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ABSTRACT 

 

This study deals with a detailed development of a computational model based 

on the Cosserat rod theory to describe the motion of elastic filaments such as threads 

and hair. The need for a simulation software for the act of suturing has motivated this 

study. 

The dynamic equations governing the motion of elastic rods have been solved 

using a finite difference scheme. The scheme is central difference in space and forward 

difference in time and is conditionally stable. The simulations are carried out for a 

cantilever beam for various force and moment inputs at its free end. The results have 

been validated using known analytical results. The scheme has proven to be fast 

enough to be used in real-time simulations. 
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NOMENCLATURE 

 

 , ,1 2 3e e e  Fixed reference frame 

 , ,1 2 3d d d  Moving reference frame 

s Arc length (m) 

t Time (s) 

L Length of rod (m) 

T Total time considered (s) 

d Diameter of rod (m)     

ρ Density of rod (kg/m
3
) 

m s   Mass per unit length (kg/m) 

( )sI  Principal mass moment of inertia tensor (kg/m
2
) 

E Modulus of elasticity (N/m
2
) 

G Torsional rigidity modulus (N/m
2
) 

B Stiffness tensor (N-m
2
) 

s,t R  Centerline position vector (m)  

s,t v  Linear velocity (m/s)  

s,t ω  Angular velocity (rad/s)
 

s,t M  Contact moment (N-m) 

s,t u  Darboux vector (m
-1

) 
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s,t 0u  Initial Darboux vector (m
-1

)  

s,t N  Contact force (N)  

s,t T  External force (N)  

s,t Q  External moment (N-m)  

I1 Second moment of inertia about 1d  

I2 Second moment of inertia about 2d  

J Second moment of inertia about 3d  
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1. INTRODUCTION 

 

In the 21
st
 century, the digital age, everything we do has been made easier or 

more efficient using computers. The affordability of personal computers and the 

development of computer graphics have improved user experience with interactive 

games and 3-D movies. It has also helped in developing software for the engineering 

field to design mechanical components, predict failure and the like.  

In games and animated movies, the need to represent the motion of hair and 

clothes more realistically has spurred the interest in the mechanics of thin elastic rods. In 

these fields, however, the visualization aspect of the motion of these systems is more 

important than the accuracy of it. Fields, such as oil and gas and bio-medical engineering 

use the design of flexible structures such as wires, cables, ropes, threads, grape vines, 

and DNA polymers. Here, the accuracy of reaction forces and displacements of the rod 

play a major role. 

In the last few years, there have been efforts to use computer simulations in 

medical fields to help train students in the art of suturing. The present methods of 

training use cadavers, animal carcasses, foam models and the like [1]. These do not 

accurately represent the real situation and hence newer methods are being looked into. 

Initially, most of the effort was spent in modeling tissues and organs [2] than the surgical 

instruments used in suturing, such as the suture threads and needle. Keeping up with the 

need for a surgical simulation software, therefore, it is now important to simulate the 
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behavior of the surgical thread during the process of suturing in a surgery. Suture 

threads, undergoing complex movements as stitching, knotting, and cutting, are 

examples of thin deformable bodies exhibiting twisting, bending, and buckling due to 

different forces and moments. The present study aims to model accurately the motion of 

the suture thread in real-time so as to be used in a surgical training software. 

The simplest choice for modeling these thin rods is to use the Euler-Bernoulli 

theory [3,4], which, unlike the Timoshenko beam theory [3,4], does not take into 

account the shear deformation and rotational inertia effects. In 1859, Kirchhoff [5] first 

presented a rod theory that assigned each point of the rod six degrees of freedom - three 

translational and three rotational, so that both bending and torsion could be modeled. But 

the theory assumes that the rod is inextensible, the material behavior is linear, and the 

shear deformation is negligible. The Cosserat continuum theory [6] is one of the most 

prominent extended continuum theories. With the assumption of small strains, it 

resembles the Kirchhoff-Clebsh theory. The classical infinitesimal volume element of 

continuum mechanics is subjected to only volume and surface forces, whereas the 

Cosserat volume element involves a gradient of forces and a surface couple on each 

edge. Like the Kirchhoff theory, it treats each point on the rod as rigid having 6 degrees 

of freedom, three displacements and three rotations. Each point is assigned a triad of 

directors (di, i=1, 2, 3) and the rate of change of these directors in time and space 

describe the motion of the rod.  
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The present study is restricted to inextensible rods that do not undergo shear 

deformation. This results in two constraint equations which along with the equations of 

motion form a system of non-linear partial differential equations. Thus, the overall 

objective of this study is to formulate a method that can solve this set of equations 

accurately and quickly so as to be used in real-time simulations. 

