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ABSTRACT

This document explores the possibility of a novel approach to trajectory deter-

mination based on optical observation of nearby celestial bodies, and describes its

development, implementation and testing. The initial idea was spurred by the need

to give the Orion capsule, the next-generation manned spacecraft currently in devel-

opment at NASA, a backup autonomous positioning system. Among other missions,

Orion is designed to transport a crew to and from the Moon. The presence of in-

dividuals on board tightens the safety requirements, and therefore it is necessary to

provide a backup positioning system in case contact with ground is lost. However,

rather that develop and install specific hardware on the craft, this work attempts to

use data form a pre-existing sensor, an optic camera, for position estimation. This

research consists of three main sections: first, analysis of the images captured by

camera, to identify the geometrical features of interest of the observed celestial bod-

ies (namely apparent radius, center position and orientation). Second, estimate of

these properties with various best fitting algorithms, and derivation of orientation

and position of the spacecraft in an inertial frame. And last, best fitting of the

gathered position data with a newly developed algorithm based on Bézier functions.

Each of these parts are discussed in detail. Results show that the image processing

algorithm developed is capable to meet the accuracy requirements imposed by the

mission, and that Bézier functions are a suitable tool to efficiently interpolate space

trajectories, favorably comparing to more complex techniques like Iterative Batch

Least Square and Extended Kalman Filter.
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CHAPTER I

INTRODUCTION

While spacecraft have long been self-sufficient in regard to attitude determina-

tion, they currently require external assistance to estimate their position in space.

Typically this is provided as range and range rate measurements obtained by either

ground stations or signals from GPS receivers. Both methods however have tech-

nical (only LEO missions can currently be supported by GPS tracking) or budget

(deep space missions tracking is very expensive) limitations. Therefore, autonomous

navigation has been the subject of extensive research in the last 20 years.

One crucial aspect of autonomous navigation is the type of sensors used in

data acquisition for processing. As one can imagine, this is heavily influenced by

the mission; satellites in LEO can take advantage of techniques and hardware not

available to deep space probes; and spacecraft flying nearby a known celestial body

can make use of such a reference point in ways inaccessible to one whose orbit does

not pass sufficiently close to that body. In particular, a spacecraft on a cislunar

trajectory will always be in relative vicinity of two major and very well know celestial

bodies: the Earth and the Moon. It seems a valid idea then to explore the possibility

of extracting position measurements from images of these bodies.

During the travel from Earth to Moon, a spacecraft is mainly subject to grav-

itational forces from three different celestial bodies (Earth, Sun, Moon), plus other

forces of different nature (e.g. Solar Radiation Pressure, Atmospheric Drag), all

of whom act with different relative intensity depending on the position along the
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trajectory. As a result, models to compute the spacecraft’s behavior are extremely

complicated and not very reliable. To improve accuracy, estimators are used to ac-

count for the inherent imprecision of the models, commonly various implementations

of the Kalman filter. A major drawback is then the necessity to manually tune and

customize the filter to the specific mission, which can sometimes be prohibitively

complicated during the design phase. As an alternative, the approach described in

this research completely bypasses the problem by disregarding any considerations

about the dynamics involved, while focusing solely on the measurements, and using

Bézier functions as interpolating polynomials, thus removing the need for manual

tuning and eliminating a complicated phase from the design process.

I.A. Literature Review

Autonomous navigation as a concept has been around for many years. The

historical developments up to 1984 can be found in [3], where autonomous naviga-

tion is described as having 4 basic characteristics: 1) self-contained, 2) operating in

real time, 3) nonradiating and 4) not depending on Earth operations. Ideally an

autonomous navigation system should only make use of on-board measurements of

natural signals.

Lowrie in [23] distinguishes three types of autonomous navigation concepts: an-

gular position measurements to celestial objects, such as the Sun, the local vertical,

Moon-Star and Planet-Star; measurements of Earth target, such as artificial or nat-

ural landmarks; and measurements to known artificial beacons, such at the GPS

system. It is worth mentioning as new technologies became available, different solu-
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tions have been proposed that eschew this classification. Indeed, the method studied

in this work does not fall neatly into any of the categories described above.

Historically, initial developments were essentially based on Line-of-Sight (LOS)

measurements obtained via a combinations of star, Sun and Earth sensors [21] [42]

[25] [24]. Even at these early stages attempts to use CCD sensors in creative ways

were made, to try and remove the need for dedicated star trackers and reduce mission

costs. Later, the advent of GPS made it a popular choice for autonomous and

semiautonomous positioning systems for near-Earth satellites, because of its low

cost and pervasiveness [13] [18].

Concurrently, other methods of satellite-to-satellite tracking have been devel-

oped [9], where the orbits of two or more spacecraft are determined from measure-

ments of the relative position vector from one spacecraft to the others, a concept es-

pecially useful for absolute orbit determination of formation flying spacecraft. More-

over, several studies have been conducted about using Earth magnetic field as the

reference to determine a spacecraft position [33] [35] [34]. Regarding deep space mis-

sions, the idea of autonomous navigation of a spacecraft using celestial objects has

been presented using an extended Kalman filter [12]. In this case, the measurements

used in the simulations are the line of sight directions to the celestial objects from

high-accuracy attitude sensors and one-way Doppler measurements from ground sta-

tions. In [14], Guo has proposed a complete self-contained autonomous navigation

system for deep space missions using two types of on-board observation data. The

first is a directional data of the spacecraft relative to the Sun, and the second is

the optical Doppler shift due to the motion of the spacecraft relative to the Sun.
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Similarly, in [19], a method has been developed in which images of planets within

the solar system are used to determine the spacecraft position.

Returning to the problem at hand, autonomous navigation for cislunar trajecto-

ries has been also studied for a long time, especially during the 1960s and 1970s for

the Apollo program. With the new generation of manned spacecraft being designed,

a new series of studies has started, trying to take advantage of the latest techno-

logical developments to implement techniques that were not feasible at the time. In

particular, the authors of [13] discuss the possibility explored in the present research,

of using as sources for inertial navigation updates the centroid and radius of Moon

and Earth. While their approach uses a Kalman filter to ultimately find the inertial

position, they however highlight how the accuracy of the method is very sensitive

to the distance from the observed target. This research proposes to overcome such

limitation, by using a different approach to the centroid and radius estimation.

I.B. Description of the Project

While the methodology described in these pages can be used in any mission

flying reasonably close to a known celestial body, its implementation has focused on

a cislunar trajectory, as dictated by Orion mission requirements. Therefore, in the

following the generic references to “celestial body” will be replaced primarily by the

Moon, and secondarily the Earth.

Because the Orion capsule is slated to have an optic camera among its sensors,

pointed towards the bow, the idea came to use images captured by it as a starting

point to develop a positioning system without having to add dedicated hardware.
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Therefore, a great deal of work has been devoted to image processing, to consistently

and accurately extract data useful to estimate the spacecraft position.

Considering the Moon as a perfect sphere (an essentially correct assumption) of

known radius (R$ = 1737.5 km), and its position in the inertial space accurately

derived from time, the comparison between these known quantities and the values

of radius and centroid as seen on the camera CCD can lead to an estimate of the

position vector of Orion in a Earth Centered Inertial (ECI) frame. This is the position

information to be used in the trajectory estimator.

In a similar manner, the Earth can be considered an ellipsoid of revolution. This

means that its projection on the CCD will be an ellipse, whose eccentricity varies

with the observer’s perspective, albeit in a very small range very close to 1. This

sensibly complicates the problem, because it increases the number of unknowns from

3 to 5, one of which is the inclination of the ellipse on the camera plane, and whose

observability is extremely low and can sometimes be zero depending on the relative

positions of the capsule with respect to Earth.

Once the measurements have been obtained, a newly designed trajectory in-

terpolator is used, capable of working regardless of the dynamics involved in the

problem, because it employs a Non-Rational Bézier curve, to fit the data. The

choice of Bézier functions over other more advanced polynomial curves, like splines,

is due to the fact that Non-Rational Bézier curves can be reformulated in a linear

matrix form which makes the implementation of a least square method immediate.
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I.C. Significance

The Orion vehicle is being designed to provide nominal crew transport to the

lunar transportation stack in low Earth orbit, crew abort prior during transit to the

Moon, and crew return to Earth once lunar orbit is achieved [8]. While a primary

ground based position determination system is prospected to be installed, the in-

crease in safety requirements due to the presence of a crew prompts the necessity for

a backup system capable of working in case of contact loss with ground base. Ideally,

the proposed system should give Orion autonomous position estimation capabilities

without the need for additional equipment. Its precision should be sufficient to cor-

rectly estimate the position within 1 km or less. Moreover, such a system would prove

useful when the capsule is behind the Moon, beyond the reach of Earth’s signals.

I.D. Methods

This research project consists of two main parts, the first part detailing how the

images are processed to extract the position data and the second how these estimates

are used to interpolate the trajectory.

I.D.1. Image Processing

Because all the data is extracted from a single sensor, this process must be

as efficient as possible to maximize precision and accuracy. As explained above,

the desired information to be retrieved are the centroid and radius for the Moon, or

centroid, axes and inclination for the Earth. The centroid will allow to determine the

attitude of the spacecraft with respect to the observed body (although other sensors

6



on board will be providing similar measurements, which will have to be integrated to

fully describe the attitude), while the geometric dimensions will allow to determine

the distance from it, according to:

r =
f

d

R$√
D2 −R2

$
(1.1)

where f is the camera focal length, d is the dimension of a pixel, and D is the

scalar distance between the spacecraft and the target. Determining these geometrical

properties is essentially a feature identification problem [28], and as such it can be

considered consisting of the following two steps: 1) selection of the pixels within

the image and 2) analysis of those pixels to determine the desired parameters. For

both tasks, there exists abundant literature, especially regarding the identification

of circles and ellipses in an image [31][40][37][11][15]. Therefore, original efforts have

been made for the pixel selection task, culminating in the implementation of two

completely different techniques, described in chapter II.

The first considers the average brightness of the image to establish a threshold,

which is used to create a binary version of it. Then an ”inertia tensor” is built

allowing for the determination of the axis of symmetry of the bright pixel distri-

bution, which is in turn used to identify pixels belonging to the edge of the body

[28](Figure I.1).

The second filters the image as a whole looking for points where the contrast is

maximum creating a “derivative” of the original image. Such points will likely belong

to the edge of the body. To eliminate eventual extraneous points, called outliers, two

algorithm in sequence are used, the first custom designed to find points lying on a

bright curve against a dark background, and another based on the Random Sample
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Figure I.1: “Inertia tensor” approach.

Consensus (RANSAC) technique (Figure I.2).

Regarding the actual feature identification, discussed in chapter III, an extensive

search in literature has led to the testing of many different algorithms, to find the

ones best suited for the problem at hand. It is important to notice that no mention

has been found in literature of using such techniques to determine the apparent

dimensions of celestial bodies not assumed spherical. Best fitting techniques for this

type of problems can be divided in two broad groups:

Geometric Fit: tries to minimize the geometric distance between the data points

and the conic. In general this method is considered the most accurate, however

it does not admit closed solution and requires the use of iterative algorithms.

Algebraic Fit: tries to minimize the “algebraic distance”, i.e. the implicit conic

equation F (x, y) = 0. Many methods based on this approach have been de-
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Figure I.2: Gradient approach.

veloped and they differ in accuracy, stability and complexity. They generally

give results less accurate than the geometric fit, but hand have closed form

solutions and therefore can be implemented in a much simpler way.

For the ellipse, a custom geometric fit has been designed to take advantage of the

fact that the sought ellipse has a known axes ratio. In this case, the parameters

to be determined are the two coordinates of the centroid, the semi-major axis, and

the inclination reducing the number of unknowns to 4. This method is based on

non-linear Least Squares applied to the canonical equation of the ellipse in a generic

reference frame.
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I.D.2. Position Interpolation

A Bézier function is a parametric curve widely used in computer graphics and

many other design related applications. While the mathematical foundations were

established in 1912 by Sergei Bernstein, its applicability to design was understood

much later, between 1959 and 1962, with the work of Pierre Bézier and Paul de

Casteljau. The method developed here is based on [30], where the Bézier function is

rewritten using linear algebra to estimate its control points via least squares. This

basic idea is at the heart of a newly developed iterative process able to optimize the

control points, by finding the optimal polynomial degree and parameter distribution.

As a validation, this method as been tested on a cislunar trajectory simulated with

GMAT, and its results have been compared with popular methods such as Iterative

Batch Least Squares and Kalman filtering. A complete discussion is found in chapter

V.

I.E. Research Goals

The purpose of this research project are as follows:

• to successfully design a software capable of analyzing in real time images of

Moon and Earth taken by an on-board optical camera to extract information

relative to the edges of the celestial bodies, including handing of situations in

which said bodies are outside the Field-of-View, partially illuminated or non

completely within the FOV limits.

• to implement a best fitting procedure able to determine centroid and radius
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(for the Moon) or centroid, axes and inclination (for the Earth), with a level of

precision sufficient to obtain reliable position measurements for the spacecraft

as a whole.

• to interpolate the data so obtained to determine the trajectory of the spacecraft,

regardless of the dynamics involved, presence of perturbations or unplanned

thrusts.

Because of the very stringent requirements on accuracy, a great effort has been

devoted to optimization of the method, especially with regard to the image process-

ing. This has led to a comprehensive analysis of the various causes of error affecting

the data extraction process. Also, an error propagation analysis is required to as-

sess the validity and practical usability of the method. Of course, interpolation of

existing data does not give any information on the projected behavior of the space-

craft. Therefore, the author hopes that the interpolated data can be used to improve

prediction of the spacecraft future trajectory.
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CHAPTER II

IMAGE PROCESSING - PIXEL SELECTION

The main source of information for this problem is provided by the images

captured with the camera mounted on the spacecraft. Therefore, it is natural that

a great effort has been devoted to develop the most efficient and fruitful method to

extract the greatest possible amount of information from it. The result is a heavily

specialized process, in the sense that is based on several assumptions made on the

nature of the image itself. These assumptions are as follows:

• the image contains only one luminous object whose dimension are much greater

than any other in the field of view.

• most of the image is “dark”, i.e. it has a black background, interspersed with

few stars. It is worth here noting that since the camera is calibrated to capture

a close and bright object, the level of exposure is not sufficient for most stars

to appear, which works conveniently in our favor.

• while the camera works in RGB, no useful information is contained in the

different color channels, and only the graytone is used to determine relative

brightness of each pixel.

• no attempt to determine any of the internal features of the target is made

(craters and maria for the Moon, cloud systems and continents for Earth).

Within these criteria, the procedure developed is able to satisfactorily manage

all possible cases, in terms of target size and shape, relative positioning of observer
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and target, and even situation in which the target is only partially in view.

