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ABSTRACT 

Design Embedded Operating System Based on Tiny Register Machine. (May 2015) 
 

Sidian Wu 
Department of Computer Science and Engineering 

Texas A&M University 
 

Research Advisor: Dr. Riccardo Bettati 
Department of Computer Science and Engineering 

 

The remarkable development of embedded computing devices in the past few decades has 

greatly improved the computing ability of our embedded and mobile devices. Mobile phones, for 

example, have developed from simple telephony and messaging devices into integrated 

computation, visualization, and communication devices that interact with a variety of external 

sensors to respond to health signals, location information, video input, and others. This is 

typically achieved through a combination of a small number of general-purpose computing cores 

with support from a highly-parallel graphics unit. This thesis is part of an investigation to study 

the applicability for embedded applications of extremely simple configurable computing 

components particularly designed for mapping on field-programmable gate arrays (FPGAs). This 

research is focusing on investigating of the low-level software requirements of the so-called Tiny 

Register Machine (TRM). This thesis describes, step by step, the construction of  an adaptable C 

compiler, to program the TRM. This will provide the foundation for developing an experimental 

operating system, test the performance of this operating system and explore the possibility of 

TRM to run complicated Operating Systems or applications later on.  
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CHAPTER I  

INTRODUCTION 

  

Increasingly, high-performance embedded computers – be they in smartphones, wearable 

devices, in health and entertainment applications, or others – play important roles in in any of 

field in people’s daily life. The need for and the ability to flexibly design the processor units of 

such computers have grown significantly in the recent past. Therefore, it is important to further 

investigate and develop and understanding for the design space for embedded device 

architectures. One approach to the design of computation nodes for embedded systems is to 

combine traditional microprocessor design together with flexible deployment on field-

programmable gate arrays (FPGAs). This approach would allow the embedded-system designer 

to leverage both well-proven software development techniques (e.g., use of high-level 

programming languages, toolchains, and development environments) and the ability to tune the 

architecture parameters (number of cores, cache size, interconnection network, etc.) to match the 

application at hand. The research in this thesis is an investigation of the low-level software 

requirements of the so-called Tiny Register machine, which is a processor architecture that, we 

predict, will lend itself for deployment in low-power embedded environments, in particular on 

FPGAs. The advent in the recent years of inexpensive development boards with sizeable and fast 

FPGA chips has made it possible for us to design and deploy embedded system architectures 

with a significant number (32 or more) of cores. Some research has gone into the design of 

minimal architectures that are suitable for deployment on FPGAs. One such architecture, the 

Tiny Register Machine [1], is a simple processor architecture optimized for implementation in 

FPGAs. TRM not only has all the characters and components a modern CPU has but has also 
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been well-designed to be both simple and efficient enough for use in high-performance and low-

power embedded applications. The final goal of our research is to build an event-driven 

operating system to build TRM based low-power embedded systems. The objective of this thesis 

is to develop a C compiler, which translates programs represented in the high-level language C 

into machine operations. The availability of such a compiler allows the system designer to 

develop code for the TRM in a familiar high-level programming language on a desktop and then 

use the compiler to generate machine code, which can finally be downloaded to and executed on 

the TRM.  

 

Follow-up projects can then make use of this compiler to develop a software framework to host 

embedded applications on the TRM. For example, it becomes possible to port a minimal 

operating system, such as FreeRTOS [2] to the TRM. Based on the experiences gained with 

FreeRTOS, one could proceed to port the L4 micro-kernel (NEED A REFERENCE) to the TRM 

as well. This will enable people to later run a POSIX compliant OS on top of the TRM.  

 

This thesis is organized as follows: In Chapter one, we lay out importance and the purpose we 

are researching on TRM. In Chapter two, we proceed to describe background knowledge and a 

blueprint of we will build up. In Chapter three, we introduce the specific methods we used during 

the experiment.  Finally, we conclude in Chapter four and provide an outlook to future work. 
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CHAPTER II 
BACKGROUND 

  

Tiny Register Machine 

Tiny Register Machine (TRM) is a straightforward RISC architecture implemented of a Field 

Programmable Gate Array (FPGA) [1] by Dr. Niklaus Wirth. TRM was initially designed for 

educational purpose. With the relentless effort and rigorous attitude, TRM has been developed as 

a perfect pattern for students to study microchips and the software on the top of it. The design of 

TRM is extremely neat and efficient aiming to provide a lightweight platform for experiment and 

education.  

  

In the design of CPU, register is the storage unit that enables the CPU to perform calculation. 