In the section following this introduction, the methods implemented previously to 

solve similar problems will be presented. In section 3, the theoretical formulation of the 

rod will be described in more detail and the governing equations derived. In section 4, 

the method used to solve the derived equations is presented. In section 5, the results from 

the computer implementation of the method are shown with a brief discussion on them. 

The study is concluded with a brief summary of work and its future possibilities. 
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2. LITERATURE REVIEW 

 

In 2002, Pai [7] modeled thin elastic bodies that are inextensible and do not 

undergo shear, fixed at one end and subjected to force and moment inputs at the other 

end. This model can be used to represent the statics of catheters, sutures, tendons, hair, 

etc. The coupled boundary value differential equations were solved in two sweeps, from 

the free end to the fixed end, calculating the stresses and strains and then from the fixed 

end to the free end calculating the position and rotation at each point of the rod. This 

method offered an effective approach that could animate continuous thin deformable 

bodies in a physically correct way. However, the system handled only statics and self-

contact had not been considered.  

A finite difference scheme, unconditionally stable, called generalized alpha 

method was used by Goyal, Perkins, and Lee [8] to solve the coupled partial differential 

equations obtained from the continuum rod model. The scheme was used to simulate the 

dynamics of DNA filaments. Avoiding the singularities arising from the use of Euler 

angles to track large rotations, incremental rotations were used. The boundary conditions 

were solved for using shooting method, but its implementation is not very efficient in 

non-linear problems. Self-contact and intertwining were also modeled. 

Sobottka, Lay, and Weber [9] used the generalized alpha method to model hair. 

The boundary conditions were solved using a relaxation technique and employing the 

classical Newton iteration instead of the shooting method used by Goyal, Perkins, and 
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Lee [8]. The method is stable even with larger time steps and is relatively easy to follow. 

Gobat and Grosenbaugh [10] also used a similar method to solve a problem of 

oceanographic mooring. The Newton-Raphson method [11] was used to solve the 

system of equations. Solving equations using the Newton method may pose a 

convergence problem for certain cases. And with the use of generalized alpha method, 

the selection of parameters that will make the scheme unconditionally stable seems to be 

more or less trial and error and may have to be changed for different problems. 

A numerically stable finite difference method was presented by Lang, Linn, and 

Arnold [12] to model the dynamic response of Cosserat rods. A staggered grid was used 

for the approximation and quaternions used to represent rotations. The evolution of these 

quaternions was used to compute the curvatures of the rod. The scheme, being fast, can 

be used in real-time simulations. Collisions and interactions with other media are yet to 

be modeled. 

In addition to finite difference methods to solve the dynamic equations, finite 

element methods (FEM) have also been widely used. FEM has been used to model 

organs previously, however it is found to be relatively time consuming when it comes to 

modeling sutures. This is because a fine mesh is required to capture the rod 

configuration in space and at each node there are a large number of parameters. 

Spillmann and Teschner [13] introduced a visually suitable method, where a finite 

element method was used to calculate the restoration forces and torques in every element 
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and then, using these values, the displacements and rotations of the centerline were 

computed. Rotations were represented as quaternions. 

Cao, Liu, and Wang [14] used finite element method as well to model the 

dynamics of 3-dimensional slender structures using a Cosserat rod element formulation. 

Approximate solutions to the non-linear partial differential equations of motion in quasi-

static sense were used as shape functions. These functions were up to third order in 

nodal displacements and gave a more accurate dynamic response even with a coarser 

mesh.  

