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ABSTRACT

Development of Fourier Series and Artificial Neural Network Approaches to Model
Hourly Energy Use in Commercial Buildings.
(May, 1995)
Amitava Dhar,
B.M.E., Jadavpur University;
M.Tech., Indian Institute of Technology at Kharagpur
Chair of Advisory Committee: Dr. David E. Claridge

This dissertation develops Fourier series and Artificial Neural Network (ANN)
approaches to model hourly energy use in commercial buildings and illustrates
application to data-screening.

The procedure for modeling hourly energy use has two steps: (i) Day-typing and
(it) Model development. The mean diurnal energy use and the diurnal profile may be
different during working weekdays, weekends, holidays and Christmas due to major
changes in mode of operation. The first step, known as day-typing, is important for
removing such effects. The second step is to develop models for each day-type.

Fourier series analysis is eminently suitable for modeling strongly periodic data.
Energy use in commercial buildings being strongly periodic, is appropriate for Fourier
series treatment. Generalized Fourier Series (GFS) model equations, developed for both
weather independent and weather dependent energy use, give a set of parameters
involving time and/or weather variables. Stepwise regression is performed to select the
important parameters and a final model for each day-type is developed using the selected
parameters.

There are situations when only temperature data is available. A Temperature
based Fourier Series (TFS) equation for modeling heating and cooling energy use has

been developed to deal with such cases. Two important advantages of TFS are that it (i)



represents nonlinear variation of energy use in a linearized functional form and (ii) can
indirectly account for humidity and solar effect in the cooling energy use.

ANNs with back propagation algorithms give high prediction accuracy and has
been applied by many researchers to model hourly energy use in commercial buildings.
However, the training of Back Propagation Network (BPN) algorithms is a long,
uncertain process. ANNs with local basis functions require significantly shorter training
times than conventional BPNs. A methodology has been developed to model heating
and cooling energy use in commercial buildings using a one-hidden-layer ANN with two
dimensional wavelet basis functions derived from cubic splines.

A suitable prediction interval can be generated and used to perform data-
screening. Application of the TFS approach to data-screening is illustrated with

monitored data.
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CHAPTER 1
INTRODUCTION

This chapter (i) describes the motivation and objectives of the work presented in
this dissertation and (ji) gives a brief description of the contents of different chapters that

follow.

Motivation

Energy use in commercial buildings accounts for about 13% of the total energy
use in the U.S.A. (EIA, 1986). Energy retrofits of 1700 buildings in the U.S.A. are
reported to have a median annual energy savings of 18% of the whole building energy
usage, with a median payback time of 3.1 years (Greely et al., 1990). Energy conserva-
tion in commercial buildings is important for reducing not only energy consumption but
also carbon dioxide emissions and other harmful environmental effects of energy use.

A successful building energy retrofit monitoring and analysis program includes
several important aspects: (i) collection of monitored building energy data, (ii) screening
the data, (iii) determining retrofit savings, (iv) fault diagnosis of the building systems,
and (v) optimization of building energy use by improving operation and maintenance
practices. Modeling of energy use is needed for the latter four aspects mentioned above.
While modeling at lower resolutions of data (at the daily and monthly level) is often
suitable for determining retrofit savings (Kissock, 1993), modeling at higher resolution
(at the hourly level) is important for performing data-screening, fault diagnosis and
optimization of building energy use. Existing approaches for data-driven (or inverse)
modeling (Rabl, 1988) of hourly energy use in commercial buildings may be broadly
classified into three groups: (i) steady-state inverse models (i.e., regression models), (i)

dynamic inverse models (i.e., Artificial Neural Networks or ANNs) and (iii) hybrid
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models (i.e., calibrated simulation models). Regression techniques being simple and easy
to implement, are suitable for application when a large number of channels are
monitored. Two, three and four parameter regression models can be used for
determining retrofit savings when monitored data are available (Kissock, 1993).
However, these model equations cannot represent the time-dependence of the energy use
due to scheduling effects. The effect of scheduling needs to be accounted for by
performing rigorous day-typing (Katipamula and Haberl, 1991). Calibrated simulation
models require detailed information on the actual building systems and need many
adjustments to achieve an acceptable prediction accuracy. These methods have been
found useful when little or no monitored baseline data is available (Katipamula and
Claridge, 1992) and for diagnosing operating problems (Liu et. al, 1994). Artificial
neural networks such as Back Propagation Networks (BPN) and Recurrent Networks
have been used in many fields of engineering for predicting time series data. Although
these techniques give high prediction accuracy, they require enormous training time
(Anstett et al., 1992) and do not provide physically based models. Also, convergence of
the training process is not guaranteed (Bakshi and Stephanopolos, 1993). Development
of modeling techniques that (i) account for scheduling and/or weather effects, (ii) offer
required prediction accuracy, (iii) are easy to develop and (iv) have modest

computational requirement is, therefore, necessary.

Objectives

As pointed out in the previous section, development of accurate models for
hourly energy use in commercial buildings has important ramifications for (1) retrofit
savings analysis, (ii) diagnostics, (iif) optimization of building energy use and (@iv)
acquiring physical insights into the operating pattems of the buildings. Patterns of
energy use being different in different buildings, one particular approach may not be
suitable for modeling energy use in commercial buildings in general. This necessitates

development and adoption of multiple techniques to address the issue.



The objective of the research reported in this dissertation was to develop
advanced modeling approaches using Fourier series and Artificial Neural Networks
(ANN). The suitability of these approaches was verified and limitations investigated by
applying to the monitored data from several buildings in Texas. Finally, the use of

hourly models to perform data-screening was investigated.

Description of the Following Chapters

This dissertation is presented in nine chapters, references, five appendices and a
vita. The topic is introduced and the background work is described in Chapters I and II.
The suitability of Fourier series to model energy use in commercial buildings is explained
in Chapter IIT and the Generalized Fourier Series (GFS) approaches to model weather
independent and weather dependent energy use are described and illustrated in Chapter
IV and Chapter V respectively. Use of the Fourier series approach with outdoor
temperature as the only variable to model heating and cooling energy use (Temperature
based Fourier Series or TFS approach) is described and illustrated in Chapter VI. The
development and application of an Artificial Neural Network (ANN) with two
dimensional wavelet basis functions derived from a cubic spline is presented in Chapter
VIL. A comparison between GFS, TFS, conventional Back Propagation Network (BPN)
and the ANN with wavelet basis functions (Wave-Net) in terms of prediction accuracy is
presented and a procedure for data-screening is described in Chapter VIII. A summary
of the present work and possible future directions are presented in Chapter IX.
Fundamentals of Fourier series and wavelet approximation is described in appendix A
and the programs that were written for implementing the modeling procedures are

included in appendices B C, D and E.



CHAPTER 11
LITERATURE REVIEW

Introduction

As mentioned in the previous chapter, a successful building energy conservation
program includes several aspects which require modeling energy use at the daily and
hourly level. The focus of the research reported here was on the development of
modeling methodologies at the hourly level. Literature on existing regression
techniques, Artificial Neural Network (ANN) approaches and calibrated modeling
methodologies were reviewed to identify the areas of interest. Fourier series was found
to be an effective tool, but not yet used to model hourly energy use in commercial
buildings. ANN was found to be a powerful and widely used technique for modeling
time series data. In particular, ANNs with local basis functions were found to be more
attractive than back propagation networks and were yet to be applied to model hourly
energy use in commercial buildings. This chapter presents the objectives of energy
conservation programs and the literature review on regression, ANN and calibrated

modeling approaches.

The Objectives of Energy Conservation Programs

An energy conservation program for reducing energy use in commercial buildings
may have macro or micro objectives. The macro objectives of a program are to
implement retrofits in a large number of buildings, determine overall savings and report
the results in a suitable form to the sponsoring utility. This calls for defining populations
to sample, collecting and processing weather data and utility bills and analyzing data to
determine savings. Energy conservation programs conducted by utilities and state Public
Utility Commissions (PUC) are typically macro objective oriented. Monthly
consumption data is normally used to determine energy savings. Three modeling

approaches that are often adopted to do this are (i) difference and ratio estimation, (ii)



statistically adjusted engineering estimation and (iii) multivariate modeling (Hirst and
Reed, 1991).

The objectives of energy conservation programs at the micro level are to
determine savings for individual buildings, study diurnal load profiles, detect possible
operation and maintenance problems and optimize building energy use. These require
careful monitoring and analysis of energy use at the daily and hourly level for each
building. An example of energy conservation at the micro level is the Texas LoanSTAR
Monitoring and Analysis Program (MAP) (Claridge et al., 1991).

A micro level energy conservation program needs emphasis on selection and
development of analysis techniques at the individual building and building system level.
Retrofit savings can be determined by analyzing the data at lower resolutions (at the
monthly and daily level) whereas data-screening, fault diagnosis and optimization of
building energy use need models at the hourly or fifteen-minute level. As mentioned in
Chapter I, the existing techniques for modeling hourly energy use can be broadly
classified into three groups: (i) steady-state inverse modeling or regression modeling
approaches, (i) Dynamic modeling approaches, for example, Artificial Neural Network
(ANN) (Krieder and Wang, 1991) approaches and (iii) hybrid approaches such as
calibrated simulation modeling approaches (Katipamula and Claridge, 1992). We will

briefly describe these approaches in the following sub-sections.

Steady State Inverse Models - Regression Approaches

Model development using regression is attractive because it, in general, requires
less effort and less user-expertise than calibrated simulation and ANN approaches. Also,
regression approaches give reasonably good prediction accuracy. Considerable effort
has, therefore, been made to develop and adopt regression modeling techniques under
the Texas LoanSTAR Monitoring and Analysis Program (MAP) (Claridge et al., 1991).
Single and multivariable regression models will be discussed briefly in the following sub-

sections.



Single Variable Regression Models. A regression model with a single variable,
for example, outdoor temperature is preferred to a multivariable regression model
because metering outdoor temperature is easier and more reliable than metering other
variables, for example, humidity and solar radiation. One parameter (1-P), two
parameter (2-P) (Kissock, 1993), three parameter (3-P) (Fels, 1986) and four parameter
(4-P) (Ruch and Claridge, 1992; Kissock et al., 1992) techniques are available for
modeling energy use in commercial buildings. These steady state inverse modeling
techniques have been so far used to model energy use at daily and monthly level, because
the dynamic behavior of the building is insignificant at these levels of resolution. How-
ever, one can also use these equations to develop individual hourly models. Time-
dependence of energy use due to systematic scheduling may be accounted for by binning
the data of each day-type (Katipamula and Haberl, 1991) into twenty-four hourly groups
and developing separate models for each hour of the day. A 1-P mean model for each
hour of day may be used to model weather independent energy use, for example, a 1-P

model for lighting and equipment loads at the hourly level can be expressed as:
E,= Bo,h 2.1)

where the subscript h stands for the hour of day. 2-P, 3-P and 4-P models may be used
to mode! weather dependent energy use in commercial buildings with outdoor

temperature as the only variable:

E - Bow +B,,T, 2-P model (2.2)
" Bo,h + Bl.h(T_ B3,h )_ + ﬁz_h (T - B3_h )+ 4 - P model

- +. . " :
where the symbols () and () indicate that these quantities are set to zero when negative

and positive respectively. Clearly, constraining either B, or B,y in the 4-P model

equation for energy use to zero makes it a 3-P or PRISM model (Fels, 1986). 3-P



models are, therefore, special cases of 4-P models. These models may be appropriate for
modeling energy use in Constant Air Volume (CAV) systems with economizer cycles or
hot deck reset schedules, and Variable Air Volume (VAV) systems (Reddy et al., 1994).

Six examples of these models are shown in Figure 2.1.

Multivariable Regression Models. Single variable regression models use
outdoor temperature as the only variable. However, weather dependent energy use such
as cooling energy use depends on outdoor temperature, specific humidity, solar radiation
and the type of HVAC system in the building. Suitable multivariable regression models
can be developed by incorporating the engineering principles that govern the HVAC
system operation (Forrester and Wepfer, 1984). A simplified multivariable regression

model based on engineering principles is of the following form (Katipamula et al., 1994):

E=a+b+cl+dIT, +eIT}, +fq,, +gq, : (23)

where a, b, ¢, d, e, fand g are the coefficients, T is the temperature, q is the heat gain
and I is an indicator variable that accounts for change in slope due to the effect of
outdoor temperature at higher range of values. Subscripts 0, dp, sol and i stand for
outdoor drybulb temperature, dewpoint temperature, horizontal solar flux and internal
load respectively.

As noted earlier, the energy consumption data of each day-type can be binned
into twenty-four hourly groups and single variable or multivariable regression models can
be developed for each hour of the day in order to account for the effect of time
dependent systematic scheduling. However, this leads to a large number of final model
equations for each day-type and, as a result, gaining insight into the operating pattern of
the building systems becomes difficult. A single model equation for each day-type can be
obtained when techniques like the Fourier series approach or Artificial Neural Networks

are adopted for model development. These will be discussed in the sections that follow.
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Fourier Series Approach

Energy use in commercial buildings is strongly periodic due to systematic
scheduling effects under which the building systems operate. Adopting the Fourier series
model equation, therefore, may be a convenient approach to model hourly data. Climatic
data (i.e., solar radiation and outdoor temperature) are periodic and have been analyzed
using Fourier series by several researchers (Philips, 1984; Hittle and Pederson, 1981).
Trigonometric models with hour of day as the primary variable have been proposed in
the classical literature (Pandit and Wu, 1983). Attempts at Fourier series modeling of
hourly energy use in commercial buildings are relatively few, the most important being
perhaps that by Seem and Braun (1991) who chose a week as the maximum period of
the Fourier series. The regression fit was poor, however, partly because of the choice of
maximum period. Commercial buildings undergo major operating changes from

weekdays to weekends and choosing an appropriate period is crucial.

Artificial Neural Networks - A Dynamic Modeling Approach

An Artificial Neural Network (ANN) approach with the incorporation of known
physical parameters that govern the phenomenon into the network structure is very
appealing for modeling time series data (Willis et al., 1991). Comparative studies of
neural networks and regression approaches have been conducted by several researchers
(Miller and Seem,1991; Parthasarathy et al., 1992; Curtiss et al., 1993). These studies
showed that an ANN approach provides a better fit and thus is more suitable for
application to modeling and control. Refenes et al. (1993) compared the ANN approach
with multiple linear regression for predicting future stock ranking timc series data and
found that the ANN approach offers much higher prediction accuracy. Clearly, there is a
need for a thorough understanding of the currently available ANN techniques as well as
how to modify and adopt such techniques for modeling hourly energy use in commercial

buildings.
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Early research in the field of ANNs was restricted to developing computational
techniques that can resemble human intelligence. However, the current direction has
been more towards performing the elementary functions that a biological neuron can do
(Wasserman, 1989); the computational steps adopted in an ANN may or may not be the
same as those inside the anatomy of a human brain. McClelland and Rumelhart (1991)
have given a broad definition of ANN which has been summarized further by Bakshi and
Stephanopolos (1993). An ANN is defined to have (i) a set of processing units, (i)a
state of activation, (iii) an output function for each processing unit, (iv) a pattern of
connectivity among the processing units, (v) a propagating rule for propagating patterns
of activities through the network of connectivities, (vi) an activating rule for combining
the inputs impinging on a unit to produce a new level of activation for the unit, (vii) a
learning rule whereby patterns of connectivity are modified by experience and (viii) an
environment within which the system must operate.

Broadly, neural networks that were available till the late 1980s (Beale and
Jackson, 1990) for pattern recognition or modeling are varieties of multilayered
perceptron networks. Some examples are Back Propagation Networks (BPN),
Recurrent networks, Counter Propagation Networks (CPN), Kohonen self-organizing
networks, Hopfield networks, Adaptive Resonance Theory (ART) networks and
networks using Bi-directional Associative Memories (BAM). All these networks have
complex architectures that give little or no understanding of the inside processing. In
addition, design of these networks is largely based on heuristics or rules of thumb. The
prediction accuracy is, however, acceptable for many applications. In other words,
ANNS s are complex nonlinear regression models whose structures are determined
empirically (Leonard and Kramer, 1991).

Recent understanding of neural nets confirms that computation in the frame work
of an ANN is similar to the mathematical approximation of a multidimensional function

over a space by any activation function (Poggio and Girosi, 1989):
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Such an understanding has opened the direction of research towards development of
simplified networks with the flexibility of selecting application-specific local activation
functions, suitable for providing (i) high prediction accuracy (ii) less computational
complexity and (iii) some physical understanding. Examples of such modern networks
are (1) Radial Basis Function Networks (RBFN) (Moody and Darken, 1989; Stokbro et
al., 1950, Holcomb and Morari, 1991; Lee and Kil, 1991), (ii) ANNs with ellipsoidal
activation functions (Vankatasubramanium and Kavuri, 1991), (iii) Wave-net: An ANN

with wavelet basis functions (Bakshi and Stephanopolis, 1993) and many more.

Back Propagation Networks (BPN). The architecture of a back propagation
network consists of an input layer which is fed with all the input variables, one or more
hidden layers within which mathematical processing of the inputs takes place and an
output layer that processes information received from a hidden layer and gives the
predicted value of the dependent variables as the outputs (Figure 2.2). Hidden layers
and the output layer of the network may have several nodes or perceptrons within which
the weighted sum of inputs is activated by an activation function. Networks of this type
may be able to predict one or more dependent variables simultaneously. The processing
of input data for determining the approximation is expressed mathematically as follows
(Adum Blum, 1991):

H, =F(W,), H,=F(H,,W,) and O=FHW.,) @.5)

where I is the input vector, H and O are output vectors of the hidden layers and output

layers respectively, n is the number of hidden layers and W, is the weight vector

between (n-1)th and nth Jayers.
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The function F(x) in eq. 2.5 determines response of the network to input data and
is known as the activation function. The sigmoid and hyperbolic tangent are two

commonly used activation functions for modeling time series data.

Sigmoid:  F(x) Hvoerbol; Fx) et —e™ (2.6)
igmoid: X)= s erbolic tangent: X)=
gn Tren> 9P 8 g
\ \l N\ l N N
7
Input Vectors (| ) Output Vectors { O }
N
7 7 7 7 7
Input Hidden Output
Layer Layers Layer
Nodal details
Inputs
Response

e

Figure 2.2 Backpropagation network architecture with functional details of each
node.

Training of a network essentially means determination of the weight vectors W in eq.
2.5. The optimization technique that is adopted for training a conventional BPN is the

gradient descent method (McClelland and Rumelhart, 1991). The weight of an incoming
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signal at any node is initialized with random values and is adjusted by the negative of the
partial derivative of the error (the difference between the approximated value and desired
value) with respect to the net input to that node. The partial derivative is, however,
multiplied by a factor known as the learning rate (which typically varies between 0.01
and 1.0) before doing the adjustment. Learning rate is an important parameter. A high
learning rate will accelarate the training but the training process may get stuck at local
minima on the error surface. On the other hand, a low learning rate may improve the
optimization but the speed of training will be extremely low (Sejnowski and Rosenberg,
1987).

The adjustment described above starts from the output layer and proceeds
backward until weights between the input layer and the first hidden layer are modified.
This process needs to be repeated a large number of times (also known as epochs) to
minimize the error. As a result, the training procedure becomes computationally
intensive. The learning technique is also termed a supervised learning technique, in the
sense that the weights of the network are optimized by comparing the approximated
values with the target outputs. An explicit derivativation of the formula for training
weights in the hidden layers and output layer is available in Beale and Jackson(1990).

In order to achieve a faster convergence of the optimization process described
above, a bias may be added to the response of each neuron. Adding a bias (bias s a
constant added in a particular form in the function to shift the response along one of the
axes) in the range of +0.5 can reduce training time by an average of 30% to 50%
(Stornetta and Huberman, 1987). Another way of improving the training time is to
introduce momentum (Rumelhart and Mclelland, 1989). The weights are adjusted in
each epoch by a factor of previous corresponding weight change (e.g., 1.5 times the
previous change), in addition to the adjustment described before.

Zhou and Dobrivoje (1993) suggested some modifications to the generalized
back propagation algorithm and introduced a new training method with adaptive
selection of learning rate. They compared network performances with and without the

new learning method by applying the method to a simulated data set and showed that the



modified network learns much more efficiently. Loh and Fong (1993) considered
training a BPN using the method of least squares instead of the gradient descent rule.
Application to a simulated data set from a nonlinear dynafnical system showed that the
new algorithm had a rapid rate of convergence compared to the conventional back

propagation algorithm,

Recurrent Networks. A recurrent network has the same architecture as a BPN
except that both feedback and feedforward connections are present (Figure 2.3).
Recurrent networks have been modified and improved to model time series data by many
researchers in recent years (Parthasarathy et al., 1992; Rao and Ramanurthi, 1993;

Puskorius and Feldkamp, 1993; Chen et al., 1993).

recurrent link

feed forward link

N\

cross layer link

NV

A\

Inputs
Outputs

\

A\

Input layer Hidden layer Output layer

Figure 2.3 A conventional recurrent network architecture with one hidden layer
(adapted from Parthasarathi et al., 1992).
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Parthasarathy et al. (1992) used a four layer recurrent network (two hidden
layers) for self-tuning adaptive control of complex process plants. The nodes within
each hidden layer (i) use feedback of their own and (ii) share information among
themselves (cross talk). These properties make this type of network suitable for
modeling highly nonlinear processes. A modified gradient descent algorithm is used for
training the network. Rao and Ramamurthi (1993) proposed some modifications in the
network learning algorithm for enhancing network performance. They suggested the use
of a combination of Fahlman's quickprop algorithm and the real time recurrent network
learning algorithm for network training to achieve faster convergence. Sterzing and
Schurmann (1993) presented a study on recurrent networks and proposed modifications
towards application to time series data. Puskorius and Feldkamp (1992a, 1992b and
1993) have proposed use of a decoupled extended Kalman filtering (DEKF) technique
for training a recurrent network algorithm to achieve a better network optimization.
Chen et al. (1993) presented a preliminary approach to modify the learning algorithm of
recurrent networks to minimize the size of the network for a particular problem. Dodier
et al. (1993) initiated application of recurrent networks for predicting time series data of

energy use in commercial buildings.

Kohonen Self-Organizing Networks. Unlike the BPN and the recurrent
network, the Kohonen self-organizing network (Kohonen, 1990) does not rely on an
external training response (the desired response of the network, i.e., the target values)
being available for each input from the target data set. It has an input layer of nodes and
a two dimensional flat grid of nodes (Figure 2.4). Feedback is restricted within the
nodes inside the flat grid and each of the nodes in the flat grid is itself an output node.

The training algorithm of a Kohonen network aims to optimize the number of
lateral layer nodes. The sum of squares of differences between the weights from input
node i to grid node j (dj) at time t (wij(t)) and input xj(t) over i = 1 to n, where n is the

number of inputs, is determined for each output node. An initially large lateral grid is



16

g ;?)" Lateral layer nodes
ﬂI . 14

4

Input nodes

Figure 2.4 An example of Kohonen self-organizing network architecture (adapted from
Beale and Jackson, 1990).

gradually reduced by selecting the neighborhood around the node with minimum dj (area

of maximum activity) and adjusting wijs by using the following formula:

Wij(t +1)= Wij(t)+ n{x(t)- Wij(t)} @27

where 1(t) is the learning rate at time t. Clearly, the process is repetitive until an
optimum localization of the area of maximum activity is achieved. The activation
function for this type of network could be a Mexican hat function. For more details on

this network, Kohonen (1990) or Beale and Jackson (1990) may be consulted.

Counter Propagation Networks (CPN). The counter propagation network is

actually a combination of a Kohonen network (Kohonen, 1990) and a Grossberg layer
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(Grossberg, 1969). The network consists of an input layer, one Kohonen layer and one

Grossberg layer (Figure 2.5). If the net output of an optimized Kohonen layer is denoted

[ ] N\
L 7
Input Vectors ;
>
QOutputs
4 N S
1 ] 7
DZE 2 ’

Kohonen Layer Grossberg Layer

Figure 2.5 A counterpropagation network architecture (adapted from Beale and
Jackson, 1990).

by vector K, then the net Grossberg layer output vector Y is determined as follows:
Y =KV (2.8)
where V is the Grossberg layer weight matrix. The training of a Kohonen layer is similar

to that described earlier whereas a Grossberg layer is trained by using the following

formula:
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where [ is the variable learning rate that gradually reduces during the training process

and v, y, and k are the elements of matrices V, Y and K respectively. Subscripts i and j

stand for ith Kohonen layer node and jth Grossberg layer node.

The prediction accuracy that can be achieved by a CPN is less than a BPN but a
CPN trains itself much faster than a BPN, reducing the computation time substantially.
CPN, therefore, may be a suitable choice for the applications that can not afford to have
slow computation (Hecth-Nielsen, 1987). The evaluation of potential by applying this

methodology to measured energy use in buildings may be an interesting future issue.

Adaptive Resonance Theory (ART) Networks. The BPN, Kohonen network
and CPN all suffer from their inability to learn new information on top of the old
(stability-plasticity dilemma). ART is a self-organizing network, based on cognitive and
behavioral models and has the feature of solving the stability-plasticity dilemma
(Carpenter and Grossberg, 1988). The network relies on the details of architecture more
than any other ANN. It consists of two layers: an input/comparison layer and an
output/recognition layer. These layers are connected with extensive use of feedback
(Figure 2.6). It has feed-forward weight vectors (W) from the input layer to output layer
and feedback weight vectors (T) from output layer to input layer. For M output nodes

and N input nodes, the weight vectors are initialized as follows:

1 (2.10)
t,(0)=1, w,(0)= ——
) 0= —
where 0<i<N-1 and 0<jsM-1
For each output node, the weighted sum (pj) of input vectors is determined. The

feedback vector elements (tij) corresponding to the maximum W are determined to

satisfy the condition
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where p is the vigilance factor, generally fixed between 0 and I;
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control 2 Output layer
feedback
weights
control 1

Input

Figure 2.6  Adaptive Resonance Theory (ART) architecture (adapted from Beale and
Jackson, 1990).

If the test fails, the output of the corresponding output node is set to zero (disabled) and
the test is continued. The process is repeated until all the weights are optimized and the

disabled node is enabled at the beginning of each epoch.
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The first version of ART (ART1) has been described above; however, ART2 and
ARTS3 versions are also available. ART has some attractive features like (i) the training
process is stable and (i) convergence is guaranteed. The application of ART to
modeling time series data is yet to be tested.

There are many other networks available, for example, Hopfield nets (Hopfield,
1984), Bi-directional Associative Memory (BAM) networks (Kosko 1987a and 1987b),
etc. However, the suitability of these networks to represent time series data is yet to be

known.

ANNs with Localized Training Algorithm. Back Propagation Networks
(BPN) and Recurrent networks are probably the most widely used networks for time
series data. BPN has been applied to predict weather independent and weather
dependent energy use in commercial buildings (Kreider and Wang, 1991; Wang and
Kreider, 1992; Anstett and Kreider, 1993). Curtiss et al. (1993) applied BPN for
adaptive control of HVAC processes.

ANNG with a localized training algorithm may offer high prediction accuracy with
less processing time than BPNs and recurrent networks. These techniques may also
provide better physical insight into the actual process (Moody and Darken, 1989;
Holcomb and Morari, 1991; Bakshi and Stephanopolis, 1993). These networks have
only one hidden layer and the number of hidden-layer-nodes may be determined by using
a suitable statistical criterion. Thus, the problem of apparent arbitrariness in determining
the network architecture is avoided. In order to provide a clearer picture, we will first
discuss factors influencing the choice of activation functions and the optimization

techniques which are the two most important aspects of neural network approximation.

Global and Local Basis Functions. Any function ¢(x) that is active (has non zero
real values) over a large range of x and provides a global approximation of empirical data
is known as global functions. Examples of global functions are step functions, sigmoid

functions (Figure 2.7), trigonometric functions like sines, cosines, hyperbolic tangents
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(Figure 2.8), etc. Figures 2.7 and 2.8 show that these functions are active over a large
range of input values. A network that uses any of these global functions for activation,
suffers from several shortcomings. Each node of the network influences the output over
a large range of input values. In addition, if the same global function is used for all the
nodes as in a BPN, the nodes will start interacting with each other. Correction of the
network output for a given input, therefore, will require modification of parameters
influenced by all the interacting nodes (Bakshi and Stephanopolos, 1993).

On the other hand, local functions have finite support; they are active only in the
immediate vicinity of a given input value. The Gaussian function (Figure 2.9), splines
and corresponding wavelets (Figures 2.10 and 2.11) are examples of local functions.
Local functions, when used for activation in a network, offer important advantages in
terms of choosing improved optimization algorithms. We will discuss global and local

optimization techniques in the next section.

Network Optimization Techniques. Nonlinear global optimization techniques

involve long, uncertain training processes. During the network training, the weights of
the network may assume large values where the derivative of the activation is very small.
This makes the convergence extremely slow (network paralysis). Moreover, the error

surface of a complex network like a BPN is highly convoluted, and the process may stop

at a local minimum (Wasserman, 1989).
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Localized training approaches eliminate the disadvantages discussed above.
Faster optimization is possible, both local and global errors can be controlled and
reliability of the output based on training data density can be measured (Leonard and
Kramer, 1991). We will present the details of two networks that use localized training
algorithms: (i) RBFN: an ANN with radial basis functions (Moody and Darken, 1989;
Holcomb and Morari, 1991) and (ii) Wave-Net: an ANN with wavelet basis functions
(Bakshi and Stephanopolos, 1993).

RBFN: ANN With Radial Basis Function. RBFN, a one-hidden-layer ANN,
uses radial basis functions for activation and the training of the network is accomplished
by a localized training algorithm. In order to present the concept systematically, we will
first discuss radial basis functions. This will be followed by description of the network

architecture and training algorithm.

Radial Basis Function. A radial basis function g;(x) is defined as follows:

8.(x)=gJx - %], 2.12)

where X and X; are the input and fixed vectors (columnar), |

||W is the weighted

Euclidean norm of weight matrix W and g is a scalar, monotonic function (0, c) (Poggio

and Girosi, 1989). The Gaussian function is a common form of radial basis function:

- 1)
g,(x)=exp —Tz' , x €R (x is any real number)
o

i

[Wi{

2.14
gi(i;wi,fci)=Fexp[—é(i—xi)TwiZ(z-ﬁi)], ‘<R (2.14)
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Equation 2.13 is the one dimensional Gaussian whereas equation 2.14 represents a

multivariable Gaussian for d dimensions. Wj is a dxd symmetric, nonsingular weight

matrix and becomes simply the inverse of standard deviation for one dimensional case.