II.A. Introduction

This chapter describes the methods developed to extract the geometric proper-

ties of the observed bodies from the images, and the theory behind it. As the Moon

can be considered a sphere, its undistorted projection is a circle, which is uniquely

defined by 3 parameters, the two coordinates of the center O and radius rc) the Earth

instead is more accurately described as an ellipsoid of revolution, whose projection is

in general an ellipse, uniquely defined by 5 parameters, center O, axes a and b, and

inclination θ (later it will be shown that these can be reduced to 4). While a few

details have to be changed to account for the differences, the same process can be

applied for both cases. This can be considered composed of two subsequent phases:

Pixel Selection , where a subset of all the pixels composing the image are chosen,

according to a predetermined criteria. Two techniques have been developed

for this task. One, here named Eigenvalue Method, analyzes the distribution

of bright pixels in the image to determine its principal directions. The search

for useful pixel is then conducted in reference to these directions. The other,

named Gradient Method, applies a Derivative Filter to the whole image, to

identify the pixels belonging to the edge of the object.

Feature Recognition , where the requested parameters are extracted via anal-

ysis of the pixels previously selected. While insofar it has never been used

for space applications, feature recognition is a standard practice in computer

graphics, therefore there is ample literature available dealing with this prob-
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lem. Specifically, the author has focused on techniques relative to circle and

ellipse identification, as these are the shapes of interest.

Because the ultimate purpose is to develop an algorithm, a series of parameters

has to be defined to successfully guide the data flow. These will be introduced as

the need for them arises.

To begin, it is important to find a reliable method to differentiate between

the possible size and shape of the target, which depends on the relative position of

observer (the capsule), observed object (Moon or Earth) and the light source (the

Sun). In the following section, these different configuration are described relative to

the Moon, but they are applicable to Earth as well. It is important to highlight how

the following is based on geometric considerations alone and thus does not involve

processing of the image data. This is why the parameters are described as “expected”

values.

II.A.1. Expected Radius and Illumination Parameter

As the relative positions of observer, target and light source change, the visible

part of the target changes accordingly in a manner akin to the classic phases com-

mon to all reflective celestial bodies. This can lead to cases in which the target is

completely dark from the point of view of the observer, and therefore no analysis

can take place. It is important therefore to catch these degenerate cases before they

can cause critical errors further down in the process. At this stage the target is

considered as perfectly spherical, an acceptable approximation given the fact that,

assuming Earth to be an ellipsoid of revolution, its flattening is 0.0033528. Thus
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Figure II.1: Expected Moon radius (pr) and illumination parameter (pi).

two parameters can be introduced to describe its shape (from now on for simplicity,

the term “target” will refer just to the illuminated portion rather than the whole

object, as this is what the camera is actually able to observe): one is the radius of

the target pr, and the other is the cross-length measured at its thickest point pi (see

Figure II.1), which will be referred as the illumination parameter in the rest of this

text. Both these distances are measured in pixels, and they can be found given the

camera parameters (focal length f , pixel size d) and the observation geometry. To

this purpose, the observer’s position is needed. However, even a high uncertainty

(σD ≥ 10, 000 km) has very small impact on pr and pi, as long as the spacecraft is

further from the target than a certain threshold. Such a rough position estimate can

be considered known a priori, to start the analysis.

To begin, expected radius and illumination angle are computed as:

pr =
f

d

Rm√
|ro|2 −R2

m

(pixels) (2.1)

ϑ = arccos(r̂s · r̂o). (2.2)

where r̂s is the Sun-to-Moon rays direction, ro the Orion-to-Moon vector, and Rm
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the Moon radius. The expected radius is of great importance, not only because the

illumination parameter is measured in relation to it, but also because it predicts

the overall size of the target in the image. The importance of this information will

become clear later. The value of pi is determined differently depending on the values

of pr and ϑ.

II.A.1.a. Full or New Moon

Figure II.2: Full/New Moon geometry.

With reference to Figure II.2, the angle αm can be derived from simple trigonom-

etry

|ro| sinαm = Rm. (2.3)

This equation also allows to define a critical distance, rcr, as the distance at which
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αm = ϑ:

rcr sinϑ = Rm (2.4)

Whether |ro| is greater or smaller than rcr, together with the value of ϑ, deter-

mines the case, according to the following scheme:

if |ro| < rcr and

 ϑ < π/2 then pi = 2pr (Full Moon)

ϑ > π/2 then pi = 0 (New Moon)

(2.5)

II.A.1.b. Gibbous Moon

Figure II.3: Gibbous Moon geometry.

Gibbous Moon will occur when

|ro| > rcr and ϑ <
π

2
. (2.6)
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For this configuration (see Figure II.3), pi can be computed by finding the auxiliary

variables x and αe:

x2 = |ro|2 +R2
m − 2 |ro|Rm sinϑ → x (2.7)

sinαe = Rm
cosϑ

x
→ αe (2.8)

which allows to find the “excess” factor pe:

pe = pr
tanαe
tanαm

(2.9)

and, therefore,

pi = pr + pe =

(
1 +

tanαe
tanαm

)
pr. (2.10)

II.A.1.c. Crescent Moon

Figure II.4: Crescent Moon geometry.

Crescent Moon will occur when

|ro| > rcr and ϑ >
π

2
. (2.11)
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In this case (see Figure II.4) the two variables x and αe can be found according to:

x2 = |ro|2 +R2
m − 2 |ro|Rm sinϑ → x (2.12)

sinαe =
− cosϑ

x
Rm → αe (2.13)

and therefore:

pi = pr − pe =

(
1− tanαe

tanαm

)
pr (2.14)

As explained below, differentiating among these cases is important to properly

initialize the algorithm. To this purpose, the analytical relations described above

must be supplemented with discrete threshold to ensure the system works properly;

so, for instance, if pi is lower than a certain value, the crescent is deemed too thin

to be a reliable source of information, and the target is considered invisible.

II.A.1.d. Special Case: Cropped Target

The previous cases do not consider the possibility for the target to partially be

in the FOV. However, depending on the relative size of the target on the imager

and whether the camera is pointing towards it or not, such a scenario is not at all

unlikely and thus it is important to be able to identify it, especially because, as it

will be explained later, only one of the two methodologies developed can solve the

case of cropped target.

To this purpose, an algorithm has been developed that sweeps the images’

boundaries with a rectangular mask proportional to the dimensions of the image

itself. At each step the cumulative brightness within the mask is computed and com-

pared with a threshold value, taken equal to 1/10 of the maximum greytone. From

the amount of threshold crossings, it is possible to determine if and how many times
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Figure II.5: Processing of cropped image. Left: cropped image of the

Moon. Right: results of the cropped detection.

the target has been cropped by the frame. An example application is depicted in

Figure II.5.

II.B. Eingenvalue Method

The idea behind this approach is to analyze the distribution of bright pixels in

the image to find its symmetries, and thus define a reference system to help determine

the pixels to be selected. This works because the method exploits some expected

features of the image. Firstly, the image contains only one sizeable bright object,

which means any other light source can be considered of negligible size and filtered

away quickly. Secondly, this bright object has a symmetric or quasi-symmetric shape.

As one can immediately see, whether the target is crescent or gibbous, this condition

20



is verified (the special case of full Moon, where the symmetry is radial, can be treated

separately while maintaining the core of the algorithm untouched). Because of this,

the Eigenvalue Method fails when the target is only partially within the FOV, as the

symmetry is broken. However, during most of the mission, assuming the camera is

pointed somewhat towards the Moon, such scenarios should not present themselves.

At any rate, if the image is found to contain a cropped view of the target, this method

cannot be applied.

The main cycle of image processing algorithm is summarized in Figure II.6.

Further details on the various steps follow.

Figure II.6: Eigenvalue method algorithm flowchart.

1. In the first step, a cluster of bright pixels is identified as belonging to the

illuminated portion of the observed body. A selection box centered around the

cluster is created, equal to twice the length of pr (see Eq. 2.1). This ensure
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that the target is fully included within the boundaries of the box.

2. Greytone values of each pixel within the box image are analyzed to find a

threshold which is used to convert the image to binary format.

3. Then, the centroid of the illuminated area is computed. A second check verifies

whether the target is fully or partially illuminated, by checking the relative

positions of Moon, Sun and spacecraft at the timestamp.

4. For fully illuminated bodies, the points belonging to the edge are identified

with a mask swept horizontally across the whole image.

5. For partially illuminated bodies the “inertia tensor” of the binary image is

computed. The maximum eigenvalue and its associated eigenvector identify the

axis of symmetry of the image itself, which is taken pointing toward the hard

edge of the illuminated area. This information about the principal directions

of the image is used to identify a series of edge points along both the hard edge

of the body and the terminator line.

6. For both fully and partially illuminated body, a SVD-based Least-Squares is

used to find an estimate of radius and center. Then, this initial estimate

is refined via a Least-Square approach based on circular (for the Moon) or

elliptical (for the Earth) sigmoid functions. This is done using a large amount

of pixels belonging to an area that partially covers the illuminated area as well

as part of the sky next to the hard-edge.

7. Once the center of the observed ellipse has been accurately estimated the ob-
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served body center direction is corrected by the offset. Lastly, the computed

center and radius are combined with information about the spacecraft attitude

to give an estimate of the observer-to-target vector in the J2000 frame.

The last two steps are relative to the feature recognition part of the process

and will be described in chapter III. Instead, the next section shows how projective

geometry is used to describe the observed ellipse and identify the equations of the

hard edge and the terminator. Subsequently, details regarding the eigen-analysis are

provided.

II.C. Observed Three-axis Ellipsoid

While tackling the problem of a generic three-axis ellipsoid is slightly more

complicated than the case of a sphere or an axial-symmetric ellipse, both of those

can be found as special cases of the following development.

The canonical equation, written in the principal reference frame and with center

at the origin, is:

xT J x = 1 (2.15)

where x is the vector pointing to the ellipsoid surface, a, b, and c are the three

semi-major axes of the ellipsoid, and:

J =


1/a2 0 0

0 1/b2 0

0 0 1/c2

 .

Let p0 be the position vector of the observer. The generic vector x can be rewritten
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in terms of p0, the unit vector v̂ and a scalar variable t:

x = p0 + t v̂ (2.16)

Substituting this in Eq. (2.15) and expanding yields:

pT

0 J p0 + 2pT

0 J v̂ t+ v̂T J v̂ t2 = 1 (2.17)

which is a second order equation in t, representing all the possible intersection points

between the ellipsoidal surface and the set of all rays intersecting at p0. The observed

ellipse is identified by the set of points where such rays are tangent to the surface,

where the two roots of Eq. (2.17) coincide. This happens if and only if:

(pT

0 J v̂)2 − (pT

0 J p0 − 1) v̂T J v̂ = 0 (2.18)

which can be rearranged in the quadratic form:

v̂T(Jp0p
T

0J − (pT

0Jp0 − 1)J)v̂ = v̂TM v̂ = 0 (2.19)

where M is a symmetric matrix. Therefore it can be diagonalized, M = C ΛC T with

C orthogonal. Substituting in Eq. (2.19) we obtain

(v̂TC) Λ (C T v̂) = ŵT Λ ŵ = 0 where ŵ = C T v̂ (2.20)

and ŵ is a rotated unit vector. Because Λ contains the eigenvalues of M , 2.20 can

be explicitly written as:

λ1w
2
1 + λ2w

2
2 + λ3w

2
3 = 0 (2.21)

where the eigenvalues λ1, λ2, and λ3, are the diagonal terms of the eigenvalue matrix

Λ and w1, w2, and w3 are the three components of the unit-vector ŵ. Now, in order
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for Eq. (2.21) to admit solutions, the three eigenvalues cannot have the same sign,

that is, one eigenvalue must be negative 1. Let us consider λ3 < 0 and λ1, λ2 > 0.

Setting, |λi| = ξ−2
i , Eq. (2.21) becomes

w2
1

ξ2
1

+
w2

2

ξ2
2

=
w2

3

ξ2
3

(2.22)

which is the equation of an elliptic cone with axis along w3. Since ŵ is a unit-vector

then the solution is the intersection of the elliptic cone given in Eq. (2.21) with a

unit-radius sphere

w2
1 + w2

2 + w2
3 = 1 (2.23)

Solving 2.23 for w3 and substituting in Eq. (2.22) we obtain the equation of the

observed ellipse

w2
1 (1 + ξ2

3/ξ
2
1) + w2

2 (1 + ξ2
3/ξ

2
2) = 1 (2.24)

which has the semi-axes

a′ =
1√

1 + ξ2
3/ξ

2
1

< 1 and b′ =
1√

1 + ξ2
3/ξ

2
2

< 1 (2.25)

Therefore, the ratio of the observed ellipse semi-axes is ρ =
b′

a′
=

√
ξ2

2(ξ2
1 + ξ2

3)

ξ2
1(ξ2

2 + ξ2
3)

. The

observed ellipse, Eq. (2.24), has a not planar behavior. Indeed, on the imager it

appears orthogonal to the elliptic cone axis (w3 direction), as shown in Figure II.7.

Since ŵ is a unit-vector, when it lies in the w1-w3 plane its expression is necessarily

ŵa = {a′, 0,
√

1− a′2}T while in the w2-w3 plane becomes ŵb = {0, b′,
√

1− b′2}T.

Conversely, if a′ = b′, the elliptical cone becomes a regular circular cone and the

observed ellipse becomes a planar circle.

1If two eigenvalues are negative, then just change sign to all three terms in Eq. (2.21).
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Figure II.7: 3D ellipse projection.

In conclusion, the projection of a three-axis ellipsoid on the imager will generally

be an ellipse. Unfortunately, the direction from the camera to the center of the

observed ellipse does not coincide with the direction to the center of the ellipsoid.

This deviation, and associated correction, is explained and quantified below.

II.C.1. Observed Ellipse Center Offset

The values computed for the semi-axes, a′ and b′, Eq. (2.25), and the sign of

eigenvalues, are necessary to find the body-center offset. Three distinct cases occur:

if λ1 λ2 > 0 →

 ŵT
a = {±a′, 0,

√
1− a′2}T

ŵT
b = {0, ±b′,

√
1− b′2}T

if λ1 λ3 > 0 →

 ŵT
a = {0,

√
1− a′2, ±a′}T

ŵT
b = {±b′,

√
1− b′2, 0}T

if λ2 λ3 > 0 →

 ŵT
a = {

√
1− a′2, ±a′, 0}T

ŵT
b = {

√
1− b′2, 0, ±b′}T

(2.26)
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Figure II.8: Offset center vector computation.

Let v̂off be the direction to the center of the observed ellipse. Then,
if λ1λ2 > 0 and λ2λ3 < 0 → v̂off = −sign[pTC(:, 3) ]C(:, 3)

if λ2λ3 > 0 and λ1λ2 < 0 → v̂off = −sign[pTC(:, 2) ]C(:, 2)

if λ1λ3 > 0 and λ2λ1 < 0 → v̂off = −sign[pTC(:, 1) ]C(:, 1)

(2.27)

Figure II.8 shows that:

cos γoff = −p̂Tv̂off

doff = ||p|| tan γoff = `off sin γoff (2.28)

from which the offset vector in the body-fixed reference frame is:

doff = p+ `off v̂off = p− ||p||
p̂Tv̂off

v̂off (2.29)

Equation (2.29) can be used to evaluate the centroid offset angle, γoff , provided

that this angle is greater than the angle associated to the angular uncertainty of

the position vector p. In other words, let σp be the uncertainty of the position

knowledge. This uncertainty is associated to the angle γp, where |p| sin γp = |σp|.

