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ABSTRACT

Numerous fault detection and diagnostic system tech-
niques have been developed for HVAC systems, but most focus
on detecting faults at the component level, for example, air-
handling units or variable air volume boxes. This paper exam-
ines the use of the ASHRAE simplified energy analysis proce-
dure (SEAP) for fault detection at the whole-building level. In
the procedure examined, an implementation of the SEAP is
“calibrated” to a period of measured heating and cooling data
from a building so the simulated data closely follow the
measured data. A small adjustment is added to the simulated
data so the total adjusted simulated heating and cooling
consumption values exactly match the measured heating and
cooling consumption totals for the same period. The adjusted
version of the calibrated SEAP simulation is then used to
predict future consumption, using future weather data. Visual
comparison with future measured data is used to diagnose
significant deviations from expected performance. The proce-
dure is applied retrospectively to three years of measured
consumption data as a test. It clearly identifies three significant
operational changes that occurred during the test period.
Three different presentation formats are tested for fault iden-
tification—monthly deviations, daily percent deviations, and
cumulative deviation plots. All have value, and it is ultimately
a user preference as to which is the most informative. 

INTRODUCTION

Increasing energy costs have led to the need for a simple,
reliable, and accurate diagnostic tool to gauge the energy
performance of commercial buildings in real time. Histori-
cally, the energy efficiency of most buildings depreciates

over time, due to issues ranging from ill-advised operational
changes to failed or failing components, such as chilled
water (CHW) or hot water (HW) control valves (Claridge et
al. 2004; Liu et al. 2002). Fault detection and diagnostic tech-
niques have been developed, but most focus on the compo-
nent level or subsystem level and detect faults such as those
in air-handling units or variable air volume terminal boxes
(Norford et al. 2002; Salsbury and Diamond 1999; Xu and
Haves, 2002). The focus of this paper is on the development
and testing of a whole-building-level fault detection concept.
Whole-building-level fault detection and diagnosis is an
approach using measured building energy consumption to
detect and diagnosis building-level energy consumption
problems (Dodier and Kreider 1999; Breekweg et al. 2000a,
2000b). The magnitude of whole-building energy consump-
tion faults using this approach is about five percent (Claridge
et al. 1999). The technique described in this paper utilizes
calibrated simulations to provide a visual comparison to the
measured data. An “on-line” tool that will run in conjunction
with the building’s EMCS system is the ultimate goal.
However, this paper focuses on describing and testing the
proposed fault detection approach.

 Liu and Kelly (1989) describe a two-step procedure for
fault detection and diagnosis. The first step is to predict the
system performance under a faultless state using a model and
compare these values to measured output data. Significant
differences are indicative of a fault. The second step concerns
the diagnostic phase of the system, in which possible causes
for the faults are constructed using a reasoning logic. This
paper is restricted to examination of a whole-building-level
fault detection approach. 
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METHODOLOGY

This paper examines the use of a visual comparison of
calibrated simulation results and measured consumption data
to facilitate detection of significant operational faults in a
building. The comparison may also be performed using math-
ematical criteria to detect faults. This method is compared
with the use of a visual inspection of the measured data alone,
a time-honored method that can be beneficial in gaining
insight into building problems (Claridge et al. 1992, 1999).

To effectively identify faults while minimizing false posi-
tives and false negatives, a rigorous methodology was devel-
oped. Fault detection studies have utilized a physics-based
simulation and measured data to detect performance devia-
tions (Xu and Haves 2002; Haves 1997). The residuals of these
two data sets are then subjected to a threshold that is prede-
termined depending on how stable a system is. Systems that
are unstable will require a large threshold range to minimize
false positives. Usually three sample standard deviations of
the residual under normal operating conditions are used as a
threshold value (Montgomery et al. 1994; Rose et al. 1993;
Farnum 1992; Fasolo and Seborg 1992). 

There are two types of faults: complete (or abrupt failures)
and performance degradations (Kelly et al. 1996). Performance
degradations are gradually evolving faults. The methodology
described in this paper is able to detect both fault types. 

Several steps are necessary to ensure that the performance
of the fault detection sequence is accurate. This sequence
contains three preliminary steps, critical to the accuracy and
performance of the system because they are tailored to the
specific building’s parameters. These steps are described below.

