
 
 

CHARACTERIZATION OF GENETIC VARIATION OF THE GULF 

KILLIFISH (FUNDULUS GRANDIS) ALONG THE TEXAS COAST 

 

 

An Undergraduate Research Scholars Thesis 

by  

AMANDA REYES 

 

 

Submitted to Honors and Undergraduate Research 

Texas A&M University 

in partial fulfillment of the requirements for the designation as an 

 

 

UNDERGRADUATE RESEARCH SCHOLAR 

 

 

Approved by 

Research Advisor:       Dr. Jaime Alvarado-Bremer 

 

 

May 2015 

 

Major: Marine Biology 



 
 

TABLE OF CONTENTS 

Page 

ABSTRACT .................................................................................................................................. 1 

ACKNOWLEDGEMENTS .......................................................................................................... 2 

CHAPTER  

 I INTRODUCTION ................................................................................................ 3 

            Objectives ............................................................................................................. 4 

             

 

 II METHODS ........................................................................................................... 5 

            Sample Collection ................................................................................................. 5 

           DNA Extraction and Sequencing  ......................................................................... 5 

 Data Analyses ....................................................................................................... 6 

 

 III RESULTS ............................................................................................................. 7 

  Figure 1 ............................................................................................................... 10 

  Figure 2 ............................................................................................................... 11 

  Figure 3 ............................................................................................................... 12 

  Figure 4 ............................................................................................................... 13 

  Table 1 ................................................................................................................ 14 

  Table 2 ................................................................................................................ 15 

            

 IV CONCLUSION(S) .............................................................................................. 16 

 

REFERENCES ........................................................................................................................... 19 



1 
 

ABSTRACT 

Characterization of Genetic Variation of the Gulf Killifish (Fundulus grandis) Along the Texas 

Coast. (May 2015) 

 

Amanda Reyes 

Department of Marine Biology 

Texas A&M University 

 

Research Advisor: Dr. Jaime Alvarado-Bremer 

Department of Marine Biology 

 

The gulf killifish (Fundulus grandis) is a widely distributed cyprinodontiform of ecological 

importance in salt marshes of the Gulf of Mexico. Both the reproductive strategy and apparently 

limited dispersal capabilities should translate into strong phylogeographic association to natal 

sites.  This study is the first to characterize the patterns of genetic differentiation among Texas 

populations using mitochondrial DNA sequence data. DNA was extracted from fin clips obtained 

from specimens sampled in two Texas locations, Galveston and Corpus Christi. Patterns of 

sequence variation and the phylogeographic association of haplotypes were characterized for 

1,253 bp of sequence of the mitochondrial DNA genes ND2 and ND5, and for a segment of the 

D-loop region for 55 individuals. A strong phylogeographic signal was uncovered, with 

Galveston showing larger values of haplotypic and nucleotide diversities than Corpus Christi. 

AMOVA identified significant (P < 0.05) differentiation between Galveston and Corpus Christi 

samples using all loci, thus rejecting the null hypothesis of panmixia. The results of this study 

represent a valuable baseline for future assessments of Fundulus grandis variation along the 

Texas Gulf Coast, including a planned study of differences in genetic variation of colonizing 

fauna in natural and restored marshes.  
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CHAPTER I 

INTRODUCTION 

 

The gulf killifish is a small cyprinodontiform found in estuaries from Florida to Laguna de 

Tampamachoco, Veracruz, Mexico (Hubbs et al. 2008). The gulf killifish is closely related to the 

mummichog (F. heteroclitus) –a model species widely used in toxicological, evolutionary and 

physiological studies. Although very little is known about the patterns of genetic differentiation 

of the gulf killifish, particularly along the coast of Texas, the egg stranding reproductive strategy 

displayed by this species (Greeley & MacGregor 1983), together with the limited dispersal 

capabilities of the members of the same genus (Sweeney et al. 1998; Skinner et al. 2005), appear 

to promote genetic differentiation among estuaries.  A comparison of gulf killifish samples from 

Florida to Texas using microsatellite markers indicates a strong population subdivision between 

estuaries along the Gulf of Mexico coast (Williams et al. 2008).  

