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ABSTRACT

A Weaker Hybrid Consistency Condition for Shared Memory Objects. (December 2014)

Shihua Zheng
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Jennifer L. Welch
Department of Computer Science and Engineering

A consistency condition defines the behavior of a shared data object in both parallel and

sequential operations. Hybrid consistency is a consistency condition that allows strong con-

sistency and weak consistency to exist together. In hybrid consistency, the operators are

classified as strong or weak. The operators with different consistency levels have different

amounts of restrictions on the ordering. It tends to obtain both high performance and strong

consistency level. A widely used condition in the industry that provides a very weak guar-

antee is eventual consistency. This thesis proposes a new consistency condition by relaxing

hybrid consistency. The proposed hybrid eventual consistency condition allows weak oper-

ations more flexibility. An algorithm is proposed to implement hybrid eventual consistency

in a message-passing system. In the simulation, we evaluate its average performance. Our

results show that it produces a higher throughput and lower latency than hybrid consistency.
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CHAPTER I

INTRODUCTION

Background

The limitation of a single machine on its computational capacity leads to the development of

distributed computing. Message passing and shared memory are two dominant communica-

tion models in distributed computing systems. Shared memory, which allows operations from

different processors to be performed on a single shared object, is a high-level abstraction.

It makes the programming easier because the manipulation of data on a shared memory

object is very similar to doing the same on a sequential machine. Sometimes, physically

sharing a single centralized memory is not efficient or feasible. Distributed shared memory

(DSM) allows the system to be built on a message passing model to simulate a shared mem-

ory system. Several DSM systems have been implemented by researchers, including Munin

(Bennett et al. [1]), TreadMarks (Amza et al. [2]) and Midway (Bershad et al. [3]).

For performance considerations, we could allow operations to be performed concurrently.

However, a consistency condition is needed to specify the behaviour of the shared memory

object when operations overlap. Atomicity (Lamport [4]), also known as linearizability

(Herlihy and Wing [5]), and sequential consistency (Bennett et al. [1], Lamport [6], Scheurich

and Dubois [7]) are two well-studied strong consistency conditions. Given that implementing

a strong consistency condition is usually costly (Attiya and Welch [8], Gupta et al. [9])

and more than needed, researchers have made many attempts to discover new consistency

conditions, for example, PRAM consistency (Lipton and Sandberg [10]), cache consistency

(Goodman [11]), processor consistency (Goodman [11]), causal consistency (Ahamad et al.

[12]) and local consistency (Bataller and Bernabeu [13]). In addition, single-writer regularity

(Lamport [4]) and multi-writer regularity (Shao et al. [14]) were proposed to set a standard

for a weak but well-behaved correctness condition.
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Eventual consistency (Terry et al. [15], Burckhardt et al. [16]) is a widely used consistency

condition, especially in geographically distant distributed database systems (DeCandia et al.

[17]). Eventual consistency requires that, if updates stop being invoked, the shared memory

will eventually reach a consistent state.

Hybrid consistency (Attiya and Friedman [18]) was proposed in 1992. In hybrid consistency,

each operation is assigned a consistency level, either strong or weak. Informally, strong

operations are ordered in some sequential order. The ordering of a strong operation and

a weak operation executed on the same process is preserved. Hybrid consistency allows

weak operations to be reordered between two adjacent strong operations. However, if strong

operations are invoked frequently, weak operations might essentially have no flexibility to

be reordered, resulting in performance issues. Formally, various theoretical lower bounds

relating to hybrid consistency have been found. It has been proven that, in many cases, the

overhead of using hybrid consistency is not better than using linearizability (Kosa [19]).

Overview

This research proposes a consistency condition for arbitrary data types by modifying hybrid

consistency. Like hybrid consistency, the proposed consistency condition requires all oper-

ations to be defined as either strong or weak. Strong operations are still well-ordered as in

hybrid consistency. Weak operations are less restrictive. It is no longer required that the

weak operations cannot be reordered further than a future strong operation. This change

makes the weak operations behave similarly to eventual consistency.

We will give a formal definition of hybrid eventual consistency condition in Chapter 2. Here

we give the important properties of the proposed consistency condition:

1. Globally, strong operations appear to be executed in a linearizable order.

2. All weak operations will be eventually observed by all processes.

Similar to linearizability and hybrid consistency, the first property guarantees that all strong

operations must observe all preceding strong operations. Because the execution is infinite,
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this property promises that all weak operations will be eventually observed by all other oper-

ations. Hence, the weak operations meet the informal definition of the eventual consistency

condition. We therefore obtain both the strong consistency and the eventual consistency in

one consistency condition.

The performance to implement hybrid eventual condition differs with respect to the data

type. An analysis of the proposed consistency condition reveals that it could be faster than

linearizability when the data type has several properties. An algorithm is given to show that

strong operations are quicker than the ones of hybrid consistency.

Organization

Chapter II contains a formal definition of the proposed consistency condition. Chapter III

discusses and proves the bounds relating to the proposed consistency condition. Chapter IV

gives an algorithm to implement the new consistency condition and proves the correctness

of the algorithm. Chapter V evaluates the performance of the algorithm by comparing

the simulation results of hybrid eventual consistency and hybrid consistency, as well as

linearizability and sequential consistency, for a distributed shared register. Chapter VI

concludes this thesis.
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CHAPTER II

CONCEPTS AND DEFINITIONS

System model

In this thesis, we consider a virtual shared memory system. The system consists of n nodes.

The nodes communicate by sending messages though an asynchronous inter-connection net-

work. This network never loses any messages. In addition, we assume that there is an upper

bound d for the message delay on this network. The nodes in this network form a complete

graph, which means that any pair of nodes in the system are directly connected.

At each node, a copy of the shared memory object, along with other information needed

to perform synchronization, is stored. A VSM process is running on every node. These

processes simulate one single shared memory object by providing an interface that takes

invocations of operations on the underlying shared object. The VSM process performs the

operations by reading its local state and communicating with other nodes (if necessary).

Afterwards, the corresponding response is returned. In addition, communications may take

place even if there are no active operations.

Related concepts

A VSM event is a 4-tuple (i, tinvoke, treturn, r), where pi is the index of the VSM node, tinvoke

is the time an operation is invoked, treturn is the time a response is returned and r is the

response. A VSM event describes an operation by the application to access the shared

memory object. A set of VSM events is called a VSM execution. The message events

initated by the VSM processes are referred as low-level events.

A consistency condition defines the correct behavior of the program.
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Definition II.0.1 (Legal serialization). A serialization of an execution σ is a permutation

of the operations of σ. A serialization ρ is legal if and only if it is permissible according to

the specification of the data structure.

Definition II.0.2 (Partial order). Let α and β both be VSM events. α < β if and only if

treturn of β is larger than tinvoke of α.

Definition II.0.3 (Linearizability). An execution ρ is linearizable if there exists a legal

serialization σ of ρ such that: For any two events α and β of ρ, α < β implies that α

precedes β in σ.

The principle of hybrid consistency and the proposed hybrid eventual consistency is to treat

operations in different ways. For this purpose, all the operations are marked either strong

or weak. The operations marked as strong have better properties than weak ones.

Definition II.0.4 (Hybrid consistency). An execution ρ is hybrid consistent if there exists

a serialization σ of the strong operations of ρ such that for each process pi, there exists a

legal sequence of operations (τp) such that:

1. τp is a permutation of the operations of p.

2. If op1 and op2 are both executed by the process pi, op1 < op2 in ρ and at least one of

op1 and op2 is strong, then op1 precedes op2 in τp.

3. If op1 precedes op2 in σ and op1 and op2 are both strong, then op1 precedes op2 in τp.

4. τ |i = ρ|i.

Eventual consistency is not an accurately defined term. It generally means that in an updat-

able replicated database, eventually all copies of each data item converge to the same value

(Bernstein and Das [20]).
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Definition of hybrid eventual consistency

The implementation of hybrid consistency widely uses the atomic broadcasting (Attiya and

Friedman [18]), which is costly considering that the weak operations typically do not need

much consistency. Therefore, we propose hybrid eventual consistency condition. By giving

weak operations more flexibility, they could obtain some performance benefits from eventual

consistency.

Definition II.0.5 (Hybrid eventual consistency). An execution ρ is hybrid eventually con-

sistent if there exists a serialization σ of the strong operations of ρ such that for each process

pi, there exists a legal sequence of operations (τp) such that:

1. τp is a permutation of the operations of p.

