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ABSTRACT 

 

Expression, Purification, and Characterization of a Polysaccharide Depolymerase from 
Acinetobacter baumannii Bacteriophage AbauYa1. (May 2012) 

 

David Matthew Migl 
Department of Biology 
Texas A&M University 

 

Research Advisor: Dr. Ryland Young 
Department of Biochemistry and Biophysics 

 

The use of bacteriophages offers an appealing alternative to antibiotics for the control of 

pathogenic bacteria. Recently, bacteriophage AbauYa1 was isolated as part of an effort 

to find phages to combat Acinetobacter baumannii infections. In addition to causing 

lysis of the host cell, AbauYa1 depolymerizes the polysaccharides of the A. baumannii 

capsules. The A. baumannii capsule is an important virulence factor, and phage 

depolymerases have been shown to disrupt biofilms of other pathogenic bacterial strains. 

The gene encoding the protein responsible for this activity was cloned, and the protein 

was expressed, purified, and enzymatically assayed. The protein was found to degrade 

the polysaccharide capsule, as shown by an increase in reducing ends upon incubating 

the capsule with the depolymerase. Finally, the protein removes A. baumannii biofilms 

from a polystyrene surface. The protein degrades A. baumannii capsule and biofilms and 

therefore carries high therapeutic potential for treating A. baumannii infections.  
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NOMENCLATURE 

 

BCA Bicinchoninc acid 

CV Crystal violet 

EDTA Ethylenediaminetetraacetic acid 

EPS Exopolysaccharide 

His-tag Hexahistidine tag 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

LB Luria broth 

PAGE Polyacrylamide gel electrophoresis 

SDS Sodium dodecyl sulfate 

Tricine N-[2-hydroxy-1,1-bis(hydroxy-methyl)ethyl]glycine 

TSA Tryptic soy agar 

TSB Trypic soy broth 

UV Ultraviolet 
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CHAPTER I 

INTRODUCTION 

 

Background 

Acinetobacter baumannii as a pathogen 

Acinetobacter baumannii is a Gram-negative, opportunistic pathogen notorious for 

contributing to multidrug-resistant battlefield-acquired and nosocomial infections (1). 

Multidrug-resistant bacteria are a pressing clinical issue, and yet few new antibiotics are 

being produced (2). Alternative strategies are needed for the control of pathogenic 

bacteria, and the use of bacteriophages offers an appealing alternative to small-molecule 

antibiotics for controlling bacterial infections (3). Phage therapy is built on the premise 

that bacteriophages could be therapeutic by causing lysis of a sufficient percentage of 

host cells (3). Additionally, A. baumannii produces an exopolysaccharide (EPS) capsule 

that contributes to biofilm formation (4) and is essential for virulence and survival in 

mammalian tissues (5). Thus, disruption of the capsular polysaccharide of A. baumannii 

would also be a valuable therapeutic strategy for combating A. baumannii infections. 

The bacteriophage AbaYau1 was recently isolated as part of an effort to discover novel 

phages with therapeutic potential against A. baumannii. 

_______________ 

This thesis follows the style and format of The Journal of Biological Chemistry. 
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Prior work on AbauYa1 

The plaque morphology of AbauYa1 suggested that a virion-associated protein 

possessed polysaccharide depolymerase activity. When the phage was plated on lawns of 

A. baumannii, clear plaques surrounded by an expanding turbid halo were produced, 

characteristics indicative of depolymerase activity (6). The clear central region of the 

plaque represents the area where the phage has lysed all the host bacteria, and the turbid 

halo corresponds to clearing of the bacterial capsule, but not lysis of the cells. Here 

“depolymerase activity” means any activity that cleaves polysaccharide chains into 

smaller subunits, regardless of the precise catalytic mechanism.  

