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ABSTRACT 
 
 

 
Preliminary Results for TAT-Mediated Photoactivatable Cell Delivery. (April 2011) 

 

Matthew Ellis Grunewald 
Department of Biochemistry and Biophysics 

Texas A&M University 
 

Research Advisor: Dr. Jean-Philippe Pellois 
Department of Biochemistry and Biophysics 

 

Protein delivery into cells is often achieved through use of cell-penetrating peptides 

(CPPs).  TAT (an HIV peptide) is one of the most efficient CPPs and, when incubated 

with cells, induces macropinocytosis of the surrounding medium.  This brings 

coincubated extracellular cargo into endosomes, where they often remain trapped 

without outside stimulus.  We hypothesized that TMR conjugated to TAT could induce 

medium uptake and, when photoactivated by light treatment, cause endosomal release of 

cargo.  We performed several experiments using TMR-TAT and eGFP cargo at various 

conditions, but initial trials show no detectable delivery.  Though our results are only 

preliminary, we have observed several phenomena that inhibit delivery and/or detection 

of delivery, including low endosomal uptake and release, fluorescent CPP adherence to 

the dish surface, and high cell death and buildup of cellular debris.  In future trials, we 

plan to correct these issues by modifying reagent concentrations, using different 

reagents, and changing intensity of light treatment.  In summary, we believe delivery is 
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still possible after changing various parameters.  If future trials are successful, TMR-

TAT and cargo coincubation may prove to be an efficient method to deliver therapeutic 

proteins and has implications in patient drug treatment and in vitro cell modulation. 
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NOMENCLATURE	  

 

Cargo The biomolecule to be delivered into the cell 

CPP Cell-penetrating peptide, facilitates cargo internalization 
into cells, e.g. TAT  

 
Crocetin Singlet oxygen scavenger, inhibits TMR-mediated 

endosomal release 
 
eGFP Enhanced green fluorescent protein, used as cargo 

FITC A green fluorophore, used as cargo or as photosensitizer 

HA2 Influenza hemagglutinin, induces membrane leakage at 
low pH 

 
PCI Photochemical internalization, light-mediated delivery 

PDT Photodynamic therapy, method of photoinduced cell death 

Photosensitizer Photoexcitable chemical used to kill cells in PDT 

PTD Protein transduction domain, CPP part of a protein 

ROI Reactive oxygen species 

Singlet oxygen Unstable ROS, responsible for death in PDT 

SYTOX Blue Nuclear stain to detect cell death 

TAT HIV transactivator of transcription, CPP used in our 
studies 
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CHAPTER I 

INTRODUCTION 

 

Rationale 

In general, delivery of exogenous or foreign compounds into cells or tissues is difficult.  

Oral ingestion and direct injection are historically the most common methods of drug 

delivery due to simplicity of administration.  Unfortunately, these routes of delivery 

allow only a slim margin of possible drugs that balance properties need for effective 

transfer, including lipophilicity, lack of polarity, metabolic stability (1).  Clearly new 

methods to deliver polar and hydrophilic biomolecules, such as proteins, needs to be 

pursued.  Currently, one of the most studied forms of delivery is transduction of 

extracellular biomolecules across the plasma membrane into the cell.  

 

Once a competent and reliable method of direct molecule transduction is developed, it 

will have applications in many biological and chemical areas.  For instance, fluorescent 

markers (e.g. eGFP and derivatives, quantum dots, etc.) and metabolic markers could be 

transduced into culture or tissue cells to study localization and duration of biochemical 

processes in real time (2).  Antibodies could be used for intracellular purposes, including 

neutralization of viral proteins, diagnosis of disorders, and specific biomolecule imaging 

_______________ 
This thesis follows the style of The Journal Biological Chemistry. 
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(3).  Protein/peptide-based therapeutic drugs, especially anticancer molecules, could be 

delivered directly to site of damage (4).  Transcription factors and growth/differentiation 

factors could be applied in vitro or in vivo to direct cell fate or even induce pluripotency 

(5).  Finally, nonprotein molecules such as MRI contrast agents and nucleic acids could 

be used to enhance magnetic imaging resolution and direct gene expression respectively 

(6).   

 

Cell-penetrating peptides 

The lipid bilayer membrane of eukaryotic cells has evolved into a tightly regulated 

barrier that controls biomolecule translocation.  This membrane system has adapted well 

to keep unnecessary and possibly harmful components out of the cell.  This poses a 

significant barrier to delivery of exogenous chemicals, especially proteins and other 

macromolecules.  Mechanical and electrical methods to bypass this barrier often risk 

compromising membrane integrity and/or are very technical and time consuming (7).  

Transduction methods that exploit intrinsic biological processes have been proposed and 

studied, though most are inefficient and show inconsistent results.  Several studies have 

shown the importance of cell-penetrating peptides (CPPs), which can be utilized in 

conjugation with the cargo molecule to effect delivery into a cell. 