2. If op1 precedes op2 in σ and op1 and op2 are both strong, then op1 precedes op2 in τp.

3. τ |i = ρ|i.
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CHAPTER III

LOWER BOUNDS FOR HYBRID EVENTUAL CONSISTENCY

Concepts

We, at first, introduce some concepts, including the commutativity, cyclic dependency and

interleavability. Then, we will give proof of some properties for hybrid eventual consistency.

The proof techniques we use are similar to Kosa [19]. The proof heavily relies on the fact

that there must be a legal serialization of all operations. Although the proposed consistency

condition is weaker, the lower bounds are also the same.

Definition III.0.6 (Do not commute) Let OP1 and OP2 be two operations. OP1 and OP2

do not commute if there exists a sequence of operations α, an instance of each operation op1

and op2 such that both α ◦ op1 and α ◦ op2 are legal and:

1. α ◦ op1 ◦ op2 is not legal, or

2. α ◦ op2 ◦ op1 is not legal, or

3. There exists a sequence of operations β such that α◦op1◦op2◦β is legal and α◦op2◦op1◦β

is not legal, or

4. There exists a sequence of operations β such that α◦op2◦op1◦β is legal and α◦op1◦op2◦β

is not legal.

Definition III.0.7 (Immediately do not commute) Let OP1 and OP2 be two operations.

OP1 and OP2 immediately do not commute if there exists a sequence of operations α, an

instance of each operation op1 and op2 such that both α ◦ op1 and α ◦ op2 are legal and:

1. α ◦ op1 ◦ op2 is not legal, or

2. α ◦ op2 ◦ op1 is not legal.
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Definition III.0.8 (Cyclic dependent) Let OP1 and OP2 be two operations. OP1 and OP2

are cyclic dependent if there exists a sequence of operations α, an instance of each operation

op1 and op2 such that both α ◦ op1 and α ◦ op2 are legal and:

1. α ◦ op1 ◦ op2 is not legal, and

2. α ◦ op2 ◦ op1 is not legal.

Definition III.0.9 (n-cyclic dependent) A set of n operations, OP1...OPn are n-cyclic de-

pendent if there exists a sequence of operations α, an instance of each operation opi (i = 1...n)

such that:

1. For any i = 1...n, α ◦ opi are legal, and

2. For any permutation β of op1...opn, α ◦ β is not legal.

Definition III.0.10 (Doubly non-interleavable) Let AOP , OP1 and OP2 be three opera-

tions. OP is doubly non-interleavable with respect to OP1 and OP2 if there exists a sequence

of operations α, an instance of operations op1, op2, Aop
1 and Aop2, where Aop1 and Aop2

are instances of AOP and op1 and op2 are instances of OP1 and OP2 respectively, such that:

1. α ◦ op1 ◦ Aop1 is legal, and

2. α ◦ op2 ◦ Aop2 is legal, and

3. If we place both Aop1 and Aop2 after α in α ◦ op1 ◦ op2, it must be illegal, and

4. If we place both Aop1 and Aop2 after α in α ◦ op2 ◦ op1, it must be illegal.

An example

We consider a widely used data structure, the FIFO queue. Assume that the FIFO queue

has three operations, push (enqueue), pop (deque) and front (return the front object without

poping). Its sequential specification is clearly defined.

Let α = push(1), and op1 = op2 = pop(1). Then, α ◦ op1 = α ◦ op2 = push(1) ◦ pop(1) are

both legal.
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However, α ◦ op1 ◦ op2 = α ◦ op2 ◦ op1 = push(1) ◦ pop(1) ◦ pop(2) are both illegal.

Therefore, push and pop of FIFO queue do not commute, immediately do not commute and

are cyclic dependent (see Definition III.0.6, Definition III.0.7 and Definition III.0.8).

Let β be empty, op1 = pop(φ), op2 = front(φ), Aop1 = push(2) and Aop2 = push(3).

Then, β ◦ op1 ◦Aop1 = pop(φ) ◦ push(2) is legal. β ◦ op2 ◦Aop2 = front(φ) ◦ push(3) is also

legal.

If we put both Aop1 and Aop2 before, we must pop either 2 or 3. However, op1 and op2 implies

that the queue must be empty. We cannot put both Aop1 and Aop2 before β ◦ op1 ◦ op2 and

β ◦ op2 ◦ op1 and it is still legal. Therefore, pop is doubly non-interleavable with respect to

push and front.

Hybrid eventual consistency

Next, we give some lower bounds for the proposed hybrid eventual consistency condition.

We assume a perfectly synchronized clock.

Theorem III.0.1 If every operation of the data type has a strong version, then, for any

operation OP that immediately does not commute with itself, we have |OP | ≥ d for hybrid

eventual consistency.

Proof Suppose, in contradiction, that there exists such OP such that |OP | < d.

Because OP immediately does not commute, there is a sequence ρ of operations and an

operation instance op, such that ρ ◦ op is legal but ρ ◦ op ◦ op is illegal.

We build two admissible executions of two processors as follows, based on ρ.

α1: Invoke all but the last operations of ρ sequentially on p1. After completion, invoke the

last operation of ρ on p2. All operations complete at time t0. At time t1 (t1 > t0 + ε), invoke

a strong instance op in p1. This op will terminate before t1 + d.
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α2: α2 is constructed similarly to α1, but op is invoked in p2. This op will also complete

before t1 + d.

We then combine α1 and α2, forming α3. Since the completion of both op takes less than

d time, both p1 and p2 observe no difference in this execution. It will do the same thing as

before.

However, we must have a legal linearization of strong ops (Condition 4 of hybrid eventual

consistency). It could be only p ◦ op ◦ op, which is not legal. This contradicts the admissible

condition.
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α1 : p2

p1

Time

0 d

op

α2 : p2

p1

Time

0 d

op

α3 : p2

p1

Time

0 d

op

op

Fig. III.1. Counterexample in the proof of Theorem III.0.1
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Theorem III.0.2 If every general operation of the data type has a strong version, then, for

a series of n-cyclic dependent operations OP1 to OPn, we have at least one operation OPi

such that |OPi| ≥ d for hybrid eventual consistency.

Proof The proof is an expansion of Theorem III.0.2.

Suppose, in contradiction, that there exists such operations OP1...OPn such that |OPi| < d

for any i.

We construct n executions α1...αn of n processes like the one in Theorem III.0.1. Afterwards,

we merge these executions to generate a new execution α. n processors will not perceive the

difference between the old executions and the new execution. Therefore, it will behave the

same as α1 through αn. However, because of the n-cyclic dependence, we cannot have an

admissible execution. This contradicts the assumption.
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α1 : pn

...
p1

Time

0 d

op1

...

αn : pn

...
p1

Time

0 d

opn

α : pn

...
p1

Time

0 d

op1

opn

Fig. III.2. Counterexample in the proof of Theorem III.0.2
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Theorem III.0.3 If every general operation of the data type has a strong version, then, for

3-cyclic dependent operations OP1, OP2 and OP3, we have |OP1| + |OP2| + |OP3| ≥ 2d for

hybrid eventual consistency.

Proof Suppose, in contradiction, that there exists such operations OP1, OP2 and OP3 such

that |OP1|+ |OP2|+ |OP3| < 2d.

From Theorem III.0.2, we already know that |OP1|, |OP2| and |OP3| cannot be all smaller

than d. We assume, without loss of generality, that |OP1| ≥ d and |OP2|+ |OP3| < d.

We construct 3 executions α1, α2 and α3, each of which contains 3 processes. We then merge

these executions to generate a new execution α. Because no processors will perceive the

difference between the old executions and the new execution, the new execution α must be

legal. Let ρ be the initial state of op1 through op3. Therefore, there is a permutation β of

op1, op2 and op3 such that ρ ◦ β is legal.

Since OP1, OP2 and OP3 are 3-cyclic dependent, there exists a ρ such that no ρ ◦ β is legal.

This contradicts the assumption.
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α1 : p3

p2

p1

Time

0 d

|op1|

op1

α2 : p3

p2

p1

Time

0 d

|op1||op2| − |op1|

op2

α3 : p3

p2

p1

Time

0 d

|op1||op2| − |op1|

op3

α : p3

p2

p1

Time

0 d

|op1||op2| − |op1|

op1

op2

op3

Fig. III.3. Counterexample in the proof of Theorem III.0.3
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Theorem III.0.4 Assume that every general operation of the data type has a strong version.

