occurs after an incubation period of 3-32 days. The rash is the only way to detect LD without a 

diagnostic test. Nevertheless, only 70% of all the reported LD cases develop EM at the site of 

tick bite, and most of the patients cannot recall whether or not a rash was present at the time of 
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infection (53, 56, 58). The second stage of LD includes the dissemination of Borrelia 

burgdorferi within days to weeks after disease onset. This stage is known as early disseminated 

LD. This can include multiple secondary EM sites and complications with the involvement of the 

neurological and cardiac systems (56).  The third stage, the persistent infection, also known as 

chronic LD, occurs after several weeks of disseminated infection and may persist for several 

years.  The pathogen continues to spread to the joints, nervous system, and cardiac tissue. 

Depending on the species of Borrelia, the frequency of the dissemination to the different sites 

varies. For example, Borrelia burgdorferi in North America is mainly arthritogenic, while 

European strains cause neuroborreliosis more frequently. Lyme arthritis is asymmetrical, occurs 

in large joints (i.e. elbows, knees, and ankle), and is recurrent for several years. In approximately 

60% of the untreated patients, intermittent attacks of arthritis begin to occur months after the 

onset of illness, especially in the knees (56, 58).   

 

Vectors, hosts and pathogens 

There are four main hard tick vectors of Lyme disease which are Ixodes scapularis, Ixodes 

pacificus, Ixodes ricinus, and Ixodes persulcatus. In North America, I. pacificus, the Western 

black-legged tick, is the primary vector in western United States and I. scapularis, the black-

legged tick, is the vector in northeastern and midwestern United States and even extend into 

Mexico (26) (Dr. Esteve-Gasssent and collaborators, manuscript in preparation). I. ricinus 

primarily live in Europe and I. persulcatus are in Asia (55). Spirochetes have been isolated from 

certain non-Ixodes ticks such as the lone star tick, Amblyomma americanum, and the American 

dog tick, Dermacentor variabilis, suggesting that these ticks also may play some role in Lyme 

epidemiology (41). The different species of ticks have different vector competencies, as in, how 
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well they are able to spread the bacteria. There have been sporadic cases of Lyme disease that 

have been transmitted by D. variabilis and A. americanum, however, they are not efficient 

vectors compared to Ixodes spp. (32, 40). One study performed in Alabama showed I. scapularis 

have much higher infection rates (83%) than A. americanum (5%) and D. variabilis (8%), and 

thus, this species is considered the primary vector in the Northern Hemisphere (41).  

 

Ixodes ticks have a three-stage life cycle which includes a larval stage, nymphal stage, and adult 

stage. The tick has one blood meal during each of these stages then drops off to molt to the next 

stage, which takes several months (Fig. 1). The life cycle of a tick can vary between 2 to 6 years 

depending on different environmental factors such as climate, host availability, etc (39, 55). 

Larva hatch from eggs laid by the female and emerge with 6 legs. They are not important vectors 

of LD because transmission of B. burgdorferi does not occur trans-ovarially. Transmission 

occurs trans-stadially, which is only passed on after feeding on an infected host. Larvae feed on 

small to medium mammals and birds. After the larva feeds and drops to the ground, it molts into 

an 8-legged nymph. The nymphal stage is most closely associated with the transmission of LD 

because they are harder to see and there are higher numbers of them (1). Nymphs feed on small 

mammals as well as on some larger mammals such as deer. They are active from early summer 

to early autumn. In the adult stage, the ticks mainly feed on larger mammals including deer and 

humans, and they are most active from autumn through winter, until early spring (55). Humans, 

as well as companion animals (dogs and horses), are considered accidental hosts and are a dead 

end for the transmission of B. burgdorferi. On the other hand, the white footed mouse 

(Peromyscus leucopus) is the most important reservoir in the US for B. burgdorferi (1). In 

addition, deer are important for maintaining tick populations because they provide the perfect 
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environment to feed sufficient numbers of adult ticks, and will allow the mating of male and 

females, necessary to generate the next generation of ticks. However, they are not competent 

reservoirs for the disease agent (55). A typical habitat for the transmission of LD includes 

wooded areas with decaying vegetation on the ground in order to maintain humidity for the 

survival of ticks and have a sufficient amount of vertebrate hosts. Moreover, recent studies have 

shown that the level of biodiversity will also affect the maintenance of the enzootic cycle as well 

as the risk of disease transmission to humans (17, 28, 33, 35-37, 51). 