 

CPPs are a group of peptides that enhance cellular uptake of surrounding molecules by 

various means.  In general, CPPs are usually short peptide sequences with several 

positively charged residues (usually lysine or arginine).  A CPP could be isolated from 



  3 

an organism, usually as a protein domain (or protein transduction domain/PTD), or be a 

synthetic construct, often to mimic a known PTD.  Common PTDs include the TAT 

domain (from the HIV transactivator of transcription) and penetratin (the third α helix of 

Drosophila antennapedia homeodomain), and synthetic CPPs include R9 (arginine 

nonamer) and transportan (a chimeric peptide) (6).   

 

TAT as a mediator of delivery 

The TAT domain, simplified to TAT, is one of the most studied CPPs to date.  The 

peptide is found naturally as a PTD of the TAT protein of HIV, which activates 

transcription of viral genes in the host cell nucleus.  In 1988, Frankel et al. observed 

spontaneous cellular uptake of TAT protein (8).  This ability to induce internalization is 

conserved in a small region (~10 amino acids, sequence: GRKKRRQRRRG) of the 

protein (9), which is typically the only region used for experimental transductions. 

 

The mechanisms behind TAT-induced transduction are not fully understood but seem to 

be complex and involve several different methods of internalization.  TAT directly 

crosses the plasma membrane into the cytosol at extracellular concentrations above a 

threshold (~10 µM) (10).  Below this threshold, endocytic internalization pathways 

predominate, especially macropinocytosis (mass uptake of surrounding medium) (11).  

This uptake seems to be dependent on cell matrix heparin sulfate proteoglycans (12), and 

positively-charged TAT binds directly to the negatively-charged heparin sulfate 
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moieties, mediated by ionic interactions (13).  After transduction, TAT localizes to the 

nucleoli of the cell nucleus (14). 

 

Several methods have been studied to exploit TAT-mediated internalization for delivery 

of cargo molecules into cells.  The simplest method is incubation of cells in medium 

containing TAT conjugated directly to the cargo of interest.  But after the TAT-cargo is 

taken up by the cell, it often remains trapped in the endosomes and is eventually 

degraded by lysosomal fusion.  A regulatable method to induce endosomal lysis must be 

introduced to release the cargo into the cytosol before it is degraded.  For instance, the 

influenza hemagglutinin protein HA2 can be ligated to the TAT-cargo complex.  HA2 

promotes membrane fusion and leakage at low pH levels, initiating release of endosomal 

contents after slight acidification from endosomal maturation/lysosomal fusion (15).  

This improves delivery significantly but requires modification of the cargo, possibly 

altering its function or final destination (TAT localizes to the nucleoli.).  Recently we 

showed that TAT conjugated to E5 (a HA2 derivative) coincubated with unmodified 

cargo is sufficient to induce endocytosis and cargo release into the cytosol (16).  But this 

method still shows relatively low rates of delivery and is regulated by the pH of the 

endosomes—it cannot be manually controlled. 

 

Photoacceleration of delivery 

In recent decades, significant progress has been made in initiation/regulation of 

biochemical reactions by light treatment.  Of note is the cytotoxic treatment called 
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photodynamic therapy, or PDT.  PDT involves directly or intravenously treating cells, 

usually cancerous, with a photosensitizer, which is general inert in the absence of light 

treatment.  Damaged or cancerous tissue is then irradiated by light of a specific 

wavelength, activating the photosensitizer.  (An ideal photosensitizer is also selectively 

favored for absorption by cancerous cells.)  Photoactivation initiates several biochemical 

reactions that interrupt cellular processes, killing the irradiated cells (17). 

 

The mechanisms behind photoactivated cell death are complex and not fully understood.  

In general, photosensitizers are easily photoexcited to a higher electronic state.  Energy 

from this excited state is transferred via several routes, including radiative (fluorescence) 

and nonradiative (heat) decay or direct electron transfer.  This can lead to production of 

reactive oxygen species (ROS) by several different routes.  For example, an excited 

photosensitizer can directly transfer an electron to O2, eventually leading to formation of 

H2O2 (18).  H2O2 can then diffuse throughout the cell and split into reactive hydroxyl 

radicals, which can react with nearly any biomolecule (19).  Most PDT protocols use a 

chemical with high singlet oxygen (1O2) production capability, such as porphyrin-like 

molecules (20).  Singlet oxygen is a ROS with a highly unstable spin state configuration 

that is formed from direct energy transfer from the excited photosensitizer (21).  Due to 

its instability, singlet oxygen possesses a very short lifetime, and its area of reactivity is 

limited to the immediate area around the photosensitizer (18).  Even so, 1O2 formation is 

one of the primary mechanisms driving PDT-induced cell process disruption and death. 
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We recently showed that induction of cell death was possible via singlet oxygen 

production by photosensitized TMR (tetramethylrhodamine), even this fluorophore 

possesses low 1O2 production ability.  TMR by itself is incapable of membrane lysis and 

is nontoxic to cells, even in the presence of significant light.  However, when conjugated 

to TAT, TMR-TAT is lethal during photosensitization after incubation (22).  We 

proposed the following model:  TMR-TAT is internalized into endosomes, and 

membrane-associated TAT localizes TMR to inner face of the endosome.  Light 

treatment electronically excites TMR, causing singlet oxygen production and endosomal 

leakage.  TMR-TAT then escapes into the cytosol, allowing disruption of the plasma 

membrane and cell death (22). 