The superscript T stands for the transpose of the matrix.

RBFN Architecture. A RBFN consists of an input layer, a hidden layer and an

output layer. A conventional RBFN designed by Moody and Darken (1989) assumes the
weighfs between input layer and hidden layer to be unity while the weights between the
hidden units and output units are determined by RBFN optimization. Hidden layer
response to the inputs is governed by the radial basis functions described by equation

2.13 or equation 2.14.

RBFN Optimization. Moody and Darken proposed a training method
(optimization) for RBFN which, although uses heuristics for determining the hidden layer
architecture, is faster than the speed advantage compared to any nonlinear global
optimization technique like gradient descent method. The algorithm uses the following

modified form of equation 2.13 as the activation function :

2

(] 2.15)
gi(X)=exp ot

where oj is analogous to the standard deviation and is determined as:

Gi = d|d2 (2‘ 16)
where d} and dj are the Euclidean distances from the ith center to the two nearest

centers. The centers are fixed at points with i = 1 to h, based on heuristic judgment.

The weights c;s of the equation



26

h 2.17
y= Z ¢;8;(x) @17

i=1

are determined by the standard least squares regression of y against gi(x).

A problem with the above algorithm is that the set of Gaussian basis functions is
nonorthogonal which results in the overlapping of the response of individual Gaussians.
Holcomb and Morari (1991) proposed a modified RBFN algorithm to solve this
problem. They introduced a function, which is called penalty function to overcome the
problem of overlapping. The physical explanation of penalty function was, however, not
provided.

Many other researchers are continuing their work on RBFNs. Chakraborty et al.
(1993) proposed an algorithm to arrive at near optimum initial configuration of the
network very quickly. Also, the number of hidden layer units is determined
mathematically. Koffman and Meckl (1993) are continuing their research on evaluating
performances of different types of RBFNs. They are using different types of radial basis
functions (Hyperbolic paraboloid, Mexican hat function, etc.) and comparing their
learning speed. Chen and Lin (1993) conducted a study of the existing RBFN training
methods and suggested a modified gradient algorithm that ensures correct optimization

of the weight vectors.

Wave-Net: ANN with Wavelet Basis Function. A complete functional
representation of input-output relationship in a back propagation type of neural network
with multiple hidden layers does not help in understanding the physical aspect of the
process being modeled. However, a better understanding of the relationship of energy
use with an independent variable, for example, outdoor drybulb temperature, is possible
when a simpler functional form is used. In addition, unlike BPN, the use of local basis
functions may provide a more accurate prediction and a significantly faster optimization

because a linear optimization technique such as the method of least squares can be
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adopted. A one-hidden-layer neural network of RBFN type corresponds to a simpler
input-output relationship and, therefore, can serve the purpose of gaining physical
understanding of the process. Also, the optimization is faster than the gradient descent
method which is used to train a conventional BPN. Wave-Net, like RBFN, is a one-
hidden-layer ANN with wavelet basis functions. However, Wave-Net is superior to an
RBFN in the sense that the wavelet basis functions have better localization
characteristics. Moreover, the number of hidden nodes (or the basis functions) can be
optimized by retaining only the statistically significant smoothing components (known as
scaling functions) and detailed components (also known as wavelets). This results in a
more compact network architecture. The advantage is even more when an orthonormal
set of scaling functions and wavelets are chosen as the bases (Meyer, 1985) because
orthonormalily allows completely localized training. Boubez and Peskin (1993)
described an ANN that uses wavelets as the basis functions and learns by the rule of
multiresolution analysis (Mallat, 1989b). They used D4 wavelets developed by
Daubechies (1988) and adopted analytical solution technique for determining the weights
(the wavelet coefficients). Bakshi and Stephanopolos (1993) developed the same
network separately but pointed out that the weights can be determined by using the
standard least squares regression method and the choice of wavelet basis will depend on
the type of application. A detailed description on wavelet analysis and Wave-Net
algorithm developed for modeling hourly energy use in commercial buildings is included
in Chapter VIL

Calibrated Simulation Modeling - A Hybrid Approach

There are situations when a little or no pre-retrofit data are available. A
calibrated modeling approach may be an appropriate choice for estimating energy use in
such cases (Katipamula and Claridge, 1992). The model is developed based on
engineering equations and the prediction is calibrated by adjusting system parameters.
Calibration can be improved in several ways (Bou-Saada, 1994), for example, (i) suitable

time period may be chosen for performing calibrations, (ii) sensitivity analysis can be
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performed to identify the parameters that are the most sensitive to a simulation and such
parameters may be adjusted to improve the model fit, (iii) indoor temperature calibration
may be adopted and (iv) a suitable day-typing technique may be adopted to remove the
effect of major changes in operating schedule of the building systems. The calibrated
modeling approach has also been used to identify operational improvements in buildings
(Liu and Claridge, 1995).

Calibration Time Periods. Testing and modifying the simulation models by
using long-term data sets are expensive and time-consuming. An alternative to this is to
choose short-term data sets that cover all the seasons of the year. A cold weather
month, a hot weather month and a moderate weather month can be used to tune
simulation models (Kaplan et al., 1990a). Kaplan pointed out that a cold weather period
and a hot weather period may be sufficient to calibrate models for stable weather
patterns.

The other method of calibrating models by using short data sets is the Short-
Term Energy Monitoring (STEM) method (Subbarao et al., 1990; Balcomb et al., 1993;
1994). STEM essentially uses Primary and Secondary Terms Analysis and
Renormalization (PSTAR) method in a building. PSTAR is based on analysis in the
frequency domain and allows one to separately determine the building loss coefficient,

the building mass and the solar gain area without one factor interfering with the other.

Sensitivity Analysis. The usefulness of sensitivity analysis lies in the fact that it
reduces the amount of work needed to finalize the model. This is achieved by (i)
identifying the most sensitive parameters from among all those that affect building energy
use and (ii) tuning such sensitive parameters to improve the model fit. The first run of
simulation is performed to establish a base case reference point and then several runs are
performed with extreme value of each parameter that affects the model prediction. The

results of these simulations are used to determine the most sensitive parameters. Details
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of studies on sensitivity analysis applied to calibration of simulation models may be found
in Hsieh et al. (1989), Mahone et al. (1992) and Griffiths and Anderson (1994).

Indoor Temperature Calibration. Calibration of simulation models can be
accomplished by matching simulated indoor temperatures to measured indoor
temperatures. Hsieh (1988) compared DOE-2 predicted temperatures with measured
temperatures to help identify the discrepancy between actual and model predicted energy
use. Clarke et al. (1993) conducted a similar test under PASSYS program. Haberl and
Komor (1990) used minimum and maximum zone temperatures to verify HVAC system

operation.

Day-typing. Energy use in commercial buildings are affected in a major way by
the systematic scheduling of the building systems; separating the data set based on major
operational changes prior to model development is an important step. The day-typing of
energy data may involve either a simple data sorting based on the calendar or a complex
statistical analysis. Katipamula and Haberl (1991) proposed a day-typing methodology
to identify diumnal load shapes using monitored end-use data. According to this
technique, the day-types are generated based on a univariate statistical analysis that
assumes any final day-type not to have more than 10% Coefficient of Variance (C.V.-
STD). The resulting load shapes were used in DOE-2 calibration (Bronson 1992). A
detailed day-typing technique proposed by Dhar et. al (1994b) involves primary day-
typing using Duncan’s multiple range test (Ott, 1988) and univariate analysis of energy
data of each primary day-type in the frequency domain. The key difference between
these two approaches is that the earlier considers the standard deviation of the data at
each individual hour while the latter considers mean energy use and overall diurnal load
shape to identify the final day-types.

Bou-saada (1994) proposed use of graphical indices developed by Abbas (1993)
to identify day-types and calibrate DOE-2 simulated prediction with measured data. Use
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of C.V. rmse instead of percentage difference for calibration was also proposed. The
procedure was illustrated by using the data from USDOE Forrestal building.

In general, the method of developing calibrated simulation models is elaborate
and time consuming. The methodology may not be suitable when adequate data are

available for developing regression or ANN models (Reddy et al., 1994a).

Summary

In this chapter, a brief description of the literature reviewed on modeling hourly
energy use in commercial buildings was presented. Three existing techniques, e.g.,
regression techniques, ANN approaches and calibrated modeling approaches were
reviewed and the development of Fourier series approaches and Artificial Neural
Network techniques were identified as the topics of current interest. This is because
these two methodologies have the potential to offer high prediction accuracy and are
supposed to take less training time than a calibrated modeling approach. Calibrated
modeling approaches are, however, superior to regression and ANN approaches for
purposes like evaluating the effect of a particular parameter, for example, cold deck
temperature of a bulding HVAC system on the building energy use. The development
and application of Fourier series and ANN approaches to model hourly building energy

use will be presented in the following chapters.
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CHAPTER I
SUITABILITY OF FOURIER SERIES ANALYSIS OF HOURLY
ENERGY USE IN COMMERCIAL BUILDINGS

Introduction

Fourier analysis is one of the most important tools of mathematics and
mathematical physics. It originally arose from the problems involving vibrating cords
that were being studied by Leonard Euler and Daniel Bernoulli in the 18th century. The
subject was named after Jean-Baptist-Joseph Fourier, whose work on the representation
of mathematical functions was published in his Theorie analytique de la chaleur (The
Analytical Theory of Heat) in 1822 (Fourier, 1878).

The present application is the analysis of hourly energy use such as lighting and
equipment energy use, electricity use by air handling units, cooling energy use, heating
energy use, etc., in commercial buildings; these uses are inherently periodic in nature.
The profiles of energy uses repeat themselves in the diurnal cycle due to fixed
scheduling, as well as over the annual cycle due to seasonal variation. These energy uses
are, therefore, well-suited for Fourier series treatment.

A Fourier series representation of a continuous function is as follows:

= 31
F(><)=f‘2—°+2[ak sinkx +b, coskx] G0
k=1

However, when a function needs to be approximated in the form of a Fourier series from
a finite number of measured data points in a particular interval, the Fourier series
described in eq. 3.1 need to be modified to a finite Fourier series. If 2n+1 data points are

available, then the finite Fourier series takes the following form (Graybill, 1976):

F(x) = %"-+Z[ak sinkx +b, coskx] 32)
k=1



The finite sum from k = 1 to n of the weighted trigonometric terms is also called a

trigonometric polynomial of order n (or less, if both a; and by, are zero). In other words,
a trigonometric polynomial of order n has 2n+1 coefficients aj, by,.....,ap, by and it can

be shown that if 2n+1 distinct points are fixed in the interval 0 < x < 27, there is always a
unique trigonometric polynomial of order n or less that takes prescribed values at these
points. This idea led to the development of Fourier series modeling of hourly energy use
in commercial buildings.

In this chapter, the presence of periodicity in the energy use is illustrated with
examples and the theory of Fourier series is discussed. We will start with the discussion

of the annual and diurnal periodicity present in the data in the next section.

Periodicity in the Data

As mentioned in the previous section, both weather independent and weather
dependent energy use in commercial buildings show periodicity. The daily mean energy
use may vary over a year in a building. For example, in educational buildings, energy use
is different during spring, summer and fall semesters, semester breaks, Christmas, etc. In
addition, the energy use often increases slowly from the beginning of a semester and
decreases gradually towards the end. This primarily occurs in the lighting and equipment
(LE) energy use or whole building electric (WBE) energy use, which (internal load) in
turn affects cooling and heating energy use. Such effects, referred to here as seasonal
effect, leads to the presence of periodicity in the annual pattern of energy use. Figure 3.1
shows a time series plot of WBE energy use during 1992 in a large university building
(Zachry Engineering Center) on the Texas A&M University campus, while Figure 3.2
shows LE energy use during 1992 in the Business Building of the University of Texas at
Arlington (UTA). We note in both plots the increases in energy consumption at the
beginning of spring (January), summer ( late May) and fall semesters (late August) and
drops in energy use at the semester ends. Energy use also drops during spring break and
Christmas at these sites. These two examples illustrate the presence of seasonal

periodicity in weather independent energy use.
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Figure3.1 = Whole building electricity use in the Zachry Engineering Center in 1992.
The plot shows the presence of the seasonal effect on energy use.
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Figure3.2  Lighting energy use in the Business building of the University of Texas at
Arlington in 1992. The plot shows the presence of the seasonal effect on energy use.
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Time series plots of cooling energy use in the Zachry Engineering Center and in
the Business Building are shown in Figure 3.3 and Figure 3.4 respectively. Although
cooling energy use is largely weather dependent, the seasonal effect is observable in
these time series plots. The seasonal effect is obvious from the time series plots of
heating energy use in Burdine and P. C. Library buildings, both located in University of
Texas at Austin (UT) (Figure 3.5 and Figure 3.6).

Apart from the annual periodicity discussed in the preceeding paragraph, the
pattern of weather independent energy use such as the internal load in a building repeats
itself over a day due to the fixed operating schedule of the building. This diurnal
periodicity is illustrated by the time series plots of the weather independent energy use
during September 1992 and October 1992 in the Zachry Engineering Center and the
Business Building (Figure 3.7 and Figure 3.8). It is observed that during the weekdays,
energy use starts increasing at around 8 a.m., drops a little during lunch time and again
drops sharply in the evening. However, the patterns are different during weekdays and
weekends. This is accounted for by day-typing which is discussed in Chapter IV. Time
series plots of cooling energy use during September 1992 and October 1992 are shown
in Figures 3.9 and 3.10, whereas the time series plots of heating energy use in November
1992 and December 1992 in Burdine building and P.C. Library are shown in Figures
3.11 and 3.12 respectively.  As mentioned previously, these energy uses are weather
dependent and the plots in Figures 3.9 through 3.12 show diurnal periodicity with
varying amplitude due to the weather effect as well as systematic scheduling.

The following section describes how annual and diurnal periodicities can be

accounted for in the Fourier series model of energy use in commercial buildings.

Fourier Series Modeling

A general representation of a linear model of energy use is as follows:

E=p(h)+¢ (3.3)
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Figure 3.3 Cooling energy use for the Zachry Engineering Center in 1992. The plot
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Figure 3.8 A time series plot of lighting energy use in the Business Building at UT
Arlington for September 1992 and October 1992 that shows diurnal periodicity.
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EEM ﬂ W

1.8 §|[li

1.6

mmmp—

1.9

1.2

Codling enerqy use
GJ/h

1.0

L e T CUTR

0.8 !

0.6

0.4}

0.2

0.0 4
Sep 4 6 8 11 14 17 20 23 26 Oct 4 6 8 11 14 17 20 23 26 29

Figure3.10 A time series plot of cooling energy use in the Business Building at UT
Arlington during September 1992 and October 1992 which shows diurnal periodicity.



39

Heoting energy use
GJ/h

"
Nov 4 6 8 11 14 17 20 23 26 Daec 4 6 8 11 14 17 20 23 26 29

Figure 3.11 A time series plot of heating energy use in the Burdine Building at UT
Austin during November 1992 and December 1992 which shows diurnal periodicity.
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during November 1992 and December 1992 which shows diurnal periodicity.
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where E is the energy use, h is the independent variable and € is the random error. If the
variation of E with h is periodic, the function p(h) can be represented by a Fourier series
(Graybill, 1976).

(34)

J
max
Eh=BO+jzl[ajsini—:h+ﬁjcos%h]+sh, -~ <h<+oo

where E; is the energy use at hour h, a; and B; are the coefficients of the jth sine and

cosine frequencies and P; is the period of the jth frequency. An upper limit on the
number of frequencies that can be chosen is jma, < (h/2) since otherwise, the number of
parameters will be greater than the number of hours (or measured data points for the
data used here) in a day. A model such as equation 3.3 is restrictive in that it does not
allow the mean (Bo) and amplitude (combination of ¢; and B;) to vary seasonally. Since
the energy use patterns shown in Figures 3.1 and 3.2 do exhibit such variations, a more

generalized model would be of the form:

Byp =X+ Y(W)+Zdh)+ey (3.5)

k J
where X = n%axl:YkSini_nd’Lskcos%d} Y=Jn§:ax|:ajsini—nh+[3jcosi—nh}

k=0 k k 0 j ]

kmax-'max
and Z= ¥ ¥

k k J J

Note that X and Y represent seasonal and diurnal periodicities respectively, while Z
accounts for the interaction between the two. In other words, Y alone will represent a
load shape of constant mean and amplitude (a simple sinusoid is shown in Fig. 3.13).
When X is added to the expression, variation in mean energy use can also be treated
(Fig. 3.14). Addition of Z enables the model equation to represent load shapes with

varying mean and varying amplitude (Fig. 3.15). Note that seasonal variation in equation
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3.5 is modeled with daily energy data. We have also investigated whether this choice is
most appropriate. For example, weekly-mean daily or monthly-mean daily values of
energy use could have given "smoother" seasonal variation patterns. Using daily data to
represent seasonal variation is logically the best of all three options because it provides
analysis at the highest resolution. However, analysis of data from two buildings (results
summarized in Table 3.1) has revealed that the choice of the variable for the annual cycle
does not make any significant difference.

The annual frequency terms in eq. 3.5 can model the seasonal pattern
substantially, as described above. However, the model fit can be improved further by
performing suitable day-typing prior to modeling and developing separate model
equation for each day-type. A day-typing technique has been described in detail in
Chapter IV.

As already mentioned, the hour of day h is the independent variable to represent
the diurnal cycle. Since there are 24 hours in a day, one needs to chonse the frequencies
from the first twelve frequencies. Similarly, a maximum of the first 183 frequencies can
be used to account for the annual periodicity. The variable d for the annual cycle is the
day of year having value 1 on January 01 and 365 on December 31. In a leap year,
however, the longest period of the annual cycle changes to 366.

In addition to modeling weather independent energy use, finite Fourier series
representation of a function can be used to model weather dependent energy use such as
cooling and heating energy use. The weather variables such as outdoor drybulb
temperature, outdoor humidity and horizontal solar flux can be combined with a Fourier
series to model weather dependent energy use. These will be discussed in detail in
Chapter V and Chapter VI.

Summary
In this chapter, we pointed out that Fourier series is a powerful tool for analyzing
periodic data and both weather independent and weather dependent energy use in

commercial buildings can be modeled by the Fourier series approach. The presence of
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Figure3.13  Illustrative load profile for E,, = X with X=1- co{%—} h) showing a

periodic load shape with constant mean and amplitude.
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Figure3.14  Tllustrative load profile for E,, = X +Y with Y =1- cos(—i—% d) showing

a periodic load shape with variable mean but constant amplitude.
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Figure 3.15  Illustrative load profile for E,, = X +Y +Z with Z = XY showing a
periodic load shape with variable mean and amplitude.



Table 3.1 Comparison of R-square and C.V, of various hourly Fourier series
models using (a) month, (b) week and (c) day respectively as the time variable
which captures annual periodicity of whole building electricity use data.

Site Time Variable Day-type R2 c.v.
(%)
day weekdays 0.93 4.24
weekends 0.63 3.36
ZEC week weekdays 0.93 4.25
weekends 0.63 3.35
month weekdays 0.92 4.39
weekends 0.57 3.59
day weekdays 0.83 14.74
weekends 0.65 16.06
BUS week weekdays 0.83 14.81
weekends 0.65 16.04
month weekdays 0.81 15.62
weekends 0.62 16.90

annual periodicity due to the seasonal effect, and diurnal periodicity due to the fixed
operating schedule have been illustrated with monitored data from several buildings.
The hour of the day and the day of the year are chosen as the independent variables for
the diurnal and annual cycles respectively in the Fourier series functional form. In the
end, the usefulness of day-typing in improving the model fit is pointed out.

In the following chapters, the modeling procedure for weather independent and
weather dependent energy use in commercial buildings will be described and illustrated

with examples.
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CHAPTER 1V
MODELING WEATHER INDEPENDENT ENERGY USE

Introduction

The previous chapter discussed (i) the presence of periodicity in energy
consumption data and (ii) the theory and basis of Fourier series modeling. This chapter
presents a Fourier series modeling approach for weather independent energy use and

illustrates the same with application to monitored data from several buildings.

Modeiing Procedure

The load profile of weather independent energy use depends on the mode of
operation of the building systems. Prior to model development, the data set needs to be
divided into groups (or day-typed) based on differences in operating schedule of the
building systems. A model equation for each day-type is then developed using a

statistical procedure which will be described later.

Day-typing. The method of day-typing adopted here involves dividing the data
set into primary day groups based on the calendar (weekdays, weekends, holidays and
Christmas). Duncan's multiple range test (Ott, 1988) which is a mean comparison test
for multiple groups of data, (it considers both mean and standard deviation of the groups
to be compared) is then performed and the day-groups with statistically insignificant
differences in mean energy consumption are aggregated together. The day-types thus
achieved are the primary day-types. Univariate analysis of each important frequency that
appears in the model of energy use is then performed separately for each primary day-
type to further divide the data into multiple day-types. The important frequency are
those which appear consistently in a particular type of building. It will be shown later on
in this chapter that the following frequencies consistently appear for weather independent

load shapes:
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mz—nh, cosz—ﬁh, cos4—nh and sins—nh.
24 24 24 24

The above terms correspond to the sine and cosine terms for the frequencies with 24-
hour, 12-hour and 6-hour periods respectively. A histogram of the amplitude for each
frequency is developed and checked for multimodal distribution behavior. Only if (i) the
histogram is multimodal and (ii) a physical reason can be attributed to such a
distribution, is it recommended that the particular primary day-type be divided into
groups. The last step of day-typing is to repeat the Duncan test and aggregate the day-
types with statistically insignificant differences in mean energy consumption. The day-
typing procedure described above is illustrated further in the flow charts in Figures 4.1a
and 4.1b.

Modeling. The modeling procedure for weather independent energy use in
commercial buildings is shown in Figure 4.2. To start with, the model equation 3.5 is

rewritten as

follows:
Ed,h =X(d)+Y(h)+Z(d,h)+ed’h, 4.1)
k 2k 2k Jnax 2mj
where X=k2_‘,0[yksm 5d+8 cos365d], Y=j§ [a}smah+ﬁ cos24h]
k .
and Z= kZOJXO[d)ksm kd+wkcos%d] [n sm—2—4—h+§ cos%h]

We note from the above equation that the right hand side has a large number of terms.
However, while modeling actual energy use in commercial buildings, the data will
generallly support only a few terms in the final model equation. This will be illustrated

later in this chapter.
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Divide data into
day-types based
on the Calender

Weekdays Weekends Holidays Christmas

Use Duncan's multiple
range test to determine
if daily mean energy use
of different day-types are
different

Aggregate the day-types
of same daily mean energy
use to obtain primary day-types

Figure4.1a  Stage I of a day-typing procedure used in conjunction with Fourier series

approach to model hourly energy use in educational buildings. Primary day-types are
created from data at this stage.



Perform univariate analysis
of each important frequency
for each primary day-type

Presence
of multimodal
distribution ?

Yes

Is
distribution
physically

consistent ?

No No

Break the corresponding Retain Primary day-
primary day-types based types as the final
on the distribution day-types

Perform Duncan's test
to aggregate the day-
types with same mean
energy use

[ Final day-types ]

Figure 4.1b  Stage II (final stage) of a day-typing procedure used in conjunction with
the Fourier series approach to model hourly energy use in educational buildings. Final
day-types are determined from primary day-types at this stage.
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Figure4.2  The procedure adopted in the present Fourier series approach to model

hourly energy use in commercial buildings.
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Equation 4.1 is the Generalized Fourier Series (GFS) model equation for weather
independent energy use in commercial buildings. For a particular day-type, hourly data
is used and stepwise forward selection performed to select the significant independent
variables from the set of Fourier frequencies. Mallow's C(p) ~ p for minimum p, the
number of independent parameters including the intercept, is used as the criteria for such
selection (Ott, 1988). The C(p) statistic is defined as follows:

C(p) = SSS];:"’ -n+2p

€

where SSE, is the sum of squares of error from a model with p parameters including the
intercept, s, is the mean square error of the regression with largest possible number of
independent variables and n is the number of observations.

Once the parameters of the models are selected using C(p) criteria, regression is
performed using the selected frequencies. However, the model may contain parameters
with significant standard error. In that case, a suitable level of significance (say, 10%)
may be used as the criteria to drop the parameters with significant standard error. The
procedure is repeated for all the day types and finally, a set of model equations for all
day types is obtained.

The above procedure, when applied to measured energy use, often identifies a
large number of terms for the final model equations. Higher frequency terms sometimes
may have negligible partial R-square and may improve model fit marginally. A
reasonable cut-off criteria of partial R-square (0.005) may be used to retain only the

important frequency terms in the final model equations.

Model Development from Short Data Sets ‘

A year-long data set contains all possible day-types and model equations for all
the day-types may be developed by applying the procedure described in the previous
sections. However, if data is available for only a short period prior to retrofitting, model
equations for all the day-types can not be developed directly. In such cases, model

equations for the day-types for which data is unavailable may be developed by using
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post-retrofit data. For example, if there are some data for working weekdays but no data
for Christmas during the pre-retrofit period, then the data for the Christmas period is
generated from the working weekday model by using a factor F,, which is the ratio of the
mean energy use at a particular hour during Christmas to the mean energy use of the
corresponding hour during working weekdays in the post-retrofit condition. The data
generated for Christmas can then be used to develop the Fourier series model for the
pre-retrofit Christmas period. However, it may be noted that this method does not work

if the retrofit involves a schedule change.

E (4.2)

h, post, Christmas
F = E

E

h, post, working weekdays

E h, pre, Christmas = Fh X E h, pre, working weekdays

Application to Monitored Data

The Fourier series approach has been applied to model monitored data collected
from various LoanSTAR sites. A detailed study of one example (whole building electric
energy use in the Zachry Engineering Center, ZEC) is presented and the results of
several other examples are discussed in this section.

ZEC, a large educational building, contains class rooms, labs, offices and
computer facilities. The seasonal and diurnal variation of whole building electric energy
use (Ew) can be observed in the time series plots shown in Figures 3.1 and 3.7 in the
previous chapter. Cooling and heating energy in this building is supplied from a central
plant and, therefore, E.. shows insignificant weather (primarily outdoor drybulb

temperature) dependence.

Day-typing. The one-year data (1992) of E. is grouped by using the calender
and the following groups are obtained: (i) working weekdays, (ii) weekends, (iii)
holidays (1st January, spring break: 16th March to 20th March, 3rd July, Thanksgiving;
26th and 29th November), referred to as holiday group and (iv) 23rd to 31st December,
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referred to as Christmas group. The primary day-types are then identified by performing
Duncan’s multiple range test the results of which are summarized in Table 4.1. The test
indicated insignificant difference between the weekend and the holiday group. Weekend
and holiday groups were, therefore, aggregated together and three primary day-types
were obtained.

The next step is to convert the hourly energy consumption data to daily
frequency content information. This essentially enables one to store the diurnal profile
information in a concise way. The histograms for each of the frequencies of each day-
type are then developed and inspected for the presence of multiple modes. Although the
histogram of the daily-mean hourly energy use (which is the intercept or zero™ frequency
term in a Fourier series model) did not show any clear presence of multiple modes
(Figure 4.3), the histogram of the first cosine frequency of working weekday group had a
bimodal distribution (Figure 4.4). When the data of working weekday group was
divided based on the histogram shown in Figure 4.4, days during the semester breaks
were separated out. Note that the analysis mentioned here enables one to compare both
mean energy use and overall diurnal profile and fix the final day-types accordingly.
Duncan’s test was performed again (the results are summarized in Table 4.2) on four
day-types which suggested that the four groups be accepted as the final day-types: (i)
weekdays school-in-session, (ii) weekends, (iii) semester break weekdays and (iv)

Christmas.

Model Development. The generalized functional form suggested by equation
4.1 is used to regress hourly data of each day-type using stepwise regression with the
forward selection procedure. A widely used criteria to select the optimum number of
significant frequencies is the Mallow's C(p) ~ p criteria (Ott, 1988). The above
procedure, when applied to model energy use, often retains a large number of terms in

the final model.



Table 4.1 Results of Duncan’s multiple range test performed to identify primary
day-types for whole building electric energy use in ZEC in 1992.
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Analysis of Variance Procedure
Duncan's Multiple Range Test for variable; WBELEC

Alpha=0.1 df=8607 MSE= 18920.47
Harmonic Mean of cell sizes=417.2411

Number of Means 2 3 4
Critical Range 18.92 19.89 20.52
Means with the same letter are not significantly different.

Duncan Grouping Mean N DAYTYPE

A 1008.279 5756 1 working weekdays

B 847467 192 3 holidays
B

B 838.736 2399 2 weekends
C 792.687 264 4 Christmas

Table 4.2 Results of Duncan’s multiple range test performed to identify final day-
types for whole building electric energy use in ZEC in 1992,

Analysis of Variance Procedure
Duncan's Multiple Range Test for variable: WBELEC

Alpha=0.1 df= 8607 MSE= 17579.29
Harmonic Mean of cell sizes= 467.727

Numberof Means 2 3 4
Critical Range 14.40 15.22 15.80
Means with the same letter are not significantly different.

Duncan Grouping Mean N DAYTYPE

A 1028.016 4821 1 working weckdays

B 906.513 935 4 semester break weekdays

C 839.383 2591 2 weckends, holidays

D 792.687 264 3 Christmas
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Stem Leaf Frequency
1092 1
108 0013379 7
107 0033456 7
106 01122347889 11
105 00001122344566799 17
104 011112223344444566667788899999 30
103 011223344455555666777789 24
102 01111111132233444444444555666777888999 38
101 00011244677777788888899999999 29
100 0111222246789 13
99 11234467789 11
98 112345667888 12
97 4569 4
96 0378 4
95 13558999 8
944 1
93 257889 6
92 000199 6
91 2288 4
90
89
88 89 2
87
8616 2
8556 2

Multiply Stem.Leaf by 10, e.g., 109 2 means 109.2 = 1092 (frequency = 1).