Therefore, the centroid offset can be corrected if and only if

γp < γoff (2.30)

The approach used above to determine the equation of the observed ellipse can

be also used to find the terminator equation.
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II.C.2. Terminator Equation

The canonical equation of an ellipsoid (in the observed body reference frame) is

provided by Eq. (2.15). Let v̂s be the Sun rays direction in the body frame. This

vector can be computed from time and from the observed body attitude. The vector

p = x+ t v̂s intersects the ellipsoid if p satisfies Eq. (2.15), pT J p = 1, obtaining

2t v̂T

s Jx+ t2 v̂T

s J v̂s = 0 (2.31)

This equation has a trivial solution, t1 = 0, and the solution t2 = −2
v̂T
s Jx

v̂T
s J v̂s

. By

enforcing t2 = 0, the two solutions are made coincident and the locations (on the

ellipsoid) where Sun rays are tangent to the ellipsoid are obtained. This implies,

v̂T
s Jx = 0. Therefore, the terminator equation is described by

v̂T

s J x = 0 subject to xT J x = 1. (2.32)

Setting:

ws =
√
J v̂s =



vs1
a
vs2
b
vs3
c



T

and y =
√
J x =



x1

a
x2

b
x3

c



T

, (2.33)

Eq. (2.32) becomes

wT

s y = 0 subject to yT y = 1. (2.34)

This implies that the solution, y, is a unit-vector (y = ŷ) orthogonal to ws. Rewrit-

ing ŷ in spherical coordinates:

ŷ = {cosϕ cosϑ, sinϕ cosϑ, sinϑ}T,
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and substituting together with Eq. (2.33) in Eqs. (2.32-2.34) gives

vs1
a

cosϕ cosϑ+
vs2
b

sinϕ cosϑ+
vs3
c

sinϑ = 0 (2.35)

which can be rewritten as:

tanϑ = − c vs1
a vs3

cosϕ− c vs2
b vs3

sinϕ. (2.36)

By varying ϕ between 0 and 2π, Eq. (2.36) allows to compute to corresponding value

for ϑ. Therefore, the x vector in the body-fixed frame is given by

x =
(√

J
)−1

ŷ =


a cosϕ cosϑ

b sinϕ cosϑ

c sinϑ


. (2.37)

Finally, the terminator in the camera frame, tc, is provided by

tc = CCOCOI CIB (x− P0) (2.38)

where P0 is the camera position vector in the body-fixed frame and the product

CCOCOI CIB is the transformation matrix moving from body-fixed to camera frame.

For a three-axis generic ellipsoid a simulation example is shown in Figure II.9

The above analysis allows for a complete characterization of the type of features

which needs to be identified in the image, and also quantifies the center offset error.

However, prerequisite to feature extraction is the pixel selection phase. The following

sections describe this process in detail for the Eigenvalue method.

II.C.3. Principal Axes of Illuminated Area

The image is converted in binary by choosing a threshold greytone value, which

is selected given the maximum and minimum values contained in the image. Then,
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Figure II.9: Simulation example of observed ellipsoid.

the coordinates of the centroid can be found from:

rb =
Σi,j(Ii,j ri,j)

Σi,jIi,j
and cb =

Σi,j(Ii,j ci,j)

Σi,jIi,j
(2.39)

where [ri,j, ci,j] are the coordinates of a generic pixel, Ii,j is the associated binary

value, and the indexes i and j span the entirety of the selection box. Similarly, its

inertia tensor is built according to:

T =

 Σi,j Ii,j (ri,j − rb)2 −Σi,j Ii,j (ri,j − rb)(ci,j − cb)

−Σi,j Ii,j (ri,j − rb)(ci,j − cb) Σi,j Ii,j (ci,j − cb)2

 . (2.40)

From the eigen-analysis two values are obtained (λ1 and λ2), from which the

inclination of the principal axes (ϑmin, ϑmax) can be determined according to the
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following scheme:

if λ1 > λ2 →

 ϑmax = atan2(w11, w21)

ϑmin = atan2(w12, w22)

if λ2 > λ1 →

 ϑmin = atan2(w11, w21)

ϑmax = atan2(w12, w22)

(2.41)

Finally, the axis of symmetry can be determined as the line passing through [rb, cb]

and having slope m, where m = tanϑmax if λ1 > λ2 and m = tanϑmin if λ1 < λ2.

Moreover the ratio between the eigenvalues is a measure, albeit approximated, of

how much of the target’s surface is illuminated; values close to 0 indicating an almost

invisible target and values close to 1 indicating an almost full Moon.

The determination of the axes allows to establish a reference frame within the

image. Next, several pixels belonging to the edges of the target have to be selected,

as explained below.

II.D. Pixel Selection

To create a mesh to analyze the image, a set of lines parallel to the axis of

symmetry is considered, evenly spaced along the orthogonal axis. The spacing of the

lines is chosen relatively to the pr and pi parameters. In particular, it is desirable

that the lines extend across the majority of the target, but not so close to its limits,

where its thickness is too little and may lead to errors. Experimentally, it has been

found that this problem is avoided by choosing no more than 9 lines per side, which

cover up to 80% of pr length. Once the grid has been established, a mask is swept

along it in the direction of the axis of symmetry, to find the target edges. The
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mask is composed of a sequence of zeros and ones, for a total length of 8 pixels:

[0, 0, 0, 0, 1, 1, 1, 1]. The positions were the correlation between the mask and the

image is maximum are selected, as these will correspond to the pixels where the

image switches from 0 to 1 value and vice versa. As can be seen in the example

Figure II.10: Selection of hard edge and terminator points.

(Figure II.10), each line, swept in a pre-determinate direction, identifies two points,

thus defining two sets of points, each arranged in a more-or-less arc configuration.

Only one of those will correspond to the hard edge, while the other will be the

terminator. It is however easy to distinguish between the two during the feature

identification phase, because the terminator will be characterized by a much higher
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Figure II.11: Pixel selection for fully illuminated target. Left: Original

Image. Right: Pixel selection.

value of standard deviation of the residuals than the hard edge. This is due to the

shadows of the internal features of the target, which result in a relatively irregular

boundary compared to the actual edge.

II.D.1. Fully Illuminated Moon

In the case of fully illuminated target, λ1 and λ2 are almost identical and it is

impossible to define a principal axis. This obstacle is easily overcome, however, by

noticing that the absence of a preferential direction in the image means any direction

will work fine. Therefore, for simplicity the mask is swept along horizontal lines.

Another difference with the general case is that now all points identified supposedly

belong to the hard edge, and thus only one set of pixels is defined. An example of

this case is depicted in Figure II.11.
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II.E. Example

This section provides the numerical results for a real Moon image taken from

ground (Houston area) on March 6, 2013 at 06:08:10 CDT. The original image is

shown in the top-left of Figure II.12. The Moon distance is known with very low

Figure II.12: Eigenvalue method example.

precision (some Earth radii). A simple 3 × 3 Gaussian filter is applied to smooth

the image, mainly to identify a single pixel belonging to the Moon. The filter is first

applied to remove eventual bright pixels of stars. The brightest pixel is shown in the

top-right of Figure II.12. Around that pixel a box whose dimension is the observed
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diameter of the Moon (computed using the approximated Moon distance and the

camera parameters) is also shown. This box allows to restrict the image processing

to a rectangular subset of the original image, sub-image shown in the bottom-left

of Figure II.12. Using the value of the brightest pixel in the filtered image (414), a

threshold value (61) is obtained to obtain the binary image shown in the bottom-

right of Figure II.12. Eigenanalysis of the binary images, as provided by Eq. (2.39)

through Eq. (2.41), gives a ratio of eigenvalues,
λmin

λmax

= 0.107, an indicator of the

image portion being illuminated.

The axis of symmetry (eigenvector associated to the maximum eigenvalue) of

the illuminated part is shown in red in the bottom-right of Figure II.12, while in

blue is indicated the orthogonal direction (eigenvector associated to the minimum

eigenvalue). The axis of symmetry, of course, just approximates the real symmetric

axis of the illuminated area. Nevertheless, this approximate direction can be used

to draw a set of 2 × 9 lines along the orthogonal axis with constant step size (1/11

of the estimated Moon radius). Along these lines a mask of 8 pixels ([0, 0, 0, 0,

1, 1, 1, 1]) is used to identify where is maximum the correlation with the two

transitions (one associated with the terminator and one with the hard edge) in the

binary images. These two sets of points are then sent to the best fitting subroutine.

It is immediate to recognize the terminator because of its much higher deviation.

II.F. Drawbacks of the Eigenvalue Method

As described above, the Eigenvalue method provides a reliable and relatively

straightforward way to select pixels from the image to initiate the feature identifica-
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tion process. It works equally well for fully and partially illuminated targets, with

only minor modifications to the algorithm. However it is unable to treat images

where the target is cropped, because the image symmetry, which is at the basis of

the method, is broken. To deal with this situation, a different approach was sought.

This new technique, named Gradient method, later proved to be much more general

than the Eigenvalue method, and therefore has supplanted it altogether.

II.G. Gradient Method

The Gradient method, not unlike the Eigenvalue method, takes advantage of

the properties of the input images. In this case, the driving principle is that the

greater variation of graytone within the image is expected to be localized at the

target’s edge. Therefore, pixels belonging to the edge will appear extremely bright

in comparison, if the image is treated with a gradient filter, i.e. a filter that computes

the derivative of the graytone at each point. Then, selecting the brightest pixels in

the filtered image should provide with the desired data. However, because of the

possible presence of disturbances, such as bright stars, target surface topology or

atmospheric phenomena, and artificial objects orbiting Earth, some of these pixels

will not belong to the edge. A procedure to remove these points, dubbed “outliers”,

from the data set is thus required. The remaining pixels can be used to find the best

fitting circle and determine the sought geometric properties.

As a whole, the Gradient method is composed of two steps:

• First the image is processed with a differentiation filter. As the image is a

discretized, bidimensional matrix of integer between 0 and 255, a numerical
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differentiation scheme has been implemented, followed with a single application

of Richardson extrapolation, to improve accuracy. The pixels with highest

value of the gradient are then selected.

• Then the dataset is scanned to identify and remove outliers. Two different

algorithm in sequence are applied, to minimize the possibility of any outlier

polluting the data.

Figure II.13 illustrates the information flow of the algorithm, while the theory

behind these two steps is discussed in detail further below.

Figure II.13: Gradient method flowchart.

II.H. Image Differentiation

The image is a bidimensional array of integer values, ranging from 0 to 255,

representing the graytone of each pixel. The algorithm to compute the gradient has
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been chosen as a four-point central difference followed by Richardson extrapolation

to increase the accuracy.

Given a generic pixel of row and column index [ri, ci], its row and column four-

point central differences are computed according the the following scheme:
g′r(ri, cj) =

8 (Ii+1,j − Ii−1,j)− (Ii+2,j − Ii−2,j)

12h

g′c(ri, cj) =
8 (Ii,j+1 − Ii,j−1)− (Ii,j+2 − Ii,j−2)

12h

(2.42)

These derivatives are accurate with order h4, where h is the pixel dimension. The

image gradient is then computed as

g′(ri, ci) =
√
g′2r (ri, ci) + g′2c (ri, ci) (2.43)

II.H.1. Richardson Extrapolation

Richardson extrapolation is a sequence acceleration method. Among its many

applications, it can be used to improve the accuracy of a difference scheme, with a

much smaller computational burden that it would cost increasing the order of the

scheme itself. The basic idea is to extrapolate from two different estimates of a

derivative, obtained with different stepsizes [5]. Thus consider two approximations

of Eq. (2.43), one with step 2h and one time with step h: g′|true = g′2h + a0 (2h)4

g′|true = g′h + a0 h
4

(2.44)

By equating:

g′h − g′2h = a0 h
4(24 − 1) → a0 h

4 =
1

24 − 1
(g′h − g′2h) (2.45)
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and therefore

g′|true = g′h +
1

24 − 1
(g′h − g′2h) (2.46)

To show the effectiveness of this approach, the results of a test done with the six-

hump Camel back function (Eq. (2.47)), depicted in Figure II.14, are here reported.

f(x, y) =
x2

4

(
4− 21

40
x2 +

x4

8

)
+
xy

4
+ y2

(
y2

4
− 1

)
(2.47)

Figure II.14: Six-hump camel-back function.

This function belongs to a family of polynomials widely used as benchmarks

for numerical methods because of their peculiar shape. For this test, four different

approximations are obtained. The errors with respect to the analytic values are

shown in Figure II.15, in regard to the following four cases:
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1. Top-left: 2-point central differentiation without Richardson extrapolation;

2. Top-right: 4-point central differentiation without Richardson extrapolation;

3. Bottom-left: 2-point central differentiation with Richardson extrapolation;

4. Bottom-right: 4-point central differentiation with Richardson extrapolation;

Figure II.15: Accuracy results for the six-hump camel back function ex-

ample.

These results show that: 1) the accuracy provided by 4-point central differen-

tiation without Richardson extrapolation is the same as provided by 2-point central
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differentiation with Richardson extrapolation and 2) the 4-point central differentia-

tion with Richardson extrapolation reaches an error of the same order of magnitude

as the machine precision. This last combination has been used in the rest of the

work to compute the image gradient.

Once the gradient image has been created, the pixels are sorted in descending

order. As mentioned before, not all of these pixels belong to the target’s hard edge,

and thus these “outliers” need to be filtered out. To this purpose two methods,

applied in succession for maximum effect, have been coded.

II.I. Box-based Outliers Identification

Figure II.16: Mask for the box-based outlier identification technique

(mask size: 7× 7).
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The first approach is based on a local analysis around the pixel being considered

as potentially belonging to the target’s edge. A mask like the one in Figure II.16,

whose size depends on the parameter pr, is centered on a candidate pixel. If the pixel

does indeed belong to the target’s edge, then it is likely to be part of a sequence of

pixels of comparable brightness distributed along a preferred direction. Moreover,

the pixel should sit on the border between two areas where the graytone “flattens”

(the inside and outside of the target) and which therefore should appear as dark in

the gradient image. If the pixel does not satisfy all of these conditions, it is rejected.

To perform this analysis, first the tensor of inertia of the gradient image within the

mask is computed, using the same equations as in II.C.3, and then the eigenvectors

and eigenvalues are found. The eigenvector associated to the minimum eigenvalue

(red line direction in Figure II.16) is inclined by an angle γ with respect to the row

axis direction and represents the direction of the supposed edge. If γ mod π < π/2

then the farthest pixels from the edge line are those identified in green while if γ

mod π > π/2 the farthest pixels are the red ones. Several conditions have to be

satisfied for the pixel to be accepted:

• The ratio between the eigenvalues must be lower than a certain threshold,

chosen experimentally at 0.3. This indicates the distribution of bright pixels

has a preferential direction.