If AOP is doubly non-interleavable with respect to OP1 and OP2, |WOP1| + |WAOP | ≥ d

or |WOP2|+ |WAOP | ≥ d in any hybrid eventual consistency system.

Proof Suppose, in contradiction, that there exists such operations OP1, OP2 and AOP

such that |WOP1|+ |WAOP | < d and |WOP2|+ |WAOP | < d.

Because AOP is doubly non-interleavable with respect to OP1 and OP2, there is a sequence

of operation ρ, instances of AOP , aop1 and aop2, and an instance of both OP1 and OP2, op1

and op2, such that ρ ◦ op1 ◦ aop1 and ρ ◦ op2 ◦ aop2 are legal, but we cannot put both aop1

and aop2 after ρ to obtain a legal sequence of operations.

We construct two executions, α1 and α2 as shown on the figure. Then, we merge them

into α. Because of the longer message delay, it must remain admissible in hybrid eventual

consistency.

However, it is not possible because AOP is doubly non-interleavable with respect to OP1

and OP2. After considering all legal sequences, there is no way that we can create a τ1 that

is legal. This contradicts the assumption.
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α1 : p2

p1

Time

0 d

wop2 waop2

α2 : p2

p1

Time

0 d

wop1 waop1

α : p2

p1

Time

0 d

wop1 waop1

wop2 waop2

Fig. III.4. Counterexample in the proof of Theorem III.0.4

19



Comparison with hybrid consistency

In this chapter, we showed some lower bounds for the hybrid eventual consistency condition.

These results are equal to hybrid consistency (Kosa [19]), which means that we are unable

to improve the worst case running time in cases demonstrated above. However, for a relaxed

data structure that does not fit into one of cases above, we might still be able to utilize the

benefit of more flexibility to obtain performance gains.
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CHAPTER IV

ALGORITHM

We give an algorithm that implements a shared register that satisfies hybrid eventual con-

sistency condition. The system model follows the one described in Chapter II. There are n

processes, p1, . . . , pn. There is an inter-connection network with complete graph topology.

We assume no message loss. Clocks are approximately synchronized. We give an algorithm

that implements a shared register that satisfies hybrid eventual consistency condition. The

system model follows the one described in Chapter II. There are n processes, p1..pn. There

is an inter-connection network with complete graph topology. We assume no message loss.

Clocks are approximately synchronized.

Following hybrid eventual consistency condition, we define four operations, WRead (weak

read), WWrite (weak write), SRead (strong read) and SWrite (strong write).

Request Response
WRead Return(obj)
WWrite Ack
SRead SReturn(obj)
SWrite SAck

Table IV.1

There is a function, generate, that generates the response for the corresponding read/write

request. Table IV.1 shows the corresponding response fore each type of request.

In this algorithm, we use three message-passing primitives, bcast (Broadcast), abcast (Atomic

broadcast) and asend (Atomic send). abcast broadcasts a message to all processes that

satisfies the total order (Hadzilacos and Toueg [21]). A total order broadcast delivers all

broadcast messages to all processes in the same order. bcast performs a broadcast without

any guarantee on the message ordering. Both abcast and asend operations satisfy single-

source FIFO order (Garcia-Molina and Spauster [22]). A single-source FIFO broadcast
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delivers messages sent from the same process in the order consistent with how it is sent. We

give a formal condition below.

Properties of abcast and asend

Let Sb be the set of abcast operations, Ss be the set of asend operations. Let Ai be the set of

abcast messages received by the process pi. Let Bi,j be the set of abcast and asend messages

sent by the process pi and received by pj.

1. (Total Order Guarantee) For any two messages m1,m2 ∈ Ai such that the process pi

receives m1 before m2, if m1,m2 ∈ Aj, pj also receives m1 before m2 for any j ∈ 1..n .

2. (Single-source FIFO Guarantee) For any two message m1,m2 ∈ Bi,j such that the

process pi sends m1 before m2, pj receives m1 before m2.

Theoretically, we can avoid using asend by using a abcast call and disposing the messages

delivered to all but the target process. However, this approach can be implemented more

efficiently (Cristian et al. [23]).

Algorithm

The algorithm we propose is inspired by the algorithm for hybrid consistency (Attiya and

Friedman [18]). It simulates a shared register that provides a strong version and a weak

version for both read and write operations. In both algorithms, the weak read and strong

write are the same and the other two differ. In our weak write routine, abcast is replaced by

normal broadcast. In order to ensure all strong reads observe the same set of weak writes,

we add a write back into the strong read routine. In addition, because we no longer use

abcast for weak writes, the original global clock in the algorithm for hybrid consistency does

not work for ours. Hence, we replace it with a vector clock.

The weak read operation performs a local read. The weak write operation broadcasts the new

value and then returns immediately. Strong operations are more complicated. They need
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to make use of the ordering properties of abcast to ensure that the execution is admissible

(valid) under hybrid eventual consistency.

In our algorithm, each process stores a copy of the memory obj, an integer wait acks denoting

how many messages have not been acknowledged, the result of a strong read result, a boolean

last wr denoting whether the last operation is a weak read, an enumerate variable pending

denoting what is the pending strong operation, a vector clock latest update and the process

ID the last weak write came from (latest id).

The weak read is done by reading the local memory and updating last wr. The weak

write performs a broadcast and then updates latest id, latest update, wait acks and last wr

accordingly.

To execute a strong read, we firstly send a total order broadcast and then wait until the

broadcast message arrives at the process itself. Afterwards, we send a broadcast message

with the current memory object and stores it locally as the return value of this strong read.

The response will not be returned until all ack messages come back.

The strong write is the same as the write algorithm for linearizability. We perform a total

order broadcast and wait for one message to come back to the process itself before returning

the response.
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Algorithm 1 An implementation of shared register satisfying hybrid eventual consistency

1: function Initializei . Initialize the parameters for each process pi
2: obji ←⊥ . The simulated register variable to ⊥ (Initial value)
3: wait acksi ← 0 . An integer denoting how many acks are missing.
4: resulti ←⊥ . Type of register variable
5: last wri ← false . A Boolean
6: pendingi ← None . An enumerate type: None/SR/SW
7: latest updatei ← [0, 0, .., 0] . An array of size n
8: latest idi ← 0 . An integer (Process ID)
9: end function
10:

11: function WReadi . Invoke weak read on pi
12: last wri ← true
13: generate(Return(obj))
14: end function
15:

16: function WWritei(value) . Invoke weak write on pi
17: bcast(update, value, i, latest updatei[i])
18: latest idi ← i
19: latest updatei[i]← latest updatei[i] + 1
20: wait acksi ← wait acksi + n
21: last wri ← false
22: generate(Ack)
23: end function
24:

25: function SReadi . Invoke strong read on pi
26: if last wri then
27: abcast(strong-read-wait)
28: wait acksi ← wait acksi + n
29: end if
30: while wait acksi > 0 do
31: wait . Non-atomic
32: end while
33: abcast(strong-read)
34: wait acksi ← wait acksi + n
35: pendingi ← SR
36: end function
37:

38: function SWritei(value) . Invoke strong write on pi
39: while wait acksi > 0 do
40: wait . Non-atomic
41: end while
42: abcast(strong-write, value)
43: wait acksi ← wait acksi + n
44: pendingi ← SW
45: end function
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46: function Receivedi,j(update, value, k , clock) . pi receives update message from pj
47: asendj(ack)
48: if clock > latest updatei[k] then
49: obji ← value
50: latest updatei[k]← clock
51: latest idi ← k
52: end if
53: end function
54:

55: function Receivedi,j(strong-read-wait) . pi receives strong-read-wait message from pj
56: asendj(ack)
57: end function
58:

59: function Receivedi,j(strong-read) . pi receives strong-read message from pj
60: asendj(ack)
61: if i = j then
62: resulti ← obji
63: bcast(update, obji, latest idi, latest updatei[latest idi])
64: wait acksi = wait acksi + n
65: end if
66: end function
67:

68: function Receivedi,j(strong-write, value) . pi receives strong-write message from pj
69: asendj(ack)
70: obji ← value
71: end function
72:

73: function Receivei,j(ack) . pi receives strong-read message from pj
74: wait acksi ← wait acksi − 1
75: if wait acksi = 0 then
76: if pendingi = SW then
77: generate(SAck))
78: else if pendingi = SR then
79: generate(SReturn(resulti))
80: end if
81: pendingi ← None
82: end if
83: end function
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Proof of Correctness

We prove the correctness of the algorithm by explicitly constructing the sequences τi as

defined in hybrid eventual consistency condition.