Figure 4.3 Frequency distribution of mean whole building electric energy use for
working weekday group in ZEC during 1992.

Stem Leaf Frequency
-11 86 2
-122 1
-12 66 2
-13 433322111100 12
-13 9888766555 10
-14 4432100 7
-14 998 3
-15 444321100 9
-15 99987666 8
-16 4333221110 10
-16 9998888876655555555 19
-17 444443333333332210000000 24
-17 99999998888777777666666665555555555 3s
-18 4444433333222211111100000 25
-18 999988777777766666655555555 27
-19 44444333322222222211100 23
-19 999998886655 12
-20 3000 4
-20 655 3
-21 3 1

Multiply Stem.Leaf by 10, e.g., -11 86 means - 11.8x10 = - 118 and - 11.6x10 = -116 (frequency = 2).

Figure 44 Frequency distribution of first cosine frequency of whole building electric
energy use for working weekday group in ZEC during 1992. '
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This is seen in Table 4.3 where 29 parameters (the mean or intercept term needs to be
included as well) are suggested by the criteria C(p) ~ p.

A last refinement to the selection process is to drop the higher frequency terms
that have negligible partial R-squares. Thus, if we choose an arbitrary but reasonable
cut-off of 0.005 in partial R-square, then only the first 7 parameters need be retained in
the model, yielding a model R-square of 0.9427 as against 0.9611 when all 29 terms are
included. However, the stepwise regression results show that Z terms (equation 4.1)
were insignificant in this case, meaning that energy use during weekdays with school-in-
session has load shapes with fairly constant amplitude.

Table 4.4 presents results of applying the above procedure to monitored data for
lights and electricity use (Ei) and whole building electricity use (Ewbe) for ZEC, E. for
Medical School Building (MSB) in Houston and E,. for two educational buildings in
UT Austin (WEL and PAI). Model results for both pre-retrofit and post-retrofit
conditions in ZEC and MSB are presented. The regression R-squares are excellent for
the working weekday group which contains the largest number of days, while the R-
squares are generally poorer for the other groups. This is partly because of the way R-

square is computed:

Z (E _ ];:)2 4.3)

R?=|1-2———|  n=number of hourly observations in a day-type.

where E, E and E are the measured, predicted and mean energy use respectively. Since
R-square is a statistic which depends on the degree to which data scatter about the mean
as explained by the model, a model fitted to data that have less scatter is likely to have a
poorer R-square value. Consequently, one should also look at the Coefficient of
Variation (C.V.) of the Root Mean Square Error (RMSE) in order to get a complete
evaluation of the fit. We note that C.V.s are low enough (all the C.V.s in Table 4.4 are
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Table 4.3 Summary of the forward selection procedure for whole building
electricity use during working weekdays in ZEC. Data period covers the calender
year 1992, Standard errors of all variables are statistically insignificant (less than
F=0.0001). CHi (& SHi) and CDi (& SDi) represent the ith frequency of the
cosine (and sine) terms of the diurnal cycle and of the annual cycle respectively.

No. of parameters Variable entered Partial R | Model R* C(p)

2 CHI 0.6092 0.6092 43582.1
3 SH1 0.2670 0.8762 10497.9
4 CH2 0.0413 0.9175 5388.0
5 SH4 0.0123 0.9298 3863.5
6 SH3 0.0068 0.9366 3024.4
7 SD1 0.0061 0.9427 2274.2
8 CH3 0.0034 0.9461 1852.8
9 SD2 0.0031 0.9492 1469.0
10 SH2 0.0024 0.9516 1177.1
11 : CH4 0.0022 0.9538 907.5
12 CD4 0.0016 0.9554 708.2
13 SD5 0.0016 0.9570 509.2
14 SD4 0.0011 0.9581 375.0
15 CH1*SD1 0.0005 0.9586 320.7
16 SH1*SD1 0.0004 0.9590 269.4
17 CH1*SD2 0.0004 0.9594 225.6
18 CD3 0.0003 0.9597 186.4
19 CH5 0.0003 0.9599 157.2
20 SH5 0.0002 0.9602 131.7
21 CD2 0.0002 0.9603 111.9
22 SH2*SD1 0.0002 0.9605 95.2
23 CD1 0.0001 0.9606 83.7
24 SH1*SD3 0.0001 0.9607 72.3
25 CH1*SD3 0.0001 0.9608 62.0
26 CH1*CD1 0.0001 0.9609 51.3
27 SH1*CD4 0.0001 0.9610 42.2
28 SH1*SD4 0.0001 0.9611 33.0
29 CHI*SD4 0.0000 0.9611 29.3
30 SH3*SD1 0.0000 0.9611 25.6




Table 4.4 Fourier model results of weather independent energy use at four

educational buildings in Texas.
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Build- | Energy | Period Data length Day-type R? [ CV.
ing use (%)
name

Ele Pre- 9/1/89 - 12/31/89 | Weekdays school-in-session | 0.96 | 4.1

ZEC retrofit (4 months) Weekends 064 | 5.1
Christmas 087 | 84

Enpe | Post- 1/1/92 - 12/31/92 | Weekdays school-in-session | 0.94 | 3.8

ZEC retrofit (12 months) Weekends 041 | 44
Semester break weekdays 084 | 95

Christmas 033 | 4.7

MSB | Eype Pre- 9/1/91 - 8/6/93 Weekdays 095 | 33
retrofit (35 months) Weekends 036 | 4.5

Ewbe | Post- 8/7/93 - 11/30/94 Weekdays 093 | 4.5

MSB retrofit (16 months) Weekends 0.61 | 4.6
Christmas 070 | 7.8

Ewpe | Post- 1/1/93 - 12/31/93 | Weekdays school-in-session | 0.90 | 5.0

WEL retrofit (12 months) Weekends 068 | 5.3
Semester break weekdays 073 | 7.1

Christmas 079 | 5.2

Ewbe | Post- 1/1/93 - 12/31/93 | Weekdays school-in-session | 0.82 | 6.9

PAI retrofit (12 months) Weekends 027 | 6.8
Semester break weekdays 044 | 9.6

Christmas 034 | 57

below 10%) in all the cases for the models to be deemed satisfactory. The accuracy of

the model fit is illustrated in Figures 4.5 where time series plots of measured energy use

and of the residuals (i.e., the difference between measured and model predicted values)

for ZEC in 1992 are shown during different periods of the year.

Identifying Important Frequencies

The objective of this section is to detect the common scheduling patterns under

which different educational buildings operate. This is easily done by studying the Fourier

frequencies retained by a stepwise regression to monitored Ey. data. For most of the

buildings, we have found the number of model terms to be between seven and twelve.
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However, it is observed that the first four or five frequencies explain most of the
variation (see the partial R2 values in Table 4.3). This is also illustrated in Figures 4.6
and 4.7 which show individual and cumulative contributions of successive sine and
cosine frequencies. Hence, it is more convenient to compare just these terms across
buildings. Data from eighteen buildings described in Table 4.5 are used for this purpose.
Three months’ continuous data (working weekdays only) was chosen based on the
availability of clean data for these eighteen buildings. Fourier series models were
developed and the frequencies that have significant partial R-square (greater than 0.005)
were selected. Once the models were developed, all the Fourier coefficients of the
independent variables were normalized by dividing by the mean energy use (i.e., the
model intercept). These coefficients are plotted in Figure 4.8 for 18 sites. Other than
SIM (which is an elementary school) and DMS (which is a middle school), TDH (which
is an office building) and PCL (which is a university library), all other sites are university
buildings. We observe that for most of the university buildings, four frequencies that
consistently appear are CH1, SH1, CH2 and SH4. Frequencies SHS, CH7 and SH7
were never selected while SH2, CH3, SH3, CH6 and SH6 appeared only in models of
some buildings whose load profiles were distinctly different from the others because of
operational differences. An important conclusion is that most of the university buildings,
though operated in different campuses, seem to be operated in like fashion, with the
same four frequencies (CHI1, SH1, CH2 and SH4) appearing consistently. CH1 and
SHI are the strongest and represent the overall diurnal behavior. CH2 is the 12-hour
frequency and is due to the fact that institutional buildings are occupied roughly 12 hours
and unoccupied during the remaining 12 hours. SHA4, the 6-hour frequency, is picked up
by the model due to the dip in energy use around noon when lunch breaks are taken
(Figure 4.9). The contribution of first, second, third and fourth frequencies can also be

noted in Figure 4.10.
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Figure4.5  Time series plots of measured and residual whole building electricity use
in ZEC for (a) January-June 1992, (b) July-December 1992 and (c) May 1992.
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Figure 4.6  Individual contribution of sine (a) and cosine (b) frequencies of the

Fourier series model of E,s. in ZEC during weekdays.
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Figure 4.7  Cumulative contribution of sine (a) and cosine (b) frequencies of the

Fourier series model of E,. in ZEC during weekdays.



Table 4.5 Key descriptors of Texas buildings whose monitored data were
analyzed during this study.

SL. | Build- | Location Type of building Area (m?)
No. [ ing

1 EDB | Austin Class rooms, offices 23,340
2 UTC | Austin Class rooms 14,190
3 PCL Austin Library 44.970
4 GAR | Austin Class rooms, offices, auditorium 5,020
5 GEA | Austin Class rooms, offices, labs 5,670
6 WAG | Austin Class rooms, offices, labs 5,350
7 WEL | Austin Class rooms, offices, labs 40,850
8 BUR | Austin Class rooms, lecture halls, offices, auditorium | 9,610
9 NUR | Austin Class rooms, lecture halls, lounges 8,810
10 | WIN | Austin Class rooms, offices, theatre 10,130
11 | RAS | Auslin Class rooms, offices, labs 5,280
12 | PAI Austin Class rooms, offices, labs 11,930
13 WCH | Austin Class rooms, offices, workshops, auditorium 4,550
14 | ZEC College Station | Class rooms, labs, offices, computer facilities 30,150
15 | BUS | Arlington Class rooms, lecture halls 13,930
16 | TDH | Austin Offices, labs 12,730
17 | SIM | Fort Worth School 5,800
18 | DMS | Fort Worth School 8,630

61
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Figure 49 The plot shows how fourth sine frequency modifies the diurnal profile to
model the dip in energy use around noon.
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during weekdays.
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Summary

In this chapter, we have discussed in detail the Generalized Fourier Series (GFS)
approach for modeling weather independent energy use in commercial buildings in detail.
This modeling approach has been illustrated by examples from several commercial
buildings. The results show that (i) the GFS approach gives high prediction accuracy
consistently, (i) the model development is easy and (iii) the frequency content can be
interpreted to gain physical understanding of operating schedule of building systems.

In the next chapter, the GFS approach for modeling weather dependent energy

use in commercial buildings will be presented.
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CHAPTER V
GENERALIZED FOURIER SERIES (GFS) MODELING OF
WEATHER DEPENDENT ENERGY USE

Introduction

Cooling and heating energy use in a commercial building are weather dependent
and are affected by the systematic scheduling of building systems. A suitable model,
therefore, needs to be developed that will incorporate the effect of the scheduling
periodicity and of the weather variables. In this chapter, the Generalized Fourier Series
(GFS) approach to model weather dependent energy use is presented. The methodology

is illustrated by application to monitored data from several buildings.

Model Equation

A suitable model for weather dependent energy use, that incorporates the effects
of both scheduling and periodicity in the weather variables can be developed by combining
the weather variables with Fourier series. Both heating and cooling energy use may have
significant dependence on outdoor temperature, outdoor humidity and solar radiation.
Moreover, building cooling loads have two components: sensible and latent. The sensible
heat gains are mainly due to the internal sensible heat load, the transmission and radiation
gains through walls, roofs and windows. The latent heat gains are primarily affected by
the moisture content of the fresh air intake, and also by the internal latent heat gains which
are typically smaller. Instead of simply including, say the outdoor specific humidity (W) as
a variable in the model, it is more appropriate to choose the humidity difference between
W and the saturated specific humidity of air at the mean cooling coil surface temperature
of the HVAC system (Katipamula et al., 1994). For the educational buildings, this
temperature is typically close to 12.8 °C (55 °F). The saturated specific humidity
corresponding to this temperature being 0.0092 kg. per kg. of dry air, the driver for the

latent load is W = (W - 0.0092)" where * signifies that W should be set to zero if W <
0.0092 kg. per kg. of dry air.
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Thus, a general linear equation for modeling thermal cooling energy use at each

individual hour h (and for each day-type) is:

— + 5.D
Eh =ap +thh +chWh +thh +eh

where T is the outdoor dry bulb temperature and 1 is the global solar radiation on a unit
horizontal surface. Subscript h stands for a particular hour of day and can be arbitrarily
assumed to be 0 at midnight, 1 at 1 a.m. and so on. When sensible heating energy use is
being modeled, the coefficient c, should be set to zero.

The coefficients of the above model may vary significantly from one hour to the
next over the day due to the combined effect of several factors. Internal heat gain varies
according to the diurnal operating schedule of the building. Variation of by, over a day is
due to the thermal lag behavior of a building. The coefficients c, vary over a day due to
the varying infiltration or ventilation rate. Also, solar gain of the building shows different
linear relationships with horizontal solar flux due to the changing position of the sun
during different hours of the day and days of the year. A model such as equation 5.1, if
used for all hours of the day (without distinguishing between individual hours), forces the
coefficients to assume "mean" values which are oblivious to the combined effect of factors
mentioned above. As a result, poorer fits are obtained (Katipamula et al., 1994). More
importantly, physical insight into the building operating schedule is lost. Analysis of
monitored data from several Texas LoanSTAR buildings (Claridge et al., 1991) has
suggested that the diurnal variation of each of these coefficients is also conveniently
modeled by a Fourier series. To illustrate the fact, the results of application to cooling and
heating energy use data from ZEC during September 01, 1989 to December 22, 1989 are
presented here. The regressions have been performed for each hour of the day separately,
using equation 5.1. Variation of the coefficients a, b, ¢ and d of equation 5.1 from hour

to hour for cooling and heating energy use are presented in Figures 5.1 and 5.2 while

Figure 5.3 presents the R2 values and the C.V. values for each hour of the day. Though
the patterns shown in Figures 5.1 and 5.2 vary from building to building, it has been found
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Figure 5.1 A plot illustrating how (i) the normalized coefficients (intercept (a),
temperature slope (b), humidity slope (c) and solar slope (d)) in equation 5.1 vary from
hour to hour of the day when regressions are performed for each hour of the day
separately. Data chosen is the cooling energy use in ZEC from 1st September 1989 to
22nd December 1989 (working weekdays only).
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that these diurnal variations, if modeled by low order Fourier frequency models, yield
overall model fits which sacrifice little in terms of accuracy when compared to individual
hourly regression models. For example, the individual hourly model approach, when
applied to the above chilled water data, yields C.V. values of 7.5% and 6.3% for
weekdays and weekends respectively. Fourier modeling, on the other hand, results in
C.V. values of 7.7% (with 5 terms in the model) and 6.3% (with 4 terms in the model) for
weekdays and weekends respectively. The reduction in the number of model terms is
' substantial as the individual hour model requires four parameters for each individual hour

of the day, i.e., 96 model parameters for the entire day.

The variation of each coefficient of equation 5.1 from hour to hour in a day, if

represented by a Fourier series, results in a complete Generalized Fourier Series (GFS)

model equation for weather dependent energy use which takes the following functional

form:
E,y=D) ke(X,+Y, +Z,) (52)
k
where k=1 T,W" and],
k .
_ e 2nk 2nk 2m 2m
X= kg(){vl‘ smﬁd+8 —:;Ed], Y= ZO[aJ sm-ézh +BJ cos—2—4-h]
= i=
and Z= kﬁn = [d) sin— kd+ cos%d] [ sm—h+§ cos— j ]
k=oj=oL X VK365 " 24

The specific humidity terms should be omitted for purely sensible heating energy use
models. It may be noted that the right hand side of equation 5.2 has a large number of
terms. However, as will be illustrated later, the data for weather dependent energy use
will only support a regression model with some of these terms. The choice of which terms
to retain is made based on a combination of statistical tests and arbitrary but realistic cut-

off criteria which will be described later.
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Modeling Procedure

The modeling procedure for weather dependent energy use consists of two steps:
(i) day-typing and (i) model development. The proposed day-typing methodology for
weather dependent energy use is less rigorous than the day-typing technique described for
weather independent energy use in Chapter IV. The entire data set is regressed by using

the following equation and Duncan’s multiple range test is then performed on the residuals

(en):

_ + (5.3)
Eh —a+bTh +cWh +dIh +sh

The groups with insignificant difference in mean as suggested by the Duncan’s test are
aggregated together to arrive at the final day-types.

Although an elaborate day-typing of weather dependent energy use can be
performed using the above equation, a mere separation of data into weekday and weekend
groups is adequate in many cases (Dhar et al., 1994). This is possible because in most of
the buildings, the effect of weather variables on heating or cooling energy use is more
dominant than the effect of scheduling. The holidays and Christmas-days may be merged
with the weekends, while other possible day-types may be merged with the weekdays. A
detailed day-typing is recommended only when a mere separation to weekdays and
weekends groups does not give adequate prediction accuracy.

Once day-typing is complete, the model equation for each day-type is developed
using the procedure described for weather independent energy use, but the functional form

used is as given in equation 5.2.

Application to Monitored Data

Several channels of pre-screened hourly energy data from different buildings in
Texas have been modeled by using the GFS approach. In order to illustrate the
methodology, modeling (i) hourly cooling energy use during the complete year of 1992 in

the ZEC building and during June 1993 to August 1993 in the TCOM building and (ii)
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heating energy use in the Burdine building during January 1992 to June 1992 will be
elaborated. In addition, results of application to monitored data from several other

buildings will be presented.

Cooling Energy Use. Hourly cooling energy use (E..) was regressed by using
the model equation 5.3 and the residuals (e,) were grouped by using the calendar. The
groups initially identified were (i) weekdays, (i) weekends, (iii) holidays (spring break:
16th March to 20th March, 3rd July, Thanksgiving; 26th and 27th November) and (iv)
Christmas (23rd December to 31st December). The Duncan’s multiple range test was
then performed the results of which are summarized in Table 5.1. The results indicated
significant differences between the groups. The initial groups were, therefore, retained as
the final day-types. Note that the results of the Duncan’s test performed on the residuals
supports the recommended weekday-weekend grouping without doing the day-typing, as
mentioned earlier in this chapter.

The procedure for model development in this case is similar to that described for
weather independent energy use. Again, stepwise regression is used to determine the
significant terms from the set of variables suggested by equation 5.2. The model results of
hourly cooling energy use in two sites (ZEC and TCOM, medical buildings 1 and 2

combined) are summarized in Table 5.2. The ZEC models exhibit a dramatic switch in the

contributions of T and W from weekdays to weekends. This is unphysical and is
probably due to the multi-collinearity effect between both variables, a problem inherent in
any multivariate regression model. The previous cut-off of partial R-square < 0.005 is
also used for final selection of the set of independent variables. It is noted that standard
errors of coefficients are all within an acceptable limit (probability value ~ 0.05). R-square
values of the models for ZEC are 0.91 for weekdays and weekends while C.V. RMSE
values are 11.4% and 10.5% respectively.

From Table 5.2 we notice that, again, none of the Z terms (see equation 5.2) are
significant. Also, in the weekday model for ZEC, the sine or cosine frequencies do not

appear with as significant partial R-square as in the case of TCOM. This is probably due
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Table 5.1 Results of Duncan’s multiple range test performed on the cooling energy
use residuals in ZEC in 1992,

Table 5.2

Analysis of Variance Procedure
performed on residual cooling energy use

Alpha=0.1 df= 7917 MSE=0.270353
Harmonic Mean of cell sizes= 265.65

Duncan's Multiple Range Test for variable: CW

Number of Means

A

B
B
B
B
B

Means with the same letter are not significantly different.

Duncan Grouping

0.16825

<0.35661

-0.35904

-0.36748

2 3 4
Critical Range .07494 .07922 .08222

Mean N DAYTYPE
5385 1 weckdays
2251 2 weekends
166 3 holidays

119 4 Christmas

Summary of Fourier series modeling for hourly cooling energy use in
ZEC (calendar year 1992) and TCOM (June 1993 to August 1993).

Day- Site : ZEC Site : TCOM, Medical bldg.#1 and #2
type Variable Parameter | Partial | Variable Parameter Partial
estimate R2 estimate R2

INTERCEPT | -0.676646 INTERCEPT 741.178092

T 0.060440 0.8042 | T 15.544362 0.6902

Week- | W' 220.226594 | 0.0719 | T*CHI -3.587543 0.1146
days T*CHI -0.008279 | 0.0179 | SH2 -130.040015 0.0369
[*SH1 -9.291279 | 0.0082 | SH1 -10.938855 0.0183

CH1 0.347601 0.0024 | W' 49790 0.0364

-- — - CH2 82.483933 0.0094

--- --- - T*CH3 0.82728 0.0074

--- --- - T*SH1 -2.460015 0.0028
INTERCEPT { -0.336695 - INTERCEPT 386.8111

Week- { T 0.047930 01420 | T 15.683302 0.7685
ends w* 227931758 | 0.7780 | W* 28765 0.0357
SH1 0.413418 0.0010 | W'*CH3 64.547557 0.0053
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to the considerable diurnal variation of the internal load in TCOM. R-square and C.V.
RMSE values for TCOM are 0.91 and 7.31% during weekdays and 0.82 and 9.69%
during weekends. The time series plots of measured cooling energy use and of the

residuals in ZEC are shown in Figure 5.4.

Heating Energy Use. The procedure used to develop the heating energy use
model follows that for cooling energy use except that the humidity terms are dropped
from equation 5.2 before it is used for model development. The heating energy use in the
Burdine building in UT Austin campus from January 1992 to June 1992 was day-typed
into weekday and weekend groups and models were developed for both groups. The
model parameters and their parital R-squares are summarized in Table 5.3. It may be
noted from Table 5.3 that the cosine frequency and the product of the sine frequency and
outdoor temperature appeared with significant partial R-square in the final model,
reconfirming the variation in slope from hour to hour as illustrated in Figure 5.2. R-square
and C.V. values are 0.87 and 17.03% for weekdays and 0.87 and 16.59% for weekends
respectively. The time series plots of measured energy use and of residuals are shown in

Figure 5.5.

Results from Several Buildings

Results from use of the Fourier series modeling approach on weather dependent
energy data from five buildings are summarized in Table 5.4. We note from the R-square
and C.V. values that the present Fourier series approach gives consistently good fit with
R-square values being generally higher than 0.8. The four highest C.V. values are all for
the heating energy use models. This is consistent with results from other models of

heating energy use (Kissock et al., 1992).

Effect of Short Data Sets
Very often, we do not have energy use data for a whole year. When data for one,

two or three months are available, models developed from such short data sets do not
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Figure 5.4  Time series plots of cooling energy use in ZEC during January 1992 to
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Table 5.3 Summary of Fourier series modeling for hourly heating energy use in
the Burdine Building from January 1992 to June 1992.
Day-type | Variable Parameter Partial R2
estimate
INTERCEPT 1.471661 —
Weekdays | T -0.015095 0.8396
T*SH1 -0.000701 0.0205
CHI -0.036113 0.0131
INTERCEPT 1.511257 -
Weekends | T -0.015492 0.8168
T*SHI -0.000819 0.0323
CHI -0.036811 0.0154

Table 5.4 Generalized Fourier Series (GFS) models of hourly energy use at
various buildings in Texas.

Buillding name | Type of energy use | Period Day type RrR2 CV.%
TDH (Lab & E. (GJ/h) 02/16/91- | Weekdays 0.85 | 17.07
Main bldg.) 08/12/92 | Weekends 082 {1785
TDH (All Eiw (GI/h) 02/16/91- | Weekdays 0.81 | 20.96
bldgs.) 08/12/92 | Weckends 0.73 | 24.55
MCC E.s. and chiller 04/07/92- | Weekdays 0.89 | 13.88
(kWh/hr) 05/15/92 | Weekends 0.80 | 11.96
TCOM (Med E.te and chiller 06/01/93- | Weekdays 091 {731
bldg 1 &2) (kWh/hr ) 08/31/93 | Weekends 0.82 | 9.69
ZEC E. (GI/h) 01/01/92- | Weekdays 091 [114
12/22/92 | Weekends 091 | 10.5
BUR Eiw (GJ/h) 01/01/92- | Weekdays 0.87 {17.03
06/30/92 | Weekends 0.86 | 16.59
ZEC E.w (GI/h) 09/01/89- | Weekdays 0.87 | 7.7
12/22/89 | Weckends 0.91 |6.3
ZEC Eyw (GI/h) 09/01/89- | Weekdays 0.90 |20.8
12/22/89 | Weekends 0.87 [21.1
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predict energy use very well for other months of the year. The prediction error depends
on the (i) type of the HVAC system, (ii) range of drybulb temperature of the data period
from which the model is developed, (iii) range of drybulb temperature of the prediction
period and (iv) on the average temperature of the data period and prediction period.

Cooling energy consumption data from two buildings (ZEC and BUS at Texas
A&M and UT Arlington Campus respectively) have been analyzed to illustrate how GFS
models developed from short data sets predict for different periods of the year 1992. The
temperature data from these two sites were grouped according to the months of the year
and Duncan’s multiple range test was then performed to identify temperature based
month-types. The results of Duncan’s test for ZEC and BUS temperature data are
summarized in Tables 5.5a and 5.5b respectively.

It may be noted that the results of Duncan’s test for both the sites (Tables 5.5a and
5.5b) indicated a large number of groups with significant difference in mean and scatter of
the data but the (i) June through September (6, 7, 8 and 9) and, likewise, (i) April, May
and October (4, 5 and 10), (iii) February, March and November (2, 3 and 11) and (iv)
January and December (1 and 12) are close by the comparison of mean and may be
grouped together to arrive at a fewer month-types. Thus, the final temperature based
month-types were obtained as follows:

(1) January 1992 and December 1992,

(2) February 1992, March 1992 and November 1992,

(3) April 1992, May 1992 and October 1992 and

(4) June 1992 through September 1992.

Five models for cooling energy use developed from (a) January 1992, (b) February
1992 and March 1992, (c) April 1992 and May 1992, (d) June 1992 through September
1992 data and (e) 1992 yearlong data are then applied to predict energy use for all the
months of the year. The C.V.s are calculated for all the groups and plotted in Figures 5.6
and 5.7 for ZEC and BUS respectively. It may be noted that C.V.s are different for
different months and that model developed from a particular month’s data predict with

higher C.V.s when applied to predict energy use for the other months. Also, the model



Table 5.5a Results of Duncan’s multiple range test used for grouping outdoor
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drybulb temperature data of Zachry Engineering Center at" College Station, Texas

in 1992.

Analysis of Variance Procedure
Duncan's Multiple Range Test for variable: TEMP = outdoor drubulb temperature

Alpha=0.1 df=8579 MSE=68.29345
Harmonic Mean of cell sizes= 712.5015

NumberofMeans 2 3 4 5 6 7
Critical Range .7273 .7688 .7979 .8137 .8291 .8423

NumberofMeans 8 9 10 11 12
Critical Range .8533 .8625 .8702 .8766 .8820

Means with the same letter are not significantly different.
Duncan Grouping Mean N MM
A 82.2431 744 7
B 80.4372 700 6

B
B 80.2027 742 8

C 78.4169 720 9
D 71.3893 744 5
D

D 71.0839 576 10
E 67.0761 718 4
F 62.5273 744 3

G 577450 696 2
H 55.8202 719 11
I 544535 744 12

J 50.1795 744 |1




Table 5.5b Results of Duncan’s multiple range test used for grouping outdoor
drybulb temperature data of Business Building at UT Arlington, Texas in 1992,

Analysis of Variance Procedure
Duncan's Multiple Range Test for variable: TEMP = outdoor drybulb temperature

Alpha=0.1 df=8685 MSE=89.71238
Harmonic Mean of cell sizes= 724.0673

NumberofMeans 2 3 4 5 6 7
Critical Range 0.827 0.874 0.907 0.925 0.943 0.958

NumberofMeans 8 9 10 11 12
Critical Range 0.970 0.981 0.989 0.997 1.003

Means with the same letter are not significantly different.
Duncan Grouping Mean N MM = month

A 82.2822 744 7

B 787378 744 8
B

B 78.6742 720 6
C 76.1680 685 9
D 73.7907 744 5
E 69.0847 719 4
E

E 68.9073 722 10
F 62.8851 744 3
G 56.9841 694 2
H 52.1351 693 11

—

49,5540 744 1

J 48.7237 744 12
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developed from January data has a very high C.V. while predicting energy use in
December in ZEC, although both these months belong to the same month-types.
However, the twelve-month model has fitted the data with a small range of C.V. RMSE
(about 10% to 15%) throughout the year in both the examples.

The above observations may be explained by the behavior of the air handling
system. Variable Air Volume (VAV) systems were installed in ZEC and BUS before
1992. For VAV systems, a model developed from a data set containing the entire range of
outdoor temperature (about -6.7 °C to 33.8 °C (~ 20 °F to 100 °F) in the case of College
Station and Arlington) will show a nonlinear behavior which can be approximated by a 4-P
model equation (Reddy et al., 1994). Such behavior is exhibited by cooling energy use
due to cold deck set point temperature, exterior zone balance point temperature (a
building may be considered to have two zones: exterior and interior, and balance point
temperature can be calculated separately for each zone) and scheduling effects. For
university buildings, the change point of a 4-P model for cooling energy use is expected to
appear approximately in the range of 13 °C to 17 °C outdoor temperature due to the
combined effect of all the factors mentioned above. A model developed from a short data
set covering only a part of the entire range of outdoor temperature may, therefore, be
unphysical and also suffer from extrapolation error. This is reconfirmed by the results
plotted in Figures 5.6 and 5.7. The poor prediction of the January model for December
1992 in ZEC, however, is due to Christmas. The fact that the twelve month model fitted
the data consistently throughout the year is because the yearlong data set contains the

entire range of outdoor temperature variation.

