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ABSTRACT 
 

Micromagnetic Studies of the Transition between Vortex and Single-Domain States in 
Sub-100 nm Nanodots. (May 2012) 

 

Andrew Thomas King 
Department of Physics and Astronomy 

Texas A&M University 
 

Research Advisor: Dr. Igor V. Roshchin 
Department of Physics and Astronomy 

 

Understanding energy barriers involved in nucleating and annihilating magnetic vortices 

in nanodots is important for magnetic memories and nano-oscillators. We used a “rigid-

vortex approximation'' and micromagnetic approach to calculate the total magnetic 

energy of a nanodot for various magnetic configurations. This was done for 20 nm-thick 

iron nanodots with different diameters (30, 40, 65, and 80 nm) as a function of applied 

magnetic field. By analyzing the energy landscape for different magnetic configurations, 

we calculated the energy barrier for switching from the vortex to the single-domain state 

(vortex annihilation) and the converse (vortex nucleation). The applied fields required to 

overcome these two barriers are compared to those obtained from the simulations of the 

magnetic reversal. The role of the thermal fluctuations in the temperature dependence of 

these characteristic fields is analyzed by comparison of the energy barriers with the 

thermal energy, kBT. 
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NOMENCLATURE 
 

M Magnetization 

Ms Saturation Magnetization 

H Applied Magnetic Field 

Ha Annihilation Field 

Hn Nucleation Field 

µo Permeability of Free Space 

kB Boltzmann’s Constant 

γ Gyromagnetic Ratio 

α Damping Coefficient 

T Temperature 

t Time 

AE Exchange Stiffness 

K1 Crystalline Anisotropy Constant 

By Magnetic Field in y-direction 

Hy Applied Magnetic Field in y-direction 
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CHAPTER I 

INTRODUCTION 

 

A bar magnet, magnetized in a single direction, has its magnetic field lines stretching to 

infinity.  There is a magnetic energy associated with this field.  In a cylindrical nanodot 

of a certain size, the magnetization will form closed loops within the boundaries of the 

dot in order to minimize the magnetic energy.  The loops are typically formed in a plane 

which is parallel to the top surface of the dot.  When this occurs, we say that the 

magnetization of the dot is in the “vortex state.”  This is, of course, different from the 

“single-domain state” where the magnetization is mostly collinear. 

 

The magnetic vortex state is proving to possess characteristics which may enable many 

novel technologies.1  For example, when a dot is in the vortex state, it has very little 

magnetic interaction with surrounding dots.  This may allow dense packing of dots in 

order to create high-density magnetic recording media (HDMRM).  Also, when the 

vortex core is displaced, it returns to equilibrium following a damped oscillatory path.  It 

is possible to apply a magnetic field in such a way to drive this oscillation and create 

high-frequency nano-oscillators.   

 

In order to exploit these technologies, we must understand how the magnetization reacts 

_______________ 
This thesis follows the style of Physical Review B. 
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to an applied magnetic field while it is in the vortex state.  In addition, we must 

understand what is required to switch the magnetization between the vortex and single-

domain states in terms of an applied magnetic field and the temperature.  Our goal is to 

numerically determine the dependence of the energy barriers upon the applied magnetic 

field for different dot sizes and to compare the energy barriers to the thermal energy. 

 

In previous experimental work performed by Dumas, et.al.,2 two characteristic fields 

relating to vortex nucleation and annihilation were measured as functions of 

temperature. The two fields, which will be discussed later, were shown to depend upon 

the temperature of the nanodot.  It was suggested that this temperature dependence could 

be explained by thermally-activated switching between the vortex and non-vortex states.  

To investigate this, we perform “rigid-vortex” simulations to calculate the energy 

barriers between the vortex and non-vortex states and then compare these energy barriers 

to the thermal energy of the system (temperature, T, multiplied by Boltzmann’s constant, 

kB. 

 

Applications of the vortex state 

As mentioned previously, HDMRM technologies may become feasible through use of 

the vortex-state magnetization.  In common magnetic recording media, a single binary 

bit is stored as the net magnetization of a section of magnetic material.  The sections in 

which bits can be stored are much larger than the grain size of the material but limited in 

size by the magnetic interactions with other sections.  Therefore, in order to further 
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increase the density of magnetic recording media, we must find a way to overcome this 

lower limit and decrease the physical volume in which each bit is stored. 