 

Figure 1. Life cycle of Ixodes ticks (56, 57) 
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There are approximately 18 recognized genospecies of Borrelia that are present in ticks and 

constitute the B. burgdorferi sensu lato complex. Only B. burgdorferi sensu stricto has been 

shown to cause disease in humans in the US, while B. garinii and B. afzelii have been proven to 

cause Lyme borreliosis in Europe (Table 1). Lyme borrelia belong to the eubacterial phylum and 

are corkscrew-shaped spirochetes. It is a non-typical, gram negative bacteria that does not 

express the lipopolysaccharide in the outer membrane but instead it encodes for a significant 

amount of lipoproteins that anchor to the outer membrane through the lipid moiety (47). 

Moreover, members of the Borrelia burgdorferi sensu lato complex depend on the host for most 

of its nutrition requirements (56).  

 

Borrelia genospecies are transmitted in the tick saliva, possibly through the regurgitation of gut 

material (62). It is distributed in the midgut of ticks, so once the tick has a meal, B. burgdorferi 

disseminates into the hemolymph in its way to the salivary glands in order to inoculate the host 

(10). It causes infection to the host by migration through tissues, adhesion to host cells, and 

evasion of the hosts’ immune defenses (13). B. burgdorferi has a unique and very fragmented 

genome with one linear chromosome and up to 21 plasmids (12 linear plasmids, and 9 circular 

plasmids) (47, 49). These spirochetes have antigenic surface lipoproteins, of which there are 

three main outer surface proteins (Osp): OspA, OspB, and OspC (4, 56). These proteins are good 

genetic markers when testing for the presence of the bacteria and can be used in diagnosis of LD.  

When transmission occurs there is a phenotypic switch in these proteins. OspA has been 

associated to a protein in the tick mid gut (TROSPA) and therefore it is down-regulated (25, 38) 

during the blood meal, while OspC that binds to a tick saliva protein (16, 42) is up-regulated at 
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the same time (4, 18). On the other hand, the Lyme borrelias have not been found to produce 

toxins (55).  

 

Table 1. Distribution of Borrelia and their vectors (34, 48, 54) 

Species Main Vector Species Main Vector Species Main Vector 

North America 

 
Europe  Asia  

B. americana Ixodes pacificus B. afzelii I. ricinus B. afzelii I. ricinus 

 

I. minor  I. persulcatus  I. persulcatus 

B. andersonii I. dentatus  I. hexagonus  I. hexagonus 

B. bissettii I. pacificus B. bissettii unknown B. garinii I. ricinus 

 

I. spinipalpis B. burgdorferi I. ricinus  I. persulcatus 

 

I. affinis  I. hexagonus  I. uriae 

B. burgdorferi I. ricinus  I. scapularis B. japonica I. ovatus 

 

I. hexagonus  I. pacificus B. sinica I. ovatus 

 

I. scapularis  I. affinis B. tanukii I. tanuki 

 

I. pacificus  I. minor B. turdi I. turdus 

 

I. affinis  I. spinipalpis B. valaisiana I. turdus 

 

I. minor  I. muris  I. ricinus 

 

I. spinipalpis B. garinii I. ricinus  I. columnae 

 

I. muris  I. persulcatus B. yangtze I. granulatus 

B. californiensis Unknown  I. uriae  I. nipponensis 

B. carolinensis Unknown B. lusitaniae I. ricinus   

B. kurtenbachii I. scapularis? B. spielmanii I. ricinus   

 

*Borrelia species highlighted in blue are considered pathogenic 

 

PCR Testing  

Polymerase chain reaction (PCR) tests have been found to be an accurate and reliable source of 

testing in early Lyme disease patients and to identify B. burgdorferi from infected ticks (5, 50). 

