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ABSTRACT

Application of Rosenbrock Methods to Tightly Coupled Multiphysics Simulations in
Nuclear Science and Engineering. (April 2011)

Joshua Edmund Hansel
Department of Nuclear Engineering

Texas A&M University

Research Advisor: Dr. Jean C. Ragusa
Department of Nuclear Engineering

Recently, researchers have investigated the implementation of accurate high or-

der time discretization techniques in large-scale nonlinear multiphysics simulations

using Implicit Runge-Kutta (IRK) methods. For a given time step, IRK methods re-

quire the iterative solution of a nonlinear system of equations using Newton’s method.

Rosenbrock methods, a variant of IRK methods, avoid this issue by linearizing this

system of equations, so only one Newton iteration is required at each stage. Be-

cause Rosenbrock methods may achieve this without loss of accuracy order or sta-

bility, Rosenbrock methods have the potential to generate accurate solutions more

efficiently. This research investigates these claims by applying Rosenbrock methods

to two representative multiphysics problems found in nuclear science and engineer-

ing: (1) the Point Reactor Kinetics Equations (PRKE) with temperature-induced

reactivity feedback, and (2) non-equilibrium radiation diffusion. To assess the merits

of Rosenbrock methods, a measure of accuracy per computational cost was compared

between Rosenbrock methods and IRK methods, and Rosenbrock methods were found

to achieve a smaller computational cost for a given level of accuracy than IRK meth-

ods of the same convergence order.
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CHAPTER I

INTRODUCTION

Traditionally, multiphyics simulations in nuclear engineering have been divided into

sub-problems, each to be solved by a mono-physics code, with ad-hoc data exchange

through message-passing paradigms. This technique, referred to as Operator Split-

ting (OS), destroys the strong coupling between the physics, and thus may lead to

a loss of accuracy and stability in time-dependent problems. Recently, researchers

have investigated the implementation of accurate high order time discretization tech-

niques in large-scale nonlinear multiphysics simulations using Implicit Runge-Kutta

(IRK) methods. For many multiphysics problems, time implicitness is necessary for

stability due to the great disparity of time scales. For a given time step, IRK meth-

ods require the iterative solution of a nonlinear system of equations using Newton’s

method. Rosenbrock methods, a variant of IRK methods, avoid this issue by lin-

earizing this system of equations, so only one Newton iteration is required at each

stage stage. Because Rosenbrock methods may achieve this without loss of accuracy

order or stability, Rosenbrock methods have the potential to generate accurate solu-

tions more efficiently. This research investigates these claims by applying Rosenbrock

methods to two representative multiphysics problems found in nuclear science and

engineering: (1) the Point Reactor Kinetics Equations (PRKE) with temperature-

induced reactivity feedback, and (2) non-equilibrium radiation diffusion. The PRKE

are useful for simulating nuclear reactor transients, which may be initiated by events

such as control rod movements, pump flow changes, pipe breaks, etc. Radiative diffu-

This thesis follows the style of Journal of Computational Physics.
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sion simulations, which couple radiative energy and material temperature, are used in

several applications, including high temperature industrial ovens, glass cooling, and

stellar atmospheres, and describe the interactions of energetic photons with matter.

To assess the merits of Rosenbrock methods, a measure of accuracy per computational

cost will be compared between Rosenbrock methods and IRK methods.

Previous work

Generally, the choice of the optimal time-integration method is very problem-specific.

For simple cases, the behavior of time-integration methods can be predicted, but

more complex systems require more analysis to determine the applicability of a time-

integration method. Much work has been done on the development of Rosenbrock

methods [1, 2, 3, 4], and they have been applied for several different problems, such

as photochemical dispersion [5], electric circuits [6], and flexible multibody systems

[7]. Rosenbrock methods have been applied to the PRKE [8, 9, 10], but this was

to the standard linear PRKE. Recall that Rosenbrock methods are variants of IRK

methods that linearize the system, so application of Rosenbrock methods to an al-

ready linear system fails to highlight the merits of the methods. This research applies

the Rosenbrock methods to a nonlinear PRKE problem, which couples reactor fuel

and moderator temperatures to reactor power. Some literature has included the ap-

plication of Rosenbrock methods to the non-equilibrium radiation diffusion equations

[11, 12, 13], and these studies suggest the possible merits of using Rosenbrock meth-

ods.
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Background

Point reactor kinetics equations

The Point Reactor Kinetics Equations (PRKE) describe the relationship between

reactor power P and delayed neutron precursor group concentrations Cj:

dP

dt
= ρ− β

Λ P + 1
Λ

Np∑
j=1

λjζj, (1.1)

and
dζj

dt
= βjP − λjζj, (1.2)

with:
ρ = reactivity, equal to (k − 1) /k, where k is the neutron multiplication

factor.

β = total delayed neutron fraction.

Λ = is the mean generation time.

