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ABSTRACT 

 

Selective movement of synaptic vesicles from regions of the vesicle cloud toward the active zone 

following synaptic impulse activity. (May 2013) 

 

John Peters 

Department of 

Biology 

Texas A&M University 

 

 

Research Advisor Dr. U.J. McMahan 

Department of Biology 

 

 

 

Clouds of synaptic vesicles, which contain neurotransmitter molecules, are distributed along the 

length of a neuron's axon terminal. A small number of synaptic vesicles are docked on (held at) 

specialized regions of the presynaptic plasma membrane known as active zones. When a nerve 

impulse arrives at the axon terminal, the membrane of a docked synaptic vesicle fuses with the 

presynaptic membrane and releases its neurotransmitter molecules into the synaptic cleft to 

mediate impulse transmission. The fused vesicle membrane then moves laterally and recycles 

into a fully functional synaptic vesicle to be used in synaptic transmission again, while a vesicle 

from the cloud moves to occupy the vacant docking site. I used electron tomography on tissue 

sections from simply arranged axon terminals at frog neuromuscular junctions fixed at rest and 

after synaptic activity. The aim of was to determine the spatial distribution of undocked vesicles 

in the synaptic vesicle cloud with a view to understanding how vesicles move from the cloud to 

the active zone during synaptic transmission. My results led to the conclusions that when 

synapses are active in vivo, vesicles in the region of the cloud just proximal to the active zone 

selectively move to occupy the docking sites on the presynaptic membrane vacated by former 
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docked vesicles that have fused with the membrane. They, in turn, are replaced by vesicles that 

move in small groups from an intermediate region in the cloud, and these intermediate region 

vesicles are replaced more slowly by newly recycled vesicles.  

 

CHAPTER   
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CHAPTER I 

INTRODUCTION 

 

Understanding synaptic signaling during neuronal communication is fundamental for 

deciphering how the brain functions and for developing treatments for neurological disorders and 

diseases. During neuronal communication, an electrical impulse is transmitted along a neuron's 

axon. Upon reaching the axon terminal, this impulse is translated into a chemical signal by the 

release of neurotransmitters at specialized regions on the terminal's plasma membrane called 

active zones. The transmitter then diffuses to the target cell where it triggers a response. Several 

methods including biochemical assays, electrophysiology studies, and microscopy have been 

used to identify chemicals involved in signaling, the magnitude and duration of impulses, and the 

arrangement of macromolecules at active zones (Nicholls, 2012). In the last century, advances in 

electron microscopy and particularly electron tomography have greatly improved the spatial 

resolution of cell structures in situ. Using electron tomography which provides nanometer scale 

resolution in 3 dimensions, I have imaged axon terminals which contain membranous structures 

called synaptic vesicles that hold neurotransmitters. Synaptic vesicles form a cloud surrounding 

the active zone, and with the aid of macromolecules, called active zone material, some dock on 

and fuse with the presynaptic membrane releasing their contents to mediate synaptic impulse 

transmission. I used electron tomography on resting and active axon terminals to learn how 

vesicles in the cloud are recruited to active zones to replace docked vesicles that vacate the active 

zone after fusing with the presynaptic membrane. From my analysis, I conclude that there are 3 

functionally distinct regions of the cloud based on vesicle movement and that the synaptic 

vesicles move in small, ordered groups. Moreover, I have outlined the pathway synaptic vesicles 
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travel in the axon terminal as they are utilized in synaptic transmission. Detailed knowledge of 

how synaptic vesicles behave in axon terminals is a requisite to a comprehensive understanding 

of the mechanisms that regulate synaptic transmission. 

 

Background 

The nervous system is responsible for specified communication between the brain and the rest of 

the body. Neurons, the cells directly involved in such communication, use processes called axons 

to send messages to targets. These messages travel along an axon as electrical impulses; 

however, at axon terminals, messages are often translated into chemical signals (Dale et al., 

1936). The highly regulated transmission of chemical signals occurs at a point of contact 

between an axon's terminal and its target called the synapse (Foster and Sherrington, 1897; 

Lopez-Munoz et al., 2006). My study examines the mechanism of chemical synaptic 

transmission at the frog neuromuscular (neuron to muscle) junction because it is a particularly 

convenient synapse for experimentation.  