The number and type of register is usually regarded as the most important specifications in the 

CPU architecture. Tiny Register Machine owns 16 32-bit registers. The local data memory 

consists of 2048 words of 32 bits. The local program memory consists of 4096 instructions with 

18 bits. [3] 

 

Its so-called RISC architecture stands for Reduced Instruction Set Computing, which is in 

comparison to Complex Instruction Set Computing. The latter approach is widely used in 

industrial level CPU. RISC architectures usually have extremely small and very uniform 

instruction sets, which allows for relatively simple implementations of the CPU. TRM contains 

only 16 instructions in total. Each instruction can be divided into 4 fields, which in turn represent 

operation, destination register address, initial register address, and auxiliary space. The auxiliary 

space could be either another address of register or a constant offset.  
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In order to handle asynchronous event, the TRM supports interrupt signals. An interrupt signal is 

emitted by either hardware or software running on the top of CPU, and it indicates that there is a 

need for CPU to interrupt the currently executing thread in order handle the urgent request from 

the source of interrupt. TRM reserves 3 interrupt signals irq0- irq2. Whenever an interrupt signal 

arrives at CPU, the latter stores the current data from registers into memory and gets ready to 

handle the new event. When finished, it restores the original data from memory and continues 

executing from where it left off.   

In this project, we use an existing Verilog [4] implementation on an FPGA development board of 

a single-core TRM CPU. Verilog is a widely used hardware description language that could help 

people build up and modify circuits on the top of FPGA board.  

 

Computer Language Syntax 

Just like the languages people speak, computer languages follow their own grammars rules as 

well. Compilers read the source files and tell the programmers whether they have been well 

formed already or are still having errors based on those rules. One of the main notions to 

describe the syntax of computer languages is called Backus Normal Form (BNF) [5].BNF 

formulates all elements involved in a language into four categories – Terminal symbols, 

nonterminal symbols, syntactic equations (production rule), and start symbol. “A language is, 

therefore, the set of sequences of terminal symbols which, starting with the start symbol, can be 

generated by repeated application of syntactic equations, this is substitutions” [6].  
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For instance, if we define a language that the start symbol are A and B; terminal symbol are a, b, 

c, and d; and the syntactic equations are A = a or b and B = c or d.  Then the sentence “AB” can 

be translated into four forms – “ac”, “ad”, “bc”, and “bd”.  

 

In our experiment, we focus on one of the special syntax form called Context Free Grammar 

(CFG) [7]. CFG language starts with a single nonterminal symbol V. The production translates V 

into a string of terminal symbols or nonterminal symbols (recursive). However, its production 

rules can be applied regardless of the context of a nonterminal symbol. For instance, start symbol 

is S, terminal symbol is a, production is  S = aSa follows context free grammar.  

 

The reason we are interested in digging into on the syntax of computer languages and CFG is 

they play significant role while constructing computer languages and compilers, on the other 

hand, parsing each sentence is based on those rules. One of the main algorithms we used is called 

recursive descent parsing, which is a simply and efficient way to translate CFG format input into 

the TRM opcode eventually.  

 

 

Compiler  

The compiler is a system program that translates a program represented in human-readable 

computer languages such as C, C++, and Java into computer-readable binary code. Since 

different CPUs have different instruction sets, different compilers are needed to translate 

programs to CPU instructions. Whenever a CPU with a new or modified instruction set comes 



7  
  

out, the compiler is usually the first program that needs to be built. In this project, we develop an 

experimental compiler for the TRM instruction set. 

We select the C Language [8] as the high-level language for which to build the compiler. This for 

three reasons: First, the C Language is relatively simple and allows for compact compilers; 

second, second, C is well suited to develop low-level system software such as event-handling 

code or even simple operating systems; finally, there are many existing implementations of 

compilers for the C Language that have been ported to a variety of architectures. It is therefore 

comparatively simple to either develop a compiler for a subset of C from scratch or to port an 

existing compiler to the TRM. 

  

Due to the significant complexity of today’s compilers and due to the need to develop what 

amounts to unique compilers for each CPU architecture, the design of modern compilers is that 

of multiple interrelated components. The whole compiler works like a pipeline where the output 

of each component becomes the input for next component. By convention, a standard compiler 

has the following components – lexical analyzer, syntax analyzer, semantic analyzer, 

intermediate code generator, machine independent code improver, target code generator, and 

machine dependent code optimizer.  