 

One possibility to overcome the lower limit in bit size is to store bits in the vortex state 

magnetization of nanodots.  In this situation, bits may be stored in the chirality of the 

vortex: clockwise for a binary “1” or counter-clockwise for a binary “0”.  Alternatively, 

a bit could be stored in the out of plane magnetization which occurs at the vortex core: 

up for a binary “1” or down for a binary “0”.  By positioning the vortex core close to the 

center of the dot, the net magnetization of a nanodot can be made small therefore 

reducing the magnetic interactions between nanodots.  This allows more spatially dense 

packing of nanodots and therefore HDMRM. 

 

Now we turn to the dynamic properties of the vortex state.  When a magnetic field is 

gradually applied to a nanodot initially in the vortex state, the magnetization will begin 

to align along the field.  In order for this alignment to happen, the vortex core moves in a 

direction perpendicular to the applied field, therefore leading to a net magnetization in 

the direction of the applied field.  Then, when the applied field is removed, the vortex 

core will begin to move back to the center of the dot.  However, the vortex core does not 

follow a straight line toward the center of the dot, instead it precesses.  The trajectory 

through which the vortex core precesses is similar to a decaying orbit about equilibrium.  

By periodically applying a magnetic field in such a way that it cancels out the damping 
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forces, the vortex core can be made to move in a circular, oscillatory path about the 

center of the dot.  This is an example of a high frequency magnetic oscillator. 

 

Method of simulation 

Measurement of the magnetization of a bulk material produces a continuous 

magnetization across the material on the macroscopic scale.  It could be assumed that 

this magnetization is still continuous on smaller scales, however this is not the case.  The 

magnetization of a material is defined as the sum of all the magnetic moments in the 

material divided by the volume of the material.  A calculation of the magnetization of a 

material would involve all the magnetic moments of the individual atoms and the 

interactions between them.  However, this calculation is unreasonable due to the extreme 

number of atoms in a bulk material. 

 

A useful simplification to this calculation is to assume that the interactions between 

electron spins are sufficiently strong to prevent any significant change in the orientation 

of the adjacent spins and therefore allow approximation by continuous functions.3  From 

this assumption, we can reduce the problem to a much simpler problem of magnetic cells 

defined as regions of a material where the magnetization does not vary with position.  

Each cell typically contains a large number of electron spins.  Therefore, this 

“micromagnetic” theory provides a much simpler method of calculation using the 

Landau-Lifshitz equation4 and the Brown energy equations.3 
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The equations of micromagnetic theory are in the form of partial differential equations 

which cannot be solved analytically.3  Fortunately, the National Institute of Standards 

and Technology (NIST) has developed the Object Oriented Micromagnetic Framework 

(OOMMF) to solve the micromagnetic equations numerically.5 In standard operation, 

OOMMF minimizes the total magnetic energy of the system over time, eventually 

settling down to a lowest-energy state and calculating the magnetization.  In addition to 

the magnetization, OOMMF also calculates several other parameters including the 

various magnetic energies as defined by W.F. Brown.3 We adapted OOMMF to 

numerically calculate the total magnetic energy of various states of magnetization that 

we define, which may or may not be the ground state. 

 

We apply a “rigid vortex approximation” (Ref. 6) with OOMMF to obtain an energy 

landscape for switching between the single-domain and vortex states.  From the energy 

landscape, we then calculate the energy barriers between these two states.  To evaluate 

the accuracy of the rigid-vortex method, we will also be using OOMMF to perform 

standard magnetization curve simulations, with which we will compare our rigid-vortex 

results.  We will refer to the magnetization curve simulations as hysteresis simulations. 

 

 

Project overview 

The dependence of the energy barriers upon applied field was determined through 

micromagnetic simulations using the rigid-vortex approximation.  The dependencies 
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demonstrate two characteristic fields: the field at which the nanodot switches from the 

vortex state into the single-domain state (vortex annihilation field, Ha) and the field at 

which the nanodot switches from the single-domain state into the vortex state (vortex 

nucleation field, Hn). 

 

Additionally, the energy barriers were compared to the thermal energy defined as the 

temperature (T) multiplied by Boltzmann’s constant (kB).  This comparison demonstrates 

the likelihood of the thermal fluctuations to overcome the energy barriers and cause 

switching between states. 