Np = number of neutron precursor groups.

λj = is the decay constant for neutron precursor group j.

ζj = neutron precursor group concentration Cj multiplied by Λ.

βj = delayed neutron fraction for neutron precursor group j.

These equations form a linear system for the PRKE when feedback is not in-

cluded. This research mainly concerns nonlinear systems; however, this linear system

is important in preliminary code verification, which includes verification of theoretical

convergence orders and comparison to benchmark results in literature.

Because neutron cross sections depend on the relative speed between neutrons

and target nuclei, cross sections must be averaged over the range of speeds result-

ing from the thermal motion of the target nuclei, which has the effect of smearing
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resonances in the cross sections. As temperature is increased, the increased thermal

motion increases the effect, a phenomenon known as Doppler broadening. This results

in a decrease in resonance escape probability from capture; thus, less neutrons are

able to thermalize and induce fission, decreasing reactivity. In addition, increasing the

temperature of the coolant decreases its density, allowing neutrons to pass through

coolant with decreased moderation, which causes increased resonance capture [14].

Two feedback models were considered in this research:

1. Tfuel, Tcool: Fuel Temperature and Coolant Temperature Feedback.

2. Tr: Reactor Temperature Feedback.

The first model explicitly defines fuel temperature Tfuel and coolant temperature

Tcool to separately account for their effects on reactivity. The second model assumes

a simplified relationship between reactivity and an average reactor temperature Tr.

Fuel temperature and coolant temperature feedback

This model was taken directly from [15]. The reactivity depends on fuel temperature

Tfuel and coolant temperature Tcool as:

ρ = ρext + αDop

(
T d

fuel − T d
fuel,0

)
+ αcool (Tcool − Tcool,0) , (1.3)

with:
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ρext = external reactivity contribution. This arises from events

such as control rod movements, flow changes, pipe breaks, etc.

αDop = Doppler coefficient.

αcool = coolant temperature coefficient of reactivity.

d = Doppler exponent.

Tfuel,0 = initial fuel temperature.

Tcool,0 = initial coolant temperature.

Energy balances in the fuel and coolant give, respectively:

dTfuel

dt
= Ωpow

ρfuelc
fuel
p

(1− κ)P +
Nhg∑
k=1

λF P
k ωk

− 1
ρfuelc

fuel
p Rth

(Tfuel − Tcool) (1.4)

and
dTcool

dt
= −2 u

H
(Tcool − Tcool,in) + Afuel

Aflow

1
ρcoolccool

p Rth

(Tfuel − Tcool) , (1.5)

with:
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Ωpow = conversion factor from normalized power to power density.

ρfuel = fuel density.

ρcool = coolant density.

cfuel
p = fuel specific heat capacity.

ccool
p = coolant specific heat capacity.

κ = decay heat power fraction of total power P .

Nhg = number of decay heat groups.

λF P
k = decay constant for decay heat group k.

ωk = decay heat group k power.

Rth = thermal resistance between fuel pin and coolant.

u = inlet coolant speed.

H = reactor height.

Tcool,in = inlet coolant temperature.

Afuel = cross-sectional area of fuel pin, πR2
fuel.

Aflow = average cross-sectional flow area around a single fuel pin.

The heat produced in a reactor is the sum of the heat generated from fission

and heat generated by decay products, which occurs much more slowly. Decay heat

is modeled with several groups of decay products based on decay rate. These heat

components are ωk, where k is the decay heat group. The rates of change of decay

heat are
dωk

dt
= κkP − λF P

k ωk, (1.6)

where κk is the decay heat group k fraction of total power P . The total decay heat

fraction κ is the sum of all κk:

κ =
Nhg∑
k=1

κk. (1.7)
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Both Equations 1.4 and 1.5 depend on the thermal resistance Rth between the fuel

pin and coolant. Here, the thermal resistance model contains components including

convective heat transfer between the coolant and cladding, conduction through the

cladding, conduction through the fuel-cladding gap, and conduction through the fuel:

Rth = Afuel

(
1

2πRgaphgap

+ 1
2πkclad

ln Rclad

Rgap

+ 1
2πRcladhcool

+ w

4πkfuelTfuel

)
, (1.8)

with:
Rfuel = radius of fuel pin.

Rgap = radius of fuel plus gas gap (also, inner radius of cladding).

Rclad = outer radius of cladding.

hgap = convective heat transfer coefficient of gas gap.

hcool = convective heat transfer coefficient of coolant.

kfuel = conductivity of fuel pin.

kclad = conductivity of cladding.

w = weighting factor used to compute the effective fuel

temperature Tfuel.