 

The axon terminals of a neuron receive electrical impulses from the axon, but they cannot pass 

this electrical signal on to the muscle fiber because there is a 50 nm gap between the axon 

terminal and the muscle fiber called the synaptic cleft (Alberts, 2010; Hall and Sanes, 1993). 

Therefore, in order for the signal to be passed on, the message must be converted into a chemical 

signal that can travel across the synaptic cleft (Dale et al., 1936). At chemical synapses like the 

neuromuscular junction, chemical signal transmission is initiated by the secretion of 

neurotransmitters at active zones (Dale et al., 1936; Ruiz et al., 2011).  
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Surrounding the active zone in a terminal is a cloud with tens to hundreds of synaptic vesicles 

(Sudhof, 2004). Synaptic vesicles are generally spherical and contain the chemical 

neurotransmitter molecules that can cross the synaptic cleft following their secretion at active 

zones (Sudhof, 2004). At neuromuscular junctions, acetylcholine is the neurotransmitter used to 

relay the signal during chemical synaptic transmission (Tansey, 2006). The influx of calcium 

ions into the axon terminal through voltage-gated calcium channels (triggered by the electrical 

impulse received from the axon) causes the membranes of some of the docked vesicles to fuse 

with the presynaptic membrane and release their neurotransmitter molecules into the synaptic 

cleft through the process of exocytosis (Katz, 1971).  

 

The fusion of synaptic vesicles at active zones on the presynaptic membrane (the terminal 

membrane of the neuron) is mediated by a proteinaceous complex called the active zone material 

(Harlow et al., 2001; Szule et al., 2012). The 3 dimensional structure of the active zone material 

at a frog neuromuscular junction has been well established by prior research in the McMahan 

Lab (see Figure 1 taken from Szule et al.) (Harlow et al., 2001; Szule et al., 2012). Harlow 

identified the first individual components of the active zone material and called them the beams, 

ribs, and pegs (Harlow et al., 2001). Beams are long macromolecules that run parallel to a row of 

docked vesicles, while ribs are perpendicular to this axis and connect the docked synaptic 

vesicles to the beams (Harlow et al., 2001). Pegs are small macromolecules that connect ribs to 

the presynaptic membrane and likely attach to calcium channels (Harlow et al., 2001). Szule 

followed up Harlow’s experiments and fully solved the structure of the active zone material. 

First, Szule discovered 3 other regions of active zone material which included 6 new active zone 

components: pins, steps, spars, masts, top masts, and booms (Szule et al., 2012). Pins are 
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structures that secure synaptic vesicles to the membrane on the side opposite the rest of the active 

zone material (Szule et al., 2012). Steps run on top of and parallel to the beam and have spars 

branching out similarly to how beams have ribs protruding outwards (Szule et al., 2012). 

Projecting upwards from the step is the mast which terminates in multiple top masts; top masts 

secure undocked synaptic vesicles (Szule et al., 2012). Finally, booms spread out orthogonally 

from the mast attaching to the middle of the docked synaptic vesicles (Szule et al., 2012). These 

macromolecules aid in the docking and fusion of synaptic vesicles upon the arrival of an 

electrical impulse (Szule et al., 2012). 

 

 

Figure 1. The organization of the frog's active zone material at the neuromuscular junction 

Harlow (2001) and Szule et al. (2012) described the architecture of the frog's active zone 

material at neuromuscular junctions. Synaptic vesicles (SV) dock on the presynaptic membrane 

(PM) with the aid of the active zone material. Docking involves the successive movement from 
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topmasts to booms, spars, and then ribs and pins. This figure was taken with permission from 

Szule et al., 2012. 