 

The PDT protocol can be modified to deliver biomolecules, allowing manual temporal 

and spatial control.  This method is called photochemical internalization (PCI) and uses 

light as a mediator of endosomal cargo release.  In order to prevent cell death seen in 

PDT, PCI utilizes less reactive photosensitizers such as TMR or fluorescein (FITC) in 

conjunction with a CPP such as TAT.  Matsushita et al. showed light treatment induces 

endosomal release and cytosolic delivery of 11R-p53 (polyarginine CPP ligated to p53, 

an anticancer protein) conjugated to the fluorophore FITC after internalization (23).  

Finally, Gillmeister et al. showed that TMR-labeled TAT-GFP can be delivered by 

similar internalization and light treatment (24).  But both these experiments require 

modification of the cargo (p53 or GFP), possibly altering cargo function or 
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localization.  Furthermore, the reactive photosensitizer is conjugated directly to the 

cargo, which could result in chemical alterations. 

 

Our method 

In the experiments presented here, we tested a novel method of photochemical 

internalization mediated by TMR-TAT.  We coincubated HeLa cells with TMR-TAT 

and unmodified eGFP to induce cellular uptake of both.  We then visualized the resulting 

localization patterns of both fluorophores and attempted to photoaccelerate TMR-TAT-

mediated endosomal release by light treatment at various intensities.  Presumably, we 

can prevent continued membrane lysis by varying light treatment parameters. 

 

Furthermore, we hypothesized that cytotoxicity associated with photoactivation of 

fluorescent CPP can be mitigated by replacing TMR-TAT with TMR conjugated to TAT 

by a disulfide bond (TMR-SS-TAT).  We have previously shown that biomolecules 

delivered into the cytosol will be cleaved at any exposed disulfide bond (2).  This break 

is caused by interaction with free glutathione (25), a cytosolic tripeptide composed of 

glycine, cysteine, and glutamic acid and involved in protein function and degradation of 

xenobiotics (e.g. drugs) (26).  Assumedly, after endosomal release, glutathione will 

cleave TMR-SS-TAT into nontoxic TMR and TAT, preventing localization of activated 

TMR to the plasma membrane and preventing lysis.  This hypothesis is based on our 

current model of TMR-TAT-induced cell death (22), and using TMR-SS-TAT should 

allow equivalent delivery with less chance of initiating apoptosis. 
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CHAPTER II 

METHODS 

 

Reagents 

Synthesis of TMR-TAT 

TAT peptide was synthesized by Fmoc solid-phase peptide synthesis using a rink amide 

MBHA resin substrate as described previously (2).  In short, Fmoc protected N-terminus 

amino acids were activated by HBTU, added to the resin, and deprotected by piperidine.  

The process was repeated until the TAT peptide (sequence: GRKKRRQRRRG) was 

completed.  TAMRA (5- (and 6-) carboxytetramethylrhodamine) was added to the N-

terminus of the peptide, forming TMR-TAT.  Product was removed from the resin by 

TFA and purified by HPLC.   

 

Fmoc (D)-amino acids and TMR were purchased from Novabiochem, and all other 

chemical reagents were purchased from Sigma-Aldrich. 

 

Synthesis of TMR-SS-TAT 

TAMRA ligated to pyridyldithio-ethylamine via the 5,6 carboxylic acid group was given 

to us by the lab of Jongdoo Lim.  Cysteine-TAT (sequence:  CGRKKRRQRRRG) was 

synthesized by solid phase peptide synthesis as described above.  Cys-TAT was reacted 

with the disulfide-activated TMR in Tris-Cl for 3 hours.  Product was purified by HPLC. 
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Synthesis of eGFP 

pTXB1-eGFP plasmid was transformed into BL21 E. coli bacteria (Thermo Fisher) and 

cultured in 6 liters LB medium (Thermo Fisher) at 37° C.  At mid-log growth phase 

(OD600 = 0.6), bacteria were induced with 0.5 mM IPTG (Thermo Fisher) and cultured 

for 4 hours at 37° C.  Cells were pelleted, resuspended in lysis buffer (20 mM Tris-Cl, 

200 mM NaCl), and sonicated (3000 Sonicator, Misonix Inc.).  After lysate fractionation 

by centrifuge (14,000 RPM for 40 min at 4° C), the soluble fraction was added to chitin 

beads (New England Biolabs) in lysis buffer and incubated at 4° C for 24 hours.  