 

With the exception of the characterization of the cytochrome b sequences employed to 

reconstruct the phylogeny of the genus Fundulus (Bernardi and Powers 1995), or the comparison 

of populations along the Florida coast (Gonzalez et al. 2009), there are no published studies 

assessing the patterns of genetic variation of gulf killifish using mtDNA data, and in particular 

along the Texas coast. Further, the rate of substitution for cytochrome b gene in Fundulus is 

slower than other mtDNA genes or the D-loop region (Whitehead 2009), making the 

characterization of faster evolving mtDNA segments desirable. 
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The purpose of this research is two-fold. First, to characterize the patterns of genetic variation in 

three mtDNA genes in the gulf killifish. Second, to establish the phylogeographic association of 

mtDNA haplotypes to estuaries located along the gulf coast of Texas. Genetic variation will be 

characterized at three mitochondrial genes, namely nitrogen dehydrogenase subunits 2 (ND2) 

and 5 (ND5), and the D-loop region because of their mutation rates (Whitehead 2009). 

 

Objectives 

Objective 1: To extract high quality DNA from previously obtained fin clips of F. grandis and 

use PCR and cycle sequencing techniques to isolate, amplify, and sequence three mtDNA genes, 

namely ND2 and ND5 and the d-loop region. These sequences will also be used to confirm the 

species identity. 

Objective 2: To use patterns of variation to determine the population structure of F. grandis 

along the Texas gulf coast in order to make inferences about the phylogeography of this species. 

Hypothesis 1: Nucleotide sequences of mtDNA should contain sufficient levels of inter-species 

differentiation in Fundulus grandis, to be diagnostic for species identification. 

Hypothesis 2: Due to the expected strong association to estuaries concordant with their limited 

dispersal capabilities and reproductive strategy, it is expected that the patterns of variation in the 

mtDNA will reject the null hypothesis of panmixis of the F. grandis along the Texas coast.   
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CHAPTER II 

METHODS 

Sample Collection 

Prior to the beginning of this study, fin clips were collected from gulf killifish in two sampling 

localities along the Texas gulf coast. Galveston Bay fish were captured at the Reitan Marsh. The 

sample from Corpus Christi Bay was collected near the Texas A&M Corpus Christi campus. 

Specimens were captured using cylindrical minnow traps baited with dog food. The fish were 

identified in the field and a small segment of the dorsal fin was clipped and preserved in 70% 

ethanol. Fishes were immediately released back as close as possible to their capture location. 

DNA Extraction and Sequencing 

In the laboratory, DNA was purified and extracted using proteinase K digestion of fin tissue 

followed by ethanol precipitation, as outlined in Grieg (2000).  PCR included an initial 

denaturing step at 94
o
C for 2 minutes followed by 35 cycles of denaturing at 94

o
C for 20 

seconds, annealing at 45
o
C for 45 seconds, and extension at 72

o
C for 30 seconds, with a final 

extension step at 72
o
C for 1.5 minutes. Approximately 380 bp of D-loop were amplified using 

primers L15998-Pro-FG (5’-CGCCCCTAGCTCCCAAAGCTA- 3’) and CSBDH-FG (5’-

TGAAATAGGAACCAAATGCCAG-3’) (Espinoza and Alvarado Bremer unpublished). The 

design of these two F. grandis specific primers was based on the piscine universal D-loop 

primers (Alvarado Bremer et al. 1995). In addition, approximately 400 bp of ND2 were 

amplified using primers L4173-ND2-FG (5’-CATCATCCCCGAGCCGTTGA-3’) and H4634-

ND2-FG (5’-GGAAGGTTAAGGATGGGAAG-3’); and approximately 500 bp of ND5 were 
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amplified using primers L12137-ND5-FG (5’-GCAGAAACGGTAGTGTCCAC-3’) and 

H12717_ND5-FG (5’-GTACTTGAATGCAGTAGGGC-3’) (Espinoza and Alvarado Bremer, 

unpublished). These ND2 and ND5 primers were based on the original primers targeting these 

two mtDNA genes in F. heteroclitus (Whitehead 2009).  