Another interesting approach was developed by Berkley et al. [15] where the 

problem of higher computation time was solved using a constraints approach. Here, the 

unknowns are calculated on a need to know basis. That is, interior nodes are ignored as 

the displacements there are not needed and the reaction forces calculated only where 

contact occurs. This condenses the stiffness matrix and hence reduces time required for 

computation. However, non-linear material properties and large deformation 

formulations were yet to be considered. 

Other approaches to model thin elastic structures include using spring-mass 

systems and spline-based models. Brown, Latombe, and Montgomery [16] and Wang et 

al. [17] used spring-mass systems; the former could only model bending whereas Wang 

linked each element with torsional springs to handle twist too.  However, these methods 

are not based on the continuum approach. Hadap and Thalmann [18] represented a rod as 

a chain of rigid bodies and included twist dynamics into the differential algebraic 
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equations. But the computation is time consuming and hence may not be well suited for 

virtual reality simulations. An example for spline-based model is the work of Lenoir et al 

[19], where sliding point constraints on a spline along with continuum mechanics were 

used to simulate the movement of the thread through skin.  

In the present study, we want to develop a physics-based numerical method to 

solve the dynamic equations of Cosserat rod theory which can be used to simulate the 

behavior of suture threads. 
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3. THEORETICAL FORMULATION OF RODS
* 

 

This section describes the physics of the motion of the thin elastic rods. The 

Cosserat rod theory is chosen to model the rods with the assumptions that the rod is 

inextensible and it does not undergo shear. The nomenclature used and the derivation of 

the governing equations are presented below. 

3.1 Definitions 

A rod is a structure whose one dimension is relatively much bigger than the other 

dimensions. It can experience extension, twisting and bending. One can treat each point 

of the rod as a rigid body and with the conservation of linear and angular momentum of 

each of these points; the dynamic behavior of the rod may be developed. 

Let us consider a rod of length, L, in space, whose coordinates are represented by 

the orthonormal system,  , ,1 2 3e e e . Suppose the rod is subjected to various forces, 

( , )s tT  and moments ( , )s tQ  per unit length varying with time, t and arc length, s. We 

shall consider the locus of the centers of mass of each cross-section as the centerline of 

the rod. Suppose the rod deforms such that its centerline may be represented as a three-

dimensional curve, ( , )s tR . Suppose a set of directors,  , ,1 2 3d d d  is assigned to each 

point on the curve, such that 1d
 
and 2d

 
are in the plane of the cross-section of the rod 

                                                 

*
 Parts of this chapter have been reprinted with the permission from “Modeling the dynamics of filaments 

for medical applications”, by Nuti S., Ruimi A., Reddy J., 2014, International Journal of Non-Linear 

Mechanics, 66 (2014), 139-148, Copyright [2014] by Elsevier. 
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and 3d  is normal to the cross-section. This set of directors form an orthonormal set of 

vectors if the rod is inextensible and does not shear. The evolution of this director frame 

in time and space yields the angular velocity, ω  and the curvature and twist vector, u  

(with 1u
 
and 2u  being the curvature components and 3u  being the twist component) 

respectively. The vector u  is also called the Darboux vector. Thus the directors can be 

described as functions of themselves as follows: 

 
s

    (i = 1,2,3).

t

  
   


     

i

i

i
i

e

i
i

e

d
u d

d
ω d

×

×

                                         (3.1) 

The relation between the partial derivatives of any vector, a , with respect to a 

moving reference frame and the fixed frame is given by the equations: 

t t

s s

    
     

    

    
     

    

i i

i i

d e

d e

a a
ω a

a a
u a

                                                (3.2) 

The free body diagram of an infinitesimal element of the rod stated above is as 

shown in figure 1; ( )sI , given as 1 1 1 2 2 2 3( )s I I I     3 3I d d d d d d and m s   are 

the tensor of principal mass moments of inertia and the mass per unit arc length of the 

rod respectively. 
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Figure 1: Free body diagram of an infinitesimal element of the rod. 

