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ABSTRACT

This report presents results from degraded performance measurements of a residential air

conditioning system operating under reduced evaporator air flow. Experiments were conducted

using a R-22 three-ton split-type cooling system with a short-tube orifice expansion device.

Results are presented here for a series of tests in which the air flow across evaporator was

reduced by 25%, 50%, 75%, and 90% of normal amount of air flow as specified by ARI. Return

air temperature was maintained at 80 F dry bulb for all the standard and degraded experiments.

Experiments were conducted for three different return humidity conditions of 20% RH, 45% RH,

and 65% RH and three outdoor conditions of 70°F, 85°F, and 100°F dry bulb temperature.

At present, very little information has been published which quantifies the degraded

performance of a residential cooling system operating under reduced evaporator air flow.

Degraded performance measurements can provide information which could help electric utilities

evaluate the potential impact of system-wide maintenance programs.
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CHAPTER I

INTRODUCTION

Outline of Introduction

The impact of air conditioners on electricity consumption in national level and in Texas is

reviewed in this chapter. From the assessment of the current field installation practices it appears

that significant amounts of air conditioners are operating under degraded conditions. There are

also constraints on providing periodic service which could help to maintain the original efficiency

of the air conditioners. A brief discussion of currently emerging monitoring technologies is also

done here. The primary motive behind current investigation is outlined in objective section.

Overview of Air Conditioners Use in U.S.

In the year 1987, the electricity consumption in U.S. by end-use was, Residential sector 35%,

Commercial sector 27%, and Industrial sector 35% (Energy Information Administration [EIA],

1991). Heating and cooling systems consume 27% of the electricity used in the residential sector.

The average annual residential electricity cost was 685$ (EIA, 1989). It is important to pay

attention on electricity cost because, in the last 15 years the residential electricity cost was

increased by 200% (Energy prices, 1991). Due to lack of awareness customers, are unwilling to

pay for the conservation. Also implementing the conservation is also difficult because of the

diffuse pattern of use of electricity by air conditioners. It was estimated that atleast 30.7 million

central system air conditioners are used in the U.S. residences (EIA, 1989).

Assessment of the Need for the Service

Field studies show that many of the existing installations are of poor quality and require

immediate service to save the equipment or to restore it to rated efficiency (Neal, 1987; Proctor,

1991). Experts from air conditioning service industry also point out that manufacturers are not

addressing the difficulties that arise in field installations (Wheeler, 1991). From the field studies,

Proctor found that the HVAC contractors who are responsible for maintaining air conditioners
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were not identifying or solving the problems that led to high energy bills (Proctor, 1991). Neal

also expressed the same opinion after conducting a field installation survey in North Carolina

(Neal, 1987).

The following list of prevalent field degradations can serve as a yardstick to assess this

problem;

Reduced air flow: 67% (Proctor), 30% (Neal), 17% (Hewett)

Undercharging or overcharging: 53% (Proctor), 70% (Neal), 72% (Hewett)

Refrigerant leaks and kinked lines 40% (Proctor).

Constraints on Periodic Service

Current trends in the residential air conditioning service industry are based primarily on

corrective maintenance procedures which are initiated only after a failure occurs. While

preventive maintenance can help maintain optimum system performance, some possible reasons

include: (1) customers' reluctance to pay the price for regular check-ups, and (Z) contractors' lack

of the necessary knowledge to provide an effective preventive maintenance procedure.

Preventive maintenance can be primarily classified as (Anderson, 1990): (1) On Condition

Maintenance (OCM) where degradation prior to functional failure can be detected by periodic

inspections and evaluations, or (2) Condition Monitoring (CM) where degradation prior to

functional failure can be detected in sufficient time by instrumentation(e.g., measuring

temperatures or pressures).

Regardless of which approach is followed preventive maintenance is only effective when

potential failures can be ascertained reliably and inexpensively and where the prevention of the

failure more than pays for the diagnostics. Current preventive maintenance technology is yet to

attain this position, because from field measurements, Hewett found that for small capacity units

tune-ups are not cost-effective to the utility (Hewett, 1992).
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Appearance of New Monitoring Units

One of the major problems facing the residential cooling service industry is a lack of

adequately trained service technicians (Silver, 1989). The currently available service techniques

are based on the field experience of the service personnel and remedial measures vary widely with

each individual's background. Recently Environmental Protection Agency (EPA) mandated a rule

which demands the technicians to recover and recycle the refrigerants and it also recommends that

standardizing the training program received by refrigerant technicians (Mahoney, 1992).

Automatic monitoring and diagnostic systems based on the air conditioning theory could address

the need of the air conditioning industry in such areas as 1. to develop a standardized service

procedure and 2. to asses the cost-effectiveness of the service.

Some commercially available automatic diagnostic systems are already beginning to appear.

Kaler developed one such monitoring device which continuously monitors the HVAC system for

selected system malfunctions (Kaler, 1990). This device continuously tracks the temperatures of

an HVAC system and evaluates this value with an embedded knowledge base, and warns the

owner in advance of any potential trouble.

"CoolGuard" developed by Dencor Inc., is an electronic monitoring device that can detect

failure symptoms (Coolguard, 1992). It monitors return and supply air temperature and outdoor

air temperature for abnormal values. Remote monitoring possibility is also available with this

system.

Foster of Whitbread (U.K.) discuss a computerized monitoring and pre-failure diagnostic

system for low to medium cost refrigeration equipment (Foster, 1992). Whitbread R&D

engineers closely studied the performance of wide range of refrigeration equipment's used in

restaurants and pubs and developed a patented technique which can learn correct operating

characteristics. It then monitors the units to detect abnormal operating conditions.

It appears that current monitoring technologies are not matured sufficiently, because from the

field studies conducted to evaluate two automatic monitoring and diagnostic devices it was found
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that their performance were not satisfactory in the field installations (S. Englander, personal

communication, September 27, 1991). Lack of the theory on residential air conditioning

monitoring is the primary cause for hindering the further implementation of these devices.

Overview of Air Conditioners Use in Texas

Texas consumes nearly 9% of the electricity used in U.S. Electricity consumption in Texas by

end-use can be given as, residential sector 35%, commercial sector 26%, and industrial sector

35%. Approximately 5.9 million single-family dwelling residences are in Texas and 70% of them

have central space cooling systems. By 1998, 80% of the Texas households are expected to have

central cooling systems. The most commonly sized central air conditioners have three tons of

cooling capacity and the average SEER for the existing units is 8 Btu/watt-Hour. The average

SEER value for the new units is 10 Btu/watt-Hour (PUCT, June 1990).

Impact of Air Conditioners Energy Use on Utilities

In Texas, central air conditioners consume nearly 30% of the residential electricity use. This

quantity is expected to remain unchanged till 1998. The influence of air conditioners on the

residential peak load is very high (90%) and the two third of the commercial peak load is due to

air conditioners (Zarnikau, 1992;Reddy, 1992).

Significant amount of cooling energy consumption can be saved by improving the efficiency of

the air conditioners (Zarnikau, 1992). The demand side management (DSM) program promoted

by utilities around the nation gives incentive to customers to buy high efficiency air conditioners

which can pass the Appliance Minimum Efficiency Standards, which became effective in 1992

(United States, 1987). Utilities are also being asked to increase and measure their demand-side

savings. It was estimated that 973 million kWh of electricity should be saved in 1999 because of

the National Appliance Efficiency Standards and the peak demand savings should be 600 MW by

1999, in Texas. However, a high efficiency air conditioner will only reduce energy use if it is

installed and maintained properly.
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Objective of Current Investigation

Currently, very little information is available which describes the performance of air

conditioners under degraded conditions. The air conditioning industry has shown a concern and

several trade journal articles address this issue (Neal, 1986; Rutkowski, 1990). This problem is

further compounded by a lack of consensus for developing proper service procedures (Powell,

1988).

A detailed discussion of performance which has been observed on a test bench is presented in

this report. The primary focus of this report is to investigate the performance of an air

conditioner under reduced evaporator air flow. Reduced evaporator air flow is caused by; 1. A

dirty filter or a dirty coil, 2. The duct blockage, and 3. A loose belt or pulley (in the case of belt

driven blowers). Evaporator air flow was reduced by 25% to 90% of normal amount of air flow.

Performance was monitored by varying return air humidity and outdoor dry bulb temperature.