 

We call the first three steps the front end of the compiler. Lexical analysis reads through the 

input text files, removes unnecessary elements such as white space and comments, and converts 

files into a stream of tokens. Syntax analysis processes the set of tokens and turns them into a 

more complex data structure called abstract syntax tree. The syntax analysis not only parser the 

source files into easier-processing format for following components but also is in charge of 
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looking for syntax errors in the files. In the end, sematic analyzer checks legality rules of the 

language.  

 

Conventionally, the output stream from sematic analyzer goes into intermediate code generation. 

Compared to real computer language, intermediate code has fewer but more restricted syntax and 

sematic rules, which is easier for back-end program translating later. It also optimizes the codes 

in favor of improving the CPU performance. Optimization varies from replacing duplicated 

variables to syntax simplification. The codes then come to back-end processor and get ready for 

execution.  

 

The back-end of the compiler provides tool to generate real target code. It usually starts from 

transferring intermediate code to target assemble code. The independent machine code usually 

indicates an assemble code that assume the hardware can provide infinite resources when needed. 

Those codes later on will be optimized based on the hardware condition. Once it is done, the 

compiler will goes through the code once more and generate machine dependent codes. These 

are binary executable files in the target machine.  

 

As a result, the compiler architecture is hour-glass shaped, where well-defined interface around 

the intermediate representation allow a variety of front ends (for multiple languages) to be 

combined with a multitude of back ends (for different CPU architectures).  

 

As a result, programmers need to only rewrite portion of an existing compiler and reuse the rest 

to create a new compiler. For instance, Pascal and C could share the same back-end compiler 



9  
  

while having their own separate parsers. Two compilers running on ARM and Intel Pentium can 

have the same front-end parser and different code generators. In this project, we focus on the 

back-end compiler construction. We choose C as it is the most common computer language for 

designing Operating System. It is also one of the most efficient computer languages as well 

being very popular among users.  

 

Since compiler is one of the most complicated application and various kinds of computer science 

knowledge is involved in it, we started with looking on the background of the compiler design 

first.  Compiler Construction written by Dr. Wirth and Compilers: Principles, Techniques, and 

Tools written by Alfred Aho, etc give us huge help and inspiration at the beginning and let us 

have a big picture of the design of compiler.    

 

After we had a general picture in my mind, we started to investigate a open source compiler 

called Tiny C Compiler (TCC) [9] to get a deeper view of compiler. When we look around open 

source compilers, we found it was different from the rest of compilers. An industrial-class 

compiler such as G++ or Visual Studio has over one million lines of codes. However, when we 

lift the veil of TCC, we realized there are only less than fifty thousand lines of codes. Although 

TCC is only made by author’s interest for personal use, it does realize all fundamental C 

features, and even extends a few advanced functions. We also noticed that TCC could run faster 

than most of current compilers easily. Apart from astonishing the author’s coding ability, we 

wonder how the author could manage to realize these fashions. We started to read the author’s 

code and understand his purpose with the fear that we would not be able to fully understand and 
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modify the codes in the end. Later on, we figured out that TCC is very special and does not have 

general compiler components like anyone else. 

 

We later on started to look for suitable parser and found Pycparser [10] is a good pattern for our 

project. Pycparser is a front-end C language parser Pycparser consists three useful components 

that aim to do lexical, syntax and semantic analysis. It also provides a set of handle APIs that 

help users call those features. Eventually, Pycparser translates the C source files into one of the 

intermediate code called Abstract Syntax Tree (AST) (reference). We extent Pycaparser and add 

the back-end opcode generator for it. The back-end code generator retrieves each node in AST 

and translates each syntax structure into opcode.  
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CHAPTER III  

COMPILER DESIGN 

 

Symbol Table 

Symbols are variables and functions in computer languages defined by programmers. In 

compiler design, we implement a symbol table to mark every symbols when it occurs in the 

source code. We store name, type, value (if it is a constant), memory address and associated 

register of each symbol when they are defined. When the program later on calls the symbols, the 

compiler searches the symbol table and acquires the necessary information needed in order to 

generate opcode.  

 

Symbol table is one of the most important components that every compiler would have to 

implement. There are different ways to construct a symbol table. In our experiment, we used 

both linked list and stack data structure to implement symbol table. Due to each variable has its 

own scope in C language; we store variables in the different scopes in individual symbol tables.  

Each symbol table is a stack as well as a node in the linked list. When the code goes into a new 

scope, we create a new symbol table and push all variables occur into this new table. We pop the 

whole table out when the scope is end. The first symbol table stores global variable and function 

declarations and associates with a data section in the memory.  