Summary

In this chapter, the Generalized Fourier Series (GFS) approach to model weather
dependent energy use in commercial buildings is presented and illustrated by application to
monitored data from several buildings. It is found that the GFS approach gives
consistently good fit to cooling and heating energy use. However, C.V s for heating
energy use are higher than those of cooling energy use. This is consistent with results

from other models of heating energy use (Kissock et al., 1992). Models developed from
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short data sets are found to predicted less accurately when applied to periods other than

those from which the model is developed, in two examples. Model developed from twelve

months’ data is found to fit the data reasonably throughout the year in both the examples.
In the next chapter, a Temperature based Fourier Series (TFS) approach to model

heating and cooling energy use in commercial buildings will be presented.
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CHAPTER VI
TEMPERATURE BASED FOURIER SERIES MODELING OF HEATING AND
COOLING ENERGY USE

Introduction

In the previous chapter, the Generalized Fourier Series (GFS) approach to model
heating and cooling energy use in commercial buildings was presented. A GFS model
can be developed when hourly outdoor temperature, outdoor humidity and horizontal
solar flux data are available. However, there are situations when only outdoor
temperature data are available, data for other weather variables being either unavailable
or spurious. A temperature based modeling equation is, therefore, needed for modeling

hourly cooling and heating energy use.

Model Concept

Two parameter (2-P), three parameter (3-P) (Fels, 1986) and four parameter (4-
P) (Ruch and Claridge, 1992) types of regression models with temperature as the only
variable are conventionally used to model heating and cooling energy consumption at the
daily level (Kissock 1993) in order to determine retrofit savings. These models, when
developed for predicting hourly energy use, may give poor prediction accuracy as they
are oblivious to the effect of systematic scheduling on hourly heating and cooling energy
use. The individual hourly approach can be adopted for modeling weather dependent
loads at the hourly level. In the individual hourly approach, energy consumption data are
binned into twenty-four hourly groups and multiple linear regression models using
temperature as the only variable are developed separately for each hour. The model

equation is of the following form:

E, =a, +b,T (6.1)



84

where T is the ambient temperature. The subscript h stands for the hour of the day and
can be arbitrarily assumed to be 0 at midnight, 1 at 1 a.m. and so on. A more
sophisticated approach that will give almost the same prediction accuracy as equation 6.1

is the truncated form of GFS equation 5.2 with humidity and solar terms dropped:

< ] (6.2)
E, =B,+ | sinzl:-gh +Bjcos%h}+Th§[yjsin%Eh +38, cos%h

n=l j i i j

However, a careful examination of equations 6.1 and 6.2 reveals that both are, in essence
similar, representing a 2-P type of linear temperature dependence of energy use for a
particular hour of day. On the contrary, previous studies (Ruch and Claridge, 1992)
have shown that this assumption is invalid due to a combination of humidity effects and
HVAC system behavior (Reddy et al., 1994). These combined effects can be indirectly
captured by 3-P, 4-P or nonlinear functional forms. The twentyfour 2-P, 3-P, 4-P or
nonlinear equations can be combined conveniently by using a temperature based Fourier
series as explained in the following paragraphs.

A function f{T) is represented by the following expressions for 2-P, 3-P, 4-P, etc.

cases:
f(T)=a+bT forall T, 2P model (6.3a)
§(T) = a, for T < Tcp,}
a,+b,T  forT>T, 3P model (6.3b)
6Ty = a,+bT  forT< TCP,}
a,+b,T  forT>T, 4P model (6.3c)
3, for T< T,
f(T)=a,+b,T forT, <T<Ty, 5P model (6.3d)

a,+b, T  forT>T,
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a, +b,T for T< T,
f(T)=a,+b,T  for Ty, < T< Ty, 6P model (6.3¢)
a;+b;T  forT>Tep

A generalized n-P model representation is analogous to a Fourier series model such as:

6.4)
ma
fx)=a+p T+ Zxa sinz—ﬂT+B cos—21T
m=1 ™ P m P
m m

where o and B are the coefficients and subscript m stands for frequency. In order to
generate a model within the temperature range of Tpi, to Trax, €quation 6.4 will take the

following form:

Mmax . 2nm 2rm (6.5)
Ep =o' +B'T+ mz=l [opy sin n (T—Tmin)+[3m COSTT_(T_Tmin)]
T-T BT .
whete AT=Tp, -T ., x=——10  o=q-—HL g ;3'=£.
AT AT AT

In order to illustrate how equation 6.5 can be fitted to a set of 3-P, 4-P and 6-P
models, some reasonable values of parameters in equations (6.3a to 6.3€) can be

assumed:

E - 20 for -6.67°C < T<1555°C,
* 989+065T for1555°C < T <3377°C 3P model (6.6a)
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g 20+03T for —667°C<T<1555°C | 4P model with
* 1456 +065T for1555°C < T<3377°C low slope change  (6.6b)
20+03T for - 667°C < T<1555°C 4P model with
° 445+13T for 1555°C < T<3377°C high slope change  (6.6¢)
20+03T for—667°C<T<1555°C
E, =1456+065T for1555°C < T< 2111°C 6P model (6.6d)
084 +13T for 2111°C < T<3377°C

where equations 6.6a, 6.6b, 6.6¢ and 6.6d are representatives of 2-P, 4-P with low slope
change, 4-P with high slope change and 6-P functional forms respectively (Figure 6.1).
When equation 6.5 was used in conjunction with a temperature range of -6.7 °C (20 °F)
to 33.8 °C (100 °F) to represent the equations 6.6a through 6.6d only a few frequencies
were found adequate (Table 6.1). Figure 6.1 shows how well the n-P models (eq. 6.5)
with a few important frequencies are able to fit eqs. 6.6a through 6.6d.

Eq. 6.5, therefore, is able to represent a functional form of weather dependent
energy use for a particular hour of day with temperature as the only variable. However,
the relationship between weather dependent energy use and ambient temperature may
vary from hour to hour of a day depending on the operating pattern of the building

HVAC system. A generalized equation of energy use for all hours of the day can be

Table 6.1 Results of equation (6.5) fitted to data generated by equation (6.6a)
through equation (6.6d). STi and CTi are the ith sine temperature frequencies and
cosine temperature frequencies respectively.

Model type Partial R-squares Model | C.V.
T STI1 CTl1 ST2 CT2 CT3 R2 %)

3-P 0.721 | 0.0005 [ 0.2634 [ 0.0026 { 0.0014 | 0.0021 | 0.9913 | 2.20

4-P, low slope 0.961 | 0.0001 | 0.0368 | 0.0004 | 0.0002 | 0.0003 | 0.9987 | 1.06

change

4-P, high slope 0.885 | 0.0002 | 0.1079 { 0.0011 | 0.0006 | 0.0009 | 0.9962 | 2.70

change

6-P 0.880 | 0.0067 | 0.1026 | 0.0013 | 0.0042 | 0.0003 | 0.9950 { 2.80
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Figure 6.1  Plots of 2-P (a), 4-P with low slope change (b), 4-P with high slope
change (c) and 6-P (d) equations and the corresponding n-P Fourier model fit.
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obtained by multiplying the right hand side of Eq. 6.5 by a Fourier series using hour of

day as the variable. The model equation then takes the following form:

m 6.7)
max . 2nm 2nm
ET,h = +p'T+ m}_'il {am sin AT (T—Tmin)+[3m cos AT (T_Tmin)}].
n
max
z [ynsinmh+8ncosmh]
n=0 24
=
m
max _ 2tm 2tm
E  =[+pfT-B + X {&a sin—(T-T  )+B cos——(T-T . )}]e
Th 0 m AT mn. m AT min
m=0
n
max . 2mn 2nn
2 [y smn—h+8 cos—h)
n=0 1 24 n 24
=
max . 2mn 2nn
ET,h = B'TnE 0[ o Sin 4 h +8n cos 72 h]+[a’—[30 +
M 1 ax 2t m 27 m
mz o{am sin T (T-—Tmin)+[3m cos AT (T—Tmin)}]o
n
max . 2mn 27 n
n}_;,o[ynsm 24 h+8ncos 2 h]
=
(6.8)
max . 2mn 2zn
E =T Z [¢ sin——h+wy cos—h]+
T.h no 24 n 24
n=0
m
max 2nm 2zm
Z [n sin (T-T . )+& cos (T-T , )]
m AT min m AT min
m=20
n
max 2nn 2mn

[y sin——h +38 cos——h]
n 24 n 24
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Note that AT in equation 6.8 represents the range within which ambient
temperature varies in a particular location. In order to avoid high extrapolation error,
the data set from which the model is to be developed, should have fairly uniform data
density over the range of AT.

Equation 6.8 is the Temperature based Fourier Series (TFS) model that can be
used to predict weather dependent loads in commercial buildings. Although equation 6.8
suggests a large number of parameters, application to monitored data from several
buildings showed that only a few of them are significant. The significant frequencies are
selected from the set of terms suggested by equation 6.8 by performing stepwise

regression,

Application to Monitored Data

The first step in data processing prior to model identification is to day-type the
data in order to remove major changes in operating schedule during weekdays,
weekends, Christmas etc. Although a mere separation of data into weekdays and
weekends may produce very good fits (Dhar et al. 1994a), one might adopt a rigorous
day-typing technique, when necessary. Details of a day-typing procedure are described
in Chapter IV. Once day-typing is performed, separate models are developed for each
day-type. The usefulness of the TFS model is illustrated by examples of (i) cooling
energy use in ZEC and (ji) heating energy use in BUR, during working weekdays and
weekends of January 1992 to June 1992. In addition, the results of applying the TFS to

several other channels at different sites are discussed.

Cooling Energy Use. Stepwise forward regression for cooling energy use in
ZEC was performed using equation 6.8 to select the significant independent parameters.
Values of maximum and minimum ambient temperatures in College Station range from -
6.7 °C (=~ 20 °F) to 33.8 °C (~ 100 °F) for the data examined. A statistical criterion for
selecting the significant parameters is to use Mallow's C(p) ~ p criteria, where p is the

number of parameters. However, this criterion often retains a large number of
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parameters in the final model, many of them having insignificant partial R-square. An
arbitrary but reasonable cut-off of 0.005 partial R-square may be adopted in such cases
to simplify the model without sacrificing much in prediction accuracy (Dhar et al.,
1994a).

The results of stepwise regression for weekdays and weekends are summarized in
Table 6.2. The interaction terms between temperature and hour of day appear as
significant for both weekdays and weekends, the interaction effect being higher during
weekends. This is probably due to more variation in internal loads and occupancy during
the weekdays than during weekends which makes the cooling energy use more
temperature dependent during weekends. The first and second temperature frequencies
contributed a partial R-square of 0.0697 during weekdays and 0.1502 during weekends
which are about 7.7% and 17.9% of the model R-squares 0.8946 and 0.8438
respectively. This illustrates the relevance of considering temperature frequencies and
their interaction terms in the TFS model equation. The C.V. RMSE of the models
during weekdays and weekends are 12.45% and 14.18% respectively (Table 6.3). The
fit of the model to the measured data can be seen in the time series plots of measured and
residual energy use in Figure 6.2,

A three dimensional plot of predicted cooling energy use against ambient
temperature and hour of the day for weekdays is shown in Figure 6.3. The plot shows
how the model has captured the effect of the factors like humidity and HVAC system

related effects beyond a temperature of about 16 °C.

Heating Energy Use. A similar approach was adopted to identify a model for
heating energy use during weekdays and weekends in BUR. The period chosen is from
January 01 to June 30, 1992. The result of stepwise regression as shown in Table 6.2
indicates that temperature frequencies have been useful for modeling heating energy use.
Heating energy use not being dependent on humidity, the TFS model gives better fits to
the measured data than the GFS approach (Table 6.3). The time series plots of
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Table 6.2 Contribution of Fourier frequencies to the TFS model for heating
and cooling energy use at two sites from January 01 to June 30, 1992. SHi and
CHi are Fourier sine and cosine time frequencies, whereas STi and CTi are
Fourier sine and cosine temperature frequencies respectively.

Cooling energy use (GJ/h) in | Heating energy use (GJ/h) in
ZEC BUR
Day-type | Variable | partial R2 | Cumulative R? | Partial R? | Cumulative R
T 0.8149 0.8149 0.8370 0.8370
ST1 0.0537 0.8685 0.0352 0.8722
Weekdays SH1 o= - 0.0135 0.8857
CH1 — — 0.0137 0.8994
ST1*SH1 0.0190 0.8876 --- —
T1*CH1 0.0070 0.8946 --- ---
T 0.6936 0.6936 0.8168 0.8168
CT1 0.0463 0.7400 0.0355 0.8523
SH1 --- — 0.0282 0.8805
Weekends CH1 — - 0.0151 0.8956
ST1*SH1 0.0681 0.8080 -—- ---
T1*SH1 0.0173 0.8253 --- —
T1*CHI 0.0107 0.8360 --e ---
CT2*SH1 0.0078 0.8438 --- ---

measured heating energy use and residuals are shown in Figure 6.4. It is noted that the
model fitted the data well throughout except the period shown from the last week of
January to second week of February. It is obvious from the time series plot of measured
energy use that something unusual happened during this period. The site representative
confirmed that there was an unusual change in the valve operation of the heating system.
The time series plot of the residuals generated by the TFS model of heating energy use
captures this unusual pattern conveniently. This illustrates how the model can be useful
for diagnostic purposes.

A three dimensional plot of heating energy use in BUR during weekdays plotted
against hour of day and ambient temperature is shown in Figure 6.5. The plot shows
that heating energy use drops faster with decreases in ambient temperature in the range

of about 5 °C and 20 °C compared to its variation at lower and higher temperatures.
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Figure 6.2  Time series plots of measured and residual cooling energy use in ZEC
from January to June in 1992 when the TFS model is used.
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Figure 6.3 A three dimensional plot of cooling energy use versus hour of day and
ambient temperature during working weekdays of January to June 1992 in ZEC.
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The daily profile does not change with temperature which means that there is no

interaction between hour of day and temperature (see Table 6.2).

Comparison with GFS Approach

TFS and GFS models were developed for weekdays and weekends for cooling
energy use, heating energy use and weather dependent whole building electric energy use
(includes chiller electricity consumption) at various sites in Texas. The R-square and
C.V. values of these models are summarized in Table 6.3. GFS cooling energy use
models may be noted to have a little higher R-squares and a little lower C.V s.
However, TFS though not able to model cooling energy use as accurately as GFS,
nevertheless captures most of the variations due to humidity and solar effects. But the

TFS provided better models of heating energy use than the GFS models, as indicated by

Table 6.3 Comparison of R-square and C.V. values of Generalized Fourier
Series (GFS) and Temperature based Fourier Series (TFS) models of weather
dependent energy use in several buildings.

Site Energy use Period Day-type | R-square C.V.(%)
. GFS | TFS | GFS TFS
ZEC E.y (GI/h) 01/07/92- | Weekdays | 0.89 | 0.89 | 12.45 | 12.05
06/30/92 | Weekends | 0.89 | 0.84 | 12.02 | 14.18
ZEC Ecw (GI/h) 09/01/89- | Weekdays | 0.87 | 0.83 | 7.7 8.42

12/20/89 | Weekends | 0.91 | 0.89 | 6.3 7.07
TDH (Lab Eqy (GI/h) 02/16/91- | Weekdays | 0.85 | 0.81 [ 17.07 | 18.75

& Main) 08/12/92 [ Weekends | 0.82 [ 0.80 | 17.85 | 18.02
TDH Epw (GVh) | 02/16/91- | Weekdays [ 0.81 | 0.82 | 20.96 | 20.60
08/12/92 | Weekends | 0.73 | 0.80 | 24.55 | 21.32
ZEC Epw (GI/h) | 09/01/89- | Weekdays | 0.90 [ 0.91 [ 20.8 | 19.37
12/20/89 | 'Weekends [ 0.87 [ 0.89 | 21.1 | 20.1
BUR Epw (GVh) | 01/01/92- | Weekdays | 0.87 | 0.90 | 17.03 | 14.9

06/30/92 | Weekends | 0.86 | 0.90 | 16,59 | 14.57
TCOM (Med. | Eyype including | 06/01/93- | Weckdays | 085 | 0.83 | 6.17 | 6.70

bldg. 1&2) | chiller (kWh/h) | 08/31/93 | Weekends | 0.46 | 0.47 | 8.68 | 8.64
MCC Eqybe including | 04/07/92- | Weekdays | 0.89 | 0.90 | 13.88 | 13.02

chiller ’"Wh/h) | 05/15/92 | Weekends | 0.80 | 0.92 | 11.96 | 8.69
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Figure 6.4  Time series plots of measured heating energy use from January to June,
1992 in BUR. The residual plot after modeling with equation 6.9 is also shown. Note
the relatively higher negative residual values from the end of January to mid February
which identified the unusual valve operation of the heating system during that period.
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Figure 6.5 A three dimensional plot of heating energy use versus hour of day and
ambient temperature during working weekdays of January to June 1992 in BUR.
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higher R-squares and lower C.V s in all the cases. TFS model performance was similar
to that of GFS models for whole building electric energy use, the only exception being
during weekends in MCC, where the TFS model is significantly better than the GFS

model. This comparison indicates that TFS is a useful modeling approach.

Summary

In this chapter, a Temperature based Fourier Series (TFS) approach was
presented and illustrated with application to monitored data from several buildings. This
approach is useful for modeling cooling energy use when only temperature data is
available, data of other weather variables being either unavailable or spurious. Results of
application to monitored data from several buildings shows that the TFS model is able to
(i) indirectly account for humidity and solar effects to a large extent while modeling
cooling energy use and (i) provide a better fit to heating energy consumption data than
the GFS model.

In the next two chapters, fundamentals of wavelet analysis will be discussed and

application of an Arificial Neural Network with wavelet basis functions will be presented.
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CHAPTER VII
AN ARTIFICIAL NEURAL NETWORK WITH WAVELET BASIS FUNCTIONS
TO PREDICT HOURLY HEATING AND COOLING ENERGY USE

Introduction

Artificial Neural Networks (ANN) have attracted the attention of many
researchers because of their ability to model time series data with high prediction
accuracy (Willis et al., 1991). ANNs with Back Propagation Network (BPN) algorithms
have been applied to predict heating and cooling energy use in commercial buildings in
recent years (Wang and Kreider, 1992; Dodier et al., 1993). A detailed review of the
application of ANNs to model energy use in commercial buildings is presented in
Chapter II (Literature Review). It was noted that although Back Propagation Network
(BPN) algorithms offer high prediction accuracy, the challenge of reducing training time
still remains. The neural networks with local basis functions have several advantages
over the conventional BPNs, the most important being a significantly shorter training
time requirement.

As mentioned in earlier chapters, hourly heating and cooling energy use in
commercial buildings depends on the operating schedule of the building systems and
weather variables such as outdoor temperature, specific humidity and solar radiation.
However, a model with hour of day and outdoor temperature may be able to indirectly
account for some part of the effects of humidity and solar radiation (Dhar et al., 1995),
as discussed in Chapter VI. A family of two-dimensional wavelets can be generated with
hour of day and outdoor temperature as the variables and can be used as the basis
functions in a one-hidden-layer ANN. The number of hidden layer units can be
determined by a well defined statistical criterion, thereby removing the apparent
arbitrariness involved in determining the network architecture as in the case of BPN.

This chapter describes a methodology for modeling hourly heating and cooling
energy use in eommercial buildings which combines a model equation with outdoor

temperature and hour of day as the regressor variables and an ANN with two
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dimensional wavelet basis functions (Wave-Net) derived from a cubic spline. The ANN
is used to model the nonlinear component of energy use not accounted for by outdoor
temperature and the hour of day. Wavelet basis functions have been chosen for the ANN
because of their good localization characteristics. As will be discussed later in this
chapter, application to monitored data from several sites showed that Wave-Net offers

much faster training than BPN with insignificant sacrifice of prediction accuracy.

Wavelets

Wavelets can be viewed as an alternative to Fourier series for the purpose of
modeling nonlinear behavior. Wavelets have a significant advantage over Fourier series
for modeling some functions because of their good localization characteristics. To see
why this is so, we first note that a family of wavelets is defined in terms of translations

and dilations of a single function, a “parent” wavelet y(x):
Yop(x)=v2" \u(Z‘"‘x - k) for (m,k)eZ? (7.1)

where (m, k)eZ” means that m and k, the frequency (or scale) and location of any
wavelet respectively, belong to the integer set Z>. Powers of two are used to generate
the family of wavelets in equation 7.1 for computational efficiency (Chui, 1992).

If the “parent” wavelet y(x) decays quickly, then linear combinations of functions
from the family defined in equation 7.1 will retain this property and have good
localization characteristics. Various wavelet bases have been developed by many
researchers and the right choice of wavelets for a particular application is important for
achieving high prediction accuracy.

The cubic spline wavelets used here have good localization properties. They are
also easy to calculate, being piecewise polynomials. Although cubic spline basis
functions do not form an orthonormal set, some advantages of orthonormality are

retained. For example, translations of cubic B-spline scaling functions and wavelets have
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very little correlation among themselves so that the coefficients of the regressor variables
do not change significantly when one or more terms are dropped from a model.

If wavelets are to be used as the basis functions in an ANN, we must be able to
express well-behaved functions in terms of the wavelet components. The way in which

this is accomplished is best described in the context of a multiresolution analysis.

Multiresolution Analysis

Approximation of a function in a multiresolution hierarchy is useful when training
data is distributed non uniformly in the input space. Learning in a higher resolution may
be necessary when data density is high. On the other hand, a coarse resolution may be
good enough for lower data density. We will briefly describe the mathematical
framework of multiresolution analysis in this section.

A multiresolution analysis is a sequence of approximation spaces V; that satisfy
certain properties, some of which are discussed below; however, one may refer to
Daubechies (1992) or Chui (1992) for a detailed description. The spaces Vi are related

to each other as follows:

............ cV,cVcV,cV, cV,....... (7.2)

which means that V, is a subset of V,, V| is a subset of V, and so on.
There is a special function ¢(x), called a scaling function, which lies in V,. All
functions in Vj are linear combinations of translations of this scaling function ¢(x) and V,

is “translation invariant™:

d(x)eV, & dx-k)eV, keZ (7.3)

Equation 7.3 means that if ¢(x) belongs to the space Vj, then the translations of ¢(x)

which are ¢(x - k), will also belong to the space V, where k is an integer denoting the
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location of the function ¢(x - k). In fact, the scaling function ¢(x) generates the entire

sequence of V; spaces in a sense. To be precise, if we define ¢(x) as
dni ()= V292 ™x - k) for (m,k)eZz? (7.4)

then {$mx(x): (m, k)eZ?} is a basis for the space V. It can be shown that the scaling

function and the wavelets are linked by a refinement equation (Daubechies, 1992):

© 7.5
y(x)= Z ey, (%) 73

where ¢;s are the coefficients. Note that this says that y(x) is in the space V., because
¢.1.4s are the bases for the space V..

For a square integrable function f{x), if Fp,(x) = Ap,f(x) denotes the best
approximation to f{(x) in the space Vi, (An is a projection operator), then considering that

{bmi(X): (m, k)eZz} is a basis for the space V,, we can write:

F ()= Af00= 3 oy (x) (1.6)

k=-—c0

We now describe how this refinement is carried out. First of all, the spaces V; are simply

scaled versions of each other:
F.(x)=A f(x)eV, means F_(2x)=A__ f(2x)eV__, and vice versa. (YN))

Observe that this scaling property corresponds to the scaling (or dilation) property of the

wavelet family of functions described in equation 7.1. The difference between an
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approximation F o(x) = A nf(x) in Vi, and a finer approximation Fp.1(X) = A m.f(X) can be

found explicitly in terms of wavelet basis functions yu(x). To be more precise,

© 7.8
A 00— Af() = 36,00V () (738)

k=-0
We can put this together with equation 7.7 to get

ki hiad 79
Fo ()= 3 0y () + 80 () (7.9)

k=~ k=—c0

This gives us a complete expression of the best approximation to f(x) at

resolution level m - 1 in terms of the scaling function and parent wavelet.

Two Dimensional Cubic Spline Wavelets

A pth order cardinal B-spline (Nj(x)) is defined recursively by integral

convolution as follows:

1 (7.10)
*Nl)(x)=jN (x-t)dt, p=2

o P
1 for 0<x«<l

0 otherwi se

N (=N

where Nl(x) = {

Ni(x) is also known as the Haar function. A B-spline becomes a Gaussian function when
the order of the spline tends to infinity. Gaussian approximations of a one dimensional

cubic B-spline scaling function and corresponding wavelets are as given below (Unser
and Aldroubi, 1992):

¢ (x) = 0.690988 exp(~15x2) (7.11)
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W(x) = 0251477 cos{2570935(2x — 1)} ® exp{-0222759(2x — 1)*} (7.12)

A two dimensional family of wavelets can be generated by taking the product of one
dimensional wavelets (Mallat, 1989a). If the hour of day (h) and outdoor temperature
(T) are used as the two variables for modeling heating and cooling energy use, then the
set of two dimensional scaling function and wavelets at any scale (m) and location (i, j)

will be as follows:

cbmij (h,T)= ¢mi(h)¢mj(T) ] (7.13)
Wl (T = 6, (b)), (T)
W2 (0, T) = oy () dn(T) [
Wi (0,T) = v (h)y (D)

The formulae for the scaling function and wavelet in equations 7.11 and 7.12 are for the
actual scale (also called the finest resolution) of the data available with the location
(centering of ¢(x)) defined by k = 0. For a particular m, the location of the scaling
function or wavelet gets shifted by 2" units. The one dimensional scaling functions and
wavelets at any scale m and location k can be found using equations 7.4 and 7.1. The
two dimesional scaling functions and wavelets are then found using equation 7.13. Note
that for the two dimensional case, there is one scaling function and three wavelets for
any location (i, j) at a particular scale (m). Two dimensional scaling function and
wavelets with any two independent variables x and y at scale = 0 and !ocation = (0, 0)

have been illustrated in Figure 7.1a through 7.1d.
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Wave-Net Modeling of Heating and Cooling Energy Use

As pointed out earlier, hourly heating and cooling energy use in commercial
buildings depend on the operating schedule of the building and the weather variables like
outdoor temperature, humidity and solar radiation. However, a model with outdoor
temperature can indirectly account for the effects due to humidity and solar radiation to a
large extent (Dhar et al., 1995). Moreover, there are situations when only outdoor
temperature data is available for modeling because the humidity or solar radiation data
was not measured or the sensor went bad. Physically, heating and cooling energy use
may have both linear and nonlinear relationships with outdoor temperature and hour of
day (Kissock, 1993). As a first step to model heating and cooling energy use, we
propose to remove the linear dependence of energy use by performing a linear regression

of energy consumption using the following equation:

E,r=a+bT+ch+eg, (7.14)

The residual &, can then be modeled using Wave-Net in order to capture the
nonlinearities. A Wave-Net has an input layer, a hidden layer and an output layer of
nodes. All the weights between the input and hidden layers are fixed as unity whereas
the weights between the hidden and output layers are detemined through network
optimization. Locating the basis functions (or the hidden nodes) is done by generating a
two dimensional grid of hour of day and outdoor temperature (Figure 7.2). The
sampling rate of energy data at the finest resolution (m = 0) is 1 hour along the time axis
and 0.55 °C (1 °F) along the temperature axis. The basis functions need to be located
within the outdoor temperature range supported by the data available. A range of -6.67
°C (20 °F) to 37.8 °C (100 °F) has been considered to model energy use in various
buildings in Texas. The sampling rate reduces by a factor of 2 when the scale increases
(becomes coarser) by unity. The coarsest resolution will have at least two grid points.
This means that the coarsest scale has m = inf{log,N} (minimum integer value of logyN;

for example, if log;N = 4.7 then m = 4) where N is the size of the grid at the finest
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resolution. N is 24 along the time axis and 80 along the temperature axis, implying that
there will be 5 (0 <m < 4) and 7 (0 < m < 6) scales along the time and temperature axes
respectively. The coarsest scale from which learning can start is the minimum of these
two quantities, which is the 4th scale (m = 4) in this case. The generation of grid points
is illustrated in Figure 7.2 for m =4 and m = 3.

Once the grid points are generated, training of the Wave-Net can be started. The
scaling function nodes (also known as ¢-nodes) and the wavelet nodes (also known as -
nodes) at the coarsest scale are added to the network first and addition of w-nodes at
finer scales follows. Selection of which nodes are to be added to the network can be
accomplished by performing stepwise regression with a reasonable cut-off criteria of
partial R-square. Once the nodes are selected at a particular scale, the corresponding
weights are determined by the method of least squares optimization. The residual is then
used to select and train nodes at finer scales by the same method. As mentioned earlier,
training the network essentially means determining the coefficients of the basis functions.
The training process may continue until m = | is reached. The network architecture of a

Wave-Net is shown in Figure 7.3.

Application to Monitored Data

Day-typing the data is important for removing the effects of major changes in
operating schedule during weekdays, weekends, holidays and Christmas. Although a
mere separation of data into weekdays and weekends may produce very good fits (Dhar
et al. 1994a), one might perform a more detailed day-typing, as discussed in Chapter V,
when necessary. Once day-typing is performed, modeling of energy use is done for each
day-type separately. The usefulness of Wave-Net modeling is illustrated by two major
examples: (i) cooling energy use during working weekdays and weekends from January
1992 to June 1992 in ZEC, a large institutional building that houses classrooms, labs,
offices and computer facilities on the Texas A&M University campus; and (ii) heating

energy use in BUR, another institutional building (classrooms, lecture halls, offices and



106

Figure 7.2 A two dimensional grid for locating the scaling functions and wavelets.
One scaling function and three wavelets are located (centered) at each point marked with
a filled circle for m = 4, while three wavelets are located at each grid point at finer scales
(I1<£m<3).

v

\}nodes
Figure 7.3 A schematic two dimensional Wave-Net to model heating and cooling

energy use in commercial buildings.
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Table 7.1 Location and basis function of various scaling function and wavelet
nodes.