PCR products were diluted 1:10 and sequenced using the BigDye Terminator v.3.1 Cycle 

Sequencing Kit (Life Technologies, Carlsbad, CA). Sequencing reactions were performed in 

10µL reaction volumes containing 0.5µL of BigDye Terminator v.3.1, 2µL of BigDye 5x 

Sequencing Buffer, 1µL of 1X concentration light chain primer specific to each segment, and 

5.5µL of sterile ddH2O. The step-cycling program consisted of an initial denaturing step at 95ºC 

for 1 minute, followed by 14 cycles of denaturing at 95ºC for 10 seconds, annealing at 50ºC for 5 

seconds, and extension at 60ºC for 1minute 15 seconds, 4 cycles of the same denaturing and 

annealing steps, but extension at 60ºC for 1 minute 30 seconds, and 4 more cycles of the same 

denaturing and annealing steps, with extension at 60ºC for 2 minutes. Reactions were then 

cleaned using the ZR DNA Sequencing Clean-up Kit (Zymo Research Corp., Irvine, CA). 

Samples were characterized in a 3130 Genetic Analyzer (Applied Biosystems, Carlsbad, CA) 

following the manufacturer’s instructions. Multiple sequence alignments were conducted in 

Geneious Pro v.6.1 (Biomatters Ltd., Aukland, NZ).   

Data Analyses 

Sequence alignments for were imported into MEGA v.6.06 (Tamura et. al 2013). A BLAST 

search was conducted for each sequence to determine if species identification was possible with 

any or all sequences characterized. MEGA v6.06 was used to select the best model of nucleotide 

substitution for each gene (Nei and Kumar 2000). Additionally, MEGA v6.06 was used to 
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construct Maximum Likelihood (ML) trees to identify phylogeographic association among 

localities. The full mitochondrial genome for an individual belonging to the sister taxa, Fundulus 

heteroclitus, was downloaded from the NCBI database (Accession FJ445398; Whitehead 2009), 

and orthologous segments were used as outgroup in the corresponding ML trees.  

ARLEQUIN V.3.5 (Excoffier and Lischer 2010) was used to calculate Tajima’s D, the number 

of haplotypes (M), haplotypic diversity (h), nucleotide diversity (π); number of segregating sites 

(S), and nucleotide composition for each loci. Analyses of molecular variance (AMOVA; 

Excoffier et al. 1992), were also conducted in ARLEQUIN. 
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CHAPTER III 

RESULTS 

 

Aligned sequences were inspected to identify possible ambiguities and misalignments and, if 

present, were corrected by hand.  Only those sequences whose ambiguities could be resolved in 

this manner were kept for analysis. A total of 144 sequences were determined (Table 1), 

corresponding to 46 D-loop sequences 376bp long (23 Corpus Christi, 23 Galveston), 48 ND2 

sequences 392bp long (24 Corpus Christi, 24 Galveston), and 50 ND5 sequences 485bp long (20 

Corpus Christi, 30 Galveston). Concatenated sequences (1,253 bp long) were constructed only 

for individuals that had high quality sequences for all three loci (n=35, 16 Corpus Christi, 20 

Galveston). BLAST searches for D-loop, ND2, and ND5 sequences all came back with F. 

grandis mtDNA as the top two best matches. The next nearest match in all instances was 

grandis’s sister species, F. heteroclitus. 

 

The best models of nucleotide substitution based on Bayesian Information Criterion (BIC) were 

the Tamura 3-parameter model (Tamura 1992) with a gamma distribution of 0.05 for the D-loop, 

and the same model with a uniform distribution for ND5. For ND2, the best model was the 

Kimura 2-parameter model (Kimura 1980). The HKY model (Hasegawa, Kishino, and Yano 

1985) with a gamma distribution of 0.05 was the best model for the concatenated sequences. 

Each of these four models were used accordingly to reconstruct ML gene trees and all other 

calculations performed in MEGA. Since the Tamura 3-parameter and the HKY models are 

unavailable in ARLEQUIN, D-loop, ND5, and concatenated sequences were analyzed in that 

program using Tamura and Nei (1993) distances, with gamma parameters where appropriate. 
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The ML trees for F. grandis D-loop (Figure 1), ND2 (Figure 2), ND5 (Figure 3) and for 

concatenated sequence data (Figure 4) all reveal a certain degree of genetic differentiation 

between the two sampling locations. D-loop reveals the strongest pattern of differentiation, with 

Galveston containing more haplotypes, and with many of these basal, and thus ancestral to the 

Corpus Christi haplotypes.  
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Figure 1: ML consensus tree showing the relationship of F. grandis D-loop haplotypes. Symbols 

at the tips of terminal branches represent locality of capture as follows:▲ Corpus Christi, ● 