The final objective of quantifying the measured degraded performance is presented in this

report in the following fashion; (a.) the review of previous work, (b.) experimental apparatus and

procedure, (c.) data reduction and performance calculations, (d.) results and discussion,

(e.) summary and conclusions. The long term goal of this work is to classify and simulate

degraded conditions for the most widely experienced problems on a test bench so that eventually

the field procedures developed which are capable of recognizing the degraded conditions.
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CHAPTER II

REVIEW OF PREVIOUS WORK

Outline of Previous Work

The review of previous work is organized in two groups, namely: 1. Failure patterns and field

measurements, 2. Degradation studies. Discussions on failure patterns and field measurements are

necessary to review the current situation and to set a general guideline for further work required

to improve the efficiency of the air conditioners. Degradation studies, which are discussed here

are mostly conducted in a laboratory atmosphere and they attempts to quantify the effect of

degradation on efficiency.

Failure Patterns and Field Measurements

Among the five literatures reviewed under failure patterns and field measurements, Karger

(Karger, 1984) and Lewis (Lewis, 1987) discuss the component wise failure rates of an air

conditioner. Neal (Neal, 1987), Proctor (Proctor, 1991), and Hewett (Hewett, 1992) made field

measurements to access the quality of installation and degradation in efficiency.

Karger and Carpenter discussed failure patterns of residential air conditioning units based on

their survey of 531 failed units. This is one of the first studies conducted on failed air

conditioning systems. Their study indicated that failure rates for electrical controls and

miscellaneous electrical devices was the most prevalent at 31.4% of the total number of failures,

followed by refrigerant leaks 17.2%, compressors was 13.5% and outdoor fans at 11.5%.

Lewis surveyed 492 large HVAC dealers to compile information on heat pump service life. He

discovered that refrigerant leaks were the major cause for failure, totaling 19% of failed units,

followed by compressor motor circuits were 16%, and mechanical part failures were 12%.

Neal investigated the quality of residential air conditioning system installation and service in

North Carolina. His random survey of 10 units indicated that inadequate evaporator air flow was

present in 3 of the 10 units(30%) and improper charging was in 7 units(70%). He concluded that
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a very high percentage of air conditioning units have installation or service problems that affect

homeowner's energy bills and comfort.

Proctor tested fifteen homes in Fresno, CA which reported very high summertime energy

consumption in PG&E's Appliance Doctor Pilot Program, a project designed to investigate the

causes for the high energy bills. Proctor's results showed low evaporator air supply existed in 10

out of 15 sites(67%). Overcharging and undercharging was found in 8 locations(53%).

Refrigerant leaks and kinked lines were present in 6 houses(40%). Remedial measures reduced

cooling energy costs from 10 to 30%. He concluded through interviews and field tests that the

HVAC contractors who maintained these systems were not identifying or solving the problems

that led to high energy bills.

Hewett et al., sought to quantify the energy and demand savings through efficiency tune-ups of

commercial unitary cooling equipment in the service territory of a major New England utility.

They tuned up and monitored 18 systems (7 dual compressor systems) which range between 4 to

15 tons cooling capacity. Their results show that reduced evaporator air flow condition exist in 3

units(17%), overcharging was found in 10 units (60%) and undercharging was found in 8 units

(40%). They also found that none of the thermostatic expansion valves(13 systems) provided

correct superheat. They conclude that "tune-ups do not appear to be cost-effective to the utility

except perhaps for larger equipment". Efficiency tune-ups resulted in an average energy savings

of 9 to 10%.

Degradation Studies

Houcek (Houcek, 1984) and Farzad (Farzad, 1988) conducted degradation experiments to

quantify the effect of undercharging and overcharging on efficiency. Currently, very little

information is available to predict the degradation in efficiency due to reduced evaporator air

flow and reduced condenser air flow.

Houcek studied the effect of improper charging by conducting experiments on a 2-ton split

system with 37 feet of interconnecting refrigerant lines. In his experiments supply air entering the
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indoor coil was maintained at 80°F DBT and 67°F WBT. Air entering the outdoor unit was

maintained at four different conditions: 70°F, 82°F, 95°F and 100°F. Houcek's experiments

showed that at 95°F outdoor conditions, overcharging by 23% decreases the operating cost by

only 0.5%. However, this was observed to cause a floodback condition (Floodback describes a

situation when liquid refrigerant enters the compressor. Compression of liquid refrigerant will

cause mechanical failure of the compressor). For undercharging, it was estimated that the

operating cost increased by as much as 52%. He recommended a new device (a Visual

Accumulator-Charger) for charging air conditioners effectively.

Farzad studied the effect of undercharging and overcharging for three expansion devices: (i) a

capillary tube, (ii) a short-tube orifice, and (iii) a thermostatic expansion valve. He conducted his

experiments under controlled conditions specified by DOE/ARI testing procedures for Unitary Air

Conditioners. He varied the system charge from -20% to +20% for different outdoor

temperatures. His study showed that capillary tube expansion is more sensitive to off-charge

conditions than other types of expansion valves. For a 20% undercharge the Seasonal Energy

Efficiency Ratio (SEER) was reduced by 20%, while overcharging by 20% produced an 11%

reduction in SEER. He found that the SEER was not very sensitive to changes from -20% to

+20% of the correct charge when an orifice tube is used for an expansion device.

Summary of Review of Previous Work

From the review of failure patterns and field measurements we can conclude that (i) Significant

number of air conditioners are working under degraded conditions, (ii) Current installation and

service techniques are not satisfactory. Also from degraded studies, we learned that it is possible

to quantify the amount of degradation. This information could be useful to assess the cost

effectiveness of air conditioner tune-up. A summary of work done by various authors and the

products available in the air conditioning service field is listed in Table 2.1. By reviewing Table

2.1., and excluding few large air conditioners manufacturers, we can conclude that,
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Table 2-1. Index of authors and products

1. Currently very little information has been published which encompass the whole range of air

conditioning service activities

2. Lack of comprehensive theoretical and experimental investigation is available to explain and

detect the degraded conditions.

3. Further work is required to effectively utilize some of the state-of-the-art technologies of

electronics for the purpose of monitoring and diagnostics.

From the above arguments it is imperative that the air conditioning diagnostics should be

explored from first principles so that they can be carried out successfully to save energy and

resources.
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CHAPTER m

EXPERIMENTAL APPARATUS AND PROCEDURE

Outline of Experimental Apparatus and Procedure

This chapter describes the background of experimental apparatus and procedure for

conducting the degraded tests. Experimental apparatus was mounted on a split test bench as

separate indoor and outdoor sections which facilitate them to locate in the indoor and outdoor

rooms of Psychrometric chambers. Description of sensors and the location of measurements are

discussed in the measurement section. Calibration of instruments is discussed in the calibration

section. The Procedures section describes the tests conducted in the room atmosphere and in the

Psychrometric chambers.

Description of Test Bench

In this project, the air conditioning system considered for analysis is a standard split system

unitary air conditioner with a hermetically sealed reciprocating compressor. The cooling coil has

a maximum three ton capacity. A short-tube orifice was employed as expansion device. The

refrigerant flow path and the air flow path are shown schematically in Figure 3.1. A detailed

arrangement of components on the test bench is shown in Figure 3.2. The technical specification

for each component is given in Table 3.1.

Indoor Section

The arrangement of indoor test section included a removable flow restrictor, a centrifugal type

blower and a cooling coil (vertical type evaporator). An air flow restrictor (pre-drilled plywood

board) was placed at the entrance of the indoor air flow chamber to simulate the reduced

evaporator air flow conditions. The supply air which was passed across the cooling coil was

routed back in to the indoor room after leaving the indoor chamber.
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Outdoor Section

The outdoor test section consisted of, a reciprocating compressor, a spine-fin condenser coil

and a propeller type outdoor fan. The outdoor fan was mounted on the top of the condensing

coil. The conditioned outdoor room air is inducted across the condensing coil and discharged

above in to the room.

Measurement

A list of properties which were measured at the test bench is shown in Table 3.2. A total of 21

quantities was measured with a data acquisition system. Refrigerant pressures and temperatures

were measured at six locations, as shown in Figure 3.2. Refrigerant temperatures were measured

with thermocouple probes which were installed in the refrigerant lines. The thermocouple probes

were mounted parallel to the flow in the tubes to minimize conduction errors. Copper-Constantan

thermocouples were used to measure both refrigerant and air temperatures.

Properties measured on the air side included dry bulb temperature and relative humidity at

outdoor conditions and supply conditions. Return air dry bulb temperature was measured by a

16-element thermocouple grid before it entered the coil. Two flow straighteners were installed

before and after the cooling coil to maintain a uniform air flow across the cooling coil. Supply air

temperature was measured with another 16-element thermocouple grid before it enters the flow

measurement chamber. Return and supply humidity sensors were located near the inlet and outlet

thermocouple grids. The outdoor fan, air discharge temperature was measured by a 16-element

thermocouple grid which was placed above the condenser fan.