We construct a sequence τi of operations and delivery events for every process pi. Here, the

delivery event happens whenever a message is delivered.

For each process pi, let τi have all delivery events on pi, ordered by the delivery time. Then,

all weak read operations on pi are inserted into τi according to the time of the invocation.

Afterwards, all write operations executed by pi are inserted into pi immediately before the

corresponding message delivery event (strong-write or update message). All weak writes that

are not executed by pi are then inserted before the last write preceding it. The execution of

the weak write is determined by a logical clock (Lamport [24]) so that there must exist such

previos weak write if an update message is ignored. We insert the strong reads immediately

before its strong-read message delivery event. If the weak update message the strong read

srj reads from has not arrived pi, we drag the corresponding weak write prior to that strong

read. Finally, all weak reads performed by other processes are ordered immediately after the

write operation it reads from and delivery events are removed. There must exist such write

operation.

Lemma IV.0.5 τi is a legal sequence of operations for all pi.

Proof The legality of τi comes from the way we insert these operations. The reads are

inserted immediately after the writes they read from. The ignored weak writes are inserted

before another write so that it has no effect.

Formally, we assume, in contradiction, that there exists an illegal sequence τi. There-

fore, there exists an operation readj(a) in pj such that the latest write operation preceding

readj(a) in τi is not the write operation it reads from.

1. readj(a) is a weak read
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It is impossible if i 6= j, since readj(a) is inserted into τi, at the last step, directly after

its corresponding write operation.

Therefore, we consider i = j. Denote write1(a) the write operation it reads from,

write2(b) the latest write operation preceding readj(a). τi contains write1(a)...write2(b)...readi(a).

write2(b) must not be executed on pi. However, it contradicts with the algorithm we

insert the unexecuted weak writes.

2. readj(a) is a strong read

For the same reason, τi must contain write1(a)...write2(b)...readj(a). We discuss how

write2(a) is inserted into τi. Since readj(a) reads from write1(a), this write operation

must have been executed on pj.

It is impossible that the write message (update or strong-write) has not arrived before

readj(a) is performed. If the write operation is strong, the strong-write message must

have arrived because the total order of strong-write and strong-read messages. If the

write operation is weak, the construction method will move the unarrived weak write

prior to readj(a).

The possibility remains is that write2(b) is not performed on pj. Such unexecuted

reads should be placed immediately before another write. This contradicts with the

assumption that write2(b) is the last write operation prior to readj(a).

Consequently, τi is legal for allpi.

Lemma IV.0.6 τi is a permutation of the operations.

Proof This is straightforward since we insert an operation into τi for any i exactly once.

Lemma IV.0.7 If op1 precedes op2 in σ and op1 and op2 are both strong, then op1 precedes

op2 in τi.
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Proof Both op1 and op2 need to use a total order broadcast. op1 precedes op2 implies that

the broadcast message of op1 must arrive at any process earlier than the one of op2. Based

on the way we construct τi, op1 precedes op2 on τi as well.

Lemma IV.0.8 τ |i = ρ|i

Proof This can be seen from the construction of τi that τi has only operations from ρ.

Lemma IV.0.9 The algorithm implements hybrid eventual consistency.

Proof From the above lemmas, we can conclude that the algorithm satisfies hybrid eventual

consistency.
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CHAPTER V

SIMULATION

In this chapter, we analyze the performance of our algorithm for hybrid eventual consistency

by a comparison with efficient algorithms that implement hybrid consistency, linearizability

and sequential consistency respectively. Attiya and Friedman [18] proposed an algorithm that

implements hybrid consistency, which is one of our comparison targets. Attiya and Welch [8]

discussed algorithms for linearizability and sequential consistency. In our simulation, we use

the traditional quorum algorithm for linearizability and local-read algorithm for sequential

consistency.

System Model

We simulate the asynchronous distributed system by using discrete event simulation (Bolch

et al. [25]). We maintain an event queue, which consists of the meta data of future events.

In the discrete event simulation, we simply keep processing the earliest possible event in the

event queue, and, if necessary, insert new ones into the event queue.

We also need to construct our own network model in order to perform this experiment. Since

all these algorithms require an inter-connection network with complete graph topology, the

only major problem left to us is the message delay. It is easy to assign a fixed delay or

a randomly selected number from some distribution. However, these choices have inherent

flaws. If we apply either of these models, we will find that, no matter how frequently we send

messages, they will ultimately be delivered in a fixed expected delay. It can be inferred that

we have infinite network bandwidth, which far deviates from actual computer systems. In

fact, if the system is able to absorb infinite messages, the throughput would become infinite

as well. Therefore, to make our experiment more realistic, we choose to make the message

delay from process pi to pj a function of the link utilization of both pi and pj. This follows the
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normal circumstance that there is a network interface card (NIC), with limited bandwidth,

in a computer and the whole bandwidth is shared by all traffic through the NIC.

We test the algorithms by keeping making read/write calls from each process. When a

process is idle, we randomly choose an operation to invoke with a given distribution. To

control the congestion, we stop calling when the current link utilization exceeds a given

threshold. Then, the simulation program will follow the algorithm. We record the time cost

in performing each strong operation.

Experiment has shown that the message delay has a roughly inverse relation with the link

utilization (Kurose and Ross [26]). Inspired by this result, we apply the function

d(u) = min{ 1

1− u
− 0.98, 3}

where d is the message delay in seconds and 0 ≤ u < 1 is the link utilization. Figure V.1

shows how the message delay increases when the link is becoming saturated.
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Fig. V.1. link utilization and transmission delay
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Some of the algorithms depend on the total-order broadcast. It is implemented with a

centralized algorithm. There is an additional process, having the same bandwidth restriction,

being used to relay all the abcast and asend messages in a proper order.

Measurements

We conduct experiments with different n (number of processes), different algorithms and dif-

ferent mixture of strong and weak operations. In each simulation, we measure the throughput

(the amount of operations performed in a second) and the average response time (the av-

erage response time for all strong operations performed in a given execution). Since weak

operations are always returned immediately, we only need to measure the response time for

all strong operations. Below we give the results extracted from all the experiments. The

original data is also given in the Appendix A.

10 20 30 40 50
n

50

100

150

200

250

300

Ops per sec

HEC

HC

Fig. V.2. Throughput: Hybrid eventual consistency (HEC) and hybrid consis-
tency (HC) (Strong/Weak=1)
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Fig. V.3. Average response time: Hybrid consistency (HC) and hybrid eventual
consistency (HEC) (Strong/Weak=1)
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Fig. V.4. Throughput: Hybrid eventual consistency (HEC) and hybrid consis-
tency (HC) (Strong/Weak=2)
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Fig. V.5. Average response time: Hybrid consistency (HC) and hybrid eventual
consistency (HEC) (Strong/Weak=2)
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Fig. V.6. Throughput: Hybrid eventual consistency (HEC) and hybrid consis-
tency (HC) (Strong/Weak=0.5)
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Fig. V.7. Average response time: Hybrid consistency (HC) and hybrid eventual
consistency (HEC) (Strong/Weak=0.5)
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In almost all the cases, our algorithm has a performance advantage over the implementation

of hybrid consistency. This result is not too surprising as hybrid eventual consistency is

weaker than hybrid consistency. The reason why our algorithm perform better is most likely

because of, compared to the algorithm for hybrid consistency, the reduced use of total order

broadcasts. The centralized total order broadcast is costly for the reason that all broadcast

messages have to go through a rate-limited dedicated relaying process. We can see, from our

experiment result, that this is the bottleneck of the system.
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Fig. V.8. Throughput: Sequential consistency (SC), linearizability (L), hybrid
eventual consistency (HEC) and hybrid consistency (HC) (Strong/Weak=1)
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Fig. V.9. Average response time: Sequential consistency (SC), lineariz-
ability (L), hybrid consistency (HC) and hybrid eventual consistency (HEC)
(Strong/Weak=1)
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We observe more fluctuations from the data related to hybrid consistency as well as hybrid

eventual consistency. This is likely because both algorithms offer zero-latency weak opera-

tions and long-latency strong operations. It is possible to have tens of weak operations or few

strong operations done in few seconds, which is decided randomly. For linearizability and

sequential consistency, there are only long-latency operations. No matter which operation

is chosen, the overall amount of operations done is stable. Therefore, we can see smoother

curves on Figure V.8 and Figure V.9.

