## Supplemental Simulation Case Studies of Dynamic Evaporator Modeling Paradigms with Variable Fluid Phases

Erik Rodriguez<sup>1</sup>, Bryan Rasmussen<sup>2</sup>

The purpose of this document is to present a multitude of case studies comparing evaporator modeling techniques for dynamic vapor compression system simulations that can handle the appearance and disappearance of fluid phases in the heat exchanger. Switched moving boundary (SMB) and finite control volume methods are analyzed. Switching approaches include (1) en-thalpy based switching which uses two-phase region length and evaporator outlet enthalpy as an event trigger, (2) void fraction based switching which includes the mean void fraction in the state variable vector, and (3) density based switching which uses two-phase region density to trigger mass conservative switching. Nine case studies are performed through a combination of three different refrigerants, three different physical system parameters, and three different operating conditions. Details regarding these case studies are presented in Table I. Output pressures, superheats, and air temperatures are included for comparison. The number of switches triggered during simulation are also presented for comparison. Simulation results were generated using Matlab/Simulink version R2010b on an Intel Core i3 CPU (3.20 GHz) with 8 GB RAM. All systems simulated used dry air as the external fluid and used the heat transfer correlations and numerical simulation details provided in Table II.

<sup>&</sup>lt;sup>1</sup>PhD candidate in the Department of Mechanical Engineering at Texas A&M University, College Station, TX 77843-3123, USA

<sup>&</sup>lt;sup>2</sup>Associate Professor in the Department of Mechanical Engineering at Texas A&M University, College Station, TX 77843-3123, USA

|                                         | Case 1                        | Case 2                    | Case 3                  |
|-----------------------------------------|-------------------------------|---------------------------|-------------------------|
| <b>Boundary conditions</b>              | R-404A                        | R-410A                    | R-134a                  |
| Mass flow rate (kg/s)                   | 0.020                         | 0.015                     | 0.012                   |
| Inlet pressure (kPa)                    | 800                           | 467                       | 250                     |
| Inlet enthalpy (kJ/kg)                  | 250                           | 230                       | 300                     |
| Boundary conditions (Dry Air)           |                               |                           |                         |
| Mass flow rate (kg/s)                   | 0.300                         | 0.210                     | 0.157                   |
| Inlet temperature (°C)                  | 23                            | 15                        | 15                      |
| Physical Parameters                     |                               |                           |                         |
| Hydraulic diameter (m)                  | $1.00 \ge 10^{-2}$            | $8.6 \times 10^{-3}$      | 8.10 x 10 <sup>-3</sup> |
| Total heat exchanger tube length (m)    | 20.000                        | 34.490                    | 11.458                  |
| Cross-sectional area (m <sup>2</sup> )  | $7.50 \ \mathrm{x} \ 10^{-5}$ | $1.16 \text{ x } 10^{-4}$ | 5.16 x 10 <sup>-5</sup> |
| External surface area (m <sup>2</sup> ) | 3.000                         | 19.154                    | 0.652                   |
| Internal surface area (m <sup>2</sup> ) | 0.500                         | 2.059                     | 0.292                   |
| Wall mass (kg)                          | 4.000                         | 6.486                     | 2.744                   |
| Wall specific heat (kJ/(kg-K))          | 0.467                         | 0.900                     | 0.488                   |
| Input Changes                           |                               |                           |                         |
| Valve Opening                           | Case 1a                       | Case 2a                   | Case 3a                 |
| External Fluid Fan Speed                | Case 1b                       | Case 2b                   | Case 3b                 |
|                                         | ~ .                           | ~ •                       |                         |

| TABLE II: | Simulation | Parameters |
|-----------|------------|------------|
|-----------|------------|------------|

| Correlations                                                          |                        |
|-----------------------------------------------------------------------|------------------------|
| Single-phase heat transfer correlation                                | Gnielinski (1976)      |
| Two-phase heat transfer correlation                                   | Wattlet (1994)         |
| External heat transfer correlation                                    | Kays And London (1984) |
|                                                                       |                        |
| Simulation details                                                    |                        |
| Simulation details                                                    | 400                    |
| Simulation details<br>Simulation time (s)<br>Simulation step size (s) | 400<br>0.01            |



Fig. 1: Comparison of minimum normalized threshold length,  $l_{eps}$ , for enthalpy based SMB model - Case 1a





Fig. 2: Comparison of minimum normalized threshold length,  $l_{eps}$ , for void fraction based SMB model - Case 1a