AbauYa1 was determined to belong to the Podoviridae by electron microscopy, 

possessing a short, non-contractile tail. In order to further characterize AbauYa1, the 

phage genome was sequenced and annotated, revealing a genome of 40,352 bp and 43 

putative genes. AbauYa1 was determined to be a member of the T7 phage superfamily 

based on its genome organization. Interestingly, several T7-like podophages, including 

podophage K5, have been found to possess polysaccharide depolymerase activity as part 

of their tail assemblies (7). 

Identification of the polysaccharide depolymerase gene 

For these reasons it was hypothesized that a putative tail fiber gene in AbauYa1 was 

responsible for the observed putative depolymerase activity. Gene product 38 (gp38) 

from AbauYa1 was selected as the most likely candidate due to its protein sequence 
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similarity to other known depolymerases and the lack of other candidates in the 

AbauYa1 genome. Gene 38, encoding the predicted depolymerase, was cloned, 

expressed, and partially purified. The resulting protein extract was able to generate 

reducing ends when incubated with purified A. baumannii EPS. Thus, the tail spike gp38 

was concluded to be a highly likely candidate responsible for the depolymerase activity 

of the bacteriophage. 

Rationale of the current project 

Like all virulent phages, AbauYa1 destroys its host as part of its life cycle. However, the 

depolymerase activity represents a second mode of action whereby AbauYa1 attacks 

populations of its host. The depolymerase destroys the bacterial capsule and may also 

disrupt bacterial biofilms, major contributors to antibiotic resistance in some bacteria (8). 

The objective of this project is to confirm that gp38 is a polysaccharide depolymerase 

and use the depolymerase to degrade biofilms. Additionally, the depolymerase and its 

substrate, A. baumannii EPS, are almost wholly uncharacterized, so basic biochemical 

information about these two entities will be gathered. These studies will further the 

development of AbauYa1 gp38 as a potential treatment for drug-resistant A. baumannii 

infections. 
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CHAPTER II 

METHODS 

 

Strain construction 

The bacterial strains used in this study are shown in Table 1. Acinetobacter baumannii 

strain AU0783 and Escherichia coli BL21(DE3) strains 30019 and 30026 carrying phage 

AbauYa1 gp38 in a pET28B vector (EMD Biosciences) were obtained from Dr. 

Thammajun Wood (Texas A&M University). These were used to construct strains in E. 

coli BL21(DE3) slyD
 
cells (strains #30030-30035). Plasmid DNA from strains 30019 

and 30026 was isolated with the Qiagen QIAprep Spin Miniprep Kit (Qiagen) according 

to the manufacturer’s protocol and transformed into strain 30030 cells that had been 

rendered chemically competent by the method of Chung et. al. (9). After recovery in 

SOC media (NEB) for 1h, transformants were selected on LB agar media containing 30 

μg mL
-1

 kanamycin.  

The sequence of all strains was confirmed by automated fluorescent sequencing by Eton 

Bioscience, Inc. (San Diego, CA). Frozen permanent cultures of all strains were created 

by combining 800 μL of a liquid overnight culture from a single colony picked from a 

fresh plate with 200 μL glycerol-saline solution and stored at −80 °C. 
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TABLE 1  
Strains used in this study. 

Strain 

number Name Host Vector Insert 

Location of 

oligohistidine 

tag (NH3/COOH 

terminus) 

30002 AU0783 A. baumannii AU0783 --- --- --- 

30014 Iraq 1883 A. baumannii Iraq 1883 --- --- --- 

30019 --- E. coli BL21(DE3) pET28B AbauYa1 gp38 C 

30022 Host E. coli BL21(DE3) slyD None --- --- 

30023 Control E. coli BL21(DE3) slyD pET28B None --- 

30026 --- E. coli BL21(DE3) pET28B AbauYa1 gp38 N 

30030 C-term E. coli BL21(DE3) slyD pET28B AbauYa1 gp38 C 

30031 N-term E. coli BL21(DE3) slyD pET28B AbauYa1 gp38 N 

 

Protein expression and purification 

Starter cultures from a single colony from a freshly made plate were incubated in liquid 

LB medium with 30 μg mL
-1

 kanamycin overnight at 37 °C in a roller drum. These 

cultures were diluted 1:100 and grown to mid-log phase (A550 = 0.5) at 37 °C with 

aeration. Cultures were induced for 2 hours at 30 °C by the addition of isopropyl β-D-

thiogalactoside (IPTG) to a final concentration of 1 mM. The A550 of cells was measured 

before collection by centrifugation at 10,000 g for 10 minutes. 