• The values of the gradient in the pixels furthest from the edge line should be

small, as both should be far from areas of variable brightness. Moreover, their

graytones should differ noticeably, as one belongs to the target and the other

to the night sky.
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Figure II.17: Outliers: test results example.

• For the pixels highlighted in green in Figure II.16, the ratio of their gradient

values should be close to 1 (gmin/gmax > 0.6) as they both supposedly belong

to the edge.

• For the pixels highlighted in red in the same figure, the ratio of their graytone

values should be close to 0 (gmin/gmax < 0.3) as one belongs to the nught sky

and the other to the target.

An example for these value in a processed image is given in Figure II.17. In this

figure the green markers indicate the ratios between the gray tones of the farthest

pixels from the edge line, the blue markers the ratios between the eigenvalues of the

gradient box, and the red markers the derivatives ratios of pixels at the extremes of

the edge line.
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II.J. RANSAC for Circle and Ellipse

The second technique implemented in the code is a standard algorithm to elim-

inate outliers called RANSAC which is an abbreviation for “RANdom SAmple Con-

sensus” [10]. It was developed for robust fitting of models in the presence of many

data outliers. The algorithm is very simple and can be applied in the fitting of many

geometric entities, such as lines, circles, ellipses, etc. It is a non-deterministic iter-

ative algorithm, in the sense that it produces a reasonable result only with a given

probability, which increases as more iterations are allowed. It works by selecting

random subsets of size equal to the number of unknown parameters, and then checks

whether the remaining datapoints lie further than a certain threshold from the curve

determined by the initial subset. Repeating this process for many randomly chosen

subsets is likely to find and remove the outliers. More formally, given a fitting prob-

lem with n data points and unknown m parameters, starting with Nmin = n, the

classic RANSAC algorithm perform Ntest times the following steps:

1. selects m data points at random.

2. finds the curve passing through these m points, thus estimating the m param-

eters associated.

3. counts how many data items are located at a distance greater than a minimum

value dmin from the curve. They are Nk.

4. if Nk < Nmin then set Nmin = Nk.

The basic cycle is depicted in Figure II.18.
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Figure II.18: RANSAC flowchart.

Crucial to a successful implementation of RANSAC is the method used for

the random selection of subsets. A purely random selection approach may persist

choosing outliers, with great waste of computational time. On the other hand, a

procedure based on deterministic inner loops can also be inefficient, if by chance one

outlier is selected by the outmost loop. Therefore, as an improvement on the basic

method, a technique originally developed for Pyramid Star-Identification [29], has

been adopted, which always selects different subsets by continuously rotating the

dataset indexes.
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II.J.1. Gradient Method Parameters

To properly implement the outlier removal routines, a series of parameters must

be defined, which help define thresholds and safety checks to ensure the algorithm is

working correctly. These parameters are defined in terms of pr and pi, as defined in

section II.A.1. They are:

• N : the number of pixels in the gradient image to be selected for analysis. While

it speeds up the process to choose a smaller set, it is important to ensure enough

pixels are selected, as some outliers might have higher brightness values than

some of the “good” pixels. This is especially true for the cases of crescent or

gibbous Moon, where pixels on the terminator have higher gradient than pixels

on the extremities of the illuminated arc. Ultimately N is calculated according

to the following expression

N = kπpr (2.48)

where k is a factor that varies linearly with pi, from a minimum of 2 when

pi ≤ 10 to a maximum of 4, when pi ≈ 2pr:

k = 2

(
1 +

pi − 10

2 pr − 10

)
(2.49)

• s: size of the box for box based outliers removal. The box has to be chosen

sufficiently small, so that the segment of Moon edge within it appears almost

straight. Extensive testing has shown that the best choice is to take s = d0.8pre,

with a lower limit of s = 3 and an upper limit of s = 21.

• dmax: maximum distance for RANSAC. Chosen proportional to pr, according

to dmax = 5 pr/100.
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• NT : Number of tests for RANSAC. This is chosen as a fraction of all the

possible combinations of p elements taken from the set of N1 pixels remaining

after the box-based filtering.

NT =
1

5

(
N1

p

)
(2.50)

Additionally, an upper limit for this parameter is set at 500.

• ∆Xmin: convergence tolerance for CSF Least Squares. This parameter is obvi-

ously necessary for the latter best fitting rather than the pixel identification,

but it is here described for completeness. Assuming the requirement accuracy

is 0.3 pixel (in center and radius estimation), the tolerance is chosen to be 1/50

of that value, ∆Xmin = 0.3/50.
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CHAPTER III

IMAGE PROCESSING - FEATURE RECOGNITION

Once the pixel in the image have been selected, it is finally possible to best fit the

data to determine the geometric characteristics of the observed body. As mentioned

before, these are center O and apparent radius rc for a circle, and center O, axes a and

b and inclination θ for an ellipse. Now, the problem of recognizing geometrical entities

and reduce them to a minimal set of parameters, sometimes called feature extraction,

is very important in image processing for a number of applications, foremost among

them computer graphics and computer vision. Consequently a great amount of

research has gone into developing methods to efficiently and univocally recognize

geometrical shapes within an image; in particular, much more literature is available

regarding circle identification than ellipse. This is partially due to the fact that the

first case is more treatable. Nevertheless, there are some reliable methods available

for ellipse identification, which will be described below. Of course, trying to identify

ideal geometrical figures within a discrete representation of the physical world reduces

essentially to a best fitting problem, which is way all the methods discussed are

by all intents and purposes best fitting techniques. Currently, feature recognition

techniques for conic curves fall within one of the following categories:

In Geometric Fit, given a set of n data points, one tries to iteratively converge to

the minimum of

Lg =
n∑
i=1

d2
i (x) (3.1)
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where di are geometric distances from the data points to the conic, and x is

the vector of the parameters to be found.

In Algebraic Fit, the di are replaced with some other function of the parameters

fi, and thus a new cost function is defined:

La =
n∑
i=1

f 2
i (x) (3.2)

These functions typically are algebraic expression of the conic in question,

which are usually simpler than the expression for geometric distances.

Historically, geometric fit has been regarded as being the more accurate of the

two. However, this accuracy comes at the price of added computational cost, and

possibility of divergence. Algebraic fit, instead, is typically reliable, simple and

fast. A common practice is to use an algebraic fit to generate an initial guess for a

subsequent iterative geometric fit, but in recent years, new algebraic fitting routines

have shown such a degree of accuracy that geometric fits cannot improve it noticeably

[2].

To find the algorithm that best suits the mission needs, an extensive analysis of

various methods has been done (both geometric and algebraic) for the circle and the

ellipse. From the abundance in literature, there are many advanced circle algebraic

fits with accuracy comparable to iterative methods making the first surely the better

choice. For the ellipse the possibility of a geometric fit has been explored to compare

with the few algebraic fits found in literature. The methods for circle best fitting are

described first, and then those for ellipse best fitting.
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III.A. Circle Best Fitting

A great deal of best fitting algorithm for the circle is available in literature.

Many of those are geometric methods, for which Eq. (3.1) assumes the form:

Lg =
n∑
i=1

[
√

(xi − xc)2 + (yi − yc)2 − rc]2 (3.3)

and their reliability and accuracy is ultimately solely dependant on the iterative

scheme implemented. Typically, the Levenberg-Marquardt method is considered the

most accurate [26]. However, a great number of algebraic fits have been developed

as well, and several of these are accurate enough to compete with more complex

geometric fits. This, coupled with the desire to keep the computational load on the

spacecraft system low, makes algebraic fits more suitable for the mission. Table III.1

summarizes several algebraic fits which have been thoroughly analyzed by Chernov

[2, chap. 5]. Among these, the Taubin fit has been chosen to be implemented in the

code, because of its accuracy, ease of implementation and reliability. Therefore, this

method is described in further detail.

III.A.1. Taubin Best Fit

It has been shown in [2, pp. 127-130] that K̊asa, Pratt and Taubin fit can be

described with very similar formalism using matrix representation. For convenience,

that treatment is briefly reported here.

Given the implicit equation for a circle

a (x2 + y2) + b x+ c y + d = a z + b x+ c y + d = 0, (3.4)
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Table III.1: Summary of algebraic best fitting algorithms for circle.

Method Pros Cons

K̊asa [20] Simplest, fastest method,

consistent for vanishing

noise

Underestimate radius with

data distributed over small

arcs

Pratt [32] Same as K̊asa, plus can

treat collinear data

Numerically unstable de-

pending on the implementa-

tion

Taubin [41] Similar to Pratt, but can be

extended to other curves

n/a

Kukush-Markovsky-

van Huffel [36]

Consistent estimator Works best with big dataset
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an algebraic best fit minimizes the function:

F (A) =
1

n

n∑
i=1

(a zi + b xi + c yi + d)2 = n−1AT(ZTZ)A = ATMA (3.5)

subject to a constraint

ATNA = 1 (3.6)

where

A =



a

b

c

d


, Z =


z1 x1 y1 1

...
...

...
...

zn xn yn 1

 , and M =
1

n
ZTZ =



zz zx zy z

zx xx xy x

zy xy yy y

z x y 1


,

(3.7)

and the shorthand zi = x2
i + y2

i and z = 1
n

∑
zi, . . . have been used. The constraint

matrix N determines the specific fit. In particular,

N = K =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


→ a = 1, (3.8)

for K̊asa fit,

N = P =



0 0 0 −2

0 1 0 0

0 0 1 0

−2 0 0 0


→ b2 + c2 − 4ad = 1, (3.9)
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for Pratt, and

N = T =



4z 2x 2y 0

2z 1 0 0

2y 0 1 0

0 0 0 0


→ 4a2z + 4abx+ 4acy + b2 + c2 = 1, (3.10)

for Taubin. It is also worth mentioning that the constraint (3.10) can be rewritten

as two constraints, namely d = −az−bx−cy and b2 +c2−4ad = 1, which shows how

Taubin is identical to Pratt but with an additional constraint to the minimization

problem. The constrained minimization problem (3.5) - (3.6) can be solved by using

Lagrange multipliers to define the new unconstrained function:

G(A, η) = ATMA− η(ATNA− 1). (3.11)

Differentiation leads to

MA = ηNA. (3.12)

which indicates A must be a generalized eigenvector of the pair (M ,N ), subject to

(3.6). Because for each solution it is always true that

ATMA = ηATNA = η (3.13)

then the solution with with the smallest η will minimize the G(A, η). Note that η

is never negative since M is a positive semi-definite matrix. It can be seen that the

constraint matrix (3.10) has rank 3, which indicates the problem can be reduced.

This is important because an eigenvalue problem of rank 3 can be solved explicitly

with a cubic equation without using SVD decomposition or other advanced methods.
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Assuming the data set is centered, i.e x = y = 0, the first constrain for Taubin be-

comes d = −az. This allows to eliminate the fourth parameter,and the minimization

problem is reduced to

FT (a, b, c) =
n∑
i=1

[a(z − zi) + bxi + cyi]
2 subject to 4za2 + b2 + c2 = 1. (3.14)

Further simplification is obtained by defining a0 = 2z1/2a, which leads to the final

system

FT (A0) =
n∑
i=1

[
zi − z
2z1/2

a0 + bxi + cyi

]2

= AT

0 (ZT

0Z0)A0 subject to ||A0|| = 1

(3.15)

where A0 = [a0, b, c]
T and

Z0 =


(z1 − z)/(2z1/2) x1 y1

...
...

...

(zn − z)/(2z1/2) xn yn


which is the required formulation of rank three.

III.B. Ellipse Best Fitting

The best fitting of an ellipse is a sensibly more complicated problem than for the

circle. First of all, a generic ellipse is uniquely defined by 5 parameters rather than 3;

this leads immediately to a more complicated expression for geometric fit, to the point

that most authors focus exclusively on algebraic fit for this conic section. Moreover,

for ellipses with very low eccentricity the inclination becomes unobservable. This is

an important problem when observing Earth, since, having an estimated equatorial

radius of 6, 378.1 km and a polar radius of 6, 356.8 km, its flattening is only 0.0033528,
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which means the Earth projects an ellipse with e = 0.0067 when observed from the

equator. This number rapidly approaches 0 as the latitude of the observer reaches

the poles. Such small values of e will be easily masked by the presence of noise and

indeed it is necessary to assume that above a certain latitude, considering the typical

levels of noise encountered in this research, it is impossible to discern the elliptical

shape. Therefore, the target must be considered a circle. Even when the target can

be considered elliptical, the greatest errors will be experienced in the estimate of the

inclination.

III.B.1. Geometric Fit for the Ellipse

To attempt a geometric fit of the ellipse, it is important to have a good para-

metric representation, as this will greatly simplify the successive work. Also, by

considering the fact that the target flattening is known, the number of parameters

can be reduced to four given that f = 1 − b
a

= 1 − ρ. A compact way to write the

equation of a generic ellipse as explicit function of its center [xc, yc], semi-major axis

a and inclination θ is

F (B) = F (xc, yc, a, θ) = (X −C)TR(θ)T J R(θ) (X −C)− 1 = 0 (3.16)

where X = [x, y]T, C = [xc, yc]
T and

R(θ) =

 cos θ sin θ

− sin θ cos θ

 ; J =

1/a2 0

0 1/(ρa)2

 (3.17)
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Given a set of points, it is possible to use Eq. (3.16) to set up a Least Squares based

best fit. To this purpose, the Jacobian of F is required:

J =
∂F

∂B
=


−2R(θ)T J R(θ)(X −C)

− 2
a
(F + 1)

(X −C)T (Ṙ(θ)T J R(θ) +R(θ)T J Ṙ(θ))(X −C)

 . (3.18)

Then, the solution for the parameter vector B has the form [4, pp. 24-29]

B = −(JTJ)−1 J F. (3.19)

which is to be solved at every iteration, as this approach is based on a linearization

of a non-linear problem. To this purpose, to improve the stability and convergence

speed, the Levenberg-Marquard [26] correction has been implemented, replacing JTJ

with Jλ = JTJ + λ I where λ is an additional positive control parameter to be

changed at every iteration.

III.B.2. Geometric Fit Results

A statistical analysis has been conducted to test the effectiveness of the method

described above. To this purpose, simulated data have been generated by superim-

posing Gaussian noise to a known ellipse. Moreover, for each test a new data set has

been used, with inclination of the target ellipse randomly varying. A typical result,

obtained over 10, 000 runs is depicted in Figure III.1. As one can see, the error for

center and semi-major axis is the same, less than 3 pixels almost always, while the

inclination error is below 3 degrees. However, these results are for an ellipse with

ρ = 0.9. As this number approaches 1, the accuracy on inclination declines dramati-
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Figure III.1: Geometric Best Fit of ellipse over 10,000 runs (ρ = 0.9).
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(a) ρ = 0.99 (b) ρ = 0.9966

Figure III.2: Inclination error for different values of ρ.

cally (see Figure III.2). The algorithm thus becomes completely unreliable for values

of flattening within the range of interest. Therefore this geometric fit, while capable

of good performance in general, it is not suitable for this application. It is necessary

to turn to algebraic fits.