The refrigerant mass flow rate was measured at the liquid line before the expansion valve. The

refrigerant mass flow was measured with two Coriolis-effect (Macken) mass flow meters mounted

in parallel. The pressure drop across the mass flow sensors was below 12 psig which is the

allowable upper limit by ASHRAE Standard 116-83 (ASHRAE, 1983).

The amount of supply air was measured by an Air Movement and Control Association (No.

210) flow chamber. This chamber contained four ASME nozzles, an 8-inch, two 5-inch, and a 3-

inch diameter. The 8-inch diameter nozzle was used to measure the standard test (1150-1200
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Table 3.2. List of measuring instruments
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CFM) and the 25% reduced air flow test. The 5-inch nozzle was used to measure the 50%

reduced air flow test. The very low air flow conditions during 75% (300 CFM) and 90% (120

CFM) reduced air flow tests were measured by the 3-inch diameter nozzle. A differential pressure

transducer was used to measure the static pressure gain before the supply nozzle, which was

converted into air flow rate according to the ANSI/ASHRAE Std 51-1985 (ASHRAE, 1985).

This standard includes the effect of supply air wet bulb temperature and the barometric pressure.

The compressor and the condenser fan, power consumptions were measured with a watt

transducer.

Calibration

The pressure transducers were calibrated with a dead weight calibrator before and after

conducting the experiments. The accuracy was within +- 0.5 psig. Thermocouples were

calibrated using an isothermal liquid bath. The accuracy of thermocouple was found to be within

+-0.2 F, therefore it was decided to use the temperature readings as it was measured.

Relative Humidity sensors calibration

Relative humidity sensors were calibrated following the guidelines of National Bureau of

Standards (NBS) for calibrating the Relative humidity sensors (Bryant, 1992). During the

calibration it was found that the RH sensor's measurement error was function of both temperature

and the amount of moisture in the air(Figure 3.3). The error during the calibration was varied

from 5% to 12% from the reference values (saturated salt solutions) provided by NBS (NBS,

1983). Also, the NBS standard predicts as much as +- 4% variation in RH values for the

saturated salt solutions. The degradation of accuracy in readings were also noticed (Bryant,

1992). Therefore a post calibration of RH sensors was also done after conducting all the

experiments. In Figure 3.3 the initial-calibration and post-calibration errors of the Return air RH

sensor is plotted as a function of return air dry bulb temperature and humidity ratio. The RH

measurements were corrected individually for each test after considering the temperature and the

amount of moisture present in the air during that particular test (Figure 3.3).
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Procedures

General

Degraded tests were conducted at both in the room atmosphere and in the Psychrometric

rooms. Outdoor temperature and the return air humidity were varied during the tests conducted

in the Psychrometric rooms. After reviewing the references cited in previous chapters, the

following degraded tests which represent the majority of degraded field conditions were selected

for the investigation. :

1. Reduced evaporator air flow

2. Insufficient condensing unit air flow

3. System undercharging and overcharging

4. Non-Condensable gases (such as air) in the system

5. Restrictions in the refrigerant lines.

A complete description of tests conducted in Psychrometric rooms is discussed in

Psychrometric section and in Appendix (Table A.2) This report only discusses the effect of

reduced evaporator air flow on the performance of an air conditioner.

Room Atmosphere

Initially the test bench was assembled in the laboratory space which is not climatically

controlled. Preliminary tests were conducted in the room atmosphere (normal laboratory

temperatures). The indoor and outdoor sections were placed nearly 10 feet apart. The

temperature of air entering the indoor section (return air) and the condenser inlet air was same as

the normal room temperatures (nearly 75 F). The return air humidity was ranged from 45% to

60% RH.

Psychrometric Rooms

The indoor and outdoor section of the split-type air conditioner was installed in the indoor and

outdoor rooms of Psychrometric room facility at the Energy Systems Laboratory, Texas A&M

University. The Psychrometric rooms were constructed and maintained according to the

American Society of Heating Refrigeration and Air conditioning Engineers (ASHRAE)
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specifications (ASHRAE Standard, 1983). The room dry bulb temperature and humidity could be

maintained within +/- 0.5°F of the set point. The desired set points were maintained by a Texas

Instruments PM-550 controller.

Degradation simulation

Reduction in evaporator air flow was simulated using a plywood restriction board to cover the

supply air duct. The plywood board was pre-drilled at several places to allow air

flow from 100 CFM to 1000 CFM. Supply air flow was varied by covering the*appropriate holes.

The low humidity (20% RH) standard and degraded tests were conducted initially for the

three outdoor temperatures (70°F, 85°F, 100°F). The medium humidity standard tests were

conducted at these three different outdoor dry bulb temperatures followed by high humidity

standard tests which were repeated at the same outdoor dry bulb temperatures. For each reduced

evaporator air flow condition (25% reduction etc.), the return air was maintained at the medium

humidity level (45% RH) and the outdoor temperature was varied. After conducting the three

medium humidity tests, the indoor humidity was raised to (65%) high humidity and another series

of three degraded tests was repeated at three outdoor dry bulb temperatures. The air flow was

maintained constant during all the six degraded tests. After conducting all the six degraded tests

at one particular amount of reduction in evaporator air flow, these six degraded tests were

repeated for another amount of reduction in evaporator air flow until all the required degraded

conditions were simulated [Table 3.3].

Summary of Experimental Apparatus and Procedures

It was relevant to discuss the apparatus and instruments used in this experiments in detail

because the reader should be aware of the methodology of the investigation and be able to

evaluate the results for his needs. An important conclusion arrived from conducting the degraded

experiments is the measurement and the calibrations of the instruments are very important. In

particular, a complete calibration of RH sensors is essential to calculate the air side cooling

capacity accurately.
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Table 3.3. List of experiments conducted in Psychrometric room
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CHAPTER IV

DATA REDUCTION AND PERFORMANCE CALCULATIONS

Outline of Data Reduction and Performance Calculations

The preliminary data reduction process is discussed in the raw data processing section. The

test duration and the properties which are measured are illustrated graphically through the time

series plots. Also, the time series plots are helpful in visualizing the dynamic conditions occurring

at 90% reduced air flow tests. The air and refrigerant side capacity calculations are discussed in

the performance calculations sections. Construction of Pressure-Enthalpy chart and

Psychrometric chart is also included in this chapter.

Raw Data Processing

During each test, the refrigerant and air side properties were measured continuously at the

interval of 15 seconds. The time series plots which were shown in Figures 4.1. and 4.2. describe

the test operating conditions during a normal air flow test (standard) and a 90% reduced

evaporator air flow test (degraded). The time series plots which were shown here, correspond to

the medium humidity return air (45% RH) at 85 F outdoor dry bulb conditions. The refrigerant

pressures and refrigerant temperatures which were measured at six locations on the refrigerant

lines (Figure 4.1.) was shown in the top row. The air side dry bulb temperatures and relative

humidities were shown in the left hand side of the middle row. The air flow across the evaporator

was shown in the right hand side of the middle row. The total refrigerant mass flow rate and the

outdoor unit power consumption were included in the last row.

The duration of the standard tests and the 25%, 50% and 75% reduced air flow tests were

thirty minutes and the duration of the 90% reduced air flow tests were nearly two hours and thirty

minutes. For the normal test the steady state values were reached within 10 minutes after the

start-up. However during the 90% reduced evaporator air flow test, the symptoms of serious
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Figure 4.1. A sample time series plot for the standard test
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Figure 4.2. A sample time series plot for the 90% reduced evaporator air flow test
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degraded conditions appeared only after 45 minutes from the start-up.

Refrigerant pressures and temperatures dropped to a very low value after an hour of reduced

evaporator air flow operations. The supply air temperature started to rise after 45 minutes of the

start-up and the supply air humidity also reached to a steady value during that period. The air

flow across the evaporator was reduced by frost which was covering the evaporator coils. The

reductions in refrigerant flow and the outdoor unit power consumption were also visible from the

reduced evaporator air flow plots. Further discussions on this topic is included in the

experimental observations sections in next chapter.

Return air temperatures were maintained at 80°F for most of the tests. However, return air

temperature varied from 80°F to 77°F during 75% and 90% of reduced evaporator air flow. This

was due to a slight amount of cold air re-circulation which occurred between the plywood

restrictor and the cooling coil. This effects are similar to the thermal storage effects of the duct

walls, and the non-uniform velocity and temperature distribution over the cross-section of the

thermocouple grid as discussed by Tree et al., (Tree, 1981).