(Proteins bind to the beads via the C-terminal intein-chitin binding domain/CBD 

purification tag.) 

 

The bead mixture was washed several times in a column with lysis buffer to remove 

unbound proteins.  Beads were then incubated for 24 hours in cleavage buffer (100 mM 

HEPES, 200 mM NaCl, 100 mM MESNA) to induce cleavage of eGFP-intein CBD 

from the intein-CBD-bead complexes.  Free eGFP was collected by several cleavage 

buffer washes and purified through an ion exchange column.  Samples were 

concentrated by Centricon spin filtration (Millipore), confirmed by mass spectroscopy, 

and quantified by absorbance (ε488 nm = 55,000 M-1cm-1) (27). 

 

All chemical reagents were purchased from Sigma Aldrich. 
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Assay specifications 

Cell lines 

The HeLa cervical cancer cell line was used in all experiments.  Cells were cultured in 

DMEM with 10% FBS in a 10 cm dish kept in a 5% CO2 incubator at 37° C.  Cells were 

passaged every 2-3 days when above 80% confluency.  Passaging protocol included 

removal of media, washes with PBS, incubation with 0.5% trypsin, 4-10x dilution by 

with DMEM, and inoculation onto a second dish. 

 

DMEM, FBS, trypsin EDTA, and PBS were purchased from Thermo Fisher, and 

Corning dishes were purchased from Sigma Aldrich. 

 

Delivery specifications 

Cells were subcultured in an 8-well dish overnight until 60-80% confluency.  Media was 

removed, and cells were washed three times with either PBS or L-15 medium.  Medium 

containing 1-2 µM CPP and/or 10-20 µM eGFP either with or without 50 µM crocetin (a 

inhibitor of photosensitization) was added, and cells were incubated at 37° C in the dark 

for 1 hour.  Cells were washed three times again with PBS or L-15 and kept at 37° C in 

cysteine-free L-15 either with or without 5 µM SYTOX Blue DNA stain for 

visualization and light treatment. 

 

8-well dishes were purchased from Thermo Fisher, crocetin was purchased from Sigma 

Aldrich, and Leibovitz L-15 and SYTOX Blue were purchased from Invitrogen. 
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Microinjection 

HeLa cells were plated on 35 mm plates (P35G-1.5-7-C-grid, MatTek Corp.) at 

~100,000 cells/mL in 2 mL DMEM and later washed and incubated with L-15.  10 µM 

TMR-TAT was mixed with 10 µM 70 kDa Dextran-fluorescein, and femtoliter aliquots 

were directly injected into the cytoplasm of live HeLa cells using a FemtoJet 

microinjector controlled by an InjectMan NI2 micromanipulator (Eppendorf).  

Microinjected cells were imaged/photoactivated, and cytosolic microinjection was 

confirmed by observing nuclear exclusion of 70 kDa Dextran.  

 

Fluorescent microscopy 

Cells were observed with a fluorescence inverted microscope with a spinning disk for 

confocal and wide-field visualization (microscope model: IX81 from Olympus).  The 

microscope was mounted with a 37° C stage for cell incubation and fitted with a back-

illuminated EMCCD chip camera (model: Rolera-MGI Plus from Qimaging) for 

imaging.  Samples were visualized by bright field imaging and with fluorescent light 

from a 100 W halogen lamp with RFP (λex = 560±20 nm; λem = 630±35 nm), FITC (λex = 

482±35 nm; λem = 536±40 nm), and CFP (λex = 436±20 nm; λem = 480±40 nm) standard 

fluorescent filter sets.  The RFP filter was used for photoactivation of fluorescent CPP 

and was controlled manually by varying neutral density filters (100%, 25%, 12.5%, or 

5% transmittance) and exposure time. Olympus SlideBook 4.2 software was used for 

fluorescence intensity quantification and image modulation (e.g. deconvolution, contrast 

modification, etc.). 
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CHAPTER III 

RESULTS 

 
 
We performed several trials of cargo/CPP coincubation in HeLa cells with the goal of 

endosomal release and cargo delivery.  TMR-TAT or TMR-SS-TAT served as CPPs 

with eGFP as cargo.  After incubation and washing, cells were visualized by confocal 

microscopy and photoactivated by the RFP fluorescence filter.  To date, no trials have 

shown effective/quantifiable delivery of cargo eGFP.  It is important to note that these 

are only preliminary results, and few trials were sufficiently repeated.  But if our trial 

results are reliable, trends and general phenomena inhibiting delivery can be observed in 

these preliminary trials. 

 

Cargo and CPP show endosomal localization but inefficient delivery  

CPP and cargo visualization with respective fluorescent filters (RFP and FITC) showed 

punctate (spotted) distribution, indicating endosomal localization of both fluorophores.  