Galveston, and ■ the outgroup, F. heteroclitus. The number of times each symbol is repeated 

represents number of individuals sharing a particular haplotype. Bootstrap support is denoted at 

the nodes of the corresponding branches. 
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Figure 2: ML consensus tree showing the relationship of F. grandis ND2 haplotypes. Symbols 

at the tips of terminal branches represent locality of capture as follows:▲ Corpus Christi, ● 

Galveston, and ■ the outgroup, F. heteroclitus. The number of times each symbol is repeated 

represents number of individuals sharing a particular haplotype. Bootstrap support is denoted at 

the nodes of the corresponding branches. 
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Figure 3: ML consensus tree showing the relationship of F. grandis ND5 haplotypes. Symbols 

at the tips of terminal branches represent locality of capture as follows:▲ Corpus Christi, ● 

Galveston, and ■ the outgroup, F. heteroclitus. The number of times each symbol is repeated 

represents number of individuals sharing a particular haplotype. Bootstrap support is denoted at 

the nodes of the corresponding branches. 
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Figure 4: ML consensus tree showing the relationship of F. grandis concatenated sequences. 

Symbols at the tips of terminal branches represent locality of capture as follows:▲ Corpus 

Christi, ● Galveston, and ■ the outgroup, F. heteroclitus. The number of times each symbol is 

repeated represents number of individuals sharing a particular haplotype. Bootstrap support is 

denoted at the nodes of the corresponding branches. 
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Tajima’s D for all loci and populations tested was near 0 (-2 < D < 2), and none of the values 

were considered significant (P > 0.05), indicating that the loci used in these analyses are not 

under selection (Nei and Kumar 2000; Tajima 1989). For all loci tested, Galveston samples 

contained a greater number of polymorphic sites (S), haplotypes (M), haplotypic (h) diversity, 

and nucleotide (π) diversity than Corpus Christi samples. Among the single loci samples, D-loop 

showed the greatest variation, followed by ND2, then ND5. All loci sequenced had a greater A 

and T content (57.8% - 68.3%) than G and C (31.7% - 42.2%) (Table 1).  

 

In all AMOVAs, the majority of variation for each loci was found within populations (81.98% - 

86.49%). However, a relatively large amount of significant among-group variation was 

uncovered. Differences among groups was highest for D-loops (18.02%), followed by ND5 

(16.68%), and then ND2 (13.51%). The AMOVA results were significant (P < 0.05) for all loci 

tested (Table 2, A-D). 

 

Table 1: Summary of statistics for D-loop, ND2, ND5, and concatenated sequences of Fundulus grandis

Sample N M h (SD) π (SD) S D (P ) % AT % GC

D-loop (pooled) 46 26 0.947 (0.021) 0.023 (0.012) 35  -0.161 (0.528) 68.3 31.7

       Corpus Christi   23 9 0.810 (0.065) 0.016 (0.009) 21 0.048 (0.541)

       Galveston   23 18 0.977 (0.020) 0.024 (0.013) 31  -0.140 (0.503)

ND2 (pooled) 48 22 0.938 (0.018) 0.018 (0.009) 35  -0.394 (0.399) 57.8 42.2

       Corpus Christi   24 10 0.891 (0.037) 0.014 (0.008) 24  -0.495 (0.357)

       Galveston   24 14 0.917 (0.040) 0.019 (0.010) 26 0.199 (0.645)

ND5 (pooled) 50 25 0.898 (0.035) 0.013 (0.007) 37  -0.73 (0.237) 59.7 40.3

       Corpus Christi   20 8 0.774 (0.083) 0.009 (0.005) 21  -1.105 (0.143)

       Galveston   30 19 0.945 (0.027) 0.014 (0.008) 29  -0.149 (0.485)

Concatenated (pooled) 35 26 0.978 (0.013) 0.018 (0.009) 100  -0.339 (0.403) 61.7 38.3

       Corpus Christi   16 9 0.908 (0.048) 0.014 (0.007) 60  -0.163 (0.458)

       Galveston   19 17 0.988 (0.021) 0.019 (0.010) 80 0.050 (0.571)

N, No. of sequences; M, No. of haplotypes; h , Haplotypic diversity; π , Nucleotide diversity; S, No. of segregating

(polymorphic) sites; SD, standard deviation; D , Tajima's D  neutrality test with probability value (P )
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Table 2 (A-D): AMOVA results for each loci for Fundulus grandis