 

After vesicles have fused with the presynaptic membrane, they flatten out and move laterally 

(Heuser and Reese, 1973). They then undergo reuptake into the synaptic vesicle cloud where 

they become fully functioning vesicles once again (Heuser and Reese, 1973). There are 2 

hypotheses regarding vesicle recycling: full collapse fusion and kiss-and-run (Ceccarelli et al., 

1973; He and Wu, 2007; Heuser and Reese, 1973). Heuser and Reese found that vesicle 

membrane is endocytosed at a location away from the active zone and that a clathrin coating aids 

in the reuptake of the vesicles (full collapse fusion) (1973). Ceccarelli et al. found evidence that 

vesicles fuse and reform near the active zone without being fully incorporated into the 

presynaptic membrane (kiss-and-run) (1973). It has been established that the full collapse fusion 

process observed by Heuser and Reese is the predominate, if not the only, form of recycling in 

frog neuromuscular junctions (Heuser and Reese, 1973; Morgan et al., 2002). 

 

The cloud of synaptic vesicles surrounding the active zone material is of particular interest for 

this study. It has been established that there are 3 functional pools of vesicles in axon terminals: 

the readily releasable pool, the recycling pool, and the reserve pool (Rizzoli and Betz, 2005). 

The vesicles in the readily releasable pool probably include those that are docked and most likely 

to fuse when an impulse arrives at the axon terminal (Ruiz et al., 2011). The vesicles in the 

recycling pool are those that replace the vesicles in the readily releasable pool after fusion, and, 

by definition, the recycling pool also includes vesicles that have been recently reformed by 

endocytosis (Rizzoli and Betz, 2005). Finally, the vesicles in the reserve pool are those that move 

towards the active zone for undergoing fusion upon extreme activation (Rizzoli and Betz, 2005). 
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No obvious morphological differences have been observed between vesicles in different pools 

prior to my study (Rizzoli and Betz, 2005).  

 

The miniscule size of the structures located in neurons makes it difficult to study the finer details 

of synaptic transmission by light microscopy. Transmission electron microscopy on sections cut 

from fixed and stained tissue has been used for decades to examine sub-cellular structures, but it 

has limitations in providing information about 3-dimensional layout. In this study, electron 

tomography was used to observe structures in the axon terminals of frog neuromuscular 

junctions. Electron tomography involves taking a series of transmission electron micrographs at 

different tilt angles. These micrographs can then be aligned and reconstructed into a 3-

dimensional volume using the computer program EM3D. From this reconstruction, virtual slices 

can be cut; these slices provide substantially more structural information than conventional 

electron microscopy. This is possible because the spatial resolution in a typical section examined 

by electron tomography is 2-3 nm for high contrast structures while there is no information in the 

depth axis in a section examined by electron microscopy (Ress et al., 1999).   

 

The neuromuscular junction was chosen for examination because of its accessibility and relative 

simplicity (compared to other junctions in the nervous system). Neuromuscular junctions are 

easier to access than junctions in the central nervous system because they are not incased in 

bone. Also, neurons in the brain and spinal cord are often connected to hundreds or thousands of 

other neurons, but most muscle fibers are connected to only a single neuron (Nicholls, 2012). 

Furthermore, at neuromuscular junctions, acetylcholine is the only neurotransmitter released; 

however, multiple neurotransmitters are utilized at other synapses which can add complexity to 
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interpreting results (Nicholls, 2012). The cutaneous pectoris muscle of Rana pipiens (frog) was 

used for this study because the orderly layout of its neuromuscular junction makes it convenient 

for experimentation (Harlow et al., 2001). Also, the arrangement of docked vesicles along the 

active zone material in the frog has been established by previous studies in the McMahan Lab 

(Harlow et al., 2001; Szule et al., 2012). 

 

The aim of my study was to determine how synaptic vesicles are recruited from the cloud to 

active zones during synaptic activity. I developed a procedure that used resting frog cutaneous 

pectoris muscles as controls, while stimulated muscles were used to observe changes in the 

synaptic vesicle pool population. Images were taken using electron tomography and analyzed 

with EM3D. I divided the synaptic vesicle pool into bins and analyzed the bins for distribution of 

synaptic vesicles. The advancement of electron tomography and image analysis techniques has 

allowed me to examine the synaptic vesicle cloud with a much a higher resolution than has ever 

been possible and to take measurements in 3 dimensions. From this, I identified 3 functionally 

distinct regions of the synaptic vesicle cloud and determined that vesicles move in small groups 

while progressing through the axon terminal. Furthermore, I have confirmed the conclusions of 

others that recycled vesicles are preferentially recruited to the active zone. Altogether, my 

findings reveal the pathway synaptic vesicles use in transporting neurotransmitter molecules to 

active zones.   
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CHAPTER II 

MATERIALS AND METHODS 

 