Figure 1 shows standard images of each.  It was difficult to view cells with both filters 

in one image due to major differences in measured intensities of green and red 

fluorescence.  Visualization of green vesicles could only be accomplished with higher 

fluorescent intensities (100-50% transmittance).  Under these conditions, red 

fluorescence was too intense and was quickly photobleached (lost fluorescence due to 

fluorophore decay).  This disparity in observed intensities is partly a result of differences 

in UV light source intensities between the two filters.  Even so, because fluorescent 
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intensities of visible endosomes measured only slightly above background levels, both 

CPP and cargo displayed low endosomal uptake. 

 

After we confirmed evidence of punctated endosomal fluorescence, we attempted to 

induce endosomolysis by fluorescent CPP photoacceleration using RFP filter light pulses 

at various intensities and exposure times.  Successful delivery was defined by loss of 

punctate distribution coupled with increasing diffused (cytosolic) fluorescence at most 

points outside the nucleus.  Using these criteria as standards, we were unable to induce 

any discernable release of cargo or CPP into the cytosol.  Most trials were unsuccessful 

due solely to the inability to visualize cells properly—reagent-dish interactions and 

cellular debris (described later) often inhibited proper contrast between background and 

endosomal fluorescence.  For the few trials that produced qualifiable images, fluorescent 
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distribution remained punctate, accompanied with red and green photobleaching and cell 

death.  TMR-TAT and TMR-SS-TAT showed no difference in fluorescence or 

functionality. 

 

TMR-TAT photoactivation results in cell death even without significant endosomal 

release 

CPP coincubated with cargo failed to induce CPP release, contradicting previously 

observed results from PDT experiments that used TMR-TAT to induce apoptosis (22).  

This may be due to CPP-cargo interactions that inhibit proper endosomolysis.  Even 

cells incubated for 15 minutes with only eGFP and visualized with FITC showed 

noticeable death rates (data not shown), so the effect may be cumulative.  We incubated 

cells with TMR-TAT alone to attempt to reproduce previous results from our PDT trials.  

Interestingly, we could not induce detectable release of TMR-TAT into the cytosol but 

still observed consistent cell death after every pulse.  Figure 2 shows the results of one 

pulse trial, and Supplementary Video 1 shows time-lapse imaging of a continuous RFP 

pulse with no visible endosomal release.  It is possible that endosomal release was 

occurring at a low level but was masked by photobleaching and loss of overall 

fluorescence.  Furthermore, it should be noted that this was only one trial and may be 

anomalous.  We plan to replicate the conditions to confirm our preliminary findings. 
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Photoactivated TMR-TAT microinjected directly into cells does not induce death 

To determine if activated TMR-TAT that had escaped endosomes, even at undetectable 

levels, is responsible for cell death, we microinjected TMR-TAT directly into HeLa cells 

and treated with light under various conditions.  We hypothesized that TAT should 

localize to the inner face of the cytosolic membrane and, upon photoactivation, lyse the 

membrane, analogous to the proposed mechanism of cell death from TMR-TAT 

endosomolysis (22).  All trials except one showed no cell death despite several minutes 

of RFP exposure.  Cells visibly took up TMR-TAT and displayed significant 

fluorescence but showed no noticeable change in morphology, nuclear structure, or outer 

membrane stability (standard indicators of cell death).  Supplementary Video 2 shows a 

representative time-lapse of single trial. 
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The disulfide bond of TMR-SS-TAT does not prevent cell death 

To decrease the cytoxicity of TMR-TAT, we ligated TMR to TAT via a disulfide bond.  

This bond should be reduced by glutathione in the cytosol after endosomal escape, 

which prevent TAT from localizing TMR to the membrane (25).  After we coincubated 

and washed cells, we added SYTOX Blue, a dye that stains the nucleus upon cell death.  

We examined cells using the CFP fluorescent filter before and after an RFP pulse at 

various intensities and exposure times.  Preliminary tests show that the disulfide bond 

does not reduce cytoxicity, and most treated cells died after the pulse.  Even when cells 

were incubated and photoactivated in the presence of crocetin, a singlet oxygen inhibitor 

that we previously showed inhibited TMR-TAT-induced cell death (22), apoptosis still 

occurred.  Figure 3 shows an example trial with a 2.5 min pulse at the lowest intensity 

(5%).  We are currently undergoing cell viability trials testing only TMR-SS-TAT 

without cargo to better quantify our initial findings. 
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Reagent incubation results in cell death and cellular debris 

As we prepared each experiment, we observed general cell morphology and confluency 

before and after each wash and incubation.  First wash triplicates reduced cell 

confluency, usually by 10%-20%.  We also observed significant dark toxicity (cell death 

without photoactivation) when cells were incubated with a CPP—after the second set of 

washes, confluency was reduced to 10%-20%, and we observed several patches of dead 

cells (Figure 4).  The cause of this toxicity without photosensitization is unknown.   
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Furthermore, as cells continued to die, cellular debris began to accumulate and float 

throughout the dish.  These clusters seemed to be stained by eGFP cargo and were 

highly fluorescent when viewed under the FITC filter (Figure 5).  This high 

fluorescence inhibited proper visualization of less fluorescent cargo in the endosomes 

and prevented delivery verification for many trials.  Most debris appeared after the 

second set of washes, possibly associating with eGFP during the 1 hour incubation, and 

continued to increase during visualization.  Therefore, this debris seems to be a direct 

result of cell apoptosis and fragmentation.   
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Both fluorescent CPPs stick to dish surface 

 Throughout all trials, we observed significant background fluorescence from the dish 

itself.  Upon observation, we noticed a speckled pattern that seemed to be a result from 

fluorescent CPP (either TMR-TAT or TMR-SS-TAT) sticking to the surface of the well.  