Step 1: Collect Information

The first step is to collect all the critical building and site
data, such as wall composition, building orientation, internal
load data, occupancy schedules, equipment data and schedules
(including air-handling units and exhaust fans), measured
consumption data, and weather data. This step is critical for
the construction of a building-specific energy consumption
simulation. For the simulation construction, about a month of
data is needed. The accuracy of the energy consumption
meters should be verified prior to using the measured data for
simulation construction. 

Step 2: Calibrate Simulation

The second step is to generate a calibrated baseline energy
consumption simulation using the data collected in step 1.
First, the measured energy consumption data should be exam-
ined to identify erroneous or missing data to enable generation
of a clean measured data set. 

To achieve a calibrated simulation of the building’s
energy consumption, known building parameters, acquired in
step 1, are input into the simulation software to acquire a first
run, or initial simulation of the building, which is then plotted
against the baseline screened, measured consumption with
outside dry-bulb temperature as the abscissa. The methodol-

ogy chosen to calibrate the simulation presented in this paper
used the following approach:

a. Adjust the cooling energy consumption profile of the sim-
ulated output, with very little attention being paid to the
magnitude, to closely resemble the measured consump-
tion profile. The profile of the simulated consumption can
be adjusted using simulation inputs that are affected by
the outdoor environment directly. These include conduc-
tion components such as wall compositions, U-values,
ratios of glass area to wall area, as well as outside air frac-
tion, CHW temperature schedule, etc.

b. Once the simulated cooling energy consumption profile
closely resembles the measured consumption profile, the
magnitude of the simulated consumption can be adjusted
using simulation inputs that are not affected by the out-
door environment directly. These variables include the
internal gains, occupancy, fraction of interior to exterior
floor area, building area, etc.

c. Once the cooling model profile and order of magnitude
closely resemble the measured consumption, repeat the
process for the heating consumption. Steps a and b usu-
ally require more than one iteration because the cooling
and heating consumption are sometimes functions of
one another.

Step 3: “Correct” the Calibrated Simulation

The third step is to adjust the heating and cooling
consumption values from the calibrated simulation so the
totals of the simulated cooling and heating consumption for
the calibration period are identical to the total measured
values. This involves the calculation of an appropriate “correc-
tion factor” as will be described later. If there is even a small
systematic error in the calibrated simulation, it will decrease
the sensitivity of the fault detection process. 

After the first three setup steps are completed, the
following steps become the executable portion of the fault
detection process.

Step 4: Collect Measured Data

The fourth step, or first step of the actual fault detection
sequence, collects measured cooling and heating consumption
data as well as measured outdoor environmental data (i.e.,
outside air dry-bulb and wet-bulb temperatures, relative
humidity, or dew-point temperatures). These data will typi-
cally be hourly average data for a 24-hour period to coincide
with the typical simulation time scale. 

Step 5: Compare Measured and 
Simulated Energy Consumption

The calibrated simulation of step 2 is then run using the
appropriate weather input data and other measured input
data that may be available (e.g., internal electrical gains,
return temperatures, etc.). The output of this simulation is
corrected using the procedure developed in step 3. The
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corrected simulation output is compared with the measured
cooling and heating consumption data. 

Step 6: Fault Detection 

Any differences between the corrected simulation values
and the measured values are evaluated to determine whether
they exceed a defined error threshold. The results of the anal-
ysis are presented to the user in one or more appropriate forms. 

If implemented in an on-line fault detection system, an
alarm would be implemented when appropriate and the process
would be repeated. Within this paper, we will proceed to define
and evaluate this process using an implementation of the
ASHRAE simplified energy analysis procedure (Knebel 1983)
and will apply the process to a case study building.

CASE STUDY BUILDING DESCRIPTION

A large university food service building is used for testing
the fault detection procedure described in the previous section.
This building contains 81,936 ft2 (7612 m2) of conditioned
floor area according to the plans and includes a basement and
first floor, with the basement area about half the first floor area.
The building, located in College Station, Texas, was originally
built in 1912 but was most recently renovated in 1999, when
most air-handling units (AHU) were replaced. The front of the
building faces south and the ceiling heights on the first and
basement levels are 20 ft (6.1 m) and 10 ft (3.0 m), respec-
tively. The main floor is broken into seven zones with a large
majority of the area associated with the kitchen and main
dining areas. There is also a small café/coffee bar and some
offices located on the main floor. The basement level is broken
into five zones with the majority of this level used for storage.
The other significant basement uses include a small food court
and a convenience store.