A few of the most targeted genes include flaB, recA, p66, ospA, and several other rRNA genes 

such as the 16SrRNA and the intergenic region (IGR) 16SrRNA-23SrRNA and the internegic 

spacer (IGS) 23SrRNA-5SrRNA (5, 34, 50, 52). In previous studies, the genetic markers: flaB 
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(flagelar gene), IGR, ospA, p66, and ospC have been reported as to being optimal to identify 

Borrelia burgdorferi sensu lato complex genospecies, as well as of great value when doing 

population genetic studies of the Borrelia genospecies identified (7, 9, 34). Therefore, we 

decided to utilize the same markers previously used in the Northeast, Midwest, and Western US 

as well as in Europe, in order to simplify the analysis performed as well as to be consistent with 

the literature. Sensitivities can vary depending on the site of the sample extraction. In our study 

we have decided to extract DNA from individual ticks instead of pooling internal organs such as 

salivary glands or midguts, so we can determine infection load at the individual level rather than 

the organ studied. 

 

Hypothesis 

This study is based on the hypothesis that there are Lyme disease infected ticks in Texas and 

they have been historically under detected, which makes this disease a significant Public Health 

concern. Therefore, it is our goal to collect environmental samples of ticks in different parts of 

Texas and test them for the presence of Borrelia burgdorferi using PCR amplification of 

different genetic markers (7, 27, 60) to understand the strains of B. burgdorferi circulating in 

Southern US as well as their distribution in Central and East Texas where I. scapularis is present. 

Texas has optimal environmental factors present in these areas including the main vector, I. 

scapularis, the wooded regions, climate, seasons, and primary hosts associated with the 

transmission of B. burgdorferi. In addition, the latest studies addressing this issue in Texas date 

from mid and late 1990’s, at which time the detection of B. burgdorferi in ticks collected in 

different areas of the state was done by means of basic culture and microscopic 

(immunofluorescence) techniques (2, 6, 11, 14, 15, 22, 24, 43-45, 59). Nowadays, there is a wide 
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array of highly sensitive and specific molecular techniques that can be used to better detect this 

bacterial pathogen in environmental samples. In particular we will be using PCR followed by 

sequencing of the positive samples to confirm the presence of B. burgdorferi sensu lato complex 

genospecies in Texas.  
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Collection and Identification 

A total of 573 tick samples were sent to our facilities from all over Texas between February 2011 

and July 2012. Most of the samples were sent from veterinary clinics or the Texas Parks and 

Wildlife management areas. Ticks were found on a variety of animals as well as questing on the 

vegetation. Thirty-five questing tick samples were actively collected using flags and CO2 traps. 

Ticks were stored in 70% ethanol until DNA extraction was performed. Before processing, each 

tick received an identification code, logged in the laboratory database, and subsequently 

identified using several hard tick identification keys (3, 23, 29-31, 61). Location (address, zip 

code, county and GPC coordinates), tick species, sex, and life cycle stages were all noted for 

each sample as well as host species and tag number (when appropriate) in which they were 

feeding on. 

