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ABSTRACT 
 

Efficient Design Of Linear High-Frequency Filters. (May 2012) 
 

Diganto Choudhury 
Department of Electrical Engineering 

Texas A&M University 
 

Research Advisor: Dr. Aydin Karsilayan 
Department of Electrical Engineering 

 

 

Direct-conversion receivers are becoming more and more popular in wireless 

communication systems because they promise superior performance in power 

consumption, size, and cost over existing heterodyne-based receivers. Theoretically, 

direct-conversion receivers offer the advantage of omitting the intermediate stage 

required in heterodyne architectures, thereby greatly reducing the hardware complexity 

of receiver design. In this research, a higher order filtering technique is proposed to 

attenuate out-of-band blockers in a direct-conversion receiver without deteriorating the 

desired signal present in the band of interest. The proposed filter structure is based on a 

current-mode biquadratic pipe filter cell, which originally allows the implementation of 

only all-pole filter functions such as Butterworth. With the aim to achieve a flat 

magnitude response in pass-band and steep rate of attenuation in transition-band, the 

base structure is modified to implement higher order Inverse-Chebyshev transfer 

function, which requires realization of arbitrary complex zeros in the stopband. A third 
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order prototype has been realized in a 0.18µm CMOS process using 1.8V supply 

voltage. 
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NOMENCLATURE 

 

ADC   Analog-to-Digital Convertors 

FM   Frequency Modulation 

IF   Intermediate Frequency 

INC   Inverse-Chebyshev  

LO   Local Oscillator 

LPF   Low Pass Filters 

RF   Radio Frequency 

TIA   Transimpedance Amplifier 

VGA   Variable Gain Amplifier 

 



  vii 

TABLE OF CONTENTS 

  Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................... v 

NOMENCLATURE ........................................................................................................... vi 

TABLE OF CONTENTS ................................................................................................. .vii 

LIST OF FIGURES .......................................................................................................... viii 

CHAPTER 

 I INTRODUCTION ....................................................................................... 1 

 II METHODS .................................................................................................. 6 

 III RESULTS .................................................................................................. 17 

 IV SUMMARY AND CONCLUSIONS ........................................................ 37 

REFERENCES .................................................................................................................. 39 

CONTACT INFORMATION ........................................................................................... 40 

 

 

 

 

 

 

 

 



  viii 

LIST OF FIGURES 

 

FIGURE Page 

 1 Direct-Conversion Receiver Architecture .............................................................. 2 

 2 Incorporation of Low-Pass Filter in Receiver Front-End ....................................... 4 

 3  First-Order Low Pass RC Filter ............................................................................. 6 

 4 Current Biquad Cell ............................................................................................... 8 

 5 Small Signal Equivalent to Find Z ......................................................................... 9 

 6 Small Signal Equivalent to Find Transfer Function and Input Impedance .......... 10 

 7 Fourth-Order LPF Schematic ............................................................................... 13 

 8 Voltage Summing ................................................................................................. 14 

 9 Current Summing ................................................................................................. 14 

 10 Voltage Feedforward:  (a) A pole generating circuit with two components 

connected between node 1 and 2, respectively and ground. (b) Y1 is lifted off 

ground completely and connected to the input; Y2 is lifted off ground partially 

and connected to the input. ................................................................................... 15 

 11 Transfer Function of Current through each Element of a RLC Network ............. 18 

 12 Implementation of Inverse-Chebyshev Transfer Function using RLC Model ..... 20 

 13 Second-Order Notch Filter Function .................................................................... 21 

 14 Small Signal Model to Derive Final Transfer Function ....................................... 22 

 15 Second-Order Notch Circuit Schematic ............................................................... 25 

 16 Notch Filter Function Response for Ideal and Real Case .................................... 26 



  ix 

 17 Notch Filter Function Response vs. Butterworth Response ................................. 27 

 18 PMOS Current Mirror Block with Current Scaling ............................................. 28 

 19 PMOS Current Mirror Block with First-Order Filtering ...................................... 29 

 20 Third-Order Inverse-Chebyshev Filter Schematic ............................................... 30 

 21 Second-Order Inverse-Chebyshev Filter Response for Ideal and Real Case ....... 31 

 22 Notch Response vs. Second-Order Inverse-Chebyshev Response ....................... 32 

 23 Second-Order vs. Third Order Inverse-Chebyshev Response.............................. 33 

 24 Third-Order Inverse-Chebyshev Response vs. Third-Order Butterworth 

   Response .............................................................................................................. 34 

 25 Real Third-Order Inverse-Chebyshev Transfer Function .................................... 35 

 26 Third-Order Inverse-Chebyshev Filter Response for Ideal and Real Case .......... 36



  1 

CHAPTER I 

INTRODUCTION 

 

Wireless technology came into existence in 1901, when Marconi successfully 

transmitted radio signals across the Atlantic. From a simple experiment established to 

transmit data over wireless medium, the use of wireless technology has revolutionized 

modern communications. While simple FM circuits can be used in sending out wireless 

signals, modern RF communication devices have highly complex circuits.  