Sample Preparation 

The pair of cutaneous pectoris muscles is located in the frog's chest, and each muscle is 

individually innervated by its own nerve. The cutaneous pectoris muscles are 2-3 muscle fibers 

thick which facilitates rapid and uniform fixation. Typically, both muscles of a pair, together 

with a 5 mm stretch of their nerve, were removed from the frog and pinned out in a Sylgard 

coated Petri dish. The frogs had been terminally anesthetized in tricaine methane sulfonate (MS-

222), and the central nervous system had been pithed. Thus, the nerve to one pinned out muscle 

could be stimulated while the other remained at rest.  

 

The pinned out nerve-muscle preparations were bathed in Ringer's solution containing 10-5 g/ml 

(+)-Tubocurarine chloride hydrate. The curare blocked acetylcholine receptors in the 

postsynaptic membrane of the muscle fibers preventing the muscle from contracting in response 

to the release of acetylcholine from the axon terminal following nerve stimulation. Afterwards, 

one of the nerves was drawn into a suction electrode and the curare-containing Ringer's solution 

was replaced with a Ringer's solution containing 0.8 % glutaraldehyde in phosphate buffer (220 

mOsM, total); simultaneously, the nerve was stimulated at a frequency of 10 Hz with 10 µA of 

current for 2 minutes. Previous experiments show that after 2 minutes of stimulation, the 

synapses were fixed so they no longer transmitted signals. The other nerve-muscle preparation 

was not stimulated. Once stimulation was completed, the muscles remained in the fixative for 40 

minutes. Then the resting and active nerve-muscle preparations were further processed for 
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electron tomography by fixing and staining them in 1% OsO4 in phosphate buffer for 1 hour. 

Following this, the nerve-muscle preparations were rinsed in deionized water, bathed in saturated 

aqueous uranyl acetate, and then dehydrated in ethanol and propylene oxide. Finally, the nerve-

muscle preparations were embedded in plastic (Eponate-12).  

 

Transmission electron microscopy requires that samples are thin enough for electrons to 

penetrate through it. To account for the thickness requirements, approximately 100 nm thick 

tissue sections were cut from the muscle using a diamond ultra-microtome. 5 nm colloidal gold 

particles were deposited on the sections to act as fiducial markers for later analysis. 

 

Data Collection 

Electron tomography was used to observe the sections at x 53,000 calibrated magnification on a 

FEI TECNAI G2 F20 FE-TEM. The stage of the microscope was cooled with liquid nitrogen to 

reduce shrinkage of the specimen due to the electron beam. Images were taken at 1 degree tilt-

intervals ±60 degrees along a single axis.  

 

Data Analysis 

Using EM3D, the 2-dimensional micrographs were semi-automatically aligned by a back-

projection method using the gold fiducial markers as reference points. Once aligned, the images 

were reconstructed into a 3-dimensional volume. In this volume, the axon terminal was separated 

into virtual slices approximately 1 nm thick which is 100 x thinner than the original section. 
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The mid-slice of each synaptic vesicle was segmented from the volume in EM3D. These slices 

were then rendered in a surface model, and from this model, the x-, y-, and z- coordinates of the 

center of each vesicle were obtained. The beam, a portion of the active zone material that runs 

through the axon terminal between the docked vesicles in frogs, was selected as a reference point 

for each of the axon terminals. The beam was also segmented throughout the whole volume, and 

the x-, y-, and z- coordinates were calculated for each virtual slice. These beam coordinates were 

used to calculate the distance between the active zone material and each vesicle. Only vesicles 

between 0-630 nm from the beam were used in the analyses. This was done for 4 stimulated 

datasets, CP48U_1x2, CP48U_2x2, CP48U_3x2, and CP48E_15x2 and 5 resting datasets, 

CP28_76, CP28_77A, CP28_77B, CP28_86, and CP28_87. These coordinates were used in 

many of the statistical analyses which are seen in the Results and Discussion. 