III.B.3. Algebraic Fit for the Ellipse

Among the few algebraic fits for ellipses, the method developed by Fitzgibbon[11]

has been found to give good results but its original formulation has several drawbacks,

specifically numerical instabilities and inability to treat ideal cases (i.e. data perfectly

fitting the model). However, these issues have been solved in [15] which has the

added benefit of reducing the problem to the eigenanalysis of a 3×3 matrix, which as

mentioned before can be solved with elementary techniques. The original Fitzgibbon

method and its modification are detailed next.
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III.B.4. Improved Fitzgibbon Ellipse Fit

The implicit equation of a conic is

f(a, b, c, d, e, f) = ax2 + bxy + cy2 + dx+ ey + f = XTA = 0. (3.20)

For this equation to represent an ellipse, the relation b2 − 4ac < 0 must be satisfied.

Since inequality constraints are more complicated to enforce, it is convenient to

note that the parameter vector A can be freely scaled, as this does not change the

final solution. Then, the constraint can be changed into an equality constraint,

4ac− b2 = 1. Therefore the minimization problem can be written in matrix form as

min
A
ATDTDA = min

A
ATSA subject to ATCA = 1. (3.21)

where

D =


x2

1 x1y1 y2
1 x1 y1 1

...
...

...
...

...
...

x2
n xnyn y2

n xn yn 1

 , and C =



0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (3.22)

The solution of this optimization problem is the generalized eigenvalue problem

SA = λCA subject to ATCA = 1, (3.23)

which has already been encountered for circle best fit, and whose solution is the

eigenvector associated with the smallest positive eigenvalue. As mentioned before,
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solving Eq. (3.23) in this form leads to numerical instability. Instead, it is possible

to decouple the quadratic and the linear part of the problem by splitting D:

D1 =


x2

1 x1y1 y2
1

...
...

...

x2
n xnyn y2

n

 , and D2 =


x1 y1 1

...
...

...

xn yn 1

 , (3.24)

Consequently, the matrix S can also be considered composed of three submatrices

S =

S1 S2

ST
2 S3

 , where


S1 = DT

1D1

S2 = DT
1D2

S3 = DT
2D2

(3.25)

Finally, the non-zero part of C can be isolated

C1 =


0 0 2

0 −1 0

2 0 0

 (3.26)

and the parameter vector can be split in the two parts A1 = [a, b, c]T and A2 =

[d, e, f ]T. With these modifications, Eq. (3.23) is equivalent to the system of equa-

tions

S1A1 + S2A2 = λC1A1 (3.27)

ST

2 A1 + S3A2 = 0 (3.28)

Since S3 is always invertible unless all the points lie on a line [16], in which case

fitting an ellipse is impossible, it is possible to find A2 = −S−1
3 ST

2 A1 and substitute

in Eq. (3.27) to obtain the reduced optimization problem

C−1
1 (S1 − S2S

T

3 S2)A1 = MA1 = λA1 subject to AT

1 C1A1 = 1. (3.29)
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This formulation of the Fitzgibbon algorithm has been implemented with an explicit

cubic solver for the characteristic equation.

III.B.5. Algebraic Fit Results

To test the accuracy of this method, a series of runs have been performed with

artificially generated data sets superimposed with Gaussian noise. The number of

points is taken equal to 100, the noise equal to 1 pixel (1σ), and the target ellipse

is considered having center aligned with the optical axis and inclination of 20 de-

grees with respect to the horizontal axis. A total of 1000 tests are performed. The

results are depicted in Figure III.3. Aside from the fact that the accuracy of this

method is comparable with those of the geometric method described above (see Fig-

ure III.1), what is important to remark is that the inclination again stands out for

the much higher lever of error. Truly, the small values of eccentricities expected in

this application make the inclination of the ellipse almost unobservable. It is ulti-

mately necessary to understand that in many cases it is not possible to discern the

difference in axes for Earth, and it must be therefore treated as a circle.

III.C. Sigmoid Function Least Square

To further improve the results, it is possible to apply another least square opti-

mization. In this case, a class of functions, called Sigmoid Functions (SFs) is used to

estimate with greater precision the location of the target edge within the image. Sig-

moid functions are distinguished by the geometric shape on which they are modelled.

Thus there exist Linear, Circular and Elliptical SFs. Similarly, in three dimensions
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Figure III.3: Statistical analysis of the Fitzgibbon fit.

one has Spherical and Ellipsoidal SFs. These functions are introduced in this section

along with the partial needed to use them for least-squares estimation.

III.C.1. Linear Sigmoid Function (LSF)

A Linear Sigmoid Function is described by

f = ymax +
ymin − ymax

1 + ek(xt−x)
(3.30)

where ymax and ymin are the initial and final levels of the sigmoid functions, xt the

the distance from the origin where the step transition occurs, and k is the sigmoid

function constant, indicating how rapid the step transition is. The higher the value of

k the shorted the step transition is. Using xt = 50 and for ymax = 150 and ymin = 20,

four examples for various values of k = [0.1, 0.3, 0.9, 2.7] are shown in Figure III.4
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Figure III.4: Examples of Linear Sigmoid Functions.

Least-squares with a LSF requires building a Jacobian. In the general case the

Jacobian will be an n × 4 matrix associated to the four unknowns, xt, ymax, ymin,

and k. The Jacobian can be of smaller dimension when some of these variable can

be assumed to be known (e.g., k, or the transition levels ymax and ymin). Setting

αi = ek(xt−xi) (3.31)

the Jacobian has the form

J =


∂f1

∂xt

∂f1

∂ymax

∂f1

∂ymin

∂f1

∂k
...

...
...

...

∂fn
∂xt

∂fn
∂ymax

∂fn
∂ymin

∂fn
∂k

 (3.32)
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where

∂fi
∂ymin

=
1

1 + αi
,

∂fi
∂ymax

=
αi

1 + αi
= αi

∂fi
∂ymin

,

∂fi
∂xt

= −(ymin − ymax)αi k

(1 + αi)2
= − ∂fi

∂ymin

∂fi
∂ymax

(ymin − ymax) k, and

∂fi
∂k

= −(ymin − ymax)αi
(1 + αi)2

(xt − xi) =
(xt − xi)

k

∂fi
∂xt

.

The iterative least squares approach is the described by

∆xt

∆ymax

∆ymin

∆k


= (J TJ)−1 J T


f1 − f(x1)

...

fn − f(xn)


(3.33)

Sometime, a good estimation of ymax and ymin is available by statistics taken

from the head and the tail of the data. In this case, the second and third rows of

the Jacobian are omitted. In some other cases k can also be assigned. For these

cases, which are associated to some kind of knowledge about the step transition, the

Jacobian becomes an n vector.

In order to successfully perform least-squares with sigmoid functions, the fol-

lowing considerations must be well understood. Particular attention must be given

to the range of the xi vector. In fact, when the difference, xt − xi, is given in pixels

then the values of αi for pixels far from xt may become too big. When this hap-

pens, αi →∞ and, consequently, the terms
∂fi
∂ymax

become undefined. To avoid this

problem a particular attention must be given to the range size around the transition.

This must be the smallest possible. Scaling the xi is not a solution as it will modify
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the product k(xt − xi), which is equivalent of using a smaller value of k.

III.C.2. Circular Sigmoid Function (CSF)

Equation (3.30) can be extended to two-dimensional space with radial distribu-

tion

f = ymax +
ymin − ymax

1 + ek(re−d)
(3.34)

where d =
√

(c0 − c)2 + (r0 − r)2 is the square distance (here provided in pixel) with

coordinates [r, c] from the origin [r0, c0] and re is the radial step transition. Setting

βi =
√

(c0 − ci)2 + (r0 − ri)2 and αi = ek(re−βi), (3.35)

the Jacobian requires the computation of the following derivatives

∂fi
∂r0

=
(ymin − ymax)αi

(1 + αi)2
k
r0 − ri
βi

∂fi
∂c0

=
(ymin − ymax)αi

(1 + αi)2
k
c0 − ci
βi

∂fi
∂re

= −(ymin − ymax)αi
(1 + αi)2

k

∂fi
∂k

= −(ymin − ymax)αi
(1 + αi)2

(re − βi)

∂fi
∂ymax

=
αi

1 + αi
∂fi
∂ymin

=
1

1 + αi

(3.36)

CSFs are used for high accurate estimation of Moon center and radius. Spice

provides the semi-axes of the Moon ellipsoid as all equals, a = b = c = 1737.0 km1.

Dealing with a spherical body greatly simplifies the data processing complexity as

no body center offset and observed ellipse orientation must be considered.

1Reference [44] provides the following values for the Moon semi-axes: a = 1737.8414 km (Equa-

torial semi-major axis), b = 1737.59 km (Equatorial semi-minor axis), and c = 1737.17 km (Polar

axis)
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III.C.3. Elliptical Sigmoid Function (ESF)

An Elliptical Sigmoid Function is associated with an ellipse with observed semi-

axes a and b along the α and β axes, respectively. These observed semi-axes are

actually a′ and b′ and they are computed using Eq. (2.25). The equation of an

ellipse with respect to its own axes is

b2 α2 + a2 β2 = a2 b2 (3.37)

Setting ρ = b/a, Eq. (3.37) becomes a function of a only

ρ2 α2 + β2 = ρ2 a2 (3.38)

An ESF is described by

f = ymax +
ymin − ymax

1 + ek(ρ a−d)
(3.39)

where d =
√
ρ2 α2 + β2, and the coordinate transformations between [α, β] (in pixel)

and [r, c] (row and column, pixel) are provided in Eq. (A.5) and (A.6), respectively.

The ellipse has center [r0, c0] and the ellipse oriented angle ϑ (see Figure A.2) can be

computed using by the relationship C ŵ = v̂, given in Eq. (2.22), specified for the

greatest semi-major axis of the observed ellipse, ŵa = {a′, 0,
√

1− a′2}T.

Setting

βi =
√
ρ2x2

i + y2
i and αi = ek(ρa−βi) (3.40)

where the [xi, yi] from/to [ri, ci] conversions are given in Eq. (A.3) and Eq. (A.4).
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The Jacobian requires the computation of the following derivatives

∂fi
∂r0

=
(ymin − ymax)αi

(1 + αi)2
k
ρ2xi sinϑ+ yi cosϑ

βi

∂fi
∂c0

=
(ymin − ymax)αi

(1 + αi)2
k
yi sinϑ− ρ2xi cosϑ

βi

∂fi
∂a

= −(ymin − ymax)αi
(1 + αi)2

k ρ

∂fi
∂ϑ

=
(ymin − ymax)αi

(1 + αi)2
k
xiyi(ρ

2 − 1)

βi

∂fi
∂ymax

=
αi

1 + αi
∂fi
∂ymin

=
1

1 + αi
∂fi
∂k

= −(ymin − ymax)αi
(1 + αi)2

(ρa− βi)

(3.41)
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CHAPTER IV

IMAGE PROCESSING EXAMPLES

To better illustrate the methods discussed so far, four examples of image pro-

cessing will be discussed. These try to cover a wide range of possible conditions for

the target.

All these tests have been performed with no information about time, camera

data, and observer, Moon, and Sun positions. The image derivative is obtained using

the 4-point central approach with no Richardson extrapolation. These information

clearly help to define the best values of the internal parameters. Since this help is

missing, the internal parameters have been adopted with same values in all three

tests. These values are:

1. Box-based outliers elimination: box size = 21× 21;

2. Box-based outliers elimination: derivative ratio > 0.6;

3. Box-based outliers elimination: corner ratio < 0.3;

4. Box-based outliers elimination: eigenvalue ratio < 0.3;

5. RANSAC: minimum distance dmin = 3 pixels;

6. Max number of iteration for CSF-LS: 50;

7. Tolerance for CSF-LS: 0.3/50 pixels.
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IV.A. Example #1: Real Moon Image, Two-times Cropped

The first example shows the capability of the code to deal with situations in

which the target is cropped by the frame. In this case, the target is cropped twice,

out of a maximum possible of 4 times. The original image is depicted in Figure IV.1.

The pixel selection process is illustrated in Figure IV.2. For this image, an overall

323 points have been found to be outliers and removed. Regarding the best fitting

process (Figure IV.3), applying the Sigmoid least square has changed the best fitting

by less than 2 pixels. The convergence is reported in Table IV.1.

Figure IV.1: Example #1: Original image.
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(a) 1497 derivatives selected. (b) Box-based Test.

(c) Box approach: 179 removals. (d) RANSAC: 144 removals.

Figure IV.2: Pixel selection process for example#1.
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Table IV.1: CSF-LS convergence process for example #1.

Iter # r yc xc

0 1208.0027 1463.1014 1031.6035

1 1208.5013 1463.7112 1031.7029

2 1208.8818 1464.1634 1031.7398

3 1209.1436 1464.4729 1031.7559

4 1209.2979 1464.6546 1031.7643

5 1209.3768 1464.7473 1031.769

6 1209.4148 1464.7916 1031.7715

7 1209.4325 1464.8124 1031.7728

8 1209.4408 1464.8219 1031.7734

9 1209.4445 1464.8264 1031.7737

71



(a) Taubin Best Fit. xc = 1031.6, yc =

1463.1, r = 1208.0 pixels.

(b) CSF-LS. ∆xc = −0.170, ∆yc =

−1.725, ∆r = −1.442 pixels.

Figure IV.3: Best fitting process for example#1.

IV.B. Example #2: Barely Visible Moon

The second example considers a situation in which the target (specifically the

Moon) is barely illuminated, and therefore the algorithm has to deal with a relatively

thin target (see Figure IV.4). For this case, while a total of 306 points are removed

before the best fitting process, none is found via RANSAC test (see Figure IV.5d).

This is because most of the brightness of the image is concentrated in a very thin

arc. There are therefore no points not able to satisfy the requirements of RANSAC.

For the best fitting procedure, it is interesting to notice that the correction along the

y-axis is over one order of magnitude greater than along the x-axis (see Figure IV.6)

. This is due to the fact that the point distribution is completely unbalanced in

the horizontal direction. Thus, Sigmoid least square has to compensate for a bigger

error. Also, the convergence process requires 11 iterations to satisfy the tolerance
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(Table IV.2).

Figure IV.4: Example #2: Original image.

IV.C. Example #3: Cropped Earth

In Figure IV.7, a cropped view of the Earth is depicted. While the Earth is

supposed to project an ellipse on the imager, as described in the previous chapters

this information is lost due to the fact that expected eccentricity is so small that is

inevitably masked by the noise. Therefore, here the target is assumed to be once

more circular. Compared to images of the Moon, there is a net increase in outliers

(see Figure IV.8). Indeed, between box-based and RANSAC removal methods, a

total of 1222 points is removed. On the other end, the remaining pixels are sufficient

to estimate the parameters with great precision, which is barely improved by the

Sigmoid least squares (Figure IV.9). This is best illustrated by the fact that only 4

iterations are required to reach convergence, as reported in Table IV.3.
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(a) 1501 derivatives selected. (b) Box-based Test.