The weighting factor relates the fuel pin centerline temperature TCL
fuel and the

surface temperature T s
fuel:

Tfuel = wTCL
fuel + (1− w)T s

fuel. (1.9)

Reactor temperature feedback

The reactivity ρ depends on an average reactor temperature Tr:

ρ = ρext + α (T − T0) , (1.10)
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where α is the temperature reactivity coefficient. The rate of temperature change is

proportional to the power:
dT

dt
= KP, (1.11)

where K is a constant.

This feedback model is a simplification of the fuel and coolant temperature feed-

back model, but it still makes the system nonlinear and thus is useful for evaluating

the merit of Rosenbrock methods.

Radiative transfer

As photons move through a medium, they undergo absorption and black body re-

emission processes that depend on the radiative energy E (photon energy) and the

material temperature T . Energy balances of E and T account for absorption, emis-

sion, and leakage out of the domain. Using the standard gray approximation, i.e.,

absorptivity α and emissivity ε are independent of the photon wavelength, and using

the diffusion approximation, the absorptivity and emissivity become constants with

α = ε [16]. The diffusion approximation assumes that the current of a quantity is

proportional to the gradient and in the opposite direction of the gradient; that is,

~JE = −D~∇E. (1.12)

With these approximations, the equations governing radiative transfer become

∂E

∂t
− c~∇ •

(
Dr

~∇E
)

= cσa

(
aT 4 − E

)
, (1.13)

and

ρCv
∂T

∂t
− ~∇ •

(
DT

~∇T
)

= −cσa

(
aT 4 − E

)
, (1.14)

where



9

c = speed of light.

Dr = radiative energy diffusion coefficient.

σa = photon absorption cross section.

a = Stefan-Boltzmann constant.

ρ = material density.

Cv = material specific heat capacity.

DT = material conductivity.

The photon absorption cross section is a function of temperature T :

σa (T ) = z3

T 3 , (1.15)

where z is the atomic number. The radiative energy diffusion coefficient is

Dr (T ) = 1
3σa (T ) . (1.16)

However, diffusion theory can fail in regions of strong gradients, resulting in energy

moving faster than the speed of light. To prevent this, a technique known as flux

limiting is employed [17]:

Dr (E, T ) = 1

3σa (T ) + |
~∇E|
E

. (1.17)

The conduction diffusion coefficient DT is taken from [17]:

DT (T ) = kT 5/2, (1.18)

where k is a constant.

To make these equations consistent with those in literature, the simplification

c = a = ρ = Cv = 1 was made [17, 18, 19, 13, 20]. While this simplification does not

give results in physical units, it preserves the behavior of the simulation and remains
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a valuable tool to evaluate numerical methods.
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CHAPTER II

METHODS

Solution techniques

The PRKE with feedback and the spatially discretized radiation transfer equations

form nonlinear systems. Newton’s method is a common solution technique for non-

linear systems that requires a linear solve at each iteration. This chapter will briefly

review linear and nonlinear solution techniques. The spatial discretization of the

radiative transfer equations will be reviewed as well as temporal discretization tech-

niques such as those in the Runge-Kutta family and Rosenbrock family. This chapter

will review truncation error analysis, which is used to verify that temporal integration

methods converge correctly, and conclude with an introduction to adaptive time step

integration, which is necessary for stiff systems that cannot be efficiently solved with

constant time step sizes.

Linear solution techniques

Numerous techniques have been developed to solve linear systems and are generally

well-known and thus will not be detailed in this thesis. Examples of techniques are LU

decomposition for a direct solve, or iterative solvers such as the Jacobi method, the

Gauss-Seidel method, the Successive Over-Relaxation method, the conjugate gradient

method (for symmetric matrices), or the generalized minimum residual method (for

unsymmetric matrices)[21].
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Nonlinear solution techniques

Newton’s method

Nonlinear equations may be solved by a variety of techniques, the most noteworthy

being Newton’s Method, which is the method employed by the software platform

KARMA, which will be used to conduct this research. A system of nonlinear equations

may be written in the form

~g(~y) = ~0, (2.1)

where ~g is the vector residual function. For each iteration `, Newton’s Method takes

a step ~δy
`

from the current iteration solution ~y` to the next iteration solution ~y`+1:

~y`+1 = ~y` + ~δy
`
. (2.2)

The objective of Newton’s Method is to obtain a solution ~y`+1 such that Equation

2.1 is satisfied:

~g(~y`+1) ≈ ~0. (2.3)

Combining Equations 2.2 and 2.3 and taking a first-order Taylor series expansion

about ~y` gives

~g(~y`+1) = ~g(~y` + ~δy
`
) = ~g(~y`) + ∂~g

∂~y

(
~y`
)
~δy

`
= ~0. (2.4)

Thus the solution of the linear system

J ~δy
`

= −~g(~y`) (2.5)

is required at each iteration, where J is the Jacobian matrix ∂~g
∂~y

evaluated at ~y`. The

iterative process continues until the error between iterations ` and `+ 1,

ε`+1 =
∥∥∥~y`+1 − ~y`

∥∥∥ , (2.6)
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satisfies the desired error tolerance τ . The || brackets denote a norm of the argument.