 

To determine the volume of each vesicle, the diameter distance in the x-, y-, and z- axes were 

measured in EM3D. Equation 1 was used to calculate the volumes: 

 

𝑽 =
𝟒

𝟑
𝝅 [(

𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓𝒙−𝒂𝒙𝒊𝒔

𝟐
) (

𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓𝒚−𝒂𝒙𝒊𝒔

𝟐
) (

𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓𝒛−𝒂𝒙𝒊𝒔

𝟐
)]  

Equation 1. Vesicle volume 

 

The expected shape of a synaptic vesicle is spherical, and it was noted that the vesicles in the 

data sets were slightly oblong. Some stretching and squishing occurred during slide preparation, 

so a correction factor for each axis was applied for each dataset. Because the vesicles are 

expected to be spherical, it was assumed that radii in the x-, y-, and z- axes were supposed to be 

the same. The expected radius was calculated for each data set using an average of radii in the x-, 
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y-, and z- axes. A correction factor in each dimension was calculated for each data set by finding 

the ratio of this expected real radius to the actual average radius in each dimension (Equation 2 

and Equation 3). 

 

𝒓𝒓𝒆𝒂𝒍 = [(𝒓𝒙−𝒂𝒙𝒊𝒔)(𝒓𝒚−𝒂𝒙𝒊𝒔)(𝒓𝒛−𝒂𝒙𝒊𝒔)]
𝟏
𝟑 

Equation 2. Expected real radius 

 

𝒙 factor =
𝒓𝒓𝒆𝒂𝒍

𝒓𝒙−𝒂𝒙𝒊𝒔
 

Equation 3. Stretch factor 

 

 (comparable equations were used in y- and z- axes) 

 

All of the coordinates were multiplied by their respective calculated correction factors (Figure 2). 

 x factor y factor z factor 

CP48_1x2 0.96163 0.95526 1.0886 

CP48_2x2 0.94889 0.94595 1.11408 

CP48_3x2 0.9245 0.9393 1.15256 

CP48E_15x2 0.93435 0.90595 1.18136 

CP28_76 0.92853 0.95776 1.124468 

CP28_77A 0.95273 0.95463 1.0995 

CP28_77B 0.95273 0.95463 1.0995 

CP28_86 0.921572 0.910242 1.192103 

CP28_87 0.9184 0.8877 1.2267 

 

Figure 2. Correction factors in x-, y-, and z- axes 

 

In the statistical analyses, the synaptic vesicle cloud was divided into bins. The 5 bins used were 

0-150 nm, 150-270 nm, 270-390 nm, 390-510 nm, and 510-630 nm. They were selected after 
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preliminary observations. Due to slight irregularities in the shape of the presynaptic membrane, 

there were occasionally differences in the volumes of the bins for different axon terminals. In 

order to account for differences in bin sizes, the volume of each bin was calculated. To find the 

volume of a bin, it was segmented on a single slice of the volume using EM3D. This slice was 

then rendered and the surface area was calculated. The surface area was then multiplied by the 

thickness of the slide to obtain the volume for the bin.  

 

From these bins, 3 regions of the synaptic vesicle cloud became apparent: the proximal, the 

intermediate, and the distal region. The proximal region is the innermost region and extends in a 

150 nm radius from the beam. The intermediate region covers from 150-390 nm in the synaptic 

vesicle cloud. Finally, the distal region includes from 390-630 nm. Figure 3 shows these 3 

regions in a 2-dimensional electron micrograph. 
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Figure 3. Regions of the synaptic vesicle cloud 

This is a 100 nm thick 2-dimensional electron micrograph of a tissue section from the axon 

terminal of a frog neuromuscular junction showing the 3 regions in the synaptic vesicle cloud. 

The 3 regions of the synaptic vesicle cloud are the proximal (P) (0-150 nm), the intermediate (I) 

(150-390 nm), and the distal region (D) (390-630 nm). 

 

Using the bin volumes, the vesicle number density in each bin was calculated. Vesicle number 

density was equal to the total number of vesicles in a bin divided by the volume of that bin. 