Cells were resuspended at an equivalent OD550 of 30. Sigma protease inhibitor cocktail, 

and RNase and DNase (100 µg mL
-1

) were added to the resuspension, and cells were 

ruptured by passage through a French pressure cell at 16000 psig. Cell debris was 

removed by centrifugation at 10,000 g for 10 minutes at 4 °C. The protein was purified 

by passing the supernatant over a Talon metal affinity resin (Clontech). The column was 

washed with 10 bed volumes of  wash buffer (50mM phosphate [pH 7.2] and 300 mM 
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NaCl) and eluted in two bed volumes of wash buffer supplemented with 400 mM 

imidazole. Samples were dialyzed three times against 3500 Da molecular weight cutoff 

filter (Thermo Scientific) and  1X assay buffer (25 mM Tris-hydrochloride [pH 7.2] and 

150 mM NaCl) (10
3
 volumes assay buffer per 1 volume sample). 

Size exclusion chromatography was performed on a Superdex 200 size exclusion column 

(GE Healthcare; 10 x 300 mm, 24 mL bed volume, equilibrated with 1X assay buffer) 

and an Akta FPLC system at room temperature with a flow rate of 0.5 mL assay buffer 

min
-1

, collected in 0.5 mL fractions. 

A. baumannii exopolysaccharide (EPS) purification 

A. baumannii strain AU0783 was grown to confluence on tryptic soy agar plates 

supplemented with 0.5% (w/v) glucose and incubated at 37 °C. Incubation times were 

varied from 72h to 120h to test the effects of incubation time on EPS production. EPS 

purification was carried out by the method of Steinmetz et. al. (10). Briefly, cells were 

harvested by scraping them from the agar surface with 10 ml of 0.9% (w/v) NaCl per 

plate, adding 5% (v/v) phenol, and agitating with a stir bar and stir plate for six hours. 

Cells were cleared by centrifugation at 10,000 g for 10 minutes and the supernatant was 

precipitated with five volumes of 95% ethanol. The precipitated EPS was resuspended in 

water and digested with DNase and RNase (1 μg mL
-1

) at 37 °C for one hour. The digest 

was stopped by heat inactivation at 65°C for 10 minutes. The EPS was freeze-dried with 



  7 

a vacuum purification system, and the resulting solid EPS was weighed. EPS was 

resuspended at 5 μg ml
-1

 for depolymerase activity assays. 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

2X SDS sample buffer (final: 125 mM Tris-hydrochloride pH 6.8, 4% SDS, 5% 2-

mercaptoethanol, 10% glycerol) was added to each 10 μl aliquot and boiled in a water 

bath for 10 minutes. Gels were 10% polyacrylamide and used Tris-glycine as a buffer. 

Molecular weights were visualized by comparison with a marker (SeeBlue Plus2, 

Invitrogen). The gel was stained with Coomassie blue and destained overnight in a 

solution of 60% methanol, 10% acetic acid, and 30% water before imaging. 

UV spectroscopy, protein concentration 

The UV spectrum of the depolymerase was measured on a Hitachi U-0080D 

spectrophotometer. Protein extinction coefficients were calculated according to the 

method of Gill and von Hippel (11), and concentration was calculated using the 

expression c = A·ε
-1

·l
-1

. 