Comparing our algorithm with the ones that implement linearizability and sequential con-

sistency respectively, we see that the throughput of our algorithm is comparable to the one

of linearizability and falls far below the one of sequential consistency. However, the average

response time of our algorithm outperforms all other algorithms. From our observation, if we

invoke more strong operations, the throughput will increase and so will the latency (latency

is solely dependent on link utilization). Hence, we are able to invoke more operations and

beat the throughput generated by linearizability, while having a similar average latency.

Overall, we believe that the performance of the proposed algorithm is competitive and useful.
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CHAPTER VI

CONCLUSION

This thesis presents a theoretical study of hybrid eventual consistency. Motivated by hybrid

consistency, we produce a working definition of hybrid eventual consistency in order to

reach a better performance. Moreover, we prove lower bounds on the time complexity

for operations under hybrid eventual consistency for certain types of data structures. We

demonstrate an algorithm that implements hybrid eventual consistency efficiently and give

a formal proof of its correctness. In this algorithm, weak operations return immediately.

Compared to the algorithm for hybrid consistency, our algorithm uses significantly fewer

total order broadcasts, which may be a bottleneck for the whole distributed system. From

extensive experiments, we find that our algorithm provides better performance, in terms of

response time and throughput, over hybrid consistency. However, it is not as fast as the

algorithm implementing sequential consistency.

Our work leaves several questions. Is there a tight bound, in terms of communication com-

plexity or time complexity, for hybrid eventual consistency condition? Are there important

applications? Can we quantify the performance benefits of a more relaxed or a more restric-

tive version of our consistency condition? If so, how much? Also, it might be interesting to

find a correct algorithm for consistency conditions while not compromising delay. Finally,

because we are relying a lot more on distributed computing than before, it would be very in-

teresting and extremely useful to have a better view of memory consistency condition so that

we do not need to implement an excessively strong consistency condition for an application.
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APPENDIX A

SIMULATION RESULTS

Columns

n: Number of processes

SW Ct: Number of strong writes executed

SR Ct: Number of strong reads executed

Write Ct/Count: Number of writes executed

Read Ct/Count: Number of reads executed

WW Ct: Number of weak writes executed

WR Ct: Number of weak reads executed

SW Delay: Average delay of strong writes

SR Delay: Average delay of strong reads

W/Write Delay: Average delay of writes

R Delay: Average delay of reads

SW Stdev Delay: Standard deviation of sample delays of all strong writes

SR Stdev Delay: Standard deviation of sample delays of all strong reads

W/Write Stdev Delay: Standard deviation of sample delays of all writes

R Stdev Delay: Standard deviation of sample delays of all reads

Hybrid eventual consistency (Strong/Weak=1)

n SW Ct SR Ct WW Ct WR Ct SW Delay SR Delay SW Stdev Delay SR Stdev Delay
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1 1282 1239 1278 1223 0.00077 0.00102 0.00442 0.00383

2 2294 2243 2159 2285 0.00128 0.00138 0.00467 0.00476

3 1522 1543 1555 1455 0.00211 0.00234 0.0059 0.00639

4 1851 1811 1901 1824 0.00244 0.00352 0.00912 0.01485

5 1385 1402 1492 1331 0.00357 0.00444 0.00967 0.0124

6 1132 1212 1144 1130 0.00526 0.00674 0.01687 0.02828

7 743 715 767 719 0.00798 0.01043 0.01757 0.02403

8 778 774 800 876 0.00743 0.01207 0.01352 0.02288

9 958 991 984 1034 0.00927 0.0115 0.01983 0.02494

10 637 629 651 650 0.01117 0.0148 0.02237 0.02976

11 753 783 758 782 0.01438 0.01969 0.034 0.04715

12 684 709 687 661 0.01488 0.02035 0.03528 0.0419

13 798 770 802 759 0.01535 0.023 0.03583 0.06425

14 853 847 862 766 0.01382 0.02161 0.02957 0.05168

15 877 854 921 892 0.01639 0.02334 0.03888 0.05314

16 616 583 599 588 0.02535 0.02799 0.04966 0.05369

17 860 885 889 906 0.01949 0.0261 0.04584 0.05887

18 800 769 786 734 0.02576 0.03109 0.05756 0.07155

19 761 830 902 836 0.02022 0.02913 0.04643 0.06413

20 1036 1079 1074 1064 0.02069 0.02823 0.04951 0.06385

21 836 950 896 864 0.02508 0.03364 0.05744 0.07558

22 993 966 893 1025 0.02861 0.03824 0.06552 0.08669

23 992 1004 1006 1012 0.02629 0.03664 0.06 0.08411

24 999 990 1093 1020 0.0269 0.03867 0.0661 0.09333

25 1075 984 1080 1082 0.02928 0.03302 0.06846 0.08586

26 728 757 753 757 0.03527 0.05242 0.07276 0.11791

27 1007 1028 1046 1055 0.03008 0.04163 0.07268 0.09798
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28 960 929 965 909 0.0375 0.04464 0.08875 0.09941

29 1144 1159 1159 1173 0.03782 0.04735 0.09069 0.10572

30 1074 1075 1111 1184 0.03524 0.04683 0.08241 0.10578

31 991 967 1015 978 0.04475 0.05329 0.09565 0.11581

32 965 992 1025 1039 0.04055 0.05346 0.08851 0.11399

33 1033 1088 1056 1097 0.04463 0.06301 0.10323 0.13681

34 942 898 947 966 0.04691 0.07046 0.10402 0.14171

35 1074 996 1025 1034 0.05237 0.06318 0.10466 0.1329

36 1035 1088 1028 1068 0.05 0.06839 0.11261 0.14009

37 1338 1255 1309 1289 0.03896 0.06038 0.09334 0.13654

38 1148 1209 1182 1219 0.04726 0.06509 0.11026 0.14338

39 1257 1192 1270 1261 0.05763 0.06656 0.12943 0.14454

40 1101 1078 1134 1109 0.05427 0.06838 0.12466 0.14961

41 1189 1166 1151 1201 0.05627 0.0735 0.13053 0.16474

42 1089 1106 1158 1170 0.06361 0.08104 0.1404 0.16436

43 1212 1182 1233 1225 0.065 0.07841 0.13723 0.16236

44 1195 1213 1259 1264 0.06245 0.08687 0.14385 0.19373

45 1116 1114 1083 1107 0.07001 0.08966 0.14128 0.17545

46 1085 1076 1110 1164 0.06996 0.09182 0.14543 0.17671

47 1096 1153 1105 1062 0.07646 0.09605 0.15542 0.18341

48 964 1006 999 962 0.07112 0.08814 0.15652 0.18342

49 1236 1257 1224 1219 0.07454 0.09914 0.15285 0.19416

50 1208 1228 1175 1244 0.07903 0.09565 0.16549 0.19742

Hybrid eventual consistency (Strong/Weak=2)

n SW Ct SR Ct WW Ct WR Ct SW Delay SR Delay SW Stdev Delay SR Stdev Delay

1 2300 2299 1130 1180 0.0014 0.00126 0.0086 0.0078
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2 1630 1581 756 781 0.00188 0.00281 0.00819 0.01135