Finally, the distance between each vesicle and the closest neighboring vesicle (termed "nearest 

neighbor") was calculated using the coordinates already obtained from the virtual slices. These 

calculations are included in the Results and further addressed in the Discussion.  
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CHAPTER III 

RESULTS 

 

I made 3 main observations after examining tissue sections from stimulated and resting axon 

terminals of frog neuromuscular junctions. First, the number density of synaptic vesicles in the 

proximal region, containing docked vesicles and vesicles associated with docked vesicles, did 

not change after axon terminal stimulation. Similarly, the density of synaptic vesicle in the distal 

region also did not change after stimulation. However, the density of synaptic vesicles in the 

intermediate region declined by 40% after stimulation while the nearest neighbor distances for 

vesicles in this region remained the same as in resting axon terminals. Finally, vesicles in 

stimulated axon terminals have significantly larger volumes than those in resting terminals, and 

particularly, vesicles in the intermediate region are substantially more swollen.  

 

Number Density 

The proximal and distal regions show no significant change in density after axon terminal 

stimulation. However, in the intermediate region of the synaptic vesicle cloud, there is a 40% 

decline in the density of synaptic vesicles. Figure 4 shows the results for the density of synaptic 

vesicles throughout the synaptic vesicle cloud for both simulated and resting axon terminals, and 

Figure 5 shows this trend in virtual slices obtained from EM3D.  
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Figure 4. Number density of vesicles throughout the synaptic vesicle cloud in resting vs. 

nerve-stimulated frog axon terminals 

The data have been organized into 5 bins according to distance from the active zone material's 

beam, and the vesicle density of that bin is shown on the y-axis. The first pair of points 

represents the density of vesicle in the proximal region of the cloud (within 150 nm) which is the 

same before and after nerve stimulation. On the right, the final 2 pairs of points show the density 

of vesicles in the distal region (390-630 nm) which is also comparable before and after 

stimulation. The second and third pairs of points represent the intermediate region (150-390 nm) 

which undergoes a 40% decline in density upon nerve stimulation. The bars represent standard 

error. 

0

0.0000002

0.0000004

0.0000006

0.0000008

0.000001

0.0000012

0.0000014

0.0000016

0.0000018

0 100 200 300 400 500 600 700

D
e

n
si

ty
 o

f 
ve

si
cl

e
s 

(v
e

si
cl

e
s/

n
m

3 )

Distance from beam (nm)

Density of vesicles (vesicle/nm3) vs. distance 
from beam (nm)

Resting (n=586)
Stimulated (n=475)



19 
 

 

Figure 5. Virtual slices showing synaptic vesicle density in the vesicle cloud before and after 

axon terminal stimulation 

The images are 1 nm thick virtual slices obtained from EM3D. In the resting axon terminal on 

the left (A), the density of synaptic vesicles in the cloud is constant throughout the axon terminal. 

In the nerve-stimulated axon terminal on the right (B), there is a marked decline in the synaptic 

vesicle density in the intermediate region of the cloud while the densities in the proximal and 

distal regions are comparable to their counterparts in resting axon terminals. 

 

Nearest Neighbor Distance 

Next, I found that the distance between a vesicle and its nearest neighbor is the same in resting 

and stimulated axon terminals. This distance was termed the nearest neighbor distance. Figure 6 

shows the trend that the normalized nearest neighbor distances are statistically the same for 

resting and stimulated axon terminals.  
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Figure 6. Normalized count of nearest neighbor distances 

The figure shows that the normalized distribution of nearest neighbor distances is statistically the 

same for resting and stimulated axon terminals. The bars represent standard error. 

 

I then analyzed these nearest neighbor distances as a function of distance from the beam and 

found that nearest neighbor distances are the same throughout the synaptic vesicle cloud in 

resting and stimulated axon terminals. Figure 7 shows this trend for resting axon terminals and 

Figure 8 shows the same for stimulated axon terminals. With both of the slopes being essentially 

0, the graphs show that distance from the beam does not play a role in determining the proximity 

of the nearest neighbor. The y-intercepts from the 2 graphs appear different, but Figure 6 already 

indicated that the nearest neighbor distances are statistically the same. 
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Figure 7. The distance of the nearest neighbor vs. distance to the beam in resting frog axon 

terminals 

The figure shows that the nearest neighbor distance is not correlated with distance to the beam in 

resting frog axon terminals indicating that the nearest neighbor distances are the same throughout 

the synaptic vesicle cloud. 
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Figure 8. The distance of the nearest neighbor vs. distance to the beam in stimulated frog 

axon terminals 

Similar to resting axon terminals, nearest neighbor distance does not relate to the distance from 

the beam in stimulated frog axon terminals. 