Twelve AHUs provide conditioned air to the main floor of
the building, eleven of which are single-duct constant-volume
systems, with one a single-duct variable air volume system.
The first floor is also served by two outside air pretreatment
AHUs, which precondition the outside air for the main floor’s
AHUs. Also located in the first floor kitchen are four hood
exhaust fans, which are interlocked with makeup AHUs 8–11.
Five single-duct constant-volume AHUs provide conditioned
air to the basement level. There is an outside air pretreatment
AHU, which preconditions the outside air for the basement
AHUs. Also serving the basement level are six exhaust fans,
two of which are kitchen hoods. Two CHW pumps with vari-
able-speed drives (VSD) and one constant-speed HW pump
with a bypass valve make up the secondary hydronic systems
for the building. Heating and cooling for the building are
supplied as hot water and chilled water from the campus
central system.

Two hundred and twenty-five points with four hundred and
ninety-one virtual measured points are monitored or controlled
by the energy management and control system (EMCS). These
points include flow meters on the CHW and HW secondary
hydronic systems, temperature and pressure sensors, and VSD

speeds. One of the major factors that lead to selection of this
building for study was the extensive utility metering that is
present. Electricity consumption, cooling consumption, and
heating consumption are all recorded on the EMCS. Since heat-
ing and cooling consumption are recorded by Btu meters on the
HW and CHW lines to the building, these values will often be
referred to as HW consumption or CHW consumption in the
remainder of this paper. In addition, domestic cold water,
domestic hot water, and steam use in the kitchen are all metered
for this building. The heating, cooling, and electricity consump-
tion are the only quantities directly used in the fault detection
analysis to follow, but the presence of the other quantities was
considered beneficial for diagnostic purposes.

IMPLEMENTATION OF FAULT DETECTION 
PROCEDURE IN THE CASE STUDY BUILDING

Step 1: Collect Information

The building construction characteristics and HVAC
system information needed for simulation was collected from
as-built drawings, from visits to the facility, and from the
EMCS. The hourly electricity use (none of which is directly
used for heating or cooling) in the building was collected from
the EMCS and archived. The building operating schedule was
obtained from the university food service. 

Step 2: Calibrate Simulation

The second step generated a calibrated baseline energy
consumption simulation using the data collected in step 1. The
simulation procedure selected for this study was the ASHRAE
simplified energy analysis procedure (SEAP) (Knebel 1983).
The simulation was performed using an in-house implementa-
tion of the SEAP (Liu 1997). Energy use data were available for
the building beginning in October 2001. Weather data for the
site were available dating back to 1990. The heating and cool-
ing data were examined with time series plots and plotted as
functions of ambient temperature. It was observed from the
temperature plots that some unusual behavior started in late
2001 or early 2002. Consequently, the October 2001 data were
used as the baseline data for the model calibration process. The
simulation was calibrated to the measured CHW and HW
consumption data using the “Calibration Signature” procedure
of Wei et al. (1998). Some model parameters that were used to
adjust the simulated CHW and HW consumption profiles
included the cold deck schedule, outside air fraction, wall
composition, and window and wall areas. Model parameters
that were used to adjust the simulated CHW and HW consump-
tion magnitudes included floor area, internal gains (occupant
and equipment), and the ratio of interior to exterior zones.

Step 3: “Correct” the Calibrated Simulation

The third step adjusted the CHW and HW consumption
values from the calibrated simulation so the totals of the simu-
lated CHW consumption and HW consumption for the cali-
bration period are identical to the total measured values.
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Figure 1 shows the cumulative difference between the
simulated and measured CHW and HW consumption for the
October 2001 calibration period. At the end of the month,
the simulated values for consumption of CHW and HW for
the month were 117 MMBtu (34 MW-h) and 113 MMBtu
(33 MW-h) more, respectively, than the measured consump-
tion. (Note: 1 MMBtu = 1,000,000 Btu.)