3 1014 925 520 468 0.00493 0.00504 0.0138 0.01672

4 1232 1236 606 639 0.00433 0.00605 0.01263 0.01695

5 873 871 431 405 0.00718 0.00835 0.01852 0.02188

6 830 764 355 373 0.01041 0.01439 0.0251 0.03207

7 959 999 502 513 0.01045 0.01362 0.02576 0.03641

8 632 616 331 282 0.01416 0.01758 0.02848 0.03516

9 1061 1020 553 516 0.01269 0.01708 0.03007 0.04271

10 802 760 359 377 0.01747 0.02549 0.0339 0.04694

11 1002 1042 523 505 0.01709 0.02207 0.03615 0.0508

12 1018 1035 482 513 0.01734 0.02499 0.03829 0.05446

13 814 828 446 395 0.02155 0.02505 0.04119 0.05029

14 1038 1020 520 496 0.02413 0.02669 0.05113 0.05606

15 978 985 515 471 0.02266 0.02735 0.04721 0.05608

16 1145 1149 595 593 0.02337 0.0304 0.05162 0.06297

17 1312 1373 681 681 0.02348 0.03101 0.05174 0.06272

18 1400 1347 713 655 0.02764 0.03493 0.06019 0.07343

19 1136 1167 594 609 0.03309 0.03825 0.06842 0.07782

20 1048 1105 525 555 0.03144 0.03963 0.06127 0.07551

21 1137 1209 567 604 0.0322 0.03845 0.06655 0.07811

22 1151 1074 523 566 0.03838 0.04953 0.0714 0.09087

23 1174 1238 631 626 0.03548 0.0501 0.07147 0.0996

24 1453 1539 761 739 0.03471 0.04189 0.07838 0.09118

25 1126 1187 581 585 0.03975 0.05506 0.07929 0.10358

26 1234 1229 622 600 0.04813 0.05388 0.09433 0.10394

27 1380 1498 763 740 0.04043 0.05289 0.08383 0.10892

28 1265 1309 630 614 0.0454 0.06461 0.08942 0.1159
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29 1318 1244 651 614 0.04748 0.06056 0.09558 0.12268

30 1688 1704 862 838 0.04771 0.05841 0.10054 0.11874

31 1386 1442 740 736 0.04935 0.06462 0.10046 0.12712

32 1491 1421 741 723 0.04989 0.06906 0.10056 0.13277

33 1306 1358 689 711 0.05951 0.06747 0.10707 0.1205

34 1555 1663 820 825 0.05261 0.06095 0.11133 0.12476

35 1381 1426 712 717 0.05931 0.07517 0.11508 0.14233

36 1719 1661 879 880 0.05981 0.07692 0.12067 0.14833

37 1577 1530 728 809 0.0659 0.07473 0.12343 0.14247

38 1644 1662 827 854 0.06024 0.08009 0.12479 0.15779

39 1613 1626 785 773 0.06796 0.08639 0.13645 0.16445

40 1521 1611 876 814 0.06685 0.08267 0.12813 0.15747

41 1522 1583 753 807 0.07115 0.09068 0.14085 0.16595

42 1511 1464 732 771 0.07877 0.08893 0.15042 0.17465

43 1508 1558 727 720 0.07309 0.09404 0.14033 0.17233

44 1459 1638 735 762 0.07602 0.10611 0.14355 0.18724

45 1574 1574 815 719 0.07834 0.09632 0.14999 0.18466

46 1567 1514 851 822 0.08502 0.10272 0.165 0.19867

47 1463 1418 704 721 0.09124 0.11203 0.16299 0.19358

48 1337 1297 729 715 0.09267 0.11061 0.17145 0.19743

49 1712 1732 832 850 0.09565 0.10441 0.17067 0.1901

50 1766 1832 895 870 0.08584 0.10998 0.1719 0.20573

Hybrid eventual consistency (Strong/Weak=0.5)

n SW Ct SR Ct WW Ct WR Ct SW Delay SR Delay SW Stdev Delay SR Stdev Delay

1 1715 1762 3351 3314 0.00045 0.00059 0.00292 0.00364

2 2265 2250 4830 4618 0.0006 0.00096 0.00206 0.0036
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3 1196 1307 2467 2437 0.0021 0.00277 0.00987 0.0114

4 2275 2384 4420 4462 0.00181 0.00217 0.00761 0.00897

5 1641 1644 3026 3085 0.00245 0.00308 0.00664 0.00842

6 1847 1769 3794 3814 0.00242 0.00359 0.00547 0.00986

7 1158 1239 2460 2423 0.00422 0.0066 0.0113 0.01968

8 1553 1527 3113 3104 0.00428 0.0072 0.01295 0.02877

9 1896 1882 3736 3815 0.00354 0.00576 0.01017 0.02461

10 1399 1402 2867 2778 0.00555 0.00806 0.01609 0.02439

11 1414 1473 2832 2912 0.00658 0.00887 0.02258 0.02814

12 1034 1089 2041 2090 0.00841 0.01127 0.02256 0.02953

13 1379 1353 2854 2803 0.00713 0.01006 0.01813 0.03008

14 1238 1247 2562 2554 0.00877 0.01219 0.02922 0.02894

15 1390 1413 2904 2847 0.00753 0.01312 0.02067 0.04006

16 1111 1018 2114 2078 0.01226 0.01673 0.04056 0.04897

17 1703 1750 3479 3438 0.00941 0.01567 0.03431 0.06119

18 1431 1443 2837 2888 0.01152 0.0158 0.04048 0.06438

19 1211 1158 2360 2462 0.01434 0.01766 0.03427 0.05629

20 1003 1057 2003 2095 0.0158 0.02079 0.04302 0.06099

21 1313 1319 2527 2601 0.01505 0.01827 0.05587 0.04897

22 1161 1104 2181 2222 0.01588 0.02371 0.05354 0.06808

23 1069 1094 2095 2187 0.01999 0.02315 0.06051 0.06193

24 1267 1296 2590 2559 0.01672 0.0235 0.06244 0.08408

25 1338 1295 2686 2762 0.01649 0.02534 0.04991 0.09609

26 1487 1472 3042 3067 0.01631 0.02691 0.05251 0.10429

27 1475 1461 3117 3053 0.02027 0.02663 0.07942 0.10094

28 1317 1361 2621 2707 0.02024 0.02914 0.07155 0.10665

29 1562 1497 3036 2979 0.01759 0.03315 0.0643 0.12262
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30 1224 1217 2405 2522 0.02466 0.0351 0.08764 0.10969

31 1242 1322 2617 2605 0.02569 0.02817 0.08602 0.09341

32 1323 1314 2580 2606 0.02483 0.03785 0.08661 0.11451

33 1305 1239 2603 2541 0.03099 0.03869 0.10007 0.13705

34 1138 1126 2173 2217 0.02924 0.05241 0.08814 0.15945

35 1531 1484 2993 3127 0.02842 0.0359 0.10451 0.11801

36 1409 1321 2788 2769 0.02755 0.0481 0.09719 0.15728

37 1579 1590 3227 3165 0.02893 0.03909 0.11481 0.13363

38 1150 1199 2400 2346 0.03466 0.05133 0.12248 0.15213

39 1037 1204 2268 2287 0.0317 0.05669 0.08984 0.18927

40 1395 1442 2908 2927 0.03503 0.05014 0.14017 0.16837

41 1296 1288 2608 2611 0.03572 0.0531 0.13041 0.17216

42 1629 1710 3571 3520 0.03048 0.05531 0.12096 0.18707

43 1391 1410 2969 2929 0.03402 0.05729 0.12016 0.2064

44 1185 1212 2376 2429 0.04035 0.06282 0.12724 0.19045

45 1296 1222 2585 2494 0.04958 0.06144 0.1759 0.20643

46 1504 1619 3219 3420 0.03749 0.06169 0.14928 0.24108

47 1206 1163 2360 2322 0.04386 0.06763 0.13454 0.19131

48 1458 1488 3004 2938 0.04696 0.06468 0.16891 0.24459

49 1463 1511 2961 3013 0.03881 0.07277 0.14135 0.24075

50 1671 1619 3395 3340 0.05127 0.07506 0.19778 0.28122

Hybrid consistency (Strong/Weak=1)

n SW Ct SR Ct WW Ct WR Ct SW Delay SR Delay SW Stdev Delay SR Stdev Delay

1 1239 1277 1198 1233 0.00083 0.00077 0.00894 0.00814

2 929 911 916 952 0.00278 0.00254 0.01696 0.01874

3 1051 1100 1070 1068 0.00285 0.00322 0.01988 0.01864
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4 572 639 551 588 0.00414 0.00765 0.02217 0.03389