 

DNA Extraction and PCR 

Total DNA was isolated from the tick samples by the use the commercially available kit “High 

pure PCR template preparation kit” (Roche Diagnositcs Corp., Indianapolis, IN). After the DNA 

was extracted from each individual tick, PCR amplification was performed using AccuStart™ 

PCR SuperMix (Quanta Biosciences, Inc., Gaithersburg, MD). An initial PCR amplification was 

carried out using primers targeting the flagellin gene (flaB) as a screening for all B. burgdorferi 

sensu lato species.  Negative water controls were included in all PCR procedures to monitor for 

contamination. As a positive control, DNA isolated form B. burgdorferi B31 strain MSK-5 was 
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used in each reaction. Amplifications were separated in 2% agarose gel in TAE (Tris-Acetate- 

EDTA buffer) for 40 minutes at 90 volts. The positive samples were then amplified using four 

more primer sets including the intergenic region 16SrRNA-23SrRNA (IGR) (7, 8), p66, ospC, 

and ospA (27). IGR, p66, and ospC reactions were nested PCR amplifications. Primers and 

protocols used in this section of the proposal are described below (Table 2). All primers were 

designed and successfully used by different authors in previous studies of B. burgdorferi 

distribution in the US (7, 9, 27). All final amplicons were separated in 1% agarose gel in TAE 

buffer for 40 minutes and 90 volts.  

 

Sequencing 

All samples with positive amplification, regardless of the primer used, were sent for sequencing 

to Eton Biosciences Inc. (San Diego, CA). Samples were cleaned utilizing the Wizard® SV Gel 

and PCR clean up kit (Promega, Madison, WI) following manufacturer’s recommendations. The 

flaB amplification was used as screening and positive specimens for this marker were sent for 

sequencing to verify the presence of a B. burgdorferi sensu lato genospecies. When B. 

burgdorferi was confirmed, the other molecular targets were used in different PCR reactions. 

Positive amplicons were sent for sequencing to verify the presence of B. burgdorferi sensu 

stricto, following the same protocol as the one used for the flaB amplification. All sequences 

obtained have been submitted for population genetic study to understand the distribution of the 

different B. burgdorferi detected in the state of Texas. All sequences were analyzed using 

MacVector vs. 12.6 (MacVector, Inc.). 
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Table 1. Primer sequence and amplification programs utilized in this study 

Primer Location Sequence Program References 

FlaB: 

Bbsl-F 

Bbsl-R 

 

475-496 

685-709 

 

5'-AACACACCAGCATCACTTTCAGG-3' 

5'GAGAATTAACTCCGCCTTGAGAAGG-3' 

FlaB: 

94Co for 30 sec 

94Co for 30 sec 

56Co for 30 sec 

74Co for 1 min 

4Co o/n 

(7-9, 27)  

IGR: 

rrs-rrlA-F 

rrs-rrlA-R 

 

 

 

 

 

rrs-rrlA-Fn 

rrs-rrlA-Rn 

 

2296-2319 

3334-3313 

 

 

 

 

 

2323-2343 

3305-3284 

 

5'-GGTATTTAAGGTATGTTTAGTGAG-3' 

5'-GGATCATAGCTCAGGTGGTTAG-3' 

 

 

 

 

 

5'-GGTGAAGTCGTAACAAGGTAG-3' 

5'-GTCTGATAAACCTGAGGTCGGA-3' 

IGR-Nest-1: 

94oC for 30 sec 

35 times: 

94oC for 30 sec,  

56oC for 30 sec, 

74oC for 1 min 

4oC o/n 

 

IGR-Nest-2: 

94oC for 30 sec 

40 times: 

94oC for 30 sec,  

60oC for 30 sec, 

74oC for 1 min 

4oC o/n 

(7, 8) 

p66-F 

p66-R 

 

 

 

 

 

 

p66-Fn 

p66-Rn 

1211-1233 

1966-1943 

 

 

 

 

 

 

1252-1275 

1935-1907 

5'-GATTTTTCTATATTTGGACACAT-3' 

5'-TGTAAATCTTATTAGTTTTTCAAG-3' 

 

 

 

 

 

 

5'-CAAAAAAGAAACACCCTCAGATCC-3' 

5'-CCTGTTTTTAAATAAATTTTTGTAGCATC-3' 

p66-Nest-1: 

94oC for 30 sec 

35 times: 

94oC for 30 sec,  

50oC for 30 sec, 

74oC for 1 min 

4oC o/n 

 

p66-Nest-2: 