All the vectors in the figure 1 are in terms of the director frame,  , ,1 2 3d d d . In 

other words, the contact force, ( , )s tN  is given as, 1 2 3( , )s t N N N  1 2 3N d d d , with 

components, 1N  and 2N  being the shear forces and 3N  the axial force. Similarly, we 

have the contact moment, 1 2 3( , )s t M M M  1 2 3M d d d , with 1M  and 2M  

representing bending moments and 3M  representing the twisting moment, L  is the 

resultant external torque per unit arc length, which includes the applied torque, Q  and 

the torque due to the applied force, T . t̂  is the tangent at the point being considered.  

3.2 Governing Equations 

The conservation of linear and angular momentum for the above element gives 

us equations (3.3)1 and (3.3)2, respectively. 
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m
s t

.ˆ .
s t

    
   
    

   
    

    

i i

i i

e e

e e

N v
T

M Iω
t N L

+  =

× +

                                   (3.3) 

where s,t v   is the velocity vector . The restoring moment, M  is governed by material 

properties of the rod and can be written using the linear constitutive equation as 

  .  0M B u u                                                          (3.4) 

where, 0u
 
is the vector representing the initial configuration of the rod. Presently, we 

shall assume that the rod is straight initially and hence, 0u = 0. B is the matrix with the 

material properties as given below: 

0 0

0 0

0 0

1

2

B

B .

C

 
 

  
 
 

B                                                      (3.5) 

Here 1B  (= 1EI ) and 2B  (= 2EI ) are the bending stiffness and C (=GJ ) is the torsional 

stiffness of the rod. E  is the modulus of elasticity, G  the shear modulus, 1I  and 2I  are 

the second moment of inertia about 1d  and 2d  respectively and J  is the polar moment 

of inertia. We shall consider a rod of circular cross-section of diameter, d, with 

4

1 2
64

d
I I I


    and 

4

32

d
J


  .  
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With the assumption that the rod does not shear, we can rewrite the tangent as the 

3d  vector. Thus, using equations (3.2) and (3.4), we can rewrite equation (3.3) with 

derivatives with respect to the moving reference frame as 

 
   

 

 

 
 

 

( )m m
s t

.
s t

    
     

    

   
        

   

i i

ii

d d

3

dd

N v
u N T ω v

Bu ω
u Bu d N L I. ω I.ω

+ +  =

× +

               (3.6) 

From now on, the subscript  id  shall be omitted for derivatives in the moving reference 

frame. 

3.3 Compatibility Equation 

With the use of a moving reference frame to denote the vectors, one must impose 

that the vectors in one frame be compatible with those in the other reference frames. 

Suppose L is the transformation matrix from  ie to id . This can be written as 

   

2 31i 2i 3iL L L .



    

T

i i

i 1 i

e L d

e d d d L
                                        (3.7) 

Differentiating the above equation in space and time, and noting that  ie  is a 

fixed frame and hence its derivatives are zero, we have 

t


  



i
i

L
ω L           .

s


  



i
i

L
u L                                          (3.8) 
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The compatibility condition given by equation (3.10), follows from the 

continuity (in space and time) of the transformation matrix, L. Continuity implies that 

the order of differentiation of Li  must not matter. 

0

.
s t t s

.
t s

     
   

      

  
        

i i

i

L L

u ω
u ω L

                                         (3.9) 

0.
t s

 
    

 

u ω
u ω                                                    (3.10) 

3.4 Constraint Equation 

The inextensibility of the rod requires the length of any infinitesimally small 

element be the same after and before deformation.  

  
1

ds
.

dX
                                                          (3.11)

 

As previously stated, if the rod is assumed to have not undergone any shear, the tangent 

to the centerline at any point on the curve will coincide with the vector 3d  at that point. 

        .
X





3

R
d                                                          (3.12) 

As stated in section 3.3 above for L, the continuity of R in space, X and time, t, 

implies that the order of differentiation should not matter. Using equations (3.11) and 

(3.12), we have 
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.
s t t s

.
s t

      
   

      

   
    

    

i i

i i

e e

3

e e

R R

dv
                                                 (3.13) 

.
s


    


3

v
u v ω d                                                        (3.14) 

3.5 Summary of Equations 

The equations (3.14), (3.10), (3.6)2 and (3.6)1 form the system of equations that 

must be solved to obtain the dynamic behavior of the rod. In a condensed form they can 

be written as 

0.
t s

 
  