EPS degradation assay 

Depolymerase and EPS were incubated together at 37 °C in 25 mM Tris-hydrochloride 

(pH 7.2) and 150mM NaCl. The concentrations of the enzyme and EPS are noted under 

each relevant figure. For control experiments, the depolymerase was boiled for ten 

minutes in a water bath before being added to the rest of the reaction. For time-resolved 
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measurements, volumes of reagents were increased appropriately and aliquots were 

taken from the same tube, mixing between aliquots. The reaction was stopped by 

incubation at 100 °C for 10 minutes.  

Bicinchoninic acid assay 

Degradation of EPS by the depolymerase was assayed by measuring the amount of 

reducing ends in solution. The concentration of reducing ends was measured by the 

bicinchoninic acid (BCA) assay (12). Because the composition of the A. baumannii EPS 

is unknown, a glucose standard curve was generated every time measurements were 

made and absorbances were converted to glucose equivalent concentration of reducing 

ends. BCA solution A (final concentrations: 5.0 mM disodium 2,2’-bicinchoninate, 0.25 

M sodium carbonate buffer pH 10.1) and solution B (5.0 mM CuSO4 · 5H2O, 12 mM L-

serine) were stored at -20 °C, and a working stock was made daily by mixing equal 

amounts of both reagents. 500 μL of the stock solution was added to a 25 μL aliquot of 

sample containing between 0-10 nmol equivalent of glucose reducing ends (0-400 μM), 

which is within the linear range of the Hitachi U-0080D spectrophotometer (A = 0.0 – 

1.0) and well within the linear range of the assay (0.0 – 1.0 mM for a 25 μL aliquot). All 

samples were capped and boiled simultaneously in a water bath for 15 minutes and 

cooled at room temperature for at least 5 minutes before the A560 was measured. 
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Biofilm assay 

Biofilm degradation assays were performed according to the method of Merritt et. al. 

(13). A. baumannii was grown in TSA liquid cultures overnight and diluted 1:100 into a 

total volume of 200 μL of LB in a 96-well polystyrene plate (Falcon microtest, #35-

1172). After incubation at 37 °C for 48 h, the OD550 of the cells was read in a plate 

reader (Tecan). The culture medium and nonadherent cells were removed from the well 

and the remaining biofilm washed three times with 250 μL assay buffer (150 mM NaCl, 

25 mM Tris pH 7.2). Depolymerase protein (0.2 μg in 200 μL assay buffer) was added to 

the wells receiving treatment and 200 μL assay buffer was added to the control wells. 

The plate was incubated without shaking at 37 °C for 9 h. To stain, the plate was washed 

three times with assay buffer, 150 μL crystal violet (CV) stain was added to each well, 

and the plate was left at room temperature for 15 minutes. The stain was removed, and 

wells were washed five times with distilled water. The plate was air dried for 15 

minutes, and 200 μL of 30% acetic acid was added to each well to solubilize the 

remaining CV dye. 125 μL from each well was transferred to a new 96-well plate, and 

the A600 was read. Biofilm formation is reported as A600/ OD550 to normalize for cell 

growth before depolymerase treatment. 
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CHAPTER III 

RESULTS 

Protein purification 

Aliquots taken while purifying C-terminally his-tagged gp38 are shown in Figure 1. The 

final protein sample is >90% pure. Figure 2 shows the UV-Vis spectrum of gp38 used 

for quantifying the protein concentration. The spectrum exhibits a typical absorption 

peak at 280 nm and is free of contaminating nucleic acids, as evidenced by lack of a 

second peak at 260 nm. Table 2 gives the yield, molar mass, and extinction coefficient of 

the protein. 

 

 

 

  
FIGURE 1. Purification of the C-terminally His-tagged protein. Aliquots from the purification 
process were electrophoresed on a 14% SDS-PAGE gel. Whole cell lysates (lane 1, control 
empty vector; lane 2, C-terminally his-tagged depolymerase) were disrupted by a French cell 
press and centrifuged to remove cell debris (supernatant, lane 3; pellet, lane 4). The 
oligohistidine tagged protein was purified by multiple passages over a metal affinity resin 
(loading flow through, lanes 5 and 6). The column was washed with 10 bed volumes of buffer 
(lane 7) and eluted in 400 mM imidazole (lane 8). 
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TABLE 2 

Physical properties and purification results. 