Performance Calculations

To calculate the performance factors, values measured during steady-state conditions were

averaged for thirty minutes of the test. Refrigerant enthalpies at six locations were calculated

using the refrigerant property calculation program developed by Kartsounes (Kartsounes, 1971).

Air side enthalpy, specific humidity and specific volume were calculated by a Psychrometric

program developed at the Energy Systems Laboratory, Texas A&M University [ESL].

Capacities were calculated for both refrigerant and air sides. Cooling capacity was calculated

from air side enthalpy drop using the following equations,
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Equations 4.1 and 4.2 can be combined as,

(4.3)

where,

Qa Supply air flow rate (CFM),

Cpa Specific heat at constant pressure for supply air (Btu/lb F),

T; a Return air dry bulb temperature (F),

To a Supply air dry bulb temperature (F),

w; a Return air humidity ratio (lbm/lba),

w0 a Supply air humidity ratio (lbm/lba),

ws,a Supply air humidity ratio (lbm/lba),

vs a Supply air specific volume (ft3/lbm),

h; a Return air enthalpy (Btu/lbm),

h0 a Supply air enthalpy (Btu/lbm),
m

Need for Refrigerant Capacity Calculations

The cooling capacity and the energy efficiency ratio were calculated following ASHRAE

guidelines as mentioned in previous sections. The operating test conditions during several of the

reduced air flow tests were different (very low air flow rates and frost covered evaporator coils)

from normally recommended conditions, and they are not covered in ASHRAE/ARI test

procedures (ASHRAE, 1983). Because of lack of further information on this topic, it was

difficult to evaluate the current findings with any other published scientific literature.

When the air flow across the evaporator was decreased, the subcooling at the outlet of

condenser was decreased close to zero. The mass flow sensor used to measure the amount of

refrigerant flow is accurate only in the region of single phase fluid. The presence of vapor at the

inlet of flow sensor, even in a small quantity will decrease the reliability in the measurement of the

refrigerant flow (Macken).
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Therefore, the capacity calculations were made for both refrigerant and air side to improve the

accuracy in calculations. Also it appeared that, it was necessary to describe the performance from

both the refrigerant and air side to visualize the degradation when the air flow across the

evaporator was reduced.

Refrigerant Capacity Calculations

Refrigerant capacity was calculated using:

Refrigerant capacity, Qr = mr{he,o-he,i) (4.4)

hei Refrigerant enthalpy at the inlet of evaporator (Btu/lbm),

he 0 Refrigerant enthalpy at the outlet of evaporator (Btu/lbm),

The inlet and outlet of evaporator in refrigerant lines are indicated as location '4' and '5' in

Figure 3.1. As evaporator air flow was reduced there was considerable discrepancy existed

between the air side and the refrigerant side capacity. A more elaborate discussion on this topic is

given in the experimental section of the next chapter.

Refrigerant capacity corrections

As the air flow across the evaporator was reduced, the cooling load on the evaporator was

decreased with a resulting decrease in the amount of superheat at the outlet of evaporator. From

the Pressure-Enthalpy diagrams (Appendix A), we can see that the condition of refrigerant leaving

the evaporator coil was a saturated mixture of liquid and vapor. Under these conditions the

temperature measured at the outlet of evaporator was corresponding to the saturated pressure

measured at that location or vice versa. Assuming saturated conditions at the outlet of evaporator

will give error in estimating the refrigerant side capacity. To predict the exact state of refrigerant

at the outlet of evaporator, we needed to know at least one more thermodynamic quantity at this

location. Therefore, a compressor enthalpy balance was performed to predict the state of the

refrigerant at the outlet of the evaporator. The compressor enthalpy balance can be given as,

rrir (ham, - he) + QComP = Wcomp x 3412 (4.5)

where,

n\, the refrigerant mass flow rate (lb/hr),
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hcout the enthalpy of refrigerant at compressor discharge,

hcin the enthalpy of refrigerant entering the compressor,

Qcomptne amount of heat transferred from compressor to outdoor air or vice versa,

W;,, power input to the compressor (kW),

neglecting the heat exchange between the compressor and the ambient air,

he* = hcou,- [(Wcomp X 3412) //Wr ] (4.6)

The enthalpy at the outlet of compressor was calculated by the discharge pressure and

temperature. By performing the above enthalpy balance we can calculate the quantity (hc „,), the

enthalpy of refrigerant entering the compressor shell. Neglecting the suction line heat loss, the

enthalpy of refrigerant entering the compressor is equivalent to the enthalpy of refrigerant leaving

the evaporator. Thus hcin is equivalent to hevapou^actual. This quantity hevapoutactual is illustrated in

the Pressure-Enthalpy diagram at location 5 (Figure 4.3.) and used in equation 4.4 (hevapout>actual =

he 0) to calculate the refrigerant capacity.

The motor electrical and mechanical losses which occur in the compressor shell adds heat to

the suction gas before it enters the compressor manifold. The conversion efficiency for electric

motors which are normally used in the residential cooling environment is given as 0.85 to 0.89

[ORNL, NIST]. The mechanical efficiency due to friction is normally taken as 0.95 to 0.98.

Therefore the heat added to suction gas in the compressor shell can be written as,

hc.inactual = Qlevapout,actual+(Win X (1. 0~0.85)X ( 1 . 0 - 0.95))) ( 4 . 7 )

This actual state of refrigerant at the beginning of the compression process(hc, in actual) is

shown at location '6' in Figure 4.7.

Pressure-Enthalpy and Psychrometric charts

The Pressure-Enthalpy and Psychrometric charts were made by imposing the data points for

the standard and degraded tests on the templates for these charts. Pressure-Enthalpy diagrams

can be helpful to visualize the influence of various physical parameters on the vapor compression

cycle (Figure 4.3). A complete list of Pressure-Enthalpy diagrams and the Pyschrometric charts

for reduced evaporator air flow conditions are included in Appendix A.
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Construction of Pressure-Enthalpy charts and Psychrometric charts

Initially, the standard and degraded tests are classified in to nine sections bas'ed on the return

air humidity and the out door dry bulb temperature (Table 3.3.). Under each return air humidity

and outdoor dry bulb temperature the refrigerant pressures and enthalpies corresponding to the

salient locations of the vapor compression cycle are chosen (Figure 3.1). A skeleton line diagram

was plotted by connecting the data points (data frame) in the Pressure-Enthalpy coordinate. This

process is repeated for 1. Standard test, 2. 25% reduction, 3. 50% reduction, 4. 75% reduction

and 5. 90% reduction in evaporator air flow. In few cases of degraded tests where the data

quality was not satisfactory those data points were omitted from the plots. Finally, the data frame

was imposed over the template of pressure-enthalpy chart.

Similarly, in the case of Psychrometric chart a data frame was made which illustrate the return

air, supply air, condenser inlet and condenser outlet conditions. When the Pressure-enthalpy

diagram and the Psychrometric chart for each section are ready they were combined together and

plotted in a single page.

Utilization of Pressure-Enthalpy diagrams and Psychrometric charts

The primary purpose of plotting the standard and degraded test performance on the Pressure-

Enthalpy diagram and the Psychrometric chart is to visualize the relative degradation of reduced

air flow conditions. Specifically the following observations can be gathered from these charts.

1. The temperature drop due to pressure drop in the evaporator can easily be seen from the

Pressure-Enthalpy diagram.

2. There is no significant drop in the refrigerant effect per pound of refrigerant up to 50% of

reduced evaporator air flow.

3. The refrigerant quality at the outlet of evaporator decrease with decrease in evaporator air

flow and liquid refrigerant starts entering the compressor.

4. A very low discharge temperature and increased pressure ratio for 90% reduction in

evaporator air flow can be seen from the diagram.
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5. The variation in refrigerant effect per pound of refrigerant flow with the outdoor

temperature is clearly depicted.

6. The effect of outdoor temperature, return air humidity, and evaporator air flow on

refrigerant superheat and subcooling can be recognized.

Similarly, the Psychrometric charts (Figure 4.3. and in Appendix A) can be helpful to

visualize changes in return and supply air temperatures and the decrease in sensible heat

ratio(SHR) which occurred under reduced evaporator air flow conditions.

Summary of Data Reduction and Performance Calculations

A representative illustration of the standard and degraded tests were made through time series

plots. The dynamic nature of vapor compression cycle at very low air flow rates were described

by Figure 4.2. (For further discussions, see experimental observations section in results and

discussion).