 

Y Y
M K F                                                 (3.15) 

where,  
T

, , ,Y v ω u N  and 

m

 
 
 
 
 
 

0 0 0 0

0 0 I 0
M

0 I 0 0

I 0 0 0
    

 
 
  
 
 
 

I 0 0 0

0 I 0 0
K

0 0 B 0

0 0 0 I

     
   

 

.

m

   
 

  
  

      
     

3

3

ω d u v

u ω
F

ω I.ω u Bu d N L

ω v u N T

                          

…..    (3.16) 

where I denotes the 3 3 identity matrix. 
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4. MATHEMATIC FORMULATION
*
 

  

This section describes the specific problem that is solved and the method used to 

solve it. The finite difference scheme chosen is central in space and forward in time. 

Along with the equations described in the previous section, the motion of the rod is 

obtained using the Rodrigues formula [9, 21]. The details of the scheme and the 

algorithm used are presented in this section. 

4.1 Introduction 

The system of equations listed in the previous section, equation (3.15), is solved 

for a cantilever beam that is fixed at one end and is subjected to forces and moments at 

the free end. This mimics the scenario where the suture thread is embedded into the skin 

at one end and the other end is controlled by the movement of the needle as shown in the 

figure 2. 

The selected problem is solved using a finite difference scheme that is central in 

space and forward in time. The scheme is conditionally stable, with the time and space 

step related by the transverse wave speed of the rod. Details of the scheme will be 

described in the following sub-section. 

 

                                                 

*
 Parts of this chapter have been reprinted with the permission from “Modeling the dynamics of filaments 

for medical applications”, by Nuti S., Ruimi A., Reddy J., 2014, International Journal of Non-Linear 

Mechanics, 66 (2014), 139-148, Copyright [2014] by Elsevier. 
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Figure 2: Suture thread fixed at the skin and subjected to forces and moments via the 

needle. [20]. 

 

4.2 Numerical Algorithm 

Suppose the number of space points on the rod is given as NS and the number of 

points in time as NT. The index ‘i’ is used to describe a point in space, where i = 1 

denotes the end that is fixed (s = 0) and i = NS denotes the free end (s = L). Similarly, the 

index ‘j’ is used to denote the points in time with j = 1 being the starting point in time (t 

= 0) and j = NT is the final point in time (t = T). The system of equations is solved to 

calculate the 4 unknowns, v ,ω , u  and N  at all space and time points. Each vector 

having 3 components, the unknowns are of the dimension 3×NS×NT. The number of 

space steps and time steps are not independent of each other but are related by the 

transverse wave speed, 
Tc  in the rod. Let the length of each space step and time step be 
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denoted as s  and t  respectively. These can be calculated as shown in equation (4.1). 

The relation between them is given by equation (4.2). 

and
1 1

T L
t s

NT NS
   

 
                                                       (4.1)

 

where T

T

s C n EJ
t , c

c L m


  

( )
                                               (4.2)

 

where, C n( ) is a number that depends on the mode of vibration of the rod. The 

condition on the time and space step is essentially stating that the simulation must run 

faster than the transverse wave one wants to capture. 

The boundary conditions for the selected problem are of the mixed kind. At the 

fixed end the angular and linear velocities are zero. That is, 1 2 3 0v v v   and 

1 2 3 0     at i = 1 for all j. At the free end, the force and moments are known and 

thus by the constitutive equation (3.4), force and the Darboux vector are known. That is, 

if the force and the moment at the free end are denoted respectively as N and M , then at 

i = NS for all j, ( , )NS jN  = N and 1( , )NS j u  = B M . At the initial condition, j = 1, the 

linear and angular velocities are zero and the rod is along the x-axis. That is, 

( ,1) ( ,1) ( ,1)i i i  v ω u 0 . The rod initially placed on the x-axis implies that the tangent 

to the rod,
3d , is along the x-axis. Thus, desiring a right-handed coordinate system, 

1d is 

chosen along the y-axis and 
2d along the z-axis initially. 