94oC for 30 sec 

40 times: 

94oC for 30 sec,  

50oC for 30 sec, 

74oC for 1 min 

4oC o/n 

(7) 

OspC-F 

OspC-R 

 

 

 

 

 

OspC-Fn 

OspC-Rn 

306-328  

963-933 

 

 

 

 

 

331-359 

948-924 

5'-ATGAAAAAGAATACATTAAGTGC-3' 

5'-ATTAATCTTATAATATTGATTTTAATTAAGG-3' 

 

 

 

 

 

5'-TATTAATGACTTTATTTTTATTTATATCT-3' 

5'- TTGATTTTAATTAAGGTTTTTTTGG-3' 

OspC-Nest-1: 

94Co for 30 sec 

94Co for 30 sec 

52Co for 30 sec 

74Co for 30 sec 

4Co o/n 

 

OspC-Nest-2: 

94Co for 30 sec 

94Co for 30 sec 

52Co for 30 sec 

74Co for 30 sec 

4Co o/n 

(7, 8) 

OspA-F 

OspA-R 

160-178 

1049-1033 

5'-TATTTATTGGGAATAGGTC-3' 

5'-GACTCAGCACCTTTTTG-3' 
OspA: 

94Co for 30 sec 

94Co for 30 sec 

51Co for 60 sec 

72Co for 2 min 

4Co o/n 

(7) 
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CHAPTER III 

 

RESULTS 

 

After sampling from 23 of the 254 counties in Texas, we found ticks positive for Borrelia in 12 

counties. A total of 569 ticks were collected and 86 were infected with Borrelia burgdorferi 

sensu stricto (Bbss) which were positive for the two genetic markers flaB and IGR (Table 3). The 

infected ticks were collected from several different hosts including dogs, white-tailed deer, cats, 

gamebock, and javalina, or questing on vegetation. In addition to the 86 positive Bbss there were 

three other strains of borrelia found including 63 B. burgdorferi sensu lato (Bbsl), 1 Borrelia 

americana, and 3 Borrelia andersonii. These other strains of borrelia were flaB positive and IGR 

negative. The flaB amplicon was sequenced and the blast analysis was used to confirm species.  

Table 3.  Infected tick species results 

Species Total Bb sensu stricto % infected 

Amblyomma americanum 75 16 21% 

Amblyomma cajennense 39 11 28% 

Amblyomma inornatum 2 2 100% 

Dermacentor albipictus 225 18 8% 

Dermacentor variabilis 25 1 4% 

Ixodes scapularis 72 30 42% 

Rhipicephalus sanguineus 132 8 6% 

Total 569 86 15% 

*Borrelia burgdorferi sensu stricto: flaB(positive) IGR (positive) 

The 86 Bbss samples were further analyzed using the other three markers: ospC, p66, and ospA.  

We also tested the 63 samples in the Bbsl complex with the same three markers to determine the 

genetic variability in each one of the groups (Figure 2). In this figure we were representing the 

percent of samples amplifying each marker (p66, ospC and ospA) in both groups, the Bbss and 
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0% 

25% 

50% 

75% 

100% 

Bbss Bbsl 

ospC 

p66 

ospA 

Bbsl detected strains. Interestingly, not all samples amplify all genetic markers, being p66 the 

one mostly detected in both groups of Borrelias. On the other hand, ospA was the genetic marker 

less detected in the samples analyzed. Consequently, these results suggest the presence of a great 

genetic variability in the Borrelia burgdorferi sensu stricto strains detected in Texas.  