Site and | Day-type Scaling function Wavelet nodes at scale Wavelet nodes at
type of nodes at scale =4 =4 scale =3
energy
use
Location | Basis Location Basis Location | Basis
(h, T) function | (h, T) function | (h, T) function
Egyin 16,2.2) | oy 0,289) | wiy (8,200 [ y?c
ZEC, 0,37.8) [ do< 0,37.8) [ y2ye (8,15.6) | w3«
(GIh) | Weekdays [ (0,111) [ ¢y (16, 11.1) | w?,,
(16,20) | 413
(16,28.9) | 414
(0,37.8) | g (16,289 [wh, 1320) [v?,
(16,22) | ¢y (0,289) | w2py
Weekends | (0, 11.1) | ¢y (0,289) | w4
(16,37.8) | ¢)5 0,200 [ylgs
(16,20) | ¢)3 (16,37.8) | y?)5
0,289) [éna | 0111) [ylo,
(16,378) | ¢15 (16,20) [y  [©0.67 |,
(16,200 | 413 (16,67 [yliy ](16,-67) | w3y
Weekdays | (16, 11.1) | ¢, (16,22) [ w?y, (8,22) [yl
Epy in 0,37.8) | dns (0,20) ¥iga (16,-2.2) | yiy,
ZEC, (16,-6.7) | 410 0,67 | v
(GI/) (16,-6.7) | d1o (16,20) | %13 (8,22) |ylyy
(16,200 | d)3 0,378) |w?s 10,67 |
Weekends [ (16,22) [4¢yy [ (16,1L1) | w?yc (8,22) | w4y,
(0,378) | 4os 0,67 lylog (1667 [y3)s
0,22) [y (16,289) [y?y (16,67 |ylys
(8,200 |y
(16,67 [wlys
0,67 |y
(8,-2.2) | v’y

auditorium) on the UT Austin campus. In addition, the results of applying the Wave-Net

to several other channels of data from different sites are discussed below.

Cooling Energy Use. Residuals of equation 7.14 are generated for cooling
energy consumption and used to train the Wave-Net. As mentioned earlier, a
temperature range of -6.7 °C (20 °F) to 37.8 °C (100 °F) has been used to locate the

scaling function and wavelet nodes.
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Addition of nodes starts at the coarsest scale (m = 4) that has a sampling interval of 16
hours along the time axis and 8.9 °C ( 16 °F) along the temperature axis. The nodes at
any scale have been selected by performing stepwise regression on the residuals and
using a cut-off criteria of partial R-square < 0.005. As can be noted in Table 7.1, five
scaling function nodes and three wavelet nodes have finally been added for the weekday
group using this criterion. Once the nodes are added at m = 4, the residuals of the
Wave-Net (the difference between measured energy use and Wave-Net output) are
generated again and used to select and train the nodes at m =3. The improvement in
C.V. after training the nodes at m = 4 and m = 3 are shown in Table 7.2. As can be
noted, improvement in C.V. by adding nodes at m = 3 is marginal for both weekdays
(13.05% to 12.98%) and weekends (12.15% to 11.96%). Nodes at finer scales (m < 2)
have thus been avoided without any significant sacrifice in prediction accuracy. The
model fit to the data can be seen in the time series plots of measured and residual energy

use in Figure 7.4.

Heating Energy Use. An approach similar to that for modeling cooling energy
use was adopted for modeling heating energy use in BUR. As can be noted in Table 7.1,
five scaling function and five wavelet nodes were added at scale = 4 to the network for
both weekdays and weekends. Four and five wavelet nodes have been added at scale m
=3 for weekdays and weekends respectively. For both weekdays and weekends the
improvement in C.V. was significant (18.14% to 14.04% for weekdays and 18.20% to
13.74% for weekends) when nodes were added at m = 4, however, not much of
improvement in fit was achieved by adding the nodes at m = 3. Adding the nodes at finer
scales was, therefore, avoided. The time series plots of measured energy use and
residual energy use in Figure 7.5 show how well the model fits the data.

The Wave-Net methodology described in this chapter was applied to several
other data channels from different sites and the C.V.s have been tabulated in Table 7.1.

It may be noted that (i) Wave-Net has been consistently effective in improving the model
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Figure 7.4 Time series plots of measured and residual cooling energy use in ZEC during
January through June, 1992.
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Figure 7.5 Time series plots of measured and residual heating energy use in BUR
during January through June, 1992.
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Table 7.2 Improvement of model C.V. (%) with addition of nodes at different
scales in Wave-Net.

Site Type of | Period Day-type atbT+ch [ At Scale=4 At Scale =3
energy Number | Improved | Number | Improved
use C.V.(%) | ofnodes | C.V.(%) | ofnodes | C.V.(%)
added added
ZEC Ecw 01/07/92- | Weekdays | 15.71 8 13.05 2 12.98
(GJ/h) 06/30/92 | Weekends | 16.59 12 12.15 1 11.96
ZEC Ecw 09/01/89- | Weekdays | 9.15 8 8.25 3 8.15
(GIh) 12/20/89 | Weekends | 8.90 11 6.88 7 6.64
TDH Ecw 02/16/91- | Weekdays | 28.24 19 18.92 1 18.81
(L&M) | (GJh) 08/12/92 | Weekends | 31.00 13 19.58 3 18.70
BUR Eqw 01/01/92- | Weekdays | 18.14 10 14.04 4 13.75
(GJh) 06/30/92 | Weekends | 18.20 10 13.74 9 13.12
ZEC Epw 09/01/89- | Weekdays | 22.34 10 18.84 5 18.46
(GI/h) 12/20/89 | Weekends | 24.11 12 19.16 4 18.77
TDH Ehw 02/16/91- | Weekdays | 31.03 18 23.65 7 22.58
(GJh) 08/12/92 | Weekends { 34.46 21 22.05 | 21.93
TCOM | Eype 06/01/92- { Weekdays | 12.25 9 8.26 S 6.96
(1&ID) (kWh/h) | 08/31/92 | Weekends | 9.23 3 9.07 4 8.61
MCC Ewbe 04/07/92- | Weekdays | 30.20 8 15.46 14 13.49
(kWh/h) | 05/15/92 | Weekends | 18.62 11 12.49 4 9.70

fit, (ii) the number of nodes added at m = 3 are consistently less than the number of
nodes added at m =4 and (iii) improvement in fit decreases at finer scales. A plot of (i)
measured heating energy use, (ii) model predicted heating energy use by using equation
7.14 (first approximation), (iii) model predicted energy use when scaling functions and
wavelets at scale = 4 are added (second approximation) and (iv) the final model
prediction with equation 7.14 plus the scaling functions and wavelets at scale = 4 and 3

are shown in Figure 7.6 to illustrate how model fit improves stage by stage.

Comparison with Conventional BPN
In order to compare the prediction accuracy of the Wave-Net methodology with
a conventional Back Propagation Network, BPN models were also developed. The

C.V.s of both Wave-Net and BPN for several channels have been tabulated in Table 7.3.
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Figure 7.6 The plot shows how the approximation of measured heating energy use in
BUR on January 09, 1992 improved at each stage of Wave-Net modeling. The first
approximation is with the linear model only (eq. (7.14)) while the second and final
approximations are made by subsequently adding scaling functions and wavelets at scale
m = 4 and 3 respectively (also see Table 7.1).

A standard 4 layer BPN with the following parameters was adopted:
(1) Three inputs: hour of day, outdoor temperature and day of week,
(ii) Two hidden layers each having ten hidden nodes,
(iii) one output,
(iv) gain = 0.9, learning rate = 0.1, and bias = 0,
(v) Sigmoid activation function, and
(vi) A normalization range of 0 to 0.9 for all inputs and output.
However, for heating energy use in BUR, a learning rate of 0.05 had to be adopted in
order to avoid the learning process getting stuck at local minima frequently. The results
in Table 7.3 show that prediction accuracy of the Wave-Net algorithm has been better
than the prediction accuracy of BPN in three out of eight cases. For the other cases,

C.V. of Wave-Net is quite close to BPN except for heating energy use in TDH. This
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shows that Wave-Net has the potential for offering high prediction accuracy. At the
same time, the learning process of Wave-Net is faster by at least an order of magnitude
(Bakshi and Stephanopolos, 1993) because a linear optimization technique was adopted
to determine the weights.

The speed of a Wave-Net optimization is significantly better than a BPN
optimization. In order to estimate how much faster the optimization of an Wave-Net
algorithm is than a conventional BPN optimization, the number of operations (addition,
subtraction, multiplication and division) involved in the computer program for both the
algorithms was counted. If the time taken for each of these operations is assumed to be
the same, the ratio of the total number of operations in the two cases will indicate how
much faster the Wave-Net optimization is than the BPN optimization for a given training
data set. Table 7.4 summarizes the results of this calculation.

The number of operations involved in the computer program written for Wave-
Net optimization as well as for BPN optimization are:

Nypena = 20 x (338550 + N,,)
Nipw = Ny X (554 +1146 x N, )

where Nepoen and Nops are the number of epochs needed in BPN optimization and number
of observations in the training data set respectively. The ratio Nwave.net /Nppy indicates
how faster the Wave-Net optimization is than the BPN optimization. The ratio Nyaye.net
/Ngpn depends on both Nobs and Nepoch, however, it increases dramatically as Noys
increases. This can be noted from the results summarized in Table 7.4. Clearly, Wave-
Net optimization, in general, is much faster than BPN optimization, as mentioned in the

beginning of this chapter.

Predictive Ability of Wave-Net

The predictive ability of the Wave-Net algorithm was tested by applying the
methodology to yearlong 1992 data obtained from four sites: (i) cooling energy use in
ZEC, (i) cooling energy use in RAS, (iii) heating energy use in BUR and (iv) heating

energy use in PCL. The test was performed in two ways: (i) models developed from
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Table 7.3 Comparison of C.V.s (%) of Back Propagation Network (BPN) and
Wave-Net models for different sites in Texas.

Site Type of Period C.V. (%)
energy use BPN model | Wave-Net
model
ZEC E .y (GJ/h) 01/07/92-06/30/92 10.74 12.69
ZEC E.,, (GJ/h) 09/01/89-12/20/89 6.32 7.72
TDH (L&M) | E.,, (GI/h) 02/16/91-08/12/92 19.12 18.78
BUR Ep. (GI/h) 01/01/92-06/30/92 14.16 13.57
ZEC Epy, (GJ/) 09/01/89-12/20/89 16.96 18.34
TDH Epy (GIM) 02/16/91-08/12/92 16.60 22.39
TCOM (&1 | Eype (kWivh) | 06/01/92-08/31/92 7.27 7.43
MCC Eyhe (KWH/N) | 04/07/92-05/15/92 14.79 12.40

Table 7.4 Comparison of optimization speed of Back Propagation Network (BPN)
and Wave-Net for different sites in Texas.

Site Type of Period Number of | BPN Number of
energy use observations | epochs times Wave-

Net faster
than BPN

ZEC E.(GlMh) 01/07/92-06/30/92 | 4224 120 74.63

ZEC E .\ (GJ/h) 09/01/89-12/20/89 2664 191 78.7

TDH (L&M) E .y (GIh) 02/16/91-08/12/92 13680 178 277.56

BUR Epw (GIh) 01/01/92-06/30/92 | 4368 119 76.19

ZEC Epw (GI/h) 09/01/89-12/20/89 | 2664 139 57.28

TDH Epw (GIh) 02/16/91-08/12/92 13680 189 294.71

TCOM(I&1) | Eype (kWhh) | 06/01/92-08/31/92 | 2208 127 44.03

MCC he (KWIVh) | 04/07/92-05/15/92 | 936 936 25.01

January through June data were used to predict energy use from July through December
(which we call continuous prediction) and (ii) models developed from January, March,
May, July, September and November data were used to predict‘ energy use in February,
April, June, August, October and December (which we call alternate prediction). The
mean energy use, Mean Bias Errors (MBEs) and Coefficient of Variance (C.V.) of Root
Mean Square Errors (RMSEs) for the period for the data from which the models have
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Table 7.5  Summary of results obtained from the prediction tests conducted on
yearlong data of heating and cooling energy use in four sites in Texas.

Site Energy | Continuous prediction | Alternate prediction
name | use Mean | MBE | CV.| Mean | MBE | C.V.
(Gim) | (GIM) | (%) | (%) | (G | (%) | (%)

ZEC Eew 3.56 0 12.7 | 3.69 0 13.3
Model RAS E.., 0.46 0 18.6 [ 0.53 0 16.6
results BUR | Eu 0.47 0 13.6 | 0.45 0 14.4

PCL Ehw 1.46 0 20.3 | 1.32 0 21.2
ZEC Eew 4.29 499 |14.1]3.95 0.13 [13.6
Prediction | RAS E.. 0.49 8.4 19.3 1 0.53 0.6 10.6
results BUR Enw 0.40 7.9 22 [0.42 0.79 | 189
PCL Ehw 1.16 4.7 264 { 1.16 4.96 | 23.1

been developed (model results) as well as for the prediction period (prediction results)

are summarized in Table 7.5.

Model Results. It may be noted in Table 7.5 that MBEs (the ratios of average
residuals over corresponding mean energy use, expressed in percentage) of the models
are zero. This is because the average of the residuals is zero when the method of least
squares optimization is adopted. The C.V.s of continuous prediction models are lower
than the C.V.s of alternate prediction models, except for cooling energy use in RAS. If
the mode of operation of the building systems change from the first half of the year to
the second half, the continuous prediction models will have lower C.V. than the
correponding alternate prediction models. The results suggest that cooling energy use in
RAS did not have any significant systematic change in scheduling throughout 1992. The
lower C.V. of an alternate prediction model for cooling energy use in RAS also suggests
that the data of February, April and June have more scatter than the data of July,

September and December.

Prediction Results. The choice of alternate months for prediction of energy use

nullifies the effect of operational changes, if any, from the first half to the second half of



115

the year and, therefore, the MBEs of alternate prediction months are expected to be
lower than the MBEs of continuous prediction months. This is confirmed by the results
shown in Table 7.5.

The C.V.s of the prediction results are consistently less for alternate months than
continuous months, the maximum change being from 19.3% to 10.6% for cooling energy
use in RAS. This is obvious because the alternate month models are more stable than the
continuous month models, the alternate month models having been able to cover a larger
range of operations.

The time series plots of continuous and alternate prediction months for cooling
energy use in ZEC and heating energy use in BUR and of the corresponding residuals are
shown in Figures 7.7 through 7.10. The higher MBEs for continuous prediction periods
may be observed in these plots. Also, higher local MBE during November and

December in Figure 7.9 indicate significant operational changes.

Summary

A combined approach of linear and nonlinear modeling of heating and cooling
energy use has been described in this chapter. While the linearities in energy use is
captured by performing regression with hour of day and outdoor temperature as the
variables, the nonlinearities in the energy use are conveniently modeled by a one-hidden-
layer ANN with wavelet basis functions derived from cubic spline. The application of
the combined approach has been illustrated by results of application to monitored data
from several sites. The improvement of the prediction stage by stage has been explained.

Comparison between BPN and Wave-Net algorithm showed that (i) Wave-Net
gave better results for three out of eight examples and (i) Wave-Net optimization is
much faster than BPN optimization. The results of prediction for both continuous and
alternate prediction periods have been presented and discussed. In the next chapter,

application of hourly energy use models to data screening will be presented.
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Figure 7.9 Heating energy use and residuals of continuous prediction months in BUR
in 1992.
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Figure 7.10 Heating energy use and residuals of alternate prediction months in BUR in
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CHAPTER VIII
DATA-SCREENING

Introduction

Data-screening is an important step before data can be used for any purpose.
Monitored building energy use data may be bad due to metering errors or failures.
Energy consumption may also be affected by unusual operation of the building systems.
While the major changes in mode of operation are taken care of by separating the whole
data set into several groups (also known as day-typing) such as weekdays and weekends,
bad or unusual data within a particular day-type are detected by performing data-
screening. A model developed from a day-typed and screened data set will ensure
physically consistent analysis for normal operating conditions of the building systems.

Although data-screening is very important for providing reliable data analysis and
inferences, much less than required effort has been taken to document useful data quality
control practices (Leipins and Uppuluri, 1990). However, some of the recent literature
indicate that the méthodology of developing a model and comparing the incoming data
with the model to determine the quality is common (Little, 1990; Raghunathan and
Rubin, 1990). The data quality control practice under Texas LoanSTAR MAP (Claridge
et al,, 1991) involves visual inspection and univariate modeling of incoming data (Abbas,
1993). In this chapter, a data-screening procedure for both weather independent and
weather dependent energy use in commercial buildings, which involves several steps
including the use of a multivariable regression model, is presented and illustrated with

examples.

Data-screening Procedure

The data-screening procedure described in this chapter involves development of a
suitable model and corresponding prediction interval from a reliable data set. An
incoming observation is considered bad or unusual if it does not fall within the prediction

band. Choosing data set of adequate length, an approbriate model equation and a
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suitable confidence level to generate the prediction interval is crucial. The entire
procedure for data-screening is shown in Figure 8.1 and the different aspects are

discussed in the following sub-sections.

Unusual and Bad Data. Data is considered bad when the metering is wrong
due to some error or failure of the metering instrument. It may also be bad if the
metering instrument is installed or operated improperly. Such data may affect the
conclusion of analysis adversely and, therefore, need to be removed. Unusual energy
consumption data are due to unusual operation and maintenance of the building systems.
The unusual data may not be used for model development but may be needed for some
other purposes, for example, improving operation and maintenance, and, therefore, need
to be retained. A suitable statistical or mathematical procedure can be adopted to
identifiy bad and unusual data, as well as differentiating bad data from unusual data.
Such a procedure combines information from the building operator on how the
respective systems were operated during that period with analysis of the data. Using
information from site on the operation and maintenance of the building systems on a

regular basis is an integral part of a data-screening procedure.

Reliability and Length of Data Set. A highly reliable data set needs to be
identified for using as the standard for performing data-screening. Visual inspection of
various plots (Abbas, 1993) and using engineering and statistical judgement are
necessary to accomplish this.

A data set of adequate length is required for developing an appropriate model.
The effect of a short data set on modeling weather independent and weather dependent
energy use has been discussed in Chapter IV and Chapter V respectively. Type of
building is an important factor for deciding on the length of data set. For example, an
institutional building may have a large number of day-types (see Chapter III, Figure 3.1)

and consequently, a year long reliable data is necessary for developing model and
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prediction interval. On the other hand, an office building may eventually have only two
day-types: weekdays and weekends (holidays are merged with the weekends). A data
set of a few months may be adequate to start data-screening for these buildings. The
decision is subjective to some extent because of unavailability of a firm statistical criteria
to determine required data length.

For weather dependent energy use, the data set used for determining prediction
interval needs to have data of the entire range of variation in order to avoid extrapolation
error (See in Chapter V). In general, a data set covering the entire range of outdoor
temperature variation may be considered adequate.

Until a data set of adequate length is available, the data quality may be checked

by visual inspection and by using engineering judgement.

Choice of Modeling Approach. The first step of data-screening is to choose a
modeling approach. The choice of modeling methodology for performing data-screening
is dependent on the prediction accuracy and the speed of computation. An energy
conservation program such as the Texas LoanSTAR MAP (Claridge et al., 1991) may
have more than a thousand monitored data channels and one can not afford to have a
slow computation for the purpose of performing data-screening on a regular basis.

For weather independent energy use, the Fourier series model described in
Chapter I'V may be used because it gives high prediction accuracy and can be developed
within a short time. However, an addition criterion is involved while choosing model
equation for performing data-screening of weather dependent energy use. Although the
most appropriate model for weather dependent energy use will have all possible variables
incorporated in its independent parameters, one is very often compelled to select a model
that involves measurement of only one variable, for example, outdoor temperature.
Using a model equation with outdoor temperature, outdoor humidity and solar flux (such
as GFS approach described in Chapter V) involves measurement of three weather data
channels. If any measuring instrument fails, resulting in lost humidity or solar data for a

certain period, the model equation will no longer be able to predict energy use.
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Moreover, measurement of outdoor temperature is easy and more reliable than the
measurement of other variables. It is, therefore, recommended that a model with
outdoor temperature as the only weather variable be used for data-screening.

Several techniques such as Fourier series approach (GFS and TFS)(Dhar et al.,
1994 and 1995), ANN with Backpropagation algorithm (BPN) (Anstett et al., 1992),
Wave-Net (Dhar et al., 1995) are available for modeling hourly weather dependent
energy use in commercial buildings. These methodologies have been applied to
monitored data from several buildings the results of which have been presented in
Chapters IV, V and VI. When the Coefficient of Variance (C.V.) of these models are
compared (Table 8.1), the temperature based models (TFS, BPN and Wave-Net) seem

Table 8.1 Comparison of C.V. (%) of four different modeling approaches applied
to eight data channels from five sites in Texas. The shaded boxes indicate the
lowest C.V. values among the temperature based modeling approaches (TFS, BPN
and Wave-Net).

Site Type of Energy use | Period C.V. RMSE(%)
GFS
ZEC E.w (GI/h) 01/07/92 - 12.32
06/30/92
ZEC Ecy (GI/h) 09/01/89 - 7.30
12/20/89
TDH (Lab & Main | E, (GJ/h) 02/16/91 - 17.29
08/12/92
TDH Epw (GI/h) 02/16/91 - 21.98
08/12/92
ZEC Epw (GI/h) 09/01/89 - 20.88
12/20/89
BUR Epyw (GI/h) 01/01/92 - 16.90
06/30/92
TCOM (Med. bldg. | Eype plus chiller | 06/01/93 - 6.88
1&1D) (kWh/h) 08/31/93
MCC Eywbe plus chiller | 04/07/92 - 13.33
(kWh/h) 05/15/92




123

to have predicted quite closely to GFS model that uses three weather variables (outdoor
temperature, outdoor humidity and horizontal solar flux). At the same time, the TFS
model is the fastest to develop among all the available temperature based modeling
approaches. TFS approach is, therefore, adopted for performing data-screening of

weather dependent energy use in commercial buildings.

Screening Outdoor Temperature Data. Although outdoor temperature data
may be available from National Weather Services (NWS), using monitored data from site
is preferred. This is because the weather conditions at site may differ from the weather
conditions even at the nearest NWS station. However, sometimes the instrument
measuring the outdoor temperature at site may fail resulting in missing or bad data.

Such missing or bad data need to be replaced before TFS model equation can be used to
predict and screen the weather dependent energy use data.

Outdoor temperature data from several sites show distinct linear correlation
against temperature data from corresponding nearest NWS stations (Crowley and
Haberl, 1994). This has been illustrated in Figures 8.2 through 8.5. The relationship

may be expressed by the following functional form:

T,

e = 2+ bTgys (8.1
A reliable set of outdoor temperature data is used to develop a model using equation 8.1
and corresponding prediction interval. The prediction interval so generated is then used
to test whether the incoming temperature data is bad or not. The bad and missing
observations are replaced by the model predicted values.

The methodology to screen outdoor temperature data as described above,

however, assumes NWS data as correct. A suggested future improvement would be to
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consider the the trend of the NWS data as well as temperature data at site in order to

decide on the data quality.

Prediction Interval of a Multivariate Model. The prediction interval of a
model provides a range of value in which the future data is likely to be. Prediction
interval can, therefore, be used for data-screening.

A multivariate regression model of a dependent variable y may be expressed as
follows(Ott, 1988):

y=BO+iBjxj+e ®2)

where x;s are the independent variables, B;s are the regression coefficients and ¢ is the
random error. The B;s in equation 8.2 can be estimated by the method of least squares.
If n observations are available for model development then the dependent variable matrix
Y, independent variable matrix X and coefficient matrix 8 of dimensions 1xn, (k+1) xn

and 1x(k+1) respectively are related as follows:

Y=Xp+e (33)
The estimate of the coefficient matrix B can be calculated as

B=(x"X)" X"y (8.4)
where the superscript T stands for the transposition of matrix and the superscript -1
stands for inversion of matrix. If the desired set of independent variables is contained in

a matrix L of dimension 1x(k+1) then the prediction interval of dependent variable y is

calculated as follows:
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A - 8.5
§ 18,41+ L (XX) 'L ®5)

where (i) to, is a transformed Gaussian normal distribution function and is used to

determine if (1 - ot)% of data falls within a certain interval. The predicted y value ()

and the Root Mean Square Error (s;) are calculated as follows:

(Y'Y - BTXTY)
n-(k+1)

§=Lp and sa=\/

An inherent assumption in the calculation of prediction interval as shown in eq. 8.5 is the
absence of autocorrelation in the residuals. However, the residuals of a multivariate
model for predicting energy use in commercial buildings may be autocorrelated as a
result of not incorporating all the driving forces such as weather variables, operating
conditions of the building HVAC systems and the parameters that characterize the
building envelope. In that case, the actual prediction interval may be higher than that
calculated using equation 8.5. Although equation 8.5 has been used to determine
prediction interval in this dissertation, one may want to consider the autocorrelation and
develop the necessary equation to arrive at a better estimation of prediction interval
(Kissock, 1993). Such a formula can be used once the presence of autocorrelation is

detected by performing a Durbin-Watson test (Ott, 1988).

Application to Monitored Data

The method of data-screening described in this chapter is illustrated with the
example of cooling energy use in ZEC building. Both outdoor temperature and cooling
energy use models were developed from the data of January through June, 1992 and
these models were used to screen the data from July through December in 1992. Figure

8.6 shows a scatter plot of measured outdoor temperature data versus outdoor



130

temperature recorded by National Weather Services. The model and the prediction
interval are also shown. When this model was used to screen the outdoor temperature
data from July through December in 1992, a few points fell outside the prediction
interval (Figure 8.7). The points that had fallen outside the prediction interval were
replaced by the model predicted values. The screened outdoor temperature data was
then used to check the cooling energy use data during July through December in 1992.
Figures 8.8 and 8.9 show a scatter plot and a time series plot of cooling energy
use during the weekdays of the second half of 1992 in ZEC. In Figure 8.9, an indicator
variable is used to indicate unsual or bad data points. The indicator variable assumes
zero value if the data is acceptable for model development, while it assumes a unity value
otherwise. Figures 8.10 and 8.11 are similar to Figures 8.8 and 8.9 except that these
plots are for weekends only. These plots show that the data-scrrening methodology
adopted here indicated only a few points to be bad or unusual and, therefore, unsuitable

for the purpose of analysis.

Summary

In this chapter a data-screening methodology based on model prediction has been
described. While the energy use model can be used directly for screening weather
independent energy data, screening weather dependent energy data requires screening
the outdoor temperature data first and then using the screened temperature data to
predict energy use and corresponding prediction interval. In the next chapter,
conclusions on the work described in this dissertation and the future directions are

presented.
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CHAPTER KX
CONCLUSIONS AND FUTURE DIRECTIONS

Introduction

A methodology to model weather independent energy use in commercial
buildings using Fourier series functional form has been developed and its modeling ability
verified by applying to monitored data from several buildings in Texas. For modeling
weather dependent energy use, the following methodologies have been developed and

applied to monitored data from buildings in Texas:

(1) Generalized Fourier Series (GFS) approach which uses outdoor temperature, outdoor
humidity and horizontal solar radiation as the weather variables in the model equation,
(i) A Temperature based Fourier Series (TFS) approach which considers the hour of day
and outdoor temperature as the variables in the model equation and

(iii) A combined linear and nonlinear approach using hour of day and outdoor
temperature as the variables; the nonlinear modeling is performed with a one-hidden-
layer Artificial Neural Network with two dimensional wavelet basis functions (Wave-

Net) derived from a cubic spline.

A preliminary approach to data-screening using TFS model equation has been proposed

and illustrated by monitored data from buildings in Texas.

GFS Approach

The GFS approach has been shown to be very appropriate for modeling hourly
energy use in commercial buildings. Choice of a physically meaningful day-typing
technique and the rational functional form of the regression model have been the two key
factors that were instrumental in achieving consistently high prediction accuracy.
Generalization of the approach has been provided by including interaction terms in the

model equations that will be able to capture variation of both mean and amplitude of
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energy use,, if present in the data. This ensures wider range of applicability of Fourier
series models in analyzing hourly building energy use. The validity of the approach can

be verified further by applying to the data obtained from different parts of the world.

TFS Approach

Fourier series approach with outdoor temperature as the only weather variable
has been found to model heating and cooling energy use in commercial buildings
accurately. In fact, comparison of prediction accuracy of GFS, TFS, BPN and Wave-
Net approaches showed that TFS provides modeling with the best prediction accuracy
with only the hour of day and outdoor temperature as the variables. Also TFS modeling
is easy to implement using standard software such as SAS (Statistical Analysis System).
The power of the TFS approach lies in its ability to treat non-linear temperature
dependence by using temperature frequency terms and the terms that account for
interactions between hour of day and outdoor temperature. The key difference between
the GFS and the TFS approach is that the TFS approach, although provides a little less
accurate modeling than the GFS approach for cooling energy use, is practically more
useful than the GFS approach because of its using the outdoor temperature as the only
weather variable. Measurement of outdoor temperature is easy and more reliable than
the measurement of humidity and solar radiation and, very often, either humidity and
solar flux (which are used as variables in the GFS approach) are not measured or the
metering instruments for humidity and solar radiation fails resulting in lost data.

The TFS approach needs to be applied to more buildings to verify its consistency
in providing superior fit to measured data. The algorithm can be used to develop
software for modeling hourly energy use in commercial buildings. Research on its

application to short term forecasting may be interesting.

ANN with Wavelet Basis Functions - Wave-Net
Application to monitored data from several sites showed that a one-hidden-layer

ANN with wavelet basis functions (Wave-Net) derived from a cubic spline is a powerful



139

tool for predicting heating and cooling energy use in commercial buildings. Moreover,
learning of Wave-Net algorithm is faster at least by an order of magnitude than a BPN
and convergence of the optimization process is guaranteed. However, the choice of
appropriate scaling functions and wavelets is crucial for the success of a Wave-Net.
There are different types of wavelets available, for example, Daubechies wavelets,
Battle-Lemarie wavelets, Haar wavelets, etc. (Bakshi and Stephanopolos, 1993). An
orthonormal set of scaling functions that are orthogonal to outdoor temperature and
hour of day may be developed and applied to measured data to investigate the possibility
of improving prediction accuracy.

It may be noted that for two dimensional application, three wavelets need to be
placed at each grid point. This number increases rapidly in higher dimensions (2™ for n
dimensions) which will result in a very large network when variables like humidity and
horizontal solar flux are also considered in modeling. Multidimensional non-separable
wavelets (Kokacevic and Vaterli, 1992) can be used in such cases to arrive at a compact
network. Developing a multidimensional Wave-Net model using nonseparable wavelets

to predict energy use in commercial buildings may be an interesting future direction.