 

The applications described in the earlier section require knowledge of the two 

characteristic fields, Hn and Ha, and the thermal stability of the magnetization states of 

nanodots.  Therefore, the dependencies found will help to further these and many other 

technologies as well as to understand the fundamental physics behind the magnetic state 

switching. 
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CHAPTER II 

METHODS 

 

Micromagnetic theory 

As mentioned previously, in order to rigorously determine the magnetization of a 

material, we must have knowledge of each magnetic moment in the material.  

Consequently, the problem becomes extraordinarily difficult in a bulk material with 

countless magnetic moments.  If we can reduce the number of moments in the 

calculation, we will greatly simplify the problem.   

 

If we make the assumption that the individual magnetic moments only slightly deviate in 

orientation from their neighbors, then the magnetization will vary smoothly throughout 

the material.  Therefore, we can group large numbers of magnetic moments into “cells” 

defined by regions where the magnetization does not vary with position.  This allows us 

to approximate large numbers of moments nearly as a single cell with the combined 

magnetic moment.  Since the physical scale of the cells is typically several orders of 

magnitude larger than that of a single spin, this approximation greatly simplifies the 

calculation.  W. F. Brown derived the equations for the magnetic energies3 that we use in 

this work. 
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Also, since we are assuming the magnetization varies smoothly with position, we are 

allowed an approximation by continuous functions.  Therefore, we are allowed to use the 

Landau-Lifshitz equation.4 

€ 

dM
dt

= −γM × Heff −
γα
Ms

M × (M × Heff )
   

(2.1) 

The Brown energy equations, shown below, depend upon the magnetization, the applied 

field, and several material parameters.  The exchange energy is given by, 

€ 

Eex =
A
Ms

2 ∇M( )2dV∫     (2.2) 

the demagnetization energy is given by, 

€ 

Ed =
µo

2
M(r)N(r − r')M(r')dV 'dV =

µo

2
Hd ⋅ M(r)dV∫∫∫  (2.3) 

the anisotropy energy is given by, 

€ 

Ean = −
1
2

M ⋅ Λ⋅ MdV∫     (2.4) 

the Zeeman energy is given by, 

€ 

EZ = −µo HZeemanMdV∫     (2.5) 

and the total energy is given by, 

€ 

Etot = Eex + Ed + Ean + EZ     (2.6) 

Since, the applied field and the material parameters are known, the only unknown is the 

magnetization at a given time.  So, if we solve the Landau-Lifshitz equation for the 

magnetization at each time step, then we cause use the result in the Brown energy 

equations to calculate the magnetic energies at discrete points in time. 
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Object-oriented micromagnetic framework 

The Object Oriented Micromagnetic Framework (OOMMF) was developed by the 

National Institute of Standards and Technology (NIST) in order to solve the Landau-

Lifshitz equation numerically.  We used the January 15, 2004 release of the OOMMF 

2D solver version 1.1 beta 2 running with Tcl/Tk version 8.5.7 on Mac OS X 10.6.  

OOMMF begins with a given initial magnetization and a known applied magnetic field.  

The gyromagnetic ratio, the fine-structure constant, and the saturation magnetization are 

all also given to OOMMF as initial conditions.  These variables are then used to 

calculate the first time derivative of the magnetization from the Landau-Lifshitz 

equation.  Next, the time derivative is integrated over one time step and plugged back 

into the Landau-Lifshitz equation.  This process continues until the magnetic torque 

term, 

€ 

M × Heff , reaches a predefined minimum known as a control point or after a 

specified number of iterations.  At this point, it is assumed that the system reaches the 

equilibrium state, which is recorded.  Then the magnetic field is changed and the new 

magnetic state is calculated. 

 

Rigid-vortex approximation 

The magnetization states that we will simulate are the vortex state and the single-domain 

state.  The vortex state occurs when the in-plane magnetization curls around a fixed 

point, and the single domain-state occurs when the magnetization is mostly collinear.  

Our goal is to understand, how the switching between the two states occurs.  Our 

objective is to calculate the fields required to switch into the vortex state and into the 
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single-domain state.  These are known as the vortex nucleation (Hn) and annihilation 

fields (Ha), respectively. 