Fig. 3: Comparison of minimum normalized threshold length,  $l_{eps}$ , for enthalpy based SMB model - Case 1b





Fig. 4: Comparison of minimum normalized threshold length,  $l_{eps}$ , for void fraction based SMB model - Case 1b



Fig. 5: Comparison of minimum normalized threshold length,  $l_{eps}$ , for enthalpy based SMB model - Case 1c





Fig. 6: Comparison of minimum normalized threshold length,  $l_{eps}$ , for void fraction based SMB model - Case 1c



Fig. 7: Comparison of minimum normalized threshold length,  $l_{eps}$ , for enthalpy based SMB model - Case 2a





Fig. 8: Comparison of minimum normalized threshold length,  $l_{eps}$ , for void fraction based SMB model - Case 2a



Fig. 9: Comparison of minimum normalized threshold length,  $l_{eps}$ , for enthalpy based SMB model - Case 2b



Increasing

Threshold

300

400

Length

100

200 Simulation Time (s) 200 Simulation Time (s) Fig. 10: Comparison of minimum normalized threshold length,  $l_{eps}$ , for void fraction based SMB model - Case 2b

400

- FCV

Void Fraction SMB

300

12

10 8 6

4

2

0

-2∟ 0

Outlet Superheat (C)

4

3.5

Number of Switches 5.2 5.2 7 1.5

2

1.5

1

0.5

0

470

460

420

410└ 0

Increasing Threshold

100

Length

Pressure (kPa) 75

10-4

Simulation fails 3 [1e-6 to 8e-4]



Fig. 11: Comparison of minimum normalized threshold length,  $l_{eps}$ , for enthalpy based SMB model - Case 2c



\_5∟\_0

- FCV

Void Fraction SMB

100

200 Simulation Time (s) 300

400

Fig. 12: Comparison of minimum normalized threshold length,  $l_{eps}$ , for void fraction based SMB model - Case 2c

400

460

440

420<sup>L</sup> 0 - FCV

Void Fraction SMB

100

200 Simulation Time (s)





Fig. 13: Comparison of minimum normalized threshold length,  $l_{eps}$ , for enthalpy based SMB model - Case 3a





Fig. 14: Comparison of minimum normalized threshold length,  $l_{eps}$ , for void fraction based SMB model - Case 3a





Fig. 15: Comparison of minimum normalized threshold length,  $l_{eps}$ , for enthalpy based SMB model - Case 3b



Fig. 16: Comparison of minimum normalized threshold length,  $l_{eps}$ , for void fraction based SMB model - Case 3b



Fig. 17: Comparison of minimum normalized threshold length,  $l_{eps}$ , for enthalpy based SMB model - Case 3c





Fig. 18: Comparison of minimum normalized threshold length,  $l_{eps}$ , for void fraction based SMB model - Case 3c

## B. Paradigm Comparison



Fig. 19: Comparison of enthalpy SMB, void fraction SMB, density SMB, and FCV evaporator model outputs - Case 1a



Fig. 20: Comparison of enthalpy SMB, void fraction SMB, density SMB, and FCV evaporator model outputs - Case 1b



Fig. 21: Comparison of enthalpy SMB, void fraction SMB, density SMB, and FCV evaporator model outputs - Case 1c



Fig. 22: Comparison of enthalpy SMB, void fraction SMB, density SMB, and FCV evaporator model outputs - Case 2a



Fig. 23: Comparison of enthalpy SMB, void fraction SMB, density SMB, and FCV evaporator model outputs - Case 2b



Fig. 24: Comparison of enthalpy SMB, void fraction SMB, density SMB, and FCV evaporator model outputs - Case 2c



Fig. 25: Comparison of enthalpy SMB, void fraction SMB, density SMB, and FCV evaporator model outputs - Case 3a



Fig. 26: Comparison of enthalpy SMB, void fraction SMB, density SMB, and FCV evaporator model outputs - Case 3b



Fig. 27: Comparison of enthalpy SMB, void fraction SMB, density SMB, and FCV evaporator model outputs - Case 3c

## References

- [1] Gnielinski, V. (1976). New equations for heat and mass-transfer in turbulent pipe and channel flow. *International Chemical Engineering*, 16(2), 359-368.
- [2] Kays, W.M., and A.L. London, 1984. Compact heat exchangers. McGraw-Hill Publishing, New York, NY
- [3] Wattelet, J.P. et al., 1994. Heat transfer flow regimes of refrigerants in a horizontal tube evaporator. ACRC TR-55, University of Illinois at Urbana-Champaign