The central difference in space and forward difference in time used in the scheme 

are given as 
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( , )

( , )

( 1, ) ( 1, )
( , )

2

( , 1) ( , )
( , )

i j

i j

a a i j a i j
a i j

s s

a a i j a i j
a i j

t t

   
 

 

  
 

 

                                (4.3) 

From here on, the dash over a vector denotes the partial differential in space and a dot 

denotes the partial differential in time. 

Starting from the initial conditions, first the components of the Darboux vector,

,u are calculated using the compatibility equation (3.10) at the time step, t = (j+1) t  and 

at all space steps, i = 1, 2, … NS.   

( , j) (i, j) (i, j) ( , )i i j  u u                                       (4.4) 

( , j 1) ( , j) ( (i, j) (i, j) ( , ))i i t* i j    u u u                          (4.5) 

The frame of directors,  , ,1 2 3d d d at each point in space for the time step, t = 

(j+1) t  are calculated by integrating the equation (3.1)1. The integration results in a 

matrix exponential [9] and this can also be written as the Rodrigues rotation matrix. [21].  

1 1 1 2sin s ( ) (1 cos s)j j j

i i i

       R I u u                                    (4.6) 

1 1

1

1

j j

j

i

i i

 





   
   

   
   
   

3

R

3

1 1

2 2

d d

d d

d d

                                                       (4.7) 

With 
1j

i


u  being the skew symmetric matrix of the vector ( 1)i j u , , given as 

2 1

2 3

1 3

0

0

0

u u

u u

u u

 
 

 
 
  

u                                                           (4.8) 
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Then, the components of the linear velocity vector, v , at all space points, i = 1, 2, 

… NS, and at time, t = (j+1) t  are calculated using the constraint equation (3.14) as: 

( , 1) ( , 1) ( , 1) ( , 1) ( , 1).i j i j i j i j i j         3v ω d u v                           (4.9) 

( 1, 1) ( 1, 1) 2* s*( ( , 1) ( , 1) ( , 1) ( , 1)).i j i j i j i j i j i j             3v v ω d u v  

...(4.10)    

 

 The angular velocity is calculated next at all space points, i = 1, 2, … NS, and at 

time step, t = (j+1) t using the equations below. These equations follow from the 

governing equation (3.6)2. 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ...i j i j i j i j i j i j 3I.ω = d N L ω I.ω× +  

 ... ( , 1) ( , 1) ( , 1) .i j i j i j     Bu u Bu                 (4.11) 

 ( , 1) ( , j) *( ( , ) ( , ) ( , ) ( , ) ( , ) ...i j i t i j i j i j i j i j   3I.ω = I.ω d N L ω I.ω× +  

 ... ( , 1) ( , 1) ( , 1) ).i j i j i j     Bu u Bu                 (4.12) 

The next step is to calculate the components of the shear force and the axial force 

at all the space points, i = 1, 2, … NS, and at t = (j+1) t . This is done using the 

governing equation (3.6)1. 

( , 1) ( , 1) ( ( , 1) ( , 1)) ( , 1) ( , 1) ( , 1) .i j m i j m i j i j i j i j i j            N v ω v u N T=        

... (4.13) 

 

( 1, 1) ( 1, 1) 2 *( ( , 1) ( ( , 1) ( , 1))...i j i j s m i j m i j i j          N N v ω v=  

... ( , 1) ( , 1) ( , 1) ).i j i j i j     u N T            (4.14) 

 

With the above equations, the 4 unknown vectors are calculated. At each time 

step, to obtain the position of the rod, equation (3.12) is integrated. That is, using the 
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condition that the cross-sections do not shear, the tangent at each point, in this case, 
3d , 

can be integrated to get the position of the centerline of the rod. 

( , 1) ( , 1).i j i j   3R d                                               (4.15) 

( 1, 1) ( 1, 1) 2 *( ( , 1)).i j i j s i j       3R R d                        (4.16) 

To be able to visualize the effect of twisting moment on the rod, the positions of 

an imaginary line on the periphery of the rod are calculated. This is done using the 

position of the centerline and the twist component of the Darboux vector. Integrating the 

twist component, the angle of twist can be obtained. And then the position of the 

peripheral line is calculated by a simple rotation of the centerline through the angle of 

twist. The peripheral line chosen is initially along the x-axis at a radial distance from the 

centerline along the z-axis. That is, at the space point i = 1, the coordinate of the point on 

the peripheral line is (0, 0, d/2). As stated before, d is the diameter of the rod. Suppose 

the position of the imaginary peripheral line is denoted as endR . Then, the 3 components 

of  endR  at each point in space are calculated as shown below. 