 

To perform our calculations, we have employed a “rigid vortex approximation.”  In this 

approximation, we assume that the vortex shape does not change as a function of the 

vortex position.  This allows us to model different magnetization states by placing the 

vortex core at various positions with respect to the dot.6  As we move the vortex core 

from the center of the dot to far away from the dot, we obtain an evolution of 

magnetization states.  The single-domain state corresponds to placing the vortex core far 

away from the dot, while the vortex state corresponds to placing the vortex core within 

the dot.  The vortex positions in between represent the evolution the system is likely to 

follow in order to switch from the vortex to the single-domain state or vice versa.  By 

calculating the total magnetic energy for each position of the vortex core, we will obtain 

a landscape of the magnetic energies that the system is likely to follow in order to switch 

between states.  For a range of the nanodot parameters, there are two energy minima, 

separated by a peak, corresponding to the vortex and single-domain states.7 This peak 

creates an energy barrier for switching between the vortex and single-domain states. 

When a magnetic field is applied, the energy landscape changes.  The field at which the 

energy of the single-domain state becomes greater than the peak and causes the energy 

barrier to disappear is the vortex nucleation field (Hn).  On the other hand, the field at 

which the energy of the vortex state becomes greater than the peak and causes the energy 

barrier to disappear is the vortex annihilation field (Ha).  



11 

OOMMF adaptation 

In order to use the rigid vortex approximation, we had to adapt OOMMF to our 

procedure.  Normally, OOMMF allows the magnetization to relax before it records any 

data.  This may take many iterations and will never record any data about the initial state 

such as the values of the magnetic energy.  However, in the rigid vortex approximation, 

we do not want the system to relax.  This is because the system would fall into a stable 

state and we would not be able to calculate an energy landscape.  Instead, we must 

calculate the magnetic energies regardless of how unstable the state.  Therefore, we 

wrote a program in C to control OOMMF in a way so that we could calculate the 

magnetic energies at whatever state we define, no matter how unstable.  We also added a 

feature in this C program which would automatically sort the data into files which could 

be read easily by Microsoft Excel to be analyzed. 
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CHAPTER III 

RESULTS 

 

In this work, we perform two types of simulations. The first type of simulation is the 

straight-forward hysteresis simulation using OOMMF in standard operation.  The 

second, is performed using the rigid-vortex approximation along with the prewritten C-

code to automate OOMMF as described in the previous chapter.  We will refer to the 

first type of simulations as “hysteresis simulations,” and the second type as “rigid-vortex 

simulations.” 

 

In both types of simulations we kept the following parameters the same.  The nanodots 

are defined to consist of iron with a saturation magnetization (Ms) of 1700x103 A/m3, an 

exchange stiffness (AE) of 22x10-12 J/m, a damping coefficient (α) of 0.5, and a 

gyromagnetic ratio (γ) of 2.21x105 m/(As).  The anisotropy is uniaxial and constant, with 

the crystalline anisotropy axes on the x and y axes and with a crystalline anisotropy 

constant (K1) of 48x103 J/m3.  The algorithm for calculating the self-magnetostatic 

(demagnetization) field is set to ConstMag as described in the OOMMF documentation.5  

All nanodots in the simulations have a cylindrical geometry with a 20 nm height, and the 

diameters of the nanodots are varied between 30, 40, 65, and 80 nm. 
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FIG. 1.  Energy landscape for a nanodot with a 65 nm diameter at zero applied field.  

This plot was calculated using the rigid-vortex approximation along with OOMMF. 
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FIG. 2.  Sketch of the vortex nucleation and annihilation energy barriers.  The 

annihilation barrier is shown in red and the nucleation barrier is shown in green. 

 

Rigid-vortex simulations 

In all rigid-vortex simulations, the vortex-core radius is fixed at 8 nm.  All magnetization 

outside the vortex-core is in plane, and all the magnetization within the vortex-core 

points out of plane. 

 

When the rigid vortex approximation is applied to calculate the magnetic energies of a 

nanodot with respect to vortex-core position, we find an energy landscape.  Figure 1 
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shows the energy landscape of a nanodot with a 65 nm diameter with no applied 

magnetic field.  From this plot, the vortex nucleation and annihilation barriers can be 

calculated.  These two energy barriers are sketched in Figure 2. 