 

The receiver architecture is a key part of any RF communication device and proper 

design of wireless receiver is required for an accurate detection of the required signal. 

Various architectures of receivers has been proposed in literature [1] and some of the 

most widely used structures include the Heterodyne, Wideband-IF, Low-IF and the 

Zero-IF architectures. The latest trend in receiver design is to simplify the analog front-

end and get into the digital domain as early as possible. Zero-IF architectures convert the 

channel of interest directly from RF to baseband in a single stage and thus, in zero-IF 

architectures, the use of an intermediate IF stage is omitted and the hardware complexity 

is reduced. Because of the lack of an IF stage, a low pass filter alone can potentially 

filter out all the out-of-band signals. Hence, among the different receiver architectures 

mentioned above, the use of ‘direct-conversion’ or zero-IF receivers are addressed here. 

 

_______________ 
This thesis follows the style of the IEEE Journal of Solid-State Circuits.
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For frequency and phase modulated signals, down-conversion must provide quadrature 

outputs so as to avoid loss of information. The block diagram of direct-conversion 

receiver architecture is shown in figure 1. 

 

BPF I/Q LO

LPF

LPF

A/D

A/D

Receiver

PASSIVE MIXER

PASSIVE MIXER

RF LNA

VGA

VGA

 

Fig. 1. Direct-Conversion Receiver Architecture 
 

From the incoming RF signal, the pre-selection bandpass (BPF) filter removes out-of-

band signal. The low power RF signal is then boosted by the LNA to suppress the 

contribution of noise from the succeeding stages. After the LNA, the signal passes 

through the mixer where the signal is down-converted from the RF band to baseband. 

After low-pass filtering (LPF), the signal is passed through a variable gain amplifier to 

match the full-scale signal range of the analog-to-digital convertor (A/D). 

 

Due to its simplicity and reduced number of components, the use of direct-conversion 

receivers seems very appealing. In addition, converting the RF signal directly into 

baseband eliminates the problem of image frequency and the need for image-rejection 

filters that increase design effort and complexity [2]. The main goal is to detect the 
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desired signal, which could be very low power, among the large interferer signals 

present across the spectrum. The major challenge is to develop a minimally-invasive 

linear filter design that is capable of passing the small signal while rejecting the large 

blockers. In addition, designs that greatly increase the complexity of the analog front-

end need to be avoided; the added circuitry should be justifiable against increasing the 

performance requirements in the A/D used in the receiver path. 

 

In the ideal case, the direct-conversion receivers use a local-oscillator (LO) synchronized 

to the exact frequency of the carrier in order to directly translate the input signals to 

baseband frequencies.  In other words, the desired signal can be obtained by tuning the 

LO to the required signal frequency. The remaining unwanted frequencies that appear 

after down-conversion stay at the higher frequency bands and can be removed by a low-

pass filter placed after the mixer stage. However, the non-linear mixing of the two 

signals leads to several non-idealities that complicate the use of direct-conversion 

receivers. When the weak desired signal surrounded by strong interferers is passed 

through a non-linear mixer, the output exhibits several components that are the cross-

modulation products of the desired signal with the nearby interferers. This phenomenon 

of intermodulation leads to corruption of the desired signal. The main task is to maintain 

the integrity of the desired signal while mitigating the interference in nearby frequency 

bands. 
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In [3], the structure of a broadband direct-conversion receiver front-end is described.  A 

current-mode passive mixer is used in order to achieve high-linearity and low noise, 

which is followed by a transimpedance amplifier (TIA) with a single, real pole. This TIA 

provides the low impedance required for the linear operation of the passive mixer. 

However, the above topology only provides a first-order filtering of the blockers. The 

higher order filtering of unwanted out-of-band signals without affecting the signal 

strength of the desired signal is a difficult task. This research aims at developing 

minimally invasive filtering functions that can sufficiently remove the out-of-band 

blockers. A schematic showing the general structure of the receiver path is shown in 

figure2. 