(1, , 1) (1, 1, 1).

(2, , 1) (2, 1, 1) sin( * * ( , 1)).
2

(2, , 1) (2, 1, 1) cos( * * ( , 1)).
2

end

end

end

i j i j

d
i j i j s i i j

d
i j i j s i i j

   

      

      

3

3

R R

R R u

R R u

                (4.17) 
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5. RESULTS
*
 

  

 The results of the simulation using the method described in the previous 

section are presented in this section for different plausible scenarios. Ramped and 

impulse inputs at the free end are considered and the results validated through analytical 

results. It is to be noted that the scheme presented in the previous section can be used 

only where the boundary conditions are of the mixed kind.  

5.1 Preliminaries 

The simulations are performed for a rod with properties listed in the table below. 

The table includes the properties entered as inputs to the program and the properties 

calculated based on formulae stated in the previous section. 

 

Table 1: Table with properties and their values. 

Property Value 

Input Properties 

Length, L 1.00 m 

Diameter, d 0.001 m 

Density, ρ 850.00 kg/m
3
 

                                                 

*
 Parts of this chapter have been reprinted with the permission from “Modeling the dynamics of filaments 

for medical applications”, by Nuti S., Ruimi A., Reddy J., 2014, International Journal of Non-Linear 

Mechanics, 66 (2014), 139-148, Copyright [2014] by Elsevier. 
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Modulus of Elasticity, E 87.50 MPa 

Modulus of Rigidity, G 31.25 MPa 

Poisson’s ratio, υ 0.40 

 Total time, T 10.00 s 

Number of points in space, NS 51 

Transverse wave speed, 
Tc  0.882 m/s 

Calculated Properties 

Space step, s  0.02 m 

Time step, t  0.0166 s 

Bending stiffness, 1B and 2B  0.4295×10
-5

 N-m
2 

Torsional stiffness, C 0.3068×10
-5

 N-m
2
 

  

5.2 Simulation Results 

Each iteration took approximately 0.03 s CPU time on a laptop with Intel® 

Core™ i-3-3110M, 2.4Hz and 4GB RAM. This is about 5 times faster than the 

generalized-∝ method with relaxation method as performed by Sobottka, Lay and Weber 

[9]. 

Table 1 Continued. 

Property Value 
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The final configurations of the rod (i.e., at the last time step) for various inputs of 

force and moment at the free end are shown in figure 3 below. Note that the rod is fixed 

in space at the (0,0,0) point and is initially placed along the x-axis.  

 
 (a) 

 

(b)
 

Figure 3: Snapshots of the filament's final configuration (right) (at the last time step)   

for different inputs (left): (a) Only N1 [22], (b) M1 and M2 [23]. 

 

The results for the transverse load are validated using analytical results. As can be seen 

in table 2, the results are very similar.  
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Next, the effects of axial force and of twist are observed. These inputs are slowly 

increased till buckling is observed. The results are as shown in figure 4. 

 

Table 2: Analytical vs simulated results. 

Force at the 

free end, P 

(N) 

Simulated end 

deflection, 

ysim (m) 

Expected end 

deflection, yexp = 

PL
3
/3EI (m) 

 %error = 
         

    
 

     

4.50E-07 0.0352 0.0349 -0.792% 

8.00E-07 0.0627 0.0621 -0.763% 

1.00E-06 0.0782 0.0776 -0.989% 

 

 

(a) 

Figure 4: Buckling of the rod under: (a) Axial force [24], (b) Twisting moment [25]. 
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(b) 

Figure 4 Continued. 

The effects of different rod parameters on buckling due to axial force and 

twisting moment are recorded. The effect of the parameters on buckling due to twist is 

stated below. 