We confirmed that this signal was a result of incubation with CPP by comparison with 

background signal from an untreated dish (Figure A.1).  The speckled background 

fluorescence was not overwhelmingly high but still interfered with endosomal 

visualization by lowering the contrast ratio (Figure 6).  Because endosomal fluorescence 

was low, this effectively prevented confirmation of release for several trials.  
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Furthermore, it is possible that residual CPP on the dish surface could interact with 

different cellular processes and structures in the HeLa cells themselves. 
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CHAPTER IV 

ANALYSIS OF FINDINGS 

 

While our initial trials were unsuccessful, we were able to observe and characterize 

several issues that directly or indirectly inhibit proper delivery of eGFP.  Low 

endosomal concentration and release, CPP-dish adherence, and abnormally high cell 

death rates posed the biggest obstacles to successful trials. 

 

Possible causes of low endosomal uptake/release 

Even for the trials that we could visualize properly (no/low cellular debris, etc.), we still 

were unable to detect delivery of TMR-TAT/TMR-SS-TAT or eGFP and saw low 

endosomal uptake and low release.  These two processes of delivery are directly 

related—low uptake levels lead to low release.  It is reasonable to assume that some 

threshold level of activated TMR positioned near the endosomal membrane by TAT is 

required for proper 1O2 production and membrane lysis/leakage.  If fluorescent CPP 

concentrated in the endosome is unable to surpass this microenvironment threshold, 

release may not occur at a detectable level. 

 

Low uptake and release in trials with TMR-SS-TAT could possibly be due to 

spontaneous reduction and cleavage of the disulfide bond.  This would inhibit TAT-

mediated concentration of the fluorophore into the endosome and also prevent 

endosomolysis.  TAT could no longer localize TMR to the endosomal membrane, 
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rendering light treatment ineffective.  (We have previously shown that simple 

coincubation of unbound TMR and TAT fails to induce endosomolysis and death (22)).  

This disulfide cleavage may be a result of an external reducing agent in the media (e.g. 

cysteine) or a cellular metabolite, either secreted or endosomal. 

 

For both fluorescent CPPs, low uptake levels could be a result of cargo interference that 

impairs TAT interaction with cell surface heparin sulfate proteoglycans to induce proper 

macropinocytosis.  Similar or different interactions could occur in the endosome, 

preventing proper orientation of TMR for membrane lysis.  These interactions could be 

complex and may be a result of many different submolecular interactions.  Past 

experiments by others have shown that protein delivery is cargo-dependent to some 

extent (28). 

 

Because we could not induce endosomolysis when HeLa cells were incubated with 

TMR-TAT alone (Supplementary Video 1), CPP-cargo interactions cannot be the only 

factor inhibiting release.  Inability to release TMR-TAT from endosomes is a direct 

contradiction to previous trials which showed dispersal of TMR-TAT immediately 

before apoptosis (22).  This implies that the causes behind low TMR-TAT (and TMR-

SS-TAT) release may simply be due to use of inactive/damaged reagents.  We have 

noticed that synthesis/processing of our photosensitive reagents (TMR-TAT/TMR-SS-

TAT) under ambient light reduces functionality and fluorescence, presumably due to 

photobleaching.  Our TMR-TAT stock solution could have been inactivated by transport 
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during synthesis.  We have instituted new methods of peptide synthesis and now keep 

most reagents in a dark environment to preserve photoactivity.  Further trials with new 

stock solutions are needed to test this theory. 

 

Finally, this inability to induce release in the PDT replication experiment (incubation 

with TMR-TAT alone) could have been anomalous.  We were only able to perform one 

set of trials, and any number to environmental factors (sick cells, bad media, etc) could 

have conceivably interfered with proper delivery.  Surprisingly, we were able to induce 

apoptosis with all pulses (Figure 2), indicating that some biomolecular cell process 

catalyzed by light treatment was occurring.  Repeats of TMR-TAT controls are needed 

to further support these initial findings.  

 

Effects of fluorescent CPP-dish interaction 

TMR-TAT/TMR-SS-TAT adherence to the dish is not an entirely new phenomenon—

we have witnessed some degree of dish surface adherence in previous trials with many 

reagents.  Some basal level of reagent loss always occurs, mostly at negligible quantities.  