Molar mass 102.4 kDa 

Extinction coefficient 140070 cm
-1

M
-1

 

Volume of culture induced 50 mL 

Mass of purified protein (mg) 1.90 mg 

Yield (mg/L) 38 mg/L 

 

 

 

 

FIGURE 2. UV-Vis spectrum of gp38. The sample was read on a 
Hitachi U-0080D spectrophotometer (l of the cuvette = 0.5 cm).  

 

 

 

Exopolysaccharide purification 

Two separate EPS purifications were carried out. EPS was harvested at either 72 h or 

120 h. Table 3 shows the different yields that resulted. 

 
TABLE 3 
Results of EPS purification. 

Number of Plates Incubation time 

(h) 

EPS yield (mg) Yield per plate 

(mg) 

20 72 20.0 1.0 

40 120 164.0 4.1 
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AbauYa1 gp38 is a polysaccharide depolymerase 

The A. baumannii EPS chain terminates in a reducing sugar. If it is a depolymerase, 

AbauYa1 gp38 will generate additional reducing ends as it cleaves the EPS into smaller 

subunits. Figure 3 shows that C-terminally his-tagged gp38 degrades A. baumannii EPS, 

as evidenced by a fourfold increase in concentration of reducing ends upon incubation 

with the sugar at 37 °C for 1 h. The protein with the N-terminal hexahistidine tag did not 

exhibit similar activity. This lack of activity was not investigated, and C-terminally his-

tagged gp38 (referred to as “the depolymerase”) was used for all further experiments. 

 

 

 

 

FIGURE 3. Enzymatic activity displayed by purified proteins. Depolymerase 
protein (final concentration: 0.2 μg/μl ) was incubated with EPS (0.5 μg/μl) in 150 
mM NaCl, 25 mM Tris pH 7.2 at 37 °C for 1 hour, and the concentration of 
reducing ends in each aliquot was measured by the BCA assay. 
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Figure 4 shows a kinetic trace of the reaction. The reaction in Figure 4 used less 

depolymerase than that in Figure 3, yet reaction was largely complete by 20 minutes. 

Extending the incubation time to 200 minutes did not result in any increase in reducing 

ends (data not shown). Therefore, the concentration of reducing ends in Figure 3 is near 

the maximum extent of reaction for the amount of substrate used. 

 

  

FIGURE 4. Kinetic analysis of EPS degradation. Depolymerase protein (final 
concentration: 3.6 ng μL

-1
) was incubated with EPS (0.5 μg μL

-1
) in 150 mM NaCl, 

25 mM Tris pH 7.2 at 37 °C. As before, the concentration of reducing ends in each 
aliquot was measured by the BCA assay. 
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Metal dependence of the reaction 

To determine if the depolymerase depends on divalent metal cations for its function, the 

kinetic analysis was repeated with the chelating agent EDTA. Figure 5 shows the initial 

velocity of activity of the enzyme is reduced to 59% of its original value when incubated 

with 5 mM EDTA.  

 

  

FIGURE 5. Divalent cation dependence of the depolymerase. Protein (final 
concentration: 5.6 ng μL

-1
) was incubated with EPS: (0.5 μg μL-1) in 150 mM NaCl, 

25 mM Tris pH 7.2 at 37 °C. EDTA was added to one reaction (open circles) to a 
final concentration of 5 mM. 
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Incubation time affects A. baumannii EPS composition 

Purification of the EPS was performed twice. Plates containing A. baumannii were 

incubated for either 72 h or 120 h. To determine the reducing end content of the 

undigested sugar, standard curves were constructed against glucose. Figure 6 shows the 

120 h EPS contains half the number of reducing ends per unit mass compared with the 

72 h EPS. The experiment was repeated once with similar results. 