 

LNA TIA VGAPassive 
Mixer

Low Impedance needed at 
output of passive mixer

ADC
 

Fig. 2. Incorporation of Low-Pass Filter in Receiver Front-End 
 
 
One method of filtering out the unwanted signals is demonstrated in [4], where, an active 

feedback network is used in the TIA that diverts blockers away while keeping the in-

band characteristics unaltered. Although this method was shown reduce the blocker 

levels, the added feedback network added significant complexity to the receiver 

architecture.  Moreover, the power consumption of the TIA will increase considerably 

with the added active feedback network. 
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Another approach described the use of a LPF at the output of the passive mixer. Such a 

filter should have low input impedance in order to satisfy the linearity requirement of the 

passive current-mode mixer. The concept of implementing a 4th order low-pass filter 

with low very low input impedance is illustrated in [5]. This filter is shown to operate in 

current mode, In [6], a similar transistor configuration of a 4th order filter is discussed 

that operates in voltage mode. However, in both [5] and [6], an all-pole transfer function 

with a relatively high power-supply is implemented. No transmission zeros are inserted 

in the LPF transfer function. 

 

In this research, a low pass filter configuration to be placed in the receiver path will be 

designed. Methods to implement transmission zeros in the transfer function will be 

investigated and efforts will be made to reduce the supply voltage required to operate the 

filter. 
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CHAPTER II 

METHODS 

 

The concept of a pipe-filter is used to implement the filter function required for the 

project. The model of a first-order low pass (LP) pipe filter that produces a high-pass 

shaped output current noise spectrum is shown in figure 3.  

 

In Rs C Ibias 1

VbiasInoise

Iout
Ibias 2

 
Fig. 3. First-Order Low Pass RC Filter 

 
 
 
At low frequencies, the capacitor C provides high-impedance and the noise from the 

transistor circulates within the transistor. At high frequencies, the capacitor provides 

very low impedance and all the current noise from the transistor flows to the output. 

According to the above model, in the passband (low frequencies), the filter works as a 

lossless pipe where the input current is almost equal to the output current while in the 
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stopband (high frequencies), the distortion due to noise reaches the output. Thus, in 

general, it needs to be ensured that the noise level in the circuit is kept to a minimum in 

the passband. Since any operation performed on the input current can introduce noise, 

the filter function is selected to have unitary input to output transfer characteristics. 

 

In order to create high-order filters, the required pipe filter needs to have complex poles 

which can be implemented through a RLC circuit network. For our research, an active 

circuit with an inductive frequency behavior is used. As seen in figure 4, this active 

inductor is implemented by creating a negative feedback between the drain and gate of 

the M1 such that there is a virtual short between the source of M1 and the gate of M2 at 

DC; at higher frequencies, the effect of capacitor C2 becomes evident and the voltage at 

the gate of M2 reduces. In other words, as the frequency increases, the input impedance 

of the circuit rises thereby acting as a virtual inductor. 
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R
C

In

L

Iout

C1 InIbias 1

Vbias

-1

Iout

Ibias 2

 

Fig. 4. Current Biquad Cell 
 

Assuming that both transistors have equal transconductance (           ), the 

impedance value of Z versus frequency is calculated as shown below: 
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DC
Vx

-gm(Vn+Vx)

C2

gm(Vn)

Ix

Node N

 

Fig. 5. Small Signal Equivalent to Find Z 
 
 
 
In figure 5,  

                           (1) 

 

Applying node-voltage at node N,  

  (   )    (  )                (2) 

⇒    (
  

   
)                      (3) 

 

Substituting (3) in (1), 

     (
  

   
)           (4) 
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 (  
   
  
)

   
  ,          (5) 

  
  

  
 

   

  
 (  

   
  
)
        (6) 

 

The small signal model of the current biquad cell is shown in figure 6.  

 

-gm(Vn+Vin)

C2

gm(Vn)

Node N

Iout

C1

Z

Zin

 

Fig. 6. Small Signal Equivalent to Find Transfer Function and Input Impedance 
 

Due to the presence of the active inductor, the circuit acts as a second order low-pass 

filter. The transfer function of the circuit is derived below: 

 

In figure 6, applying node voltage at node A,  
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       (      )                (7) 

 

Applying node voltage at node B, 

      (
   

  
)                                   (8) 

 

Substituting (8) in (7), 

      (
   

  
(      )    )      (9) 

⇒     
    

  
(  

    

  
       )    (10) 

⇒
    

   
 

  
 

    

   
  
  
  

  
 

    

                    (11)                                       

 

From the transfer function (11), it can be obtained that the passband current ratio is equal 

to one.  Thus, no additional current is injected into the output current and the circuit 

behaves as a lossless pipe as described in the beginning of this chapter. 