These differences resulted in mean bias errors1 (MBE)
of 3.8 MMBtu/day (1.1 MW-h/day) and 3.6 MMBtu/day
(1.1 MW-h/day), or 0.158 MMBtu/h (46 kW) and
0.151 MMBtu/h (44 kW) for CHW and HW, respectively.
Since the daily differences did not show any apparent depen-
dence on ambient temperature, the simulated results were
“corrected” by simply subtracting the MBE from the simu-
lated values. These “corrected” simulated values will be
called the “corrected” values of CHW and HW consumption.

The executable portion of the fault detection process was
then implemented.

Step 4: Collect Measured Data

The fourth step, or first step of the actual fault detection
sequence, collected measured CHW and HW consumption
data from the EMCS system. Initially, the dry-bulb and wet-
bulb temperature data supplied by the campus energy office
were used for this simulation process. However, early in the
simulation process, many cases were noted where there were
significant differences between measured and simulated
energy consumption values without apparent explanations.
Eventually, the weather data values were checked, and it was
observed that the wet-bulb temperature was frequently almost
identical to the dry-bulb temperature for significant periods
corresponding to the periods when the simulated consumption

varied widely from the measured consumption. This indicates
that the humidity sensor was out of calibration and was not
reading correct wet-bulb temperatures. Consequently, alterna-
tive weather data from the National Weather Service at East-
erwood Airport in College Station were used.

Step 5: Compare Measured and Simulated Energy 
Consumption

The calibrated simulation of step 2 was executed using the
measured dry-bulb and wet-bulb temperature data. The calcu-
lated MBE values of Step 3 were used to obtain the “corrected”
simulation values. The corrected simulation outputs were then
compared with the measured CHW and HW consumption data.

Step 6: Fault Detection 

Any differences between the corrected simulation values
and the measured values were evaluated visually to determine
whether they represent true fault status or whether the differ-
ences in consumption equate to normal fluctuations in
measured consumption. 

RESULTS OF FAULT DETECTION PROCEDURE

Three of the approaches used to compare the “corrected”
data from the simulation with the measured energy consump-
tion data are presented, which are monthly comparisons, daily
comparisons, and cumulative difference comparison.

Monthly Energy Consumption Differences

The monthly energy consumption difference is defined as

, (1)

where ΔEmonth_k is the cumulative difference between the
measured consumption for a month and the “corrected”
consumption simulated for the same month. The values Ej,k
are the daily measured and “corrected” simulated totals of
CHW or HW consumption for each day of the month. This
comparison is presented in Figure 2, where each positive gray
bar represents the amount by which measured HW consump-
tion for a month exceeds the expected or simulated consump-
tion, while each negative gray bar represents the amount by
which HW consumption is lower than expected. The black
bars have the same meanings for CHW consumption.

For October 2001, the difference between measured and
simulated energy consumption is zero following the
“corrected” calibration process, with total measured
consumptions for the month of 1140 MMBtu and 431 MMBtu
for CHW and HW respectively.

In November 2001 there were small differences between
measured and simulated CHW and HW consumption. From
December 2001 through April 2002, there was a dramatic
increase in the consumption of HW. CHW consumption was
somewhat higher than expected during this period, but the
differences were much smaller than for HW consumption.

1. Defined in the usual manner as ,

where n is the number of days in the calibration period.

Figure 1 Unadjusted CHW and HW cumulative differences
for calibration period (October 2001).

MBE
Esim Emeas–( )∑

n
-----------------------------------------=

ΔEmonth_k Emeas j k, , Ecorr j k, ,–( )
j
∑=
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During May 2002, these trends flipped. CHW use was
much lower than expected throughout the summer, and heat-
ing was slightly lower than expected during July and August.
From September through December, consumption of both
HW and CHW was generally a bit lower than expected. During
February 2003 through December 2003, another flip occurred,
with both CHW and HW consumption again becoming
substantially larger than expected, with the excess CHW
consumption much larger than the excess HW consumption.
During January 2004 the CHW use dropped considerably to a
more reasonable number but was still larger than expected.
From February 2004 though December 2004, the CHW and
HW consumption slowly increased, with spikes in CHW
consumption from February through May 2004. From Decem-
ber 2004 through April 2005, the CHW consumption was
consistently slightly over the predicted consumption, with the
HW consumption accurately predicted.