 

 

FIGURE 6. Standard curves of EPS isolated at 72 h and 120 h. Six independently prepared 
EPS samples of varying concentrations were used to establish standard curves. Absorbances 
were converted into equivalent glucose concentrations by establishing a glucose standard curve 
(data not shown). “Equivalent glucose concentration” is defined as the concentration of glucose 
required to achieve an absorbance in the BCA assay equivalent to that of a particular sample of 
EPS. 
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Degradation of 72 h vs. 120 h EPS 

To determine the reducing end content of the digested sugar, both EPS samples were 

incubated under identical conditions with the depolymerase for 2 h. Figure 7 shows the 

depolymerase degrades the 120 h EPS into 181 μM glucose equivalent reducing ends, 

compared to 162 μM for the 72 h EPS.  

 

 

FIGURE 7. Degradation assay with 72 h and 120 h EPS. The assay was carried out as in 
Figure 2, except that the reactions were incubated for 2 h (n=5 reactions). “Empty vector” refers 
to a strain carrying the pET28B vector with no insert, induced, and the lysate subjected to 
purification just as that of the vector carrying the depolymerase. Error bars represent standard 
error. 
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The depolymerase forms multimers in solution 

The multimeric state of the protein was analyzed by size exclusion chromatography 

(Figure 8). Calibration of the column with protein size standards yielded the equation 

                        , where    is the apparent molecular mass based on 

migration through the column. The protein migrated in a single peak at an elution 

volume of 10.0 – 12.0 mL, which corresponds to        kDa. A second late-eluting 

peak (elution volume: 17.0 – 18.5 mL) did not contain any of the depolymerase protein. 

The molecular mass of the monomer is 102.4 kDa, approximately 1/6
th

 of its apparent 

mass on the size-exclusion column.  

 

 

FIGURE 8. Oligomerization state analysis by size exclusion chromatography. 
The elution profile of the depolymerase protein on an S200 size exclusion column. 
Inset: the 0.5 mL fractions were analyzed on a Coomassie-stained SDS-PAGE gel. 
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The depolymerase degrades A. baumannii biofilms 

To test the ability of the depolymerase to disperse A. baumannii biofilms, biofilms were 

grown on a 96-well polystyrene plate and depolymerase protein was incubated with the 

biofilms for 10 h. Figure 9 shows the remaining biofilm from two A. baumannii strains 

after depolymerase treatment as compared with untreated controls. The depolymerase 

removed 24% of the biofilm from strain AU 0783 and 74% of the biofilm from strain 

Iraq 1887. 

 

 

FIGURE 9. Removal of A. baumannii biofilms. The amount of biofilm in each well was 
quantified by measuring the absorbance of CV dye in the well (A600) and normalizing to the cell 
density (OD550) in that well before depolymerase treatment (Y axis). Bar height indicates the 
mean of eight wells for each condition (n=8). Probabilities are for a one-tailed student’s T-test. 
Error bars represent standard error.  
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

Bacteriophages represent a new source of tools to use against bacterial infections. The 

experiments in this study demonstrate that a novel phage-derived protein, AbauYa1 

gp38, degrades A. baumannii capsular polysaccharide and biofilms, two major 

contributors to A. baumannii virulence. 

Protein purification 

Efficient protein purification is essential to biochemical studies of any protein. Figure 1 

shows that half of the protein was lost in the pellet. Although yields are already quite 

high, they could be increased even further by recovering protein from the pellet. Phage 

tail spikes are prone to forming insoluble aggregates, and some labs have devised 

protocols to recover protein stuck in the pellet (14). Optimizing this step will greatly 

improve yields.  