 

Having assumed the same transconductance (gm) for the two transistors, the cut-off 

frequency (ωo) is found to depends only on gm and the product of the capacitances, C1 

and C2; the quality factor (Q) is found to depend only on the ratio of capacitances C1 

and C2. The equations for the cut-off frequency and the quality factor are given by 

   
  

√    
            (12) 
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  √
  

  
                 (13) 

 

The low input impedance of this current-mode biquad LPF (fig.4) makes it ideal for use 

in the receiver path to satisfy the linearity requirement of the passive current-mode 

mixer. The equation of the input impedance (Zin) is derived below: 

 

From equation (6) 

  
   

  
 (  

   
  
)
      (14) 

       
 

   
          (15) 

 
   

    (
  
  
) 

  
 

    

       (16)  

 

From the equation Zin, it can be observed that at DC and at very high frequencies, the 

input impedance is very low (ideally zero); at the cut-off frequency (ωo), the input 

impedance has a maximum value of 1/gm. 

 

Now to implement a 4th order filter, two current biquad cells are cascaded. In order to 

easily implement a negative transconductance, a fully differential architecture is 

adopted. Figure 7 shows the schematic of a fourth-order low pass filter. The circuit 
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operates in current mode and can be easily placed after the passive current mixer in the 

direct-conversion receiver front end architecture described in [3]. 

 

Vbias 
2

Ibias 2

Iout+Iout-

Ibias 2

Vbias
1

Ibias 1 Ibias 1 Ibias 3 Ibias 3

Iin- Iin+

C1

C2

C3

C4

 

Fig. 7. Fourth-Order LPF schematic 
 
 
After implementing the fourth-order low pass filter, possible methods of adding arbitrary 

transmission zeros to the circuit are explored and the appropriate technique is then 

implemented [7]. The general transfer function of a second order biquadratic function is 

given below. 

 ( )  
 ( )

 ( )
 

   
        

    (
  

 ⁄ )   
 
     (17) 
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The first method of adding transmission zero involves the summing of different filter 

output. In this technique, the signals from appropriate nodes are copied and then added 

to the output node. In the case of voltage, a separate summing amplifier is used to 

perform the addition of different voltage signals. The output of this amplifier can be used 

to implement a transfer function of the desired form of equation (17). Figure 8 shows the 

method of voltage addition. The use of the summing amplifier is not required while 

adding current signals. The current from the desired nodes can be directly added to the 

output node as shown in figure 9.  

 

V1

V2

V3
Vout

Summing Node

R1

R2

R3

R4

 

Fig. 8. Voltage Summing 

 

I1

I2

I3

Iout

 

Fig. 9. Current Summing 
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The second method requires the injection of input signals into appropriate nodes and 

thereby achieving some desired polynomial N(s) in equation (17) without disturbing the 

roots D(s). This technique, also called voltage feedforward, involves feeding an input 

voltage signal into a node that is created by lifting any component completely or 

partially off ground. Figure 10 illustrates the process of voltage feedforward. Both 

circuits in the figure are equivalent when the inputs are set to zero, and thus, have the 

same pole location. 

 

Node 1 Node 2

Node 1

Node 2

Y1

Y1 Y2

aY2

(1-a)Y2

a) b)
 

Fig. 10. Voltage Feedforward: (a) A pole generating circuit with two components connected between node 
1 and 2, respectively and ground. (b) Y1 is lifted off ground completely and connected to the input; Y2 is 

lifted off ground partially and connected to the input. 
 
 
 
In addition to inserting transmission zeros to the circuit, several low-power circuit design 

techniques are considered to minimize power consumption. An easy way is to reduce the 
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differential pair bias current. This could be achieved by resizing the transistors and 

adjusting the bias voltage while keeping the transistors in saturation [8]. Another 

technique to reduce the power consumption is to reduce the supply voltage of the circuit 

by using folded cascodes [8]. In the circuit shown in figure 7, the supply voltage can be 

reduced by folding the two NMOS transistors in the first biquad and the two PMOS 

transistors of the second biquad. 
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CHAPTER III 

RESULTS 

 

In chapter II, we discuss two main ways to insert transmission zeroes to an existing all-

pole filter structure without altering its original pole position. These two methods, 

namely summing and feedforward, were studied in detail to understand the background 

necessary to implement an Inverse-Chebyshev filter function from the pre-existing low 

pass Butterworth  filter function. 