Looking at only this sequence of data might suggest that
the simulation is not capable of accurately predicting the
consumption of the building. An alternative explanation
would be the occurrence of several changes in building oper-
ation during the period.

Daily Energy Consumption Differences

The second visual interpretation of the fault detection
data is in the form of a percent change plot. This percent
change was calculated for daily consumption differences and
was normalized with the respective average daily consump-
tion for the baseline period. This plot is shown as a percent
change plot to give a normalized indication of the size of
changes observed.

Figure 3 presents the daily energy consumption percent
difference as

, (2)

where ΔEday is the percent by which measured consumption
for a particular day exceeds the “corrected” consumption for
that day, as a percent of the average daily measured CHW or
HW consumption, , during the baseline calibration
period. Emeas is the daily average measured heating or cooling
consumption, and Esim is the “corrected” daily average simu-
lated value of CHW or HW consumption. 

The daily percent change plot of Figure 3 shows a more
detailed representation of the deviations from expected energy
consumption than the monthly totals of Figure 2. When the
daily CHW and HW percent change data are examined, the
same basic energy consumption deviations are observed as
with the monthly cumulative values in Figure 2. The advan-
tage of the percent change method is that the additional detail
can more closely identify time of occurrence of changes than
can be observed using the monthly difference plot. Figures 4,
5, and 6 show “zoomed-in” areas of Figure 3 for a clearer view
of the consumption deviation data. For example, Figure 4
shows that the December 2001 increase in HW consumption
occurred entirely during the period right around Christmas
when all university offices and buildings were closed. Heat
gains from occupants and lighting are lower then and probably
account for the increased HW consumption observed.

The daily data show that CHW consumption during
summer 2002 (Figure 5) was systematically lower, beginning
on May 6 or 7, while the HW consumption did not drop until
the CHW consumption dropped further in early July. During
fall 2002, simulated HW consumption remained slightly
lower than predicted, while cooling went back to “normal” in
early September. It is further evident that the major increases
in HW and CHW consumption evident for March 2003 in the
monthly plot of Figure 2 actually started in the second half of
February (Figure 6).

Cumulative Energy Consumption Differences 

The third visual presentation of the differences between
the measured CHW and HW consumption and the “corrected”

Figure 2 Monthly cumulative CHW and HW difference
between October 2001 and April 2005.

EdayΔ 100
Emeas Esim–( )

Emeas cal,
------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

⋅=

Figure 3 Daily percent change for CHW and HW
consumption between October 2001 and April
2005.

Emeas cal,
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simulated consumption values is the cumulative difference
plot. These differences are defined as 

, (3)

where ΔEcum is the cumulative difference for the period of
the summation and Emeas,i – Esim,i is the daily energy con-
sumption residual.

The cumulative CHW and HW energy consumption
differences for the dining hall are shown in Figure 7. The posi-
tive values of cumulative difference on the plot indicate that
measured consumption exceeds the expected consumption
and vice versa. The slope of the curves also has meaning. A
positive slope indicates that measured consumption is higher
than expected during the time of positive slope and vice versa.
The steeper the positive slope, the higher the rate at which

consumption exceeds expected consumption, and vice versa.
For example, during summer vacation 2002, CHW consump-
tion was less than predicted by the baseline, and the consump-
tion was even lower during the second half of the summer.
Hence, there is a negative slope all summer, but the slope is
steeper during the second half of the summer.

All of the differences visible on the other presentations
are again readily identifiable on the cumulative difference
plots shown in Figure 7. This plot combine some of the
features of the monthly plots and the daily plots since they
show the amount by which consumption differs from expected
consumption during any period and also have enough detail to
permit relatively precise identification of the time that a partic-
ular period of difference starts or ends. One advantage is that
this method produces a much cleaner representation of the
data. For example, the CHW consumption decrease during

Figure 4 Daily percent change for CHW and HW
consumption between October 2001 and
February 25, 2002.

Figure 6 Daily percent change for CHW and HW
consumption between February 1, 2003, and
February 28, 2004.

ΔEcum Emeas i, Esim i,–( )
i
∑=

Figure 5 Daily percent change for CHW and HW
consumption between April 1 and September 30,
2002.