Data-screening

Data-screening is an important step before it can be used for any purpose and,
therefore, needs more attention. A preliminary data-screening algorithm has been
described and the procedure illustrated by a few examples, however, the methodology
needs several refinement. Application to more examples is needed to test its

effectiveness. There is ample scope for research in this direction.
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APPENDIX A
FOURIER SERIES APPROXIMATION AND
WAVELETS - AN INTRODUCTION

In this appendix, some basic information on Fourier series approximation of
functions is discussed. The material has been taken from Churchill (1963). A few terms
that have been used to explain the idea of approximation have been defined first,
followed by the theory of Fourier approximation of functions. The appendix ends with

an introduction to the idea of wavelet representation of functions.

Norm

If g(1), g(2) and g(3) are three rectangular components of a three dimensional

vector g(r), then the length of g(r) is the norm (denoted as Ilg”) and is determined as

follows:

2 , R e ) Al
o = 607 + [6@)F +2O)F = Sle)7 (A1)
For an n - dimensional vector g(n), the norm, therefore, would be

(A2)

lof = Y te(or

Distance Between Two Vectors

The distance between two vectors g; and g, is determined as follows:
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: ! (43)
lei - g.] = {Z [2,(r)- gz(r)]z}

r=1
Inner Product

The inner product of two vectors g, and g, is denoted as (g;,g2) and is

determined as follows:
(gl,gz) = "gnu g,||cos6 (A.4)
The norm of a vector, therefore, can be written as

! (A.5)

lel= (e, 8.):

Orthonormal Set of Vectors
A vector of unit norm is called a unit vector and a set of mutually perpendicular
unit vectors is called an orthonormal set of vectors (¢,). This condition can also be

presented as follows:

5., = (6..6,) = {i) if m#n (A.6)

if m=n

A simple example of orthonormal set of vectors is the set of unit vectors along the three
coordinate axes.
Every vector fin the space can be expressed as a linear combination of orthonormal set

of vectors.
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f=cd, +c,0, +c,0, (A7)

The coefficients c,s can be found by taking the inner product of both sides of equation

A

(£,9)) = ¢, (91, 01) + ¢,(92,41) +¢5(05,9,) = ¢, (A8)
The coefficients are, therefore,

¢, =(f,9,) (A9)
Equation A.7 can now be rewritten as follows:

2 A10
£=3 (€80, -

Equation A.10 is an orthonormal expansion of the arbitrary vector f.

Functions as Vectors

Any function g(r) can be viewed as a vector if it has real valuesatr=1, 2, 3, ,
etc., and these values can be considered as components of the vector. The norm of the
function g(r) represents the length of the generalized vector g(r). Within an interval of a

<r <b, the norm of the function is

, ! . (A-11)
M=“mw%=@@5
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The generalized distance between any two functions g; and g, is computed as

1 (A.12)

2

le, - &, = {i [e - gzlzdr}

which is a measure of mean distance between their graphs within the specified interval.
Generalized Fourier Series

Any function in an interval (a, b) can be represented by a linear combination of an
orthonormal set of functions {¢«(x)} (n=1, 2,. ..) within that interval. This can be
generalized to an infinite series:

f(x)=cd,(x)+c,d,(x)+ ... +ec,p,(X)+ ..., (a<x<b)

where the coefficients c,s are given by the following expression:
b
¢, = [ £(x)9, (x)dx (n=12...)
The function f(x) can, therefore, be written as follows:
© b
£(x) = 3" 6, (x)[ £€)0, (E)dE
n=l1 a

An orthonormal set {¢(x)} is said to be complete if in the function space under
consideration there is no other function with positive norm which is orthogonal to the set

{$a(x)}. It can be shown that the best approximation of any function in a function space
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may be possible by representing the function with a complete set of orthonormal
functions {¢.(x)}. For example, let us consider a three dimensional vector (as shown in
Figure A.1) which has to be approximated in two dimensions. The best approximation

of such a function f{x) is k(x) if the distance d between f{x) and k(x) is minimum:
d= ||f - k|| i1s minimum.
The above condition is satisfied only when a projection of a three dimensional vector f{x)

on a two dimensional plane is the function k(x). The best approximation of k(x) in one

dimension is, as before, projections on ¢; and ¢, axes.

fix

A 4

/ k{x)

Figure A.1 Approximation of a three dimensional function f{x) in two dimensional
plane.

It can be proved that Fourier constant of a function f{x) with respect to the functions ¢,,

¢2, $3, ..., dm Of an orthonormal set are those coefficients for which a linear combination



of those m functions is the best approximation in the mean to f{x), on the fundamental
interval (Churchill, 1963):

b Al13
¢l +ci+..4ck < ”f(x)]zdx = |’ (A1)

This is known as Bessel inequality.
More on Fourier series approximation of functions can be found in Churchill (1963) or

any other classical literature.

Fourier Series and Wavelet Approximation

Fourier series representation of a function is, essentially, a representation with
orthogonal set of basis functions such as sinusoidal and cosinusoidal functions, as shown
in Chapter III. A time dependent function, for example, hourly energy use in commercial

buildings can be represented in time domain as follows:
E, =1(t) (A.14)

where t is the hour of day. The function f{t) mentioned in eq. A.14 could also be
represented with orthogonal bases such as sines and cosines of t. The advantage of
representing a function with sines and cosines is that only a few important terms are
adequate to recover the functional form in time domain with a high accuracy. This
justifies the use of Fourier series representation of a function for approximation
purposes.

We, therefore, can say that a function can be represented either in time domain or
in frequency domain but frequency domain representation is more compact with
insignificant loss of accuracy. One way to represent a function in frequency domain is to
use the familiar sines and cosines (Fourier domain). However, there is another frequency

domain, which may also be called as wavelet domain, in which a function can be
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represented by using somewhat more complicated bases than the sines and cosines.
These bases are called mother functions (or, scaling functions) and wavelets.

Wavelet bases are more interesting than the sines and cosines because of being
quite localized in frequency (or characteristic scale). While sines and cosines oscillate
between -1 and +1 from -a to +a., the wavelet bases have local support and does not
exist (or becomes zero) beyond a certain input range. The set of wavelet bases is
generated by translating and dilating one function, called mother function. A large
number of functions can, therefore, be represented in a much more compact way in
wavelet domain than in Fourier domain.

There are infinitely many possible sets of wavelets and which set of wavelets is
the most suitable for approximation of a function, depends on the type of the function
itself. More details on wavelets and wavelet transforms are available in classical

literature (Daubechies, 1992; Chui, 1992a and b).
An Example of One Dimensional Wavelet Approximation

A B-spline scaling function and corresponding wavelets can be approximated by

the equations 7.11 and 7.12 which are reproduced below:

6 (x) = 0.690988 exp(-15x°) (7.11)
W(x) = 0251477 cos{2570935(2x — 1)} » exp{-0222759(2x — 1)*} (7.12)

The family of scaling functions ¢nx and wavelets woy at any scale m is represented as

below, along with the equations 7.4 and 7.1:

O (X) = V2 ¢(2—m X— k) for (m,k)eZ? (7.9
and

V) =V2 Y2 "x-k)  for (m,k)eZ? (7.1)
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To see how the above scaling functions and wavelets can be used to approximate
weather independent energy use as a function of hour of day (i.e., time variable) only, the
approximation of whole building electric energy use (Ews.) for February 6, 1992 (a
typical weekday) at the Zachry Engineering Center on the Texas A&M University
campus is illustrated here. First, the locations of the scaling functions and the wavelets
are fixed by generating a grid as shown in Figure A.2. The sampling spaces are denoted
as Vi, at any scale m. The sampling interval is one hour at the actual scale for which m =
0. The sampling interval increases by a factor of two when the value of m increases by
unity. The coarsest scale must have at least two data points. The value of m is 4 for the
coarsest scale in this case, as shown in Figure A.2. One may note that the approximation
starts at the coarsest scale and proceeds towards the finer scales and the standard least
squares regression is adopted to determine the coefficients at each scale. An overall
shape of the function described by the measured data points is approximated at the
coarser scales while the finer details of the function are captured by the wavelets at the
finer scales. The number of parameters of the model is thereby optimized. The above
description gives an intuitive explanation of how multiresolution analysis works in
wavelet approximation algorithm.

Once the locations are determined by the grid shown in Figure A.2, The scaling
functions and wavelets for any location (k) are calculated using equations 7.4 and 7.1.
The orthogonal decomposition of the actual sampling space V, (which has twenty-four

data points, as explained before) in this case can be performed as mentioned below:

V,=V,®0W, =(V,0W,)®W, (A.15)

where the Wy, spaces are the orthogonal complements of the respective V,, spaces. This
means that each element of space Wy, is orthogonal to the corresponding element of
space V. One may note that the scaling functions are the bases for the V,, spaces, while

the corresponding wavelets are the bases for W, spaces. The decomposition algorithm
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described here is the essence of wavelet approximation in a multiresolution hierarchy.

The final expression of the decomposition takes the following form:
V,=V,OW, OW,0W, dW, (A.16)
and, therefore, the final functional form will be as follows:

1 1 2 5 1 (A.17)
E, = za4k¢4k(h) + 254kW4k (h)+ Zask\Vak(h) + Zazk Yoy (h)+ Zalk\V!k (h)
k=0 k=0 k=0 k=0 k=0

where a and § are the scaling function and wavelet coefficients in the above equation.
The indices k denote the locations in the equation which are shown in Figure A.2 for
different scales. In Figure A.2, we note that two scaling functions at scale = 4 (for V)
can be used to start the approximation. This approximation is shown in Figure A.3. The
sampling interval at this scale is 2° = 16 hours and two scaling functions are located (or

centered) at 0 and 16 hours. The regression equation is as given below:

! (A.18)
E, = Za4k¢4k (h)+¢e,,
k=0

where

2
$4(h) = 0690988 x expl:— 15 x (%) } and

¢,,(h) = 0690988 x exp{—l.S X (—1—% - ) }

The coefficients oy and o, are determined by the method of least squares optimization
as 450.74 and 1090.17. Figure A.3 shows these scaling functions multiplied by the
respective coefficients, the sum of which is the scaling function approximation. The
difference between the measured energy use and the scaling function approximation is

the residual which is also shown. Note that the B-spline scaling functions are well-
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localized, as evident from the decay of both the scaling functions centered at hour 0 and
hour 16.

Once the scaling function approximation is accomplished, the residual of the
scaling function approximation is regressed with the wavelets at scale = 4 and location =
0 and 16 hours. The sampling interval is still 16 hours. Using the residual for this
approximation is possible because the space W, is orthogonal to the space V4. The

wavelet regression equation at scale = 4 is as follows:

! (A.19)
€4sh = Z SuWa(h)+e,,
k=0

where

Wo(h) = 0251477 x cos[2570935 x {2 x (h /16) - [}] exp[—0.222759 x{2x(h/16)- 1}3]
and

W (h) = 0251477 x co2570935 x {2 (h/ 16— 1)~ 1}] x exp[—ozzz759 x{2x(h/16-1)— 1}2]

The coefficients 84 and 84; are determined by the method of least squares regression as
-74.57 and -0.46. The residuals of equation A.19 are then regressed with the wavelets at
scale =3. The sampling interval at this scale is 2* = 8 hours and the wavelets are located

at 0, 8 and 16 hours. The regression equation is:

2 (A.20)
€ = ZSSkW3k (h) +&,,
k=0

where

W3o(h) = 0251477 x cos[2.570935 x {2 x (h / 8) - 1}] x exp[—o_222759 x{2x(h/8)- 1}2],

Vs,(h) = 0251477 x cog 2570935 x {2 x (h / 8 - 1) - 1}] x exp[—0.222759 x{2x(h/8-1)- 1}2]
and

Vi (h) = 0251477 xcof2570935 x {2 x (/8 -2) - 1f] xex|-0222759x {2x (h/ 8- 2)- 1]
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The coefficients 839 , 831 and 83, are determined by the method of least squares
regression as -98.56, 113.57 and -100.89. The process can be continued until scale = 1,

as suggested by equation A.17:

; (A21)
€3p = Z5zk‘l/zk(h) +Eun
k=0

1 (A.22)
€n = Z Sy Wy (h) + Ein
k=0

The statistically insignificant scaling function and wavelet coefficients are dropped from
the model. The approximations at scale = 4 and 3 are shown in Figures A.4 and A.5
respectively. The C.V. RMSE of fit achieved was 8.32% at the end of the scaling
function approximation, while the C.V. RMSE fit of the wavelet approximations at m =
4 and 3 were 6.97% and 3.79% respectively. The details of the approximations at scale
=2 and 1 which are not shown here, improve the model fit to 2.95% and 1.58% C.V.
RMSE respectively. The complete wavelet approximation scheme for the example

discussed here is described also in the flow chart in Figure A.6.
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Figure A2 Sampling spaces are shown at different scales for twenty-four hourly data
points in a day. The sampling interval decreases by a factor of 2 as the scale increases
(or becomes coarser). The sampling spaces are denoted as Vy, while their orthogonal

complements are denoted as Wi,
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Figure A3 Scaling function approximation of whole building electric energy use for
February 6, 1992 (a typical weekday) at the Zachry Engineering Center on the Texas
A&M University campus.
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Figure A4 Wavelet approximation (at scale = 4) of whole building electric energy use
for February 6, 1992 (a typical weekday) at the Zachry Engineering Center on the Texas

A&M University campus.
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Figure A5 Wavelet approximation (at scale = 3) of whole building electric energy use
for February 6, 1992 (a typical weekday) at the Zachry Engineering Center on the Texas

A&M University campus.
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Figure A.6 A flow chart showing the complete scheme for wavelet approximation of
hourly energy use on a day.
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APPENDIX B

A SAMPLE SAS PROGRAM FOR FOURIER SERIES MODELING

TITLE1 'ATRAIN PRE-RETROFIT MODEL,
TITLE2 'PERIOD USED : 01SEP89 TO 31DEC89",

data indata;
infile ‘atrain.dat' LRECL=350 ;
input mm dd yy hrm oatemp sphum solar wndspd wbelec cw hw ;.
if oatemp <= 0 then oatemp =.; -
if sphum <=0 then sphum = ;
if solar <= 10 then solar = 0;
if wndspd <= 0 then wndspd = ;
if wbelec <=0 then wbelec = ;
if cw <=0 thencw =
if hw <=0 thenhw = ;
hr =hrm/100;
date = mdy(mm,dd,yy);
dow = weekday(date),
shdiff = sphum - 0.0092 ;
if shdiff < O then shdiff=0;

shl = sin((2*3.14/24)*(hr)) ; chl = cos((2*3.14/24)*(hr)) ;

sh2 = sin((2*2*3.14/24)*(hr)) ; ch2 = cos((2*2*3.14/24)*(hr)) ;

sh3 = sin((3*2*3.14/24)*(hr)) ; ch3 = cos((3*2*3.14/24)*(hr)) ;

sh4 = sin((4*2*3.14/24)*(hr)) ; ch4 = cos((4*2*3.14/24)*(hr)) ;

sh5 = sin((5*2*3.14/24)*(hr)) ; chS = cos((5*2*3.14/24)*(hr)) ;

sh6 = sin((6*2*3.14/24)*(hr)) ; ch6 = cos((6*2*3.14/24)*(hr)) ;

sh7 = sin((7*2*3.14/24)*(hr)) ; ch7 = cos((7*2*3.14/24)*(hr)) ;

sh8 = sin((8*2*3.14/24)*(hr)) ; ch8 = cos((8*2*3.14/24)*(hr)) ;

sh9 = sin((9*2*3.14/24)*(hr)) ; ch9 = cos((9*2*3.14/24)*(hr)) ;
sh10 = sin((10*2*3.14/24)*(hr)) ; ch10 = cos((10%*2*3.14/24)*(hr)) ;
sh11 = sin((11*2*3.14/24)*(hr)) ; ch11 = cos((11*2*3.14/24)*(hr)) ;

t1shl=oatemp*sh1; t1chl=oatemp*chl; t1sh2=oatemp*sh2; t1ch2=oatemp*ch2;
tlsh3=oatemp*sh3; t1ch3=oatemp*ch3; t1shd=oatemp*sh4; t1chd=oatemp*ch4;
t1shS=oatemp*shS; t1chS=oatemp*chS; t1sh6=oatemp*sh6; t1ch6=oatemp*ch6;
t1sh7=oatemp*sh7, t1ch7=oatemp*ch7; t1sh8=oatemp*sh8; t1ch8=oatemp*chs;
t1sh9=o0atemp*sh9; t1ch9=o0atemp*ch9; t1sh10=oatemp*sh10; t1ch10=oatemp*ch10;
t1shl1=oatemp*sh11; t1chll1=oatemp*chl1;
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s1shl=shdiff*shl; sIchl=shdiff*chl; s1sh2=shdiff*sh2; s1ch2=shdiff*ch2;
s1sh3=shdiff*sh3; s1ch3=shdiff*ch3; s1sh4=shdiff*sh4; s1ch4=shdiff*ch4;
s1sh5=shdiff*shS; s1ch5=shdiff*chS; s1sh6=shdiff*sh6; s1ch6=shdiff*ch6;
s1sh7=shdiff*sh7, s1ch7=shdiff*ch7; s1sh8=shdiff*sh8; s1ch8=shdiff*ch8;
s1sh9=shdiff*sh9; s1ch9=shdiff*ch9; s1sh10=shdiff*sh10; s1ch10=shdiff*ch10;
s1shl1=shdiff*sh11; slchl1=shdiff*chl1;

sl1shl=solar*shl; sl1chl=solar*ch1; sl1sh2=solar*sh2; sl1ch2=solar*ch2;
sl1sh3=solar*sh3; sl1ch3=solar*ch3; sl1shd4=solar*sh4; sl1ch4=solar*ch4;
sl1shS=solar*sh5; sl1chS=solar*chS; sl1sh6=solar*sh6; sl1ch6=solar*ch6;
sl1sh7=solar*sh7; sl1ch7=solar*ch7; sl1sh8=solar*sh8; sl1ch8=solar*chs;
sl1sh9=solar*sh9; sl1ch9=solar*ch9; sl1sh10=solar*sh10; sl1ch10=solar*ch10;
sl1shll=solar*sh11; slichl1=solar*chll;

run;

data prewd,

set indata;

format date date7.;

if date >= '21dec89'd then delete;

if dow = 1 or dow = 7 then delete ;

proc stepwise ;

model cw = oatemp shdiff solar sh1 sh2 sh3 sh4 sh5 sh6 sh7 sh8 sh9 sh10 shll
chl ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 chll
t1shl t1sh2 t1sh3 t1sh4 t1shS t1sh6 t1sh7 t1sh8 t1sh9 t1sh10 t1shll
tlchl tich2 tlch3 tlch4 tichS t1ch6 tlch7 t1ch8 tich9 t1ch10 tichll
s1shl s1sh2 s1sh3 sish4 s1shS s1sh6 s1sh7 s1sh8 s1sh9 s1sh10 s1shll
slchl slch2 sich3 slchd slchS sich6 s1ch7 s1ch8 s1ch9 slch10 sichll
sl1shl slish2 sl1sh3 slish4 slish5 sl1sh6 sl1sh7 sl1sh8 slish9 slish10 slishl1

slichl sllch2 slich3 slich4 slichS slich6 sl1ch7 slich8 slich9 slich10 slichll
If;

run;
/*

data prewe;
set indata;
format date date7.;
if date >="21dec89'd then delete;



ifdow=1ordow=7;
proc sort; by hr;

run;

TITLE3 'ENERGY USE: CW/,

TITLE4 'WEEKDAYS ONLY",
proc reg data = prewd;
model cw = oatemp solar shdiff';
by hr

run;

TITLE3 'ENERGY USE: CW',

TITLE4 'WEEKENDS ONLY',
proc reg data = prewe ;
model cw = oatemp solar shdiff ;
by hr

run;

*/
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APPENDIX C

ANSI C PROGRAM FOR ARTIFICIAL NEURAL NETWORK WITH BACK
PROPAGATION ALGORITHM

/* LAST UPDATE : 28 Oct '93.
ANN program for variable layer, variable input, variable middle node architechture
for modeling weather independent energy use in university buildings */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <time.h>

#define maxerror 0.1
#define tolerance 0.0001
#define maxline 10001
#define cols 30

double d[maxline][cols] ;
void min_max() ;

void sigmoid() ;

void tan_hyp() ;

main(int argc, char *argv[])

{

int1, j, k, n, epoch, column, lines, in_node, h1_node, h2_node, h3_node ;
int maxepoch, function, layers ;
double gain, xbias, ybias, Irate ;

double min[cols), max[cols] ;

double w12[21][21], w23[21][21], w34[21][21], w45[21][2], x[6][21], V[6][21],
delta[6][21] ;

char s[250] ;

double a, b, r, avgerror, lasterr, toterror, abserror, wbetot, wbemean ;
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double wbe, wbepred, resid, sse, mse, rmse, cv_rmse, diff;
FILE *ifp, *ofpl, *ofp2 ;

if (argc 1=4) {
printf{("\n\n Improper command, please try again ! \n\n") ;
printf("Proper Usage: compfile ") ;
printf{"infile outfilel outfile2 \n\n") ;
printf{"The program reads data from an input data file( * .dat file), \n") ;
printf{"writes ANN model results in output filel( *.log file) \n") ;
printf{"and writes target and predicted value ") ;
printf{"in output file2( *p.dat file). \n") ;
exit(1) ;

}

ifp = fopen(argv([1], ") ;
ofpl = fopen(argv[2], "w") ;
ofp2 = fopen(argv[3], "wW") ;

/* Reads number of layers of the network */

layers=0

while (layers < 3 || layers > 5) {
printf{("\n Input number of layers of the network (3 to 5) : ") ;
scanf("%d", &layers) ; }

/* Reads number of input layer units and hidden layer units */

in_node=0;

while (in_node < 1 || in_node > 20) {
printf("\n Input number of input layer nodes (between 1 and 20) : ");
scanf("%d", &in_node) ; }

hl_node=0;

while (h1_node < 1 || h1_node > 20) {
printf("\n Input number of first hidden layer nodes (between 1 and 20) : ") ;
scanf("%d", &hl_node) ; }

if (layers > 3) {

h2 node=0;
while (h2_node < 1 || h2_node > 20) {
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printf{("\n Input number of second hidden layer nodes (between 1 and 20) : ") ;
scanf("%d", &h2_node) ; }

if (layers > 4) {

h3_node=0;

while (h3_node < 1| h3_node > 20) {
printf{("\n Input number of third hidden layer nodes (between 1 and 20) : ") ;
scanf("%d", &h3_node) ; }

}

}

/* Reads gain, xbias, ybias, learning rate and maximum epoch */
gain=0.0,

xbias=-2.0;

ybias=-2.0;

Irate=0.0;

maxepoch =0 ;

while (gain <= 0.0 || gain > 1.0) {
printf{("\n Input gain of squashing function (0 <gain<=1):");
scanf("%lf", &gain) ; }

while (xbias < -1.0 || xbias > 1.0) {
printf("\n Input xbias of squashing function (-1.0 <= xbias <= 1.0) : ") ;
scanf("%lf", &xbias) ; }

while (ybias < -0.5 || ybias > 0.5) {
printf("\n Input ybias of squashing function (-0.5 <= ybias <= 0.5) : ") ;
scanf("%lIf", &ybias) ; }

while (lrate <= 0 || Irate > 3) {
printf("\n Input learning rate (0 <learning rate <=3 ):");
scanf("%lIf", &lrate) ; }

while ((maxepoch < 1) || (maxepoch > 10000)) {
printf{("\n Input number of iterations (1 <= iteration <= 10000) : ") ;
scanf{"%d", &maxepoch) ; }

/* Reads the squashing function you want to use */
function=0;

while ((function != 1) && (function 1= 2)) {
printf{("\n Which squashing function do you want to use ? ") ;
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printf{("\n Type 1 for sigmoid and 2 for tan_hyperbolic now : ") ;
scanf("%d", &function) ; }

/* Reads normalization range of input and target */

printf("\n\n All the inputs and target need normalization ; ") ;
printf{"\n Input the lower limit of normalization range now : ") ;
scanf("%lf", &a);

printf("\n Input the upper limit of normalization range now : ") ;
scanf("%lf", &b);

/* Reads data from input file and storing in array d{maxline][cols] */

column =in_node + 5 ;

n=1;

wbetot =0 ;

while((fgets(s, 150, ifp) !=NULL) && (n <= maxline) ) {

if (in_node ==20) sscanf{s,
"Yelfol 1%l %0l 6 % %l 6l 261 %6161 %61 %1% P61 261 %1% 2% 1 %51 %1 6l 26| 6 £
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14],
&d[n][15], &d[n][16], &d[n][17], &d[n][18], &d[n][19], &d[n][20],
&d[n][21],
&d[n][22]), &d[n][23], &d[n]{24], &d[n][25]) ;

if (in_node==19) sscanfls,
"l 61l Yl %ol %l %l %1 %61 261 %1 26 %6 1% 1% 61 2% 1% 1 2% 24126l 61,
&d[n][1}, &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14],
&d[n][15], &d[n][16], &d[n][17], &d[n][18], &d[n][19], &d[n][20],
&d[n][21],
&d[n][22), &d[n}[23], &d[n][24]) ;

if (in_node ==18) sscanf{s,
"Yalf%l %%l %ol %l %1 %1 %6 %61 % 010l Y Yo Yo 1% 61 1 4 I
&d[n][1], &d[n](2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
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&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14],

&d[n][15], &d[n][16], &d[n][17], &d[n][18], &d[n][19], &d[n][20],
&d[n][21],

&d[n][22], &d[n][23]) ;

if (in_node ==17) sscanf(s,

"%l %l 0l 1%l %Y1 261 %6l 1% %6 1% 1% 216l %6 %1% 20l 51,
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &dIn][12], &d[n][13],

&d[n][14],
&d[n][15], &d[n][16], &d[n][17], &d[n][18], &d[n][19], &d[n][20],
&d[n][21], &d[n][22]) ;

if (in_node == 16) sscanf{(s,
"%l /10l 6l %1612l %61 61 %0l %61 %61 %61 %1 %6 1% 1% £ 6l 2 1% I,
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14],
&d[n][15], &d[n][16], &d[n][17], &d[n][18], &d[n][19], &d[n][20],
&d[n][21]);

if (in_node == 15) sscanf{(s,
"%l %Il %0l %1% %610l f2%1 261 %61 61 201 2612 %61 51 211",
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n}{8], &d[n][9], &d[n][10], &d[n]{11), &d[n][12], &d[n][13],
&d[n][14],
&d[n][15], &d[n][16], &d[n][17], &d[n][18], &d[n][19], &d[n][20]) ;

if (in_node == 14) sscanfs,
"%l £l 2l %0l %6161 261261 %61 261 %16l 1A %612 1%
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14],
&d[n][15], &d[n][16], &d[n][17], &d[n][18], &d[n][19]) ;

if (in_node == 13) sscanf{s,
"%l %l A%l 0l Al %1 6l %61 %1% 1% 261 26l 2 20 241,
&d[n](1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n]{9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14],
&d[n][15], &d[n][16], &d[n][17], &d[n][18]) ;
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if (in_node == 12) sscanf{s,
"%l %l %l %]l %61 %6l 201 %1 %6120l %1% 261 %1 {26261,
&d[n](1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n](8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14],
&d[n][15], &d[n][16], &d[n][17]) ;

if (in_node == 11) sscanf(s, "%If%IR4lfY6l %l Y14 oIl Y6l V4l Rl 1 6 I RAIE",
&d[n][1], &d[n][2], &d[n][3], &d[n}[4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14],
&d[n][15], &d[n][16]) ;

if (in_node == 10) sscanf{s, "%6ll%4lfY6IR%l Rl R6lf6l IV %I 6l A1,
&d[n]{1], &d[n](2], &d[n][3], &d[n][4], &d[n][5], &d[n](6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14],
&d[n](15]);

if (in_node ==9) sscanf{(s, "Y1Vl Rl 1o Vel VIR R IF%IE"
&d[n]{1], &d[n][2], &d[n][3], &d[n]{4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13],
&d[n][14]) ;

if (in_node ==8) sscanf{s, "%lf%IfY4If%IR%l Relf%l IVl Rl Vo141,
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12], &d[n][13]);

if (in_node ==7) sscanf(s, "%lf%lf%{%l %! %] %l {6l %I %1 %I %",
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11], &d[n][12]);

if (in_node == 6) sscanf{s, "%If%IRAIVl% IR AV,
&d[n](1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9], &d[n][10], &d[n][11]) ;

if (in_node == 5) sscanf(s, "%l %IRRTl A4 R,
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n]6], &d[n][7],
&d[n](8], &d[n][9], &d[n][10]) ;

if (in_node ==4) ~ sscanfls, "%If%lf%If% %%l %I%I%IE",
&d[n][1], &d[n}[2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8], &d[n][9]);
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if (in_node == 3) sscanf{s, "%If%!f%If%If%1f%1 %l %1f",
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6], &d[n][7],
&d[n][8]) ;

if (in_node == 2) sscanfls, "%lf26IR%IR%IfAI4I%I",
&d[n][1], &d[n][2], &d[n]{3], &d[n][4], &d[n][5], &d[n][6], &d[n][7]) ;

if (in_node == 1) sscanf(s, "%IfAIf%IR%4I%AI%If",
&d[n][1], &d[n][2], &d[n][3], &d[n][4], &d[n][5], &d[n][6]) ;

wbetot += d[n][column] ;
n++ ;

}

lines=n-1;
wbemean = wbetot / lines ;

/* Normalizing input and target of ANN */
for (j = 5; j <= column; j++) {
min_max(j, lines, &min[j], &max[j]) ;

for (i =1, 1 <=lines; i++) {

d[i}(j} = (d[i](j] - min[j]) * (b - a) / (max{j] - min[j]) + a;

}
}

printf{("\n\n All the inputs and target have been normalized \n") ;
/* Initializing weights with random values between -0.25 and 0.25 */
for(i=1; i <= in_node; i++) {
for(j = 1;j <=hl_node; j++) {
r=0.5*rand() / RAND_MAX ;
wl2[i][jJ=r-0.25;