 

B. burgdorferi sensu stricto 

flaB and IGR positive  

(86 samples) 

Marker Samples (+) % positive 

ospC 51 56% 

p66 73 80% 

ospA 47 52% 

   B. burgdorferi sensu lato 

flaB positive IGR negative  

(63 samples) 

Marker Samples (+) % positive 

ospC 32 56% 

p66 43 75% 

ospA 27 47% 

 

Figure 2.  Positive markers for two strains of Borrelia 

 

The total positive samples were mapped by county and compared with the annual amounts of 

precipitation (Figure 3). The majority of our positive I. scapularis samples were found in East 

Texas due to the greater amounts of rainfall and preferable habitat for tick populations. 

Nevertheless, some infected I. scapularis ticks were found in West Texas, in a region we 

consider as the borderline for the distribution of this tick species. In addition, other tick species 

were also found positive for B. burgdorferi in this study. They have not been reported as 

competent vector for the transmission of B. burgdorferi, but we can use them as bio-reporters. In 
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this sense, when detecting Bbss in this tick species we are acquiring information regarding the 

potential distribution of the infectious agent in Texas.   

 

 

Figure 3. Number of positive samples corresponding to the average precipitation in Texas 
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CHAPTER IV 

 

CONCLUSION 

 

Based on these results, it can be concluded that there are infected Ixodes scapularis ticks in 

Texas. The data shows that 15% of the ticks collected were infected with Borrelia burgdorferi 

sensu stricto, the infectious strain of Borrelia in the United States. Of these infected ticks, 47% 

were in I. scapularis. Moreover, 6% of all the collected ticks infected with B. burgdorferi were I. 

scapularis. Based on previous studies, Ixodes scapularis is the only tick species that transmits B. 

burgdorferi to humans and companion animals. However, the presence of other infected tick 

species was important in order to determine where this bacterium is kept in the enzootic cycle. 

This opens many questions for future research. For instance, are other tick species involved in 

transmitting pathogenic Borrelia to other mammalian host, including humans and companion 

animals? Are these other species involved in maintaining B. burgdorferi in its enzootic cycle? 

How is B. burgdorferi maintained in its enzootic cycle in areas where I. scapularis is not found? 

Are other tick species competent vectors for this bacterium? Does Texas have a slightly different 

strain of B. burgdorferi circulating?  

 

There is a strong trend in the seasonality of the infected ticks in the fall and winter (Fig. 4,5). 

Previous papers have shown that the ticks most active in late spring and the summer in 

northeastern regions. However, the difference in Texas can be attributed to the harsh summer, 

which causes the ticks to be less active during this season. Texas also has mild winters leading to 

higher activity during this time as seen in Figure 4. The data supports the fact that the tick 

activity is more consistent throughout the year, fading slightly during the summers.  This data 



 

22 

 

also shows a correlation with the hunting season in Texas and therefore presents a public health 

concern.  

Most of our samples came from South and East Texas. As shown in Figure 3, the majority of the 

positive samples were found in areas with higher precipitation, which is in East Texas. This 

correlates with the understood behavior of Ixodes ticks and environmental preferences. They 

tend to inhabit areas with higher relative humidity, vegetation, and the wild life that occurs in 

East Texas. We are continuing to collect tick samples from these areas, but we also want to find 

out how far west we can go and still find positive samples. This study will allow understanding 

the real distribution of I. scapularis as well as that of pathogenic B. burgdorferi. 

 

Most studies look at the presence of questing Ixodes scapularis nymphs, since they have been 

correlated with higher densities of LD human cases. However, in Texas the presence of I. 

scapularis nymphs, and specifically infected nymphs, has not been an easy task (19-21). 