 

Memory Layout 

When a program is parsed into opcode, the code is organized in a typical order in the memory. 

Instructions that play similar functions are put in the same blocks called sections. A C program 
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usually has at least three sections – text sections, data sections, and stack section. Text section 

contains compiled opcode. Data section store the global variables and functions’ memory 

address. Stack section is used to store local variables when functions are called. The more 

complex C program may also have heap section as well as the section for command-line 

arguments and environment variables.  

 

In our experiment, we only implemented the text, data, and stack sections. We leave the rest of 

them in the future optimization.  When program is running, we defined three special registers 

called program counter (PC), frame pointer (FP), and stack pointer (SP).  The PC contains the 

address of the instruction currently being executed. PC is set to the beginning of text section and 

will have one increment when the current instruction is done. FP and SP are originally set to the 

top of the stack section. SP increases when new local variables are pushed into the stack while 

FP indicates the head of the stack.  

 

 

Recursive Descent Parsing 

Abstract syntax tree is a tree representation widely used in the design of compiler. Each node 

denotes an elements occurring in the source code while the children nodes denotes the 

relationship between different nodes. In our project, we read C source codes from the users and 

construct an abstract syntax tree with the help of Pycparser. Since the Astract syntax tree follows 

the rules defined in context-free grammars, recursive descent parsing is applied here to translate 

abstract syntax tree.  
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“Recursive descent paring is a top-down process for a set of mutually recursive productions in 

which the parser attempts to verify that the syntax of the input stream is correct as it is read from 

left to right.” [11] 

 

In our project, we denoted those main methods written in Python below to implement recursive 

descent paring procedures.  

 

fileAST: parse the root node in the abstract syntax tree. Each parsing starts from FileAST. There 

are three possible children nodes may occur – decl, funcDecl, and funcDef.  

 

decl/ funcDecl: is called when the program declares a new variable/function. It stores the 

variable into symbol table.  

 

funcDef: is called when the program define a new function. Generating function definition is one 

of the most important and complex produce when parsing. There are several things need to be 

done here and we implement them in individual sub-retinues.  

 

prolog: is called when function is defined. ‘prolog’ create new symbol table for local variables in 

the function and push the function arguments into it. In addition of all arguments, ‘prolog’ 

creates two special symbols in order to store FP value and return values. Since the local variables 

have their own scopes, when the program goes to a new sub-routine (function), it stores the 

current FP value into memory and move increase the FP to the tail of the stack (this is done in 

the method funcCall).  
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block: is called during the function definition. ‘block’ goes to each lines in the function 

definitions and keep recursive descent parsing. It generates opcode for the main segment of a 

function and store then into text section.  

 

epilog: is called when the function definition is finished. ‘epilog’ restores FP to the previous 

address stored in the stack and pass the return value to the previous routine. It then pops the all 

variables in the current scope and set the SP to the tail of previous stack.  

 

funcCall: is called when functions are called. It sets up the FP and SP values and jumps SP to the 

address in the text section where the functions begin. 
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CHAPTER IV  

CONCLUSION 

 

Compiler is one of the most significant and fundamental software that each CPU architecture 

would have to use. It is the cornerstone of other software. During almost one year’s experiment, 

we not only learned of how to build up our own compiler, but also had a deeper understanding of 

the relationship between hardware and software. Although the difficulty is beyond our 

expectation and we had to changed our original plan and look for new approaches sometimes, it 

is very fun and educational. During the experiment, we came up with the questions and problems 

that we would not had if only reading textbook. It is also a huge jump from understanding what it 

is said in book to handcrafting our own weapon.  

 

However, due to limitation of our knowledge and time, we also leave several checkpoints that we 

would like to improve or extend our project in the later experiment.  They come from three 

places. 1. Although we have built our compiler, we did not consider any way to optimize the 

code generation. The compiler is also designed to parse only a subset of C language to opcode. It 

is not fully compatible with standard C. We would like to refactor our code later to make it fully 

compatible as well as efficient. 2. We would like to make use of compiler and build an advanced 

operating system on the top TRM such as FreeRTOS. This will enable people to later run a 

POSIX compliant OS on top of the TRM. 3. The flexibility of FPGA gives us the chance to 

modify the hardware features as well. We would like to dig into the design of TRM and add 

more features to TRM. One possible improvement would be changed it to a multi-cores 

architecture. 
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 TRM gave us much more fun and we hope we would have more time playing around it. Little 

chip, big world. 
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