 

Filter structure based on a current-mode biquadratic pipe filter cell originally allowed the 

implementation of only all-pole filter functions such as Butterworth. In order to achieve 

a flat magnitude response in pass-band and steep rate of attenuation in transition-band, 

we want to insert arbitrary complex zeroes in the stop band and thereby implement an 

Inverse-Chebyshev filter function. 

 

The biquadratic pipe filter studied in this research operates in current mode; hence, the 

use of current summing techniques (Chapter II) to insert arbitrary transmission zeroes 

seemed most promising for our study.  Additionally, the functionality of the biquadratic 

filter cell can be explained through a simple RLC model (figure 4). 
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We use the RLC model from figure 4 to derive the transfer characteristics of the current 

(
    

   
) through each element of the RLC network.  Figure 11 shows the input (Iin) and the 

output current (Iout) through each of the circuit element. We have derived the transfer 

functions below: 

 

L

Iout inductor

R C L

Iout capacitor

R

C

IinIin

Iout resistor

R

CIin L

 

Fig. 11. Transfer Function of Current through each Element of a RLC Network 
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                     (22) 

 
 

  

    (
 

  
) 

 

  

                    (23) 

 

From the equations derived above, we observe that the output current through the 

inductor has 2nd order low-pass characteristics while the output current through the 

capacitor has 2nd order high-pass characteristics. We also find that both the output 

current (Iout inductor and Iout capacitor) have the same complex poles.  

 

In order to implement an Inverse-Chebyshev filter function, we need to implement a 

filter function of the form : 

   
    

    (
  

 ⁄ )   
 
 .                            (24) 

 

Theoretically, we can implement this function by summing the output current from the 

inductor and the capacitor after some appropriate scaling (figure 12).  
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Fig. 12. Implementation of Inverse-Chebyshev Transfer Function using RLC Model 
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We first propose a filter structure to mimic the model shown in figure 12. This structure 

has an Iout equal to the value shown in equation 28 which represents the transfer function 

of a notch filter function. The proposed structure is shown in figure 13.  
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Fig. 13. Second-Order Notch Filter Function 

 

The transfer function (Iout  / Iin ) using ideal model of MOS transistors is derived below 

with the help of the small signal equivalent model shown in figure 14. 
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Fig. 14. Small Signal Model to derive Final Transfer Function 

 

From equation (11) and (14), we already have the value of the current Iout1 and the input 

impedance Z.  
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Using the value of Z and the impedance through the capacitor C1, we derive the transfer 

function from input current Iin to output current Iout2.  
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Equation (36) confirms the theoretical possibility of adding complex zeroes to the 

transfer function derived in Chapter II without disturbing the original pole location. To 
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further support our claim, we first realize a second-order notch filter, and consequently a 

third order Inverse-Chebyshev filter in 0.18µm CMOS process using 1.8V supply 

voltage. We compare results between ideal and real responses of these transfer function. 

We also compare the rate of attenuation first between a notch filter function and a 

Butterworth filter function and then between an Inverse-Chebyshev filter function and 

Butterworth filter function.  

 

The schematic of the circuit that has a notch in its transfer characteristics is shown in 

figure 15. The circuit consists of two NMOS current mirror blocks. One of the blocks is 

designed to behave as a second order low pass filter and the other block is design to 

behave as a second order high pass filter. The outputs from the two circuit blocks are 

combined, and the net output is observed to have a notch in its transfer characteristics as 

predicted by equation (36). 
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Fig. 15. Second-Order Notch Circuit Schematic 

  

The comparison between ideal and real notch function is shown in figure 16. It can be 

observed that the notch occurs at a lower frequency in the case of a real response. This is 

because of the presence of parasitic capacitance associated with the transistors used in 

our implementation. These parasitic capacitors add to value of capacitances C1 and C2, 

and shift the pole location to lower frequencies. We can easily shift the pole location in 

our design to match the ideal response. 
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Fig. 16. Notch Filter Function Response for Ideal and Real Case 

 

The comparison between a Butterworth filter response and Notch function filter response 

is shown in figure 17. As expected, we find that notch filter function has a steeper rate of 

attenuation in transition-band.  

 



  27 

 

Fig. 17. Notch Filter Function Response vs. Butterworth Response 

 

Next, we implement a second order Inverse-Chebyshev filter function. To implement this 

function, we developed a method to copy the current (Iout2 in figure 14) through a PMOS 

current mirror and scale the current appropriately to match the coefficients for an Invere-

Chebyshev transfer function.  