5 902 880 924 861 0.00436 0.00648 0.02691 0.03504

6 568 523 566 572 0.01048 0.01147 0.04363 0.0438

7 1660 1561 1730 1669 0.00556 0.00618 0.03694 0.03951

8 382 439 425 370 0.01351 0.02293 0.04618 0.0604

9 579 632 598 646 0.01103 0.01612 0.04447 0.05672

10 945 989 930 952 0.01056 0.01385 0.04911 0.05675

11 594 587 557 533 0.01713 0.02203 0.06198 0.06828

12 740 708 703 698 0.02355 0.02524 0.06842 0.0754

13 745 741 747 764 0.02088 0.02588 0.07299 0.08035

14 657 624 634 629 0.02669 0.03142 0.08505 0.08794

15 658 632 613 607 0.02231 0.02818 0.07706 0.08502

16 477 457 461 455 0.02721 0.04766 0.08494 0.1089

17 848 883 794 859 0.02647 0.02911 0.08538 0.08815

18 643 654 631 651 0.02842 0.03983 0.08921 0.1081

19 539 567 515 508 0.03565 0.04683 0.09426 0.10361

20 625 609 640 701 0.0378 0.04256 0.1076 0.10911

21 1148 1253 1151 1195 0.01926 0.03594 0.08205 0.11463

22 440 400 420 425 0.05362 0.07352 0.1166 0.14155

23 908 884 914 890 0.03538 0.04531 0.1168 0.14542

24 964 879 965 1049 0.03878 0.04736 0.12528 0.14482

25 605 646 636 672 0.04546 0.06113 0.11559 0.14174

26 748 774 754 794 0.04145 0.0585 0.10849 0.13008

27 538 553 549 610 0.05621 0.07281 0.12733 0.14678

28 766 727 727 709 0.05731 0.06686 0.1501 0.16901

29 1027 1015 1056 999 0.04677 0.04597 0.14095 0.13901

30 725 669 736 695 0.06368 0.0824 0.16151 0.17988
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31 627 582 620 618 0.05998 0.08768 0.15355 0.18505

32 606 637 627 634 0.07652 0.09303 0.17464 0.19342

33 810 845 806 838 0.06232 0.07601 0.15391 0.18916

34 762 791 771 777 0.0557 0.08159 0.14509 0.17972

35 797 789 816 865 0.06411 0.07033 0.1675 0.18037

36 842 777 900 879 0.04934 0.09134 0.14589 0.20383

37 689 710 710 726 0.06567 0.10166 0.16659 0.21729

38 766 761 742 788 0.06693 0.09411 0.17128 0.20376

39 562 606 610 593 0.09471 0.12412 0.19871 0.22232

40 994 976 1017 970 0.0717 0.10487 0.17474 0.22646

41 695 672 662 695 0.07355 0.10972 0.17823 0.22209

42 876 888 935 960 0.08286 0.10296 0.18787 0.21716

43 686 701 698 757 0.09386 0.11878 0.19466 0.23514

44 564 563 595 591 0.11112 0.1357 0.20968 0.23766

45 509 538 529 544 0.13396 0.14937 0.21834 0.23734

46 629 656 655 659 0.11399 0.12919 0.21303 0.23512

47 689 701 705 725 0.10708 0.13018 0.21098 0.23054

48 748 782 759 775 0.10018 0.12477 0.20228 0.24499

49 651 628 620 620 0.11576 0.16257 0.22021 0.26901

50 584 527 579 602 0.13898 0.1827 0.23344 0.28645

Hybrid consistency (Strong/Weak=2)

n SW Ct SR Ct WW Ct WR Ct SW Delay SR Delay SW Stdev Delay SR Stdev Delay

1 2417 2375 1216 1266 0.00073 0.00081 0.00776 0.00854

2 965 965 452 455 0.00335 0.00338 0.01903 0.01817

3 658 670 360 329 0.00463 0.00508 0.02196 0.02344

4 601 571 301 286 0.00727 0.01057 0.02838 0.03434
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5 382 375 192 184 0.01182 0.01202 0.03469 0.03293

6 778 746 369 377 0.00967 0.01074 0.03509 0.03624

7 441 458 249 195 0.01498 0.01492 0.04408 0.04277

8 1533 1499 711 745 0.00717 0.00831 0.03352 0.03452

9 579 614 290 290 0.01603 0.02303 0.04805 0.05989

10 655 634 297 302 0.01945 0.02609 0.05115 0.0615

11 610 617 317 290 0.01985 0.02401 0.05433 0.06349

12 714 718 360 378 0.02115 0.02833 0.05941 0.06822

13 707 725 379 392 0.02377 0.02759 0.06513 0.06934

14 486 508 261 251 0.03407 0.03878 0.07578 0.08267

15 870 871 474 448 0.02003 0.03174 0.0645 0.08344

16 608 563 269 291 0.04041 0.03973 0.08287 0.08435

17 544 604 305 315 0.03933 0.04446 0.08562 0.09372

18 576 657 320 319 0.03556 0.03516 0.07893 0.07907

19 746 726 380 367 0.03958 0.04215 0.08578 0.08751

20 645 587 275 310 0.0452 0.05462 0.09012 0.0989

21 557 573 269 262 0.05783 0.06074 0.10415 0.10883

22 750 781 410 394 0.04223 0.06231 0.09825 0.12372

23 910 953 453 468 0.04687 0.05218 0.10752 0.11559

24 575 521 286 300 0.05799 0.07179 0.11943 0.13395

25 769 753 383 371 0.05642 0.06654 0.11254 0.12888

26 740 750 374 390 0.06361 0.07228 0.12191 0.13665

27 981 964 496 491 0.05071 0.06316 0.11326 0.12433

28 774 794 413 395 0.06131 0.07075 0.12277 0.13485

29 939 887 456 460 0.07052 0.07543 0.13359 0.14305

30 506 592 287 295 0.07138 0.07689 0.13009 0.1361

31 617 572 304 319 0.08125 0.08807 0.13817 0.14692
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32 734 704 380 369 0.084 0.09591 0.14354 0.15727

33 663 689 336 310 0.0714 0.08342 0.13428 0.14709

34 853 796 419 442 0.07271 0.0866 0.13575 0.15567

35 851 861 410 410 0.0659 0.08384 0.13146 0.14919

36 663 658 330 337 0.09899 0.1126 0.15242 0.16572

37 602 613 328 335 0.08822 0.1135 0.14472 0.16825

38 539 577 308 301 0.09361 0.1235 0.14257 0.16716

39 714 714 367 397 0.1085 0.10473 0.16135 0.1695

40 687 718 353 367 0.11251 0.11323 0.15987 0.17292

41 656 586 282 290 0.11169 0.12985 0.15784 0.19161

42 1305 1376 646 659 0.08286 0.09013 0.18177 0.19654

43 1063 1148 553 507 0.09052 0.10534 0.18316 0.1983

44 801 748 382 426 0.10064 0.12321 0.16083 0.18464

45 949 959 489 460 0.12524 0.12943 0.21259 0.22239

46 1313 1275 651 657 0.09029 0.09918 0.18701 0.20367

47 1121 1169 601 545 0.0972 0.12117 0.1887 0.21604

48 1339 1294 663 747 0.09107 0.10388 0.18577 0.20198

49 728 751 361 337 0.15406 0.14515 0.22231 0.23056

50 1179 1162 574 582 0.1166 0.1359 0.20953 0.23017

Hybrid consistency (Strong/Weak=0.5)

n SW Ct SR Ct WW Ct WR Ct SW Delay SR Delay SW Stdev Delay SR Stdev Delay

1 1353 1349 2720 2753 0.00065 0.00066 0.0091 0.00772

2 1180 1212 2501 2429 0.00133 0.00158 0.01361 0.01664

3 980 997 1904 2041 0.00127 0.0037 0.01269 0.02995

4 735 761 1467 1423 0.00283 0.00593 0.02464 0.03865

5 712 659 1425 1459 0.00523 0.0077 0.0377 0.04687
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6 1461 1497 2966 2934 0.00418 0.00499 0.03619 0.04033