(c) Box approach: 306 removals. (d) RANSAC: 0 removals.

Figure IV.5: Pixel selection process for example #2.

(a) Taubin Best Fit. xc = 864.158, yc =

192.760, r = 600.726 pixels.

(b) CSF-LS. ∆xc = −0.126, ∆yc =

−4.704, ∆r = 4.370 pixels.

Figure IV.6: Best fitting process for example #2.
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Table IV.2: CSF-LS convergence process for example #2.

Iter # r yc xc

0 600.7265 192.7597 864.1576

1 598.3991 195.2876 864.2523

2 597.3463 196.4184 864.284

3 596.8473 196.9489 864.291

4 596.6038 197.2055 864.2907

5 596.4822 197.3328 864.2888

6 596.4204 197.3972 864.287

7 596.3885 197.4303 864.2857

8 596.372 197.4474 864.2848

9 596.3633 197.4564 864.2843

10 596.3587 197.4611 864.2839

11 596.3563 197.4636 864.2837
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Figure IV.7: Example #3: Original image.

Table IV.3: CSF-LS convergence process for example #3.

Iter # r yc xc

0 172.6639 166.9863 162.2505

1 172.6059 166.9053 162.3508

2 172.5849 166.8783 162.3717

3 172.5788 166.8707 162.3762

4 172.5772 166.8688 162.3772
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(a) 1464 derivatives selected. (b) Box-based Test.

(c) Box approach: 1146 removals. (d) RANSAC: 76 removals.

Figure IV.8: Pixel selection process for example #3.
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(a) Taubin Best Fit. xc = 162.250, yc =

166.986, r = 172.664 pixels.

(b) CSF-LS. ∆xc = −0.126, ∆yc =

−0.117, ∆r = 0.087 pixels.

Figure IV.9: Best fitting process for example #3.
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IV.D. Example #4: Synthetic Crescent Moon

Because the selection of images available for testing was limited, this has been

augmented with a series of artificially generated images, obtained with the NASA

visualization tool EDGE. The issue with this system is that the final images have

an unnatural “crispness”, due to being completely artificially created. This creates

problems to the pixels selection algorithm, and also is not representative of real

images. To resolve this issue, a simple convolution filter is applied in preprocessing,

of the form F =
1

9


1 1 1

1 1 1

1 1 1

.

Except for this detail, the process is analogous to previous cases. The original

image is depicted in Figure IV.10. The derivative selection process (see Figure IV.11)

removes a total of 736 pixels, most of which via box-based removal. Figure IV.12

shows the results of Taubin Best Fit for this example, and the convergence of the

CSF algorithm is described in Table IV.4.
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Figure IV.10: Example #4: Original image.

Table IV.4: CSF-LS convergence process for example #4.

Iter # r yc xc

0 390.6188 409.1497 380.7349

1 390.744 409.155 380.4779

2 390.7965 409.1737 380.3782

3 390.8168 409.1842 380.341

4 390.8245 409.1889 380.3272

5 390.8274 409.1909 380.3221

6 390.8285 409.1916 380.3202
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(a) 1501 derivatives selected. (b) Box-based Test.

(c) Box approach: 732 removals. (d) RANSAC: 4 removals.

Figure IV.11: Pixel selection process for example #4.
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(a) Taubin Best Fit. xc = 380.735, yc =

409.150, r = 390.619 pixels.

(b) CSF-LS. ∆xc = 0.415, ∆yc =

−0.042, ∆r = −0.210 pixels.

Figure IV.12: Best fitting process for example #4.
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CHAPTER V

BÉZIER CURVES

Exact orbit determination is completely solvable only for the Two Body Problem

and a few restricted cases involving three bodies. The search for solutions in more

general cases has lead to many important advancements in mathematics in the last

400 years [27]. Many approaches have been used, by formulating the problem as an

Initial Value Problem, or a Two Points Boundary Value Problem [1] [17]. In other

cases, especially since orbit determination has become necessary for satellites and

not just for planets, statistical or filter-based techniques have been developed [38]

[6]. In general however, the solution is specifically tailored for the application [43]

[22] [45].

Given the work previously done to extract position information from the images,

it is sensible to use an estimation technique that dispenses completely of any type of

physical models, and instead relies completely on the measurements. In particular

Bézier polynomials are used, because they are extremely versatile, while at the same

time completely defined by a limited number of parameters. They also allow for a

compact matrix representation [30], that allows for a very efficient least square best

fitting technique to be implemented. A Bézier function is a parametric curve widely

used in computer graphics and many other design related applications. While the

mathematical foundations were established in 1912 by Sergei Bernstein, its applica-

bility to design was understood much later, between 1959 and 1962, with the work

of Pierre Bézier and Paul de Casteljau, who used them to design automobile hulls at
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Renault and Citroën, respectively. Mathematically, a Bézier curve in 3D is defined

as a polynomial function of a parameter s and a set of control points, organized in a

3 × n matrix C, where n is the curve degree. While C is the ultimate target of the

estimation, as any Bézier curve is completely described by its control points, the val-

ues of the parameter s corresponding to the chosen measurements have to be found

as an intermediate step. This leads to an iterative process involving two different but

connected least square problems, one to find the control points and the other to find

the parameter values. The solution is considered achieved once a certain measure of

the error, defined as the difference between estimates and measurements, is below a

chosen tolerance. Then, a second Bézier curve is used to approximate the behaviour

of time along the trajectory. Computation of this second curve is not subject to

an iterative process, because it uses the set of parameter values previously found.

Further details are given in the following sections.

V.A. Bézier Least Square

The results in this section come from work first described in [7], which in turn

was originally based on [30]. A Non-Rational Bézier function can be written as linear

combination of Bernstein polynomials,

r =
n∑
k=0

ckB
n
k (s) where Bn

k (s) =

(
n

k

)
sk(1− s)n−k, s ∈ [0, 1]. (5.1)

and by using the binomial theorem, a generic Bernstein polynomial can be rewritten

as

Bn
k (s) =

(
n

k

)
sk

[
n−k∑
j=0

(
n− k
j

)
(−s)n−(k+j)

]
=

(
n

k

)[n−k∑
j=0

(
n− k
j

)
(−1)n−(k+j)sn−j

]
.

(5.2)

84



Therefore, any Non-Rational Bézier function has an expression of the form

r =
n∑
k=0

[
ck

(
n

k

)[n−k∑
j=0

(
n− k
j

)
(−1)n−(k+j)sn−j

]]
. (5.3)

While Eq. (5.3) has a rather cumbersome form, when m points along a curve and

the corresponding values of the parameter s are chosen, it can be rewritten in a more

compact form using linear algebra

R = CMS (5.4)

where


R = [ r1, r2, . . . , rm ]

C = [ c0, c1, . . . , cn ]

and S =



sn1 sn2 · · · snm−1 snm

sn−1
1 sn−1

2 · · · sn−1
m−1 sn−1

m

...
...

. . .
...

...

s1 s2 · · · sm−1 sm

1 1 · · · 1 1


(5.5)

and the elements of matrix M are of the form M(k, j) =
(
n
k

)(
n−k
j

)
(−1)n−(k+j), j =

1, . . . , n−1. It follows from this formula that M(k, j) = M(j, k), i.e. M is a symmetric

matrix, and also M(k, j) = 0 whenever k + j > n+ 1. To reiterate, R is a matrix of

measurements, C is the control points matrix, M is a coefficient matrix completely

determined by the degree n of the polynomial chosen, and S contains all the n + 1

powers of the parameter values sk corresponding to the m measurements. If the

degree of the curve and the values of the parameter are known, Eq. (5.3)allows to

estimate the control points via least squares. Indeed,

C = RST (SST)−1 M−1 (5.6)

The crucial part is therefore to determine n and the distribution of parameter {sk}.
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V.A.1. Degree of the Bézier Curve

As is to be expected with polynomials, Bézier functions of different degree pro-

vide different levels of approximation. Since all but the simplest trajectories have

variable curvature, and small values of curvature are often masked by noise, it is not

possible to define a priori the optimal degree to use in a specific application. As a

rule of thumb, polynomials of higher degree will provide better approximations, up to

a point, because of the greater number of degree of freedoms (the number of control

points of a polynomial of degree n is n+1). On the other hand, the maximum degree

usable for a given interpolation is limited by the number of data points available,

namely:

n =
⌈m
d
− 1
⌉
. (5.7)

where the number at denominator represents the number of dimensions (3 in the

present case) As n increases, matrix S becomes progressively ill-conditioned, becom-

ing unstable for n ' 10. This happens because the first columns are n-th powers of

numbers less than 1, and therefore quickly become infinitesimal, while the last col-

umn is constant and composed of 1’s. Therefore, the practical solution implemented

in the algorithm to find the “optimal” degree consists by starting the analysis with

a polynomial of degree 2 and then increasing this value until a local minimum in the

average position error has been found, or the degree reaches either the “hard” limit

enforced by Eq. (5.7) or the “soft” limit due to the numerical problems discussed

above (whichever is smaller). It has been found experimentally that in most cases

the optimal degree will be close or equal to the maximum defined by Eq. (5.7).
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V.A.2. Distribution of the Parameter

To solve Eq. (5.4), a distribution of the parameter s corresponding to the

measurements has to be assumed. If the data is provided at constant time step, a

uniform distribution can be used:

sk =
k − 1

n− 1
where k ∈ [1,m]. (5.8)

Another valid approximation relates the distribution with the relative distance of

subsequent data points, as per the following:

 s1 = 0

sm = 1

and sk =

k∑
j=2

|r̃j − r̃j−1|

m∑
j=2

|r̃j − r̃j−1|
where k ∈ [2,m− 1]. (5.9)

where the r̃j are the position measurements. In general, solving Eq. (5.4) with either

distribution leads to estimates displaced from the actual measurements, by a value

of:

dk = |CMsk − r̃k| k ∈ [1,m]. (5.10)

where sk is a vector of all the powers of sk. Obviously, changing a certain sk will

only affect the value of the corresponding dk. Thus, it is possible to find a new set

of parameters by minimizing a set of aptly chosen cost functions {Lk}:

Lk = (CMsk − r̃k)T(CMsk − r̃k) k ∈ [2,m− 1]. (5.11)

By expanding Eq. (5.11) becomes

Lk = sT

kMCTCMsk − 2rT

kCMsk + rT

krk. (5.12)
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Applying the necessary condition for a stationary point leads to a polynomial in sk:

dLk
dsk

=
dLk
dsk
· dsk
dsk

= 2 sT

kMCTCM
dsk
dsk
− 2rT

kCM
dsk
dsk

= 0 (5.13)

or equivalently

F (sk) = sT

kMCTCM
dsk
dsk
− rT

kCM
dsk
dsk

= 0 (5.14)

Eq. (5.14) is a polynomial in sk which can be solved for instance via Newton-Raphson

method, given an initial guess s̄k:

s∗k = s̄k −
F (s̄k)

F ′(s̄k)
(5.15)

where

F ′(sk) =
dF (sk)

dsk
=
dsT

k

dsk
MCTCM

dsk
dsk

+ sT

kMCTCM
d2sk
ds2

k

− rT

kCM
d2sk
ds2

k

(5.16)

In Eqs. (5.10 - 5.16), vector sk and its derivatives have the following expressions:

sk =



snk

sn−1
k

...

sk

1



dsk
dsk

=



nsn−1
k

(n− 1)sn−2
k

...

1

0



d2sk
ds2

k

=



n(n− 1)sn−2
k

(n− 1)(n− 2)sn−3
k

...

0

0


(5.17)

Minimizing Eq. (5.11) (note how the first and last point are left unchanged, to ensure

the parameter always spans the range [0, 1]), leads to a new parameter distribution,

that can in turn be used in Eq. (5.4) to find a new set of control points. In conclusion,

Eqs. (5.8) - (5.9) can be used as initial guess for the iterative process.
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V.A.3. Non-linear Time Best Fitting

Analogous to what has been done for position, time along the trajectory can also

be expressed as a function of the parameter s. When measurements are taken at con-

stant time step, the implicit assumption is that t varies linearly with the parameter,

as in t = ti (1−s)+tf s, which can be seen as a Bézier function of degree 1. However,

non-linear time models better accommodate velocity variations along the trajectory.

Therefore, time can described with polynomials of higher degree, and not necessarily

the same used for the trajectory. In principle, the two functions exist in different di-

mensional spaces, with the “time curve” being effectively one dimensional. However,

they still are related via the parameter s, because each measurement is associated

with a time instant. Therefore, upon reaching convergence in the estimation of the

sk, the control points τ for the “time curve” are easily found by applying just once

the same equation used for C:

t̃ = τMpSp → τ = t̃ST

p (SpST

p )−1 M−1
p (5.18)

where the subscript “p” is used to highlight how the degree used in this calculation

is not the same used for the estimation of the position.

V.B. Bézier Least Square Algorithm

In conclusion, the algorithm is composed of three cycles in sequence: the first

finds the optimal degree for the polynomial interpolating the position, the second

optimizes the parameter distribution, and the last finds the optimal degree for the

polynomial interpolating time, based on the parameter distribution found earlier.
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An alternative formulation, where the parameter distribution is optimized before

the degree, has also been tried. However, its results were of equal or lower accuracy,

while causing a considerable increase in computational cost. The overall algorithm

of the Bézier Least Squares (BLS) is described in Figure reffig:flowchart.

V.B.1. Estimate of the Velocity

As an added result of the method, once the “space” and “time” curve have been

found, it is straightforward to obtain an estimate for the velocity at the measured

positions; indeed:

v(t) =
dr

dt
=

(
dr

ds

) ∣∣∣∣
sk

(
ds

dt

) ∣∣∣∣
sk

=

(
dr

ds

) ∣∣∣∣
sk

(
dt

ds

) ∣∣∣∣−1

sk

(5.19)

Because both r(s) and t(s) are polynomials, these derivatives are extremely simple

to find. It is worth noting that Eq. (5.19) does not return the Bézier curve for the

velocity (i.e. its control points), but only the estimated velocity at the sk.

V.C. Weights of the Measurements

The next logical step is to extend the method by including relative weights for

the measurements. This can be done easily, from a mathematical standpoint, by

comparing Eq. (5.2) with the classic equations for Weighted Least Squares. Assum-

ing, as is often the case, all measurements to be uncorrelated,the weights matrix W

will be diagonal. Then:

min
C

(CMS−R)TW(CMS−R) = min
C

STMCTWCMS−2RTWCMS+RTWR (5.20)
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Figure V.1: Algorithm scheme.
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And the necessary condition for a local minimum is:

dK
dC

= C(MSWSTM)− RWSTM = 0 (5.21)

which can be further simplified:

C(MSWSTM) = RWSTM → C = RWSTM(MSWSTM)−1 (5.22)

and results into the following expression:

C = RWST(SWST)−1M−1 (5.23)

On the other hand, choosing the actual values to populate W is not at all easy.