But because uptake was low, the contrast between intra- and extracellular fluorescence is 

less, lowering the reliability of imaging (Figure 6).  Furthermore, activated fluorescent 

CPP adhering to the dish may explain some cell death seen in all trials (explained 

below). 
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It is unknown whether the CPP is adhering directly to the dish or to some biomolecular 

intermediate.  Elucidating these mechanisms could help to provide inhibitory methods to 

reduce this adherence. 

 

Possible causes of cell death 

Both TMR-TAT and TMR-SS-TAT displayed dark and light cytotoxicity (during 

incubation and visualization).  We have often observed some degree of dark toxicity 

during incubation with other potential reactive reagents, including TAT-E5 (16). 

Normally, death during incubation is negligible and should be considered an 

unavoidable aspect of cell delivery.  It is unexpected that our estimated death rates were 

so high (up to 60% confluency loss to death – Figure 4), even when incubated with 

normally innocuous eGFP.  The cause of this toxicity is unknown, but such high rates 

may be cause for investigation.   

 

We previously postulated that the cell death seen from TMR-TAT activation is due to 

reactive TMR escaping endosomes and disrupting the plasma membrane (22).  Our 

observations from current trials have pushed us to reconsider this hypothesis.  If cell 

death occurs primarily by loss of plasma membrane integrity, photoactivation of 

microinjected TMR-TAT should also induce cell death.  Our results show that 

microinjected cells are resistant to light toxicity (Supplementary Video 2), implying 

that TMR-TAT-directed membrane instability may only be a minor factor in the cell 

death observed in our trials.   
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Other factors that drive cell death undoubtedly contribute, as evidenced by induction of 

cell death without endosomal release (Supplementary Video 1).  In our previous model, 

TMR-TAT must diffuse through the cytosol to directly interact with the plasma 

membrane to cause death, which is impossible without endosomolysis.  Furthermore, 

TMR-SS-TAT showed light toxicity, even though the disulfide motif has been shown to 

be cleaved in the reducing cytosol (2).  Without this bond, TAT is incapable of 

localizing TMR to the cell membrane to induce lysis.  Other mechanisms must be 

operating to explain these results. 

 

It is possible that some undetectable release is occurring, allowing a small amount of 

TMR-TAT to escape and destroy the plasma membrane, requiring only a slight 

modification to our previous model.  If only a minute concentration of TMR-TAT is 

needed for death, this could explain light toxicity associated with TMR-SS-TAT (Figure 

3).  A small portion of the CPP could escape disulfide reduction and, if above a 

minimum threshold, could disrupt other membrane structures.  This modified model 

does not explain our microinjection results unless high intracellular concentrations of 

TMR-TAT are somehow inhibitory to cell death. 

 

 It is also possible that some TMR-produced reactive oxygen species, such as H2O2 or 

1O2, is able to diffuse to other areas of the cell and interfere with structural or metabolic 

functions.  This proposed mechanism is compatible with other models and with all of our 

own experiments, except microinjection.  Unfortunately, 1O2 has a very short lifetime 
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(less than 1 µs), which impairs broad travel through the cell (18). 1O2 would have to be 

localized in some manner by TMR near a disruptable biochemical structure.  Finally, if 

non-1O2 ROS, such as H2O2, played a significant role in cell death, microinjected TMR-

TAT would induce apoptosis.  Because we could not produce this result, our previous 

model of death primarily by 1O2 is supported. 

 

Our inability to induce death from microinjection implicates that endosomal release is a 

integral step in fluorescent CPP-induced cell death.  Late endosomes and lysosomes 

contain potentially toxic biomolecules, such as ROS and non-specific proteases that are 

destructive to the cell if released.  Our dark incubation (1 hour) could allow unperturbed 

endosomal maturation, concentrating these toxic components in the endosome.  Light 

treatment could incite release of these degradative chemicals and proteins, causing 

catastrophic loss of cellular homeostasis.  No trials directly contradict this model, though 

apoptosis without endosomal release cannot be supported by this model alone.  Again, it 

is possible that undetectable release occurred or that some other mechanism was 

contributing. 

 

Finally, the cell membrane could be interacting with TMR-TAT adhering to the dish 

surface from incubation (Figure 6).  During light treatment, this layer could be 

activated, causing lysis of the plasma membrane directly.  This model is compatible with 

our previous experiments (22) and may show a cumulative effect with any other 

mechanism.  Unfortunately, if this were true, microinjection should also induce death.  It 
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is clear that photoinduced cell death is a complex and multifactorial phenomenon and 

requires further study. 
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CHAPTER V 

FUTURE PLANS 

 
 
Changes to current protocol 

Varying reagent concentration 

For our preliminary experiments, we used concentrations of CPP and cargo that have 

been optimized from previous tests (16,22).  The next and simplest step would be to vary 

these concentrations to favor delivery instead of PDT.  This includes decreasing the 

concentration of fluorescent CPP, which might reduce cell death and reagent adhesion to 

the dish.  We could also increase the concentration of cargo, which would increase 

signal but could potentially increase cytotoxicity. 