 

 

FIG. 3.  Sketch of a top-down view of a nanodot defining the x-axis as the axis along 

which the vortex-core moves.  The y-axis is defined as the axis in the same plane, but 

orthogonal to, the x-axis.  All applied fields are parallel to the y-axis.  The vector field 

represents the magnetization of the nanodot; the black arrows are in plane and blue 

arrows are out of plane. 
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FIG. 4.  Energy landscapes for a nanodot with a 65 nm diameter at zero and 0.5 kOe 

applied field.  Calculated using the rigid-vortex approximation with OOMMF. 
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By defining the axis along which the vortex-core is moved to be the in-plane x-axis, we 

can apply a magnetic field along what would be the in-plane y-axis.  This is sketched in 

Figure 3.  When a positive field is applied with the geometry in Figure 3 and the energy 

landscape is recalculated, we would expect the annihilation barrier and the total energy 

of the non-vortex state to decrease.  This is because the magnetic moments tend to align 

along the applied field, favoring a collinear, single-domain state.  This can be seen in 

Figure 4, where an energy landscape at 0.5 kOe is plotted along with the energy 

landscape at zero applied field.  After repeating this process for a range of applied fields, 

we obtain the results shown in Figure 5.  Now, the energy landscapes have been 

calculated at many different applied fields, and we can extract and plot the energy 

barriers as a function of applied field.  This is shown for all four dot diameters in Figures 

6 through 9. 
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FIG. 5.  Energy landscapes for a nanodot with a 65 nm diameter at many different 

applied fields. 
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FIG. 6.  Energy barriers plotted versus applied field for a nanodot with a 30 nm 

diameter.  This was calculated using the rigid-vortex approximation with OOMMF. 
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FIG. 7.  Energy barriers plotted versus applied field for a nanodot with a 40 nm 

diameter.  This was calculated using the rigid-vortex approximation with OOMMF. 
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FIG. 8.  Energy barriers plotted versus applied field for a nanodot with a 65 nm 

diameter.  This was calculated using the rigid-vortex approximation with OOMMF. 
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FIG. 9.  Energy barriers plotted versus applied field for a nanodot with an 80 nm 

diameter.  This was calculated using the rigid-vortex approximation with OOMMF. 
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FIG. 10.  Vortex annihilation fields plotted versus dot diameter.  This was calculated 

using the rigid-vortex approximation with OOMMF. 

 

 

FIG. 11.  Vortex nucleation field plotted versus dot diameter.  This was calculated using 

the rigid-vortex approximation with OOMMF. 
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Hysteresis simulations 

For the hysteresis simulations, the initial magnetization state is defined to be the vortex 

state and a magnetic field is applied to simulate a full hysteresis loop.  The magnetic 

field is initially set to zero until OOMMF reaches a control point as described in the 

previous chapter.  Then, the applied field is changed according to the values in Table 1.  

Note that there is a small applied field component along the x-axis in order to break the 

symmetry of the system so that the vortex-core could be displaced from the center of the 

dot.  The results of the hysteresis simulations are shown in Figures 12 through 15.  Note 

that the horizontal axes in Figures 12 through 15 are labeled “By (mT).”  This is 

different from the rigid-vortex data, in which we used “Applied Field (kOe).”  If we let 

“Hy (kOe)” represent the applied field in the rigid-vortex data, then By = µoHy, where 

µo is the vacuum permeability, and 1 kOe corresponds to 100 mT. 
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 TABLE 1.  Applied field ranges used in hysteresis simulations.  The field begins 

on the first line in the table at the initial value of (X(1),Y(1),Z(1)) then changes the next 

values, (X(2),Y(2),Z(2)), taking the specified number of steps along the way.  Then, 

when a control point is reached, the field performs a similar routine with the values on 

the next line in the table.  This simulation ends after the last line in the chart. 