 

Vesicle Volume 

Finally, I measured the luminal volume of vesicles throughout the synaptic vesicle cloud and 

determined that synaptic vesicles are larger on average in stimulated axon terminals than in 

resting axon terminals (Figure 9). The average increase in volume was greatest in the 

intermediate region of the cloud (Figure 9). The overall increase in vesicle volume was due to 

some vesicles having the same volume as vesicles in the resting terminal while others had a 

much greater volume (Figure 10).  
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Figure 9. Average volumes of vesicles in regions of the synaptic vesicle cloud in resting and 

stimulated axon terminals 

Synaptic vesicles in the vesicle cloud of stimulated axon terminals are significantly larger on 

average than those in resting terminals. In particular, vesicles in the intermediate region show a 

marked increase in volume. The bars represent standard error. 
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Figure 10. Diameter of synaptic vesicles in the synaptic vesicle cloud in resting and 

stimulated axon terminals 

This figure shows two 100 nm thick tissue sections. On the left (A) is a resting axon terminal, 

and on the right (B), a stimulated axon terminal. The circles represent the mid-slice of synaptic 

vesicles in the cloud taken from virtual slices created in EM3D and the white line is the 

presynaptic membrane. The color of the circle designates the size of the vesicles. In resting axon 

terminals, there are more of the smaller vesicles represented by purple and blue circles. In 

stimulated axon terminals, there are significantly more of the larger vesicles which are 

represented by yellow and red circles. In particular, there are a substantial number of swollen 

vesicles in the intermediate region of the synaptic vesicle cloud in stimulated axon terminals. 

 

To summarize, the data showed that there is a decline in the number density of synaptic vesicles 

in the intermediate region in stimulated frog axon terminals, yet there is no change in the 

proximity of the nearest neighbor anywhere in the axon terminal. Synaptic vesicles in the vesicle 

cloud of stimulated axon terminals have a significantly greater volume than those in resting axon 
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terminals with the most substantial difference seen in the intermediate region of the synaptic 

vesicle cloud.   
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CHAPTER IV 

DISCUSSION 

 

Prior research has explored the nature of the synaptic vesicle cloud. Rizzoli and Betz described 3 

functionally distinct pools in the cloud based on electrophysiology studies (2005); however, they 

did not locate these pools in specific regions. My study explored regions of the synaptic vesicle 

cloud in the axon terminal of a frog neuromuscular junction by electron tomography. I made 3 

main observations after stimulating frog axon terminals at a rate of 10 Hz for 2 minutes. First, 

the density of synaptic vesicles in the proximal and distal region of the synaptic vesicle of cloud 

was constant after stimulation. Second, despite the density of synaptic vesicles declining by 40% 

in the intermediate region after stimulation, the nearest neighbor distances are constant. Finally, 

many of the vesicles in stimulated terminals were larger than those typical of resting terminals 

and in particular in the intermediate region. From these observations, I conclude that the vesicles 

from the proximal region of the vesicle cloud replace vesicle that have fused with the membrane. 

Subsequently vesicles are selectively recruited from the intermediate region of the cloud to 

replace those removed from the proximal region. The density of the intermediate region is then 

slowly restored primarily, if not entirely, by recycled vesicles. 

 

I first observed a decline in synaptic vesicle density in the intermediate region of the cloud after 

axon terminal stimulation while the density of the other regions remained constant. The 

functional advantage of such constancy is that the axon terminal has to remain poised for 

transmission; axon terminals still function even at levels of stimulation much more extreme than 

normal physiological conditions. Because the density of the proximal region is constant, vesicle 
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must be moving in from nearby. It is possible that newly recycled vesicles are sustaining the 

density of the proximal region; however, Heuser and Reese found the recycling occurs away 

from the active zone (1973). From observing this significant reduction in vesicle density in the 

intermediate region of the cloud, I concluded that vesicles are selectively recruited from this 

region of the vesicle cloud to the proximal region during synaptic transmission. My next focus 

became determining whether vesicles are removed uniformly or in groups from the intermediate 

region.   