Several norms exist, including the L∞ norm:

εL∞ = max
i

(∣∣∣y`+1
i − y`

i

∣∣∣), (2.7)

or the L2 norm:

εL2 =

√√√√ N∑
i=1

(
y`+1

i − y`
i

)2
. (2.8)

Discretization techniques

Temporal discretization techniques

A problem may be expressed as a system of ordinary differential equations (ODEs),

or a system of partial differential equations (PDEs), which after spatial discretization,

becomes a system of ODEs:
d~y

dt
= ~f (t, ~y) , (2.9)

which is solved by sequentially solving a time-discretized form of Equation 2.9. There

are many choices of time-discretization techniques, such as theta discretization meth-

ods, Runge-Kutta methods, and Rosenbrock methods, which will all be described.

Theta discretization methods

For theta (θ) discretization methods, the derivative d~y
dt

is approximated as

~yn+1 − ~yn

h
= θ

d~y

dt

∣∣∣∣∣
n+1

+ (1− θ) d~y
dt

∣∣∣∣∣
n

, (2.10)

where h is the time step size taken from time tn to time tn+1. For θ = 0, known as

the Explicit Euler Method or the Forward Euler Method, solution for ~yn+1 becomes
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explicit:

~yn+1 = ~yn + h
d~y

dt

∣∣∣∣∣
n

. (2.11)

For θ > 0, the solution is implicit. For example, when θ = 0, known as the Implicit

Euler Method or the Backward Euler Method, the solution is:

~yn+1 − h
d~y

dt

∣∣∣∣∣
n+1

= ~yn. (2.12)

Another example is the Crank-Nicolson Method
(
θ = 1

2

)
:

~yn+1 −
1
2h

d~y

dt

∣∣∣∣∣
n+1

= ~yn + 1
2h

d~y

dt

∣∣∣∣∣
n

. (2.13)

Runge-Kutta methods

For Runge-Kutta (RK) methods, the steady-state residual function ~f (t, ~y) is formed

by a linear combination of function evaluations between times tn and tn+1:

~yn+1 = ~yn + h
s∑

i=1
bi
~ki, (2.14)

where ~yn is the solution at time tn, ~yn+1 is the solution at time tn+1, h is the time

step, s is the number of stages, the constants bi are specific to the particular RK

method used, and the vectors ~ki are defined as

~ki = ~f

tn + cih, ~yn + h
s∑

j=1
ai,j
~kj

 . (2.15)
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The coefficients ai,j, bi, and ci are specific to the particular RK method and are

conventionally represented by a Butcher tableau:

c1 a1,1 a1,2 · · · a1,s

c2 a2,1 a2,2
...

... ... . . . ...

cs as,1 · · · · · · as,s

b1 b2 · · · bs

These coefficients are often referred to as “determining coefficients” because their val-

ues determine the accuracy order of the particular RK method. For a given accuracy

order, there are degrees of freedom that allow multiple methods to be created of the

same accuracy order but with varying stability properties such as absolute stability,

L-stability, and magnitude of the error constant in the leader error term.

Explicit Runge-Kutta methods have a strictly-lower triangular coefficient matrix,

i.e., only elements below the main diagonal are nonzero:

c1 0 · · · · · · 0

c2 a2,1
. . . ...

... ... . . . . . . ...

cs as,1 · · · as,s−1 0

b1 b2 · · · bs

Explicit methods have the advantage that no linear solves are needed; each stage i

may be computed directly because ~ki only depends on ~kj for j < i. However, explicit

methods must be used with caution because they may be unstable for stiff systems,

and thus they are not used in this research.

For diagonally implicit Runge-Kutta (DIRK) methods, the coefficients ai,j form
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a lower triangular matrix, i.e., ai,j = 0 for j > i:

c1 a1,1 0 · · · 0

c2 a2,1 a2,2
. . . ...

... ... . . . 0

cs as,1 · · · · · · as,s

b1 b2 · · · bs

Thus, the vector ~ki may be reduced to

~ki = ~f

tn + cih, ~yn + h
i∑

j=1
ai,j
~kj

 . (2.16)

Thus, each stage s requires a single nonlinear solve for ~ki because the vectors ~kj

for j < i have already been found in previous stages. Fully implicit Runge-Kutta

methods, on the other hand, require the simultaneous solution of all ~kj from j =

1, . . . , s.

Singly diagonally implicit Runge-Kutta (SDIRK) methods are a subclass of

DIRK methods that have the condition that the elements along the diagonal, i.e.,

ai,i for i = 1, . . . , s are equal:

c1 γ 0 · · · 0

c2 a2,1 γ
. . . ...