Figure 7 Cumulative CHW and HW consumption
differences between October 2001 and April
2005.
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summer 2002 begins and ends very close to the beginning and
end of summer vacation, and the total CHW consumption is
about 2300 MMBtu (674 MW-h) less than predicted for this
period by the “corrected” simulation.

REASONS FOR THE DIFFERENCES OBSERVED

December 2001

Discussions with the personnel responsible for operating
and commissioning this building revealed that the control
settings were changed while the university was closed during
Christmas vacation 2001. Used with the monthly plot
(Figure 2), this information would seem to account for the
December 2001 differences. On the daily plots (Figures 3, 4),
it seems even more apparent that it was due to control changes
during Christmas vacation since heating consumption appears
to increase sharply just during the period of university closure.
A short-term examination of a cumulative difference plot (not
shown) reveals the increased HW consumption during the
period of closure but also shows that comparable cumulative
differences began earlier in the month. 

Spring 2002

The consumption differences during January–April 2002
are attributed to a HW valve problem that was discovered and
repaired in April 2002. From the daily plots, the HW valve
problem appears to have started a day or so after classes started
in mid-January 2002. It appears that the problem was diag-
nosed and fixed around April 15. This is consistent with infor-
mation received from the commissioning engineer who was
familiar with the operation of the building.

The peak increase in HW energy use during spring semes-
ter 2002 is approximately 150% on the daily plot. The cumu-
lative change plots show that the cumulative increase in hot
water use for this period was about 1200 MMBtu (352 MW-h),
or about $12,000 at $10/MMBtu. The increase in CHW
consumption was considerably smaller during this period.

This pattern of increased daily HW consumption is rela-
tively constant during a period when outside temperature
varies greatly. This implies that the HW waste is occurring at
a point independent of outside conditions, such as at the reheat
coil or some other place beyond the cooling coil. If this diag-
nosis is accurate, there should have been a comfort problem
since there was not as much CHW waste as HW waste. Review
of the call log showed that there was a concentration of hot
calls during spring 2002.

Summer 2002

The lower than expected consumption evident in the
monthly plots during the summer of 2002 may be attributed to
the closure of the cafeteria from May 15 through August. A
weekend HVAC shutdown was also implemented during the
latter part of this period. During this time, some HVAC equip-
ment was shut down over the weekend to reduce energy
consumption during unoccupied periods. 

The daily CHW percent difference plot shows small
savings when the cafeteria closed in May with substantially
larger savings during July; however, the savings actually start
in mid-April. There is evidence of the weekend shutdown in
the CHW plot of Figure 5, but this is much smaller than an
additional factor that produced savings throughout the week.
This factor has not been identified. The peak HW savings were
about 75% of average baseline consumption and peak CHW
savings were 150% of average baseline consumption on the
daily plots. 

The cumulative difference plots show the same factors,
but the weekend differences are impossible to see here. They
do show cumulative CHW savings of about 1800 MMBtu (528
MW-h) during the summer and much smaller HW savings of
about 200 MMBtu (59 MW-h).

Fall 2002

Consumption returned to near expected values in the
monthly plots when the cafeteria opened in September, but
HW and CHW consumption were both slightly lower than
expected through December 2002. This behavior is consistent
with a scheduling change that increased the nighttime HVAC
shutdown schedule from 4 hours to 6½ hours. 

The daily and cumulative difference plots are all consis-
tent with this schedule change. There was a sharp increase in
CHW consumption when the fall semester started but very
little increase in HW consumption. The change in HW
consumption was not visible on the cumulative difference
plot. The latter part of the winter vacation in 2003 shows a
temporary increase in energy use above expected values.

Spring 2003

During March 2003, both CHW and HW consumption
increased dramatically in all plots, with CHW consumption
approximately tripling expected values. Investigation showed
the following:

• The CHW differential pressure setpoint was increased
from 14 psig (96.5 kPa) to 25 psig (172 kPa) during
March in response to hot calls in the leased area and
measured supply temperatures of about 60°F (16°C) in
this area. It was thought that more CHW pressure was
needed to increase the cooling capacity of the cooling
coil in AHU-7 that serves the area. There was some
thought that a larger cooling coil needed to be installed.
Field measurements showed that the existing coil had
adequate capacity for the zone served and there was a
flow blockage in the supply pipe serving AHU-7. Only
1 psig (6.9 kPa) of the 25 psig (172 kPa) pressure drop
was occurring across the cooling coil of AHU-7.