EPS structure and yield 

A. baumannii secretes extracellular polysaccharide (EPS) that is crucial for biofilm 

formation and virulence (5). The EPS changes composition over time, as evidenced by 

drastically altered yields in EPS purification (Table 3) and differences in reducing end 

content (Figure 6). Even though undigested EPS isolated at 72 h contains twice the 

amount of reducing ends as EPS isolated at 120 h (Figure 6), fully digested 72 h EPS 

generates 90% of the reducing ends as 120 h EPS (Figure 7). The most parsimonious 
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explanation is that the EPS is composed of identical repeating units, and the bacterium 

increases the chain length of the polysaccharide over time by incorporating additional 

repeating units.  

The structure of the EPS is unknown. Parameters such as kcat and Km cannot be 

determined for the depolymerase without a chemically defined substrate and products. 

Determination of the structure of the EPS and regulation of EPS secretion in A. 

baumannii are promising lines of research that will give insights into depolymerase 

enzymology and A. baumannii pathogenesis, respectively. 

Polysaccharide depolymerase activity 

A recent study showed that genes involved in the biosynthesis and export of extracellular 

polysaccharide are essential for A. baumannii pathogenesis in a rat soft tissue infection 

model (5). Since A. baumannii EPS is a virulence factor, degrading the EPS is a 

plausible therapeutic strategy for treating A. baumannii infections. The results shown in 

Figures 3 and 7 demonstrate that AbauYa1 gp38 possesses polysaccharide depolymerase 

activity. The assays with boiled protein demonstrate that the EPS does not spontaneously 

hydrolyze under the assay conditions, and the assays with an empty vector demonstrate 

that no residual E. coli proteins are responsible for this activity. The increase in reducing 

ends comes from cleavage of the bonds linking the full-length EPS and only occurs 

when active protein is incubated with EPS.  
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Oligomeric structure 

Several phage tail fibers are known to form trimers in solution, including those from 

phage P22 (15) and E. coli K1 phages (16). The observation that the depolymerase 

migrates as approximately hexamers on a size exclusion column is consistent with the 

fact that other phage tail fibers form multimeric complexes, but no other tail fiber is 

known to form a hexamer. Further analysis, such as running the protein on an SDS-

PAGE gel without boiling or analytical ultracentrifugation, will provide additional data 

that will elucidate the true multimeric state of the depolymerase. 

Biofilm degradation 

The depolymerase removes A. baumannii biofilms adherent to polystyrene surfaces. 

Crystal violet dye stains both the cells remaining in the biofilm and the extracellular 

components of the biofilm, so it is an accurate readout of the amount of biofilm attached 

to a surface (13). Figure 9 shows the decrease in CV retained, and hence adherent 

biofilm, upon incubation with the depolymerase. However, several issues must be 

resolved before medical applications of the depolymerase become possible. First, 

biofilm removal is incomplete. A. baumannii may remain attached to the surface because 

it secretes proteins that mediate direct attachment to environmental surfaces (17), or the 

depolymerase may be physically blocked from accessing EPS deep within the biofilm 

under the timeframe of the experiment. Second, the effect is strain-dependent. The 

chemical structure of the A. baumannii capsule as well as the structural determinants of 

polysaccharide depolymerase specificity are completely unknown. Elucidation of the 
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structural basis of depolymerase activity represents a valuable line of research toward 

being able to rationally engineer depolymerases. Last, the results are from an in vitro 

experiment and remove A. baumannii biofilms from a polystyrene surface. The 

depolymerase may not be as effective in removing biofilms in vivo from a wound 

surface. Despite these caveats, the depolymerase certainly has valuable therapeutic 

potential as a tool to treat A. baumannii biofilms. 

Conclusions 

AbauYa1 gp38 is a virion-associated polysaccharide depolymerase that degrades the 

exopolysaccharide of A. baumannii. Additionally, the depolymerase partially removes A. 

baumannii biofilms adherent to a polystyrene surface. Thus, the depolymerase is of high 

therapeutic potential for treating A. baumannii infections.  
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