 For different moduli of elasticity, the final configurations of the rod are 

compared. It is seen that the lower the elastic modulus, the greater the buckling. This can 
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be explained as the rod taking the configuration of least energy. With a smaller elasticity 

modulus, the energy for bending is smaller. Hence, the rod would prefer to bend than to 

remain twisted. The figure below shows the configuration of the rod at the last time step 

with different elasticity modulus for the same axial force. 

 

 

Figure 5: Effect of elasticity modulus on buckling due to twist.  

For different lengths of the rod, it is interesting to note that a shorter rod buckles 

faster than a longer rod as can be seen in the figure 6. This is probably due to the twist 

distribution along the length of the rod. A shorter rod undergoes more twist than a longer 

rod and hence buckles faster.  
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Figure 6: Effect of length on buckling due to twist. 

 

 

Figure 7: Effect of rod diameter on twisting moment causing buckling. 
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 When the diameter is increased, it is seen that a higher twisting moment is 

required to buckle the rod. Figure 7 above shows the effect of the diameter on the 

buckling due to twisting moment. 

 Looking at the effects of diameter and length on the buckling of the rod due to 

axial load, it can be seen from figure 8 that a longer rod buckles at a lower force than a 

shorter rod. This is because the longer rod is less stiff than the shorter rod. Similarly, a 

thinner rod buckles at a lower force. Both these parameters affect the stiffness of the rod 

and hence the buckling. The effect of the diameter on the buckling due to axial force is 

shown in figure 9. 

 

 
Figure 8: Effect of rod length on axial force required to buckle the rod. 
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Figure 9: Effect of diameter on the axial force required to buckle the rod. 

 

The results for an impulse type input are shown in figure 10. A transverse force 

of magnitude N1 = 0.25 N is applied for Δt = 0.005 s followed by a load of the same 

magnitude but opposite in direction for the same duration. The rod’s configurations at 

different instances of time are shown in the figure and it can be seen that the rod vibrates 

with different modes excited. The results are validated by comparing the plot of the rod’s 

displacements at different points in space and time to those obtained analytically [26, 

27]. This is shown in figure 11. An FFT analysis of the motion of the rod at the free end 

and at the mid-point, obtained from the numerical and analytical methods, is shown in 

figure 12 and figure 13, respectively. The results show a strong agreement between 

predicted and simulated results. The numerical results, however, show small peaks at 

frequencies just beyond 2 Hz whereas the analytical results show a smooth curve.   
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Figure 10: Transient response of the rod due to an impulse force [28]. 
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Figure 11: Predicted values of displacement as a function of time (left) and simulated 

values (right). 

 

 

Figure 12: FFT analysis of motion at free end of the rod. 
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Figure 13: FFT analysis of motion at mid-point of the rod. 

  

 It is important to note that twist waves run faster than transverse waves and 

hence require a much smaller time step to be captured. The time step used to capture 

twisting is about ten times smaller than that used for bending. This is a disadvantage of 

this conditionally stable scheme. 

 It is shown in this section that the numerical results are in good agreement 

with the analytical results. Even though its conditional stability affects its speed when 

twist waves are considered, the simplicity of the scheme makes it faster than most other 

schemes. Thus the scheme would hold great advantages in real-time simulations. 
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6. CONCLUSION 

 

In brief, the dynamics of slender rods is represented using the theory of Cosserat 

rod and solved using finite difference method. The simulation scheme has not been used 

before and is central difference in space and forward difference in time. The positions of 

the rod at any given time are calculated using incremental angles.  

The simulations have been performed for a cantilever rod that is fixed at one end 

and whose other end is subjected to forces and moments. The results have been 

compared to analytical results and found to be in good agreement. Buckling effects due 

to axial force and twisting moment and effects of different parameters of the rod on the 

same have also been observed. 

As an extension, in the future, the application of this scheme on boundary 

conditions other than the cantilever kind may be explored. Also, modifying the scheme 

to make it unconditionally stable is another avenue to be looked into. Using the 

simulation scheme, an interactive program may be developed where the inputs to the 

free end of the rod are measured in real-time through sensors and fed as inputs from the 

hand of the user to the program. This will be the first step in creating a software that can 

help medical students train in the act of suturing. 
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