7 995 1011 2034 1949 0.00626 0.00773 0.04443 0.05251

8 1676 1685 3306 3405 0.0042 0.00663 0.03765 0.05187

9 1597 1598 3161 3373 0.00649 0.00818 0.05118 0.05976

10 662 699 1429 1422 0.01401 0.01958 0.07637 0.09198

11 799 753 1586 1459 0.01444 0.02182 0.07873 0.09816

12 1762 1723 3504 3465 0.00979 0.01269 0.0659 0.0801

13 640 640 1306 1237 0.01876 0.02483 0.09113 0.10691

14 751 709 1473 1513 0.02261 0.0269 0.10056 0.11572

15 861 849 1706 1711 0.02239 0.01961 0.10415 0.08943

16 521 484 988 1076 0.0344 0.04326 0.12595 0.15176

17 1013 1045 2056 1981 0.02249 0.02853 0.10526 0.12455

18 572 601 1243 1185 0.03456 0.03984 0.12819 0.14088

19 410 465 789 830 0.04007 0.04846 0.12644 0.13945

20 627 594 1325 1294 0.03142 0.05058 0.12326 0.15509

21 575 554 1167 1111 0.03623 0.04392 0.12683 0.13785

22 1143 1106 2255 2326 0.02433 0.03703 0.11382 0.14773

23 938 943 1970 1905 0.04083 0.05404 0.17172 0.20391

24 600 615 1250 1161 0.04501 0.06307 0.15337 0.18365

25 760 783 1586 1635 0.03881 0.05836 0.14603 0.18642

26 985 1032 2046 2140 0.04009 0.05176 0.17092 0.19342

27 500 508 1093 1110 0.04649 0.08016 0.15795 0.20566

28 795 759 1523 1463 0.0435 0.0678 0.17148 0.21027

29 592 586 1132 1157 0.05973 0.06549 0.17229 0.18888

30 642 635 1246 1273 0.05581 0.09614 0.17308 0.23524

31 887 833 1688 1707 0.05931 0.05801 0.21054 0.2085

32 1360 1390 2927 2815 0.04588 0.06974 0.20057 0.25241
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33 716 742 1424 1363 0.06055 0.08254 0.20165 0.21848

34 679 694 1356 1308 0.06857 0.09081 0.23671 0.25595

35 950 965 2044 2023 0.07991 0.09085 0.27562 0.29381

36 1003 971 2020 2028 0.06061 0.09496 0.21817 0.31525

37 707 755 1464 1495 0.07156 0.10423 0.20814 0.28902

38 802 859 1725 1763 0.10324 0.09794 0.3064 0.3068

39 629 622 1385 1322 0.08602 0.10451 0.25141 0.27384

40 573 535 1125 1095 0.10092 0.13213 0.27389 0.30568

41 840 850 1823 1726 0.09253 0.14497 0.31199 0.40899

42 666 631 1357 1381 0.08888 0.14927 0.25575 0.34378

43 783 773 1564 1688 0.08957 0.11201 0.26735 0.30528

44 631 595 1380 1225 0.09325 0.12073 0.26883 0.31232

45 590 569 1342 1256 0.11678 0.12266 0.30184 0.31864

46 895 884 1690 1780 0.09553 0.13395 0.29077 0.36244

47 760 732 1539 1556 0.12419 0.18603 0.34676 0.43386

48 668 640 1331 1283 0.11522 0.14582 0.28573 0.32889

49 660 696 1319 1417 0.1497 0.18161 0.36886 0.42358

50 403 475 930 941 0.14342 0.20953 0.31815 0.38475

Linearizability

n Write Ct Read Ct W Delay R Delay W Stdev Delay R Stdev Delay

1 195 177 0.08057 0.08056 0.00011 0.00011

2 361 373 0.08175 0.08168 0.00029 0.00032

3 557 520 0.08357 0.08346 0.00049 0.00053

4 684 716 0.08572 0.08547 0.00088 0.00101

5 872 821 0.08856 0.08834 0.00113 0.00121

6 953 1021 0.09119 0.09097 0.00146 0.00153
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7 1121 1091 0.09488 0.09465 0.00201 0.00173

8 1265 1164 0.09878 0.09852 0.00233 0.00222

9 1333 1304 0.10225 0.10196 0.00275 0.00274

10 1406 1424 0.10612 0.10546 0.00303 0.00375

11 1438 1576 0.10951 0.10901 0.00354 0.00395

12 1594 1538 0.11478 0.11454 0.0041 0.00401

13 1635 1645 0.11876 0.11848 0.00476 0.00395

14 1705 1697 0.12349 0.1228 0.00536 0.00541

15 1764 1752 0.12808 0.12728 0.00567 0.00627

16 1796 1836 0.13231 0.13147 0.00605 0.00643

17 1878 1828 0.1375 0.13683 0.00651 0.00639

18 1877 1942 0.14127 0.14056 0.00701 0.00731

19 1951 1925 0.14692 0.14607 0.00819 0.00749

20 2030 1892 0.1526 0.15227 0.0085 0.00711

21 1991 2047 0.15589 0.15513 0.00895 0.00845

22 2033 2064 0.16108 0.15994 0.00926 0.01028

23 2100 2038 0.16678 0.16611 0.00983 0.00962

24 2109 2091 0.17149 0.17049 0.01063 0.01032

25 2114 2159 0.17596 0.17446 0.01106 0.01208

26 2162 2128 0.18141 0.18066 0.01174 0.011

27 2150 2222 0.18523 0.18463 0.01194 0.01128

28 2225 2143 0.19237 0.1911 0.01248 0.01356

29 2232 2176 0.19705 0.19618 0.01334 0.01295

30 2199 2298 0.20061 0.19888 0.0144 0.01508

31 2247 2248 0.20675 0.20558 0.01439 0.01399

32 2272 2240 0.21227 0.21123 0.01479 0.01438

33 2270 2284 0.21718 0.2153 0.01573 0.01655
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34 2242 2382 0.22035 0.2187 0.01629 0.01578

35 2305 2315 0.22743 0.22561 0.01737 0.01671

36 2322 2315 0.23316 0.23143 0.01739 0.01765

37 2380 2245 0.24018 0.23829 0.01857 0.01991

38 2327 2355 0.24276 0.24152 0.01832 0.01753

39 2330 2389 0.24778 0.24624 0.01932 0.01825

40 2362 2358 0.25391 0.2527 0.01989 0.01956

41 2371 2381 0.25894 0.25735 0.02032 0.01993

42 2322 2474 0.26213 0.26039 0.01991 0.02033

43 2359 2424 0.26911 0.26737 0.02121 0.02106

44 2405 2359 0.27625 0.27449 0.02159 0.02277

45 2393 2422 0.28056 0.27842 0.02177 0.02476

46 2364 2481 0.28425 0.28214 0.02348 0.02368

47 2414 2427 0.2911 0.28972 0.02367 0.02218

48 2416 2432 0.29677 0.29469 0.0238 0.02555

49 2403 2468 0.30112 0.29902 0.02445 0.02721

50 2445 2405 0.30884 0.30683 0.02529 0.0266

Sequential consistency

n Write Count Read Count Write Delay Write Stdev Delay

1 370 337 0.08098 0.0001

2 722 628 0.08302 0.00031

3 1047 993 0.08588 0.00061

4 1339 1472 0.0895 0.00098

5 1600 1593 0.09366 0.00141

6 1829 1781 0.09829 0.00188

7 2030 2169 0.10334 0.0024
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8 2208 2087 0.10857 0.00294

9 2359 2491 0.11414 0.00352

10 2499 2522 0.11989 0.00411

11 2618 2565 0.12575 0.00471

12 2724 2711 0.13178 0.00534

13 2821 2965 0.13785 0.00597

14 2908 3042 0.14412 0.00661

15 2985 2969 0.15041 0.00727

16 3056 3125 0.15666 0.00791

17 3115 2993 0.16314 0.00858

18 3172 3327 0.16959 0.00926

19 3228 3271 0.17624 0.00992

20 3272 3292 0.18286 0.01064

21 3318 3329 0.18944 0.0113

22 3354 3296 0.19606 0.01197

23 3387 3432 0.20282 0.01269

24 3424 3362 0.20964 0.01335

25 3450 3480 0.21646 0.01411

26 3484 3508 0.2232 0.01481

27 3510 3511 0.23005 0.01547

28 3528 3657 0.23708 0.01621

29 3553 3551 0.24382 0.01691

30 3570 3556 0.25089 0.01759

31 3596 3650 0.25795 0.0183

32 3614 3785 0.26491 0.01909

33 3630 3774 0.27201 0.01989

34 3638 3662 0.27915 0.02062

57



35 3647 3586 0.28611 0.02135

36 3672 3740 0.29335 0.02194

37 3669 3755 0.30048 0.02268

38 3686 3626 0.30758 0.02338

39 3705 3867 0.31483 0.02402

40 3710 3783 0.32209 0.02475

41 3720 3854 0.3292 0.02557

42 3724 3895 0.33667 0.02645

43 3739 3869 0.34389 0.02733

44 3740 3919 0.3513 0.0281

45 3735 3752 0.35874 0.02893

46 3743 3796 0.36612 0.02968

47 3760 3992 0.37365 0.03032

48 3744 3801 0.38115 0.03091

49 3772 3843 0.38882 0.03147

50 3750 3996 0.39652 0.03331
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