}



if (layers > 3) {

for(i = 1; i <= hl_node; i++) {
for(j = 1; j <= h2_node; j++) {
r=0.5*rand() / RAND MAX ;
w23[i][j]=r-0.25;

}

if (layers > 4) {

for(i = 1; i <= h2_node; i++) {
for(j = 1; j <= h3_node; j++) {
r=0.5*rand() / RAND MAX ;
w34{i][j]=r-0.25;

}

if (layers == 3) h3_node = h1_node ;
if (layers == 4) h3_node = h2_node ;

for(j = 1; j <= h3_node; j++) {
r=0.5*rand() / RAND _MAX ;

if (layers == 5) w45[j][1]=r-0.25;

if (layers == 4) w34[j][1]=r-0.25 ;

if (layers == 3) w23[j][1] =r- 0.25;
}

epoch=0;
diff=1.0;
avgerror=1.0;
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i=0;
while ((epoch < maxepoch) && (avgerror > maxerror) && (diff > tolerance)) {

i+=1;

if (1==lines + 1) {

lasterr = avgerror ;
epoch+=1;

avgerror = toterror / lines ;

diff = lasterr - avgerror ;
if (diff < 0) diff = - diff ;

printf{"ANNMODEL.C VERSION 1.0 BY AMITAVA DHAR \n") ;
printf{"Please do not turn off this computer until it reaches %d epochs.\n", maxepoch)

printf{"Epochs completed = %d\n ", epoch) ;
printf{" Average error = %f\n", avgerror) ;

toterror=0.0 ;

if ((epoch < maxepoch) && (avgerror > maxerror) && (diff > tolerance))
sse=0.0;
i=1;

}

/* Sets output of first layer equal to input */

for (j = 1; j <= in_node; j++) {
k=j+4,
y(110] = d}[i][k] ;

/* Calculates activation(x) and output(y) of first hidden layer */

for (j = 1; j <= h1_node; j++) {
x[2](]=0;
for (k =I; k <= in_node; k++)
x[2]0] +=y[1][k] * wi2[k][j] ;

if (function == 1) sigmoid(x[2][j], gain, xbias, ybias, &y[2][j]) ;
if (function == 2) tan_hyp(x[2][j], gain, xbias, ybias, &y[2][j]) ;
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/* Calculates activation(x) and output(y) of second hidden layer */

if (layers > 3) {
for (j = 1; j <=h2_node; j++) {
x31G)=0;
for (k =1; k <= hl_node; k++)
x[3]0] += y[2][k] * w23[k][j] ;

if (function == 1) sigmoid(x[3][j], gain, xbias, ybias, &y[3][j]) ;
if (function == 2) tan_hyp(x[3][j], gain, xbias, ybias, &y[3][]) ;

)

/* Calculates activation(x) and output(y) of third hidden layer */

if (layers > 4) {
for (j = 1; j <=h3_node; j++) {
x(4]01=0;
for (k =1; k <= h2_node; k++)
x[4]0] +=y[3]{k] * w34[k](i1;

if (function == 1) sigmoid(x[4][j], gain, xbias, ybias, &y[4][j]) ;
if (function == 2) tan_hyp(x[4][j], gain, xbias, ybias, &y[4][j]) ;
}
}
}

/* Calculates activation(x) and output(y) of output layer */

x[5][1]=0;
for (j=1;j <=h3_node; j*++) {
if (layers == 3) x[5][1] +=y[2][j] * w23[j}[1] ;
if (layers == 4) x[5][1] += y[3](i] * w34[j][1];
if (layers == 5) x[5][1] += y[4][j] * w45[j][1];
}

if (function == 1) sigmoid (x[5][1], gain, xbias, ybias, &y[5][1]) ;
if (function == 2) tan_hyp(x[5][1], gain, xbias, ybias, &y[S][1]);



wbepred = (y[5][1] - a) * (max[column] - min[column]) / (b - a) + min[column] ;
wbe = (d[i][column] - a) * (max[column] - min[column]) / (b - a) + min[column] ;

abserror = wbe - wbepred ;
if (abserror < Q) abserror = -abserror ;
toterror += abserror ;
if ((epoch < maxepoch) && (avgerror > maxerror) && (diff > tolerance)) {

sse += pow(abserror, 2.0) ;

/* Begin adjusting output layer weights */

if (function == 1) delta[5][1] = y[5][1] * (1 - y[5][1]) * (d[i][column] - y[5][1]) ;

if (function == 2) delta[5][1] = (I - pow(y[S][1], 2.0)) * (d[i][column] - y[S][1]) ;

for =1, j <=h3_node; j+t+) {
if (layers == 5) w45[j][1] += Irate * y[4][j] * delta[5][1] ;
if (layers == 4) w34[j][1] += Irate * y[3][j] * delta[5][1] ;
if (layers == 3) w23[j][1] += Irate * y[2][j] * delta[5][1] ;
}

/* Begin adjusting w34 weights */
if (layers > 3) {
if (layers > 4) {

for (j = 1; j <= h3_node; j++) {
delta[4][j]=0;

if (function == 1) delta[4][j] += y[4][j] * (1 - y[4][j]) * delta[S1[1] * w45S[j][1] ;
if (function == 2) delta[4][j] += (1 - pow(y[4][j], 2.0)) * delta[S][1] * w45[j][1] ;

}

for (j=1;j <=h2_node; j+t) {
for (k =1; k <= h3_node; k++)
w34[j][k] += Irate * y[3][j] * delta[4][k] ;
}

}

/* Begin adjusting w23 weights */

176



177

for (j = 1; j <= h2_node; j++) {
delta[3][j]=0;

for (k = 1; k <= h3_node; k++) {

if (layers == 4) {
h3 node=1;
delta[4][1] = delta[5][1] ;
}

if (function == 1) delta[3]j] += y[31(j] * (1 - y[3][]) * delta[4][k] * w34[j][k] ;
if (function == 2) delta[3][j] += (1 - pow(y[31[i], 2.0)) * delta[4][k] * w34[j][k] ;

if (layers == 4) h3_node =h2_node ;
}
for (j = 1; j <= h1_node; j++) {
for (k = 1; k <=h2_node; k++)
w23[j][k] += Irate * y[2][j] * delta[3][k] ;
}

/* Begin adjusting w12 weights */

for j=1;j <= h1_node; j++) {
delta[2][j]1=0;

for (k = 1; k <= h2_node; k++) {

if (layers == 3) {
h2_node=1;
delta[3][1] = delta[5][1] ;
}

if (function == 1) delta[2][j] += y[2][j] * (1 - y[2](]) * delta[3][k] * w23[j][k] ;
if (function == 2} delta[2][j] += (1 - pow(y[2][j], 2.0)) * delta[3][k] * w23[j][k] ;

}
}
for j=1; j <= in_node; j++) {

for (k=1; k <=hl_node, k++)
wl12[j](k] += Irate * y[1][j] * delta[2][Kk] ;
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}
}

if (avgerror < maxerror) printf("avgerror < %f\n\n", maxerror) ;
if (diff < tolerance) printf{"Error diff. < tolerance = %lf\n\n", tolerance) ;
if (epoch > maxepoch) printf{"Optimization complete for %d epochs\n\n", epoch) ;

/* printf("\n DONE \n") ; */
mse = sse / (lines - 1) ;
rmse = pow(mse, 0.5) ;
cv_rmse = 100 * rmse / wbemean ;
printf{"\n SSE = %f\n", sse) ;
printf{"\n MSE = %f\n", mse) ;
printf("\n RMSE = %f\n", rmse) ;
printf("\n CV_RMSE = %f\n", cv_rmse) ;
/* Prints model results to log file */

fprintf{ofpl, "OUTPUT TO ANNMODEL.C VERSION 1.0 BY AMITAVA DHAR
\n") ;

fprintf{ofp1, "It is a %d layers ann model.\n\n", layers) ;
fprintf{ofp1, "Number of input layer nodes = %d\n", in_node) ;
fprintflofp1, "Number of first hidden layer nodes = %d\n", h1_node) ;

if (layers > 3) {
fprintf{ofp1, "Number of second hidden layer nodes = %d\n", h2_node) ;

if (layers > 4)
fprintf{ofp1, "Number of third hidden layer nodes = %d\n\n\n", h3_node) ;
}
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fprintf{ofp1, "Gain = %f\n", gain) ;
fprintflofp1, "Xbias = %f\n", xbias) ;
fprintfofpl, "Ybias = %f\n", ybias) ;
fprintf{ofp1, "Learning rate = %f\n\n", Irate) ;
fprintf{ofp1, "Normalization range : %f to %f\n", a, b) ;
if (function == 1) fprintf{ofp1, "Squashing Function is sigmoid.\n\n") ;
if (function == 2) fprintf{ofp1, "Squashing Function is tan hyperbolic.\n\n") ;
fprintfofp1, "Epoch = %d\n", epoch) ;
fprintf{ofpl, "Average error = %f\n", avgerror) ;
fprintfofp1, "Maximum alowable error = %f\n", maxerror) ;
fprintf{ofp1, "Number of observations = %d.\n", lines) ;
fprintf(ofpl, "Mean wbe = %f\n", wbemean) ;
fprintfofpl, "RMSE = %f\n", rmse) ;
fprintf{ofpl, "CV_RMSE = %f\n\n\n", cv_rmse) ;
/* Prints values of w12 weights to log file */
for (j = 1; j <= in_node; j++) {
for (k=1; k<= hl_node; k++)

fprintf{ofp1, "w12{%d][%d] = %f\n" j, k, w12[j][K]) ;
}

/* Prints values of w23 weights to log file */
if (layers > 3) {

for (=1;j <=hl_node; j++) {
for (k=1; k <= h2_node; k++)
fprintflofpl, "w23[%d][%d] = %f\n" j, k, w23[j][k]) ;
}



/* Prints values of w34 weights to log file */
if (layers > 4) {

for (j = 1; j <= h2_node; j++) {
for (k = 1; k <= h3_node; k++)
fprintflofpl, "w34[%d][%d] = %f\n" j, k, w34[j1[K]) ;
}

}
}

/* Prints values of w45 weights to log file */

for (k =1; k <= h3_node; k++) {
if (layers == 5) fprintf{ofp1, "w45[%d][1] = %f\n", k, w45[k][1]) ;
if (layers == 4) fprintf{ofp1, "w34[%d][1] = %An", k, w34[k][1]) ;
if (layers == 3) fprintfofpl, "w23[%d][1] = %f\n", k, w23[Kk][1]) ;
}

/* Calculates and prints predicted values to *pred.dat file */

for (i =1; i <=lines; i++) {
for (j = 1;j <=in_node; j++) {
k=j+4,
yl11i] = d}[i][k] ;

for (j =1;j <= hl_node; j++) {
x[2][]=0;
for (k= 1; k <= in_node; k++) x[2][j] += y[1][k] * w12[k][i] ;

if (function == 1) sigmoid(x[2][j], gain, xbias, ybias, &y[2][j]) ;
if (function == 2) tan_hyp(x[2][j], gain, xbias, ybias, &y[2][]) ;

}

if (layers > 3) {
for (j = 1;j <= h2_node; j++) {
x[3](]=0;
for (k= 1, k <= h1_node; k++) x[3][j] += y[2][k] * w23[k][j];

if (function == 1) sigmoid(x[3][j], gain, xbias, ybias, &y[3]1[j]) ;
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if (function == 2) tan_hyp(x[3][j], gain, xbias, ybias, &y[31[j]) ;

}
if (layers > 4) {

for j = 1; j <= h3_node; j++) {
x[4]01=0;

for (k = 1; k <= h2_node; k++) x[4][j] += y[3](k] * w34[K][;] ;

if (function == 1) sigmoid(x[4][j], gain, xbias, ybias, &y[4][i]) ;
if (function == 2) tan_hyp(x[4][j], gain, xbias, ybias, &y[4][j]) ;

}

x[5][1]=0;

for (j=1;j <= h3_node; j++) {

if (layers == 5) x[5][1] += y[4][j] * w45[j][1];

if (layers == 4) x[5][1] += y[3][j] * w34[j][1];

if (layers == 3) x[5][1] += y[2][j] * w23[j][1];
}

if (function == 1) sigmoid(x[5][1], gain, xbias, ybias, &y[5][1]) ;
if (function == 2) tan_hyp(x[5][1], gain, xbias, ybias, &y[S][1]) ;
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wbe = (d[i]{column] - a) * (max[column] - min{column]) / (b - a) + min[column]

wbepred = (y[S]{1] - a) * (max[column] - min[column]) / (b - a) + min[column]

resid = wbe - wbepred ;

fprintf{ofp2, “%f %f %f %f %f %f %f\n®, d[i][1], d[i][2], d[i)[3], d[i][4], wbe,
wbepred, resid) ;
}

fclose(ifp) ;
fclose(ofpl) ;
fclose(ofp2) ;

}
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/* This function calculates minimum and maximum of each column in the input
data file which are later used to normalize input and target to the ANN */

void min_max(int col, int lines, double *min, double *max)

{

inti;

*min =d[1][col];
*max = d[1][col] ;

for (i=2;i<= lines; i++) {
if (d[i][{col] < *min) *min = d[i][col] ;
if (d[i][col] > *max) *max = d[i][col] ;
}
}

/* Calculates the value of squashing function */

void sigmoid(double net, double gain, double xbias, double ybias, double *out)

{
*out = ybias + 1 /(1 + exp(-gain * (net + xbias))) ;

}

void tan_hyp(double net, double gain, double xbias, double ybias, double *out)

{

double numer, denom ;

numer = exp(gain * (net + xbias)) - exp(-gain * (net + xbias)) ;
denom = exp(gain * (net + xbias)) + exp(-gain * (net + xbias)) ;

*out = ybias + (numer / denom) ;
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APPENDIX D

SAS PROGRAM FOR ARTIFICIAL NEURAL NETWORK WITH WAVELET
BASIS FUNCTIONS

/*
Program listing for Wave-Net modeling upto scale = 4 and generating residuals
for modeling at scale = 3 for weekdays only. For weekends, “if dow >=2 and dow
<=6;" needs to be replaced by “if dow =1 or dow = 7;”. The stepwise regression is
performed first to identify the important frequencies. Once this is done, PROC
REG procedure is used to determine the amplitudes (regression co-efficients)

*/

filename out! 'C:\temp\hwwd 1.dat';
data indata ;

infile 'c:\temp\ras.dat' ;

input mm dd yy hr hw temp ;

date = mdy(mm,dd,yy) ;

dow = weekday(date) ;

if dow >=2 and dow <=6 ;

if temp <=0 thentemp = . ;
ifhw<=0thenhw=_;

run;

proc reg data = indata ;
model hw = hr temp
output out = wkdy!

r=reshw ;
nn;

data wkdy2 ;
set wkdyl ;

m=4;

2

file out! ;
put (mm dd yy hr temp hw reshw) (4*5.03*7.2) ;

temp = temp - 20 ;
h = (2**(-m))*hr ;
t = (2*¥*(-m))*temp ;



184

ph0 = sqrt(6/(3.14*(3+1)))*exp(-6*((h - 0)¥*2)/(3+1)) ;
phl = sqrt(6/(3.14*(3+1)))*exp(-6*((h - 1)¥*2)/(3+1)) ;

ptO = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 0)**2)/(3+1)) ;
ptl = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 1)**2)/(3+1)) ;
pt2 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 2)**2)/(3+1)) ;
pt3 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 3)**2)/(3+1)) ;
ptd = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 4)**2)/(3+1)) ;
ptS = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 5)**2)/(3+1)) ;

who = c0s(2.570935*(2*(h - 0) - 1))*exp(-0.222759*((2*(h - 0) - 1)**2)) :
wh1 = cos(2.570935%(2%(h - 1) - 1))*exp(-0.222759*((2*(h - 1) - 1)**2)):

wt0 = c0s(2.570935*(2*(t - 0) - 1))*exp(-0.222759*((2*(t - 0) - 1)**2)) ;
wtl = c0s(2.570935*(2*(t - 1) - 1))*exp(-0.222759*((2*(t - 1) - 1)**2)) ;
Wt2 = c0s(2.570935*(2*(t - 2) - 1))*exp(-0.222759*((2*(t - 2) - 1)**2)) ;
wt3 = c0s(2.570935%(2*(t - 3) - 1))*exp(-0.222759*((2*(t - 3) - 1)**2)) ;
wtd = c0s(2.570935%(2*(t - 4) - 1))*exp(-0.222759*((2*(t - 4) - 1)**2)) ;
WS = cos(2.570935%(2*( - 5) - 1))*exp(-0.222759%((2%(t - 5) - 1)*¥2)) ;

sc00 = ph0*pt0 ; wv100 = phO*wt0 ; wv200 = wh0*pt0 ; wv300 = whO*wt0 ;
scO1 = phO*ptl ; wv101 = phO*wtl ; wv201 = whO*pt1 ; wv301 = whO*wtl ;
sc02 = ph0*pt2 ; wv102 = ph0*wt2 ; wv202 = wh0*pt2 ; wv302 = wh0*wt2 ;

sc03 = ph0*pt3 ; wv103 = phO*wt3 ; wv203 = wh0*pt3 ; wv303 = whO*wt3 ;

sc04 = ph0*ptd ; wv104 = phO*wt4 ; wv204 = whO*pt4 ; wv304 = wh0*wt4 ;
sc05 = ph0*pt5 ; wv105 = phO*wt5 ; wv205 = whO*ptS ; wv305 = wh0*wtS5 ;

sc10 = ph1*pt0; wv110 = ph1*wt0 ; wv210 = wh1*pt0 ; wv310 = wh1*wt0 ;
scl1=phl*ptl ; wvl1l = phl*wtl ; wv211 = wh1*ptl ; wv311 = wh1*wtl ;
sc12 =phl*pt2 ; wvl12 = ph1*wt2 ; wv212 = wh1*pt2 ; wv312 = wh1*wt2 ;
sc13 = phl*pt3 ; wvl13 = ph1*wt3 ; wv213 = wh1*pt3 ; wv313 = wh1*wt3 ;
sc14 = phl1*ptd ; wvl14 = ph1*wt4 ; wv214 = wh1*pt4 ; wv314 = wh1*wt4 ;
sc15 = ph1*pt5 ; wvl15 = phl1*wt5 ; wv215 = wh1*ptS ; wv315 = wh1*wt5 ;

run;

proc stepwise data = wkdy?2 ;
model reshw = sc00 wv100 wv200 wv300 sc01 wv101 wv201 wv301
sc02 wv10Z wv202 wv302 sc03 wv103 wv203 wv303
sc04 wv104 wv204 wv304 sc05 wv105 wv205 wv305
sc10 wvl110 wv210 wv310 scl1l wvlll wv211 wv3ll
scl12 wvl12 wv212 wv312 scl13 wvll3 wv213 wv313
scl4 wvl14 wv214 wv314 sc15 wv115 wv215 wv315 / noint f;
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run;

/*

proc reg data = wkdy2 ;
model reshw = wv214 wv204 sc01 sc03 wv303 wv212 wv203 sci4 sc04
wv101 wv211 sc13 sc11 wv305 wv213 wv105 / noint ;
output out = wkdy3
r =hwresid ;
run;

filename out2 'c:\temp\hwwd2.dat' ;

data wkdy4 ;

set wkdy3 ;

file out2 ;

temp = temp + 20 ;

put (mm dd yy hr temp hw hwresid) (4*5.0 3*10.2) ;
run

*/

/*
Program listing for Wave-Net modeling at scale = 3 by using the residuals data
from the program listed above. The stepwise regression is performed first to
identify the important frequencies. Once this is done, PROC REG procedure is
used to determine the amplitudes (regression co-efficients)

*/

data indata ;

infile 'c:\temp\hwwd2.dat' ;
input mm dd yy hr temp hw reshw;
if temp <= 0 then temp = . |
ifhw<=0thenhw=_;
run

/*

proc means data = indata ;
var reshw ;

run ;

*/

data wkdy!l ;



set indata ;

m=3;

temp = temp - 20 ;
h = (2**(-m))*hr;
t = (2**(-m))*temp ;

phO = sqrt(6/(3.14*(3+1)))*exp(-6*((h - 0)**2)/(3+1)) ;
phl = sqrt(6/(3.14*(3+1))) *exp(-6*((h - 1)**2)/(3+1)) ;
ph2 = sqrt(6/(3.14*(3+1)))*exp(-6*((h - 2)**2)/(3+1)) ;

pt0 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 0)**2)/(3+1)) ;
ptl = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 1)**2)/(3+1)) ;
pt2 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 2)**2)/(3+1)) ;
pt3 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 3)**2)/(3+1)) ;
pt4 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 4)**2)/(3+1)) ;
ptS = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 5)**2)/(3+1)) ;
pt6 = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 6)**2)/(3+1)) ;
pt7 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 7)**2)/(3+1)) :
pt8 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 8)**2)/(3+1)) ;
pt9 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 9)**2)/(3+1)) ;
pt10 = sqri(6/(3. 14*(3+1)))*exp(-6*((t - 10)**2)/(3+1)) ;

who = c0s(2.570935%(2*(h - 0) - 1))*exp(-0.222759%((2*(h - 0) - 1)**2)) :
wh1 = cos(2.570935%(2%(h - 1) - 1))*exp(-0.222759*((2%(h - 1) - 1)**2)) ;
wh2 = cos(2.570935*(2%(h - 2) - 1))*exp(-0.222759*((2%(h - 2) - 1)**2)) ;

1)**2));
1)**2)) ;
1)*¥2));
1)**2));
1)**2));
1)**2));
1)**2));
1)**2));
1)**2));
1)**2));

wt0 = c0s(2.570935*(2*(t - 0) -
wtl = c0s(2.570935*(2*(t - 1) -
Wi2 = cos(2.570935*(2*(t - 2) -
wt3 = c0s(2.570935*(2*(t - 3) -
wtd = c0s(2.570935*(2*(t - 4) -
wt5 = c0s(2.570935*(2*(t - 5) -
wt6 = c0s(2.570935*(2*(t - 6) -
wt7 = co0s(2.570935*(2*(t - 7) -
wt8 = c0s(2.570935*(2*(t - 8) -
wt9 = c0s(2.570935*(2*(t - 9) -
wt10 = cos(2.570935*(2*(t - 10) - 1))*exp(-0.222759*((2*(t - 10) - 1)**2)) ;

1))*exp(-0.222759*((2*(t - 0) -
1))*exp(-0.222759*((2%(t - 1) -
1))*exp(-0.222759*((2%(t - 2) -
1))*exp(-0.222759*((2*(t - 3) -
1))*exp(-0.222759*((2%(t - 4) -
1))*exp(-0.222759*((2%(t - 5) -
1))*exp(-0.222759*((2*(t - 6) -
1))*exp(-0.222759*((2%(t - 7) -

1))*exp(-0.222759*((2*(t - 8) -
1))*exp(-0.222759*((2%(t - 9) -
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/*

wv100 = ph0*wt0 ; wv200 = wh0*pt0 ; wv300 = wh0*wt0 ;
wv101 = phO*wtl ; wv201 = whO*ptl ; wv301 = whO*wtl ;
wv102 = phO*wt2 ; wv202 = wh0*pt2 ; wv302 = wh0*wt2 ;
wv103 = phO*wt3 ; wv203 = wh0*pt3 ; wv303 = whO*wt3 ;
wv104 = ph0*wt4 ; wv204 = wh0*pt4 ; wv304 = wh0*wt4 ;
wv105 = ph0*wt$ ; wv205 = wh0*pt5 ; wv305 = wh0*wt5 ;
wv106 = ph0*wt6 ; wv206 = wh0*pt6 ; wv306 = whO*wt6 ;
wv107 = ph0*wt7 ; wv207 = wh0*pt7 ; wv307 = whO*wt7 ;
wv108 = phO*wt8 ; wv208 = wh0*pt8 ; wv308 = wh0*wt8 ;
wv109 = ph0*wt9 ; wv209 = wh0*pt9 ; wv309 = wh0*wt9 ;
wv1010 = ph0*wt10 ; wv2010 = wh0*pt10 ; wv3010 = whO*wt10 ;

wv110 = ph1*wt0 ; wv210 = wh1*pt0 ; wv310 = wh1*wt0 ;
wvlll = phl*wtl ; wv211 = whi*ptl ; wv311 =whl*wtl ;
wv112 = ph1*wt2 ; wv212 = wh1*pt2 ; wv312 = wh1*wt2 ;
wvl13 = ph1*wt3 ; wv213 = wh1*pt3 ; wv313 = wh1*wt3 ;
wvl14 = ph1*wt4 ; wv214 = wh1*pt4 ; wv314 = wh1*wt4 ;
wvl15 = phl*wt5 ; wv215 = wh1*pt5 ; wv315 = wh1*wt5 ; */
wv116 = ph1*wt6 ; wv216 = wh1*pt6 ; wv316 = wh1*wt6 ;
wv117 = ph1*wt7 ; wv217 = wh1*pt7 ; wv317 = wh1*wt7 ;
/* wvl18 = ph1*wt8 ; wv218 = wh1*pt8 ; wv318 = wh1*wt8 ;
wv119 = ph1*wt9 ; wv219 = wh1*pt9 ; wv319 = wh1*wt9 ;
wv1110 = ph1*wt10; wv2110 =wh1*pt10 ; wv3110 = wh1*wt10 ;

wv120 = ph2*wt0 ; wv220 = wh2*pt0 ; wv320 = wh2*wt0 ;
wv121 = ph2*wtl ; wv221 = wh2*pt1 ; wv321 = wh2*wtl ;
wv122 = ph2*wt2 ; wv222 = wh2*pt2 ; wv322 = wh2*wt2 ;
wv123 = ph2*wt3 ; wv223 = wh2*pt3 ; wv323 = wh2*wt3 ;
wv124 = ph2*wt4 ; wv224 = wh2*pt4 ; wv324 = wh2*wt4 ;
wv125 = ph2*wt5 ; wv225 = wh2*pt5 ; wv325 = wh2*wtS5 ;
wv126 = ph2*wt6 ; wv226 = wh2*pt6 ; wv326 = wh2*wt6 ;
wv127 = ph2*wt7 ; wv227 = wh2*pt7 ; wv327 = wh2*wt7 ;
wv128 = ph2*wt8 ; wv228 = wh2*pt8 ; wv328 = wh2*wi8 ; */
wv129 = ph2*wt9 ; wv229 = wh2*pt9 ; wv329 = wh2*wt9 ;
wv1210 = ph2*wt10 ; wv2210 = wh2*pt10 ; wv3210 = wh2*wt10 ;

run;

/%
proc stepwise data = wkdy]1 ;



188

model reshw = wv100 wv200 wv300 wv101 wv201 wv301 wv102 wv202 wv302

wv103 wv203 wv303 wv104 wv204 wv304 wv105 wv205 wv305
wv106 wv206 wv306 wv107 wv207 wv307 wv108 wv208 wv308
wv109 wv209 wv309 wv1010 wv2010 wv3010

wv110 wv210 wv310 wvl1ll wv211 wv31l wvl12 wv212 wv312
wvl13 wv213 wv313 wvl1l4 wv214 wv314 wvl15 wv215 wv315
wv116 wv216 wv316 wvl17 wv217 wv317 wvl18 wv218 wv318
wvl19 wv219 wv319 wvl110 wv2110 wv3110

wv120 wv220 wv320 wv121 wv221 wv321 wv122 wv222 wv322
wv123 wv223 wv323 wv124 wv224 wv324 wv125 wv225 wv325
wv126 wv226 wv326 wv127 wv227 wv327 wv128 wv228 wv328
wv129 wv229 wv329 wv1210 wv2210 wv3210 / noint f';

run;
*/

proc reg data = wkdy! ;
model reshw = wv229 wv316 wv317/ noint ;
output out = wkdy2
r = hwresid ;
run;

filename out 'c:\temp\hwwd3.dat' ;

data wkdy3 ;
set wkdy2 ;

file out ;

temp = temp + 20,

put (mm dd yy hr temp hw hwresid) (4*5.0 3*7.2) ;
nun

/*

Program listing for determining Wave-net prediction at scale = 4 (second
approximation,

*/

data indata ;
infile 'c:\temp\raspred.dat';
input mm dd yy hr hw temp ;



date = mdy(mm,dd,yy) ;
dow = weekday(date) ;

if temp <= 0 then temp = . ;
if hw <=0 thenhw=_

m=4;

templ =temp - 20 ;
h=2**(-m))*hr
t = (2**(-m))*templ ;

phO = sqrt(6/(3.14*(3+1)))*exp(-6*((h - 0)**2)/(3+1)) ;
phl = sqrt(6/(3.14*(3+1)))*exp(-6*((h - 1)**2)/(3+1)) ;

pt0 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 0)**2)/(3+1)) ;
ptl = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 1)**2)/(3+1)) ;
pt2 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 2)**2)/(3+1)) ;
pt3 = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 3)**2)/(3+1)) ;
ptd = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 4)**2)/(3+1)) ;
ptS = sqrt(6/(3.14*(3+1))) *exp(-6*((t - 5)**2)/(3+1)) ;

who = c05(2.570935*(2*(h - 0) - 1))*exp(-0.222759*((2*(h - 0) - 1)¥*2)) ;
whl = c0s(2.570935*%(2*(h - 1) - 1))*exp(-0.222759*((2*(h - 1) - 1)**2)) ;

wt0 = cos(2.570935*(2*(t - 0) - 1))*exp(-0.222759*((2*(t - 0) - 1)**2));
wtl = cos(2.570935*(2*(t - 1) - 1))*exp(-0.222759*((2*(t - 1) - 1)**2)) ;
wt2 = c0s(2.570935*(2*(t - 2) - 1))*exp(-0.222759*((2*(t - 2) - 1)**2));
wt3 = cos(2.570935*(2*(t - 3) - 1))*exp(-0.222759*((2*(t - 3) - 1)**2));
wtd = c0s(2.570935*(2*(t - 4) - 1))*exp(-0.222759*((2*(t - 4) - 1)**2)) ;
wt5 = c0s(2.570935*(2*(t - 5) - 1))*exp(-0.222759*((2*(t - 5) - 1)**2)) ;

sc00 = ph0*pt0 ; wv100 = ph0*wt0 ; wv200 = wh0*pt0 ; wv300 = whO*wt0 ;
sc01 = phO*pt1 ; wv101 = ph0*wtl ; wv201 = whO*pt1 ; wv301 = whO*wt! ;
$c02 = phO*pt2 ; wv102 = ph0*wt2 ; wv202 = wh0*pt2 ; wv302 = whO*wt2 ;
sc03 = ph0*pt3 ; wv103 = ph0*wt3 ; wv203 = wh0*pt3 ; wv303 = whO*wt3 ;
sc04 = ph0*pt4 ; wv104 = ph0*wt4 ; wv204 = wh0*pt4 ; wv304 = whO*wt4 ;
sc05 = ph0*ptS ; wv105 = ph0*wt5 ; wv205 = wh0*pt5 ; wv305 = whO*wt5 ;

sc10 = ph1*pt0; wv110 = ph1*wt0 ; wv210 = wh1*pt0 ; wv310 = wh1*wt0 ;
sc11 =phl*ptl; wvlll = ph1*wtl ; wv211 =whl*ptl; wv311 = whl*wtl ;

189



190

sc12 = ph1*pt2 ; wv112 = ph1*wt2 ; wv212 = wh1*pt2 ; wv312 = wh1*wt2 ;
sc13 = ph1*pt3 ; wvl13 = phl1*wt3 ; wv213 = wh1*pt3 ; wv313 = wh1*wt3 ;
sc14 = phl1*pt4 ; wvl14 = phl1*wt4 ; wv214 = whl*pt4 ; wv314 = whl*wt4 ;
sc15 = ph1*ptS ; wvl15 = ph1*wt5 ; wv215 = wh1*pt5 ; wv315 = wh1*wt5 ;

if dow >=2 and dow <= 6 then

approx2 = -938.6+2.65*hr+19.8*temp-191.04*wv214+156.8*wv204+414.4*s5c01
-33.9%s5c03-46.8*wv303-134*wv212+68.4*wv203+169.7*sc14-189.9%s5c04
-100.9*wv101+252.7*wv211-68.9*sc13+327.4*sc1 1+251.9*wv305
-72.9*wv213+487.7*wv105 ;

if dow=1 or dow =7 then

approx2 = -701.5-1.76*hr+15.4*temp+176.6*sc11-168.7*sc13+138.5*sc15
+123.1*wv204+251.6*sc12-50.1*wv214+102.3*sc14-60.7*sc03-37*wv103
-34.1*wv213 ;

run ;

filename out2 'c:\temp\rascwprl.dat' ;

data indatal ;
set indata ;
file out2 ;

if temp = . then temp =-99 ,
if hw =, then hw=-99 ;
if approx2 =, then approx2 =-99 ;

put (mm dd yy hr temp hw approx2) (4*5.0 3*11.2) ;
run;

/*

Program listing for determining Wave-net prediction at scale = 3 (final
approximation.