• The AHUs were rescheduled on February 11, 2003, to
come on at 4:00 a.m. rather than at 6:00 a.m. as previously.

A visual inspection of Figures 3 and 6 shows a maximum
CHW consumption change of approximately 500% and a
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maximum HW consumption change of 300%. The problem
seems to be dependent on outside air temperature since the
excess CHW use increases and excess HW use decreases near
the end of the semester. After further investigation into the
unusual behavior of the building, it was discovered that an
incorrect proportionality coefficient was input into the meter-
ing software for this time period. This was a major cause for
the extremely high CHW and HW consumption recorded.

Spring 2004–Spring 2005

From spring 2004 through spring 2005, the CHW use was
slightly above normal, consistently increasing, with the excep-
tion of spikes in February through May 2004. The HW monthly
residuals increased steadily until December 2004. At this point
the HW consumption residuals decrease to almost zero. The
causes for these consumption changes remain unknown. 

VISUAL INSPECTION VERSUS TESTED FAULT 
DETECTION PROCEDURE

Visual inspection of measured data has been used for
some time to detect building operational problems (Claridge et
al. 1992, 1999). One of the most commonly used presentations
of the data has been time series plots of heating and cooling
consumption as shown in Figure 8. The other has been plots of
HW and CHW consumption data plotted as functions of ambi-
ent temperature, shown in Figures 9 and 10.

Visual Interpretation of Measured Time Series 
Energy Consumption

The CHW consumption shown in Figure 8 shows evidence
to an experienced eye of most of the consumption changes
observed and discussed using the plots of Figures 2–7. For the
HW consumption, the highest consumption during the winter
of 2001–2002 appears in February; however, it remains high
throughout March and April, which would be unusual. There is
a very abrupt drop in mid-April, but this occurs during a time
when you would expect consumption to drop due to rising
ambient temperatures, especially when consumption has been

high. The weekend shutdowns during the last half of summer
2002 are visible, as is the sharp increase in consumption during
February 2003. The CHW consumption shows the summer
2002 shutdown of the cafeteria and also shows the late summer
weekend shutdown of HVAC. There is a sharp drop in CHW
consumption in early May, but this would not seem surprising
for a campus facility that has the major part of its operation
closed down during the summer. The February 2003 increase in
CHW use is evident and exceeds the peak consumption of the
previous summer.

The problem with this kind of representation of building
performance is that there is no aid to help the user know what
level of consumption is normal and what is abnormal. This gap
in identifying a faulty building leads to higher degrees of error.
If an operator or building manager does not or cannot deter-
mine if the building is operating normally, than how can abnor-
mal operation be determined? By establishing a gauge to
determine normal energy consumption, abnormal energy
consumption can more readily be identified. This is the real
advantage of utilizing the calibrated simulation approach for
fault detection. 

Visual Interpretation of Measured 
Energy Consumption as a Function of Outdoor Air 
Dry-Bulb Temperature

The CHW and HW consumption data are plotted as a
function of outdoor temperature as shown in Figures 9 and 10. 

The HW consumption shown in Figure 9 does not yield
any obvious abnormalities. It is possible to find evidence of the
abnormal heating consumption discussed earlier if multiple
plots are provided for appropriately chosen time periods, but
this plot alone is not very helpful in originally identifying the
occurrence of problems that occurred during this period. This
can be attributed to the nature of the systems being used in the
case study building. Single-duct constant-volume systems
using reheat will use HW more frequently and not necessarily

Figure 8 Time series plot of measured CHW and HW
consumption from October 2001 to April 2005.

Figure 9 Measured daily average HW consumption versus
mean daily outside air dry-bulb temperature.
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as a direct function of outside air temperature. This is why
using outside air dry-bulb temperature as the abscissa is not a
very effective representation to aid in fault detection for HW
consumption.