... ... . . . . . . 0

cs as,1 · · · as,s−1 γ

b1 b2 · · · bs

For each stage i, the matrix I − hai,i
∂ ~f
∂~y

must undergo LU decomposition, so the

advantage of SDIRK methods is that they may reuse the LU decomposition from the

first stage, since the diagonal elements ai,i are all equal.
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Rosenbrock methods

Rosenbrock methods are a subclass of DIRK methods that linearize Equation 2.15,

so Newton’s method will converge after one iteration. The solution is still the same

linear combination of s intermediate solutions:

~yn+1 = ~yn + h
s∑

i=1
bi
~ki, (2.17)

but the linearization makes ~ki:

~ki = ~f

tn + αih, ~yn +
i−1∑
j=1

αi,j
~kj

+ γih
∂ ~f

∂t
(tn, ~yn) + ∂ ~f

∂~y
(tn, ~yn)

i∑
j=1

γi,j
~kj, (2.18)

where the coefficients αi is defined as

αi =
i−1∑
j=1

αi,j, (2.19)

and the coefficients γi are defined as

γi =
i∑

j=1
γi,j. (2.20)

Notice that there are now two sets of coefficients, αi,j and γi,j. The coefficients αi,j

play the role of the coefficients ai,j from the nonlinearized Runge-Kutta methods.

The coefficients γi,j are the linear combination coefficients of the Jacobian ∂ ~f
∂~y

, i.e.,

the replacement

αi,i
~ki =

i∑
j=1

γi,j
~kj (2.21)

was made, which increases the number of degrees of freedom [22]. Again, these

determining coefficients are chosen to produce a method with a certain number of

stages and accuracy order.
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Spatial discretization of radiative transfer equations

To solve the radiative transfer equations, they must be discretized in space. This

section shows how the finite volume method was used to create the nonlinear system

of ODEs used to simulate the radiative transfer problem.

Finite volume, 1-D

For a 1-D domain with the simplification c = a = ρ = Cv = 1, the radiative transfer

equations become
∂E

∂t
= ∂

∂x

(
Dr

∂E

∂x

)
+ σa

(
T 4 − E

)
, (2.22)

and
∂T

∂t
= ∂

∂x

(
DT

∂T

∂x

)
− σa

(
T 4 − E

)
. (2.23)

To discretize a system of equations using the Finite Volume method in 1-D, the

problem domain spanning from x = 0 to x = L is divided into N equally-sized cells

of size h. The cells are numbered as i = 1, 2, . . . , N , and energy and temperature are

centered on each cell. The cell boundaries are numbered as 1
2 ,

3
2 , . . . , N + 1

2 .

s s s s s s s s
1 2 · · · · · · i · · · · · · N

x = 0 x = L

Equations 2.22 and 2.23 are integrated over each cell, forming a nonlinear system of

2N unknowns: E1, E2, . . . , EN , T1, T2, . . . , TN . After integrating over each cell i and

dividing by h, the following equations are obtained:

∂Ei

∂t
= 1
h
Dr,i+1/2

∂E

∂x

∣∣∣∣∣
i+1/2

− 1
h
Dr,i−1/2

∂E

∂x

∣∣∣∣∣
i−1/2

+ σa,i

h

(
T 4

i − Ei

)
, (2.24)
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and

∂Ti

∂t
= 1
h
DT,i+1/2

∂T

∂x

∣∣∣∣∣
i+1/2

− 1
h
DT,i−1/2

∂T

∂x

∣∣∣∣∣
i−1/2

− σa,i

h

(
T 4

i − Ei

)
. (2.25)

A finite difference approximation is made to the gradients ∂E
∂x

and ∂T
∂x

on the cell

edges, using values from the adjacent cell volumes. For example,

∂E

∂x

∣∣∣∣∣
i+1/2

= Ei+1 − Ei

h
. (2.26)

The radiative energy diffusion coefficient is evaluated at the boundary using an aver-

age energy and temperature between adjacent cells. For example,

Dr,i+1/2 = Dr

(
Ei+1/2, Ti+1/2

)
= 1

3σa,i+1/2 + |Ei+1−Ei|
hEi+1/2

, (2.27)

where

Ei+1/2 = Ei+1 + Ei

2 , (2.28)

Ti+1/2 = Ti+1 + Ti

2 , (2.29)

and

σa,i+1/2 = σa

(
zi+1/2, Ti+1/2

)
=
z3

i+1/2

T 3
i+1/2

, (2.30)

where

zi+1/2 = zi+1 + zi

2 . (2.31)

The temperature diffusion coefficient DT is evaluated at the cell edge by using an

average temperature between adjacent cells:

DT |i+1/2 = DT

(
Ti+1/2

)
= k

(
Ti+1 + Ti

2

)5/2
. (2.32)

At x = 0, there is a source boundary condition:

E

4 −
1

6σa

∂E

∂x

∣∣∣∣∣
x=0

= 1, (2.33)
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and at x = L, there is a vacuum boundary condition:

E

4 + 1
6σa

∂E

∂x

∣∣∣∣∣
x=L

= 0. (2.34)

Reflective boundary conditions apply for temperature:

∂T

∂x

∣∣∣∣∣
x=0

= 0, ∂T

∂x

∣∣∣∣∣
x=L

= 0. (2.35)

Verification techniques

Truncation error analysis

Truncation error is associated with any temporal integration technique and arises

from the truncation of terms of the Taylor series expansion, which has the form

TN (tn + h) =
N∑

j=0

~y(j) (tn)
j! hj. (2.36)

The local truncation error is the truncation error accumulated from a single time step

tn → tn+1, and it can be computed by taking the difference between the solution ~yn+1

and the Taylor expansion taken about the previous time value:

ε = |~yn+1 − T∞ (tn + h)| . (2.37)

For the theta discretization technique, this difference looks like

ε =
(
h2

2 − h
2θ

)
∂2~y

∂t2

∣∣∣∣∣
n

+O
(
h3
)
, (2.38)

where theO (h3) notation denotes all terms proportional to h3 and higher order (h4,h5,

etc.). For θ = 1
2 , the h2 term is zero, and the local truncation error is proportional to

h3. For other θ values, the error is proportional to h2.

The global truncation error is the truncation error accumulated from multiple
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time steps, and its order is always one less than the local error order. For example, the

Crank-Nicolson method has a local truncation error order of 3 and a global truncation

error order of 2.

For a method with a global truncation error order of p, plotting log ε as a function

of log h yields a line with a slope of p:

log ε = p log h+ C. (2.39)

Thus, one way to verify that a temporal integration method has been implemented

correctly is to create these plots and compare slopes to theoretical global error orders.

Adaptive time step control

With the goal of achieving a solution of a desired accuracy, the use of a constant time

step size is generally inefficient. Temporal integration methods impose restraints on

the time step size for both stability and accuracy, but as a problem evolves the stability

time step constraint may become less strict, enabling larger time steps to be taken

without significant loss of accuracy. Stiff systems, i.e., systems with a large range

of eigenvalues, are particularly notorious for the strict time step size constraint they

impose. The solution to such systems is composed of a number of solution modes

with a large range of lifetimes; some last throughout the time domain of interest,

while others may quickly approach zero. After the quickly dying components become

negligible, the time step size constraint becomes less strict, so it is economical to

increase the time step size at that point. Time step adaptation is a technique that

uses local truncation error estimates to determine an appropriate time step size to

take. For a proposed time step tn → tn+1 (time step size hn = tn+1 − tn), the local

truncation error may be estimated by taking one step with hn and two steps of hn/2,

giving solutions of ~y∗n+1 and ~y∗∗n+1, respectively. The local error may then be estimated
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as

ln ≈

∥∥∥∥∥∥cn

(
hn

2

)p+1
∥∥∥∥∥∥ ≈

∥∥∥~y∗n+1 − ~y∗∗n+1

∥∥∥
2p − 1 , (2.40)

where p is the global truncation error of the temporal integration method, and cn is

a constant [23]. The goal of time step adaptation is to keep this error below a certain

tolerance. Typically, the tolerance τ is expressed as the local truncation error per

unit step:
ln
hn

≤ τ. (2.41)

If this inequality is false, then the proposed time step size is rejected, and a smaller

time step size is chosen. For the next step, the proposed time step size is chosen such

that the local truncation error per unit step estimate from the previous step exactly

meets the tolerance, thereby increasing the time step size as stability constraints

allow.
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CHAPTER III

RESULTS

The results in this chapter are a comparison of results for a number of temporal

integration methods, which are summarized in Table 1, where Ns represents the

number of stages taken in a single time step, p is the theoretical convergence order,

and the “Contains Explicit Stage” column lists whether the method has at least one

explicit stage. Of primary interest is the comparison between the Rosenbrock family

and the SDIRK family, as this will highlight the main advantages and disadvantages

of using the linearization approach that Rosenbrock methods make.
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Table 1. Temporal Integration Methods Compared in This Thesis
Abbreviation Family Ns p Contains Explicit Stage

BE Theta 1 1 no

CN Theta 1 2 no

GRK4A Rosenbrock 4 4 no

GRK4Sn Rosenbrock 4 4 no

GRK4T Rosenbrock 4 4 no

RODASP Rosenbrock 6 4 no

ROS22 Rosenbrock 2 2 no

ROS3P Rosenbrock 3 3 no

SDIRK22 SDIRK 2 2 no

SDIRK23 SDIRK 2 3 yes

SDIRK33 SDIRK 3 3 no

SDIRK332 SDIRK 3 3 no

SDIRK34 SDIRK 3 4 yes

SDIRK45 SDIRK 4 5 yes

SDIRK543 SDIRK 5 4 no

SDIRK643 SDIRK 6 4 no

Linear results

Linear PRKE benchmarks convergence results

A total of seven linear PRKE benchmarks were chosen to verify theoretical conver-

gence orders (truncation error orders) for each temporal integration method. These

benchmarks were taken from [10] and are given in Table 2. These benchmarks vary in
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the reactor data used (precursor group decay constants, precursor group fractions, and

mean neutron lifetime), the number of precursor groups, and the reactivity function.