 

The PMOS current mirror that is used is shown in figure 18.  
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Fig. 18. PMOS Current Mirror Block with Current Scaling 

 

The relation between Iout and Iin is derived below: 

     
 
 

  
  
                (36) 

 

Finally, we design a third order Inverse-Chebyshev filter function by inserting an 

additional first order filter block to our second order Inverse Chebyshev filter function. 

This first order filtering is performed by inserting a capacitor in the PMOS current 

mirror block as shown in figure 19.   
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Fig. 19. PMOS Current Mirror Block with First-Order Filtering 

 

The relation between Iout and Iin is derived below: 

 

     
  

      
               (37) 

 

Figure 20 shows the schematic of a third order Inverse-Chebyshev filter function that 

was implemented in Cadence Analog Design Environment. This circuit has the two 

NMOS current mirror blocks shown in figure 15. In addition, there are two PMOS 

current mirror blocks needed to realize a third order Inverse-Chebyshev transfer 

function. 
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Fig. 20. Third-Order Inverse-Chebyshev Filter Schematic 

 

As mentioned earlier, we first realize a second order Inverse-Chebyshev from the notch 

function described in figure 15. A comparison between a real and ideal second order 

Inverse Chebyshev filter response is shown in figure 21. 
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Fig. 21. Second-Order Inverse-Chebyshev Filter Response for Ideal and Real Case 

 

After comparing the real and the ideal Inverse-Chebyshev Response, we compare the 

notch filter response with the Inverse-Chebyshev filter response in figure 22. From this 

figure, we observe that the notch function has a steep drop followed by a steep rise in its 

magnitude response. However, we want to attenuate all the signals in the stopband and 

pass only the signals in the passband. The Inverse-Chebyshev response has a much 

lower magnitude response in the stopband and is thus a more suitable implementation. 
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Fig. 22. Notch Response vs. Second-Order Inverse-Chebyshev Filter Response 

 

Next, we implement a third order Inverse-Chebyshev filter function in order to achieve a 

much lower rate of attenuation in the stopband. Figure 23 shows a comparison between a 

second and third order Inverse-Chebyshev filter response. 
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Fig. 23. Second-Order vs. Third-Order Inverse-Chebyshev Filter Response 

 

Following our comparison between second and third order Inverse-Chebyshev filter 

function, we evaluate the difference between a third order Butterworth response and 

third order Inverse-Chebyshev response. We find that the Inverse-Chebyshev filter 

function has a steeper attenuation rate in the transition band and a lower group delay 

factor. We also find that a Butterworth response has greater suppression of unwanted 

signals at higher frequencies. Figure 24 confirms our results. 
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Fig. 24. Third-Order Inverse-Chebyshev Filter Response vs. Third-Order Butterworth Response 

 

Finally, we first plot the real third order Inverse-Chebyshev transfer function in figure 25 

and then we compare the real response with the ideal response of a third order Inverse-

Chebyshev filter function in figure 26. 
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Fig. 25. Real Third-Order Inverse-Chebyshev Transfer Function 
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Fig. 26. Third-Order Inverse-Chebyshev Filter Response for Ideal and Real Case 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

Low-pass all pole current-mode filter structure is implemented in the signal path of a 

direct-conversion receiver architecture to perform higher order filtering of unwanted out-

of-band signals. A modified filter structure is then designed by adding arbitrary 

transmission zeroes in the transfer function. With the aim to achieve a flatter magnitude 

response in the passband and a steeper rate of attenuation in the transition band, we 

designed a third order Inverse Chebyshev Transfer function 

 

It is important to note that higher order filtering function can be easily realized by 

cascading several NMOS and PMOS filtering structures. For example, a fifth order 

Inverse-Chebyshev function can be realized by cascading a second order NMOS block, 

with a second order PMOS block followed by a first order NMOS block. 

 

The addition of arbitrary zeroes to the all pole filter function makes it possible for us to 

implement any desired filter function. For example, we can easily implement an 

elliptical filter function if we desire a much steeper transition for a comparatively lower 

filter order. However, these elliptical filters have ripples in the passband and the 

stopband. Our filter structure gives us the freedom to compare different filter functions. 
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Apart from designing a more general filter function, we may adapt different methods to 

further optimize our design. Several low-power circuit design techniques may be 

considered to minimize power consumption. For example, we can minimize the power 

consumption by reducing the supply voltage of the circuit by using folded cascodes 

within each biquad block. 
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