The methodology of performance calculations and refrigerant capacity calculations were also

described. Construction and utilization of Pressure-Enthalpy diagrams and Psychrometric charts

can pave a way to open up new paradigms in HVAC, such as visualizing the performance through

animation which is discussed by Haberl (Haberl, 1992).
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Figure 4.3. An example Pressure-Enthalpy diagram and Psychrometric chart
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CHAPTER V

RESULTS AND DISCUSSION

Outline of Results and Discussion

Results are presented in this report in three major groups: (1.) Summary of performance

factors (Power, Cooling capacity, and EER), (2.) Temperature analysis, and (3.) Experimental

observations. Also, a master summary of performance is prepared for the low, medium, and high

return air humidity conditions (Tables 5.1, 5.2, and 5.3). In each summary table the following

quantities are presented:

1. Return air temperature and relative humidity

2. Supply air temperature

3. Supply air temperature drop and condenser air temperature rise

4. Discharge and suction pressures

5. Discharge and suction temperatures

6. The amount of air flow across evaporator

7. The total electric demand

8. EER.

The performance under standard and degraded tests are presented in adjacent columns in the

master summary table for easy comparison of the degradation in performance. The normalized

degradation in performance due to the effect of reduced evaporator air flow has been summarized

in Table 5.4. The summary of performance factors (Power, Capacity and EER) is described in

Table 5.5. The Figures 5.1, 5.2, and 5.3 show the effect of reduced evaporator air flow on

cooling capacity and EER. The temperature measurements are shown in Figures 5.5, 5.6, and

5.7. The Capacity and EER based on refrigerant side measurements are presented in the appendix

(Table A. 1).
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SUMMARY OF PERFORMANCE FACTORS

Construction of Power, Cooling capacity and EER plots

Power, Cooling capacity and EER are the three necessary parameters to measure the

performance of an air conditioning system. The above three quantities are referred in this report

as performance factors. The performance parameters are presented in Figures 5.1 to 5.3 and in

Tables 5.4 and 5.5.

In Figures 5.1 through 5.3 the normalized values of performance parameters are plotted

against the evaporator air flow. Normalized values are calculated by dividing the performance

parameters calculated under reduced evaporator air flow with the performance parameters

calculated under normal amount of air flow rate. Thus,

_,„_ „_, ™ , . Power (deg raded test)
PER CENT (power) = — -

Power (standard test)
Similarly,

DCD r c x r r ^ r •• \ Cooling capacity (deg raded test)
PERCENT (Cooling capacity) = — - —— -

Cooling capacity (standard test)
PER CENT (EER) = EER (degraded test)

EER (standard test)

Performance plots are divided into three groups; (i) low humidity return air, (ii) medium humidity

return air, and (iii) high humidity return air. Under each return air humidity condition there are

three individual plots corresponding to the three outdoor temperatures. We can observe from

Figures 5.1 through 5.3 that demand curves are linear in general under reduced evaporator air

flow conditions. Cooling capacity and EER curves has a non-linear tendency above 50% reduced

evaporator air flow conditions.

Discussion on Power, Cooling capacity and EER

The total power consumption included the compressor, blower and outdoor fan power.

Compressor power consumption varied with return air humidity and outdoor temperature. The

minimum demand for a standard test was during 70°F outdoor dry bulb at 45% return air
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humidity. The maximum demand was during 100°F outdoor dry bulb at 65% return air humidity.

The compressor power consumption during the dry coil tests at 70°F outdoor dry bulb was

greater than the medium humidity test at the same outdoor temperature because of the high value

of superheat (38°F) at medium humidity conditions which reduced the amount of refrigerant

circulated and caused lower compressor power consumption.

Demand Reduction with Reduced Evaporator Air Flow

Results showed that as the evaporator air flow was reduced from the baseline value, the

electricity demand, cooling capacity and EER were decreased. Power consumption decreased

linearly, for all three return air humidity conditions (Figures 5.1, 5.2, and 5.3.). It was decreased

by 5 to 10% for 25% reduction in evaporator air flow and 15 to 25% for 90% reduction in

evaporator air flow. The slope of reduction in power consumption was larger in the case of dry

coil than the medium humidity tests. As evaporator air flow was reduced, the reduction in blower

power was larger than the reduction in compressor power under any return air humidity and

outdoor temperature conditions (Figure 5.4.).

Reducing the evaporator air flow did not produce a significant decrease in the compressor

input power. The reduction in compressor power was less than 10% up to 75 % reduction in

evaporator air flow. At 90% reduced evaporator air flow, the reduction in total power

consumption was varied from 15 to 20% (Figure 5.4).

The blower power consumption was calculated by using the normal values recommended by

ASHRAE/ARI (365 watts/1000 CFM). The blower power consumption was typically around

15% to 20% of the compressor power consumption for the normal amount of air flow. In the

case of reduced evaporator air flow, the blower power was derived through the fan efficiency

curves applicable to forward curved fans (Madison, 1948). The blower power was decreased

linearly up to 75% reductions in evaporator air flow. For 90% reduced air flow, the blower

power reached a minimum value of 60 watts specified by the fan curves (Figure 5.4). The blower

power was around 2.5% of the compressor power during the 90% reduced evaporator air flow

conditions.
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Figure 5.4. The variation in blower power and compressor power
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Table i. Summary of reduction in performance (air side)

Low RH: Return 80 F DBT, 20% RH

MedRH: Return 80 F DBT, 45% RH

High RH: Return 80 F DBT, 65% RH

Power: Total power (Blower + OD Unit), Watts

Capacity: Air side capacity (BTUH)

EER: (Capacity / Power)

Tablt - .5. Summary of electric demand, cooling capacity, and EER (air side)
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Effect of Reduced Evaporator Air flow on Cooling Capacity

Cooling capacity was decreased linearly until about 50% evaporator air flow then began to

drop sharply for the dry coil case (Figure 5.1.). For higher return air humidities, this phenomenon

was delayed until the evaporator air flow was reduced by 75% (Figures 5.2. and 5.3). This drop

in cooling capacity could be caused by two phenomenon: First, at very low air flow rates, the

increase in specific volume and the reduction in volumetric efficiency decreased the refrigerant

mass circulated across the evaporator. This reduced the refrigerant side capacity, which

ultimately resulted in very low cooling capacity at air side. Second, at very lowair flow rates the

evaporator surface temperature reduced below freezing temperatures and frost formed on the

surface of evaporator. The frost reduced the heat exchange across the evaporator. Another

phenomenon relevant to reduced evaporator air flow condition is that the maximum amount of

enthalpy that can be rejected by the supply air. Under normal operating conditions, the supply air

enthalpy is reduced by 5.75 to 6.0 Btu/lb. In the case of 90% reduced air flow, supply air

enthalpy drop was increased to three times the normal conditions. From the total enthalpy

balance, it is evident that drastic reduction in cooling capacity will realize because of this

limitation in heat exchange across the evaporator coil.

Effect of Reduced Evaporator Air Flow on EER

The reductions in the energy efficiency ratio (EER) were similar to reductions in cooling

capacity (Figures 5.1.,5.2., and 5.3.). Performance was linear until about 50% reduction in

evaporator air flow, and non-linear afterwards. The decrease in EER closely followed the

decrease in capacity because the energy efficiency ratio was obtained by dividing the cooling

capacity by the total power consumption. Reduction in EER was lower than that of capacity

because the demand also decreased with reductions in air flow rate.

Effect of Return air Humidity on Capacity and EER

At the same outdoor temperature, the cooling capacity was increased with an increase in

return air humidity. At low air flow condition this increase in cooling capacity due to increase in

return air humidity was observed at all three outdoor temperatures (70°F, 85°F, and 100°F). At
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each reduced air flow condition (for example at 50% reduced air flow rate) the 'degradation of dry

coil and high humidity conditions were greater than medium humidity. Similarly, the above trend

was exhibited for degradation of EER under reduced evaporator air flow conditions.

Effect of Outdoor Dry Bulb Temperature on Capacity and EER

Cooling capacity was reduced with increase in outdoor dry bulb temperature. This was

primarily due to the reduction in refrigerating effect (refrigerant enthalpy drop at evaporator per

pound of mass flow rate) with increase in outdoor temperature (Figure A. 12). There was a slight

increase in degradation of cooling capacity as outdoor temperature was increased. This trend was

not significant in the case of medium and high humidity cases. The EER was decreased as

outdoor temperature was increased, since the electric demand was increased and the cooling

capacity was decreased with increase in outdoor temperature.