*/

data indata ;

infile 'c:\temp\rascwprl.dat';

input mm dd yy hr temp hw approx2 ;
date = mdy(mm,dd,yy) ;

dow = weekday(date) ;



if temp = -99 thentemp = . ;
ifhw=-99 thenhw= . ;

if approx2 = -99 then approx2 = . ;

m=3;

templ =temp - 20 ;
h=(2**(-m))*hr;
t = (2**(-m))*templ ;

phO = sqrt(6/(3.14*(3+1)))*exp(-6*((h - 0)**2)/(3+1)) ;
phl = sqrt(6/(3.14*(3+1)))*exp(-6*((h - 1)**2)/(3+1)) ;
ph2 = sqrt(6/(3.14*(3+1)))*exp(-6*((h - 2)**2)/(3+1)) ;

ptO = sqre(6/(3. 14*(3+1)))*exp(-6*((t - 0)**2)/(3+1)) ;
ptl = sqrt(6/(3.14*(3+1))*exp(-6*((t - 1)**2)/(3+1)) ;
Pt2 = sqri(6/(3.14*(3+1)))*exp(-6*((t - 2)**2)/(3+1)) ;

pt3 = sqrt(6/(3.14*(3+1)))*exp(

-6%((t - 3)**2)/(3+1)) ;

ptd = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 4)**2)/(3+1)) ;
ptS = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 5)**2)/(3+1)) ;
pt6 = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 6)**2)/(3+1)) ;
pt7 = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 7)**2)/(3+1)) ;
pt8 = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 8)**2)/(3+1)) ;
pt9 = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 9)**2)/(3+1)) ;
pt10 = sqrt(6/(3.14*(3+1)))*exp(-6*((t - 10)**2)/(3+1)) ;

who0 = c0s(2.570935%(2%(h - 0) - 1))*exp(-0.222759*((2*(h - 0) - 1)**2)) ;
whl = cos(2.570935*(2*(h - 1) - 1))*exp(-0.222759*((2*(h - 1) - 1)**2)) ;
wh2 = c0s(2.570935%(2%(h - 2) - 1))*exp(-0.222759*((2*(h - 2) - 1)**2)) ;

wt0 = c0s(2.570935*(2*(t - 0) - 1))*exp(-0.222759*((2*(t - 0) - 1)**2)) ;
wtl = c0s(2.570935*(2*(t - 1) - 1))*exp(-0.222759*((2*(t - 1) - 1)**2)) ;
wt2 = c0s(2.570935*(2*(t - 2) - 1))*exp(-0.222759*((2*(t - 2) - 1)**2)) ;
wt3 = c0s(2.570935*(2*(t - 3) -
Wt4 = cos(2.570935*(2*(t - 4) -
wtS = c0s(2.570935*(2*(t - 5) -
wt6 = c0s(2.570935*(2*(t - 6) -
wt7 = c0s(2.570935*(2*(t - 7) -
wt8 = c0s(2.570935*(2*(t - 8) -
wt9 = c0s(2.570935*(2*(t - 9) -
wt10 = cos(2.570935*(2*(t - 10) - 1))*exp(-0.222759*((2*(t - 10) - 1)**2));

1))*exp(-0.222759*((2*(t
1))*exp(-0.222759*((2*(t
1))*exp(-0.222759%((2*(t
1))*exp(-0.222759*((2*(t
1))*exp(-0.222759*((2*(t
1))*exp(-0.222759*((2*(t
1))*exp(-0.222759*((2*(t

-3) - 1)**2));
-4) - )**2));
- 5) - 1)**2));
- 6) - 1)**2)) ;
-7)- 1)**2));
- 8) - 1)**2));
-9) - 1)**2));
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wv100 = ph0*wt0 ; wv200 = whO*pt0 ; wv300 = whO*wt0 ;
wv101 = ph0*wtl ; wv201 = wh0*ptl ; wv301 = whO*wt1
wv102 = ph0*wt2 ; wv202 = wh0*pt2 ; wv302 = whO*wt2 ;
wv103 = ph0*wt3 ; wv203 = wh0*pt3 ; wv303 = whO*wt3 ;
wv104 = ph0*wt4 ; wv204 = wh0*pt4 ; wv304 = whO*wt4 ;
wv105 = ph0*wt5 ; wv205 = wh0*pt5 ; wv305 = whO*wt5 ;
wv106 = ph0*wt6 ; wv206 = wh0*pt6 ; wv306 = whO*wt6 ;
wv107 = ph0*wt7 ; wv207 = wh0*pt7 ; wv307 = whO*wt7 ;
wv108 = ph0*wt8 ; wv208 = wh0*pt8 ; wv308 = whO*wt8 ;
wv109 = ph0*wt9 ; wv209 = wh0*pt9 ; wv309 = wh0*wt9 ;

wv1010 = phO*wt10 ; wv2010 = wh0*pt10 ; wv3010 = whO*wt10 ;

wv110 = ph1*wt0 ; wv210 = wh1*pt0 ; wv310 = whl1*wt0
wvlll =phl*wtl ; wv211 = wh1*ptl ; wv311 = whl*wtl;
wv112 = ph1*wt2 ; wv212 = wh1*pt2 ; wv312 = whl*wt2 ;
wv113 = phl*wt3 ; wv213 = wh1*pt3 ; wv313 = whl*wt3 ;
wvl14 = ph1*wt4 ; wv214 = whl*pt4 ; wv3 14 = whl*wt4 ;
wv115 = phl*wt5 ; wv215 = wh1*pt5 ; wv315 = whl*wt5
wv116 = ph1*wt6 ; wv216 = wh1*pt6 ; wv316 = wh1*wt6 ;
wv117 = ph1*wt7 ; wv217 = wh1*pt7 ; wv317 = wh1*wt7 ;
wv118 = ph1*wt8 ; wv218 = wh1*pt8 ; wv318 = wh1*wt8;
wv119 = ph1*wt9 ; wv219 = wh1*pt9 ; wv319 = whl*wt9;

wv1110 = ph1*wt10 ; wv2110 = wh1*pt10 ; wv3110 = whl1*wt10 ;

wv120 = ph2*wt0 ; wv220 = wh2*pt0 ; wv320 = wh2*wt0
wv121 = ph2*wtl ; wv221 = wh2*pt1 ; wv321 = wh2*wt1;
wv122 = ph2*wt2 ; wv222 = wh2*pt2 ; wv322 = wh2*wt2 ;
wv123 = ph2*wt3 ; wv223 = wh2*pt3 ; wv323 = wh2*wt3;
wv124 = ph2*wt4 ; wv224 = wh2*pt4 ; wv324 = wh2*wt4 ;
wv125 = ph2*wtS ; wv225 = wh2*pt5 ; wv325 = wh2*wt5 ;
wv126 = ph2*wt6 ; wv226 = wh2*pt6 ; wv326 = wh2*wt6 ;
wv127 = ph2*wt7 ; wv227 = wh2*pt7 ; wv327 = wh2*wt7 ;
wv128 = ph2*wt8 ; wv228 = wh2*pt8 ; wv328 = wh2*wt8 ;
wv129 = ph2*wt9 ; wv229 = wh2*pt9 ; wv329 = wh2*wt9 ;

wv1210 = ph2*wt10 ; wv2210 = wh2*pt10 ; wv3210 = wh2*wt10 ;

if dow >= 2 and dow <= 6 then

approx3 = approx2 +73.1*wv229+50.4*wv316-50.5*wv317 ;
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ifdow =1 or dow =7 then
approx3 = approx2 +58.9*wv127-41.9*wv324-52 8*wv128-707.4*wv2010 ;
hwresid = hw - approx3 ;

run;

filename out2 'c:\temp\rascwpr2.dat' ;

data indatal ;
set indata ;

file out2 ;
if hwresid = . then hwresid =-99 ;
ifhw = then hw =-99 ;

put (mm dd yy hr hw hwresid) (4%5.0 2*¥11.2) ;
run;
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APPENDIX E

A SAMPLE PROGRAM FOR PERFORMING DATA-SCREENING OF
ENERGY USE IN COMMERCIAL BUILDINGS

[k sk ok ook ok s kot ok o o o ok o o sk ok ok o e s ksl ke oo sk s ok ok ok o sk ok oo ok ok ok ok o sk ok ok o sk e ok ok ok ok ok ok ok K

THIS PROGRAM WILL DEVELOP MODELS FOR TEMPERATURE AND
WEATHER DEPENDENT ENERGY USE FROM TRAINING DATA SET AND USE
THE PREDICTION LIMITS FOR SCREENING ANY TEST DATA SET.
MAXIMUM NUMBER OF OBSERVATIONS OF BOTH TRAIN AND TEST DATA
SET IS LIMITED BY THE VALUE OF MAXLINE DEFINED AT THE
BEGINNING OF THE PROGRAM.

**********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>

#define maxline 10000
#define col 15

main (int argc, char *argv[])

{

inti, j, k, I, m, n, p, jj, ipl, kp1, nn, wdobs, weobs, indwd[maxline] ;

int wdobst, weobst, day, dow, line, lines, linest, indwe[maxline] ;

double decimal, in[maxline][col], wdin[maxline][col], wein[maxline][col] ;
double xwd[maxline][col], xwe[maxline][col], xtwd[col][maxline] ;
double xtwe[col][maxline], ywd[maxline], ywe[maxline], ytywd, ytywe ;
double xty[3], xtywd[col], xtywe[col], xtxwd[col][col], xtxwe[col][col] ;
double xtx[3][3], xtxinv[3][3], xtxinvwd[col][col], xtxinvwe[col][col] ;
double xtxdet, x[maxline]{3], xt[3][maxline], y[maxline] ;

double yty, ssewd, ssewe, rmsewd, rmsewe, sse, rmse, btxtywd, btxtywe ;
double betawd[col], betawe[col], beta[3], tin[maxline][col] ;

double 1[3], Itxtxinv[3], Ixtx], utl, Itl, Iwd[maxline][col] ;

double lwe[maxline][col], predwe[maxline], Itwe[col][maxline] ;

double ltxtxwe[maxline][col], ltxtxIwd[maxline], ltxtxlwe[maxline] ;
double predwd[maxline], ltwd[col][maxline], ltxtxwd[maxline][col] ;



double test[maxline][col], wdtest[maxline][col], wetest[maxline][col] ;
int wdtest1, wdtest2, wdtest3, wdtest4, wdtest7 :

int wetest1, wetest2, wetest3, wetestd, wetest7 ;

double uplwd, uplwe, Ipiwd, Iplwe ;

double afcol][col], b[col][col], big, temp, quot, ab, sum ;

char s[100] ;
FILE *ifpi, *ifpt, *ofpwd, *ofpwe ;

if (arge 1= 5) {

printf{"\n\n Improper command \n") ;

printf{"Proper format is:\n") ;
printf{"screen] train_data_file test_data_file wd_outfile we_outfile\n") ;
exit(1) ;

}

ifpi = fopen(argv[1], ") ;
ifpt = fopen(argv[2], "r") ;
ofpwd = fopen(argv(3], "w") ;
ofpwe = fopen(argv[4], "w") ;

/* reads input training data and stores weekdays and weekends data
separately in wdin[}[] and wein[][] respectively */

n=1;

while((fgets(s, 100, ifpi) != NULL) && (n <= maxline)) {
sscanf(s, "%lf%lf6lf%1f%l %1%l %! %If", &in[n][1], &in[n][2],
&in[n][3], &in[n][4], &in[n][5], &in[n][6], &in[n][7], &in[n][8],
&in[n][9], &in[n][10]) ;

in[n]{7] = in[n][7)/100 ;
if ((in[n][8] > 0) && (in[n][9] > 0))
nt+;
}

printf("\n input data read\n") ;
lines=n-1;

n=1;
wdobs=1;



weobs =1 ;
while (n <= lines) {
decimal = in[n][6] ;
day = (int) (decimal + 3) ;
dow=(day % 7) ;
if ((dow == 1) || (dow == 0)) {
for(i = 1; i <= 10; i++) wein[weobs][i] = in[n][i] ;

weobs++ ;
}
else {
for(i = 1; i <= 10; i++) wdin[wdobs][i] = in[n][i] ;
wdobs++ ;
}
n++
}

wdobs = wdobs - 1 ;
weobs = weobs - 1 ;
printf{("\n no problem so far/\n") ;

/* Does regression to develop model for weekdays */

for(i = 1; i <= wdobs; i++) {
ywd[i] = wdin[i][8] ;
xwd[i][1]=1;
xwd[i][2] = wdin[i][9] ;
xwd[i][3] = sin((2*3.14/80)*(wdin[i][9]-20)) ;
xwd[i][4] = xwd[i][3]*sin((2*3.14/24)*(wdin[i][7])) ;
xwd[i][S] = wdin[i][9]*cos((2*3. 14/24)*(wdin[i][7])) ;
for (j = 1;j <= 5; j++) xtwd[j][i] = xwd[i][j] ;
}

for = 1; <= 5;j++) {
xtywd[j] =0;
for (k = 1; k <= 5, k++) xtxwd[j][k] = 0 ;
}

for (= 1;j <= 5, j++) {
for (k=1; k <= 5; k++) {

for(i = 1; i <= wdobs; i++) xtxwd[j][k] += xtwd[j][i]*xwd[i][k] ;

}

for j=1;j<=5;j++) {
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for(i = 1; i <= wdobs; i++) xtywd[j] += xtwd[j][i]*ywd[i] ;
}

ytywd =0 ;
for(i = 1; i <= wdobs; i++) ytywd += ywd[i]*ywd[i] ;

/* INVERSE MATRIX CALCULATION ¥/

for (p=1; p <=n; p++) {

for (i = 1;i <=n; i++) {
for (j =1, j <=n; j++) a[i][j] = xtxwd[ilfj] ;
}

for(i=1;i<=n;i++)afi][m]=0;
a[pllm] =1;

for (k=1; k <=1I; k++) {
i=k
big = fabs(afk][k]) ;
kpl=k+1;
for (i=kpl;i<=n; i++) {
ab = fabs(a[i][k]) ;
if (big < ab) {
big=ab;
=i,
}
}

if (j 1=k) {
for j =k; j <=m; j++) {
temp = a[jj1[j] ;
aljilli] = alk][i] ;
alk]j] = temp ;
}
}

for (i=kpl;i<=n; i++) {
quot = a[i][k] / a[k][k] ;



for (j = kpl; j <= m; j++)
afi](j] = e}l[i][i] - quot*a[k][j] ;

for i=kpl;i<=n;i++)afi][k]=0;
}
b{n]{p] = a[n][m] / a[n][n] ;

for (nn = 1; nn <=1I; nn++) {
sum=0;
i=n-nn;
ipl=i+1;
for ( =ipl; j <= n; j++) sum += a[i][j]*b[j][p] ;
b}[i][p] = (a[i][m] - sum) / afi][i] ;

for(i=1,i<=n;i++) {
for (j = 1; j <= n; j++) xtxinvwd[i][j] = b[i][j] ;
}

/* END OF INVERSE MATRIX CALCULATION */

for (i=1;i<=5; i++) betawd[i] = 0 ;

for(i=1;i<=5;i++) {
for j=1;j <=5, j++) betawd[i] += xtxinvwd][i][j]*xtywd[j] ;
}
for(i=1,i<=5;i+t)
printf{("\n betawd[%d] = %f", i, betawd][i]) ;

btxtywd =0 ;
for (i= 1;i <= 5; i++) btxtywd += betawd[i]*xtywd[i] ;

ssewd = ytywd - btxtywd ;
rmsewd = sqrt(ssewd/(wdobs - 4)) ;
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/* Does regression to develop model for weekends */

for(i = 1; i <= weobs; i++) {
ywe[i] = wein[i][8] ;
xweli][1]=1;
xweli][2] = wein[i][9] ; :
xwe[i][3] = cos((2*3.14/80)*(wein[i][9] - 20)) ;
xwel[i][4] = sin((2*3.14/80)*(wein[i][9] - 20))*sin((2*3.14/24)*(wein[i][7])) ;
xwe[i][5] = wein[i][9]*sin((2*3.14/24)*(wein[i][7])) ;
xwe[1][6] = wein[i][9]*cos((2*3.14/24)*(wein[i][7])) ;
for = 1; j <= 6; j++) xtwe[j][i] = xwei][j] ;

forG=1;j <= 6; j++) {
xtywe[j] =0,
for (k = 1; k <= 6; k++) xtxwe[j][k] =0 ;
}

for = 1;j <= 6, j++) {
for (k=1,k <=6; k++) {
for(i = 1; i <= weobs; i++) xtxwe[j1[k] += xtwe[j][i]*xwe[i][k] ;
}
}

for = 1; <= 6,j++) {
for(i = 1; i <= weobs; i++) xtywe[j] += xtwe[j][i]*ywe[i] ;

}
ytywe =0;
for(i = 1; i <= weobs; i++) ytywe += ywe[i]*ywel[i] ;

/* INVERSE MATRIX CALCULATION */

n=6;
m=n+n,
I=n-1;

for (p=1;p <=n; p++) {

for (i=1;i<=n;i++) {
for (j = 1; j <= n; j++) afi][j] = xtxwe[i][j] ;



}

for(i=1;i<=n;it+) afi][m]=0;
ap][m]=1;

for (k=1;k <=1} k++) {
i=k
big = fabs(a[k][k]) ;
kpl=k+1;
for (i =kpl;i<=n; it++) {
ab = fabs(a[i][k]) ;
if (big < ab) {
big=ab;
§=1i;
}
}

if (j =k) {

for (j =k; j <=m; j++) {
temp = a[jj][j] ;
afjjlli] = alkI[i] ;
a[k][j] = temp ;

}
}
for (i =kpl;i<=n; i++) {

quot = afi][k] / a[k][k] ;
for G =kpl;j <= m; j+)

ali](j] = afi](i] - quot*a[k](j] ;

}
for i =kpl;i<=n; i++) a[i][k] = 0 ;
}
b[n][p] = a[n][m] / a[n][n] ;
for (nn = 1; nn <= II; nn++) {
sum=0;

i=n-nn;
ipl=i+1;

for j =ipl; j <=n; j++) sum += a[i][jT7*b[j1[p] ;

blil[p] = (;l[i][m] - sum) / afi[i] ;
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}

for(i=1;i<=n;i++) {
for (j = 1; j <= n; j++) xtxinvwel[i][j] = b[i][i] ;
}

/* END OF INVERSE MATRIX CALCULATION */

for (i=1; i <=6, i++) betawe[i] = 0 ;

for i=1;i<=6;i++) {
for (j = 1; j <= 6; j++) betawe[i] += xtxinvwel[i][j]*xtywel[j] ;

for (i=1;i<=6;i++)
printf{("\n betawe[%d] = %f", i, betawe]i]) ;

btxtywe =0 ;
for (i= 1; i <= 6; i++) btxtywe += betawel[i]*xtywe[i] ;

ssewe = ytywe - btxtywe ;
rmsewe = sqrt(ssewe/(weobs - 6)) ;

/* Creates temperature model from input training data */

yty=0;

for(i=1;i<=2;i++) {
xty[i] =0;
for = 1;j <=2; j++) xtx[i][j] = 0 ;

rewind(ifpi) ;

n=1;

while((fgets(s, 100, ifpi) = NULL) && (n <= maxline)) {
sscanf(s, "%If%4l%I %1%l %% %I %If%If", &tin[n][1], &tin[n][2],
&tin[n][3], &tin[n][4], &tin[n][5], &tin[n][6], &tin[n][7], &tin[n][8],
&tin[n][9], &tin[n][10]) ;

if ((tin[n][9] > 0) && (tin[n][10] > 0))



n++;

line=n-1;
printf{("\n line = %d", line) ;

for (n= 1; n <=line; n++) {
y[n] = tin[n][9] ;
x[n]{1]=1;
x[n][2] = tin[n][10] ;
xt[1][n] = x[n][1] ;
xt[2][n] = x[n][2] ;
xty[1] += xt[1][n]*y[n] ;
xty[2] += xt[2][n]*y[n] ;
yty +=y[n]*y[n] ;

}

for(i=1;i<=2;it++) {
for G=1;j <=2; j++) {

for (n=1; n <= line; n++) xtx[i][j] += xt[i)[n]*x[n]{j] ;

}
xtxdet = xtx[1][1]*xtx[2][2] - xtx[1][2]*xtx[2][1] ;
xtxinv[1][1] = xtx[2][2)/xtxdet ;
xtxinv[1][2] = -xtx[1][2]/xtxdet ;
xtxinv[2][1] = -xtx[2][1]/xtxdet
xtxinv([2][2] = xtx[1][1])/xtxdet ;

beta[1] = xtxinv[1][1]*xty[1] + xtxinv[1][2]*xty[2] ;
beta[2] = xtxinv[2][1]*xty[1] + xtxinv[2][2]*xty[2] ;

printf{"\n beta[1] = %f, beta[2] = %f.", beta[1], beta[2]) ;
sse = yty - (beta[1]*xty[1]+beta[2]*xty[2]) ;
rmse = sqrt(sse/(line - 2)) ;

/* Reads test data set for screening */

n=1;
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while((fgets(s, 100, ifpt) I= NULL) && (n <= maxline)) {
sscanf{s, "%lf%IRl Al %If%I Yl Yl %I, &test[n][1], &test[n][2],
&test[n][3], &test[n][4], &test[n][5], &test[n][6], &test[n][7],
&test[n][8], &test[n][9], &test[n][10]) ;
test[n][7] = test[n][7]/100 ;
n++;

linest=n-1;
/* Performs screening of temperature data */

for (n = 1; n <= linest; n++) {

if (test[n][10] > 0) { l1=1;
1[2] = test[n][10] ;
Itxtxinv[1] = I[1]*xtxinv[1][ 1]+ [2]*xtxinv[2][1] ;
Itxtxinv([2] = I[2] *xtxinv[ 1][2]+[2]*xtxinv[2][2] ;
Ixtxl = Itxtxinv[1]*][1] + Itxtxinv[2]*1[2] ;

utl = (beta[1]+test[n][10]*beta[2])+3.09*rmse*sqrt(1+ Ixtxl) ;
It] = (beta[1]+test[n][10]*beta[2])-3.09*rmse*sqrt(1+ Ixtxl) ;
if ((test[n][9] <Itl) || (test[n][9] > utl))

test[n][9] = beta[1]+test[n][10]*beta[2] ;

}
}

n=1;
wdobst=1 ;
weobst=1;
while (n <= linest) {
decimal = test[n][6] ;
day = (int) (decimal + 3) ;
dow = (day % 7) ;
if ((dow == 1) || (dow == 0)) {
for(i=1;i <= 10; i++) wetest[weobst][i] = test[n][i] ;
weobst++ ;

}
else {
for(i=1;1<=10; i++) wdtest[wdobst][i] = test[n][i] ;
wdobst++ ;
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n++

wdobst-- ;
weobst-- ;

/**********************************************************************
% 2% % ok k

* DATA-SCREENING STARTS HERE ! FIRST, TEMPERATURE DATA IS
SCREENED AND *

* REPLACED, IF NECESSARY BY NWS DATA. THEN THE ENERGY DATA IS
SCREENED. *

ke e ok b o ok o ok ok sk ok oo ok o ke s o ok sk ok sk ok ok ok ok ok ok ok ok ok ok s ok ke okt o o ok ok ok ke o ok o ok ok ok o ok ok ok ok ok ok ks ok ook ok sk ok o 3K
*****/

/* weekday energy data is screened now and printed to a file */

for(i = 1; i <= wdobst; i++) {
Iwd[i][1]=1;
Iwd[i][2] = wdtest[i][9] ;
Iwd[i][3] = sin((2*3.14/80)*(wdtest[i][9]-20)) ;
Iwd[i][4] = Iwd[i][3]*sin((2*3.14/24)*(wdtest[i][7])) ;
Iwd[i][S] = wdtest[i][9]*cos((2*3.14/24)*(wdtest[i][7])) ;

predwd[i]=0;
for j=1;j<=5;j++) {
Itwd(j][i] = Iwd[i][;] ;
predwd[i] += betawd[j]*Iwd[i][j] ;
Itxtxwd([i][j] =0 ;
for (k=1;k <=35; k++) {
Itxtxwd[i][j] += Itwd[k][i]*xtxinvwd[k][j] ;
}

}

Itxtxlwd[i]=0 ;
for (k = 1; k <= §; k++) Itxtxlwd[i] += ltxtxwd[i][k]*ltwd[k][i] ;
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uplwd = predwd[i] + 3.09*rmsewd*sqrt(1+ltxtxlwd[i]) ;
Iplwd = predwd[i] - 3.09*rmsewd*sqrt(1-+txtxlwd([i]) ;

if ((wdtest[i][8] <= 0) || (wdtest[i][8] < Iplwd) || (wdtest[i][8] > uplwd)) indwd[i]
=1:
else indwd[i]=0;

wdtest] = (int) wdtest[i][1] ;
wdtest2 = (int) wdtest[i][2] ;
wdtest3 = (int) wdtest[i][3] ;
wdtest4 = (int) wdtest[i][4] ;
wdtest7 = (int) wdtest[i][7] ;

fprintf (ofpwd, "%d %d %d %d %d %f %f %d\n",
wdtest1, wdtest2, wdtest3, wdtestd, wdtest7, wdtest[i][8],
wadtest[i][9], indwd[i]) ;
}

/* weekend energy data is screened now and printed to a file */

for(i = 1; i <= weobst; i++) {

Iweli][1]=1;
Iwe[i][2] = wetest[i}[9] ;
Iwe[i][3] = cos((2*3.14/80)*(wetest[i][9] - 20)) ;
Iweli][4] = sin((2*3.14/80)*(wetest[i][9] - 20))*sin((2*3.14/24)*(wetest[i][7])) ;
Iwe[i][5] = wetest[i][9]*sin((2*3.14/24)*(wetest[i][7])) ;
Iwe[i][6] = wetest[i][9]*cos((2*3. 14/24)*(wetest[i][7])) ;

predwe[i] =0 ;
for G =1;j<=6;j++) {
ltwefj][i] = twe[i][j] ;
predwe[i] += betawe[j]*Iwe[i][j] ;
Itxtxwel[i][j1=0;
for (k =1; k <=6; k++) {
Itxtxwel[i][j] += Itwe[k][i]*xtxinvwe[k][j] ;

}

Itxtxlwe[i] =0 ;
for (k = 1; k <= 6; k++) ltxtxlwe[i] += ltxtxwe[i][k]*Itwe[k][i] ;
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uplwe = predwel[i] + 3.09*rmsewe*sqrt(1-+txtxlwe[i]) ;
Iplwe = predwefi] - 3.09*rmsewe*sqrt(1+txtxIwe[i]) ;

if ((wetest[i][8] <= 0) || (wetest[i][8] < Iplwe) || (wetest[i][8] > uplwe)) indwe]i]
=1
else indwe[i] =0 ;

wetest] = (int) wetest[i][1] ;
wetest2 = (int) wetest[i][2] ;
wetest3 = (int) wetest[i][3] ;
wetest4 = (int) wetest{i][4] ;
wetest7 = (int) wetest[i][7] ;

fprintf (ofpwe, "%d %d %d %d %d %f %f %d\n",
wetest], wetest2, wetest3, wetest4, wetest7, wetest[i][8],
wetest[i][9], indweli]) ;
}

fclose(ifpi) ;
fclose(ifpt) ;
fclose(ofpwd) ;
fclose(ofpwe) ;

}
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