Table 2. Linear Benchmark Definitions
Benchmark Np Data Set Reactivity Function

1 6 fast +$0.5 step

2 6 thermal -$0.5 step

3 6 thermal +$1.0 step

4 6 thermal +$0.1/s ramp

5 6 fast +$1.0/s ramp

6 6 thermal zigzag

7 1 1-group sinusoidal

Table 3 gives the definitions for the reactivity functions. All of these reactiv-

ity functions are time-dependent, with the exception of “step”. The time-dependent

reactivity functions make the system non-autonomous (an explicit function of the in-

dependent variable, t), which is an important distinction for the evaluation of Rosen-

brock methods because the linearization includes the partial derivative ∂ ~f/∂t.
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Table 3. Reactivity Function Definitions
Reactivity Function ρ(t)

step ρ0

ramp mt+ ρ0

zigzag mt 0 ≤ t < 0.5

−m (t− 0.5) + C 0.5 ≤ t < 1

m (t− 1) 1 ≤ t < 1.5

C 1.5 ≤ t < 10

sinusoidal ρmax sin (At)

The reactor data sets “fast” and “thermal” correspond to data typical of fast

spectrum reactors and thermal spectrum reactors. Fast spectrum reactors have a

very short mean neutron lifetime, which causes rapid changes in neutron population

and power. This short neutron lifetime stiffens the system because of the disparity of

time scales in the problem. The data values are given in Table 4.
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Table 4. Reactor Data Groups
thermal fast 1-group

Group λj [1/s] βj λj [1/s] βj λj [1/s] βj

1 0.0127 0.000285 0.0129 0.0001672 0.077 0.0079

2 0.0317 0.0015975 0.0311 0.001232 N/A N/A

3 0.115 0.00141 0.134 0.0009504 N/A N/A

4 0.311 0.0030525 0.331 0.001443 N/A N/A

5 1.40 0.00096 1.26 0.0004534 N/A N/A

6 3.87 0.000195 3.21 0.000154 N/A N/A

β 0.0075 0.0044 0.0079

Λ [s] 0.0005 10−7 10−8

Figures 1 through 7 show the convergence results for power for the seven bench-

marks. For Benchmarks 1, 4, 5, and 7, the SDIRK methods with explicit stages

were unstable, i.e., they produced unbounded solutions. For this reason, they were

omitted from Figures 1, 4, 5, and 7. Explicit methods have much stricter time step

size constraints than implicit methods because even after the rapidly dying modes

of the solution have gone to nearly zero, the modes exist at the roundoff error level

and can be resurrected by an amplification factor G = yn+1/yn that is greater than

or equal to one. Taking a large number of time steps N gives a total amplification

of this roundoff error equal to GN . For example, with roundoff error at 1e-15, an

amplification factor of 1.2, and N = 1000, the nearly-zero solution mode grows to

1.518e64, destroying the numerical solution.

The convergence plots show that the methods converge correctly but with some

exceptions. CN and GRK4A in Benchmark 1 only reach theoretical convergence
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behavior at fine time steps. ROS3P in Benchmark 4 deviates from theoretical behavior

for coarse time steps. Benchmark 5 shows poor convergence behavior for all methods.

The error is very large, going up to 104, which suggests instability in the system.

Benchmark 6 shows that ROS3P and the GRK methods show regions of varying

stability. Benchmark 7 shows very poor convergence results; the only methods that

showed the correct convergence order were BE, ROS22, and SDIRK22. The inability

of temporal integration methods to approach a level of error lower than 1e-14 is

expected due to roundoff and truncation error in the reference solution, which was

computed using a high order temporal integration method with fine time steps.
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While some linear PRKE benchmarks gave unstable numerical solutions for some

time step sizes, the benchmarks proved that each method could produce theoretical

convergence behavior for at least some of the systems examined, implying that the

temporal integration methods were implemented correctly. Rosenbrock methods were

verified to converge correctly for at least some of the non-autonomous systems, which

is necessary because Rosenbrock methods require inclusion of ∂ ~f/∂t.
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Nonlinear results

Nonlinear PRKE convergence results

Table 5 shows the nonlinear PRKE cases run. Two competing feedback models were

used:

1. Tfuel, Tcool: Fuel Temperature and Coolant Temperature Feedback.

2. Tr: Reactor Temperature Feedback.

For the Tfuel, Tcool model, two competing sets of property functions were used, referred

to as “complicated” and “simplified”.