TEMPERATURE ANALYSIS

Temperature analysis was carried out to study the feasibility of predicting the performance by

measuring the system temperatures at salient points. For preliminary analysis the following four

temperature differences, are presented in Figures 5.5, 5.6, and 5.7.

1. Supply air temperature drop across evaporator

2. The air temperature rise across condenser

3. Refrigerant superheat at the suction line

4. Degree of subcooling at the liquid line.

These temperature differences are commonly used in the service industry to predict the

degraded conditions.

Construction of Temperature Measurement Plots

The temperature measurement plots are classified in to three groups based on return air

humidity conditions. The key temperature differences which are mentioned above are plotted

against the amount of air flow across the evaporator. Under each return air humidity
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classification the temperature measurements correspond to three outdoor temperatures are

plotted. The uncertainty in the measurements is discussed in the temperature error limits section.

Temperature Error Limits

The temperature error limits are primarily based on the observations from the time series of

properties measurement. The total number of reduced evaporator air flow tests conducted on the

test bench was 45. Deriving an error limit based on all the 45 tests is not a satisfactory approach.

Therefore the standard medium humidity test at 85 F outdoor temperature was selected as a

representative test. From the time-series plots for this test, it was found that the return and supply

temperature were varied by +- 2 F. Similarly for condenser it was +- 2 F. However the

uncertainty in the case of condenser temperature rise was greater than evaporator temperature

drop because, the range of evaporator temperature was almost twice than the condenser

temperature rise. The subcooling error limit was based on weighing the variation in liquid line

pressure (+-3 psig) and temperature both. The uncertainty in superheat stems from the variation

in suction line pressure and temperature. The swing in suction temperature was dominant (+- 4 F)

compared to suction pressure. There is no significant change in the measurements of pressures

and temperatures between the standard test and the reduced air flow tests. Therefore the same

error values are used between 10% of normal flow and 100% of normal flow.

Supply air temperature drop across the evaporator coil

Definition

Supply air temperature drop across the evaporator coil can be defined as,

Air temperature drop = (Return air temperature - Supply air temperature)

Supply air temperature drop across the evaporator is an important quantity to judge the amount of

cooling available. The cooling capacity is a product of amount of air flow and the air side

enthalpy drop per pound of air flow of the supply air. The corresponding energy relations are

described in Equations 4.1, 4.2, and 4.3. From these equations, we can see that as supply air

relative humidity was increased the drop in supply air temperature across the evaporator was
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decreased and when the air flow across the evaporator was decreased the supply air temperature

drop was increased.

Test Bench Results

The supply air temperature drop across the evaporator for three different return air humidity

conditions is shown in Figures 5.6 to 5.8. The temperature drop across the evaporator for the

standard test was 26°F at low humidity conditions (20% RH) to 14°F at 65% return air humidity

conditions. As air flow was decreased the temperature drop increased non linearly for low

relative humidity conditions (20%) and medium relative humidity conditions (45% RH). The

increase in air temperature drop was nearly linear for 65% return air humidity conditions. Under

all three return air humidity conditions and at different supply air flow rates, the temperature drop

was more in the case of lower outdoor temperature (70°F) than 85°F and 100°F outdoor dry

bulb. This was due to increased cooling capacity which occurred as outdoor dry bulb was

lowered (Table 5.5 and Figure A-12).

Reducing the evaporator air supply increased the temperature drop across the cooling coil for

all the three return air humidity conditions. However an increase in supply air temperature drop

was highest in the case of dry coil where it was increased from 26°F at normal flow to 53°F at

10% of normal flow [Figure 5.5]. As return air humidity was increased the increase in supply air

temperature drop across the cooling coil was reduced. This is due to increased latent load with

increase in return air humidity. The sensible heat ratio (SHR) for low humidity conditions was

nearly 1.0 for the normal amount of air flow and it was decreased to 0.85 when the air flow across

the evaporator was reduced by 90%. For high humidity conditions the SHR was 0.57 for normal

amount of air flow. When the air flow was decreased by 90% the SHR decreased to 0.47.

From the above discussions it is clear that, to measure the performance of an air conditioner

under varying conditions (1. Normal or reduced amount of air flow across evaporator, 2. The

amount of moisture in the return air, and 3. The out door dry bulb) we need to measure the

amount of moisture in the supply air at inlet and out let of the evaporator.

46



Condenser discharge air temperature rise

Definition

The design air flow across the condenser is constant for residential air conditioners. However

this quantity could decrease due to the accumulation of leaves, debris and various other materials

which reduce the free surface available for air flow thus reducing the amount of air flow. The

measurement of condenser discharge air temperature rise across the condenser plays an important

role in traditional air conditioning service (Wheeler, 1989). The energy balance across the

condenser is given as,

Where,

ma, od = Mass flow rate of air across condenser,

(-p = Specific heat of air,

T& = Condenser inlet air temperature,

*co = Condenser outlet air temperature,

mr = Mass flow rate of refrigerant,

hie = Enthalpy of refrigerant entering the condenser,

"oc = Enthalpy of refrigerant leaving the condenser.

The above relation indicates that the air temperature rise across the condenser is directly

proportional to the total heat rejected from refrigerant side. In turn, the total heat rejected from

refrigerant side is basically a function of change in enthalpy and the amount of refrigerant

circulated.

Test Bench Results

For the standard test the temperature rise across the condenser was 14°F. The temperature

rise across the condenser decreased linearly up to 75% of reduced evaporator air flow conditions.

Though the cooling capacity at evaporator was decreased non-linearly, the reduction in

compressor capacity (i.e. compressor power consumption) was less than 10% (Figure 5.4) and the

continuous accumulation of frost (thermal storage effect) at evaporator, which caused the

47



difference in behavior between the condenser capacity and the evaporator capacity (Condenser

capacity is the total of evaporator capacity and the compressor power consumption).

Refrigerant superheat at suction

Definition

Superheat can be defined as the difference between the measured refrigerant temperature and

the saturation temperature corresponding to the saturation pressure measured at the outlet of

evaporator. The corresponding relation can be written as,

Superheat = (Tsat - Tsuction)

Where,

Tsat = Saturated refrigerant temperature corresponds to suction pressure,

Tsuction = Measured refrigerant temperature in the suction line.

It is necessary to maintain a certain amount of refrigerant superheat in the suction line to

ensure a safe operating environment for the compressor. This minimum amount of superheat

which is set at one particular indoor and outdoor conditions will vary throughout the cooling

season. The degree of superheat also varies depending on the cooling load on the coil and the

amount of refrigerant circulated. If the amount of refrigerant circulated is within design limits

then a decrease in the cooling load will decrease the degree of superheat. When supply air flow

across the evaporator is normal, the degree of superheat will vary depend the amount of

refrigerant circulated. Overcharge conditions decrease the degree of superheat and undercharge

conditions increase the degree of superheat.

Test Bench Results

The refrigerant charge admitted into the system was eight pounds which produced 12°F to

15°F superheat for 95°F outdoor, 80°F dry bulb and 67°F wet bulb return air conditions. As

outdoor temperature was increased the superheat at suction decreased for the same amount of

cooling load present at the evaporator coil. As air flow across evaporator was reduced the

amount of superheat at suction reduced to zero. Under low humidity return air-conditions and

normal amount of air flow across the evaporator the superheat was zero at 100°F and 85°F
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outdoor dry bulb temperatures. At 70°F outdoor dry bulb, superheat was around 10°F in the case

of normal amount of air flow across evaporator. When the air flow was decreased below 50% of

normal air flow superheat decreased to zero for all return air humidity conditions and outdoor

temperatures. (Figures 5.5, 5.6, and 5.7, and also see P-H diagrams in Appendix A).

For medium humidity return air conditions (45% RH) the superheat for normal amount of air

flow was 35°F, 20°F, 5°F corresponding to 70°F, 85°F, and 100°F outdoor dry bulb temperatures.

The decrease in superheat was significant between 25% and 50% reduced air flow rate. At high

return air humidity conditions the superheat was 40°F, 30°F and 20°F for 70°F, 85°F, and 100°F

outdoor dry bulb temperatures. Above 50% reduction in evaporator air flow, the superheat was

decreased to zero.

The superheat was increased with a decrease in the outdoor dry bulb temperature. Even

though the refrigerating effect increased as outdoor temperature was decreased, the increase in

superheat occurred because the refrigerant mass flow decreased with a reduction in outdoor

temperature. An increase in return air humidity increased the superheat at the compressor suction

which resulted from an increase in the cooling capacity.