 

In order to determine how vesicles are removed from the cloud, I looked at vesicles and their 

nearest neighbor. I found that resting and stimulated axon terminals have the same nearest 

neighbor distances; therefore, the grouping of vesicles is constant after nerve stimulation. I then 

looked to see how nearest neighbor distances change as a function of distance from the beam, 

and I found that vesicle nearest neighbor distances were not dependent on distance from the 

beam. Therefore, the grouping of synaptic vesicles is the same throughout the vesicle cloud in 

both stimulated and resting axon terminals.  

 

In stimulated axon terminals, it is easier to see the grouping of vesicles. The vesicles in resting 

axon terminals appear to be interconnected multiples times; however, due to the lower density in 

stimulated axon terminals, it is possible to see vesicles linked to only 1 or 2 other vesicles. One 

way that I often saw vesicles grouped in stimulated axon terminals is in chains. Figure 10 shows 

an example of a chain of 5 vesicles terminating at the presynaptic membrane linked together by 

5-10 nm long filaments.  
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Figure 11. Chain of synaptic vesicles  

The figure shows a vesicle chain in a tissue section through an axon terminal of a frog 

neuromuscular junction imaged by conventional 2-dimensional electron microscopy. The chain 

contains 5 synaptic vesicles and extends to the presynaptic membrane. There are 5-10 nm long 

filaments linking the vesicles together. 

 

From this information, I concluded that vesicles move from the intermediate region of the 

synaptic vesicle cloud to the active zone in groups. After determining this, I sought another way 

to identify the intermediate region of the vesicle cloud. I found that throughout the synaptic 

vesicle cloud the volume of vesicles are larger in stimulated axon terminals; however, there is a 
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particular increase in volume in the intermediate region of the vesicle cloud. My hypothesis for 

why there are larger vesicles in this region is that the swelling of synaptic vesicles is a step in 

vesicles refilling with neurotransmitter molecules.  

 

From these observations, I conclude that fused vesicles are immediately replaced by adjacent 

vesicles in the proximal region of the synaptic vesicle cloud. The vesicle density of the proximal 

region is maintained by the selective recruitment of synaptic vesicles in groups from the 

intermediate region of the vesicle cloud. The vesicle density of this region then recovers by the 

recycling of synaptic vesicles back into the cloud. However, there is a decline in vesicle density 

in this region because vesicles are not recycled as quickly as they fuse and vesicle membrane 

builds up in the presynaptic membrane.  

 

Therefore, I have outlined 3 region of the synaptic vesicle cloud by describing anatomical 

differences. These 3 regions may correspond to the 3 pools from the electrophysiology studies 

done by Rizzoli and Betz (2005). The proximal region very likely relates to the readily releasable 

pool, the intermediate region to the recycling pool, and the distal region to the reserve pool. The 

closest region has the highest turnover rate with vesicles fusing at the active zone and releasing 

their contents. I found then that there is a 240 nm band where vesicle recruitment and recycling 

likely occurs. It is probable that the specific size of this intermediate region is related to my 

stimulus paradigm and that under different condition, this region shrinks or expands. Finally, in 

the distal region, there are few changes observed after stimulation which is consistent with how 

the reserve pool described by Rizzoli and Betz would behave (2005).  
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I have 2 aims for future research. I plan to test directly whether synaptic vesicles are recruited 

from the intermediate region of the cloud in chains, as I have proposed, by using electron 

microscope labeling techniques. I will use horseradish peroxidase to produce an electron dense 

pigment that can be endocytosed during vesicle recycling. This will allow me to see how such 

vesicles are grouped in the vesicle cloud. Second, I will determine whether the swollen vesicles 

that appear predominantly in the intermediate region of the vesicle cloud during recycling are 

undergoing neurotransmitter reloading by exposing the axon terminals to vesamicol which is 

known to block reloading. This will provide insight into the process of vesicle reloading. 
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