Table 2A: D-loops Table 2B: ND2

Source of Variation d.f. SS % of Variation Source of Variation d.f. SS % of Variation

Among Populations 1 45.385 18.02 Among Populations 1 15.665 13.51

Within Populations 44 329.757 81.98 Within Populations 46 151.749 86.49

Fst: 0.180 P: 0.002 (0.001) Fst: 0.135 P: 0.005 (0.002)

Table 2C: ND5 Table 2D: Concatenated Sequences

Source of Variation d.f. SS % of Variation Source of Variation d.f. SS % of Variation

Among Populations 1 17.526 16.68 Among Populations 1 65.199 13.68

Within Populations 48 144.901 83.32 Within Populations 48 573.37 86.21

Fst: 0.167 P: 0.004 (0.002) Fst: 0.137 P: 0.026 (0.005)
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CHAPTER IV 

CONCLUSIONS 

 

In all instances, sequences submitted to GenBank using BLAST searches returned matches to F. 

grandis mitochondrial genome. Accordingly, sequences of the three segments of mtDNA used in 

this study provide sequences diagnostic for the identification of F. grandis, as hypothesized. The 

variation between populations, as obtained through AMOVA, ranged from 13.5% for ND2 to 

18.0% for D-loop sequences. The differentiation between populations was highly significant for 

all loci (P< 0.005) (Table 2). Accordingly, the null hypothesis of panmixia along Texas Gulf 

Coast is rejected for F. grandis. These results are concordant with the limited dispersal 

capabilities and high site fidelity reported for other members of Fundulus (Sweeney et al. 1998; 

Skinner et al. 2005) and assumed to operated also in F. grandis. Further, this result is in 

agreement with the high degree of population subdivision of the Gulf killifish among estuaries 

along the entire Gulf Coast using microsatellites (Williams et al. 2008). 

 

The characterization of genetic variation within each sample revealed that there is much higher 

levels of haplotypic (h) and nucleotide (π) diversities in Galveston than Corpus Christi (Table 1). 

ML trees showed that Corpus Christi contains a smaller number of haplotypes, with some of 

these repeated several times (e.g., Haplotype 028). Each of the individual ML gene trees 

identifies two very well supported clades. One clade contains a nearly equal representation of 

Galveston and Corpus haplotypes, whereas the second clade contains mostly Galveston 

haplotypes, with only two haplotypes (007 and 020) detected in two specimens collected in 
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Corpus Christi. In all ML tree reconstructions, except with ND5, this second clade occupies a 

more ancestral position (Figures 1-4) as indicted by shorter, and thus basal, branches with 

respect to the outgroup. The lower genetic diversity in mtDNA may indicate that the Corpus 

Christi population has undergone a recent bottleneck event (Bernatchez et al. 1989).  

 

Values of nucleotide diversity indicate that the highest variation was contained in the D-loop 

(9.3% of sites variable), followed by the protein coding regions for ND2 and ND5 (8.9% and 

7.6% of sites variable, respectively). These findings conflict with a previous study by Whitehead 

(2009), who reported greater variability in protein coding regions of the mtDNA of Fundulus 

spp. than the D-loop. It should be noted, however, that Whitehead (2009) found a greater 

proportion of variable sites, overall, than in this study (13% versus 9.3% for D-loops; 21% 

versus 7.6-8.9% for protein coding regions). The differences between these studies may be due 

to the fact that in Whitehead’s (2009), the entire mitochondrial genome was used, while this 

study analyzed segments of the D-loop region, and the ND2, and ND5 genes. However, the most 

likely explanation of the disparity is that in Whitehead’s (2009) study, five species of Fundulus 

were compared, whereas in here, only on F. grandis was characterized 

 

Finally, the results of this study provide a baseline for the levels of genetic variation in mtDNA 

of F. grandis found within and between different localities along the Texas Gulf Coast. This 

baseline will be an integral part of a planned study involving comparisons of genetic diversity of 

colonizing fauna in natural and restored marshes on the Texas Gulf Coast. A stronger sampling 

scheme, including more locations to the east of Galveston Bay, between Galveston and Corpus 

Christi, and farther south of Corpus Christi along the Texas Coast could greatly enhance the data 
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provided in this study. Additional studies should focus on increased sampling coverage, and 

possibly including other common marsh fauna with differing life histories for comparison 

purposes.  
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