Refrigerant subcooling at liquid line

Definition

Subcooling can be defined as the difference between refrigerant temperature and saturated

refrigerant temperature corresponding to refrigerant pressure at the outlet of condenser. Thus the

corresponding relation can be written as,

Subcooling = (Tref- Tsat)

Where,

Tref= Refrigerant temperature measured at the liquid line,

Tsat = Saturated refrigerant temperature corresponds to liquid line pressure.

The degree of subcooling will increase or decrease depending on the air flow across condenser

and the amount of refrigerant circulated. Thus degree of subcooling is somewhat similar to

degree of superheat in predicting the behavior of the system from the condenser side. Refrigerant
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subcooling at the outlet of condenser was varied with outdoor dry bulb, the amount of air flow

across evaporator, and the amount of moisture in the return air.

Test Bench Results

For low return air humidity conditions the subcooling was 9°F, 8°F, and 7°F for 70°F, 85°F,

100°F outdoor temperatures. For medium humidity and high humidity conditions it was slightly

higher than the low humidity values. Subcooling was increased with decrease in outdoor dry

bulb. As air flow was reduced subcooling decreased linearly.

A reduction in subcooling was observed with a reduction in the evaporator air flow rate. This

reduction was caused by a decrease in liquid line pressure and a simultaneous increase in

temperature as evaporator air flow was reduced (2 to 15 psig) at the same outdoor temperature.

The decrease in liquid line pressure also reduced the refrigerant saturation temperature which

reduced the temperature potential exist for subcooling (Figure 5.8). Another minor reason for the

increased temperature (higher enthalpy) at the outlet of condenser was due to reduced refrigerant

flow across condensing coil which resulted in change of flow patterns and temperature patterns

which reduced the condensing heat transfer coefficient. Using the Oak-Ridge National

Laboratories simulation model (ORNL, 1981), it was found that the overall heat transfer

coefficient was reduced by 20% for the 75% reduced evaporator air flow rate.

Figure 5.8. The liquid line subcooling analysis
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EXPERIMENTAL OBSERVATIONS

Description of 90% reduced evaporator air flow test

The enthalpy balance as it was described in Equation 4.3. is not applicable in the case of very

low evaporator air flow rates, because a steady state was never achieved during very low

evaporator air flow rates. Performance calculations were done at two intervals for 90% reduced

air flow test. The initial average represents the conditions which were occurring in the first

portion of the test. The final average represents the performance under severe degraded

conditions. Performance data under both conditions were compared in Table 5.6. The initial

average values are used in comparing the performance parameters and which is presented

graphically in Figures 5.1 through 5.6 and in Tables 5.1 to 5.5. Exploring this phenomenon from

the beginning of the 90% reduced evaporator air flow test will illustrate the dynamic situations

which are occurring under the very low air flow situations.

(i) When the unit is switched on, the compressor circulates a finite amount of refrigerant which

enters the evaporator as a cold two-phase mixture. In the evaporator a finite amount of cooling

capacity is available from the refrigerant side but this capacity is not entirely transferred to air

stream since the amount of air circulated across the evaporator was very low.

(ii) The amount of charge that was originally admitted into the system was based on the

condition that only superheated vapor should enter the compressor. However due to insufficient

load on the evaporator, not all the refrigerant which was passing through the evaporator was

vaporized and a saturated two-phase mixture was drawn into the compressor.

(iii) The discharge temperature and pressure both reduced from the normal level.

(iv) The pressure at the outlet of expansion valve was reduced from the normal levels, which in

turn decreased the temperature of the refrigerant entering the evaporator.

(v) The lower refrigerant temperature and the large air side enthalpy drop caused by the

reduced evaporator flow conditions caused the formation of frost at the surface'of the evaporator.

The air side enthalpy drop per pound of airflow reached a near maximum value.
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(vi) The processes, (ii) to (v) was continued when the air conditioner was on and the reduced

air flow conditions were prevailing across the evaporator.

(vii) After 45 to 60 minutes the refrigerant temperature was found to be near 10°F.

Evaporator was completely covered by the frost. Suction lines and the bottom of the compressor

was covered with the frost. Refrigerant discharge temperature fell to a very low value and the

supply air flow temperature drop was increased considerably (Tables 5.1, 5.2, and 5.3) .

(viii) The specific volume of refrigerant entering the compressor was increased by 30% of the

normal case. The pressure ratio across compressor rose from 2.6 to 3.3. This increase in

refrigerant specific volume and the increase in pressure ratio caused dramatic reductions in

volumetric efficiency.

Volumetric efficiency

The volumetric efficiency was calculated by using the relation (ORNL, 1983),

n i r , actual ITlr, actual i9inlet
7/vol = =

ITlr, ideal D S

where,

"V actual = measured amount of refrigerant mass flow rate,

u inlet = refrigerant specific volume at compressor shell inlet,

D = total compressor displacement (3.46 cubic inch),

S = rated compressor motor speed (3600 rpm).

Volumetric efficiency was reduced from 75% at standard conditions to 50% at 90% reduced

air flow rate.

(ix) The amount of refrigerant flow was decreased by 50% of normal conditions. In extreme

cases the refrigerant flow was decreased by as much as 80% of the normal flow. The very low

evaporator temperature and the reduced pumping capacity of the compressor caused the

refrigerant to accumulate in the evaporator and eventually decreased the amount of cooling

capacity available from the refrigerant side.

(x) Air flow across the evaporator was further reduced by the frost
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(xi) Further evidence for the above argument can be seen from Figure 4.2. and in Table 5.6,

where the supply air temperature was increased after an hour of continuous operation.

(xii) From the above arguments we can conclude that the performance of an air conditioner

under very low evaporator air flow conditions is a time dependent phenomenon.

Table 5.6. Dynamic behavior of 90% reduced evaporator air flow test

REVIEW OF CURRENT RESULTS AGAINST AVAILABLE LITERATURE

The effect of evaporator air flow tune-up

Test bench results indicated that as evaporator air flow was reduced the demand was also

reduced at the cost of decrease in cooling capacity and efficiency. Proctor discuss this topic in

Appliance doctor program that,

Increasing the airflow of an air conditioner improves the efficiency of the unit and
increase the CRI (continuous running input). CRI is the kW input to the air conditioner when it
runs without cycling. The CRI increases because cleaning the coil increases the load on both the
inside fan and the compressor. Repairing a low flow condition (dry coil CFM/ton < 375 ) is
estimated to raise the CRI by an average of 5%.

-John Proctor, Appliance Doctor Program, 1991, Page 33.
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FUTURE DIRECTIONS

The preliminary results from the first phase of this on-going project are encouraging.

Experience with degraded tests can provide a better procedure to simulate faults in the future.

The ultimate goal of this project is to develop a temperature based diagnosis procedure.

Experience with preliminary tests indicated that easily identifiable temperature patterns exist for

each degraded condition which can be utilized for developing an automated diagnosis procedure

(Figures 4.5, 4.6, and 4.7).

Some commercially available automatic diagnostic systems are already beginning to appear.

Kaler developed one such monitoring device which continuously monitors the HVAC system for

selected system malfunctions [43]. This device continuously tracks the temperatures of an HVAC

system and evaluates this value with an embedded knowledge base, and warns the owner in

advance of any potential trouble.

"CoolGuard" developed by Dencor Inc., is an electronic monitoring device that can detect

failure symptoms [44]. It monitors return and supply air temperature and outdoor air temperature

for abnormal values. Remote monitoring possibility is also available with this system.

"Fluke 52" a digital recording thermometer developed by Fluke Inc. can record minimum and

maximum values of a set point ihsthe system, or minimum and maximum values of the temperature

difference between two points [42]X Measurements over time (subcooling or superheating) can be

recorded using this instrument. Furthe\testing of such systems on a test bench can accelerate

their acceptance into the marketplace.

Danfoss-EMC Inc., markets NC-25, a compressor rack control system for supermarket

refrigeration racks [45]. As large percentage of energy consumed in supermarket environment is

due to refrigeration compressors, the NC-25 systenVoptimizes compressor pressure for saving

energy and to maintain trouble free operation. Danfoss also provides remote service through a
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central monitoring center. Utilities can similarly provide a central service system for residential air

conditioners by measuring temperatures.

Foster of Whitbread (U.K.) discuss a computerized monitoring and pre-failure diagnostic

system for low to medium cost refrigeration equipment[46]. Whitbread R&D engineers closely

studied the performance of wide range of refrigeration equipment's used in restaurants and pubs

and developed a patented technique which can learn correct operating characteristics. It then

monitors the units to detect abnormal operating conditions.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

SUMMARY

1. Significant amount of savings can be achieved by providing a proper service to air

conditioners. C -rent monitoring technologies have not achieved a satisfactory level yet but there

is a potential exist to improve them for the purpose of preventive maintenance and to standardize

the diagnostics procedure.