Table 5. Nonlinear PRKE Cases Definitions
Case Feedback Model Reactivity Function Data Set

1 Tfuel, Tcool +$0.5 step complicated

2 Tfuel, Tcool +$0.5 step simplified

3 Tfuel, Tcool +$1.0/s ramp simplified

4 Tr +$0.5 step N/A

5 Tr +$1.35/s ramp for 0.05 s N/A

Figures 8 through 12 show the convergence results for the nonlinear PRKE cases.

It should be noted that for Case 5, the run with the coarsest time step size, 0.05 s,

did not converge for methods BE and ROS3P, so these were omitted. Otherwise,

all methods and time step sizes converged, including methods containing an explicit

stage.

For Case 3, SDIRK332 gave first order instead of third order. Case 5 showed

that GRK4T, SDIRK643, and SDIRK45 gave a sharp increase in error for the finest
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time step size. All of the Rosenbrock methods showed behavior suggesting varying

regions of stability.
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Fig. 12. Convergence for Nonlinear PRKE Case 5

Nonlinear PRKE efficacy results

To evaluate the merits of the temporal integration methods, efficacy plots were created

for each nonlinear case, showing the solution error versus the computational effort

(measured in number of linear solves) for all methods. For a desired level of accuracy

(measured in error), the “superior” method is that which obtains that error with the

least computational effort. For these plots, one can imagine a horizontal line at the

desired accuracy level, and going from left to right, find the most “superior” method

to the most “inferior” method for the given simulation case. These plots are shown

in Figures 13 through 17.
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Cases 1 through 3 give the expected results; for a given convergence order, Rosen-

brock methods are superior to SDIRK methods with the exception of SDIRK meth-

ods containing an explicit stage. ROS22 outperforms SDIRK22, ROS3P outperforms

SDIRK33 and SDIRK332, and GRK4A, GRK4T, GRK4Sn, and RODASP outper-

form SDIRK543 and SDIRK643. While the methods containing an explicit stage,

SDIRK23 and SDIRK34, outperform Rosenbrock methods, these methods are un-

favorable for many systems due to their instability. Case 4 shows that SDIRK22

actually outperforms ROS22 because the Rosenbrock linearization decreased the ac-

curacy so much. Case 5 shows that the same general results are obtained as in Cases

1 through 3, but there are regions for which Rosenbrock methods achieve significantly

less accuracy.
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Fig. 17. Efficacy Plot for Nonlinear PRKE Case 5

Nonlinear radiative transfer efficacy results

The radiative transfer problem is very stiff, and thus traditional constant time-

stepping is extremely unfavorable because very fine steps are necessary for stability

at the beginning of the transient. Thus, time step size adaptation was necessary to

compute the final numerical solution. Since the time step size is no longer constant,

other parameters such as tolerances must be varied to produce runs with varying

degrees of work and accuracy for efficacy plots. These plots were produced but later

found to be invalid due to implementation errors, so they are not included in this

thesis. These errors concern the computation of the Jacobian matrix, which was
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computed numerically using finite differences instead of analytically, as the PRKE

were. Thus, no valid results are available for Rosenbrock methods for the radiative

transfer problem.
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CHAPTER IV

CONCLUSION

The linear PRKE benchmarks proved that the temporal integration methods of in-

terest all converged correctly for at some of the benchmarks, both autonomous and

non-autonomous. Nonlinear PRKE efficacy plotting showed that Rosenbrock meth-

ods were generally obtained solutions of a given accuracy more efficiently than SDIRK

methods of the same convergence order. The exceptions were the explicit stage SDIRK

methods SDIRK23 and SDIRK34, but it was shown in convergence studies of the lin-

ear benchmarks that these methods were unstable for stiff systems. SDIRK22, which

contains no explicit stages, actually outperformed ROS22 in Case 4, which suggests

that Rosenbrock methods aren’t conclusively superior to SDIRK methods. Some non-

autonomous systems such as that in Case 5 showed regions of varying stability for

Rosenbrock methods.

The radiative transfer problem was incorrectly simulated for Rosenbrock methods

due to an error in the finite difference approximation of the Jacobian matrix. Thus,

no conclusions can be drawn from the radiative transfer simulations.

Although no valid radiative transfer results were obtained, Rosenbrock methods

were shown to be more efficient than stable Runge-Kutta methods for the majority of

the nonlinear PRKE cases simulated. Explicit-stage SDIRK methods outperformed

Rosenbrock methods in those cases in which those SDIRK methods were stable. Thus,

for a given nonlinear problem, it is suggested to use trial and error to determine the

most efficient method that can obtain reliably stable solutions. This research has

proved that Rosenbrock methods create stable, accurate solutions very efficiently,

making it a viable choice for the solution of tightly coupled nonlinear systems.
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