Consequently, these studies have concluded that Southern U.S. has low risk for infection with 

Lyme disease. Nevertheless, new cases of Lyme disease are being diagnosed and reported every 

year in this region of the country. Thus, we still do not understand the transmission cycle from 

the environment to humans and companion animals. In this first screening study of the state of 

Texas, we found questing adults I. scapularis ticks that were infected with B. burgdorferi. This 

finding suggests the fact that questing nymphs from this species are present in Texas. We are 

currently working on finding out where and when the nymphs and larvae are questing or feeding 

on small and medium animals. This effort will help understanding the distribution and real risk 

of LD in not only Texas but in Southern US. In our current efforts to find I. scapularis immature 

stages, we have continued collecting ticks from a series of location across the state of Texas, and 
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we are now finding Ixodes scapularis larvae and nymph for further analysis. Most of the ticks 

collected come from wild animals, such a white tail deer and javalina as well as small rodents 

that are normal wildlife of the region of study. However, some ticks were collected in gated 

properties and off of exotic animal species such as scimitar-horned oryx. In addition, some of the 

ticks were also infected with B. burgdorferi. This leads to questions such as what is the role of 

this exotic species in the maintenance of the enzootic cycle of B. burgdorferi in our study area?  

 

Further studies need to be done on other tick species capable of infecting intermediate 

mammalian hosts, such as rodents and other medium size mammals that are responsible for the 

maintenance of B. burgdorferi in its enzootic cycle, and look further into the ecology of this 

disease. Amblyomma americanum, and Dermacentor variabilis have been found to acquire, 

maintain, and transmit B. burgdorferi, however, they have very low rates of infection (41). This 

is a potential explanation for the maintenance of this pathogen in areas where Ixodes scapularis 

ticks are not present or at times of the year in which they are not active and still humans and dogs 

are getting infected.  

 

Figure 2 shows a discrepancy in the detection of the other 3 genetic markers ospA, ospC, and 

p66 in either Bbss (flaB and IGR positive) or Bbsl (flaB positive and IGR negative). The genetic 

marker p66 was detected 80% positive in the tick samples. The variability found in the detection 

of the different genetic markers, suggests the presence of significant genetic diversity in Borrelia 

burgdorferi strains detected in our region of study. It also shows that there is more genetic 

diversity found in Bbsl since the detection of the different genetic markers was even more 

variable than the Bbss. Other members of the laboratory are conducting population genetic 
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studies with the sequences we have obtained in this study for each one of the markers and 

compared with the strains found in other areas of the country. This study will determine whether 

we have similar or different Borrelia strains in Southern U.S. and whether or not this can 

correlate with the ticks in which Borrelia was detected. 

  

The last study trying to detect B. burgdorferi in Texas was published in 1994 and utilized 

conventional immune-staining techniques as well as culture of Borrelia from collected ticks (46). 

It was found that none of the Ixodes ticks were infected, despite previous studies in the Northeast 

that had found anywhere between 12-100% rate of infection. Now that we have proof that there 

are B. burgdorferi infected Ixodes scapularis ticks in Texas, we can continue to isolate B. 

burgdorferi strains from different locations in the state so as to understand genetic differences of 

the strains in Southern U.S. compared to those in Northern U.S. We can also determine whether 

or not there is genetic variation that could explain differences in disease onset, immune response 

in humans or presence of different competent vectors in Southern U.S. that differ from what has 

been described in Northern U.S.  

 

Taken together, our studies showed that B. burgdorferi infected ticks are widely distributed in 

Texas, mostly in Eastern and Central Texas but also in South Texas. Furthermore, Ixodes 

scapularis, the competitive vector for the transmission of Lyme disease was also present in the 

same locations and showed a 42% infection rate. This finding is similar to those described for 

other regions of the country with higher LD incidence in humans and companion animals. 

Furthermore, questing infected ticks or infected ticks feeding on medium to large mammalian 

hosts were mostly detected during the fall and winter months, which coincide with the hunting 
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season for white tail deer. Consequently, we suggest that contrary to what has been observed in 

other parts of the country, the risk for Lyme disease infection in Texas will increase during the 

fall and winter months, reducing significantly during the summer months. Further studies to 

validate this observation are currently in progress. If confirmed, this will significantly impact the 

detection and diagnostics of Lyme disease in Southern U.S.  

 

 

Figure 4. Seasonality of Bb sensu stricto infected tick species in Texas 
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Figure 5. Seasonality of all Borrelia positive tick species in Texas 
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