When the CHW consumption data are plotted versus
ambient outdoor air temperature for October 2001 to April
2005, two distinct consumption patterns reveal themselves, as
shown in Figure 10. This plot alone does not yield any indi-
cation of what is occurring to cause such wide variations in
CHW consumption for the same outside air dry-bulb temper-
ature. Since CHW consumption is not solely related to the
outside air dry-bulb temperature, one would not want to gauge
the performance of their building using this plot. 

These traditional techniques can be used to uncover most
of the abnormal consumption when used together; however, it
requires a much higher level of experience and skill, as well as
considerably more time and effort, than is the case using the
calibrated simulation approach.

CONCLUSIONS 

A calibrated version of the ASHRAE simplified energy
analysis procedure (SEAP) has been tested for use in identifying
significant deviations from expected building energy consump-
tion and fault detection at the whole-building level. Retrospec-
tive application of the calibrated simulation to three years of
measured consumption data showed that the simulation closely
tracked normal operation and clearly identified three significant
operational changes that occurred during the test period. Three
different presentation formats are tested for fault identification:
monthly deviations, daily percent deviations, and cumulative
deviation plots. All have value and it is ultimately a user pref-
erence as to which is the most informative. 

An on-line version of this fault detection technique is
being developed and implemented to test the technique in real
time. The SEAP is an incomplete representation of any build-
ing, so it is important that a methodology be developed that can

clearly and accurately define an error threshold to differentiate
a true system fault from normal deviations between simulated
and measured consumption caused by the imperfect simula-
tion model. This problem will be addressed in a future paper.
However, the off-line test reported here shows the methodol-
ogy capable of clearly detecting faults and shows promise for
future on-line implementation.
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DISCUSSION

T. Agami Reddy, Professor, Drexel University, Philadel-
phia, PA: (1) How confident are you of the accuracy of your
calibrated simulation program, since you used only one
month of data (October) to calibrate the model?

(2) What are your thoughts about how a simple (and
faster-to-develop) baseline regression model would compare
in terms of fault-detection accuracy to a calibrated simulation
model?

Frank L. Painter: (1) When we compared the uncorrected
calibrated simulation cumulative residuals during the calibra-
tion period, we achieved a somewhat linear profile. This would
indicate to me that the error was not heavily a function of
outdoor air conditions; therefore, the mean bias error correction
factor was used. With this correction faction incorporated into
the model, I am as confident as I can be in this simulation.

(2) I think that a baseline regression model would work
fine as long as the correct inputs are used, such as outside air
wet- and dry-bulb temperatures, as well as parameters such as
solar gain.

K. Subbarao, Texas A&M University, College Station, TX:
Would you get the best of both worlds by using longer-term
data to calibrate a simulation rather than a regression model?

Painter: A regression model was not used. We did use the
calibrated simulation approach; however, we used a short
period of calibration data. Yes, a longer period of calibration
data would enhance the accuracy of the model. The idea was
to use a relatively short period of data, which might be more
attainable than a long period of historical consumption data.

Reinhard Seidl, Principal, Taylor Engineering, Alameda,
CA: Does the proposed method envision a bad calculation
running in parallel with the building meter on a real-time basis
to provide a calculated target for building energy use?

Painter: The method proposed is intended for future “real-
time” FDD; however, the idea would be to run an energy
consumption prediction model calibrated to “normal”
consumption data and then compare the output of that model
to the building consumption meter. This calibrated energy
simulation is intended to provide the target to which you refer.

Bill Mohs, Research and Development Engineer, Thermo
King, Minneapolis, MN: What model would be best to use as
a prediction measure?

Painter: The model that was tested was based on ASHRAE’s
simplified energy analysis procedure (SEAP). We did not test
any other model types; however, there is extensive research
regarding prediction models. Refer to “The Great Energy
Predictor Shootout,” ASHRAE Transactions, Vol. 100, Part 2,
for a great compilation of prediction models.

Andreas Wagner, Professor, University of Karlsruhe,
Karlsruhe, Germany: Does the fluctuation of occupancy
influence the method of calibration?

Painter: Not necessarily. The model utilizes daily average
data, which I would expect to mask any normal occupancy
fluctuations. Obviously, if there were some major occupancy
fluctuations, it might be a parameter to adjust during the cali-
bration process; however, I did not feel it was appropriate in
our particular case.