2. Review of previous work indicate that considerable amount of degraded air conditioners are

in service, also there is a limited amount of information available in the area of quantifying the

degradation.

3. A three-ton cooling capacity split system was mounted on a test bench for experimental

investigation. The calibration and measurement sections are discussed in detail because they play

a crucial role in obtaining the accurate data.

4. Performance under reduced evaporator air flow conditions of an air conditioner was

measured by varying the the amount of air flow across evaporator 25%, 50%, 75%, and 90% of

normal amount of air flow.

5. Performance was monitored under three levels of return air humidities, Low (20%),

Medium (45%), and High (65%) and at three outdoor temperatures 70 F, 85 F, and 100 F.

6. It was difficult to obtain a steady value for the refrigerant mass flow rate at very low

evaporator air flow conditions. The uncertainty in the measurement of relative humidity was also

significant (+- 5%) at reduced air flow conditions.

7. Beside air side capacity calculations refrigerant side capacity calculations is also made to

provide a comprehensive picture of degradation in performance.
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8. A methodology was described in refrigerant side capacity calculations section to calculate

the refrigerant side capacity when the quality of the refrigerant leaving the evaporator is a

saturated mixture.

9. The Pressure-Enthalpy diagrams and Psychrometric charts were helpful in illustrating the

effect of reduced evaporator air flow on the performance of an air conditioner.

10. The effect of outdoor temperature was more influencing than the return air humidity on the

vapor compression cycle (Figure A. 12). The predominant effect of return air humidity was,

increased evaporator cooling load and higher discharge temperatures (Figure A. 11). The

compressor power was varied with the return air humidity and the outdoor temperature.

11. Test bench results are summarized in three sections; (1.) Master summary tables (Tables

5.1. to 5.3), (2.) Summary of Power, Capacity, and EER (Tables 5.4 and 5.5), and (3.)

Temperature measurements (Table A-2). Refrigerant side performance is included in the

Appendix (Table A-1.).

12. Demand reduction was linear under all return air humidity and out door temperature levels.

13. Cooling capacity and EER decrease linearly up to 50% reduced air flow rate. Air flow

reductions above 50% of normal amount of cooling capacity and EER decrease non-linearly.

14. At 90% reduced evaporator air flow rate, the total power consumption was decreased by

15% to 20% and the EER was decreased by 65% to 71%. The degraded condition test results

indicated that to maintain sufficient cooling, one definitely must have at least 50% of rated air

flow.

15. At 90% reduced evaporator air flow conditions cooling cycle failed to achieve steady state

even after considerable amount of period (1 hour). Frosting due to low evaporator temperature

was the primary reason. The supply air temperature drop across the evaporator was varied with

time at 90% reduced evaporator air flow (Figure 4.2).

16. The amount of liquid entering the compressor under reduced evaporator air flow

conditions was varied from 5 to 20 %. However this quantity was reduced by suction gas

superheating which occurred in the compressor shell.
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17. The sensible heat ratio (SHR) decreased with reductions in evaporator air flow.

18. Symptoms of low evaporator flow conditions are, large temperature difference across

cooling coils, reduced condenser discharge temperatures and reduced superheat and subcooling.

CONCLUSIONS

1. The performance of an air conditioner was not affected up to 50% reduced evaporator air

flow conditions. Reductions between 25% and 90% reduced the performance significantly.

2. Return air humidity is an important quantity in the vapor compression cycle and the

measured performance. The calibration of RH sensors is also crucial for accurate calculations of

capacity and to gain a proper understanding on the role of humidity on performance and

temperature measurements.

3. Currently, there is a lack of information on predicting the performance under very low air

flow rates. More theoretical and analytical investigations are necessary to improve the

understanding on the performance of air conditioners under reduced evaporator air flow rate. In

particular the following areas need to be investigated further theoretically; (i.) The overall

efficiency of compressor at very low evaporating temperatures and when liquid refrigerant enters

the compressor, (ii.) The performance of an evaporator under frosting conditions in the cooling

mode.

4. It is necessary to link the degradation of performance factors (Power, Capacity, and EER)

with diagnostics to define what is a normal operating conditions of an air conditioner.

5. The temperature measurements were significantly varied with return air humidity.

Therefore it is necessary to analyze the role return air humidity on performance to develop a

temperature based monitoring device.

6. Many authors (Public Utility Commission of Texas, 1990; Neal, 1986) expressed the

concern that the use of large evaporator coils in high SEER equipment's will reduce the

dehumidifying capacity of the evaporator coil. The same concern was also expressed when

indicating the installation of oversized coils. However, from the Psychrometric chart (Figures A.2
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to A. 10) we can see that the SHR decrease with reduction in evaporator air flow for the constant

area expansion tube. From the cited literature's in Chapter 2, we can recognize that reduced

evaporator air flow situations are common in residential cooling systems. Under these conditions

employing larger size coils may not be a problem regarding dehumidification. This is a tentative

conclusion and more study should be made on this topic.

7. As air flow across evaporator was reduced the power consumption was reduced by 5 to

21%. This may imply that as utilities fix degraded air conditioners the demand may go up by 5

to 21% while usage goes down (i.e. the EER will increase).
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FUTURE DIRECTIONS

The preliminary results from the first phase of this on-going project are encouraging.

Experience with degraded tests can provide a better procedure to simulate degradations in the

future. The ultimate goal of this project is to develop a temperature based monitoring and

diagnostics procedure. Experience with preliminary tests indicated that easily identifiable

temperature patterns exist for reduced evaporator air flow which can be utilized for developing an

automated monitoring procedure (Figures 5.5, 5.6, and 5.7).

An important conclusion which emerges from the test bench results is return air humidity is an

important quantity in predicting the performance and temperature measurements. The difficulties

arise in calibration of RH sensors is discussed in the calibration section. Therefore, it is necessary

to develop normalized or non-dimensional temperature ratios which can predict the performance

under varying return air humidity conditions. It is also imperative to develop a model which can

predict the performance under degraded conditions. The two key areas which need to be

developed further theoretically and quantitatively are, 1. The heat transfer characteristics of a frost

covered evaporator coil, 2. Performance and efficiency characteristics of a compressor when

liquid refrigerant start entering the compressor.
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APPENDIX

DATA ACQUISITION AND ANALYSIS

A detailed review of data acquisition and analysis is discussed here. The time series plots for

standard and degraded tests were presented exactly as it was measured except the outdoor unit

power consumption (Figure 4.1 and 4.2). Up to 50% reductions in evaporator air flow a blower

in the Psychrometric room indoor section was used by varying the damper outlet and using the

flow restrictor. However it was difficult to obtain a very low air flow rates (300 CFM and 125

CFM) using this blower, therefore the blower which was mounted on the test bench was used to

maintain the air flow across the evaporator. The watt transducer which was used to measure the

power was measuring the total power consumed by the test bench. Therefore, for 75% and 90%

case the power consumption measured included the blower power consumption. After the

completion of all the degraded tests, the blower mounted on the test bench alone was operated

and the power consumption for maintaining the supply air flow rate of 300 CFM and 120 CFM

were measured. This quantity was deducted from the total power measurement to obtain the

outdoor unit power consumption.

Relative humidity values are presented as measured. During the performance calculations

these values are adjusted with the calibration results of RH sensors. Airflow across evaporator

was reduced when dehumidification started occurring at the surface of evaporator. This caused a

small variation in power and air flow rate. Equilibrium conditions during 75% reduced

evaporator air flow was achieved slowly and during 90% reduced evaporator air flow rate the

steady state conditions were never obtained.

The measurement of mass flow rate during the 90% reduced air flow rate was erratic due to

the presence of vapor in the liquid line. This error was minimized by employing a small capacity

mass flow sensor. An approximate path of the data acquisition and analysis is shown in Figure

A. 1 in the following page.
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Table A.I. Summary of reduction in performance (refrigerant side)

Low RH: Return 80 FDBT, 20% RH

Med RH: Return 80 F DBT, 45% RH

High RH: Return 80 F DBT, 65% RH

Power: Total power (Blower + OD Unit), Watts

Capacity: Refrigerant side capacity (BTUH)

EER : (Capacity / Power)

Table A.2. Summary of electric demand, cooling capacity, and EER (refrigerant side)
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Table A.3. Summary of temperature measurements
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Capacity (Btu/hr)

EER