 

Crocetin in the medium during incubation and visualization did not prevent cell death 

(Figure 3).  But because our trials were qualitative only, it could still theoretically have 

other effects, such as slowing the apoptotic process.  Quantitative trials are needed, and 

increasing crocetin concentration could significantly reduce death.  Finally, if death 

occurs due to catastrophic release of endosomal contents, the surrounding medium may 

need to be modified to compensate for released cytotoxic components.  Possibilities 

include decreasing medium ion concentration and/or supplementation of protease or 

reactive oxygen species inhibitors. 
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Modifying the dish surfaces 

Because reagent-dish interactions limit visualization and may influence cell death, it is 

worthwhile to limit residual TMR-TAT after washes.  This can be accomplished by 

altering the reactivity of the dish surface by chemical or physical means.  The simplest 

method is coating the dish with a reactive chemical substrate such as polylysine.  In 

theory, the positive charges of lysine could repel highly cationic TAT, preventing 

adhesion.  Furthermore, dishes coated with polylysine show higher cell adhesion (29), 

which may reduce loss of cells due to the mechanical stress of washing.   

 

Varying exposure time and intensity 

Photochemical internalization offers an advantage over other delivery methods by 

allowing manual control over the duration of endosomolysis by manipulating light 

treatment.  While we have varied the intensity and time of our RFP pulse, we have not 

been able to prevent cell death.  Therefore, fine-tuning the RFP pulse would probably 

optimize delivery once other aspects are under control but is not a determining factor of 

cell death.  For example, if we can initiate predictable endosomal release, our next steps 

would be to quantify the duration of this release and correlate this duration to pulse 

parameters.  Finally, once we limit cell death by changing other aspects of our protocol, 

we can relate pulse parameters to cell death rates to determine best conditions to balance 

delivery with death. 
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Using different reagents 

While TMR may be useful as a low 1O2-producing agent for PDT, it could be too 

cytotoxic for delivery at any concentration.  We are currently investigating other agents 

that produce singlet oxygen or other reactive oxygen species.  These new reagents may 

be more endosomolytic but less cytotoxic, or they may be less reactive to light, allowing 

finer control over release.  Previous trials have proven that protein delivery efficiency is 

highly dependent on the cargo itself.  Therefore, using a different cargo could more 

compatible with our TMR-TAT delivery protocol.  Fluorescent dextrans may be ideal 

candidates due to nonreactivity and variability in size.  We could also provide buffer-like 

components to balance out any undesired cargo side reactions.  These could include 

emulsifiers to coat the cargo or counterions to neutralize charges.  Though our initial 

tests showed that crocetin was unable to prevent eventual cell death, other oxygen 

scavengers could be better suited for our trials.  Systematically using chemical inhibitors 

with different biochemical targets could also help to elucidate the mechanisms driving 

cell death. 

 

Using different assays for delivery 

So far, we have only used fluorescence as verification of delivery due to ease of use and 

ability to study delivery in real time.  But recent problems inherent with our fluorescent 

trials (e.g. TMR-TAT adherence to dish, fluorescent cellular debris) prove that other 

assay methods need to be considered.  Methods to assay functionality of a translocated 

biomolecule can also be utilized to determine delivery efficacy.  For instance, 
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transducing mitogens (cell mitosis stimulants) and quantifying cell population, 

transducing transcription factors and quantifying expression, or transducing growth 

signals and quantifying cell differentiation are all possibilities.  Such trials could also 

support the use of our TMR-TAT delivery method for modification of complex cellular 

processes or even for in vivo applications. 

	  



  32 

CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 
 
In summary, though preliminary trials have been unsuccessful, we have been able to 

identify and study several obstacles that inhibit proper delivery.  We show that 

inefficient uptake and release, reagent/dish interactions, and cell death all interact to 

prevent proper confirmation of delivery.  We have been able to outline several 

modifications to our protocol to enhance the probability of success.  Such modifications 

are minor, and we believe that delivery is still likely.  If our trials are successful, we 

believe our TMR-TAT delivery method could have significant applications in a broad 

range of areas. 
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APPENDIX I	  

TECHNICAL ACRONYMNS	  

CFP Cyan fluorescent protein 

DMEM Dulbecco's modified eagle medium 

FBS Fetal bovine serum 

FITC Fluorescein isothiocyanate 

HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3,-tetramethyluronium 

 hexafluorophosphate 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPLC High performance liquid chromatography 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

MBHA Methylbenzhydrylamine Hydrochloride 

MESNA Sodium 2-sulfanylethanesulfonate 

RFP Red fluorescent protein 

TAMRA 5 (and 6) – Carboxytetramethylrhodamine 

Tris-Cl Tris(hydroxymethyl)amino methane  
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APPENDIX II	  

ADDITIONAL FIGURE	  
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