X(1)	  [mT]	   Y(1)	  [mT]	   Z(1)	  [mT]	   X(2)	  [mT]	   Y(2)	  [mT]	   Z(2)	  [mT]	   Steps	  

0	   0	   0	   0	   0	   0	   1	  

0	   0	   0	   0.10	   300.	   0	   40	  

0.10	   300.	   0	   0.10	   400.	   0	   20	  
0.10	   400.	   0	   0.10	   300.	   0	   20	  
0.10	   300.	   0	   0	   0	   0	   40	  
0	   0	   0	   -‐0.10	   -‐300.	   0	   40	  

-‐0.10	   -‐300.	   0	   -‐0.10	   -‐400.	   0	   20	  

-‐0.10	   -‐400.	   0	   -‐0.10	   -‐300.	   0	   20	  

-‐0.10	   -‐300.	   0	   0	   0	   0	   40	  

0	   0	   0	   0.10	   400.	   0	   60	  

 

 

FIG. 12.  Hysteresis loop for a nanodot with a 30 nm diameter.  This was calculated 

using OOMMF. 
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FIG. 13.  Hysteresis loop for a nanodot with a 40 nm diameter.  This was calculated 

using OOMMF. 

 

 

FIG. 14.  Hysteresis loop for a nanodot with a 65 nm diameter.  This was calculated 

using OOMMF. 
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FIG. 15.  Hysteresis loop for a nanodot with an 80 nm diameter.  This was calculated 

using OOMMF. 

 

The hysteresis loops appear to be “pinched”.  This “pinching” is indicative of the vortex 

state.8, 9 The vortex annihilation and nucleation fields are then extracted from the 

hysteresis plots in Figures 12 through 15 as sketched in Figure 16.  The two 

characteristic fields are then plotted as a function of dot diameter in Figures 17 and 18. 
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FIG. 16.  Sketch of where vortex nucleation and annihilation occurs in the hysteresis 

loop.  The vortex nucleation and annihilation fields are extracted from the hysteresis 

loop at the points sketched in the plot. 

 



29 

 

FIG. 17.  Vortex annihilation field plotted versus dot diameter.  The results from both 

the hysteresis and rigid-vortex simulations are shown for comparison.  The uncertainty 

bars from the hysteresis simulations are so small that they cannot be seen on the plot.  

However, the uncertainty bars from the rigid-vortex simulations can be seen. 
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FIG. 18.  Vortex nucleation field plotted versus dot diameter.  The results from both the 

hysteresis and rigid-vortex simulations are shown for comparison.  The uncertainty bars 

from the hysteresis simulations are so small that they cannot be seen on the plot.  

However, the uncertainty bars from the rigid-vortex simulations can be seen. 

 

Notice how, in the hysteresis results, there are no recorded values for the vortex 

nucleation fields of the nanodot with a 30 nm diameter.  This is because, as seen from 

the simulations of the hysteresis loops for this dot, a vortex will never nucleate.  

Therefore, there can not be a vortex nucleation field for these nanodots. 
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CHAPTER IV 

CONCLUSIONS & FUTURE OUTLOOK 

 

Comparison with hysteresis 

In Figures 17 and 18, the vortex nucleation and annihilation fields from the rigid-vortex 

simulations are compared to those from the hysteresis simulations.  The method of 

simulating a hysteresis loop is well-established in the field of micromagnetics.  

Therefore, if the results from the rigid-vortex approach agree with those from the 

hysteresis approach, then it is reasonable to believe that use of the rigid-vortex 

approximation is an acceptable approach to studying vortex nucleation and annihilation. 

Indeed, the sole reason for performing hysteresis simulations is to make this comparison. 

 

It can be seen from Figures 17 that the results for the vortex annihilation fields from the 

hysteresis simulations are within the uncertainty bounds of the rigid-vortex simulations, 

indicating that the two results are in agreement.  Therefore, we believe the use of the 

rigid-vortex approximation is an acceptable approach to studying vortex annihilation in 

nanodots. 

 

We note that, in Figure 18, there is no value for the vortex nucleation field for a nanodot 

with a 30 nm diameter.  This is because, when simulating a hysteresis, OOMMF allows 

the system to relax.  If the vortex state is unstable, then the system will never relax into 

the vortex state.  Therefore, there will be no vortex nucleation field.  However, for the 
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nanodots with 40, 65, and 80 nm diameters, a vortex was able to nucleate, but the results 

found from the hysteresis simulations do not agree with those found from the rigid-

vortex simulations.  Therefore, we conclude that the rigid-vortex simulations gave 

inaccurate results for vortex nucleation.  This could be due to the crude nature of the 

vortex model we used in the rigid-vortex simulations. 