Indeed, they are dependent both on the sensors used to acquire the data and the

methods used to process these data to obtain the actual measurements. Therefore,

each set of weights is specific to the mission and generalizations cannot be made.

Implementing the use of weights for the Bézier Least Square methods require a very

detailed description of the data acquisition and elaboration system, whose specifi-

cations might not be established enough in the initial stages of mission design. De-

pending on the application, it is sometime possible to run custom-made Monte Carlo

simulations to obtain approximate values for the weights. Other times, a possible

estimate can be derived by analysis of the data processing model.

When generating measurements from analysis of images of celestial bodies the

precision of such measurements is dependent primarily on the relative distance be-

tween observer and target (if the sensor properties can be assumed constant through-

out the mission), according to the following relationship, derived from the geometry

of Figure V.2:

dr

dD
= − f RD

(D2 −R2)3/2
→ σ2

D =
(D2 −R2)3

f 2R2D2
σ2
r (5.24)
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Figure V.2: Distance estimation sensitivity geometry.

In accordance with the Gauss-Markov theorem, the weights can be chosen as

wk = 1/σ2
D, so that the Least Square estimator is also a Minimum Variance Estima-

tor.

V.D. Bézier Least Squares Sensitivity Analysis

Because a Bézier function in multiple dimensions is simply an ordered vector

of one-dimensional functions, all the testing is done in 1D and the results are im-

mediately generalizable. For these tests, the target trajectory has been chosen as a

known Bézier curve, with artificially superimposed Gaussian noise. This simplifies

the analysis and allows the investigation of the sensitivity of the algorithm with re-

spect to changes in the parameter distribution. The target trajectory is a 5th degree

curve, depicted in Figure V.3.

First, we study the effect of noisy measurements. Gaussian noise with increasing

values of standard deviation (σr), up to 10% of the average value of the signal, is

superimposed to the truth, and a total of 100 tests are run for each value of σr

(Figure V.4).
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Figure V.3: Target function.

Figure V.4: Average error for increasing noise in the measurements.

One of the steps in the algorithm consists in shifting the values of s along the

curve to minimize the error for a given set of control points. Because of the need
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to assume a starting distribution to initialize the algorithm, it is worth analyzing

convergence when starting with poorly modeled distributions. The target trajectory

is generated using a uniform distribution, while the algorithm is initialized with a

different distribution. This is obtained as follows: each sk of the true uniform dis-

tribution is perturbed from its original position by a Gaussian noise whose standard

deviation (σs) is proportional to the width of the interval between two subsequent sk,

so as to keep the sequence ordered. Similarly to what has been done for the case of

noisy measurements, the standard deviation is increased linearly within the bound-

ary described above and 100 tests are performed for each value of σs (Figure V.5).

Figure V.5: Average error for increasing disturbances in the s distribu-

tion.
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V.E. Estimation of a Cislunar Trajectory

As a second test, Bézier Least Squares is used to estimate segments of a cislu-

nar trajectory for a Earth-to-Moon mission. The measurements are obtained with

a camera of focal length 300 mm and then random Gaussian noise, whose standard

deviation is based on the optical properties of the sensor, is artificially added. Us-

ing Eq. (5.24), it is possible to introduce weights in the formulation, as the the

reciprocal of σ2
D. Along the trajectory, three segments are considered, close to the

Earth, midway, and close to the Moon (Figure V.6). The second segment has a very

small average curvature compared to the first and the third. The first segment is

the most curved, and along it the spacecraft is mainly subject to Earth gravitational

effects, while along the third segment the Moon is the principal gravitational body

Each segment consists of 25 measurements, equally spaced over 2 hours. The tra-

jectory is simulated with the GMAT software, taking into account the gravitational

effects of Sun, Earth and Moon, in addition to higher order effects due to the Earth

gravitational field and the effects of solar radiation pressure.

The results show the performance of the Bézier least squares method point by

point along the segments, compared with a Weighted Iterative Least Square (ILS)

and an Extended Kalman Filter (EKF), both of which require full state propagation

to compute the estimate. For these two methods, the simplified physical model

implemented only includes the point mass effects of the Earth and the Moon.
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Figure V.6: Simulated Earth-to-Moon trajectory (GMAT).

V.E.1. Weighted Batch Iterative Least Square

The standard Batch Least-Squares orbit determination technique [39, pp. 199-

210] is used as a mean to assess the performance of the proposed method. Rather

then processing the Moon direction b̃k and Radius R̃k separately, a single derived

measurement is obtained. From the apparent Moon radius and the focal length, the

“measured” distance from the Moon ρ̃k is deduced. Then a measurement ỹk of the

vehicle position from the center of the Moon is calculated

ỹk = ρ̃kC
T

k b̃k = f
R$
R̃k

C T

k b̃k (5.25)

where R$ is the Moon radius, f is the camera focal length, and Ck is the J2000-to-

camera attitude.

To obtain the batch least-squares solution we start from an initial estimate

x̂T
0 = { r̂T

0 , v̂
T
0 } and propagate it forward to each measurement time using Earth

and Moon’s central gravities. Together with the state we integrate the state tran-
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sition matrix Φ(tk, t0) that takes linearized state deviations from the time of the

initial estimate to the time of the k-th measurement. At each measurement time we

accumulate the current observation:

H̃k =

[
I3×3 03×3

]
(5.26)

Hk = Φ(tk, t0) (5.27)

Λ = Λ +H T

k WkHk (5.28)

N = N +H T

k Wk [ỹk − (rmk − r̂k)] (5.29)

where Λ and N are initialized at zero, H̃k is the partial of the measurement with

respect to the current state, Hk is the partial of measurement with respect to the

initial state, r̂k is the estimated position of the vehicle with respect to the center

of Earth and rmk is the position of the Moon also with respect to Earth. The

measurement weight Wk is given by the inverse of the measurement error covariance

Σk.

Wk = Σ−1
k (5.30)

Σk = σ2
R

(
∂ỹk

∂R̃k

)(
∂ỹk

∂R̃k

)T

+ σ2
b

(
∂ỹk

∂b̃k

)(
∂ỹk

∂b̃k

)T

= σ2
Rf

2
R2

$
R̃4
k

C T

k b̃kb̃
T

k Ck + σ2
b ρ̃

2
k

(
I − C T

k b̃kb̃
T

k Ck

)
(5.31)

where sigma2
R is the variance of the error in determining the Moon radius and σ2

b is

the variance of the error in determining the Moon direction.

After all measurements are accumulated the initial estimate is updated as:

x̂0 = x̂0 + Λ−1N (5.32)

This procedure can be iterated multiple times, until convergence is reached.
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V.E.2. Extended Kalman Filter

The extended Kalman filter incorporates one measurement at the time rather

than using all of them at once. Therefore using the EKF algorithm only the estimate

at the very last measurement time contains information from all the measurements.

This is in contrast with the Iterative Least-Squares or the Bézier Least Squares ap-

proach in which the estimate at any point of the trajectory is obtained by best fitting

all measurements available. The EKF estimate at the time of the last measurement

is almost identical to the Weighted Iterative Least-squares estimate at that same

time.

The EKF is initialized with an initial estimate x̂T
0 = { r̂T

0 , v̂
T
0 } with associated

initial estimation error covariance given by

P0 =

(5 km)2I3×3 O3×3

O3×3 (0.01 km/s)2I3×3


The state is propagated forward to the next measurement time using Earth and Moon

central gravities. Together with the state we integrate the state transition matrix

Φ(tk, tk−1) that takes linearized state deviations from the prior measurement time

to the current measurement time. This is different from batch least-squares where

the state transition matrix was always referring to the initial epoch. In-between

measurements the covariance is propagated as

Pk = Φ(tk, tk−1)P+
k−1Φ(tk, tk−1)T
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notice the absence of process noise. The measurement update is given by

Kk = PkH̃
T

k (H̃kPkH̃
T

k + Σk)
−1 (5.33)

x̂+
k = x̂k +Kk[ỹk − (rmk − r̂k)] (5.34)

P+
k = Pk −Kk(H̃kPkH̃

T

k + Σk)K
T

k (5.35)

where H̃k and Σk are defined in Eqs. (5.26) and (5.31), respectively.

V.E.3. Simulation Results

For all segments, the ILS reaches convergence after 8 iterations, and the optimal

degree found by BLS is 7. As mentioned above, Gaussian noise is superimposed to

the simulated measurements. Results for segment 1 are reported in Figure V.7 and

V.8, results for segment 2 are in Figure V.9 and V.10, and results for segment 3 in

Figure V.11 and V.12. As it can be seen, BLS performs comparably with ILS and

EKF. Each figure shows the root sum squared of the errors at each measurement

time for the three algorithms. The overall performance of the three methods is

summarized by taking the average error along each segment in both position and

velocity. The results are reported in Table V.1.

It can be seen that the EKF provides progressively worse results as the space-

craft moves further from Earth, while BLS improves. This is mainly due to the fact

that EKF (like the ILS) uses a model which does not take into account any pertur-

bation and has zero process noise, therefore its results are less accurate where such

perturbations are more prominent. In contrast, BLS only uses measurements and

it is “closer” to the truth along segment 3. It is worth noting that even when BLS

has a greater margin of error than the other methods, it remains a sensibly sim-
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Close to Earth Midway Close to Moon

ILS Position error (km) 1.420 0.695 0.328

BLS Position error (km) 2.997 1.022 0.124

EKF Position error (km) 2.613 1.187 0.298

ILS Velocity error (km/s) 0.0019 0.0004 3.20× 10−4

BLS Velocity error (km/s) 0.0063 0.0026 6.88× 10−5

EKF Velocity error (km/s) 0.0067 0.0185 0.0157

Table V.1: Average error comparison.

pler method to implement, because it does not require any of the tuning procedures

typically associated with the Kalman filters. Moreover, the velocity estimates are

obtained very simply as a secondary result according to Eq. (5.19), while EKF and

ILS perform a full state propagation to obtain the same result.
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Figure V.7: Position estimation error along segment 1.

Figure V.8: Velocity estimation error along segment 1.
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Figure V.9: Position estimation error along segment 2.

Figure V.10: Velocity estimation error along segment 2.
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Figure V.11: Position estimation error along segment 3.

Figure V.12: Velocity estimation error along segment 3.
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CHAPTER VI

ERROR ANALYSIS

The previous three chapters of this dissertation have discussed the techniques

to extract position data from images of Moon and Earth and interpolate this data

with a trajectory. It is now necessary to investigate how errors are generated and

propagated during the computation. Such errors can be divided in four categories,

depending on what they affect or at which step in the algorithm they occur.

1. Estimated position error. This is the error in the Orion-to-Moon distance

computation (in km) due to errors in measured Moon radius (in pixel).

2. Estimated attitude error. This is the error made in the estimate of Orion-to-

Moon direction due to errors in the camera attitude knowledge (angle between

quaternion).

3. Image processing errors. The presence of noise in the image affects the

estimation. To quantify this effect, the same image is artificially perturbed

by random Gaussian noise multiple times, and then results of the estimation

process are compared, in a Montecarlo analysis. This is done for both fully

and partially illuminated target.

4. Pin-hole projection error. Lastly, it is necessary to consider the radial

distortion created by the pin-hole model (gnomonic projection) on the target

shape. Even for a spherical target, if its center is not aligned with the camera
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optical axis, the pin-hole model projection results in a conic section. The source

of error is not discussed in this work however.

This analysis will focus primarily on the Moon as a target.

VI.A. Position and Attitude Uncertainty Propagation

First and foremost, it is necessary to investigate how errors in the estimate of

the target’s center and dimensions propagate to position and attitude.

VI.A.1. Moon Radius

There is a direct relation between the target radius and the Observer-to-Target

distance. The Observer-to-Target vector can be defined as rom = rm − r where rm

and r are the target and observer position vectors in J2000, respectively. The vector

rm is known while the observer position vector, r, can be considered a random vector

variable with mean r̄ and standard deviation σr, that is, r ∼ N (r̄, σrû), where û

is a random unit-vector uniformly distributed in the unit-radius sphere. Obviously,

the uncertainty in the observer vector position coincides with the uncertainty in the

Observer-to-Target distance, σD = σr.

Now, focusing on the Moon, its radius in pixels in the imager is equal to

r =
f

d

Rm√
D2 −R2

m

(6.1)

where d is the pixel dimension (in the same unit of the focal length, f), Rm = 1, 737.5

km is the Moon radius, and D is the Observer-to-Moon distance. This equation
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allows us to derive the uncertainty in the Moon radius in the imager

σr =

∣∣∣∣ ∂r∂D
∣∣∣∣
r̄

σD =
f DRm

d (D2 −R2
m)3/2

σr (6.2)

The inverse of Eq. (6.2) is

σD =
d (D2 −R2

m)3/2

f DRm

σr (6.3)

and provides an important information about the accuracy required by the radius

estimation. This equation describes how the radius estimate accuracy is affecting the

Observer-to-Moon vector length, and, consequently, how it affects the estimation of

the position.

Equation (6.3) has been plotted in Figure VI.1 as a function of the Moon radius

error and for four values of distance, D = 50,000 km, D = 150,000 km, D = 250,000

km, and D = 350,00 km. Figure VI.2 provides σD as function of the Moon distance

for the specific value of σr = 0.3 pixels.

VI.A.2. Moon Center Direction

The Moon direction uncertainty is caused by the uncertainty in the attitude

knowledge. Consider the attitude q ∼ N (q̄, 2σqû) with mean q̄ and standard

deviation 2σq. Now the displacement with respect to the camera optical axis is

c =
f

d
tanϑ, where ϑ is the angle between estimated Moon center and camera opti-

cal axis. Therefore, the radial uncertainty in the Moon center direction is provided

by

σc =
f

d

∣∣∣∣ 1

cos2 ϑ

∣∣∣∣
q̄

σq (6.4)
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Figure VI.1: Estimation error on Moon distance for various values of

distances.

VI.B. Image Processing Error

Image processing error quantification would ideally require performing statistics

using a substantial set of images with known true data. Since no such ideal database

is available, the following analysis is performed by adding random Gaussian noise to

the same image. The Moon illumination scenario plays here a key role since when the

Moon is fully illuminated the number of data (pixels) used to perform the estimation

will be twice as much as in the partial illumination case, all other variables being
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Figure VI.2: Estimation error on Moon distance for Moon radius error of

0.3 pixels.

unchanged. For this reason two scenarios have been considered:

1. Partially illuminated Moon

2. Full illuminated Moon

The results of the tests for partially illuminated target are shown in Figure VI.3.

The original image is a real picture taken on March 6, 2013 at 05:24:30 from the Earth

surface near Houston using a focal length f = 100 mm. The statistics of the results
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Figure VI.3: Image processing error results: partial illumination case.

obtained in 1,000 tests by adding Gaussian noise with zero-mean value and standard

deviation σ = 10 gray tone are given. The code estimates the Moon radius and center

(row and column) by least-squares using circular sigmoid function (CSF-LS). The

results show the three parameters estimated as unbiased and with a maximum error

of the order of 0.2 pixels (with respect to the original picture). The histogram of

the number of iterations required by the least-squares to converge shows an average

of 8 iterations. The second image in the first row in Figure VI.3 shows the ellipsoid

distribution of the Moon center error due to the fact that the estimation uses just

data on one side of the Moon, on the illuminated part.

The results of the tests done using full illuminated Moon are shown in Fig-

ure VI.4. Also in this case the image is real and was taken in Houston on February
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Figure VI.4: Image processing error results: full illumination case.

25, 2013 at 22:33:00 CDT using a focal length f = 105 mm. The statistics of the

results obtained in 1,000 tests by adding Gaussian noise with zero-mean value and

standard deviation σ = 10 gray tone are given. The code estimates the Moon ra-

dius and center (row and column) by least-squares using circular sigmoid function

(CSF-LS). The results show the three parameters estimated as unbiased and with

a maximum error of the order of 0.01 pixels, one order magnitude more accurate

than what obtained in the partial illuminated case. The histogram of the number of

iterations required by the least-squares to converge shows an average of 3 iterations.

The central-upper plot in FigureVI.3 shows the unbiased Gaussian distribution of

the Moon center error. These more accurate results are due to the fact that the
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estimation uses data all around the Moon edge.
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CHAPTER VII

CONCLUSIONS

Ultimately, this research succeeded in developing a reliable method to extract

position measurements from optical images of celestial bodies and accurately inter-

polate a trajectory based on those measurements. As the work is composed of two

main sections, one dealing with the data extraction, and the other with the trajectory

interpolation, so the results will be described accordingly.

VII.A. Image Processing

For the data extraction, it is important to achieve very high accuracy when

estimating the target dimensions, as even very small error will generate errors several

orders of magnitude greater in the position, a problem that only worsen with distance

from the target. To compensate, every effort has been made to minimize such errors

at the source. Firstly, the best possible set of pixels has to be selected from the

image. This means exclusively pixels belonging to the edge of the target, spread

across the widest arc possible. Of the two techniques developed, the Gradient Method

has proven to be more reliable and more versatile, being able to correctly work in

any condition, whether the target is fully or partially illuminated, cropped or fully

within the field of view, or even barely visible. Therefore, the final code only uses

this method for pixel selection. To improve the reliability of the code, several safety

checks have also been included, as depicted in Figure VII.1. These also ensure the

final result will be consistent.
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Figure VII.1: Flowchart of the implemented algorithm.

• Check #1 (after Internal Parameters computation).

1. If the estimated radius pr (see Eq. 2.1) is less than a minimum threshold,

the target is considered too small to be observed.

2. If the illumination parameter pi is less than a minimum fraction of pr,

the target is assumed invisible. Also can be triggered if the target is

completely out of frame, or covers more than 95% of the imager.

• Check #2 (after box based outliers removal).

1. If too many outliers have been removed during this phase, the data set is
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considered fundamentally flawed and therefore rejected altogether.

• Check #3 (after RANSAC based outliers removal).

1. If too many outliers have been removed by RANSAC, then the data set

does not satisfy the basic assumption behind the method, and therefore

it is rejected.

2. If the distances found by RANSAC are not consistent with pr, the data

set is also considered flawed.

• Check #4 (after Taubin).

1. If the radius estimated by Taubin (or the semi major axis for Fitzgibbon)

is not consistent with pr, the best fitting procedure is considered failed.

2. If the computed center position is too far away from the optical axis, the

image is likely to be too distorted for good estimate.

• Check #5 (inside and after CSF-LS).

1. As the CSF-LS is an iterative process, a standard check on convergence

is performed.

2. If the correction applied to the initial guess is too big, the procedure is

assumed to have diverged.

If any of these checks are failed, the process is aborted and the system waits for

the next image.

To maximize the best fitting procedure, a great number of methods have been

tested and compared, to find those who best suit the application. These results have
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also been improved with original work. Particularly, the use of Sigmoid least square,

based on initial guess obtained with algebraic fit, allows to reach precisions well

below pixel size (less than 0.3 pixels). Despite these efforts, it has become apparent

that best fitting for ellipses constitute a much harsher problem than for circles. This

is not due to the conic section itself, as the latest algebraic fits can overcome the

mathematical complications easily. The real difficulty lies in the target itself being

the projection of an ellipsoid with extremely small flattening, which in turn projects

ellipses whose eccentricity is almost zero. This has two consequences:

• Of all the parameters, the inclination θ is the hardest one to observe, and

consequently the associated average error is one order of magnitude greater

than for the others.

• No matter how sophisticated the technique, eventually the eccentricity will be

completely obscured by noise, and therefore the ellipse can only be best fitted

as a circle.

VII.B. Trajectory Estimation

Regarding the trajectory estimation, this work shows that Least Squares applied

to Non-Rational Bézier functions provide a reliable approach to describe space trajec-

tories based on a set of measured position vectors. The proposed approach has been

tested in three segments of a simulated cislunar trajectory and compared with itera-

tive Least Squares and extended Kalman filter estimators. Indeed, the average error

of all three methods was comparable, despite the Bézier least squares being much

simpler in implementation, and not requiring any dynamical model to work, instead
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relying completely upon measurements. For this reason it is expected to be suitable

in those situations where accurate dynamics models are too complicated to describe

accurately, whether because they are constantly changing or unknown altogether.

Typical examples are the solar radiation pressure model (it depends on attitude and

on solar activity) or venting and accidental pipe leaking events. Moreover, since

dynamical models are not used, knowledge of process noise and/or dynamical model

uncertainty are not needed. Compared to other best fitting methods, this approach

also provides an interpolation of the measurement times, which can be used to obtain

velocity estimates.

Ultimately, Bézier least squares is not meant to replace more advanced methods,

when based on accurate dynamical models. Rather, it can be used when these

estimators need to work far from their nominal (and optimal) range of applicability

or when they provide doubtful results. In these cases the proposed method still

provides good estimates of both position and velocity.

117



REFERENCES

[1] R. Bellman, H. Kagiwada, and R. Kalaba. “Orbit Determination as a Multi-

Point Boundary-Value Problem and Quasilinearization”. In: Proceedings of the

National Academy of Sciences of the United States of America. Vol. 48. Aug.

1962, pp. 1327–1329. doi: 10.1073/pnas.48.8.1327.

[2] Nikolai Chernov. Circular and Linear Regression. Fitting Circles and Lines

by Least Squares. Vol. 117. Monographs on Statistics and Applied Probablity.

CRC Press, 2011.

[3] M. A. Chory et al. “Autonomous Navigation - Where We Are in 1984”. In:

Guidance and Control. Keystone, CO, 1984, pp. 27–37.

[4] J. L. Crassidis and J. L. Junkins. Optimal Estimation of Dynamical Systems.

2nd. CRC Press, 2011.

[5] G.F. Curtis and P.O. Wheatley. “Applied Numerical Analysis”. In: 7th. Pear-

son, 2004. Chap. 5, pp. 269–270.

[6] K.J. DeMars and M.K. Jah. “Probabilistic Initial Orbit Determination Using

Gaussian Mixture Models”. In: Journal of Guidance, Control and Dynamics

36.5 (Sept. 2013), pp. 1324–1335. doi: 10.2514/1.59844.

[7] F. de Dilectis, D. Mortari, and R. Zanetti. “Trajectory Determination with Un-

known Perturbations”. In: AAS/AIAA Astrodynamics Specialist Conference.

Hilton Head, SC, 2013.

118



[8] C. D’Souza et al. “Orion Cislunar Guidance and Navigation”. In: AIAA Guid-

ance, Navigation and Control Conference and Exhibit. Guidance, Navigation,

and Control and Co-located Conferences. American Institute of Aeronautics

and Astronautics, 2007.

[9] B. T. Fang. “Satellite-to-Satellite Tracking Orbit Determination”. In: Journal

of Guidance, Control, and Dynamics 2.1 (1979), pp. 57–64.

[10] M.A. Fischler and Bolles. R. C. “Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartogra-

phy”. In: Communications of the ACM 24 (July 1981), pp. 381–395.

[11] A. Fitzgibbon, M. Pilu, and R. B. Fisher. “Direct Least Square Fitting of

Ellipses”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions

on 21.5 (1999), pp. 476–480.

[12] D. Folta et al. “Autonomous Navigation Using Celestial Objects”. In: AAS/AIAA

Astrodynamics Specialist Conference. Girdwood, AK, 1999.

[13] J. R. Guinn and R. J. Boain. “Spacecraft Autonomous Navigation for Forma-

tion Flying Earth Orbiters Using GPS”. In: AAS/AIAA Astrodynamics Spe-

cialists Conference. San Diego, CA, 1996, pp. 29–31.

[14] Yanping Guo. “Self-Contained Autonomous Navigation System for Deep Space

Missions”. In: AAS/AIAA Space Flight Mechanics Meeting. Breckenridge, CO,

1999, pp. 1099–1113.

119



[15] R. Halir and J. Flusser. “Numerically Stable Direct Least Squares Fitting of

Ellipses”. In: 6th Conference in Central Europe on Computer Graphics, Visu-

alization and Interactive Digital Media. Pilsen, Czech Republic, 1998.

[16] R.M. Haralick and L.G. Shapiro. Computer and Robot Vision. Vol. 1. Addison-

Wesley, 1993.

[17] K.C. Howell and H.J. Pernicka. “Numerical determination of Lissajous trajec-

tories in the restricted three-body problem”. In: Celestial Mechanics 41.1-4

(1987), pp. 107–124. doi: 10.1007/BF01238756.

[18] E. F. Jochim et al. “GPS Based Onboard and Onground Orbit Operations for

Small Satellites”. In: Acta Astronautica 39.912 (1996), pp. 917–922.

[19] Reza Raymond Karimi. “Designing an Interplanetary Autonomous Spacecraft

Navigation System Using Visible Planets”. PhD thesis. Texas A&M University,

May 2012.

[20] I. K̊asa. “A Curve Fitting Procedure and its Error Analysis”. In: IEEE Trans-

actions on Instrumentation and Measurement 25 (1976), pp. 8–14.

[21] N. P. Laverty et al. “Multi-Mission Attitude Determination and Autonomous

Navigation/MADAN”. In: Guidance and Control. Vol. 1. Keystone, CO, 1980,

pp. 551–609.

[22] W. Li et al. “Jason-2 precise orbit determination using DORIS RINEX phase

data”. In: Geomatics and Information Science of Wuhan University 38.10 (Oct.

2013), pp. 1207–1211.

120



[23] J. W. Lowrie. “Autonomous Navigation Systems Technology”. In: 17th Aerospace

Sciences Meeting. New Orleans, LA, 1979.

[24] F. Markley. “Autonomous Navigation Using Landmark and Intersatellite Data”.

In: AAS/AIAA Astrodynamics Specialist Conference. Seattle, WA, 1984, pp. 1–

11.

[25] F. L. Markley. “Autonomous Satellite Navigation Using Landmarks”. In: AIAA,

Astrodynamics Specialist Conference. Vol. 1. Lake Tahoe, NV, 1981.

[26] D. Marquart. “An Algorithm for Least Squares Estimation of Nonlinear Pa-

rameters”. In: Journal of the Society for Industrial and Applied Mathematics

11.2 (1963), pp. 431–441. doi: 10.1137/0111030.

[27] B.G. Marsden. “Initial orbit determination - The pragmatist’s point of view”.

In: The Astronomical Journal 90.1541-1547 (Aug. 1985). doi: 10.1086/113867.

[28] D. Mortari, F. de Dilectis, and C. D’Souza. “Image Processing of Illuminated

Ellipsoid”. In: AAS/AIAA Astrodynamics Specialist Conference. Hilton Head,

SC, 2013.

[29] D. Mortari et al. “The Pyramid Star Pattern Recognition Algorithm”. In: ION

Navigation 51.3 (Fall 2004), pp. 171–183.
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APPENDIX A

REFERENCE FRAMES AND COORDINATES

TRANSFORMATIONS

As for time definition and reference frames definitions and orientations, the JPL

SPICE software has been adopted.

Reference Frames

The proposed image processing requires the use of several Reference Frames

(RFs). These are:

• [̂i1, î2, î3] This RF identifies the J2000 RF. Earth Centered and inertial.

• [ô1, ô2, ô3] This is the spacecraft principal axes RF.

• [b̂1, b̂2, b̂3] This is the observed body (Earth or Moon) RF. Body-centered and

body-fixed.

• [ĉ1, ĉ2, ĉ3] This is the camera RF. ĉ1 and ĉ2 axes lie on the camera imager

while ĉ3-axis is pointing from imager center to the lens.

• [ŵ1, ŵ2, ŵ3] This is the elliptical cone RF, as provided by Eq. (2.22).

Coordinates Transformations

To move from/to five different RFs four coordinates transformation DCMs (Di-

rection Cosine Matrix) are needed. These are provided in Table A.1, where C in-

124



dicates the DCM and q̂ba the quaternion moving the RFs indicated by the arrow:

Inertial → Spacecraft ô = C(q̂oi) î

Inertial → Observed Body b̂ = C(q̂bi) î

Spacecraft → Camera ĉ = C(q̂co) ô

Observed Body → Elliptical cone ŵ = C(q̂wb) b̂

Table A.1: Coordinate Transformations.

In addition to the previous RFs, the coordinate transformations between imager

(row, column and x, y) from/to camera RF must be given (see Fig. A.1). These are

provided by the standard pin-hole camera model.

Figure A.1: [r, c] and [x, y] reference

frames for the imager.

Figure A.2: [r, c] and [α, β] reference

frames for the imager.

Direct transformations from camera RF to [x, y] RF are

x = −f ĉ(1)

ĉ(3)
and y = −f ĉ(2)

ĉ(3)
(A.1)
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where coordinates, x and y, and focal length, f , are provided in mm. The inverse

transformation is

ĉ =
1√

x2 + y2 + f 2


−x

−y

f


(A.2)

The coordinates [x, y] can be transformed in pixel coordinates [r, c] (row, column) by

r =
nr + 1

2
− y

dr
and c =

nc + 1

2
+
x

dc
(A.3)

where dr and dc are row and column dimensions of a pixel [mm]. The inverse trans-

formations are

x = dc

(
c− nc + 1

2

)
and y = dr

(
nr + 1

2
− r
)

(A.4)

In addition to the previous RFs a new RF is introduced that is useful to estimate

the orientation of observed ellipses. The axes of this RF are as shown in Figure A.2

and the transformations areαβ
 =

 cosϑ − sinϑ

− sinϑ − cosϑ


c− c0

r − r0

 (A.5)

and cr
 =

c0

r0

+

 cosϑ − sinϑ

− sinϑ − cosϑ


αβ
 (A.6)
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