 

 

FIG. 19.  Hysteresis loop for a nanodot with an 30 nm diameter and uniaxial anisotropy 

with the easy axis along the applied magnetic field (y-direction).  This was calculated 

using OOMMF. 
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FIG. 20. Hysteresis loop for a nanodot with an 30 nm diameter and cubic anisotropy.  

This was calculated using OOMMF. 

 

Note that we do not observe hysteresis for the 30 nm diameter nanodot (Figure 12), 

because we chose the easy axis of the anisotropy to be to be at a 45 degree angle to the 

applied field.  Figure 19 demonstrates that hysteresis is present when the easy axis is 

along the applied magnetic field (y-direction).  Also, even in the case of a cubic 

anisotropy (Figure 20), which favors the vortex state more than a uniaxial anisotropy,10 a 

vortex does not nucleate. 

 

Temperature dependence 

In order to study the temperature dependence of the switching between the states 

calculated in Figures 6 through 9, we use an Arrhenius-type law as seen below in (4.1). 
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€ 

τ = τo ∗exp
EB

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟      (4.1) 

The constant, τo, represents the average time it takes for a nanodot to perform the 

switching between the vortex and non-vortex states.  Typical values for τo are in the 

range of 0.1 ns to 1 ns; for the estimates here, we set τo to 1 ns.  The time, τ, obtained 

from (4.1) is the average time before the switching occurs.  Within the exponential, we 

have the ratio between the energy barrier, which depends upon the applied field and the 

dot diameter, and the thermal energy, which depends upon the temperature.  Therefore, 

for a given dot diameter, we can evaluate (4.1) with respect to two independent 

parameters: the applied field and the temperature. 

 

Using this approach, we find that the switching time for vortex annihilation in a nanodot 

with a 65 nm diameter at zero applied field and 300 K would be 6.0×10964 seconds.  If 

we increase the applied field to 2.5 kOe, the switching time drops to 64 seconds.  Similar 

results for all four dot diameters are shown in Table 2. 
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TABLE 2.  Switching times for vortex annihilation at particular applied fields 

and 300 K for all four dot diameters. 

Dot	  diameter	  (nm)	   Applied	  field	  (kOe)	   Switching	  time	  (s)	  
30	   0	   3400	  
30	   2	   1.0x10-‐9	  
40	   0	   1.8x10185	  
40	   2	   1.0x10-‐9	  
65	   0	   6.0x10964	  
65	   2.5	   64	  
80	   0	   1.8x101588	  
80	   2.5	   1.0x10-‐9	  

 

Table 2 demonstrates that at zero applied field, all the nanodots are stable in the vortex 

state due to the large switching times, with the exception of the 30 nm diameter dots.  

However, once a small field is applied, the switching time drastically decreases.  We see 

from Table 2 that the switching times are incredibly large numbers; therefore, we believe 

that our energy barriers are too large to be reasonable. 

 

To analyze the temperature dependence of the switching times, we need to know the 

value of the energy barriers.  Based upon the evidence discussed above, we conclude 

that the calculated energy barriers are incorrect, and therefore we are unable to perform a 

useful analysis. 

 

Our tests indicate that the energy barriers obtained as a result of our model of the vortex 

state are too large.  This means that our model needs to be refined further.  In particular, 

the transition from the vortex core (out-of-plane) magnetization to the in-plane, 

concentric magnetization outside of the vortex-core is abrupt and causes an increase in 
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the exchange energy of the system.  A refined model with a gradual transition could 

provide better quantitative results. 

 

Outlook 

Although the rigid-vortex approximation gives us reasonable results for vortex 

annihilation, the discussion from a previous section shows that the rigid-vortex 

simulations do not give accurate results for vortex nucleation.  In order to confirm this, 

we would like to compare with the results from our collaborators, who are using 

different computational approaches to solve the same problem. 

 

In the rigid-vortex approximation, we used a model of the vortex state that is not 

adequate for calculating the energy barriers.  In this model, there is a sharp transition in 

magnetization at the vortex-core circumference.  This sharp transition may contribute a 

large amount of exchange energy to the system, and, since this only occurs in the vortex-

state, may be skewing our energy barrier results.  Therefore, in the future, we would like 

to refine our vortex model to have a more gradual transition at the vortex-core radius and 

then rerun our simulations.  This should give us a more realistic estimation of our energy 

barriers. 
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